
©IACR 2024. This is the full version of an article that will be published in the proceedings of EUROCRYPT 2024.

Twinkle: Threshold Signatures
from DDH with Full Adaptive Security

Renas Bacho 1,3 Julian Loss 1 Stefano Tessaro 2

Benedikt Wagner 1,3 Chenzhi Zhu 2

February 26, 2024

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{renas.bacho,loss,benedikt.wagner}@cispa.de

2 Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

3 Saarland University, Saarbrücken, Germany

Abstract
Sparkle is the first threshold signature scheme in the pairing-free discrete logarithm setting (Crites,

Komlo, Maller, Crypto 2023) to be proven secure under adaptive corruptions. However, without
using the algebraic group model, Sparkle’s proof imposes an undesirable restriction on the adversary.
Namely, for a signing threshold t < n, the adversary is restricted to corrupt at most t/2 parties. In
addition, Sparkle’s proof relies on a strong one-more assumption.

In this work, we propose Twinkle, a new threshold signature scheme in the pairing-free setting
which overcomes these limitations. Twinkle is the first pairing-free scheme to have a security proof
under up to t adaptive corruptions without relying on the algebraic group model. It is also the first
such scheme with a security proof under adaptive corruptions from a well-studied non-interactive
assumption, namely, the Decisional Diffie-Hellman (DDH) assumption.

We achieve our result in two steps. First, we design a generic scheme based on a linear function
that satisfies several abstract properties and prove its adaptive security under a suitable one-more
assumption related to this function. In the context of this proof, we also identify a gap in the security
proof of Sparkle and develop new techniques to overcome this issue. Second, we give a suitable
instantiation of the function for which the corresponding one-more assumption follows from DDH.

Keywords: Threshold Signatures, Adaptive Security, Pairing-Free, Non-Interactive Assumptions

https://orcid.org/0009-0007-7037-2458
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-3751-8546
https://orcid.org/0000-0002-4620-7264
https://orcid.org/0000-0002-4276-2797
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }

Contents
1 Introduction 3

1.1 Our Contribution . 3
1.2 Technical Overview . 4
1.3 More on Related Work . 7

2 Preliminaries 8

3 Our Construction 9
3.1 Tagged Linear Function Families . 9
3.2 Construction . 12

4 Instantiations 21
4.1 Instantiation from (Algebraic) One-More CDH . 21
4.2 Instantiation from DDH . 24

5 Concrete Parameters and Efficiency 27

A Pseudocode 35

B Script for Parameter Computation 40

2

1 Introduction
A threshold signature scheme [Des88, DF90, Ped91] enables a group of n signers to jointly sign a message
as long as more than t of them participate. To this end, each of the n signers holds a share of the
secret key associated with the public key of the group. When t + 1 of them come together and run a
signing protocol for a particular message, they obtain a compact signature (independent in size of t and
n) without revealing their secret key shares to each other. On the other hand, no subset of at most t
potentially malicious signers can generate a valid signature. Despite being a well-studied cryptographic
primitive, threshold signatures have experienced a renaissance due to their use in cryptocurrencies [LN18]
and other modern applications [DOK+20]. This new attention has also led to ongoing standardization
efforts [BP22]. In this work, we study threshold signatures in the pairing-free discrete logarithm setting.
As noted in previous works [TZ22, TZ23, CKM+23b], pairings are not supported in popular libraries and
are substantially more expensive to compute, which makes pairing-free solutions appealing.
Static vs. Adaptive Security. When defining security for threshold signatures, the adversary is
allowed to concurrently interact with honest signers in the signing protocol. Additionally, it may corrupt
up to t out of n parties, thereby learning their secret key material and internal state. Here, we distinguish
between static corruptions and adaptive corruptions. For static corruptions, the adversary declares the
set of corrupted parties ahead of time before any messages have been signed. For adaptive corruptions,
the adversary can corrupt parties dynamically, depending on previous signatures and corruptions.

Adaptive security is a far stronger notion than static security and matches reality more closely.
Unfortunately, proving adaptive security for threshold signatures is highly challenging and previous works
in the pairing-free setting rely on strong interactive assumptions to simulate the state of adaptively
corrupted parties [CKM23a]. This simulation strategy, however, is at odds with rewinding the adversary
as part of a security proof. Roughly, if the adversary is allowed to corrupt up to tc parties, then in the two
runs induced by rewinding, it may corrupt up to 2tc parties in total. Thus, for the reduction to obtain
meaningful information from the adversary’s forgery, it has to be restricted to corrupt at most tc ≤ t/2
parties [CKM23a]. To bypass this unnatural restriction, prior work heavily relies on the algebraic group
model (AGM) [FKL18] in order to avoid rewinding1. In summary: to support an arbitrary corruption
threshold, one has to use the AGM or sacrifice adaptive security.

1.1 Our Contribution
Motivated by this unsatisfactory state of affairs, we construct Twinkle. Twinkle is the first threshold
signature scheme in the pairing-free setting which combines all of the following characteristics:

• Adaptive Security. We prove Twinkle secure under adaptive corruptions. Notably, we do not rely on
secure erasures of private state.

• Non-Interactive Assumptions. Our security proof relies on a non-interactive and well-studied
assumption, namely, the DDH assumption. As a slightly more efficient alternative, we give an
instantiation based on a one-more variant of CDH, for which we provide evidence of its hardness.

• No AGM. Our security proof does not rely on the algebraic group model, but only on the random
oracle model.

• Arbitrary Threshold. Twinkle supports an arbitrary corruption threshold t < n for n parties.
Essentially, this is established by giving a proof without rewinding.

For a comparison of schemes in the pairing-free discrete logarithm setting, see Table 1. We also
emphasize that we achieve our goal without the use of heavy cryptographic techniques, and our scheme is
practical. For example, signatures of Twinkle (from DDH) are at most 3 times as large as regular Schnorr
signatures [Sch91], and Twinkle has three rounds. In the context of our proof, we also identify a gap in the
analysis of Sparkle [CKM23a] and develop new proof techniques to fix it in the context of our scheme2.

1Other works resort to heavier machinery such as broadcast channels or non-committing encryption resulting in inefficient
protocols.

2We communicated the gap and our solution to the authors of Sparkle. To be clear, we do not claim that Sparkle is
insecure, just that the proof in [CKM23a] has a gap.

3

Scheme Rounds Adaptive Assumption Idealization Corruptions
GJKR [GJKR07]/StiStr [SS01] ≥ 4 7 DLOG ROM ≤ t < n/2
Lin-UC [Lin22] 3 7 DLOG ROM ≤ t
Frost [KG20] 2 7 DLOG Custom ≤ t
Frost [KG20, BTZ22, BCK+22] 2 7 AOMDL ROM ≤ t
Frost2 [CKM21, BTZ22, BCK+22] 2 7 AOMDL ROM ≤ t
Frost3 [RRJ+22]/Olaf [CGRS23] 2 7 AOMDL ROM ≤ t
TZ [TZ23] 2 7 DLOG ROM ≤ t
Sparkle [CKM23a] 3 7 DLOG ROM ≤ t
Sparkle [CKM23a] 3 3 AOMDL ROM ≤ t/2
Sparkle [CKM23a] 3 3 AOMDL ROM+AGM ≤ t
Twinkle (AOMCDH) 3 3 AOMCDH ROM ≤ t
Twinkle (DDH) 3 3 DDH ROM ≤ t

Table 1: Comparison of different threshold signature schemes in the discrete logarithm setting without
pairings and the two instantiations of our Twinkle scheme. We compare whether the schemes are proven
secure under adaptive corruptions and under which assumption and idealized model they are proven. We
also compare the corruption thresholds that they support. For all schemes, we assume that there is a
trusted dealer distributing key shares securely. For GJKR [GJKR07]/StiStr [SS01], broadcast channels
are assumed, which adds rounds when implemented.

Conceptually, the design of our threshold signature is inspired by five-move identification schemes, which
already have found use in the construction of tightly secure signature schemes [Che05, GJKW07, KLP17].
We achieve our result in two main steps:

1. We first phrase our scheme abstractly using (a variant of) linear function families [HKL19, KLR21,
CAHL+22, PW23, TZ23]. To prove security under adaptive corruptions, we define a security notion
for linear functions resembling a one-more style CDH assumption. This is the step where we identify
the gap in the analysis of Sparkle [CKM23a].

2. We then instantiate the linear function family such that this one-more notion follows from the
(non-interactive) DDH assumption. Note that Tessaro and Zhu [TZ23] showed a related statement,
namely, that a suitable one-more variant of DLOG follows from DLOG. In this sense, our work
makes a further step in an agenda aimed at replacing interactive assumptions with non-interactive
ones. We are confident that this is interesting in its own right.

1.2 Technical Overview
We keep the technical overview self-contained, but some background on Schnorr signatures [Sch91, KMP16],
five-move identification [Che05, GJKW07, KLP17], and Sparkle [CKM23a] is helpful.
Sparkle and The Problem with Rewinding. As our starting point, let us review the main ideas
behind Sparkle [CKM23a], and why the use of rewinding limits us to tolerating at most t/2 corruptions.
For that, we fix a group G with generator g and prime order p. Each signer i ∈ [n] holds a secret key
share ski ∈ Zp such that ski = f(i) for a polynomial f of degree t. Further, the public key is pk = gf(0).
To sign a message m, a set S ⊆ [n] of signers engage in the following interactive signing protocol, omitting
some details:

1. Each party i ∈ S samples a random ri
$← Zp and computes Ri = gri . It then sends a hash comi

of Ri, S, and m to the other signers to commit to Ri. We call Ri a preimage of comi. The hash
function is modeled as a random oracle.

2. Once a party has received all hashes from the first round, it sends Ri to the other signers to open
the commitment.

3. If all commitments are correctly opened, each signer computes the combined nonce R =
∏
iRi.

Then, it derives a challenge c ∈ Zp from pk, R, and m using another random oracle. Each signer i
computes and sends its response share si := c · `i,S · ski + ri, where `i,S is a Lagrange coefficient.
The signature is (c, s), where s =

∑
i si.

4

The overall proof strategy adopted in [CKM23a] follows a similar paradigm as that of proving Schnorr
signatures, with appropriate twists. Namely, one first takes care of simulating signing queries using
honest-verifier zero-knowledge (HVZK) and by suitably programming the random oracle. We will come
back to this part of the proof later. Then, via rewinding, one can extract the secret key from a forgery.
To simulate adaptive corruption queries, the proof of Sparkle relies on a DLOG oracle on each corruption
query, i.e., security is proven under the one-more version of DLOG (OMDL). Specifically, getting t+ 1
DLOG challenges from the OMDL assumption and t-time access to a DLOG oracle, the reduction defines
a degree t polynomial “in the exponent”, simulates the game as explained, and uses rewinding to solve
the final DLOG challenge. Note that if we allow the adversary to corrupt at most tc parties throughout
the experiment, it may corrupt up to 2tc parties over both runs, meaning that the reduction has to query
the DLOG oracle up to 2tc times. Therefore, we have to require that 2tc ≤ t.
How to Avoid Rewinding. Now it should be clear that the restriction on the corruption threshold is
induced by the use of rewinding. If we avoid rewinding, we can also remove the restriction. To do so, it
is natural to follow existing approaches from the literature on tightly-secure (and thus rewinding-free)
signatures. A common approach is to rely on lossy identification [KW03, AFLT12, KMP16] that has
already been used in the closely-related multi-signature setting [PW23]. We find this unsuitable for
two reasons. Namely, (a) these schemes rely on the DDH assumption, it is not clear at all what a
suitable one-more variant would look like, and (b) the core idea of this technique is to move to a hybrid
in which there is no secret key for pk at all. This seems hard to combine with adaptive corruptions.
Roughly, this is because if there is no secret key for pk, then at most t of the pki can have a secret key,
meaning that we would have to guess the set of corruptions. Instead, we take inspiration from five-move
identification [Che05, GJKW07, KLP17], for which problems (a) and (b) do not show up. Namely, (a)
such schemes rely on the CDH assumption, and (b) there is always a secret key. To explain the idea, we
directly focus on our threshold signature scheme. For that, let h ∈ G be derived from the message via a
random oracle. Given h, our signing protocol is as follows:

1. Each signer i ∈ S samples ri $← Zp and computes R(1)
i = gri , R

(2)
i = hri , and pk(2)

i = hski . It then
sends a hash of R(1)

i , R
(2)
i , pk(2)

i to the other signers.

2. Once a party received all hashes from the first round, it sends R(1)
i , R

(2)
i , pk(2)

i .

3. If all commitments are correctly opened, each signer computes the combined nonces R(k) for
k ∈ {1, 2} and secondary public key pk(2) in a natural way. Then, it derives a challenge c from
R(1), R(2), pk(2), and m and computes si := c · `i,S · ski + ri. The signature is (pk(2), c, s) with
s =

∑
i si.

Intuitively, the signers engage in two executions of Sparkle with generators g and h, respectively, using the
same randomness ri. To understand why we can avoid rewinding with this scheme, let us ignore signing
and corruption queries for a moment, and focus on how to turn a forgery (pk(2), c, s) into a solution for a
hard problem, concretely, CDH. For that, we consider two cases. First, if pk(2) = hf(0), then pk(2) is a
CDH solution for pk = gf(0) and h. Indeed, this is what should happen in an honest execution. Second,
we can bound the probability that the forgery is valid and pk(2) 6= hf(0) using a statistical argument.
Roughly, (c, s) acts as a statistically sound proof for the statement pk(2) = hf(0). To simulate adaptive
corruptions, for now assume that we can rely on a one-more variant of the CDH assumption, in which we
have t-time access to a DLOG oracle. We come back to this later. What remains is to simulate honest
parties during the signing. For that, the first trick is to set up h (by programming the random oracle)
in a special way. Roughly, we want to be able to translate valid transcripts with respect to g into valid
transcripts with respect to h. Once this is established, we can focus on simulating the g-side of the
protocol.
A Gap In the Proof of Sparkle. If we only focus on the g-side, our protocol is essentially Sparkle.
Therefore, it should be possible to simulate signing exactly as in Sparkle using HVZK. Unfortunately,
when looking at this part of Sparkle’s proof, we discovered that a certain adversarial behavior is not
covered. Namely, the proof does not correctly simulate the case in which the adversary sends inconsistent
sets of commitments to different honest parties. It turns out that handling this requires fundamentally
new techniques. To understand the gap, it is instructive to consider Sparkle’s proof for an example of
three signers in a session sid, with two of them being honest, say Signer 1 and 2, and the third one

5

being malicious. Let us assume that Signers 1 and 2 are already in the second round of the protocol.
That is, both already sent their commitments com1 and com2 and now expect a list of commitments
M = (com1, com2, com3) from the first round as input. In Sparkle’s proof, the reduction sends random
commitments com1 and com2 on behalf of the honest parties. Later, when Signer 1 (resp. 2) getsM, it
has to output its second message R1 (resp. R2) and program the random oracle at R1 (resp. R2) to be
com1 (resp. com2). The goal of the reduction is to set up R1 and R2 using HVZK such that the responses
s1 and s2 can be computed without using the secret key. To understand how the reduction proceeds,
assume that Signer 1 is asked (by the adversary) to reveal his nonce R1 first. When this happens, the
reduction samples a challenge c and a response s1. It then defines R1 as R1 := gs1 pk−c`1,S

1 . Ideally, the
reduction would now program the random oracle on the combined nonce R = R1R2R3 to return c, and
output R1 to the adversary. However, while the reduction can extract R3 from com3 by observing the
random oracle queries, R2 is not yet defined at that point. The solution proposed in Sparkle’s proof is as
follows. Before returning R1 to the adversary, the reduction also samples s2 and defines R2 := gs2 pk−c`2,S

2 .
Then, the reduction can compute the combined nonce R = R1R2R3 and program the random oracle on
input R to return c. Later, it can use s1 and s2 as responses.

