
PassPro: A secure password protection from the adversaries

Ripon Patgiri
National Institute of Technology Silchar

ripon@cse.nits.ac.in

Laiphrakpam Dolendro Singh
National Institute of Technology Silchar

ldsingh@cse.nits.ac.in

Abstract
In this paper, we present a client-side password hashing
method, called PassPro. PassPro uses two secrets and a do-
main word to shuffle the strings. The shuffled strings are
converted into hash values and sent to the identity manager
for authentication or identity creation. The shuffling is based
on a pseudo-random algorithm. The legitimate user can repro-
duce the shuffled string again. The hash values are encrypted
in the password database with a different key for each user.
Therefore, PassPro features- a) client-side password metering,
b) client-side password hashing, c) prevention of the domino
effect, d) protection of the password database from stealing,
e) memory hardness, f) encryption of the hash values using
a mutually reproducible secret key, and g) prevention of dic-
tionary and guessing attacks. Also, PassPro guarantees that
identity managers, including adversaries, cannot retrieve the
original password and user ID of the user. Alternatively, the
original user ID and password cannot be retrieved even if the
password database is given to the adversary. Furthermore, the
user ID and password of a password database are invalid in
other domains, even if the same user ID and password are
used in multiple domains.

1 Introduction

The emergence of Quantum Computing demands the revision
of existing authentication mechanisms because authentica-
tion mechanisms protect precious digital assets. Moreover,
conventional computers are equipped with more powerful
processors and GPUs at low cost, and the attacking becomes
easier for adversaries. Interestingly, the authentication mecha-
nism is a widely used method to protect digital assets from
being misused. Therefore, a diverse authentication mecha-
nism has already been proposed, but the most popular method
is a password-based authentication system. Password-based
authentication mechanism has numerous challenges to be ad-
dressed, and many of the challenges are already addressed;
for instance, the state-of-the-art password-based authentica-
tion system uses salt to defeat dictionary attacks [3]. The

key challenge of the password-based authentication system is
to prevent a guessing attack on the password. To overcome
the password guessing attack, many researchers have already
proposed diverse techniques; for instance, the transformation
of password to context-free grammar [2]. Moreover, oPass
defends against diverse attacks such as password stealing and
password reuse attacks [7]. Importantly, the state-of-the-art
identity manager uses OTP to protect from password stealing,
password reuse, and phishing attacks. However, it does not
ensure database stealing issues.

Definition 1 A client sets the user ID as U and password as
P in multiple domains. Once the U and P are compromised,
then the adversary can use the identity to gain authentication
in multiple domains. Moreover, the identity manager can eas-
ily misuse the identity of the user to gain authentication in
multiple domains without having consent from the users. This
phenomenon is called the domino effect.

Definition 2 A function F transforms an input string, ω, into
an output, O , due to the significant influence of another input,
I , and the I is called a context. Alternatively, F (ω)

I−→ O

or O
I←− F (ω).

1.1 Motivation

Recent developments suggest that users’ passwords are pub-
lished widely, which is fatal for the password-based authen-
tication system. COMB publishes 3279064312 passwords
online, which is approximately 3.27 billion pairs of emails
and passwords [4]. The report further highlights that 3.27
billion is 40% of the world’s total population. Therefore, all
passwords of the emails may be leaked because the total num-
ber of email users may be the same as approximately 3.27
billion, which shows our identity managers are highly vul-
nerable to adversaries. Similarly, RockYou2021 publishes a
whooping 8.4 billion passwords (100GB text data) [5]. The
total number of passwords is almost equivalent to the world’s

1

total population. It shows that it is a sheer failure of state-of-
the-art identity management systems. Therefore, it requires a
solid security system to prevent such kinds of attacks.

The COMB and RockYou2021 show that the state-of-the-
art identity manager stores raw forms of user IDs and pass-
words in their database, which is highly risky. However, most
identity manager uses salt to defeat certain kinds of attacks,
but it is not sufficient to prevent diverse attacks. Moreover,
salt has several issues, such as short salt and salt reuse. Thus,
the use of salt can be avoided. Moreover, the users’ passwords
are published widely by adversaries. Furthermore, the iden-
tity manager can reuse the passwords in different domains
to gain authentication because the identities of the users are
under the control of the identity manager. There is no solid
mathematical proof or method to nullify these possibilities.
Therefore, there are a few questions regarding the password-
based authentication systems, which are given below-

• Should the identity manager store the users’ passwords
in raw string format?

