
Blind signatures from Zero knowledge in the Kummer variety*

Paulo L. Barreto1, Devin D. Reich1, Marcos A. Simplicio Jr.2 Gustavo H. M. Zanon2

1 School of Engineering and Technology – University of Washington | Tacoma

2Escola Politécnica – Universidade de São Paulo

pbarreto@uw.edu,devin.d.reich@gmail.com,msimplicio@larc.usp.br,gustavo.zanon@alumni.usp.br

Abstract. We show how to apply the BZ methodology (Blind signatures from
Zero knowledge) to obtain blind signatures in the Kummer varieties defined by
Montgomery curves. We also describe specially-tailored arithmetic algorithms
to facilitate their efficient implementation. The result can be proved secure un-
der appropriate assumptions, appears to resist even the ROS attack (to which
most elliptic-curve blind signature schemes succumb), and is arguably one of
the most efficient among those proposals that offer similar security guarantees.
Keywords: Blind signatures, Zero-knowledge arguments, Kummer variety.

1. Introduction

The cryptographic importance of Montgomery curves [Montgomery 1987] resides in their
ability to sustain arithmetic operations involving only the x-coordinates of points: since
the y-coordinates are not required, they can be omitted altogether, leading to highly effi-
cient computations. This comes at the cost of no longer distinguishing between a point P
and its opposite −P . That is, operations are not really carried out in the group of points
(of a certain large prime order) on the curve, but rather in the so-called Kummer variety of
the curve. This drawback is inconsequential for simple key agreement protocols, which
rely only on multiplications by scalars. However, it could be a hindrance for digital sig-
natures and other more elaborate protocols relying on point addition as well, where the
ambiguity between points and their opposites can lead to adverse effects.

The qDSA signature [Renes and Smith 2017] addresses such a drawback, verify-
ing signatures entirely under the Kummer variety. The scheme is the Kummer analog of a
Schnorr signature [Schnorr 1990], with the verification constraint relaxed to allow for two
verifying conditions instead of one. The existence of a plain signature scheme in the Kum-
mer variety poses the interesting question of what other types of signatures are possible
in the same scenario, particularly blind signatures, which are commonly used in privacy-
related protocols (e.g., e-cash or e-voting) [Tessaro and Zhu 2022] and are known to be
hard to obtain securely even in a more conventional setting. This is all the more important
when one considers that most (though not all) blind signature schemes built on elliptic
curves are susceptible to a recent, powerful attack against the principle underlying those
constructions, the so-called ROS (Random inhomogeneities in an Overdetermined Solv-
able system of linear equations) problem [Benhamouda et al. 2021]. One approach that
appears to resist the ROS attack is the BZ [DL] construction [Barreto and Zanon 2023],

*A preliminary version of this paper was presented and received the Best Paper Award at the XXIII
Brazilian Symposium on Information and Computational Systems Security – SBSeg 2023, Juiz de Fora
(MG), Brazil.

which stems from zero-knowledge arguments for the possession of a signature. That con-
struction, however, was so far only known to apply to an underlying full group structure,
not for a Kummer variety.

Contribution: Our contribution in this paper is a blind signature scheme built with the
BZ strategy adapted to the Kummer variety setting. This requires a new, biquadratic
verification method which, although more complex than the Renes-Smith algorithm, is
nevertheless very efficient. Namely, at the 2κ security level, it only imposes a computa-
tional overhead of a fraction 1/(2κ) of the total processing time. The resulting scheme
admits a natural constant-time implementation and turns out to be more efficient than any
blind signature scheme based on elliptic curves we are aware of.

Organization: The remainder of this research document is organized as follows. Sec-
tion 2 introduces basic concepts related to our proposal and the pertaining notation. Sec-
tion 3 recapitulates the conventional discrete-logarithm BZ [DL] and IZ [DL] schemes.
Our proposed Kummer-based protocols BZ [qDL] and IZ [qDL] are introduced and dis-
cussed in Section 4. We describe the novel biquadratic test required by these proposed
protocols in Section 5. Section 6 presents a test-of-concept experimental evaluation of
our proposals. We conclude in Section 7.

2. Preliminaries

We hereby follow the notation conventions of [Barreto and Zanon 2023]. This includes
the color highlights to allow for more easily following the roles of the quantities involved
in the protocol across different algorithms and steps.

The set of all integers modulo n (with representatives in range [0 . . . n − 1]) is
written Zn. The set of all binary strings is denoted as {0, 1}∗, and given any other set
U containing an additively neutral element ϵ (e.g., ϵ = 0 for the integers), U∗ denotes
the set U \ {ϵ}. The shorthand (⟨condition⟩) ? ⟨value-if-true⟩ : ⟨value-if-false⟩ denotes
the choice of one out of the two specified possible values depending on the Boolean
condition. The shorthand x

$← U denotes the uniformly random sampling of a value
x from a set U . When a function returns a tuple and one or more components of that
tuple are to be ignored, they are indicated by an empty underscore: e.g., if f(x) returns
a pair (y, z), but only y will be used, the function call is written (y,) ← f(x). Let n
be a (large) prime number, and let G be a generator of the n-torsion of an elliptic curve.
The Kummer variety G := ⟨G⟩/± identifies every pair of opposite points {P,−P} ⊂
⟨G⟩ with a single element ±P ∈ G. It supports the notion of pseudo-multiplication by
scalar, inherited in a natural fashion from the group ⟨G⟩: for any k ∈ Zn, [n](±P) :=
±([k]P). Given ±P,±Q,±R ∈ G, the Renes-Smith test [Renes and Smith 2017, Alg. 2]
efficiently determines whether±R ∈ {±(P+Q), ±(P−Q)} (see Algorithm 30). For the
Kummer variety of a Montgomery curve [Montgomery 1987], all of these operations can
use only the x-coordinate of the curve points (see Appendix A). The discrete logarithm
computation problem (DL) translates to a Kummer variety version: given an element
±P ∈ ⟨G⟩/±, find m ∈ Zn such that ±P = [m](±G). Clearly the Kummer variant is
as hard as the conventional DL problem: if it were any easier, an instance P ∈ ⟨G⟩ of DL
could be mapped to its Kummer version, solved for m so that P ∈ {[m]G, [−m]G}, and
the correct value from ±m could be determined with a multiplication by scalar; the same
is certainly true the other way around.