However, as we will argue now, this strategy is flawed3. Think about what happens if the first-round
messagesM′ that Signer 2 sees do not contain com3, but instead a different4 commitment com′3 to a nonce
R′3 6= R3. Then, with high probability, the combined nonce R′ that Signer 2 will compute is different
from R, meaning that its challenge c′ will also be different from c, and so s2 is not a valid response. One
naive idea to solve this is to program R2 := gs2 pk−c

′`2,S

2 for an independent c′ when we reveal R1. In this
case, however, the adversary may just choose to submitM′ =M to Signer 2, making the simulation fail.
Equivalence Classes to the Rescue. The solution we present is very technical, and we sketch a
massively simplified solution here. Abstractly speaking, we want to be able to identify whether two queries
q = (sid, i,M) and q′ = (sid′, i′,M′) will result in the same combined nonce before all commitments
comj inM andM′ have preimages Rj . To do so, we define an equivalence relation ∼ on such queries for
which we show two properties.

1. First, the equivalence relation is consistent over time, namely, (a) if q ∼ q′ at some point in time,
then q ∼ q′ at any later point, and (b) if q 6∼ q′ at some point in time, then q 6∼ q′ at any later
point.

2. Second, assume that all commitments inM andM′ have preimages. Then the resulting combined
nonces R and R′ are the same if and only if q ∼ q′.

The technical challenge is that ∼ has to stay consistent while also adapting to changes in the random
oracle over time. Assuming we have such a relation, we can make the simulation work. Namely, when we
have to reveal the nonce Ri of an honest signer i, we first define c := C(q), where C is a random oracle on
equivalence classes and is only known to the reduction. That is, C is a random oracle with the additional
condition that C(q) = C(q′) if q ∼ q′. Then, we define Ri := gsi pk−c`i,S

i . We do not define any other Ri′
of honest parties at that point, meaning that we also may not know the combined nonce yet. Instead, we
carefully delay the random oracle programming of the combined nonce until it is completely known.
Cherry on Top: Non-Interactive Assumptions. While the scheme we have so far does its job, we
still rely on an interactive assumption, and we are eager to avoid it. For that, it is useful to write our
scheme abstractly, replacing every exponentiation with the function T(t, x) = tx. Note that for almost
every t ∈ G, the function T(t, ·) is a bijection. Our hope is that by instantiating our scheme with a
different function with suitable properties, we can show that the corresponding one-more assumption is
implied by a non-interactive assumption. Indeed, Tessaro and Zhu [TZ23] recently used a similar strategy
to avoid OMDL in certain situations. To do so, they replace the bijective function with a compressing
function. In our case, the interactive assumption, written abstractly using T, asks an adversary to win
the following game:

• A random g and h are sampled, and random x0, . . . , xt are sampled. Then, g, h, and all Xi = T(g, xi)
for all 0 ≤ i ≤ t are given to the adversary.

3The problem has nothing to do with adaptive security and shows up for a static adversary as well.
4Note that in Sparkle, no broadcast channel is assumed, and so this may happen. Also, note that in multi-signatures

that follow a similar strategy, e.g. [BN06], this problem does not show up as there is only one honest signer.

6

• Roughly, the adversary gets t-time access to an algebraic oracle inverting T. More precisely, the
oracle outputs

∑t
i=0 αixi on input α0, . . . , αt.

• The adversary outputs X ′i for all 0 ≤ i ≤ t. It wins if all solutions are valid, meaning that there is a
zi such that T(g, zi) = Xi ∧ T(h, zi) = X ′i. Intuitively, the adversary has to “shift” the images Xi

from g to h.
Under a suitable instantiation of T and a well-studied non-interactive assumption, we want to show that
no adversary can win this game. Unfortunately, if we just use a compressing function as in the case
of [TZ23], it is not clear how to make use of the winning condition. Instead, our idea is to use a function
that can dynamically be switched between a bijective and a compressing mode. A bit more precisely, a
proof sketch works as follows:

1. We start with the game we introduced above. With overwhelming probability, the functions
Tg := T(g, ·) and Th := T(h, ·) should be bijective.

2. Assume that we can efficiently invert Th using knowledge of h. Then, we can state our winning
condition equivalently by requiring that T−1

h (X ′i) = xi for all i. Roughly, this means that the
adversary has to find the xi to win.

3. We assume that we can indistinguishably switch g to a mode in which Tg is compressing.

4. Finally, we use a statistical argument to show that the adversary can not win. Intuitively, this is
because Tg is compressing and the inversion oracle does not leak too much about the xi’s.

It turns out that, choosing T carefully, we find a function that (1) has all the properties we need for our
scheme and (2) allows us to follow our proof sketch under the DDH assumption.

1.3 More on Related Work
We discuss further related work, including threshold signatures from other assumptions, and related
cryptographic primitives.
Techniques for Adaptive Security. General techniques for achieving adaptive security have been
studied [CGJ+99, JL00, LP01]. Unfortunately, these techniques often rely on heavy cryptographic
machinery and assumptions, e.g., secure erasures or broadcast channels.
Other Algebraic Structures. In the pairing setting, a natural construction is the (non-interactive)
threshold version of the BLS signature scheme [BLS01, Bol03], which has been modified to achieve adaptive
security in [LJY14]. Recently, Bacho and Loss [BL22] have proven adaptive security of threshold BLS in
the AGM. Das et al. have constructed weighted threshold signatures in the pairing-setting [DCX+23], and
Crites et al. have constructed structure-preserving threshold signatures in the pairing-setting [CKP+23].
Threshold signatures have been constructed based on RSA [DDFY94, Rab98, FMY98, Sho00, ADN06,
GHKR08, TZ23]. Notably, adaptive security has been considered in [ADN06]. A few works also have
constructed threshold signatures from lattices [BKP13, BGG+18, DOTT21, ASY22, GKS23]. Finally,
several works have proposed threshold signing protocols for ECDSA signatures [GGN16, LN18, GG18,
DKLs19, DJN+20, GG20, CGG+20, CCL+20, GKSŚ20]. Except for [CGG+20], these works focus on
static corruptions. For an overview of this line of work, see [AHS20].
Robustness. Recently, there has been renewed interest in robust (Schnorr) threshold signing proto-
cols [RRJ+22, BHK+23, Sho23, GS23]. Such robust protocols additionally ensure that no malicious party
can prevent honest parties from signing. Notably, all of these protocols assume static corruptions.
Multi-Signatures. Multi-signatures [IN83, BN06] are threshold signatures with t = n− 1, i.e., all n
parties need to participate in the signing protocol, with the advantage that parties generate their keys
independently and come together to sign spontaneously without setting up a shared key. There is a rich
literature on multi-signatures, e.g., [Bol03, BDN18, MPSW19, NRSW20, NRS21, BD21, AB21, BTT22,
FSZ22, TZ23]. Closest to our work in spirit are the work by Pan and Wagner [PW23], which avoids
rewinding, and the work of Tessaro and Zhu [TZ23], which aims at non-interactive assumptions.
Distributed Key Generation. In principle, one can rely on generic secure multi-party computation
to set up key shares for a threshold signature scheme without using a trusted dealer. To get a more
efficient solution, dedicated distributed key generation protocols have been studied [Ped92, CGJ+99, JL00,
GJKR07, KMS20, DYX+22, KGS23], with some of them being adaptively secure [CGJ+99, JL00, KMS20].

7

2 Preliminaries
By λ we denote the security parameter. We assume all algorithms get λ in unary as input. If X is a finite
set, we write x $← X to indicate that x is sampled uniformly at random from X. If A is a probabilistic
algorithm, we write y := A(x; ρ) to state that y is assigned to the output of A on input x with random
coins ρ. If ρ is sampled uniformly at random, we simply write y ← A(x). Further, the notation y ∈ A(x)
indicates that y is a possible output of A on input x, i.e., there are random coins ρ such that A(x; ρ)
outputs y.
Threshold Signatures. We define threshold signatures, assuming a trusted key generation, which can
be replaced by a distributed key generation in practice. Our syntax matches the three-round structure
of our protocol. Namely, a (t, n)-threshold signature scheme is a tuple of PPT algorithms TS = (Setup,
Gen,Sig,Ver), where Setup(1λ) outputs system parameters par, and Gen(par) outputs a public key pk and
secret key shares sk1, . . . , skn. Further, Sig specifies a signing protocol, formally split into four algorithms
(Sig0,Sig1,Sig2,Combine). Here, algorithm Sigj models how the signers locally compute their (j + 1)st
protocol message pmj+1 and advance their state, where Sig0(S, i, ski,m) takes as input the signer set S,
the index of the signer i ∈ [n], its secret key share ski, and the message m, and Sig1 (resp. Sig2) takes
as input the current state of the signer and the list M1 (resp M2) of all protocol messages from the
previous round. Finally, Combine(S,m,M1,M2,M3) can be used to publicly turn the transcript into a
signature σ, which can then be verified using Ver(pk,m, σ). Roughly, we say that the scheme is complete
if for any such parameters and keys, a signature generated by a signing protocol among t + 1 parties
outputs a signature for which Ver outputs 1.

Definition 1 (Threshold Signature Scheme). Let t < n be natural numbers. A (three-round) (t, n)-
threshold signature scheme is a tuple of PPT algorithms TS = (Setup,Gen,Sig,Ver) with the following
syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters
par, where par implicitly defines sets of public keys, secret keys, messages and signatures, and all
algorithms related to TS implicitly take par as input.

• Gen(par) → (pk, sk1, . . . , skn) takes as input system parameters par, and outputs a public key pk
and secret key shares sk1, . . . , skn.

• Sig = (Sig0,Sig1,Sig2,Combine) is split into four algorithms:

– Sig0(S, i, ski,m)→ (pm1, St1) takes as input a signer set S ⊆ [n], an index i ∈ [n], a secret key
share ski, and a message m, and outputs a protocol message pm1 and a state St1.

– Sig1(St1,M1)→ (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . , pm1,l) of
protocol messages, and outputs a protocol message pm2 and a state St2.

– Sig2(St2,M2) → pm3 takes as input a state St2 and a tuple M2 = (pm2,1, . . . , pm2,l) of
protocol messages, and outputs a protocol message pm3.

– Combine(S,m,M1,M2,M3) → σ takes as input a signer set S ⊆ [n], a message m, tuples
M1 = (pm1,1, . . . , pm1,l),M2 = (pm2,1, . . . , pm2,l), and M3 = (pm3,1, . . . , pm3,l) of protocol
messages, and outputs a signature σ.

• Ver(pk,m, σ)→ b is deterministic, takes as input a public key pk, a message m, and a signature σ,
and outputs a bit b ∈ {0, 1}.

We require that TS is complete in the following sense. For all par ∈ Setup(1λ), all (pk, sk1, . . . , skn) ∈
Gen(par), all messages m, and all S ⊆ [n] with |S| = t+ 1 we have

Pr
[
Ver(pk,m, σ) = 1

∣∣ σ ← TS.Exec(pk, sk1, . . . , skn, S,m)
]

= 1,

where algorithm TS.Exec is defined in Figure 1.

Our security game is in line with the established template and is presented in Figure 2. First, the
adversary gets an honestly generated public key as input. At any point in time, the adversary can start
a new signing session with signer set S and message m with session identifier sid by calling an oracle

8

Alg TS.Exec(pk, sk1, . . . , skn, S,m)
01 if |S| 6= t+ 1 ∨ S 6⊆ [n] : return ⊥
02 parse {i1, . . . , it+1} := S s.t. i1 < i2 · · · it < it+1
03 for j ∈ [t+ 1] : (pm1,ij , St1,ij)← Sig0(S, ij , skij ,m)
04 M1 := (pm1,i1 , . . . , pm1,it+1)
05 for j ∈ [t+ 1] : (pm2,ij , St2,ij)← Sig1(St1,ij ,M1)
06 M2 := (pm2,i1 , . . . , pm2,it+1)
07 for j ∈ [t+ 1] : pm3,ij ← Sig2(St2,ij ,M2)
08 M3 := (pm3,i1 , . . . , pm3,it+1)
09 return σ ← Combine(S,m,M1,M2,M3)

Figure 1: Algorithm TS.Exec for a (t, n)-threshold signature scheme TS = (Setup,Gen,Sig,Ver). The
algorithm models an honest execution of the signing protocol Sig.

Next(sid, S,m). Additionally, the adversary may adaptively corrupt up to t users via an oracle Corr.
Thereby, it learns their secret key and private state in all currently open signing sessions. To interact with
honest users in signing sessions, the adversary has access to per-round signing oracles Sig0,Sig1,Sig2.
Roughly, each signing oracle can be called with respect to a specific honest user i and a session identifier
sid, given that the user is already in the respective round for that session (modeled by algorithm Allowed).
Further, when calling such an oracle, the adversary inputs the vector of all messages of the previous
round. In particular, the adversary could send different messages to two different honest parties within
the same session, i.e., we assume no broadcast channels. Additionally, this means that the adversary can
arbitrarily decide which message to send to an honest party on behalf of another honest party, i.e., we
assume no authenticated channels. Finally, the adversary outputs a forgery (m∗, σ∗). It wins the security
game, if it never started a signing session for message m∗ and the signature σ∗ is valid. Therefore, our
notion is (an interactive version of) TS-UF-0 using the terminology of [BTZ22, BCK+22], which is similar
to recent works [CKM23a, CGRS23].
No Erasures. In our pseudocode, the private state of signer i in session sid is stored in state[sid, i], where
state is a map. After each signing round, this state is updated. We choose to update the state instead
of adding a new state to avoid clutter, which is similar to earlier works [CKM23a]. On the downside,
this means that potentially, schemes that are secure in our model could rely on erasures, i.e., on safely
deleting part of the state of an earlier round before a user gets corrupted. We emphasize that in our
scheme, any state in earlier rounds can be computed from the state in the current round and the secret
key. This means that our schemes do not rely on erasures.

Definition 2 (TS-EUF-CMA Security). Let TS = (Setup,Gen,Sig,Ver) be a (t, n)-threshold signature
scheme. Consider the game TS-EUF-CMA defined in Figure 2. We say that TS is TS-EUF-CMA secure,
if for all PPT adversaries A, the following advantage is negligible:

AdvTS-EUF-CMA
A,TS (λ) := Pr

[
TS-EUF-CMAATS(λ)⇒ 1

]
.

3 Our Construction
In this section, we present our new threshold signature scheme. However, before we present it, we first
introduce a building block we need, which we call tagged linear function families.

3.1 Tagged Linear Function Families
Similar to what is done in other works [HKL19, KLR21, CAHL+22, PW23, TZ23], we use the abstraction
of linear function families to describe our scheme in a generic way. However, we slightly change the notion
by introducing tags to cover different functions with the same set of parameters.