• Is there any available method to prevent the domino
effect of passwords?

• Should the user ID be public?

• Can we prevent the stealing issue of the password
database?

• Can an identity manager keep the users’ privacy intact?

The above-raised questions directly doubt the capabilities
of state-of-the-art password-based authentication systems or
identity managers. As we know that the most advanced iden-
tity manager stores raw string using salt or encryption, but it
is insufficient and inefficient to protect against diverse attacks,
such as password database stealing and the domino effect. To
the best of our knowledge, there is no solid mechanism to
prevent the domino effect (see Definition 1). Apparently, the
most advanced identity managers violate the users’ privacy.
Therefore, it demands a new mechanism or method to address
all the above-mentioned issues.

Figure 1 demonstrates the screenshot of resetting a pass-
word in GitHub.com. In the dialogue box, the user password
is listed as passwords commonly used on other websites.
GitHub.com checks the password strength and checks for
quality passwords in published passwords online at [4, 5],
which is the best practice to date. However, the users’ pass-
words are published widely and freely online. Therefore, it
indicates that almost all users’ passwords are compromised.
Importantly, the identity manager of any platform can easily
utilize the user ID and password in different domains for gain-
ing authentication, which is not desirable. Moreover, the user
ID and password are controlled by other administrative staff
(identity manager), which means that the password can be
sold or published at their own will. Notably, we find no such

Figure 1: A dialogue box of GitHub.com for resetting the
password.

evidence and have never reported such incidents to date, but it
is possible and easy. The identity manager deals with the raw
form of user identities and stores the identities at their own
convenience. Apparently, it is an act of violation of the privacy
of the users, which is common practice for password-based
authentication systems and is accepted widely to date because
there are no other identity managers to address the above-
raised issues. For example, the identity manager of GitHub
informs the users that the user’s password is widely popular
and widely listed in different domains. Therefore, it demands
the prevention of violation of the users’ privacy. Specifically,
how does a client feel if the client’s password is widely listed
as a password in multiple domains or is listed at [4, 5]? The
clients’ passwords are published by adversaries. Therefore,
the identity manager is unable to protect the identities of the
users.

In the above-raised issues, the password stretching algo-
rithm does not have any effect. However, it can defeat the
guessing attacks. To overcome the password guessing attack,
many researchers have already proposed diverse techniques;
For instance, the transformation of password to context-free
grammar [2]. Moreover, oPass defends against diverse attacks
such as password stealing and password reuse attacks [7].
Importantly, the state-of-the-art identity manager uses OTP
to protect against phishing attacks which are highly effective
till the bulk SMS gateway is not compromised. Therefore,
it demands a secure identity management system that guar-
antees that even if the database is stolen by adversaries, the
adversaries are unable to gain authentication.

2

1.2 Our proposed work

The recent password-hashing competition winner was Ar-
gon2, where Argon2i is suitable for password hashing [1].
Argon2 features memory hardness for password hashing. It
is designed to hash the password on the server side, which
contrasts our proposed work. Our proposed work features
client-side password hashing, called PassPro. Our key objec-
tives are outlined below-

• To prevent getting the direct raw form of the user IDs
and passwords by the adversary, including the identity
manager.

• To ensure that the adversary can never retrieve the origi-
nal user IDs and passwords, including the identity man-
ager.

• To prevent the domino effect.

• To protect the password database from stealing.

1.3 Key contributions

• PassPro completely prevents the domino effect. It shuf-
fles the user ID, password, and domain word to produce
three unique strings. Therefore, the same user ID and
password can be used in multiple domains without wor-
rying about the domino effect.

• PassPro is designed based on the client-side password
hashing to conceal the original user ID and password. It
ensures that the adversary, including the identity man-
ager, never gets the original user ID and password in raw
form.

• Identity manager of PassPro never receives the original
user ID and password in raw form; therefore, it features
client-side password metering. Alternatively, the server
(identity manager) can never suggest the strength of a
password or user ID. Therefore, it invalidates the use of
AJAX in the framework.