2

Figure 1. The canonical BZ scheme

Signer BZ .S(sk) User BZ .U(pk,m) Verifier BZ .V er(pk,m)

(û, v̂, stS)
$← BZ .S1(sk)

û,v̂−→
ĉ,d̂←− (ĉ, d̂, stU)

$← BZ .U1(pk, û, v̂,m)

ŵ ← BZ .S2(stS , ĉ, d̂)
ŵ−→ σ ← BZ .U2(stU , ŵ)

σ−→ b← BZ .Ver(pk, σ,m)

2.1. The BZ blind signature methodology
Essentially, a blind signature scheme is an interactive protocol between a signer and a
user: the signer issues a verifiable signature σ on a message chosen by the user, and later
cannot link σ to the run of the protocol in which it was created. The following formal
definitions from [Barreto and Zanon 2023] are relevant to the protocols hereby proposed.

Definition 1 (Canonical Three-move Blind-signature-from-Zero-knowledge Scheme)
A canonical three-move Blind-signature-from-Zero-knowledge scheme (see Figure 1) is
a 5-tuple of algorithms BZ = (BZ .PG,BZ .KG,BZ .S = (BZ .S1,BZ .S2),BZ .U =
(BZ .U1,BZ .U2),BZ .Ver) where:

• The randomized parameter generation algorithm BZ .PG takes a security parameter
1κ as input and returns system parameters, param.

• The randomized key generation algorithm BZ .KG takes param as input and cre-
ates a key pair (pk, sk). In turn, the public key defines challenge spaces (C,D) :=
CD(pk), and is known to all parties.

• The first, randomized signer algorithm BZ .S1 takes as input the secret key sk and
returns commitments (û, v̂) and the signer’s state stS .

• The first, randomized user algorithm BZ .U1 takes as input the public key pk, com-
mitments (û, v̂), and a message m, and returns challenges (ĉ ∈ C, d̂ ∈ D) and the
user’s state stU .

• The second, deterministic signer algorithm BZ .S2 takes as input the signer’s state
stS , which includes the secret key sk and the commitments (û, v̂), together with chal-
lenges (ĉ ∈ C, d̂ ∈ D), and returns the response ŵ.

• The second, deterministic user algorithm BZ .U2 takes as input the user’s state stU ,
which includes the public key pk, the commitments (û, v̂), the message m, and the
challenges (ĉ ∈ C, d̂ ∈ D), together with response ŵ, and returns a signature σ, or
⊥ in case of failure.

• The deterministic verification algorithm BZ .Ver takes as input the public key pk, a
signature σ, and a message m, and returns b = 1 to indicate acceptance or b = 0 to
indicate rejection (if σ = ⊥ the output is always 0).

A secure instantiation of the BZ scheme must satisfy the following properties:
• Perfect correctness: for any signature σ that genuinely results from BZ .U2 after

a protocol session with a key pair (pk, sk) and a message m, it must hold that
BZ .Ver(pk, σ,m) = 1;

• Perfect blindness [Hauck et al. 2019, Def. 5.3]: if BZ .S chooses two messages
(m0,m1), establishes two sessions with BZ .U with transcripts (T0, T1), and ends
up observing the resulting two signatures (σ0, σ1), then BZ .S cannot tell whether
T0 corresponds to m0 (and T1 corresponds to m1), or T0 corresponds to m1 (and T1

corresponds to m0) any better than by random guessing;

3

Figure 2. The canonical IZ scheme

Prover IZ .P (sk) Verifier IZ .U(pk,m)

(û, v̂, stP)
$← IZ .P1(sk)

û,v̂−→
ĉ,d̂←− ĉ

$← C, d̂ $← D
ŵ ← IZ .P2(stP , ĉ, d̂)

ŵ−→ b← IZ .Ver(pk, û, v̂, ĉ, d̂, ŵ)

• One-more unforgeability (OMUF) [Hauck et al. 2019, Def. 5.4]: if BZ .U interacts
with BZ .S in ℓ protocol sessions, then BZ .U obtains no more than ℓ blind signatures
(namely, only from those sessions that reach completion).

Unforgeability and correctness of BZ instantiations build upon an underlying identifica-
tion scheme IZ , in which a prover proves knowledge of a private key sk to a verifier.

Definition 2 (Canonical Three-move Identification-from-Zero-knowledge Scheme)
A canonical three-move Identification-from-Zero-knowledge scheme (see Figure 2) is a
4-tuple of algorithms IZ = (IZ .PG, IZ .KG, IZ .P = (IZ .P1, IZ .P2), IZ .Ver) where:

• The randomized parameter generation algorithm IZ .PG takes a security parameter
1κ as input and returns system parameters param.

• The randomized key generation algorithm IZ .KG takes param as input and creates a
key pair (pk, sk). In turn, the public key defines challenge spaces (C,D) := CD(pk),
and is known to all parties.

• The first, randomized prover algorithm IZ .P1 takes as input the secret key sk and
returns commitments (û, v̂) and the prover’s state stP .

• The second, deterministic prover algorithm IZ .P2 takes as input the prover’s state
stP , which includes the secret key sk and the commitments (û, v̂), together with
challenges (ĉ ∈ C, d̂ ∈ D), and returns the response ŵ.

• The deterministic verification algorithm IZ .Ver takes as input the public key pk,
commitments (û, v̂), challenges (ĉ ∈ C, d̂ ∈ D), and response ŵ, and returns b = 1
to indicate acceptance or b = 0 to indicate rejection.

3. The BZ [DL] and IZ [DL] schemes

The conventional BZ [DL] blind signature scheme and its associated identification scheme
IZ [DL] are defined over a cryptographically strong group, typically that of a large prime
order subgroup of points on an elliptic curve, where the DL problem is considered hard.

The BZ [DL] scheme consists of the following algorithms:

4

Algorithm 1 BZ [DL].PG(1κ)

1: Select an Abelian group G := ⟨G⟩ of prime order n ≈ 22κ and secure hash functions H : G × {0, 1}∗ → Z∗
n and

G : G→ Z∗
n.

2: return param := (n,G,G,H)

Algorithm 2 BZ [DL].KG(param)

1: (n,G,G,H)← param

2: x
$← Z∗

n, Y ← [x]G

3: sk ← (x, param), pk ← (Y , param)

4: return (pk, sk)

Algorithm 3 BZ [DL].S1(sk)

1: (x, param)← sk, (n,G,G,H)← param

2: r
$← Z∗

n, s
$← Z∗

n, Û ← [r]G, V̂ ← [s]G, stS ← (sk, r, s)

3: return (Û ∈ G∗, V̂ ∈ G∗, stS)

Algorithm 4 BZ [DL].U1(pk, Û ∈ G∗, V̂ ∈ G∗,m ∈ {0, 1}∗)

1: (Y , param)← pk, (n,G,G,H)← param

2: π
$← Z∗

n, δ
$← Z∗

n, ρ
$← Z∗

n, ε
$← Z∗

n

▷ ζ ← ρπ (mod n), compute ζ−1 (mod n), π−1 ← ρζ−1 (mod n), ρ−1 ← πζ−1 (mod n)