Definition 3 (Tagged Linear Function Family). A tagged linear function family (TLFF) is a tuple of
PPT algorithms TLF = (Gen,T) with the following syntax:

9

Game TS-EUF-CMAATS(λ)
01 par← Setup(1λ)
02 (pk, sk1, . . . , skn)← Gen(par)
03 Sig := (Next,Sig0,Sig1,Sig2)
04 (m∗, σ∗)← ASig,Corr(par, pk)
05 if m∗ ∈ Queried : return 0
06 return Ver(pk,m∗, σ∗)

Oracle Corr(i)
07 if |Corrupted| ≥ t : return ⊥
08 Corrupted := Corrupted ∪ {i}
09 return (ski, state[·, i])

Oracle Next(sid, S,m)
10 if |S| 6= t+ 1 ∨ S 6⊆ [n] : return ⊥
11 if sid ∈ Sessions : return ⊥
12 Sessions := Sessions ∪ {sid}
13 message[sid] := m, signers[sid] := S
14 Queried := Queried ∪ {m}
15 for i ∈ S : round[sid, i] := 0

Oracle Sig0(sid, i)
16 if Allowed(sid, i, 0,⊥) = 0 :
17 return ⊥
18 S := signers[sid]
19 (pm, St)← Sig0(S, i, ski,m)
20 pm1[sid, i] := pm, state[sid, i] := St
21 round[sid, i] := 1
22 return pm

Oracle Sig1(sid, i,M1)
23 if Allowed(sid, i, 1,M1) = 0 :
24 return ⊥
25 (pm, St)← Sig1(state[sid, i],M1)
26 pm2[sid, i] := pm, state[sid, i] := St
27 round[sid, i] := 2
28 return pm

Oracle Sig2(sid, i,M2)
29 if Allowed(sid, i, 2,M2) = 0 :
30 return ⊥
31 pm← Sig2(state[sid, i],M2)
32 round[sid, i] := 3
33 return pm

Alg Allowed(sid, i, r,M)
34 if sid /∈ Sessions : return 0
35 S := signers[sid], H := S \ Corrupted
36 if i /∈ H : return 0
37 if round[sid, i] 6= r : return 0
38 if r > 0 :
39 parse (pmi)i∈S :=M
40 if pmi 6= pmr[sid, i] : return 0
41 return 1

Figure 2: The game TS-EUF-CMA for a (three-round) (t, n)-threshold signature scheme TS = (Setup,
Gen,Sig,Ver) and an adversary A.

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume
that par implicitly defines the following sets: A set of scalars Spar, which forms a field; a set of tags
Tpar; a domain Dpar and a range Rpar, where each forms a vector space over Spar. If par is clear
from the context, we omit the subscript par. We naturally denote the operations of these fields and
vector spaces by + and ·, and assume that these operations can be evaluated efficiently.

• T(par, g, x) → X is deterministic, takes as input parameters par, a tag g ∈ T , a domain element
x ∈ D, and outputs a range element X ∈ R. For all parameters par, and for all tags g ∈ T , the
function T(par, g, ·) realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : T(par, g, s · x+ y) = s · T(par, g, x) + T(par, g, y).

For T, we also omit the input par if it is clear from the context.
For our construction, we require that images are uniformly distributed. We formally define this next.

Definition 4 (Regular TLFF). Let TLF = (Gen,T) be a tagged linear function family. We say that TLF
is εr-regular, if there is a set Reg such that the following two properties hold:

• We have
Pr
[
(par, g) /∈ Reg | par← Gen(1λ), g $← T

]
≤ εr.

• For any fixed (par, g) ∈ Reg, the following distributions are the same:

{(par, g,X) | X $← R} and {(par, g,X) | x $← D, X := T(par, g, x)} .

Next, we show that tagged linear function families satisfy a statistical property that turns out to be
useful. This property is implicitly present in other works as well, e.g., in [KW03, AFLT12, KLP17, PW23],
and can be interpreted in various ways, e.g., as the soundness of a natural proof system.

10

Lemma 1. Let TLF = (Gen,T) be a tagged linear function family. For every fixed parameters par and
tags g, h ∈ T , define the set

Im(par, g, h) :=
{

(X1, X2) ∈ R2 ∣∣ ∃x ∈ D : T(g, x) = X1 ∧ T(h, x) = X2
}
.

Then, for any (even unbounded) algorithm A, we have

Pr

 (X1, X2) /∈ Im(par, g, h)
∧ T(g, s) = c ·X1 +R1
∧ T(h, s) = c ·X2 +R2

∣∣∣∣∣∣
par← Gen(1λ),
(St, g, h,X1, X2, R1, R2)← A(par),
c $← S, s← A(St, c)

 ≤ 1
|S|

.

Proof. We claim that for each fixed values par, g, h,X1, X2, R1, R2 such that (X1, X2) /∈ Im(par, g, h), the
following set contains at most one element:

BadC := {c ∈ S | ∃s ∈ D : T(g, s) = c ·X1 +R1 ∧ T(h, s) = c ·X2 +R2}.

The reader may observe that this is indeed sufficient to show the lemma. To show the claim, assume
towards contradiction that there are two distinct c 6= c′ in BadC and s, s′ ∈ D were the corresponding
witnesses with

T(g, s) = c ·X1 +R1, T(g, s′) = c′ ·X1 +R1

and T(h, s) = c ·X2 +R2, T(h, s′) = c′ ·X2 +R2.

We rearrange these equations and get

T(g, s)− c ·X1 = R1 = T(g, s′)− c′ ·X1

and T(h, s)− c ·X2 = R2 = T(h, s′)− c′ ·X2.

Rearranging again, using the linearity of T for any fixed tag, and solving for (X1, X2), we get

X1 = T
(
g,
s− s′

c− c′

)
and X2 = T

(
h,
s− s′

c− c′

)
.

Hence, (X1, X2) ∈ Im(par, t, h). With this contradiction, we conclude.

As another technical tool in our proof, we need our tagged linear function families to be translatable,
a notion we define next. Informally, it means that we can rerandomize a given tag g into a tag h, such
that we can efficiently compute T(h, x) from T(g, x) without knowing x.
Definition 5 (Translatability). Let TLF = (Gen,T) be a tagged linear function family. We say that
TLF is εt-translatable, if there is a PPT algorithm Shift and a deterministic polynomial time algorithm
Translate, such that the following properties hold:

• Well Distributed Tags. The statistical distance between the following distributions X0 and X1 is
at most εt:

X0 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , h $← T

}
,

X1 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , (h, td)← Shift(par, g)

}
.

• Translation Completeness. For every par ∈ Gen(1λ), for any g ∈ T , any x ∈ D, and any
(h, td) ∈ Shift(par, g), we have

Translate(td,T(g, x)) = T(h, x) and InvTranslate(td,T(h, x)) = T(g, x).

Next, we define the main security property that we will require for our construction. Intuitively, it
should not be possible for an adversary to translate T(g, x) into T(h, x) if g, h and x are chosen randomly.
Our actual notion is a one-more variant of this intuition.
Definition 6 (Algebraic Translation Resistance). Let TLF = (Gen,T) be a tagged linear function family,
and t ∈ N be a number. Consider the game A-TRAN-RES defined in Figure 3. We say that TLF is
t-algebraic translation resistant, if for any PPT algorithm A, the following advantage is negligible:

Advt-A-TRAN-RES
A,TLF (λ) := Pr

[
t-A-TRAN-RESATLF(λ)⇒ 1

]
.

11

Game t-A-TRAN-RESATLF(λ)
01 par← Gen(1λ), g, h $← T , x0, . . . , xt

$← D
02 for i ∈ {0} ∪ [t] : Xi := T(g, xi)
03 (X ′i)ti=0 ← AInv(par, g, h, (Xi)ti=0)
04 if ∀i ∈ {0} ∪ [t] ∃z ∈ D

s.t. T(g, z) = Xi ∧ T(h, z) = X ′i :
05 return 1
06 return 0

Oracle Inv(α0, . . . , αt)
07 if q ≥ t : return ⊥
08 q := q + 1
09 x :=

∑t
i=0 αixi

10 return x

Figure 3: Game A-TRAN-RES for a tagged linear function family TLF = (Gen,T) and adversary A.

3.2 Construction
Let TLF = (Gen,T) be a tagged linear function family. Further, let H : {0, 1}∗ → T , Ĥ : {0, 1}∗ → {0, 1}2λ,
H̄ : {0, 1}∗ → S be random oracles. We construct a (t, n)-treshold signature scheme Twinkle[TLF] = (Setup,
Gen,Sig,Ver). We assume that there is an implicit injection from [n] into S. Further, let `i,S(x) :=∏
j∈S\{i}(j − x)/(j − i) ∈ S denote the ith lagrange coefficient for all i ∈ [n] and S ⊆ [n], and let

`i,S := `i,S(0). We describe our scheme verbally and provide pseudocode in Figure 5.
Setup and Key Generation. All parties have access to public parameters par← TLF.Gen(1λ) which
define the function T, and sets S, T ,D, and R, and to a random tag g $← T . To generate keys, elements
aj

$← D for j ∈ {0} ∪ [t] are sampled. These elements form the coefficients of a polynomial of degree t.
For each i ∈ [n], we define the key pair (pki, ski) for the ith signer as

ski :=
t∑

j=0
aji

j , pki := T(g, ski).

The shared public key is defined as pk := pk0 := T(g, a0).
Signing Protocol. Let S ⊆ [n] be a set of signers of size t+ 1. We assume all signers are aware of the
set S and a message m ∈ {0, 1}∗ to be signed. First, they all compute h := H(m). Then, they run the
following protocol phases to compute the signature:

1. Commitment Phase. Each signer i ∈ S samples ri $← D and computes

R
(1)
i := T(g, ri), R

(2)
i := T(h, ri), pk(2)

i := T(h, ski).

Then, each signer i ∈ S computes a commitment

comi := Ĥ(S, i, R(1)
i , R

(2)
i , pk(2)

i)

and sends comi to the other signers.

2. Opening Phase. Each signer i ∈ S sends R(1)
i , R

(2)
i and pk(2)

i to all other signers.

3. Response Phase. Each signer i ∈ S checks that comj = Ĥ(S, j, R(1)
j , R

(2)
j , pk(2)

j) holds for all j ∈ S.
If one of these equations does not hold, the signer aborts. Otherwise, the signer defines

R(1) :=
∑
j∈S

R
(1)
j , R(2) :=

∑
j∈S

R
(2)
j , pk(2) :=

∑
j∈S

`j,Spk(2)
j .

The signer computes c := H̄(pk, pk(2), R(1), R(2),m) and si := c · `i,S · ski + ri. It sends si to all
other signers.

The signature is σ := (pk(2), c, s) for s :=
∑
j∈S sj .

Verification. Let pk be a public key, let m ∈ {0, 1}∗ be a message and let σ = (pk(2), c, s) be a
signature. To verify σ with respect to pk and m, one first computes h := H(m) and R(1) := T(g, s) −
c · pk, R(2) := T(h, s) − c · pk(2). Then, one accepts the signature, i.e., outputs 1, if and only if
c = H̄(pk, pk(2), R(1), R(2),m).

12

Theorem 1. Let TLF = (Gen,T) be a tagged linear function family and let H : {0, 1}∗ → T , Ĥ : {0, 1}∗ →
{0, 1}2λ, H̄ : {0, 1}∗ → S be random oracles. Assume that TLF is εr-regular and εt-translatable. Further,
assume that TLF is t-algebraic translation resistant. Then, Twinkle[TLF] is TS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QS queries in total to oracles Sig0,Sig1,
Sig2 and at most QH, QĤ, QH̄ queries to oracles H, Ĥ, H̄, respectively, there is a PPT algorithm B with
T(B) ≈ T(A) and

AdvTS-EUF-CMA
A,Twinkle[TLF](λ) ≤ 8QSQHεt + 8QSεr +

8Q2
SQĤ + 4Q3

S(QS + t)
|R|

+ 4QSQH̄
|S|

+
4Q3

S + 4QSQ2
Ĥ + 4QĤQ

2
S(t+ 1)

22λ + 4QS · Advt-A-TRAN-RES
B,TLF (λ).

Proof. Fix an adversary A against the security of TS := Twinkle[TLF]. We prove the statement by
presenting a sequence of games G0-G8. To accompany the verbal description, all games and associated
oracles and algorithms are presented as pseudocode in Figures 6 to 11.
Game G0: This game is the security game TS-EUF-CMAATS for threshold signatures. We recall the
game to fix some notation. First, the game samples parameters par′ for TLF and a tag g $← T . It also
samples random coefficients a0, . . . , at

$← D and computes a public key pk := pk0 := T(g, a0) and secret
key shares ski :=

∑t
j=0 aji

j for each i ∈ [n]. For convenience, denote the corresponding public key shares
by pki := T(g, ski). Then, the game runs A on input par := (par′, g) and pk with access to signing oracles,
corruption oracles, and random oracles. Concretely, it gets access to random oracles H, Ĥ, and H̄, which
are provided by the game in the standard lazy way using maps h[·], ĥ[·], and h̄[·], respectively. The
set of corrupted parties is denoted by Corrupted and the set of queried messages is denoted by Queried.
Finally, the adversary outputs a forgery (m∗, σ∗) and the game outputs 1 if m∗ /∈ Queried, |Corrupted| ≤ t,
and σ∗ is a valid signature for m∗. We make three purely conceptual changes to the game. First, we
will never keep the secret key share ski explicitly in the states state[sid, i] for users i in a session sid,
although the scheme description would require this. This is without loss of generality, as the adversary
only gets to see the states when it corrupts a user, and in this case it also gets ski. Second, we assume
the adversary always queried H(m∗) before outputting its forgery. Third, we assume that the adversary
makes exactly t (distinct) corruption queries. These changes are without loss of generality and do not
change the advantage of A. Formally, one could build a wrapper adversary that internally runs A, but
makes a query H(m∗) and enough corruption queries before terminating, and on every corruption query
includes ski in the states before passing the result back to A. Clearly, we have

AdvTS-EUF-CMA
A,TS (λ) = Pr [G0 ⇒ 1].

The remainder of our proof is split into three parts. In the first part (G1-G3), we ensure that the game
no longer needs secret key shares ski to compute pk(2)

i in the signing oracle. Roughly, this is done by
embedding shifted tags (h, td) ← Shift(par′, g) into random oracle H for signing queries, and keeping
random tags h for the query related to the forgery. In the second part (G4-G11), we use careful delayed
random oracle programming, observability of the random oracle, and an honest-verifier zero-knowledge-
style programming to simulate the remaining parts of the signing queries without ski. As a result, ski
is only needed when the adversary corrupts users. In the third part, we analyze G11. This is done by
distinguishing two cases. One of the cases is bounded using a statistical argument. The other case is
bounded using a reduction breaking the t-algebraic translation resistance of TLF. We now proceed with
the details.
Game G1: In this game, we introduce a map b[·] that maps messages m to bits b[m] ∈ {0, 1}. Concretely,
whenever a query H(m) is made for which the hash value is not yet defined, the game samples b[m] from
a Bernoulli distribution Bγ with parameter γ = 1/(QS + 1). That is, b[m] is set to 1 with probability
1/(QS + 1) and to 0 otherwise. The game aborts if b[m] = 1 for some message m for which the signing
oracle is called, or b[m∗] = 0 for the forgery message m∗. Clearly, if no abort occurs, games G0 and G1
are the same. Further the view of A is independent of the map b. We obtain

Pr [G1 ⇒ 1] = γ (1− γ)QS · Pr [G0 ⇒ 1]

13

Now, we can use the fact (1− 1/x)x ≥ 1/4 for all x ≥ 2 and get

γ (1− γ)QS = 1
QS + 1

(
1− 1

QS + 1

)QS

= 1
QS

(
1− 1

QS + 1

)QS+1
≥ 1

4QS
,

where the second equality follows from

1
QS

(
1− 1

QS + 1

)
= 1
QS
− 1
QS(QS + 1) = (QS + 1)− 1

QS(QS + 1) = QS
QS(QS + 1) = 1

QS + 1 .

In combination, we get
Pr [G1 ⇒ 1] ≥ 1

4QS
· Pr [G0 ⇒ 1].

Game G2: In game G2, we change the way queries to random oracle H are answered. Namely, for a
query H(m) for which the hash value h[m] is not yet defined, the game samples h[m] $← T as a random tag
exactly as the previous game did. However, now, if b[m] = 0, the game samples (h, td)← Shift(par′, g) and
sets h[m] := h. Further, it stores td in a map tr as tr[m] := td. Clearly, G1 and G2 are indistinguishable
by the εt-translatability of TLF. Concretely, one can easily see that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QHεt.