• User ID and password of each user are encrypted with
a different key in the password database of the identity
manager. The identity manager computes a mutually
reproducible secret key using the hash value provided
by the user and the master secret word from the identity
manager.

• PassPro ensures the protection of users’ identity from
stealing by adversaries. The user ID and password are
encrypted with different keys; therefore, the adversary
cannot decrypt the user ID and password even if the
entire password database of the identity manager is with
the adversary.

• PassPro ensures prevention from the dictionary and
guessing attacks by using two secrets: user ID and pass-
word.

1.4 Our results
PassPro is different than conventional password-based authen-
tication systems that rely on the memory-hard secure hash
algorithms, VORSHA [6]. Moreover, PassPro features client-
side password hashing rather than hashing a password on the
server-side (identity manager). We present our results in the
next sub-subsections.

1.4.1 Shuffling with a context

The user enters the user ID (U) and password (P) for authen-
tication. PassPro retrieves a domain word (D) to shuffle the
user ID and password. The domain word is public and avail-
able to all, including the adversary. We shuffle the strings- a)
the U, and D in the context (see Definition 2) of the P to
produce U and b) the P and D in the context of the U to pro-
duce P . Moreover, we also shuffle U, P and D to produce
K . Therefore, shuffling produces a shuffled user ID (U), a
shuffled password (P), and part of a mutually reproducible
secret key (K). The shuffling algorithm produces different
shuffled user IDs and passwords-

• For the same user IDs and passwords for different do-
mains.

• For the same user IDs and domains for different pass-
words.

• For the same passwords and domains for different user
IDs.

On the contrary, the original user ID and password can be
retrieved from the U and P by removing the characters
of the domain word. Thus, the identity manager can easily
reconstruct the user ID and password of the client, which is
not desirable because the identity manager can misuse the user
IDs and passwords in different domains to gain authentication.
Moreover, adversaries can steal the password database from
the identity manager. Furthermore, it does not ensure the
domino effect of the password-based authentication system.
Therefore, it requires client-side hashing to hide the original
user ID and password.

1.4.2 Client-side hashing

A hash function can be invoked at the client’s computers to
convert shuffled user ID, password, and domain word into
hash values. Our proposed system relies on VORSHA [6]
which is a variable-sized and randomized secure hash algo-
rithm. Therefore, it prevents the transmission of the original
password and user ID to the identity manager. Hence, the

3

identity manager cannot retrieve the actual user ID and pass-
word from the hash values. The hash values of the shuffled
strings cannot be the same for the different domains, even if
the password and user ID are the same.

1.4.3 Domino-effect

The domino effect is a crucial effect to be prevented due to
the adversary’s presence in password-based authentication
systems. The state-of-the-art password-based authentication
system cannot prevent the domino effect. PassPro deals with
hash values with a shuffled user ID and password. Therefore, it
is computationally infeasible to reconstruct the original string
from the hash values HU and HU . This method ensures the
prevention of the domino effect because the different domain
words create different shuffled hash values for the same user
ID and password. Thus, it permits the reuse of user IDs and
passwords in multiple domains.

1.4.4 Encryption and decryption

The user hash values are encrypted with a mutually repro-
ducible secret key to store in the password database. Alterna-
tively, each user’s hash values are encrypted with a different
secret key. The keys are derived by a pseudo-random num-
ber generator. The algorithm requires a hash value from the
user and a master secret word from the identity manager to
produce or reproduce the secret key to encrypt or decrypt the
hash values on the server side. The user supplies a hash value
of the shuffled string to the identity manager, where shuffling
is performed among the user ID, password, and domain word
without any context. The hash values are encrypted using a
mutually reproducible secret key. Therefore, the identity man-
ager cannot reproduce the mutually reproducible secret key
without the hash value from the user. Besides, the user can-
not reproduce the mutually reproducible secret key without
the master secret word from the identity manager. PassPro
encrypts the individual shuffled-then-hashed user ID and pass-
word with an individual secret key. Alternatively, the identity
manager is unable to decrypt the stored hash values without
having consent from the user. Similarly, the user cannot de-
crypt its own hash values from the password database without
permission from the identity manager.