3: U ← [π]Û + [δ]G, V ← [ρπ]V̂ + [ε]G

4: c←H(U,m), d← G(V), ĉ← cπ−1 (mod n), d̂← dρ−1 (mod n)

5: stU ← (pk, U, Û , V̂ , π, δ, ρ, ε, d, ĉ, d̂)

6: return (ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, stU)

Algorithm 5 BZ [DL].S2(stS , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stS , (x, param)← sk, (n,G,G,H)← param

2: z ← r − ĉx (mod n), ŵ ← s− d̂z (mod n)

3: return ŵ ∈ Z∗
n

Algorithm 6 BZ [DL].U2(stU , ŵ ∈ Z∗
n)

1: (pk, U, Û , V , V̂ , π, δ, ρ, ε, d, ĉ, d̂)← stU , (Y , param)← pk, (n,G,G,H)← param

▷ check that the signer is honest:
2: Ĥ ← Û − [ĉ]Y , if V̂ ̸= [ŵ]G+ [d̂]Ĥ : return ⊥
3: w ← ρπŵ − dδ + ε (mod n)

4: return σ := (U, d, w) ∈ G∗ × (Z∗
n)

2

Algorithm 7 BZ [DL].Ver(pk, σ ∈ G∗ × (Z∗
n)

2,m ∈ {0, 1}∗)

1: if σ = ⊥ : return 0

2: (Y , param)← pk, (n,G,G,H)← param

3: (U, d, w)← σ, c←H(U,m), H ← U − [c]Y , V ← [w]G+ [d]H

4: return (d = G(V)) ? 1 : 0

The BZ protocol can be proved to be perfectly correct, perfectly blind, and one-
more-unforgeable in the random oracle model under the one-more discrete logarithm
assumption (OMDL) [Bellare and Palacio 2002], whereby an adversary is given ℓ + 1
elements from ⟨G⟩, allowed to perform ℓ queries to an oracle capable of solving an in-
stance of the DL problem in ⟨G⟩ (not necessarily from the set of received elements), and
challenged to produce the discrete logarithms of all ℓ + 1 group elements it has received
(the OMDL assumption being precisely that this problem is unfeasible).

For the IZ [DL] scheme, algorithms IZ .PG and IZ .KG are, respectively, identical

5

to BZ .PG and BZ .KG, except that the hash functions are ignored and omitted. The
remaining algorithms are as follows.

Algorithm 8 IZ [DL].P1(sk)

1: (x, param)← sk, (n,G)← param, r
$← Z∗

n, s
$← Z∗

n, Û ← [r]G, V̂ ← [s]G, stP ← (sk, r, s)

2: return (Û ∈ G∗, V̂ ∈ G∗, stP)

Algorithm 9 IZ [DL].P2(stP , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stP , (x, param)← sk, (n,G)← param, z ← r − ĉx (mod n), ŵ ← s− d̂z (mod n)

2: return ŵ ∈ Z∗
n

Algorithm 10 IZ [DL].Ver(pk, Û ∈ G∗, V̂ ∈ G∗, ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, ŵ ∈ Z∗
n)

1: (Y , param)← pk, (n,G)← param, Ĥ ← Û − [ĉ]Y

2: return
(
V̂ = [ŵ]G+ [d̂]Ĥ

)
? 1 : 0

The IZ [qDL] scheme cannot attain the standard meddler-in-the-middle (MitM)
security [Barreto and Zanon 2023, Thm. 3], but it can be shown to achieve imperson-
ation security against concurrent attacks (IMP-CA) [Bellare and Palacio 2002] under the
OMDL assumption [Barreto and Zanon 2023, Thm. 5], in the sense that breaking BZ [DL]
OMUF implies breaking IZ [DL] IMP-CA, and this in turn implies solving OMDL.

4. The BZ [qDL] and IZ [qDL] schemes

The Kummer-based BZ [qDL] blind signature scheme we propose consists of the follow-
ing algorithms. The protocol structure closely follows the plain elliptic version BZ [DL],
with similar roles being indicated by the same color, but there are some significant differ-
ences due to the absence of a full group structure in the Kummer variety.

Certain operations that look similar require particular attention: in the comments
withing the algorithms, we describe what Kummer-specific computations correspond to
the formal specifications (e.g., the extended Montgomery ladder computes additional in-
formation, essentially for free, that is necessary for further protocol processing):

6

Algorithm 11 BZ [qDL].PG(1κ)

1: Select a Kummer variety G from an underlying group of prime order n ≈ 22κ, a generator ±G ∈ G, and secure hash
functionsH : G× {0, 1}∗ → Z∗

n and G : G→ Z∗
n.

2: return param := (n,±G,G,H)

Algorithm 12 BZ [qDL].KG(param)

1: (n,±G,G,H)← param

2: x
$← Z∗

n, ±Y ← ±[x]G ▷ ±Y ← xML(x,±G)

3: sk ← (x, param), pk ← (±Y , param)

4: return (pk, sk)

Algorithm 13 BZ [qDL].S1(sk)

1: (x, param)← sk, (n,±G,G,H)← param

2: r
$← Z∗

n, s
$← Z∗

n

▷ (±∆̂U , ±Û)← xML+(r − 1,±G), (±∆̂V , ±V̂)← xML+(s− 1, ±G)

3: ±Û ← ±[r]G, ±∆̂U ← ±(Û −G), ±V̂ ← ±[s]G, ±∆̂V ← ±(V̂ −G), stS ← (sk, r, s)

4: return (±Û ∈ G∗, ±∆̂U ∈ G∗, ±V̂ ∈ G∗, ±∆̂V ∈ G∗, stS)

Algorithm 14 BZ [qDL].U1(pk,±Û ∈ G∗,±∆̂U ∈ G∗,±V̂ ∈ G∗,±∆̂V ∈ G∗,m ∈ {0, 1}∗)

1: (±Y , param)← pk, (n,±G,G,H)← param

▷ check that ±∆̂U = ±Û ±G and ±∆̂V = ±V̂ ±G:
▷ if not xRS(±Û ,±∆̂U ,±G) or not xRS(±V̂ ,±∆̂V ,±G) :
2: if ±∆̂U ̸= ±Û ±G or ±∆̂V ̸= ±V̂ ±G : return ⊥
3: π

$← Z∗
n, δ

$← Z∗
n, ρ

$← Z∗
n, ε

$← Z∗
n

▷ ζ ← ρπ (mod n), compute ζ−1 (mod n), π−1 ← ρζ−1 (mod n), ρ−1 ← πζ−1 (mod n)