Game G3: In this game, we change how the values pk(2)
i are computed by the signing oracle. To

recall, in the commitment phase of the signing protocol, the signing oracle for user i ∈ [n] in G2 would
compute the value pk(2)

i := T(h, ski), where h = H(m) and m is the message to be signed. Also, the value
pk(2)
i := T(h, ski) is recomputed in the opening phase of the signing protocol and included in the output

sent to the adversary. From G3 on, pk(2)
i is computed differently, namely, as pk(2)

i := Translate(tr[m], pki).
Observe that if the game did not abort, we know that b[m] = 0 (see G1) and therefore h has been
generated as (h, td)← Shift(par′, g) where tr[m] = td. Thus, it follows from the translatability of TLF, or
more concretely from the translation completeness, that the view of A is not changed. We get

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1].

Game G4: In this game, we let the game abort if (par′, g) /∈ Reg, where Reg is the set from the regularity
definition of TLF. By regularity of TLF, we have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ εr.

Game G5: In this game, we change the signing oracle again. Specifically, we change the commitment
and opening phase. Recall that until now, in the commitment phase for an honest party i in a signer
set S ⊆ [n] and message m, an element ri $← D is sampled and the party sends a commitment comi :=
Ĥ(S, i, R(1)

i , R
(2)
i , pk(2)

i) for R(1)
i := T(g, ri), R(2)

i := T(h, ri), and pk(2)
i := Translate(tr[m], pki). As before,

h is defined as h := H(m). Later, in the opening phase, the party sends R(1)
i , R

(2)
i , pk(2)

i . Now, we
change this as follows: The signing oracle computes pk(2)

i as in G4, but it does not compute R(1)
i , R

(2)
i

and instead sends a random commitment comi
$← {0, 1}2λ on behalf of party i. It also inserts an

entry (S, i, comi) into a list Sim that keeps track of these simulated commitments. If there is already
an (S′, i′) 6= (S, i) such that (S′, i′, comi) ∈ Sim, then the game aborts. Note that there are two
situations where the preimage of comi has to be revealed. Namely, R(1)

i , R
(2)
i , pk(2)

i has to be given to
the adversary in the opening phase, and whenever party i is corrupted the game needs to output ri.
To handle this, consider the opening phase or the case where party i is corrupted before it reaches the
opening phase. Here, we let the game sample ri $← D and define R(1)

i := T(g, ri) and R(2)
i := T(h, ri).

Then, the game checks if ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i] = ⊥. If it is not, the game aborts. Otherwise, it
programs ĥ[S, i, R(1)

i , R
(2)
i , pk(2)

i] := comi and continues. That is, in the opening phase it would output
R

(1)
i , R

(2)
i , pk(2)

i , and during a corruption, it would output ri as part of its state. If a corruption occurs
after the opening phase, then ri has already been defined, and corruption is handled as before. Clearly,
the view of A is only affected by this change if R(1)

i , R
(2)
i , pk(2)

i matches a previous query of A or the

14

same commitment has been sampled by the game twice. The latter event occurs only with probability
Q2
S/22λ by a union bound over all pairs of queries. To bound the former event, we use the regularity of

TLF, which implies that R(1)
i is uniform over the range R. Now, for each fixed pair of signing query and

random oracle query, the random oracle query matches R(1)
i , R

(2)
i , pk(2)

i with probability at most 1/|R|.
Thus, the event occurs only with probability QSQĤ/22λ. We get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤
QSQĤ
|R|

+ Q2
S

22λ .

Game G6: In this game, we rule out collisions for random oracle Ĥ. Namely, the game aborts if there
are x 6= x′ such that ĥ[x] = ĥ[x′] 6= ⊥. Clearly, we have

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤
Q2

Ĥ
22λ .

Subsequent games will internally make use of an algorithm Ĥ−1. On input y the algorithm searches for
an x such that ĥ[x] = y. If no such x is found, or if multiple x are found, then the algorithm returns
⊥. Otherwise, it returns x. Note that in the latter case the game would abort anyways, and so we can
assume that if there is a preimage of y, then this preimage is uniquely determined by y.
Game G7: In this game, we introduce a list Pending and associated algorithms UpdatePending and
AddToPending to manage this list. The algorithms are presented as pseudocode in Figure 11. Intuitively,
the list keeps track of honest users i and signing sessions sid for which the game can not yet extract
preimages of all commitments sent in the commitment phase. More precisely, the list contains a tuple
(sid, i,M1) if and only if the following two conditions hold:

• The opening phase oracle Sig1(sid, i,M1) has been called with valid inputs, i.e., for this query
the game did not output ⊥ due to Allowed(sid, i, 1,M1) = 0, and at that point the following was
true: For every commitment comj in M1 such that (S, j, comj) /∈ Sim, we have Ĥ−1(comj) 6= ⊥
and with (S′, k, R(1), R(2), pk(2)) := Ĥ−1(comj) we have S′ = S and k = j, where S is the signer set
associated with sid.

• There is a commitment comj inM1 such that Ĥ−1(comj) = ⊥.

To ensure that the list satisfies this invariant, we add a triple (sid, i,M1) to Pending when the first
condition holds. This is done by algorithm AddToPending. Concretely, whenever A calls Sig1(sid, i,M1),
the oracle returns ⊥ in case Allowed(sid, i, 1,M1) = 0. If Allowed(sid, i, 1,M1) = 1, the game immediately
calls AddToPending(sid, i, 1,M1), which checks the first condition of the invariant and inserts the tripe
(sid, i, 1,M1) into Pending if it holds. Then, the game continues the simulation of Sig1 as before. Further,
we invoke algorithm UpdatePending whenever the map ĥ is changed, i.e., during queries to Ĥ, and in
corruption and signing oracles (see G5). On every invocation, the algorithm does the following:

1. Initialize an empty list New.

2. Iterate trough all entries (sid, i,M1) in Pending, and do the following:

(a) Check if the entry has to be removed because it is violating the invariant. That is, check
if for all j in the signer set S associated with session sid, we have Ĥ−1(comj) 6= ⊥, where
M1 = (comj)j∈S . If this is not the case, skip this entry and keep it in Pending.

(b) We know that for all indices j ∈ S, the value (S′j , kj , R
(1)
j , R

(2)
j , pk(2)

j) = Ĥ−1(comj) exists.
Further, it must hold that S′j = S and kj = j, as otherwise this entry would not have been
added to Pending in the first place. Remove the entry from Pending, and determine the
combined nonces and secondary public key

R(1) =
∑
j∈S

R
(1)
j , R(2) =

∑
j∈S

R
(2)
j , pk(2) =

∑
j∈S

`j,Spk(2)
j .

(c) Let m be the message associated with the session sid.

15

(d) If (R(1), R(2), pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] 6= ⊥, abort the execution of the
entire game (see bad event Defined below).

(e) Otherwise, sample h̄[pk, pk(2), R(1), R(2),m] $← S and insert the tuple (R(1), R(2), pk(2),m) into
New.

To summarize, this algorithm removes all entries violating the invariant from the list Pending. For each
such entry that is removed, the algorithm computes the combined nonces R(1), R(2) and secondary public
key pk(2). Roughly, it aborts the execution, if random oracle H̄ for these inputs is already defined. List
New ensures that the abort is not triggered if the algorithm itself programmed h̄ in a previous iteration
within the same invocation. In addition to algorithm UpdatePending, we introduce the following events,
on which the game aborts its execution:

• Event BadQuery: This event occurs, if for a random oracle query to Ĥ for which the hash value is
not yet defined and freshly sampled as com $← {0, 1}2λ, there is an entry (sid, i,M1) in Pending
such that com is inM1.

• Event Defined: This event occurs, if the execution is aborted during algorithm UpdatePending.

For shorthand notation, we set Bad := BadQuery ∨Defined. The probability of BadQuery can be bounded
as follows: Fix a random oracle query to Ĥ for which the hash value is not yet defined. Fix an entry
(sid, i,M1). Note that over the entire game, there are at most QS of these entries. Further, fix an index
j ∈ [t+ 1]. The probability that com collides with the jth entry ofM1 is clearly at most 1/22λ. With
a union bound over all triples of queries, entries, and indices, we get that the probability of BadQuery
is at most QĤQS(t + 1)/22λ. Next, we bound the probability of Defined assuming BadQuery does not
occur. Under this assumption, one can easily observe that when an entry is removed from list Pending
and R(1) =

∑
j∈S R

(1)
j is the combined first nonce, then there is an j∗ ∈ S such that the game sampled

R
(1)
j∗ just before invoking algorithm UpdatePending. Precisely, it must have set R(1)

j∗ := T(g, r) for some
random r $← D. By regularity of TLF, this means R(1)

j∗ is uniform over R, and this means that the
combined first nonce R(1) is also uniform. Thus for any fixed entry of in Pending, the probability that
h̄[pk, pk(2), R(1), R(2),m] is already defined when the entry is removed, is at most QĤ/|R|. With a union
bound over all entries we can now bound the probability of Defined by QĤQS/|R|. In combination, we get

Pr [Bad] ≤ Pr [BadQuery] + Pr [Defined | ¬BadQuery] ≤
QĤQS(t+ 1)

22λ +
QĤQS
|R|

.

and thus

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ Pr [Bad] ≤
QĤQS(t+ 1)

22λ +
QĤQS
|R|

.

Game G8: In this game, we change algorithm UpdatePending. Specifically, we change what we insert
into list New. Recall from the previous game that when we removed an entry (sid, i,M1) from Pending,
we aborted the game if (R(1), R(2), pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] 6= ⊥. Otherwise,
we inserted tuples (R(1), R(2), pk(2),m). Now, we instead abort if (S,R(1), R(2), pk(2),m) /∈ New but
h̄[pk, pk(2), R(1), R(2),m] 6= ⊥, and otherwise insert (S,R(1), R(2), pk(2),m), where S is the signer set
associated with session sid. One can see that the two games can only differ if for two entries (sid, i,M1)
and (sid′, i′,M′1) that are removed from Pending in the same invocation of UpdatePending, the signer sets
S and S′ differ but the respective tuples (R(1), R(2), pk(2),m) and (R′(1), R

′(2), pk
′(2),m′) are the same

and h̄[pk, pk(2), R(1), R(2),m] 6= ⊥. In this case, game G8 would abort, but game G7 would not. We
argue that this can not happen: Assume that two entries (sid, i,M1) and (sid′, i′,M′1) with associated
signer sets S and S′ are removed from Pending. Then, we know that algorithm UpdatePending has been
invoked because the game programmed ĥ at some point, say ĥ[S∗, j∗, R(1)

∗ , R
(2)
∗ , pk(2)

∗] := com∗, such that
com∗ is in bothM1 andM′1. Thus, the algorithm only removes the entry (sid, i,M1) from the list if the
first component of Ĥ−1(com∗) is S, i.e., if S∗ = S. Similarly, it only removes the entry (sid′, i′,M′1) if the
first the first component of Ĥ−1(com∗) is S′, i.e., if S∗ = S′. Thus, it only removes both if S = S∗ = S′.
With that, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

16

Game G9: We introduce two more algorithms, presented as pseudocode in Figure 11. Intuitively, these
allow us to group tuples of the form (sid, i,M1) that have been inserted into list Pending into equivalence
classes. To be clear, the relation is defined on all triples in Pending and on all triples that already have
been removed from Pending, but not on any other entries. The intuition, roughly, is that such triples
lead to the same combined nonces if and only if they are in the same equivalence class. The effect of
this is will be that we know the challenge just from the tuple (sid, i,M1). We now turn to the details.
We introduce an algorithm Equivalent that takes as input two triples (sid, i,M1) and (sid′, i′,M′1) and
decides whether they are equivalent as follows:

1. Let S, S′ and m,m′ be the signer sets and messages associated with sessions sid and sid′, respectively.
If S 6= S′ or m 6= m′, the triples are not equivalent.

2. Thus, assume S = S′ and writeM1 = (comj)j∈S andM′1 = (com′j)j∈S . Let F ⊆ S (resp. F ′ ⊆ S′)
be the set of indices j ∈ S (resp j ∈ S′) such that Ĥ−1(comj) = ⊥ (resp. Ĥ−1(com′j) = ⊥). If
(comj)j∈F 6= (com′j)j∈F ′ , then the triples are not equivalent.

3. Define F̄ := S \ F and F̄ ′ := S \ F ′. For each j ∈ F̄ , we know that the value (S̃j , kj , R′j
(1)
, R′j

(2)
,

pk′j
(2)) = Ĥ−1(com′j) exists. Similarly, for each j ∈ F̄ ′, we know that the value (S̃′j , k′j , R′j

(1)
, R′j

(2)
,

pk′j
(2)) = Ĥ−1(com′j) exists. With these, we can define partially combined nonces and secondary

keys

R̄(1) :=
∑
j∈F̄ R

(1)
j , R̄(2) :=

∑
j∈F̄ R

(2)
j p̄k(2) :=

∑
j∈F̄ `j,Spk(2)

j

R̄
′(1) :=

∑
j∈F̄ ′ Rj

′(1), R̄
′(2) :=

∑
j∈F̄ ′ Rj

′(2) p̄k
′(2) :=

∑
j∈F̄ ′ `j,Spkj

′(2).

The triples are not equivalent, if (R̄(1), R̄(2), p̄k(2)) 6= (R̄′(1), R̄
′(2), p̄k

′(2)). Otherwise, they are
equivalent.

In summary, two triples are equivalent if their signer sets, messages, partially combined nonces and
secondary public keys, and remaining commitments match. It is clear that at any fixed point in time
during the experiment, this is indeed an equivalence relation. In the following two claims, we argue that
this relation is preserved over time. For that, we first make some preliminary observations, using notation
as in the definition of equivalence above:

1. The equivalence relation can potentially only change when oracle Ĥ is updated during queries to
Sig1 (i.e., the opening phase) or during corruption queries, which may make the sets F and F ′
change. This is because triples are only inserted into Pending if the only commitments without
preimages are simulated, and the preimages of these are only set in such calls (see G7).

2. The sets F and F ′ can only get smaller over time, as we assume that no collisions occur.

3. When the oracle is programmed during such calls, say by setting ĥ[S∗, j∗, R(1)
∗ , R

(2)
∗ , pk(2)

∗] := com∗,
then it must hold that (S∗, j∗, com∗) ∈ Sim. In particular, if in this case some j is removed from
F (or F ′) because comj (or com′j) now has a preimage, then it must hold that com∗ = comj and
j∗ = j. This is because otherwise, if j 6= j∗, then we would have (S̃, j, com∗) ∈ Sim for some S̃
(because the entry was added to Pending) and (S∗, j∗, com∗) ∈ Sim, and such a collision was ruled
out in G5.

4. Again, assume that the oracle is programmed during such calls by setting ĥ[S∗, j∗, R(1)
∗ , R

(2)
∗ , pk(2)

∗]
:= com∗. Now, assume that both F and F ′ change. Then, we know (because of the previous
observation), that the same j = j∗ is removed from both F and F ′, and comj = com∗ = com′j is
removed from both (comj)j∈F and (com′j)j∈F ′ . Thus, these lists are the same before the update if
and only if they are the same after the update.

5. In the setting of the previous observation, denote the point in time before the update as t0, and the
point in time after the update as t1. Further, denote the associated partially combined nonces and
secondary public keys at time tb for b ∈ {0, 1} by

R̄
(1)
b , R̄

(2)
b , p̄k(2)

b , and R̄
′(1)
b , R̄

′(2)
b , p̄k

′(2)
b .

17

Now, we observe that

R̄
(1)
1 = R̄

(1)
0 +R

(1)
∗ , R̄

(2)
1 = R̄

(2)
0 +R

(2)
∗ , p̄k(2)

1 = p̄k(2)
0 + `j∗,S∗pk(2)

∗ .