1.4.5 Password database stealing

The adversary always tries to steal the password database to
gain authentication in multiple domains. It requires strict mea-
sures to prevent such kinds of attacks. Therefore, we introduce
a mutually reproducible secret key to encrypt and decrypt.
Consequently, it prevents the identity manager from decryp-
tion the hash values without having permission from the user.
Similarly, the user cannot decrypt the encrypted hash values
from the password database without having permission from
the identity manager, even if the identity manager provides

the user’s own encrypted hash values to the user. With the
above-mentioned condition, the adversary is unable to decode
the encrypted hash values even if the adversary evades the se-
curity of the identity manager to steal the database. Therefore,
it is computationally infeasible to decrypt all the encrypted
hash values from the password database from the identity
manager. Therefore, the user IDs and passwords are intact
even after the password database is stolen by the adversary.

1.4.6 Guessing and dictionary attacks

The passwords are created eight characters long, using capital
letters, small letters, digits, and special symbols, which creates
huge password spaces. However, a user always chooses easy-
to-remember passwords; thus, the password space becomes
small. Thus, the guessing attacks become a reality. Also, the
dictionary size of the adversary becomes smaller. For instance,
almost all users’ passwords are published at [4, 5]. Therefore,
it becomes easy for adversaries to perform the attacks. Hence,
it demands a new measurement to thwart such kinds of attacks.
Our proposed system uses two secret words, namely, user
ID and password. Consequently, the guessing and dictionary
attacks become harder even if the passwords are published
at [4, 5].

2 PassPro: The proposed system

In a password-based authentication system, the user enters
a user ID and password to prove the genuineness. However,
there are many issues with conventional password-based au-
thentication systems. The prominent issue is the domino ef-
fect. People often use the same password and user ID for
various identity managers such that they can remember them
easily. Therefore, if the password is compromised, then all
identity managers can be broken by the adversary. Moreover,
conventional identity managers store the password in raw
format. Apparently, it violates the privacy of the users. There-
fore, an adversary can steal the passwords from the password
database from the identity manager, and the evidence is [4, 5].
Therefore, our key objectives are as given below-

• To provide strict security measurement for authentication
without causing inconvenience to the users.

• To protect the users’ identities from stealing and publish-
ing by adversaries.

• To protect users’ privacy from the identity manager.

• To prevent the domino effect such that a user can use the
same user ID and password in multiple domains.

Our proposed system relies on existing OTP mechanisms
to identify the desired user. Also, it relies on existing captcha
to differentiate between robots and humans. Moreover, it re-
lies on existing cryptography techniques, such as public key

4

Table 1: Important symbols/notations used in the paper and
their description.

Symbols Description
A, B Example of two users.
U The user ID in raw foramt.
P The password in raw format.
D The domain word; for instance, usenix.org.
U The shuffled user ID with domain word.
P The shuffled password with domain word.
K The shuffled string with the user ID, pass-

word, and domain word.
HU The hash value of shuffled user ID.
HP The hash value of shuffled password.
HK The hash value of shuffled string.
H () Denotes a VORSHA-3D hash function.
W A single master secret word of the identity

manager for the whole database.
K The mutually reproducible secret key.
P R A The private key of user A.
P UA The public key of user A.
SK The client and server mutually compute a

shared secret key.
H received

U Received hash value from the user for user
ID.

H received
P Received hash value from the user for pass-

word.
H decrypted

U Decrypted hash value from the password
database for the user ID.

H decrypted
P Decrypted hash value from the password

database for password.
EA Email of user A.
∪ Denotes the shuffling process.
∩ Denotes the reversal of the shuffling pro-

cess.
S A seed value of 32-bits.
τ Number of iterations to be performed while

computing a seed value.
ω Denotes a string.
∧ Denotes bit-wise AND operation.
≫ Denotes bit-wise right shift operation.
≪ Denotes bit-wise left shift operation.

cryptography for non-repudiation and symmetric key cryptog-
raphy for communication between the client and server.