▷ ±U ← xML2D(π, π−1, δ,±Û ,±G,±∆̂U), ±V ← xML2D(ζ, ζ−1, ε,±V̂ ,±G,±∆̂V)

4: ±U ← ±[π]Û ± [δ]G, ±V ← ±[ρπ]V̂ ± [ε]G ▷ if ±U = O or ±V = O : restart at step 3
5: c← H(±U,m), d← G(±V), ĉ← cπ−1 (mod n), d̂← dρ−1 (mod n)

6: stU ← (pk,±Û ,±V̂ ,±U,±V , π, δ, ρ, ε, d, ĉ, d̂, ζ)

7: return (ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, stU)

Algorithm 15 BZ [qDL].S2(stS , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stS , (x, param)← sk, (n,±G,G,H)← param

▷ ensure that both possible signatures are consistent:
2: if r ± ĉx ≡ 0 (mod n) or s± d̂z ≡ 0 (mod n) : return ⊥ ▷ Kummer variety constraint violation
3: z ← r − ĉx (mod n), ŵ ← s− d̂z (mod n)

4: return ŵ ∈ Z∗
n

Algorithm 16 BZ [qDL].U2(stU , ŵ ∈ Z∗
n)

1: (pk,±Û ,±V̂ ,±U,±V , π, δ, ρ, ε, d, ĉ, d̂, ζ)← stU , (±Y , param)← pk, (n,±G,G,H)← param

▷ check that the signer is honest:
▷ if not xBQ(xML(ŵ,±G), xML(d̂,±Û), xML(−ĉd̂ (mod n), ±Y), ±V̂) :
2: if ±V̂ ̸= ±[ŵ]G± [d̂]Û ± [−ĉd̂]Y : return ⊥
▷ ensure that all possible signatures are consistent (otherwise the protocol needs to restart from the beginning):
3: if ζŵ ± dδ ± ε = 0 (mod n) : return ⊥
4: w ← ζŵ − dδ + ε (mod n)

5: return σ := (±U,±V ,w) ∈ (G∗)2 × Z∗
n

Algorithm 17 BZ [qDL].Ver(pk, σ ∈ (G∗)2 × Z∗
n,m ∈ {0, 1}∗)

1: if σ = ⊥ : return 0

2: (±Y , param)← pk, (n,±G,G,H)← param, (±U,±V ,w)← σ, c← H(±U,m), d← G(±V)

▷ (xBQ(xML(w,±G), xML(d,±U), xML(−cd (mod n),±Y), ±V)) ? 1 : 0
3: return (±V = ±[w]G± [d]U ± [−cd]Y) ? 1 : 0

The security properties of this protocol are a direct restatement of the DL version,

7

with the OMDL problem replaced by the version induced by the Kummer variety, the
so-called OMKDL assumption. This will be formulated in detail in Section 4.2.

For the associated identification scheme IZ [qDL], algorithms IZ [qDL].PG and
IZ [qDL].KG are, respectively, identical to BZ [qDL].PG and BZ [qDL].KG, except that
the hash functions are ignored and omitted. The remaining algorithms are as follows.

Algorithm 18 IZ [qDL].P1(sk)

1: (x, param)← sk, (n,±G)← param, r
$← Z∗

n, s
$← Z∗

n

2: ±Û ← ±[r]G, ±V̂ ← ±[s]G, stP ← (sk, r, s) ▷ ±U ← xML(r, ±G), ±V ← xML(s, ±G)

3: return (±Û ∈ G∗, ±V̂ ∈ G∗, stP)

Algorithm 19 IZ [qDL].P2(stP , ĉ ∈ Z∗
n, d̂ ∈ Z∗

n)

1: (sk, r, s)← stP , (x, param)← sk, (n,±G)← param

▷ ensure that both possible signatures are consistent:
2: if r ± ĉx ≡ 0 (mod n) or s± d̂z ≡ 0 (mod n) : return ⊥ ▷ Kummer variety constraint violation
3: z ← r − ĉx (mod n), ŵ ← s− d̂z (mod n)

4: return ŵ ∈ Z∗
n

Algorithm 20 IZ [qDL].Ver(pk,±Û ∈ G∗,±V̂ ∈ G∗, ĉ ∈ Z∗
n, d̂ ∈ Z∗

n, ŵ ∈ Z∗
n)

1: (±Y , param)← pk, (n,±G)← param

2: return
(
±V̂ = ±[ŵ]G± [d̂]Û ± [−ĉd̂]Y

)
? 1 : 0 ▷

(
xBQ

(
±[ŵ]G,±[d̂]Û ,±[−ĉd̂ (mod n)]Y ,±V̂

))
? 1 : 0

4.1. Differences between the DL and qDL protocols
We see that there is a communication difference between the blind signature and identi-
fication protocols, namely, the signature scheme needs to transmit extra points ±∆̂U and
±∆̂V to enable laddering. This does not create a leakage opportunity, since the extra
points only differ from the essential points ±Û and ±V̂ by an offset ±G, and could be
recomputed from public data. This, however, would incur a substantial computational
overhead, since adding or subtracting the offset requires the full point coordinates to
be completed, defeating the goal of keeping only x-coordinates throughout the whole
scheme.

Thus, the extra points are only transmitted to allow for an efficiency trade-off.
Yet, they must still be checked for consistency (that is, they must have the required offset
form), and this is why the Renes-Smith test must be applied to them. This check is still
far more efficient than recovering the full coordinates.

4.2. Security
The proposed schemes satisfy analogous security properties as the BZ [DL] and IZ [DL]
schemes upon which they are based, under the Kummer-based assumptions corresponding
to their discrete-logarithm counterparts.

Namely, the BZ [qDL] protocol can be proved to be perfectly correct, perfectly
blind in the random oracle model, and one-more-unforgeable (OMUF) under the one-
more Kummer discrete-logarithm assumption (OMKDL), captured in Definition 3.

Definition 3 Let G := ⟨G⟩/± be a Kummer variety. Let an adversary be given ℓ +
1 elements from G, then allowed to perform ℓ queries to an oracle capable of solving
an instance of the Kummer DL problem in G (not necessarily from the set of received

8

elements), and finally challenged to produce the Kummer discrete logarithms of all ℓ+ 1
group elements it has received. The one-more Kummer discrete-logarithm assumption
(OMKDL) is that properly responding to this challenge is unfeasible.

As pointed out in Section 2, OMKDL and OMDL are equivalent.