The same holds for R̄
′(1)
b , R̄

′(2)
b , and p̄k

′(2)
b . Therefore, we see that

(R̄(1)
0 , R̄

(2)
0 , p̄k(2)

0) = (R̄
′(1)
0 , R̄

′(2)
0 , p̄k

′(2)
0)

if and only if (R̄(1)
1 , R̄

(2)
1 , p̄k(2)

1) = (R̄
′(1)
1 , R̄

′(2)
1 , p̄k

′(2)
1).

Now, we show that the equivalence relation does not change over time, using our notation from above
and the observations we made.
Equivalence Claim 1. If two triples (sid, i,M1) and (sid′, i′,M′1) are equivalent at some point in time,
then they stay equivalent for the rest of the game.
Proof of Equivalence Claim 1. Both signer set and message do not change over time. For the other
components that determine whether the triples are equivalent, we consider two cases: Either, on an
update of Ĥ, both do not change. In this case the triples trivially stay equivalent. In the other case, both
of them change, as the lists (comj)j∈F and (com′j)j∈F ′ are the same before the update. Now, it easily
follows from our last observation above that the triples stay equivalent.
Equivalence Claim 2. If two triples (sid, i,M1) and (sid′, i′,M′1) are not equivalent at some point in
time, then the probability that they become equivalent later is negligible. Concretely, if Converge is the
event that any two non-equivalent triples become equivalent at some point in time, then

Pr [Converge] ≤ Q2
S(QS + t)
|R|

.

Proof of Equivalence Claim 2. Clearly, if m 6= m′ or S 6= S′, then the triples will stay non-equivalent.
Now, consider an update of Ĥ that is caused by a query to Sig1 or the corruption oracle and will
potentially change the equivalence relation. We consider two cases: In the first case, the lists (comj)j∈F
and (com′j)j∈F ′ are the same before the update. In this case, they either do not change, in which case the
triples trivially stay non-equivalent, or they both change, in which case it follows from our last observation
above that they stay non-equivalent. In the second case, the lists (comj)j∈F and (com′j)j∈F ′ are different
before the update. If they stay different after the update, the triples stay non-equivalent. If they become
the same after the update, this means that an entry was removed from only one of them, say j = j∗ from
F and thus comj = com∗ from (comj)j∈F . For this case, use notation R̄(1)

b and R̄
′(1)
b as in the last last

observation above and notice that R̄
′(1)
1 = R̄

′(1)
0 because (com′j)j∈F ′ is not changed during the update.

On the other hand, (comj)j∈F is changed by the update and we have R̄(1)
1 = R̄

(1)
0 +R

(1)
∗ . Thus, if the

triples become equivalent, we must have

R̄
′(1)
0 = R̄

′(1)
1 = R̄

(1)
1 = R̄

(1)
0 +R

(1)
∗ .

Notice that R(1)
∗ is sampled in the signing or corruption oracle by sampling some r∗ $← D and setting

R
(1)
∗ = T(g, r∗). Thus, R(1)

∗ is uniformly distributed over R by the regularity of TLF and independent of
R̄
′(1)
0 and R̄(1)

0 , which means that this equation holds with probability at most 1/|R|. Taking a union
bound over all pairs of triples and all queries to the signing oracle and the corruption oracle, the claim
follows.

With our equivalence relation at hand, we introduce an algorithm GetChallenge that behaves as a
random oracle on equivalence classes. That is, it assigns each class a random challenge c $← S in a lazy
manner. More precisely, it gets as input a triple (sid, i,M1) and checks if a triple in the same equivalence
class5 is already assigned a challenge c. This is done using algorithm Equivalent. If so, it returns this
challenge c. If not, it assigns a random challenge c $← S to the triple (sid, i,M1).

These two new algorithms are used in the following way: Recall that in previous games, algorithm
UpdatePending would program h̄[pk, pk(2), R(1), R(2),m] $← S whenever an entry (sid, i,M1) is removed

5It is essential for this algorithm that we have shown that equivalence classes are preserved over time. Otherwise, the
behavior of this algorithm would be ambiguous.

18

from Pending and no abort occurs, where pk(2), R(1), R(2),m are the corresponding secondary public
keys, combined nonces, and messages. Now, instead of sampling h̄[pk, pk(2), R(1), R(2),m] at random, the
algorithm sets h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1). We need to argue that this way of
programming the random oracle does not change the view of the adversary. Concretely, all we need to
argue is that two different inputs x 6= x′ to random oracle H̄ get independently sampled outputs. Clearly,
it is sufficient to consider inputs of the form

x = (pk, pk(2), R(1), R(2),m), x′ = (pk, pk
′(2), R

′(1), R
′(2),m′),

which both are covered by the newly introduced programming in algorithm UpdatePending. Let (sid, i,M1)
be the entry removed from Pending associated with x and (sid′, i′,M′1) be the entry removed from Pending
associated with x′. Consider the point in time where the second entry, say (sid′, i′,M′1) has been removed.
One can see that the outputs H̄(x) and H̄(x′) are independent, unless at this point in time (sid, i,M1)
and (sid′, i′,M′1) were equivalent. However, by definition of equivalence (algorithm Equivalent), them
being equivalent would mean that m = m′ and (pk(2), R(1), R(2)) = (pk

′(2), R
′(1), R

′(2)), as the sets F and
F ′ are both empty because both entries have been removed from Pending. Thus, we would have x = x′.
This shows that the distribution of random oracle outputs does not change, and so we have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Game G10: In this game, we change the signing oracle and corruption oracle. Roughly, we use an
honest-verifier zero-knowledge-style simulation to simulate signing without secret keys. Intuitively, we
can do that, because now we know the challenge already in the opening phase before fixing nonces. More
precisely, recall that until now, signers in the opening phase, i.e., on a query Sig1(sid, i,M1), sampled a
random ri

$← D and set R(1)
i := T(g, ri) and R(2)

i := T(h, ri). Later, in the response phase, the signer
sent si := c · `i,S · ski + ri where c := H̄(pk, pk(2), R(1), R(2),m) and pk(2), R(1), R(2) are the combined
secondary public key and nonces. Additionally, when the signer is corrupted, it has to send ri as part
of its state. We change this as follows: In the opening phase, consider two cases: First, if (sid, i,M1)
has not been added to the list Pending, then the signer sets c := 0. Observe that in this case, we can
assume that the signer never reaches the response phase for this session due to our changes in G6 and
G7. Otherwise, it sets c̃ := GetChallenge(sid, i,M1). In both cases, the signer samples si $← D and sets
R

(1)
i := T(g, si)− c̃ · `i,S · pki and R

(2)
i := T(h, si)− c̃ · `i,S · pk(2)

i . Later, when the signer has to output
something in the response phase, it outputs the si that it sampled in the opening phase. Further, when
the signer is corrupted after the opening phase, it sets ri := si − c̃ · `i,S · ski. To argue indistinguishability,
we need to show that c̃ and c = H̄(pk, pk(2), R(1), R(2),m) are the same. This is established as follows:

1. When the signer is queried in the response phase and does not return ⊥, we know that the entry
(sid, i,M1) has been removed from Pending.

2. When it was removed from the list, the combined nonce and secondary public key that have been
computed are exactly R(1), R(2), and pk(2).

3. Therefore, in the invocation of UpdatePending in which the entry was removed from the list, one of
two events happened:

(a) Either h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1);
(b) Or, h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid′, i′,M′1) for some

triple (sid′, i′,M′1) with the same associated signer set S (see G8) and message m. In this
case, we know that (sid′, i′,M′1) is equivalent to (sid, i,M1) and therefore GetChallenge(sid′,
i′,M′1) returned the same as what the query GetChallenge(sid, i,M1) would have returned at
that point.

4. Thus, we only need to argue that the output of GetChallenge(sid, i,M1) did not change over time.
This follows from our claims about the stability of equivalence classes over time, assuming event
Converge does not occur.

19

We get

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ Pr [Converge] ≤ Q2
S(QS + t)
|R|

.

Game G11: We change the game by no longer assuming that (par′, g) ∈ Reg. Clearly, we have

|Pr [G10 ⇒ 1]− Pr [G11 ⇒ 1]| ≤ εr.

It remains to bound the probability that gameG11 outputs 1. Before turning to that, we emphasize the
main property we have established via our changes: We do not longer need secret key shares ski to simulate
the signer oracle. We only need them on corruption queries. Now, we bound the probability that game
G11 outputs 1 by considering two events, depending on the final forgery (m∗, σ∗) with σ∗ = (pk∗(2), c∗, s∗):

• Event Orthogonal: This event occurs, ifG11 outputs 1, and there is no x0 ∈ D such that T(g, x0) = pk
and T(h∗, x0) = pk∗(2), where h∗ = H(m∗).

• Event Parallel: This event occurs, if G11 outputs 1, and there is a x0 ∈ D such that T(g, x0) = pk
and T(h∗, x0) = pk∗(2), where h∗ = H(m∗).

Clearly, we have
Pr [G11 ⇒ 1] ≤ Pr [Orthogonal] + Pr [Parallel].

We bound the probability of these events separately. For event Orthogonal, we make use of Lemma 1.
Concretely, we sketch a reduction that runs in the game specified in Lemma 1, such that the event
bounded in Lemma 1 occurs if event Orthogonal occurs and some guesses of the reduction were correct.
Namely, the reduction gets as input parameters par′ for TLF. It samples i∗ $← [QH̄] and simulates G11
for A except for the i∗th random oracle query to H̄. Let that query be H̄(pk, pk(2), R(1), R(2),m). The
reduction aborts if the hash value is already defined. Otherwise, the reduction outputs its state, g,
h := H(m), X1 := pk, X2 := pk(2), R(1), R(2) to the game from Lemma 1, receiving a challenge c ∈ S in
return. It programs H̄(pk, pk(2), R(1), R(2),m) := c and continues the simulation. Later, when A outputs
its forgery, the reduction aborts if the query defining c∗ was not the i∗th query to H̄. Otherwise, it
outputs s∗ to the game from Lemma 1. Note that one of the random oracle queries to H̄ (possibly the
one made by the game during verification) has to be the one defining c∗. Especially, the random oracle is
not reprogrammed at that position because A is not allowed to make a signing query for m∗. Also, it is
clear that if Orthogonal occurs and the guess was correct, then the event in Lemma 1 occurs. As the view
of A is independent of i∗ until it terminates, we have

Pr [Orthogonal] ≤ QH̄
|S|

.

Next, we bound the probability of event Parallel. For that, we describe a reduction B against the t-algebraic
translation resistance of TLF:

1. B gets as input parameters par′ for TLF, tags g, h, and images X0, . . . , Xt ∈ R.

2. B simulates game G11 for A, with the following changes

• B sets up the key in a different way: Namely, it sets pk := pk0 := X0, and it sets pki := Xi for
each i ∈ [t]. Further, let S0 := {0} ∪ [t]. B sets pki :=

∑
j∈S0

`j,S0(i)pkj for each i ∈ [n] \ S0.
This means that B is not aware of the associated secret keys ski. Note that the public keys are
distributed exactly as in G11.

• B provides all random oracles as in G11, except for random oracle H. Namely, for this oracle,
instead of sampling h[m] at random when b[m] = 1, B samples (h′, td)← Shift(par′, h) and sets
h[m] := h′ and tr[m] := td.

• B provides the signing oracles as in G11. Observe that B does not need any secret keys for
that.

• Whenever A queries the corruption oracle to corrupt user i, B queries xi := Inv(`0,S0(i), . . . ,
`t,S0(i)). Then, it sets ski := xi and continues the simulation of the corruption as in G11. It is
clear that ski is correctly distributed. Further, B queries its oracle exactly t times because A
corrupts exactly t parties (see G0).

20

3. Finally, when A outputs its forgery (m∗, σ∗) with σ∗ = (pk∗(2), c∗, s∗) and G11 outputs 1 (which
can be efficiently checked by B), the reduction B retrieves td∗ := tr′[m∗]. This entry exists because
of the change in G1. Then, it computes X ′0 := InvTranslate(td∗, pk∗(2)) for h∗ := H(m∗).

4. To recall, Corrupted ⊆ [n] is the set of parties i ∈ [n] such that A corrupted party i. By our
assumption from G0, we know that |Corrupted| = t. The reduction sets S∗ := Corrupted ∪ {0},
which has size t+1. Further, it setsX ′i := T(h, xi) for each i ∈ Corrupted andX ′i :=

∑
j∈S∗ `j,S∗(i)X ′j

for each i ∈ [n] \ Corrupted. It outputs X ′0, . . . , X ′t to the algebraic translation resistance game.

Clearly, the running time of B is dominated by the running time of A. Further the only difference between
the view of A in game G11 and in the simulation provided by B is the distribution of random oracle H.
It follows from the εt-translatability of TLF and a union bound over all queries that this changes the
probability of event Parallel by at most QHεt. Now, it remains to argue that if event Parallel occurs, then
B breaks algebraic translation resistance. So, assume that Parallel occurs. We have to argue that for
each i ∈ {0} ∪ [t], there is a zi such that T(g, zi) = Xi and T(h, zi) = X ′i. First, for all i ∈ Corrupted this
holds by construction. For i = 0, we know (because Parallel) that there is an x0 such that T(g, x0) = pk
and T(h∗, x0) = pk∗(2) for h∗ = H(m∗). Now, we know that X ′0 = InvTranslate(td∗, pk∗(2)) = T(h, x0),
by translation completeness. Thus, it remains to show that the property holds for all i ∈ [t] with
i /∈ Corrupted. For these, we have

X ′i =
∑
j∈S∗

`j,S∗(i)X ′j =
∑
j∈S∗

`j,S∗(i)T(h, xi) = T

h, ∑
j∈S∗

`j,S∗(i)xi

 .

Further, we have

T

g, ∑
j∈S∗

`j,S∗(i)xi

 =
∑
j∈S∗

`j,S∗(i)T(g, xi) =
∑
j∈S∗

`j,S∗(i)pk′i = X ′i,

by construction. With this, we showed that

Pr [Parallel] ≤ QHεt + Advt-A-TRAN-RES
B,TLF (λ).

This finishes the proof.

4 Instantiations
In this section, we instantiate our threshold signature scheme by providing concrete tagged linear function
families. Our first instantiation is based on a one-more variant of the CDH assumption, and our second
instantiation is based on DDH. The advantage of the latter instantiation is avoiding an interactive
assumption, while the former is slightly more efficient.

4.1 Instantiation from (Algebraic) One-More CDH
We can instantiate the tagged linear function family by mapping a tag h ∈ G and a domain element
x ∈ Zp to hx ∈ G. Regularity and translatability are easy to show, and algebraic translation resistance
follows from an algebraic one-more variant of CDH. We define it next.

Definition 7 (AOMCDH Assumption). Let GGen be a group generation algorithm. That is, on input 1λ,
GGen(1λ) outputs the description of a prime order group G. The description contains the prime order
p and a generator g if G, and a description of the group operation. Consider the game AOMCDH in
Figure 4. We say that the t-AOMCDH assumption holds relative to GGen, if for all PPT algorithms A,
the following advantage is negligible:

Advt-AOMCDH
A,GGen (λ) := Pr

[
t-AOMCDHAGGen(λ)⇒ 1

]
.

21

Game t-AOMCDHAGGen(λ)
01 (G, g, p)← GGen(1λ)
02 h $← G, x0, . . . , xt

$← Zp
03 for i ∈ {0} ∪ [t] : Xi := gxi

04 (X ′i)ti=0 ← AInv(G, g, p, h, (Xi)ti=0)
05 if ∀i ∈ {0} ∪ [t] X ′i = hxi : return 1
06 return 0

Oracle Inv(α0, . . . , αt)
07 if q ≥ t : return ⊥
08 q := q + 1
09 x :=

∑t
i=0 αixi

10 return x

Figure 4: The game AOMCDH from the definition of the AOMCDH assumption for an adversary A.

