
RC4OK. An improvement of the RC4 stream cipher

Khovayko O.
Schelkunov D., Ph.D.

Emercoin
olegh@emercoin.com

ReCrypt LLC
d.schelkunov@gmail.com, schelkunov@re-crypt.com

Abstract

In this paper we present an improved version of the classical RC4 stream cipher.
The improvements allow to build lightweight high-performance cryptographically
strong random number generator suitable for use in IoT and as a corresponding
component of operating systems. The criterion for high performance is both a high
speed of generating a stream of random numbers and low overhead costs for adding
entropy from physical events to the state of the generator.

Keywords: stream cipher, random number generator, RC4

1 Introduction

Modern operating systems have a built-in source of random numbers that
can be used by application programs. This source contains a pseudo-random
number generator (PRNG), the state of which changes both when reading
data and adding entropy - asynchronous data from physical events in the
computer (mainly interrupts from devices). The latter guarantees that the
random stream is truly random, that is, it cannot be reproduced given the
initial state.

In a multiprocessor environment, the asynchronous addition of entropy
is very nontrivial, since the simultaneous modi�cation of the PRNG state by
various processes can violate its state (PRNG internal state) and disable it,
or else lead to its degradation, that is, to deviation of the parameters of the
output stream from the random one.

To correctly add entropy, various access sharing mechanisms are used.
For example, in FreeBSD, asynchronous events are queued, from which the
data is retrieved by a thread serving the PRNG.

1

We have developed a simple cryptographically strong PRNG that al-
lows you to add entropy without locks and the risk of breaking the genera-
tor state. Thus, complex synchronization mechanisms become unnecessary,
which will drastically reduce the system kernel latency when adding entropy,
and thereby increase its performance. The RC4 generator [1] was chosen as
the basis for the following reasons:

� extremely simple implementation;

� the generator is stream and byte-oriented, allowing it to generate byte
sequences of any length;

� high performance.

RC4 stream cipher is currently losing popularity due to a number of
vulnerabilities found in it [2] - [6] . We have modi�ed a classical RC4 1 to �x
them and to improve randomness properties.

2 The original RC4 algorithm

As mentioned above, the original RC4 is taken as a basis, to which a
number of modi�cations have been added. Let us brie�y remind the classical
RC4 algorithm. RC4 generates a pseudorandom keystream. This keystream
can be used for encryption by combining it with the plaintext using bitwise
modulo 2 addition. The same keystream is used for the decryption. To gen-
erate the keystream, RC4 uses a secret internal state. This internal state is
initialized using the key-scheduling algorithm (KSA). Once the internal state
has been initialized, the stream of bits is generated using the pseudo-random
generation algorithm (PRGA).

KSA is used to initialize the permutation in the array S (keylength is
the number of bytes in the key):

i← 0
while i ≤ 255 do

S[i]← i
i← i+ 1

end while

j ← 0
i← 0
while i ≤ 255 do

1https://github.com/emercoin/rc4ok

2

j ← (j + S[i] + key[i mod keylength]) mod 256
t← S[i]
S[i]← S[j]
S[j]← t
i← i+ 1

end while

Algorithm PRGA of the classical RC4 is presented below:

i← 0
j ← 0
while GeneratingOutput do

i← (i+ 1) mod 256
j ← (j + S[i]) mod 256
t← S[i]
S[i]← S[j]
S[j]← t

u← (S[i] + S[j]) mod 256
K ← S[u] ▷ Output K

end while

This algorithm produces a stream of K[0], K[1], ...,K[l] (keystream)
which could be xor-ed with plaintext to get an encrypted message. To decrypt
one the same keystream is used.

At the current moment the classical RC4 has a lot of security issues and
is considered to be deprecated [2], [7], [8].

3 The modi�cations of RC4

As mentioned above the original RC4 uses two index bytes i, j. Moreover,
i is increased by one, and j - by the value S[i], where S is an array of 256
bytes �lled with numbers 0..255. In our approach (RC4OK), the index i is
also byte, but incremented by 11 after each step. The number 11 is prime,
and thus provides access to all cells of S. But at the expense of a larger step,
a more �loose� update of the array is provided here.

The most important modi�cation concerns the j variable. Unlike RC4,
this variable represents a 32-bit number (4 bytes), of which only the least
signi�cant byte is used for actual indexing. We de�ne j0, j1, j2, j3 to be the
bytes of the variable j, where j0 is the least signi�cant one. We can also
represent the variable j as two 16-bit words jw0 and jw1 where jw1 is the
most signi�cant one (Figure 1).

3

Figure 1. Variable j

At the stage of generating the next byte of the keystream, before adding
S[i] to j0, the algorithm makes a circular left shift by one bit of the entire 32-
bit value j. Thus, at the next generation of a byte for the output stream, j0
depends not only on its previous value and S[i], but also on 31 earlier values
of j. This ensures that the generator is pulled out of a possible reduced ring
of states, which is proven by practice.

These modi�cations are practically undemanding to the state of three
�additional� bytes of j (j1, j2, j3). Indeed, even if they are zeroed after each
step, the generator is reduced to the classic RC4, which, although not ideal,
gives a very decent result. In practice, the modi�cation of these three bytes
can be performed asynchronously without a�ecting the main state of the
generator - the contents of the S array and the i, j0 bytes.