The proofs are straightforward, word-for-word restatements of Theorems 1 (for
perfect correctness), 2 (for perfect blindness), 4 and 5 (for OMUF of BZ [qDL] and IMP-
CA of IZ [qDL]) from [Barreto and Zanon 2023], changing all instances of the discrete
logarithm problem by the corresponding Kummer instances, and changing the OMDL
assumption by OMKDL. Correspondingly, the IZ [qDL] scheme cannot attain standard
MitM security, but it can be shown to achieve IMP-CA security under the OMKDL
assumption, in the sense that breaking the OMUF security of BZ [qDL] implies break-
ing the IMP-CA security of IZ [qDL], and this in turn implies solving OMKDL. These
properties stem, as before, from word-for-word restatements of Theorems 3 and 5 from
[Barreto and Zanon 2023], respectively.

One of the more remarkable properties of the BZ methodology, which is
also present in the proposed Kummer version, is its resistance against ROS at-
tacks [Benhamouda et al. 2021]. More specifically, given a prime number p and access
to a random oracle Hros with range in Zp, the ROS problem (in dimension ℓ) asks to
find (ℓ + 1) vectors ρ̂i ∈ Zℓ

p for i ∈ [ℓ + 1], and a vector c = (c1, . . . , cℓ) such that:
Hros(ρ̂i) = ⟨ρ̂i, c⟩ for all i ∈ [ℓ + 1]. In practice, using a solver for the ROS problem,
many blind signature schemes can be attacked in polynomial time if the attacker can in-
teract with the signer via ℓ > lg p concurrent sessions. However, at best, such attacks
appear to be harder to mount against BZ [qDL] than in the conventional BZ [DL] case.
This is a consequence of the sign ambiguity in the Kummer version: linear combinations
involving a number ℓ of terms in the DL case branch into 2ℓ terms that differ in the sign,
and the attacker would have to guess somehow which sign assignments are correct. It is
not clear at this time how (or whether) this particular obstacle can be overcome, but even
if it can, the result is still the same situation as in BZ [DL], which is argued to be infeasible
in [Barreto and Zanon 2023, Appendix A].

For brevity (and sheer lack of space), those lengthy proofs are omitted here. We
refer the interested reader to the original proofs as indicated above.

Finally, from the point of view of concrete (practical) security there is no more
than a 1-bit decrease compared to qDSA due to the need to accept twice as many signature
verification relations as equally valid. Like qDSA, there is no more than a further 1-bit
decrease compared to a conventional Schnorr-like signature in a setting that supports full
group arithmetic.

5. The biquadratic test

At the core of the Kummer-based versions of IZ and BZ is the requirement to determine
if ±T = ±P ± Q ± R for given points ±P , ±Q, ±R, and ±T , which generalizes the
Renes-Smith algorithm to perform the related check ±R = ±P ±Q.

Let P = [XP : ZP], Q = [XQ : ZQ], R = [XR : ZR], and T = [XT : ZT].
The Renes-Smith idea to test whether aX2

R− 2bXRZR + cZ2
R = 0, where a := (XPZQ−

9

ZPXQ)
2, b := (XPXQ+ZPZQ)(XPZQ+ZPXQ)+2AXPZPXQZQ, and c := (XPXQ−

ZPZQ)
2.

The generalized biquadratic check, which can be written±R±T = ±P±Q, could
be performed by applying the Renes-Smith technique twice if the coordinates of ±S :=
±(R+T) and±D := ±(R−T) were known, but obtaining both (as opposed to computing
only one) would incur the additional computational effort of a full multiplication by scalar.
Yet, one can proceed along this line and look for a biquadratic formula corresponding to
the combined test (aX2

S − 2bXSZS + cZ2
S)(aX

2
D − 2bXDZD + cZ2

D) = 0, so as to check
if either the sum or the difference between ±R and ±T corresponds to ±P ±Q.

Starting with normalized coordinates ±S = [xS : 1], ±D = [xD : 1], R =
[xR : 1], and T = [xT : 1] (to be homogenized later), and assuming provisionally that
±O ̸= ±R ̸= ±T ̸= ±O, the biquadratic formula reads:

a2(xSxD)
2 + 4b2(xSxD)− 2b(xS + xD)(a(xSxD) + c) + ac(x2

S + x2
D) + c2 = 0. (1)

Applying the Montgomery group law yields1

xSxD = (xRxT − 1)2/(xR − xT)
2,

xS + xD = 2((xRxT + 1)(xR + xT) + 2AxRxT)/(xR − xT)
2,

x2
S + x2

D = 2(4xRxT (2A(AxRxT + (xRxT + 1)(xR + xT)) + (xRxT − 1)2)

+ ((xRxT + 3)2 − 8)(xR + xT)
2)/(xR − xT)

4.

These expressions can now be plugged into Eq. 1 and the common denominator (xR −
xT)

4 can be dropped. Homogenizing back by substituting xR := XR/ZR and xT :=
XT/ZT and then dropping a further common denominator (ZRZT)

6, we finally get the
desired biquadratic formula:

a2v4 + 4b2v2z2 − 4b(uw + 2Ade)(av2 + cz2) + act + c2z4 = 0 (2)

where d := XRXT , e := ZRZT , u := d + e, v := d − e, f := XRZT , g := XTZR,
w := f + g, z := f − g, and t := 2(4de(2A(Ade+ uw) + v2) + ((u+ 2e)2 − 8e2)w2).

As it happens for the Renes-Smith test, this formula holds in full generality, in-
cluding when ±R = ±O, ±T = ±O, or ±R = ±T , and it vanishes precisely when
±T = ±P ±Q±R. This is summarized in Algorithm 31 in Appendix B.

5.1. Analysis
Unsurprisingly, the biquadratic test above clearly looks much more involved than the
basic Renes-Smith test, since it must cope with one more implicit differential addition
and twice as many equivalent acceptance conditions.

Yet, implementing it costs no more than 20 general multiplications and 9
squarings in the underlying finite field (plus a few much lighter operations like addi-
tions/subtractions and shifts). This represents about four times the cost of the Renes-
Smith test2 which, at 5 general multiplications and 2 squarings, is itself slightly less than

1Remark: a computationally simpler expression for x2
S + x2

D may conceivably exist.
2In general, the biquadratic test costs about three times as much as Renes-Smith, but the latter can be

optimized in the context of BZ [qDL].

10

the cost of one joint pseudo-doubling and differential addition (xDBLADD) on the curve,
namely 6 general multiplications and 4 squarings.

Besides, the biquadratic test is only ever invoked accompanied by three laddering
operations (in Algorithms 16, 17, and 20). Since the total number of xDBLADD opera-
tions performed within each laddering matches the scalar bitlength (i.e. twice the security
bit-level κ), the runtime overhead of the biquadratic test is no more than a fraction about
1/(2κ). For instance, at the 128-bit security level the biquadratic test is only responsible
for a fraction about 1/256 of the runtime, and even less at higher security levels. Thus,
despite its complexity, it is lightweight in the context of the proposed protocols.