Note that our one-more variant of CDH is different from the variant introduced in [BFP21] in the
sense that the adversary has an algebraic DLOG oracle instead of a CDH oracle. To get some confidence
in our AOMCDH assumption, we sketch that it is implied by the well-known algebraic one-more DLOG
(AOMDL) assumption [NRS21] in the algebraic group model (AGM) [FKL18]. Note that Bauer et
al. [BFP21] gave a bound for one-more DLOG in the generic group model (GGM) [Sho97]. As an
immediate consequence, the advantage of any adversary against AOMCDH is bounded by the same,
namely, by Θ

(
(t2/(p− t2)) + (1/p)

)
.

Lemma 2 (Informal). The AOMCDH assumption is implied by the algebraic one-more DLOG assumption
in the algebraic group model.

Sketch. We only sketch the proof. First, we recall the AOMCDH game for an algebraic adversary A:

1. The game generates group parameters (G, g, p) and samples h $← G and x = (xi)ti=0
$← Zt+1

p . We
let γ ∈ Zp be such that h = gγ .

2. The game defines Xi := gxi for all i and runs A on input G, g, p, h, (Xi)ti=0 with t-time access to an
oracle Inv which on input α0, . . . , αt outputs

∑t
i=0 αixi.

3. When A terminates, it outputs t+ 1 group elements (X ′i)ti=0 and wins the game if X ′i = hxi for all i.
As A is algebraic, we can assume that it also outputs elements a = (ai)i ∈ Zt+1

p , b = (bi)i ∈ Zt+1
p ,

and C = (Ci,j)i,j ∈ Z(t+1)×(t+1)
p such that for all i we have

X ′i = gai · hbi ·
t∏

j=0
X
Ci,j

j .

Reading these equations in the exponent of g and assuming that A wins, this means that

γx = a + γb + Cx.

We want to argue that A can not win the game. For that, we will distinguish two cases and bound the
probability of these using the AOMDL and the plain DLOG assumption, respectively.
First Case: b = x. In this case, it is clear that a reduction can solve AOMDL. Before we sketch the
reduction, we informally recall the AOMDL game, as present in recent works, e.g., [NRS21]. The game is
exactly6 as the AOMCDH game, with two modifications: (1) there is no element h, and (2) the winning
condition asks the adversary to outputs the xi instead of group elements X ′i. Now, our reduction is as
follows. It gets as input (G, g, p) and (Xi)ti=0, it samples h $← G, and runs A on input G, g, p, h, (Xi)ti=0.
To answer A′s queries to Inv, it simply forwards them to its own oracle provided by the AOMDL game.
When A outputs (X ′i)ti=0 and a,b,C, the reduction simply outputs b as a solution to the AOMDL game.
Second Case: b 6= x. In this case, we know that there is a position i∗ ∈ {0} ∪ {t} such that xi∗ 6= bi∗ .
Rearranging the i∗th equation we get

γ =
ai∗ +

∑t
j=0 ci∗,jxj

xi∗ − bi∗
,

6In the game as defined in [NRS21], the adversary gets its challenges Xi via an oracle, in which case our reduction also
works.

22

where we used that xi∗ 6= bi∗ . With this, we can construct a reduction solving the plain DLOG problem:
it gets as input (G, g, p) and h = gγ , samples the xi and simulates the AOMCDH game for A, simulating
Inv honestly using the xi. When A outputs (X ′i)ti=0 and a,b,C, the reduction outputs γ computed as
above.

Next, we present the tagged linear function family TLFAOMCDH = (GenAOMCDH,TAOMCDH) based on
the AOMCDH assumption. Let GGen be an algorithm that takes as input 1λ and outputs the description
of a group G of prime order p with generator g ∈ G. Algorithm GenAOMCDH runs GGen and outputs
parameters par = (G, g, p). These parameters define the following sets of scalars, tags, and the domain
and range, respectively:

S := Zp, T := G, D := Zp, R := G.

Clearly, D and R are vector spaces over the field S. Given a tag7 u ∈ G and an input x ∈ Zp, the tagged
linear function TAOMCDH is defined as follows

TAOMCDH(u, x) := ux ∈ G.

Clearly, TAOMCDH can be computed efficiently and is a homomorphism. It remains to argue regularity,
translatability and algebraic translation resistance.

Lemma 3. The tagged linear function family TLFAOMCDH is εr-regular, where εr ≤ 1/p.

Proof. We define the set Reg from the regularity definition to be the set of group parameters and tags
u ∈ G such that u is a generator of G. Clearly, for parameters par← GenAOMCDH(1λ) and a random tag
u $← G, the probability that (par, u) /∈ Reg, i.e., that u is not a generator, is 1/p. Further, it is clear that
if u is a generator, then TAOMCDH(u, ·) is a bijection from Zp to G, and therefore images of uniformly
random elements are uniformly random.

Lemma 4. The tagged linear function family TLFAOMCDH is εt-translatable, where εt ≤ 2/p.

Proof. Algorithm Shift takes as input parameters par and a tag u ∈ G. It samples r $← Z∗p and outputs
a tag h := ur and a trapdoor td := r. Algorithm Translate takes as input the trapdoor td = r and an
element X ∈ G. It outputs Xr. Algorithm InvTranslate get the same input and outputs X1/r. With that,
it is clear that the distributions X0 and X1 from the definition of translatability are the same conditioning
on u and h being generators. Thus, the statistical distance between X0 and X1 is at most 2/p. Further,
we have

Translate(td,TAOMCDH(u, x)) = (ux)r = (ur)x = TAOMCDH(h, x)

for (h, td = r) ∈ Shift(par, u). The inverse direction follows similarly.

Lemma 5. Let t ∈ N be a number polynomial in λ. If the AOMCDH assumption holds relative to GGen,
then TLFAOMCDH is t-algebraic translation resistant. Concretely, for any PPT algorithm A there is a
PPT algorithm B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFAOMCDH

(λ) ≤ AdvAOMCDH
B,GGen (λ) + 1

p
.

Proof. The proof is trivial, as the game for the AOMCDH assumption is almost exactly the game for
t-algebraic translation resistance of TLFAOMCDH. Note that the only difference is that in the t-algebraic
translation resistance game for TLFAOMCDH, the inputs have the form Xi = uxi for a random u $← G,
whereas in the AOMCDH game, the inputs have the form gxi , where g is the fixed generator of G. We
can easily build a reduction that resolves this discrepancy: Namely, the reduction gets as input the
values gxi from the AOMCDH assumption. It samples α $← Zp and sets u := gα and defines the inputs
Xi as Xi = (gxi)α = uxi . Oracle queries to Inv and the final output of A are simply forwarded by the
reduction. Clearly, the reduction perfectly simulates the t-algebraic translation resistance game. Also,
assuming α 6= 0 and that A breaks t-algebraic translation resistance, we see that the reduction breaks
AOMCDH.

7In this section, we do not use the symbol g for arbitrary tags, as it is reserved for the fixed group generator.

23

4.2 Instantiation from DDH
Here, we present our construction TLFDDH = (GenDDH,TDDH) of a tagged linear function family based on
the DDH assumption. We first recall the DDH assumption.

Definition 8 (DDH Assumption). Let GGen be a group generation algorithm. That is, on input 1λ,
GGen(1λ) outputs the description of a prime order group G. The description contains the prime order p
and a generator g if G, and a description of the group operation. We say that the DDH assumption holds
relative to GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣Pr
[
A(G, p, g, h, ga, ha) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a $← Zp

]
−Pr

[
A(G, p, g, h, u, v) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h, u, v $← G

] ∣∣∣∣.
From now on, let GGen be an algorithm that takes as input 1λ and outputs the description of a group

G of prime order p, along with some generator g ∈ G. Algorithm GenDDH simply runs GGen and outputs
the description of G, p, and g as parameters par. We make use of the implicit notation for group elements
from [EHK+13]. That is, we write [A] ∈ Gr×l for the matrix of group elements with exponents given by
the matrix A ∈ Zr×lp . Precisely, if A = (Ai,j)i∈[r],j∈[l], then [A] := (gAi,j)i∈[r],j∈[l]. With this notation,
observe that one can efficiently compute [AB] for any matrices A ∈ Zr×lp , B ∈ Zl×sp with matching
dimensions from either [A] and B or from A and [B]. For our tagged linear function family, we define
the following sets of scalars, tags, and the domain and range, respectively:

S := Zp, T := G2×2, D := Z2
p, R := G2.

Clearly, D and R are vector spaces over S. For a tag [G] ∈ G2×2 and an input x ∈ Z2
p, the tagged linear

function TDDH is defined as

TDDH([G],x) := [Gx] ∈ G2.

We emphasize that the tag [G] is given in the group, and the domain element x is given over the field. It
is clear that TDDH can be computed efficiently and that it is a homomorphism. What remains is to show
regularity, translatability and algebraic translation resistance.

Lemma 6. The tagged linear function family TLFDDH is εr-regular, where εr ≤ (p+ 1)/p2.

Proof. We define the set Reg from the regularity definition as the set of group parameters and matrices
[T] ∈ G2×2 such that T ∈ Z2×2

p is invertible. Then, the probability that a random tag is not in the set is
at most 1/p+ 1/p2 = (p+ 1)/p2. This is because for a uniform 2× 2 matrix over Zp, the probability of
not being invertible can easily be upper bounded by 1/p2, accounting for the chance that the first row is
zero, plus 1/p, accounting for the chance that the second row is a multiple of the first row. Given that
the tag is invertible, the distribution of the image of a uniform inputs x $← Z2

p is clearly uniform.

Lemma 7. The tagged linear function family TLFDDH is εt-translatable, where εt ≤ (3 + 3p)/p2.

Proof. To prove the claim, we first have to describe a PPT algorithm Shift and a deterministic polynomial
time algorithm Translate. Algorithm Shift takes as input parameters par specifying G, p, g and a tag
[G] ∈ G2×2. With this input, it is defined as follows:

1. Let GL2(Zp) be the set of invertible 2×2 matrices over Zp. Sample a matrix R $← GL2(Zp) uniformly
at random from that set.

2. Return the tag [H] := [RG] ∈ G2×2 and the trapdoor td := R.

Algorithm Translate gets as input the trapdoor td = R and an element [y] ∈ G2 in the range. It simply
outputs [Ry] ∈ G2. Similarly, algorithm InvTranslate gets as input the trapdoor td = R and an element
[y] ∈ G2 in the range and outputs [R−1y] ∈ G2. With this, translation completeness follow easily. For
example, we have

Translate(R,TDDH([G],x)) = Translate(R, [Gx])
= [RGx] = [Hx] = TDDH([H],x).

24

It remains to show the well distributed tags property. For that, it is sufficient to bound the statistical
distance between

T0 :=
{

(par,G,H)
∣∣ par← GGen(1λ), G,H $← Z2×2

p

}
and

T1 :=
{

(par,G,H)
∣∣ par← GGen(1λ), G $← Z2×2

p , R $← GL2(Zp), H := RG
}
.

For b ∈ {0, 1}, let T ∗b denote the distribution Tb except that all matrices (G,H in T0 and G,R in T1) are
sampled uniformly at random from the set GL2(Zp). We make three observations, finishing the proof:

1. The statistical distance between T0 and T ∗0 is at most 2
(
1/p+ 1/p2), because the distributions

only differ if at least one of the two random matrices G,H is not invertible.

2. The statistical distance between T1 and T ∗1 is at most 1/p+ 1/p2, because the distributions only
differ if G is not invertible.

3. The distributions T ∗0 and T ∗1 are the same. This is because the set of invertible 2× 2 matrices over
Zp forms a group with respect to multiplication.

Lemma 8. Let t ∈ N be a number polynomial in λ. If the DDH assumption holds relative to GGen,
then TLFDDH is t-algebraic translation resistant. Concretely, for any PPT algorithm A there is a PPT
algorithm B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFDDH

(λ) ≤ 2
p2 + 4

p
+ AdvDDH

B,GGen(λ).

Proof. Assume that there is an efficient algorithm A breaking algebraic translation resistance. That
is, A gets as input random tags [G], [H] $← G2×2 and images [yi] := TDDH([G],xi) with xi $← Z2

p for
i ∈ {0, . . . , t}. It gets access to the oracle Inv and finally outputs [y′i] ∈ G2 for all i ∈ {0, . . . , t}. We
assume without loss of generality, that A makes exactly t queries to Inv. It wins the game if for all
i ∈ {0, . . . , t} there is a zi ∈ Z2

p such that TDDH([G], zi) = [yi] and TDDH([H], zi) = [y′i]. The intuition for
our proof is that the function TDDH([G], ·) for a random tag [G] is bijective, so zi = xi and the adversary
will output TDDH([H],xi). At the same time, based on DDH, the function is indistinguishable from being
a compressing function. With an argument similar to what is done in [TZ23], we can then show that
zi 6= xi, a contradiction. We now make this intuition formal by providing a sequence of games.
Game G0: Game G0 is the algebraic translation resistance game for TLFDDH as explained above. By
definition, we have

AdvA-TRAN-RES
A,TLFDDH

(λ) = Pr [G0 ⇒ 1].
Game G1: This game is exactly as G0, but we let the game output 0 if the function defined by the tag
[H] ∈ G2×2 is not bijective. Otherwise, the game behaves as the previous game. More precisely, the game
no longer samples [H] $← G2×2 but instead samples H $← Z2×2

p and checks if H is invertible. If it is not,
the game outputs 0. Otherwise, the game continues as in G0 using tag [H]. Clearly, the distribution of
[H] did not change. The probability of the matrix not being invertible can easily be upper bounded by
1/p2, accounting for the chance that the first row is zero, plus 1/p, accounting for the chance that the
second row is a multiple of the first row. We get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 1
p2 + 1

p
.

Game G2: In this game, we change the winning condition. Recall that until now, the game outputs 1 if
for all i ∈ {0, . . . , t} there is a zi ∈ Z2

p such that TDDH([G], zi) = [yi] and TDDH([H], zi) = [y′i]. Now, we
replace this condition as follows: For each i ∈ {0, . . . , t}, the game first computes

[wi] := [H−1y′i] ∈ G2.

Observe that H−1 exists and the game holds it due to the previous change, and thus the game can
efficiently compute [wi] over the group. Further, observe that TDDH([H],wi) = [y′i]. Given these [wi],

25

the game then accepts if and only if for all i ∈ {0, . . . , t}, we have [wi] = [xi]. In other words, the
game checks that wi = xi, which it can do efficiently in the exponent. We argue that, except with
negligible probability, the winning condition is equivalent to the winning condition in the previous game.
Namely, except with probability 1/p2 + 1/p, the function TDDH([G], ·) is a bijection. This can be seen
with arguments similar to the previous game. Assuming that it is a bijection, we now argue that the two
winning conditions are equivalent:

• If the new winning condition in G2 holds, we can set zi = wi = xi for all i ∈ {0, . . . , t}, which
shows that the old winning condition in G1 holds.

• If the old winning condition in G1 holds, then we know that for all i ∈ {0, . . . , t}, we have

TDDH([H], zi) = [y′i] = TDDH([H],wi).

As TDDH([H], ·) is a bijection, this means that zi = wi. Thus, we have

TDDH([G],wi) = TDDH([G], zi) = [yi] = TDDH([G],xi),

where the last equality follows from the old winning condition. As we assume that TDDH([G], ·) is a
bijection, this implies wi = xi, showing that the new winning condition holds.

With that, we obtain
|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ 1

p2 + 1
p
.

Game G3: This game is exactly as G2, but we change the way the tag G ∈ G2×2 is generated. Intuitively,
while G induced a bijection (except with negligible probability) before, we now make sure that it induces
a compressing function. Namely, instead of sampling [G] uniformly at random, we generate it as

[G] :=
(
gβ h
gαβ hα

)
for h $← G, α, β $← Zp.