The modi�ed PRGA is presented below:

i← S[j ⊕ 85] ▷ Randomize i
j ← 0 ▷ Clear j
while GeneratingOutput do

i← (i+ 11) mod 256
j ← (j << 1) + (j >> 31) ▷ circular left shift by 1
j0 ← (j0 + S[i]) mod 256
t← S[i]
S[i]← S[j0]
S[j0]← t
u← (S[i] + S[j0]) mod 256
K ← S[u] ▷ Output K

end while

The proposed algorithm uses the two most signi�cant bytes of j (j2, j3)

4

to asynchronously add entropy. Entropy is added by cyclic left shifting these
two bytes by one and arithmetically adding the 16-bit value from the entropy
source. See the algorithm below:

while HarvestingEntropy do

jw1 ← (jw1 << 1) + (jw1 >> 15) ▷ circular left shift by 1
jw1 ← jw1 + entropy mod 65536

end while

In the original RC4, many attacks were developed against the key shedul-
ing algorithm, KSA. For example, [9]. Attacks are related to the leakage of
key bits at the beginning of the output stream or the state of the S-box, other
than random shu�ing immediately after the KSA. The improved version of
the original KSA is presented below:

i← 0
j ← 0
while i ≤ 255 do

j ← j + 233 mod 256
S[i]← j

i← i+ 1
end while

j ← 0
i← 0
while i ≤ 255 do

j ← (j + S[i] + key[i mod keylength]) mod 256
t← S[i]
S[i]← S[j]
S[j]← t
i← i+ 1

end while

Additionally, after expanding the key using our modi�ed KSA algorithm,
we extract 256 bytes from the generator and ignore them. Combined with the
previously described modi�cation of j this provides a good mixing of the S
array, which eliminates the deviations from randomness for the initial state
of the generator.

4 Conclusion

To test the generator, we used the PractRand toolkit of randomness tests.
This test is good at �nding patterns in the data submitted for veri�cation.

5

For example, according to the statement of the author of PractRand (and
veri�ed by us), the exhaust stream from the original RC4 stops passing the
test after 1 terabyte of input data.

Using PractRand we have tested 32 terabytes of the output of our gen-
erator. The generator is tested both in the mode without adding entropy,
and in the mode of simulating the addition of entropy. Both modes of the
generator demonstrate high quality of the output stream, stable operation
and no degradation of state 2.

Thus, the generator proposed here can be used both for the initial pur-
pose - a system PRNG, and for replacing the original RC4 when building
cryptosystems based on stream ciphers. On the advice of RC4 author Ron
Rivest, we named our generator RC4OK, where the su�x OK is derived from
the initials of the �rst author.

This generator is designed as a reference implementation for 32-bit arith-
metic, which is used in cheap controllers and other devices of this type. Nat-
urally, modern 64-bit computers can perform these 32-bit operations without
sacri�cing performance. As an obvious modi�cation focused on 64-bit com-
puters, we can suggest the use of a 64-bit word for storing j. This would
increase the bit depth of the added values from entropy sources, or would
make the sources multichannel. In addition, this should have a positive ef-
fect on the stability of the generator, although it already shows excellent
results, it will not get worse. We did not test this modi�cation, focusing on
researching the underlying algorithm.

We tested the use of the assembler instruction crc32 as an alternative to
cyclic shift followed by adding the value of S[i] to j, replacing two machine
instructions with one. This modi�cation also passed the PractRand test. Un-
fortunately, this instruction is only available on x86, so the modi�cation can-
not be recommended for widespread use, especially for encryption purposes.
However, for generating random numbers within programs or x86-based OS,
this modi�cation is quite applicable.

We have have changed the old Emercoin 3 PRNG algorithm with one
based on RC4OK. The blockchain download speed has increased up to 3
times.

5 References

[1] Rivest, Ron; Schuldt, Jacob, https://link.springer.com/content/pdf/10.1007%2F3-540-
45473-X13.pdf , 2014.

2https://github.com/emercoin/rc4ok/tree/main/PractRandTest
3https://github.com/emercoin/emercoin/

6

[2] Andrei Popov, doi:10.17487/RFC7465, 2015.

[3] John Leyden, https://www.theregister.com/2013/09/06/nsacryptobreakingbullrunanalysis/,
2013.

[4] Green, Matthew, https://blog.cryptographyengineering.com/2013/03/12/attack-of-week-rc4-
is-kind-of-broken-in/, 2013.

[5] Sepehrdad, P., Vaudenay, S., Vuagnoux, M., �Discovery and Exploitation of New Biases
in RC4�, Selected Areas in Cryptography. SAC 2010. Lecture Notes in Computer Science,
6544, Springer, 2011, 74�91.

[6] Biham, E., Carmeli, Y., �E�cient Reconstruction of RC4 Keys from Internal States�, LNCS,
5086, Springer, 2008, 270-288.

[7] https://wiki.mozilla.org/Security/ServerSideTLS, Mozilla, 2015.

[8] http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-
recommendation-to-disable-rc4.aspx, Microsoft, 2013.

[9] Fluhrer, S., Mantin, I., Shamir, A., �Weaknesses in the Key Scheduling Algorithm of RC4�,
Selected Areas in Cryptography. SAC 2001. Lecture Notes in Computer Science, 2259,
Springer, 2001, 1-24.

7

	Introduction
	The original RC4 algorithm
	The modifications of RC4
	Conclusion
	5 References