6. Experimental assessment

We developed a proof-of-concept implementation of the proposed blind signature pro-
tocol BZ [qDL] in Python. With it, we conducted tests on the sample Montgomery
curve E : y2 = x3 − 61370x2 + x over F2256−189 (the so-called ed-256-mers curve
from [Bos et al. 2016]). For comparison, we have also implemented the conventional
BZ [DL] protocol on the same curve ed-256-mers in Edwards form, with similarly
constant-time laddering.

The computational costs are summarized on Table 1, in the form of operation
counts for each of the algorithms of a canonical three-move blind-signature-from-zero-
knowledge scheme except PG (since picking a suitable curve and hash functions tran-
scends the scope of a particular protocol that uses them). The smaller costs between
BZ [DL] and BZ [qDL] are highlighted in boldface. These counts were obtained using a
constant-time and uniform-access implementation, where all scalar factors are constrained
to have the same bitlength.

We limit the statistics to the most relevant arithmetic operations: finite field mul-
tiplications (M), finite field squarings (S), and multiplications by small constants A, 2A or
(A + 2)/4 (C). We also include finite field inversions (I), since they are required when
normalizing curve points [X : Z] as [X/Z : 1], specifically for serialization as byte arrays
and transmission. We tally multiplications and inversions mod p and mod n together, as
these moduli are always of comparable size.

Conventional BZ [DL] was already more efficient than the main proposal known
to resist ROS attacks [Benhamouda et al. 2021], namely the general-purpose, DL-based
blind signature scheme by Tessaro-Zhu BS3 [Tessaro and Zhu 2022] (whose signatures
are 2× shorter than Abe’s scheme [Kastner et al. 2022], for example). Hence, we conjec-
ture that our proposal is the most efficient scheme known heretofore in the same category.

11

Table 1. Operation counts for BZ [DL] and BZ [qDL] per protocol execution

M S C I

algorithm DL qDL DL qDL DL qDL DL qDL

KG 3319 1267 1024 1014 255 254 0 0
S1 6644 2538 2048 2028 510 508 2 4
S2 2 4 0 0 0 0 0 0
U1 13322 6113 4098 4068 1024 1018 10 3
U2 9984 4079 3072 3051 767 765 1 2
Ver 9994 4077 3073 3051 768 765 7 2

7. Conclusion

We have described a blind signature scheme based on the Kummer variety of Montgomery
curves. Our proposal follows the BZ methodology, in the sense that the signature obtained
from the signer is replaced by a zero-knowledge argument of its possession, namely, a
one-time signature created using (part of) that obtained signature as a private key. The
scheme can be proven secure under the OMKDL assumption and resist the ROS attack
that caused the demise of most elliptic-curve blind signature schemes. To support our pro-
posal, we have tailored arithmetic algorithms and developed new ones that enable efficient
implementation. Experimentally, the result turns out to be one of the most efficient among
the few blind signature proposals that are still known to offer strong security guarantees.

References

Aranha, D. F., Novaes, F. R., Takahashi, A., Tibouchi, M., and Yarom, Y. (2020). Lad-
derLeak: Breaking ECDSA with less than one bit of nonce leakage. In ACM SIGSAC
Conference on Computer and Communications Security (CCS 2020), pages 225–242.
Association for Computing Machinery. DOI:10.1145/3372297.3417268.

Barreto, P. L. and Zanon, G. H. M. (2023). Blind signatures from Zero-knowledge ar-
guments. Cryptology ePrint Archive, Paper 2023/067. https://eprint.iacr.
org/2023/067.

Bellare, M. and Palacio, A. (2002). GQ and Schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In Ad-
vances in Cryptology – CRYPTO 2002, pages 162–177. Springer. DOI:10.1007/
3-540-45708-9_11.

Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., and Raykova, M. (2021). On the
(in)security of ROS. In Advances in Cryptology – EUROCRYPT 2021, pages 33–53.
Springer. DOI:10.1007/978-3-030-77870-5_2.

Bos, J. W., Costello, C., Longa, P., and Naehrig, M. (2016). Selecting elliptic curves for
cryptography: an efficiency and security analysis. Journal of Cryptographic Engineer-
ing, 6:259–286. 10.1007/s13389-015-0097-y.

Hauck, E., Kiltz, E., and Loss, J. (2019). A modular treatment of blind signatures from
identification schemes. In Advances in Cryptology – EUROCRYPT 2019, pages 345–
375. Springer. DOI:10.1007/978-3-030-17659-4_12.

12

DOI:10.1145/3372297.3417268
https://eprint.iacr.org/2023/067
https://eprint.iacr.org/2023/067
DOI:10.1007/3-540-45708-9_11
DOI:10.1007/3-540-45708-9_11
DOI:10.1007/978-3-030-77870-5_2
10.1007/s13389-015-0097-y
DOI:10.1007/978-3-030-17659-4_12

Kastner, J., Loss, J., and Xu, J. (2022). On pairing-free blind signature schemes in the al-
gebraic group model. In IACR International Conference on Public-Key Cryptography,
pages 468–497. Springer.

Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264. DOI:10.1090/
S0025-5718-1987-0866113-7.

Renes, J. and Smith, B. (2017). qDSA: Small and secure digital signatures with curve-
based Diffie–Hellman key pairs. In Advances in Cryptology – ASIACRYPT 2017, pages
273–302. Springer. DOI:10.1007/978-3-319-70697-9_10.

Schnorr, C. P. (1990). Efficient identification and signatures for smart cards. In Ad-
vances in Cryptology — CRYPTO’ 89, pages 239–252. Springer. DOI:10.1007/
0-387-34805-0_22.

Tessaro, S. and Zhu, C. (2022). Short pairing-free blind signatures with exponential
security. In Advances in Cryptology – EUROCRYPT 2022, pages 782–811. Springer.
DOI:10.1007/978-3-031-07085-3_27.

A. Arithmetic of Montgomery curves

For convenience of reference, we recapitulate here the core arithmetic algorithms for
Montgomery curves. We include the optimizations enabled within BZ [qDL].

The laddering multiplication-by-scalar Algorithms 21, 22, 23 and 24 use three
functions, xADD for pseudo-addition, xDBL for pseudo-doubling and xDBLADD for
joint pseudo-doubling and differential addition on a Montgomery curve (Algorithms 25,
26, and 27), as well as uniform conditional scalar swapping cSWP and point swapping
xSWP (Algorithms 28 and 29).

We ensure that all scalars have the same bitlength ℓ := ⌈lg n⌉ of the underlying
group order, which is essential to attain a constant-time ladder, by flipping their sign mod-
ulo n when they are smaller than ⌈n/2⌉. This technique is tailored to Kummer varieties,
and is slightly simpler and more efficient than the one suggested in [Aranha et al. 2020],
which would require all scalars to be normalized to bitlength ℓ+ 2 instead.