We can bound the distinguishing advantage between games G2 and G3 using a straight-forward reduction
B against the DDH assumption.

1. The reduction B gets as input parameters defining the group G with a generator g, a random element
h ∈ G and group elements u, v ∈ G, which are either both random or of the form u = gα, v = hα.

2. The reduction B sets up the tag [H] and the vectors xi as in G2. Then, it samples β $← Zp and
defines

[G] :=
(
gβ h
uβ v

)
.

With this, it computes [yi] := TDDH([G],xi) as in G2 and runs A, simulating the oracle Inv for A
as in G2.

3. When A terminates and outputs [y′i] ∈ G2 for all i ∈ {0, . . . , t}, the reduction checks the winning
condition as in G2. Recall that this can be done efficiently, due to the change in G2. It outputs
whatever G2 would output.

Clearly, the running time of B is dominated by the running time of A. Further, if B’s input is random, B
perfectly simulates G2 for A unless β = 0, which happens with probability 1/p. On the other hand, if
the input is of the form u = gα, v = hα, then B perfectly simulates G3 for A. We get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ AdvDDH
B,GGen(λ) + 1

p
.

What remains is to show that the probability that G3 outputs 1 is negligible. The intuition is that now
G has low rank, and A does not obtain enough information about x0, . . . ,xt. To turn this intuition into
a formal argument, we first introduce more notation.

26

Scheme Public Key Communication Signature
Frost 33 98 64
TZ 33 130 97
Sparkle 33 97 64
Twinkle (AOMCDH) 33 163 97
Twinkle (DDH) 66 294 162

Table 2: Concrete efficiency of threshold signature schemes in the discrete logarithm setting without
pairings. We compare the size of public keys, the communication complexity per signer, and the signature
size. Sizes are given in bytes.

Notation. We set X ∈ Z2×(t+1)
p to be the matrix with columns xi, Y := GX to be the matrix with

columns yi, and Y′ ∈ Z2×(t+1)
p be the matrix with columns y′i. The winning condition introduced in G2

can now be written as H−1Y′ = X.
Claim. We claim that for all fixed parameters par, each fixed X, and for fixed random coins ρ for A, there
is a matrix K ∈ Z2×(t+1)

p \ {0} such that the view of A in G3 is independent of ϑ ∈ Zp if we replace X
with X + ϑK. Assuming this claim holds, it is clear that

Pr [G3 ⇒ 1] ≤ 1
p
.

Proof of Claim. It remains to show the claim. Fix parameters par, a matrix X, and random coins
ρ. Observe that with that, all t queries of A to Inv are defined. Let the jth query to this oracle be
Inv(α(j)

0 , . . . , α
(j)
t). The queries define a matrix A ∈ Z(t+1)×t

p where the jth column of A is (α(j)
0 , . . . , α

(j)
t).

With this in mind, it is clear that the view of A in game G3 is given by

H, G, GX, XA.

Therefore, it is sufficient to show that there is a matrix K ∈ Z2×(t+1)
p \ {0} such that

GK = 0 and KA = 0.

By the way we sample G in game G3, there exists a vector g⊥ ∈ Z2
p \ {0} such that Gg⊥ = 0. Also, there

is a vector a⊥ ∈ Zt+1
p \ {0} such that at⊥A = 0, which follows from the dimensions of A. Now, we can set

K := g⊥at⊥ ∈ Z2×(t+1)
p \ {0}.

5 Concrete Parameters and Efficiency
In the final section of this paper, we briefly discuss the concrete efficiency of our threshold signature
schemes. We compare our schemes to Frost [KG20, BTZ22, BCK+22], TZ [TZ23], and Sparkle [CKM23a].
For our comparison, we assume that all constructions are instantiated with the secp256k1 curve and
SHA-256 as a hash function. We calculate key sizes, communication complexity per signer, and signature
sizes. Also, for all schemes, we assume challenges ci are sampled uniformly from Zp, i.e., have size 256
bit, whereas some implementations may use challenges of size 128 bit. Our results are summarized in
Table 2 and the Python script used to compute these numbers is given in Supplementary Material B.
We see that the sizes of our constructions are practical, but slightly less efficient compared to previous
schemes. In terms of computation, consider a run of the signing protocol in which K signers participate.
Here, a signer in both of our schemes has to evaluate K + 2 hashes, whereas it would have to evaluate
K + 1 hashes in Sparkle, which is a minimal difference as K grows. A signer in Sparkle would have to
compute 2 group operations (counting multi-scalar multiplications as one operation), whereas a signer
in our AOMCDH-based (resp. DDH-based) scheme would have to do 6 (resp. 12) such operations. For
verification, the number of operations compared to Sparkle increases by a factor of 2 for the hashes, and

27

a factor of 2 (resp. 4) for the multi-scalar multiplications for our AOMCDH-based (resp. DDH-based)
scheme.

To sum up, our schemes are slightly less efficient than previous schemes, but they are still in a highly
practical regime. Given the strong properties that our schemes achieve from conservative assumptions
without the algebraic group model, it is natural to pay such a small price in terms of efficiency.

Acknowledgments. CISPA authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 507237585, and by the European Union, ERC-2023-STG, Project ID: 101116713.
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union. Neither the European Union nor the granting authority can be held responsible
for them. Tessaro and Zhu are supported in part by NSF grants CNS- 2026774, CNS-2154174, a JP
Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

28

References
[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via

delinearized witnesses. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 157–188, Virtual Event, August 2021. Springer, Heidelberg.
(Cited on page 7.)

[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with
adaptive and proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 593–611. Springer, Heidelberg, May / June 2006. (Cited on page 7.)

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-
secure signatures from lossy identification schemes. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 572–590. Springer,
Heidelberg, April 2012. (Cited on page 5, 10.)

[AHS20] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of ECDSA
threshold signing. Cryptology ePrint Archive, Report 2020/1390, 2020. https://eprint.
iacr.org/2020/1390. (Cited on page 7.)

[ASY22] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold
signatures, revisited. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, ICALP 2022, volume 229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.
(Cited on page 7.)

[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and
Chenzhi Zhu. Better than advertised security for non-interactive threshold signatures. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 517–550. Springer, Heidelberg, August 2022. (Cited on page 4, 9, 27.)

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 650–678. Springer, Heidelberg, December 2021. (Cited on page 7.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Heidelberg, December 2018. (Cited on
page 7.)

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm
assumption in the generic group model. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 587–617. Springer, Heidelberg,
December 2021. (Cited on page 22.)

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic
encryption. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 565–596. Springer, Heidelberg, August 2018. (Cited on page 7.)

[BHK+23] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. Sprint:
High-throughput robust distributed schnorr signatures. Cryptology ePrint Archive, Paper
2023/427, 2023. https://eprint.iacr.org/2023/427. (Cited on page 7.)

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice trapdoor: Threshold
protocols for signatures and (H)IBE. In Michael J. Jacobson Jr., Michael E. Locasto,
Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS,
pages 218–236. Springer, Heidelberg, June 2013. (Cited on page 7.)

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature
scheme. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 193–207. ACM Press, November 2022. (Cited on page 7.)

29

https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2023/427

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer,
Heidelberg, December 2001. (Cited on page 7.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.
(Cited on page 6, 7.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003. (Cited on page 7.)

[BP22] Luís T. A. N. Brandão and Rene Peralta. NIST IR 8214C: First call for multi-party
threshold schemes. https://csrc.nist.gov/pubs/ir/8214/c/ipd, 2022. Accessed: 2023-
09-12. (Cited on page 3.)

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–305. Springer, Heidelberg, August
2022. (Cited on page 7.)

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive
threshold signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833, 2022.
https://eprint.iacr.org/2022/833. (Cited on page 4, 9, 27.)

[CAHL+22] Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, and
Benedikt Wagner. PI-cut-choo and friends: Compact blind signatures via parallel instance
cut-and-choose and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part III, volume 13509 of LNCS, pages 3–31. Springer, Heidelberg, August 2022. (Cited on
page 4, 9.)

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages
266–296. Springer, Heidelberg, May 2020. (Cited on page 7.)

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787.
ACM Press, November 2020. (Cited on page 7.)

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 98–115. Springer, Heidelberg, August 1999. (Cited on page 7.)

[CGRS23] Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical schnorr threshold
signatures without the algebraic group model. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 743–773. Springer, Heidelberg,
August 2023. (Cited on page 4, 9.)

[Che05] Benoît Chevallier-Mames. An efficient CDH-based signature scheme with a tight security
reduction. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 511–526.
Springer, Heidelberg, August 2005. (Cited on page 4, 5.)

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375,
2021. https://eprint.iacr.org/2021/1375. (Cited on page 4.)

30

https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2021/1375

[CKM23a] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold
signatures. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I,
volume 14081 of LNCS, pages 678–709. Springer, Heidelberg, August 2023. (Cited on page 3,
4, 5, 9, 27.)

[CKM+23b] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
Snowblind: A threshold blind signature in pairing-free groups. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 710–742.
Springer, Heidelberg, August 2023. (Cited on page 3.)

[CKP+23] Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel Slamanig.
Threshold structure-preserving signatures. In Asiacrypt 2023. Springer-Verlag, 2023. (Cited
on page 7.)

[DCX+23] Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bunz, and Ling Ren.
Threshold signatures from inner product argument: Succinct, weighted, and multi-threshold.
Cryptology ePrint Archive, Paper 2023/598, 2023. https://eprint.iacr.org/2023/598.
(Cited on page 7.)

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function
securely. In 26th ACM STOC, pages 522–533. ACM Press, May 1994. (Cited on page 7.)

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, August
1988. (Cited on page 3.)

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.
(Cited on page 3.)

[DJN+20] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Bæksvang Østergaard. Fast threshold ECDSA with honest majority. In Clemente
Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 382–400.
Springer, Heidelberg, September 2020. (Cited on page 7.)

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy,
pages 1051–1066. IEEE Computer Society Press, May 2019. (Cited on page 7.)

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman.
Securing DNSSEC keys via threshold ECDSA from generic MPC. In Liqun Chen, Ninghui
Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of
LNCS, pages 654–673. Springer, Heidelberg, September 2020. (Cited on page 3.)

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-
of-n and multi-signatures and trapdoor commitment from lattices. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130. Springer, Heidelberg, May 2021.
(Cited on page 7.)

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy, pages 2518–2534. IEEE Computer Society Press, May 2022. (Cited on
page 7.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on page 24.)

31

https://eprint.iacr.org/2023/598

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applica-
tions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 3, 22.)

[FMY98] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key
generation. In Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, page 320. ACM,
June / July 1998. (Cited on page 7.)

[FSZ22] Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang. Squirrel: Efficient synchronized
multi-signatures from lattices. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 1109–1123. ACM Press, November 2022. (Cited on page 7.)

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 1179–1194. ACM Press, October 2018. (Cited on page 7.)

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.
(Cited on page 7.)

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza
Sadeghi, and Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 156–174.
Springer, Heidelberg, June 2016. (Cited on page 7.)

[GHKR08] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA for dynamic
and ad-hoc groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 88–107. Springer, Heidelberg, April 2008. (Cited on page 7.)

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83,
January 2007. (Cited on page 4, 7.)

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514,
October 2007. (Cited on page 4, 5.)

[GKS23] Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice signatures
from threshold homomorphic encryption. Cryptology ePrint Archive, Paper 2023/1318, 2023.
https://eprint.iacr.org/2023/1318. (Cited on page 7.)

[GKSŚ20] Adam Gągol, Jędrzej Kula, Damian Straszak, and Michał Świętek. Threshold ECDSA for
decentralized asset custody. Cryptology ePrint Archive, Report 2020/498, 2020. https:
//eprint.iacr.org/2020/498. (Cited on page 7.)

[GS23] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation.
Cryptology ePrint Archive, Paper 2023/1175, 2023. https://eprint.iacr.org/2023/1175.
(Cited on page 7.)

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019. (Cited on
page 4, 9.)

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983. (Cited on page 7.)

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: In-
troducing concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 221–242. Springer, Heidelberg, May 2000. (Cited on page 7.)

32

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2023/1318
https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2023/1175

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC
2020, volume 12804 of LNCS, pages 34–65. Springer, Heidelberg, October 2020. (Cited on
page 4, 27.)

[KGS23] Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment of distributed key
generation, and new constructions. Cryptology ePrint Archive, Report 2023/292, 2023.
https://eprint.iacr.org/2023/292. (Cited on page 7.)

[KLP17] Eike Kiltz, Julian Loss, and Jiaxin Pan. Tightly-secure signatures from five-move identi-
fication protocols. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part III, volume 10626 of LNCS, pages 68–94. Springer, Heidelberg, December 2017. (Cited
on page 4, 5, 10.)

[KLR21] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature
schemes. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV,
volume 13093 of LNCS, pages 468–492. Springer, Heidelberg, December 2021. (Cited on
page 4, 9.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from
identification schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, August 2016. (Cited on
page 4, 5.)

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous
distributed key generation for computationally-secure randomness, consensus, and threshold
signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1751–1767. ACM Press, November 2020. (Cited on page 7.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 2003, pages 155–164. ACM Press, October 2003. (Cited on page 5, 10.)

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, Report 2022/374, 2022. https://eprint.iacr.org/2022/374.
(Cited on page 4.)

[LJY14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In Magnús M.
Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.
(Cited on page 7.)

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1837–1854. ACM
Press, October 2018. (Cited on page 3, 7.)

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248
of LNCS, pages 331–350. Springer, Heidelberg, December 2001. (Cited on page 7.)

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.
(Cited on page 7.)

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 189–221, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 7,
22.)

33

https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2022/374

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731. ACM Press, November
2020. (Cited on page 7.)

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract)
(rump session). In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages
522–526. Springer, Heidelberg, April 1991. (Cited on page 3.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140.
Springer, Heidelberg, August 1992. (Cited on page 7.)

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Heidelberg, April 2023. (Cited on
page 4, 5, 7, 9, 10.)

[Rab98] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg, August
1998. (Cited on page 7.)

[RRJ+22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press,
November 2022. (Cited on page 4, 7.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on page 3, 4.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. (Cited on page 22.)

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May 2000. (Cited on page 7.)

[Sho23] Victor Shoup. The many faces of schnorr. Cryptology ePrint Archive, Paper 2023/1019,
2023. https://eprint.iacr.org/2023/1019. (Cited on page 7.)

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors,
ACISP 01, volume 2119 of LNCS, pages 417–434. Springer, Heidelberg, July 2001. (Cited
on page 4.)

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential
security. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 782–811. Springer, Heidelberg, May / June 2022. (Cited on
page 3.)

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023. (Cited on page 3, 4, 6, 7,
9, 25, 27.)