Algorithm 21 The (extended) Montgomery ladder, xML+(k,±P)

INPUT: k :=
∑ℓ−1

i=0 ki2
i with 0 ≤ k ≤ n for n := 2|G| − 1, ℓ := ⌈lgn⌉, and ±P ∈ G \ {O, T}, T := (0, 0).

OUTPUT: ±[k]P ∈ G and ±[k + 1]P ∈ G.
COST: 1 call to xDBL, ℓ− 1 calls to xDBLADD, ℓ− 1 calls to xSWP.

1: (k,)← cSWP(k, n− k, k ≤ ⌊n/2⌋) ▷ make sure k is an ℓ-bit scalar
2: (±R0, ±R1)← (xDBL(±P),±P)

3: for i← ℓ− 2 downto 0 do
4: (±R0, ±R1)← xSWP(±R0, ±R1, ki ⊕ ki+1)

5: (±R0, ±R1)← xDBLADD(±R0, ±R1, ±P)

6: end for
7: (±R0, ±R1)← xSWP(±R0, ±R1, k0)

8: return (±R0, ±R1)

13

DOI:10.1090/S0025-5718-1987-0866113-7
DOI:10.1090/S0025-5718-1987-0866113-7
DOI:10.1007/978-3-319-70697-9_10
DOI:10.1007/0-387-34805-0_22
DOI:10.1007/0-387-34805-0_22
DOI:10.1007/978-3-031-07085-3_27

Algorithm 22 The Montgomery ladder, xML(k,±P)

INPUT: k :=
∑ℓ−1

i=0 ki2
i with 0 ≤ k ≤ n for n := 2|G| − 1, ℓ := ⌈lgn⌉, and ±P ∈ G \ {O, T}, T := (0, 0).

OUTPUT: ±[k]P ∈ G.

1: (±R0,)← xML+(k, ±P)

2: return ±R0

Algorithm 23 The 3-point Montgomery ladder, xML3(m,±P,±Q,±(Q− P))

INPUT: k :=
∑ℓ−1

i=0 ki2
i with 0 ≤ k ≤ n for n := 2|G| − 1, ℓ := ⌈lgn⌉, ±P ∈ G, ±Q ∈ G, and ±(Q− P) ∈ G.

OUTPUT: ±(P + [k]Q) ∈ G.

1: (±R0, ±R1, ±R2, ±R3)← (±Q, ±P, ±(Q− P), xADD(±P,±Q,±(Q− P))) ▷ R3 = ±(Q+ P)

2: (±R2, ±R3) ← xSWP(±R2, ±R3, k ≤ ⌊n/2⌋), (k,) ← cSWP(k, n − k, k ≤ ⌊n/2⌋) ▷ make sure k is an ℓ-bit
scalar

3: k−1 ← 0 ▷ not an actual bit from k: defined for notation convenience
4: for i← 0 to ℓ− 1 do
5: (±R1, ±R2)← xSWP(±R1, ±R2, ki ⊕ ki−1)

6: (±R0, ±R2)← xDBLADD(±R0, ±R2, ±R1)

7: end for
8: (±R1, ±R2)← xSWP(±R1, ±R2, kℓ−1)

9: return ±R1

Algorithm 24 The 2-dimensional Montgomery ladder, xML2D(α, α−1, β,±P,±Q,±(Q− P))

INPUT: 0 < α < n, 0 < α−1 < n, 0 ≤ β < n for n := 2|G| − 1, ±P ∈ G, ±Q ∈ G, and ±(Q− P) ∈ G.
OUTPUT: ±[α]P ± [β]Q ∈ G (computed as ±[α](±P ± [α−1β]Q)).

1: ±S ← xML3(α−1β (mod n),±P,±Q,±(Q− P)), ±R← xML(α,±S)
2: return ±R

Algorithm 25 Montgomery differential addition, xADD(±P,±Q,±(Q− P))

INPUT: ±P := [XP : ZP],±Q := [XQ : ZQ],±(Q− P) := [X− : Z−] ∈ G.
OUTPUT: ±(P +Q) := [X+ : Z+] ∈ G if Q− P ̸∈ {O, (0, 0)}, otherwise X+ = Z+ = 0.
COST: 4M+ 2S+ 3a+ 3s, or 3M+ 2S+ 3a+ 3s if Z− is normalized to 1.

1: V0 ← XP + ZP , V1 ← XQ − ZQ, V1 ← V1 · V0, V0 ← XP − ZP , V2 ← XQ + ZQ, V2 ← V2 · V0

2: V0 ← V1 + V2, V0 ← V 2
0 , V1 ← V1 − V2, V1 ← V 2

1 , X+ ← Z− · V0, Z+ ← X− · V1

3: return [X+ : Z+]

Algorithm 26 Montgomery pseudo-doubling, xDBL(±P)

INPUT: ±P := [XP : ZP] ∈ G, (A+ 2)/4: precomputed constant.
OUTPUT: ±[2]P := [X2 : Z2] ∈ G if P ̸= O, otherwise Z2 = 0.

1: V0 ← XP + ZP , V0 ← V 2
0 , V1 ← XP − ZP , V1 ← V 2

1 , X2 ← V0 · V1

2: V0 ← V0 − V1, V2 ← ((A+ 2)/4) · V0, V2 ← V2 + V1, Z2 ← V0 · V2

3: return [X2 : Z2]

Algorithm 27 Montgomery joint pseudo-doubling and differential addition xDBLADD(±P,±Q,±(Q− P))

INPUT: ±P := [XP : ZP], ±Q := [XQ : ZQ], ±(Q− P) := [X− : Z−] ∈ G, (A+ 2)/4: precomputed constant.
OUTPUT: ±[2]P := [X2 : Z2] ∈ G and ±(P +Q) := [X+ : Z+] ∈ G.
COST: 6M+ 4S+ 1C+ 4a+ 4s, or 5M+ 4S+ 1C+ 4a+ 4s if Z− is normalized to 1.