34

https://eprint.iacr.org/2023/1019

A Pseudocode

Alg Setup(1λ)
01 par′ ← TLF.Gen(1λ), g $← T
02 return par := (par, g)

Alg Gen(par)
03 a0, . . . , at

$← D
04 for i ∈ [n] : ski :=

∑t
j=0 aji

j

05 pk := pk0 := T(g, a0)
06 return (pk, sk1, . . . , skn)

Alg Sig0(S, i, ski,m)
07 h := H(m)
08 ri

$← D
09 R

(1)
i := T(g, ri), R(2)

i := T(h, ri)
10 pk(2)

i := T(h, ski)
11 comi := Ĥ(S, i, R(1)

i , R
(2)
i , pk(2)

i)
12 pm1 := comi

13 St1 := (i, S, ski, h,m, ri)
14 return (pm1, St1)

Alg Sig1(St1,M1)
15 parse (i, S, ski, h,m, ri) := St1
16 pk(2)

i := T(h, ski)
17 R

(1)
i := T(g, ri), R(2)

i := T(h, ri)
18 pm2 := (R(1)

i , R
(2)
i , pk(2)

i)
19 return (pm2, St2 := (M1, St1))

Alg Sig2(St2,M2)
20 parse (M1, (i, S, ski, h,m, ri)) := St2
21 parse (comj)j∈S :=M1

22 parse ((R(1)
j , R

(2)
j , pk(2)

j))j∈S :=M2
23 for j ∈ S :
24 if Ĥ(S, j, R(1)

j , R
(2)
j , pk(2)

j) 6= comj :
25 return ⊥
26 R(1) :=

∑
j∈S R

(1)
j

27 R(2) :=
∑
j∈S R

(2)
j

28 pk(2) :=
∑
j∈S `j,Spk(2)

j

29 c := H̄(pk, pk(2), R(1), R(2),m)
30 return pm3 := si := c · `i,S · ski + ri

Alg Combine(S,m,M1,M2,M3)
31 parse (comj)j∈S :=M1

32 parse ((R(1)
j , R

(2)
j , pk(2)

j))j∈S :=M2
33 parse (sj)j∈S :=M3

34 R(1) :=
∑
j∈S R

(1)
j

35 R(2) :=
∑
j∈S R

(2)
j

36 pk(2) :=
∑
j∈S `j,Spk(2)

i

37 c := H̄(pk, pk(2), R(1), R(2),m)
38 s :=

∑
j∈S sj

39 return σ := (pk(2), c, s)

Alg Ver(pk,m, σ = (pk(2), c, s))
40 h := H(m), R(1) := T(g, s)− c · pk, R(2) := T(h, s)− c · pk(2)

41 if c = H̄(pk, pk(2), R(1), R(2),m) : return 1
42 return 0

Figure 5: The (t, n)-threshold signature scheme Twinkle[TLF] = (Setup,Gen,Sig,Ver) for a tagged linear
function family TLF.

35

Game G0-G11
01 Pending := ∅ // G7-G11

02 Reps := ∅ // G9-G11

03 par′ ← TLF.Gen(1λ), g $← T , par := (par′, g)
04 if (par′, g) /∈ Reg : abort // G4-G10

05 a0, . . . , at
$← D

06 for i ∈ [n] : ski :=
∑t
j=0 aji

j

07 for i ∈ [n] : pki := T(g, ski)
08 pk := pk0 := T(g, a0)
09 Sig := (Next,Sig0,Sig1,Sig2)
10 (m∗, σ∗)← ASig,Corr,H,Ĥ,H̄(par, pk)
11 if b[m∗] = 0 : return 0 // G1-G11

12 if ∃x 6= x′ s.t. ĥ[x] = ĥ[x′] 6= ⊥ : return 0 // G6-G11

13 if m∗ ∈ Queried : return 0
14 return Ver(pk,m∗, σ∗)

Oracle Corr(i)
15 if |Corrupted| ≥ t : return ⊥
16 Corrupted := Corrupted ∪ {i}
17 for sid ∈ Sessions s.t. round[sid, i] = 1 : // G5-G11

18 parse (i, S, h,m, comi) := state[sid, i] // G5-G11

19 pk(2)
i := Translate(tr[m], pki) // G5-G11

20 ri
$← D, R(1)

i := T(g, ri), R(2)
i := T(h, ri) // G5-G11

21 if ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i] 6= ⊥ : abort // G5-G11

22 ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i] := comi // G5-G11

23 state[sid, i] := (i, S, h,m, ri) // G5-G11

24 for sid ∈ Sessions s.t. round[sid, i] ≥ 2 : // G10-G11

25 parse (M1, (i, S, h,m, si, c)) := state[sid, i] // G10-G11

26 ri := si − c · `i,S · ski // G10-G11

27 state[sid, i] := (M1, (i, S, h,m, ri)) // G10-G11

28 UpdatePending() // G7-G11

29 return (ski, state[·, i])

Figure 6: Games G0-G11 in the proof of Theorem 1. Lines with highlighted are only executed in the
respective games. Signing oracles are given in Figures 7 to 9. Random oracles are given in Figure 10.
Algorithm UpdatePending is given in Figure 11. Oracle Next is as in Figure 2.

36

Oracle Sig0(sid, i)
01 if Allowed(sid, i, 0,⊥) = 0 :
02 return ⊥
03 h := H(m), S := signers[sid]
04 if b[m] = 1 : abort // G1-G11

05 pk(2)
i := T(h, ski) // G0-G2

06 pk(2)
i := Translate(tr[m], pki) // G3-G11

07 ri
$← D // G0-G4

08 R
(1)
i := T(g, ri), R(2)

i := T(h, ri) // G0-G4

09 comi := Ĥ(S, i, R(1)
i , R

(2)
i , pk(2)

i) // G0-G4

10 state[sid, i] := (i, S, h,m, ri) // G0-G4

11 comi
$← {0, 1}2λ // G5-G11

12 if ∃(S′, i′) 6= (S, i) s.t. (S′, i′, comi) ∈ Sim : abort // G5-G11

13 Sim := Sim ∪ {(S, i, comi)} // G5-G11

14 state[sid, i] := (i, S, h,m, comi) // G5-G11

15 round[sid, i] := 1
16 return pm1[sid, i] := comi

Figure 7: Signing Oracle Sig0 in the proof of Theorem 1. Lines with highlighted are only executed in the
respective games. Algorithm Allowed is as in Figure 2.

Oracle Sig1(sid, i,M1)
01 if Allowed(sid, i, 1,M1) = 0 :
02 return ⊥
03 m := message[sid], S := signers[sid], H := S \ Corrupted
04 added := AddToPending(sid, i,M1) // G7-G11

05 parse (i, S, h,m, ri) := state[sid, i] // G0-G4

06 parse (i, S, h,m, comi) := state[sid, i] // G5-G11

07 pk(2)
i := T(h, ski) // G0-G2

08 pk(2)
i := Translate(tr[m], pki) // G3-G11

09 ri
$← D // G5-G9

10 R
(1)
i := T(g, ri), R(2)

i := T(h, ri) // G0-G9

11 if added = 1 : c := GetChallenge(sid, i,M1) // G10-G11

12 if added = 0 : c := 0 // G10-G11

13 si
$← D // G10-G11

14 R
(1)
i := T(g, si)− c · `i,S · pki, R

(2)
i := T(h, si)− c · `i,S · pk(2)

i // G10-G11

15 if ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i] 6= ⊥ : abort // G5-G11

16 ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i] := comi // G5-G11

17 pm2[sid, i] := (R(1)
i , R

(2)
i , pk(2)

i)
18 state[sid, i] := (M1, (i, S, h,m, ri)) // G0-G9

19 state[sid, i] := (M1, (i, S, h,m, si, c)) // G10-G11

20 round[sid, i] := 2
21 UpdatePending() // G7-G11

22 return pm2[sid, i]

Figure 8: Signing Oracle Sig1 in the proof of Theorem 1. Lines with highlighted are only executed in the
respective games. Algorithm Allowed is as in Figure 2.

37

Oracle Sig2(sid, i,M2)
01 if Allowed(sid, i, 2,M2) = 0 : return ⊥
02 parse (M1, (i, S, h,m, ri)) := state[sid, i] // G0-G9

03 parse (M1, (i, S, h,m, si, c)) := state[sid, i] // G10-G11

04 parse (comi)i∈S :=M1

05 parse ((R(1)
i , R

(2)
i , pk(2)

i))i∈S :=M2

06 for j ∈ S : if Ĥ(S, j, R(1)
j , R

(2)
j , pk(2)

j) 6= comj : return ⊥
07 R(1) :=

∑
j∈S R

(1)
j , R(2) :=

∑
j∈S R

(2)
j

08 pk(2) :=
∑
j∈S `j,Spk(2)

j

09 c := H̄(pk, pk(2), R(1), R(2),m)
10 round[sid, i] := 3
11 si := c · `i,S · ski + ri // G0-G9

12 return pm3 := si

Figure 9: Signing Oracle Sig2 in the proof of Theorem 1. Lines with highlighted are only executed in the
respective games. Algorithm Allowed is as in Figure 2.

Oracle H(m)
01 if h[m] = ⊥ :
02 h[m] $← T
03 b[m]← Bγ // G1-G11

04 if b[m] = 0 : // G2-G11

05 (h, td)← Shift(par′, g) // G2-G11

06 h[m] := h, tr[m] := td // G2-G11

07 return h[m]

Oracle Ĥ(S, j, R(1), R(2), pk(2))
08 if ĥ[S, j, R(1), R(2), pk(2)] = ⊥ :
09 com $← {0, 1}2λ

10 ĥ[S, j, R(1), R(2), pk(2)] := com
11 if ∃(sid, i,M1) ∈ Pending

s.t. com ∈M1 : // G7-G11

12 abort // G7-G11

13 UpdatePending() // G7-G11

14 return ĥ[S, j, R(1), R(2), pk(2)]

Oracle H̄(pk, pk(2), R(1), R(2),m)
15 if h̄[pk, pk(2), R(1), R(2),m] = ⊥ :
16 h̄[pk, pk(2), R(1), R(2),m] $← S
17 return h̄[pk, pk(2), R(1), R(2),m]

Alg Ĥ−1(y)
18 P := {x ∈ {0, 1}∗ | ĥ[x] = y}
19 if |P | 6= 1 : return ⊥
20 parse {x} = P
21 return x

Figure 10: Random oracles H, Ĥ, , H̄ and algorithm Ĥ−1 in the proof of Theorem 1. Lines with highlighted
are only executed in the respective games. Here, Bγ denotes a Bernoulli distribution with parameter
γ = 1/(QS + 1).

38

Alg AddToPending(sid, i,M1)
01 S := signers[sid], NotSim := {j ∈ S | (S, j, comj) /∈ Sim}
02 parse (comj)j∈S :=M1
03 if ∃j ∈ NotSim s.t. Ĥ−1(comj) = ⊥ : return 0
04 for j ∈ NotSim : (S′j , kj , R

(1)
j , R

(2)
j , pk(2)

j) := Ĥ−1(comj)
05 if ∃j ∈ NotSim s.t. S′j 6= S ∨ kj 6= j : return 0
06 Pending := Pending ∪ {(sid, i,M1)}
07 return 1

Alg UpdatePending()
08 New := ∅
09 for (sid, i,M1) ∈ Pending :
10 S := signers[sid], m := message[sid]
11 parse (comj)j∈S :=M1
12 if ∀j ∈ S : Ĥ−1(comj) 6= ⊥ :
13 for j ∈ S : (S′j , kj , R

(1)
j , R

(2)
j , pk(2)

j) := Ĥ−1(comj)
14 if ∃j ∈ S s.t. S′j 6= S ∨ kj 6= j : continue
15 Pending := Pending \ {(sid, i,M1)}
16 R(1) :=

∑
j∈S R

(1)
j , R(2) :=

∑
j∈S R

(2)
j , pk(2) :=

∑
j∈S `j,Spk(2)

j

17 if (R(1), R(2), pk(2),m) /∈ New : // G7

18 if (S,R(1), R(2), pk(2),m) /∈ New : // G8-G11

19 if h̄[pk, pk(2), R(1), R(2),m] 6= ⊥ : abort
20 h̄[pk, pk(2), R(1), R(2),m] $← S
21 h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1) // G9-G11

22 New := New ∪ {(R(1), R(2), pk(2),m)} // G7

23 New := New ∪ {(S,R(1), R(2), pk(2),m)} // G8-G11

Alg Equivalent ((sid, i,M1), (sid′, i′,M′1))
24 m := message[sid], m′ := message[sid′]
25 S := signers[sid], S′ := signers[sid′]
26 if S 6= S′ ∨m 6= m′ : return 0
27 parse (comj)j∈S :=M1, (com′j)j∈S :=M′1
28 F := {j ∈ S | Ĥ−1(comj) = ⊥}, F̄ := S \ F
29 F ′ := {j ∈ S | Ĥ−1(com′j) = ⊥}, F̄ ′ := S \ F ′

30 for j ∈ F̄ : (S̃j , kj , R(1)
j , R

(2)
j , pk(2)

j) := Ĥ−1(comj)
31 for j ∈ F̄ ′ : (S̃′j , kj , R′j

(1)
, R′j

(2)
, pk′j

(2)) := Ĥ−1(com′j)
32 R̄(1) :=

∑
j∈F̄ R

(1)
j , R̄(2) :=

∑
j∈F̄ R

(2)
j , p̄k(2) :=

∑
j∈F̄ `j,Spk(2)

j

33 R̄
′(1) :=

∑
j∈F̄ ′ Rj

′(1), R̄
′(2) :=

∑
j∈F̄ ′ Rj

′(2), p̄k
′(2) :=

∑
j∈F̄ ′ `j,Spkj

′(2)

34 if (R̄(1), R̄(2), p̄k(2)) 6= (R̄′(1), R̄
′(2), p̄k

′(2)) : return 0
35 if (comj)j∈F 6= (com′j)j∈F ′ : return 0
36 return 1

Alg GetChallenge(sid, i,M1)
37 for rep ∈ Reps :
38 if Equivalent ((sid, i,M1), rep) = 1 : return C[rep]
39 Reps := Reps ∪ {(sid, i,M1)}, C[(sid, i,M1)] $← S
40 return C[(sid, i,M1)]

Figure 11: Algorithms AddToPending, ,UpdatePending managing list Pending, and algorithms Equivalent,
GetChallenge to implement a random oracle on equivalence classes. The algorithms are used in the proof
of Theorem 1. Lines with highlighted comments are only executed in the respective games.

39

B Script for Parameter Computation

Listing 1: Python Script to compute concrete efficiency of threshold signature schemes.
#!/ usr/bin/env python

PURPOSE #OF#THIS# SCRIPT
For each scheme , we compute sizes of public keys ,
signatures , and communication complexity per signer .
we assume that secp256k1 is used
###

import math
from tabulate import tabulate

sizes of group elements and exponents
#we assume secp256k1 ; all sizes in bytes
sizec = 32 # size of a challenge
sizege = 33
sizefe = 32
sizehash = 32

sizeschnorrsig = sizec + sizefe

frost = {
"name": " Frost ",
"pk": sizege ,
"comm": 2* sizege + sizefe ,
"sig": sizeschnorrsig ,

}

tz = {
"name": "TZ",

"pk": sizege ,
"comm": 2* sizege + 2* sizefe ,
"sig": sizege + 2* sizefe ,

}

sparkle = {
"name": " Sparkle ",

"pk": sizege ,
"comm": sizehash + sizege + sizefe ,
"sig": sizeschnorrsig ,

}

sizerange = 2* sizege
sizedomain = 2* sizefe
twinkle = {

"name": "Twinkle -DDH",
"pk": sizerange ,
"comm": sizehash + 3* sizerange + sizedomain ,
"sig": sizerange + sizedomain + sizec ,

}

sizerange = sizege
sizedomain = sizefe
twinkleOneMore = {

"name": "Twinkle - OMCDH ",
"pk": sizerange ,
"comm": sizehash + 3* sizerange + sizedomain ,
"sig": sizerange + sizedomain + sizec ,

}

schemes = [frost ,tz ,sparkle ,twinkle , twinkleOneMore]

Main Part

data = [[" Scheme ", "PK", " Communication (per Signer)", " Signature Size"]]

for s in schemes :
data. append ([s["name"], s["pk"], s["comm"], s["sig"]])

print (tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

40

	Introduction
	Our Contribution
	Technical Overview
	More on Related Work

	Preliminaries
	Our Construction
	Tagged Linear Function Families
	Construction

	Instantiations
	Instantiation from (Algebraic) One-More CDH
	Instantiation from DDH

	Concrete Parameters and Efficiency
	Pseudocode
	Script for Parameter Computation