1: V0 ← XP + ZP , V1 ← XP − ZP , V2 ← V 2
0 , V3 ← V 2

1 , X2 ← V2 · V3, V2 ← V2 − V3

2: X+ ← ((A+ 2)/4) · V2, V3 ← V3 +X+, Z2 ← V2 · V3, V2 ← XQ + ZQ, V3 ← XQ − ZQ, V0 ← V0 · V3

3: V1 ← V1 · V2 V2 ← V0 + V1, V2 ← V 2
2 , V3 ← V0 − V1, V3 ← V 2

3 , X+ ← Z− · V2, Z+ ← X− · V3

4: (X+, Z+)← ((ZP | XP) = 0) ? cSWP(XQ, ZQ, XP = 0) :
(
(ZQ | XQ) = 0

)
? cSWP(XP , ZP , XQ = 0) :

((Z− | X−) = 0) ? cSWP(X2, Z2, X− = 0) : O
▷ adjust (in isochronous fashion)
5: return ([X2 : Z2], [X+ : Z+])

Algorithm 28 Isochronous conditional swapping, cSWP(u, v, swap)

INPUT: u, v ∈ Z/2m; swap ∈ Z/2m. ▷ all quantities viewed as m-bit integers in two’s complement
OUTPUT: (v, u) if swap = 1, otherwise (u, v).

1: mask← −swap, ∆← (u⊕ v)&mask
2: return (u⊕∆, v ⊕∆)

14

Algorithm 29 Isochronous conditional swapping, xSWP(±P,±Q, swap)

INPUT: ±P = [XP : ZP], ±Q = [XQ : ZQ] ∈ Z/2m × Z/2m; swap ∈ Z/2m.
OUTPUT: (±Q,±P) if swap = 1, otherwise (±P,±Q).

1: mask← −swap, X∆ ← (XP ⊕XQ)&mask, Z∆ ← (ZP ⊕ ZQ)&mask
2: return ([XP ⊕X∆ : ZP ⊕ Z∆], [XQ ⊕X∆ : ZQ ⊕ Z∆])

B. The Renes-Smith algorithm and the biquadratic test
Verification of Kummer pseudo-addition can be carried out with a method proposed by
Renes and Smith [Renes-Smith, Proposition 3]). It is summarized in Algorithm 30.

Algorithm 31 summarizes the proposed biquadratic method that extends the
Renes-Smith test as required for our Kummer-based blind signature and identification
scheme. The costs refer to operations in Fp as follows: M: generic multiplication; S:
squaring; C: multiplication by small constant (A or 2A); a: addition; s: subtraction; d:
left-shift (by 1 or 2 positions, i.e.a doubling or a quadrupling). We remark that, although
the authors of [Renes and Smith 2017] indicate a complexity of 8M+ 3S+ 1C+ 8a+ 4s
for their description this algorithm, it can be implemented at the slightly smaller cost
8M+ 2S+ 1C+ 4a+ 4s even when none of the points is normalized, as indicated below.
In the context of BZ [qDL], points ±P and ±Q are always normalized (ZP = ZQ = 1),
so the actual cost is only 5M+ 2S+ 1C+ 4a+ 4s.

Algorithm 30 The Renes-Smith test xRS(±P,±Q,±R)

INPUT: ±P = [XP : ZP], ±Q = [XQ : ZQ] ∈ G, ±R ∈ Fq such that ±R ∈ G.
OUTPUT: Whether ±R ∈ {±(P +Q), ±(P −Q)}.
COST: 5M+ 2S+ 1C+ 4a+ 4s (up to 3M more if ZP ̸= 1 and/or ZQ ̸= 1).

1: V0 ← XP ·XQ, V1 ←
(
ZQ ̸= 1

)
? XP · ZQ : XP , V2 ← (ZP ̸= 1) ? ZP ·XQ : XQ

2: V3 ← (ZP = 1) ? ZQ :
(
ZQ = 1

)
? ZP : ZP · ZQ

3: V4 ← V0 − V3, V4 ← V 2
4 , V5 ← V1 − V2, V5 ← V 2

5 , V5 ← V5 · ±R
4: V1 ← V1 + V2, V2 ← V0 · V3, V2 ← 2A · V2, V0 ← V0 + V3, V0 ← V0 · V1, V0 ← V0 + V2

5: V5 ← V5 − V0, V5 ← V5 − V0, V5 ← V5 · ±R, V0 ← V5 + V4

6: return (V0 = 0) ? true : false

Algorithm 31 The Biquadratic test xBQ(±P,±Q,±R,±T)

INPUT: ±P = [XP : ZP], ±Q = [XQ : ZQ], ±R = [XR : ZR], ±T = [XT : ZT] ∈ G.
OUTPUT: Whether ±T ∈ {±P ±Q±R}.
COST: 20M+ 9S+ 3C+ 14a+ 6s+ 6d (2M more if ZT ̸= 0).

▷ Renes-Smith factors:
1: V0 ← XP ·XQ, V1 ← XP · ZQ, V2 ← ZP ·XQ, V3 ← ZP · ZQ

2: a← V1 − V2, a← a2, c← V0 − V3, c← c2

3: b← V0 · V3, b← 2A · b, V0 ← V0 + V3, V1 ← V1 + V2, V2 ← V0 · V1, b← b+ V2

▷ Biquadratic factors:
4: V0 ← XR ·XT , V1 ← (ZT ̸= 1) ? XR · ZT : XR, V2 ← ZR ·XT , V3 ← (ZT ̸= 1) ? ZR · ZT : ZR

5: V4 ← V1 + V2, V1 ← V1 − V2, V5 ← V0 + V3, V2 ← V0 − V3, V0 ← V0 · V3, V1 ← V 2
1 V2 ← V 2

2 ,
6: V6 ← A · V0, V7 ← V5 · V4, V8 ← V6 + V7, V8 ← 2A · V8, V8 ← V8 + V2, V8 ← V0 · V8, V8 ← V8 ≪ 2

7: V3 ← V3 ≪ 1, V0 ← V5 + V3, V0 ← V 2
0 , V3 ← V 2

3 , V3 ← V3 ≪ 1, V0 ← V0 − V3

8: V4 ← V 2
4 , V0 ← V0 · V4, V8 ← V8 + V0, V8 ← V8 ≪ 1, V0 ← a · V2

9: V3 ← c · V1, V6 ← V6 ≪ 1, V6 ← V6 + V7, V7 ← V0 + V3, V0 ← V 2
0

10: V1 ← V1 · V2, V1 ← V1 · b, V2 ← V6 · V7, V1 ← V1 − V2, V1 ← V1 · b, V1 ← V1 ≪ 2

11: V2 ← a · c, V2 ← V2 · V8, V3 ← V 2
3 , V0 ← V0 + V1, V0 ← V0 + V2, V0 ← V0 + V3

12: return (V0 = 0) ? true : false

15

	Introduction
	Preliminaries
	The BZ blind signature methodology

	The BZ[DL] and IZ[DL] schemes
	The BZ[qDL] and IZ[qDL] schemes
	Differences between the DL and qDL protocols
	Security

	The biquadratic test
	Analysis

	Experimental assessment
	Conclusion
	Arithmetic of Montgomery curves
	The Renes-Smith algorithm and the biquadratic test