2.1 Identity creation

Table 2 shows the identity creation at the identity manager
by a user. In our proposed system, email ID and user ID is
treated differently. The email ID is public, and the user ID is
a secret word. Initially, the user retrieves a domain word and

enters a user ID and password. On the client side, the user ID,
password, and domain word are shuffled to create a unique
identity. The shuffled strings are converted into hash values by
the client. The hash value sizes are variable. The correct hash
value with a correct length can be reproduced exclusively by
the legitimate user [6]. These hash values are encrypted using
the private key of the user for non-repudiation. Again, the user
encrypts using a shared secret key and sends these hash values
to the identity manager. The identity manager decrypts the
hash values and produces a mutually reproducible secret key.
The hash values are inserted into the password database of
the identity manager against the user email ID by encrypting
these hash values by the generated mutually reproducible
secret key.

2.2 Authentication process
Table 3 shows a similar procedure as the identity creation for
the authentication process. The identity manager reproduces
a mutually reproducible secret key using a hash value from
the user and a master secret word from the identity manager.
The mutually reproducible secret key is used to decrypt the
stored hash value. The supplied hash values and decrypted
hash values are compared for authentication.

2.3 User ID
A user ID can be chosen from the publicly available user
ID, for instance, mail@example.com. It is converted into a
secret entity by shuffling with a publicly available domain
word. However, if a user ID is secret, then it is stronger, and
it can protect against diverse attacks. A weak password can
reveal the secret of shuffling. Therefore, our recommendation
is to keep the secret user ID as like password other than the
email ID. The conventional system uses the user ID as a
publicly visible identifier. Our proposed scheme treats the
user ID as equally important as the password. Therefore, we
suggest the following rules for user ID creation to address the
above-mentioned objectives-

• It should contain at least one capital letter, one small
letter, a digit, and a symbol.

• The minimum length of the user ID is eight.

• The user ID cannot be an email ID.

A weak user ID can be created using the new user ID forma-
tion rules, for instance, Abc@1234. There is an inconvenience
in remembering a user ID. Therefore, the user always chooses
their user ID with their name, for instance, Alan@2023. A
user can select the identity in an easy manner. Consequently,
it makes it difficult for an adversary to guess with the com-
bination of passwords. Therefore, PassPro uses user ID as a
secret word similar to a password.

5

Table 2: Step-by-step overview of the identity creation of a user.
Client Identity Manager
• User and identity manager computes shared secret key
SK .
• User retrieves a domain words D .
• User enters user ID U and password P .
• The user performs shuffling-

U∪D P−→U , P ∪D U−→P , U∪P ∪D→K
• The user performs hashing-
HU ←H (U), HP ←H (P), HK ←H (K)
• The user encrypts the hash values using its own private
key- Enc(HU ,P R A), Enc(HP ,P R A), Enc(HK ,P R A),
where P R is a private key of the user A.
• The user encrypts the hash values using shared secret
key to send them to the identity manager-
Enc(Enc(HU ,P R A),SK), Enc(Enc(HP ,P R A),SK),
Enc(Enc(HK ,P R A),SK)
• The user sends the encrypted hash values to the identity
manager.

• Identity manager decrypted the received hash values-
H received

U ← Dec(Dec(Enc(Enc(HU ,P R A),SK),SK),P UA)
H received

P ← Dec(Dec(Enc(Enc(HP ,P R A),SK),SK),P UA)
H received

K ← Dec(Dec(Enc(Enc(HK ,P R A),SK),SK),P UA),
where P UA is the public key of the user A.
• Identity manager computes a mutually reproducible secret
key K using HK and a master secret word from the identity

manager W , i.e., K W←− G(H received
K).

• The identity manager encrypts the hash values-
Enc(HU ,K), Enc(HP ,K)
• The identity manager inserts these encrypted hash values
into the password database and discards H received

K and K.

The user ID is constituted of eight characters from 26 small-
case letters, 26 upper-case letters, 10 digits, and 32 symbols
(excluding white space). Therefore, by choosing eight char-
acters from 94 available characters, the maximum number of
possible user IDs is(

94
8

)
= 111,315,063,717 (1)

We have eight character strings consisting of alphabets, digits,
and special symbols. Therefore, we can form 111 billion
user IDs. Theoretically, it is quite large enough to thwart
diverse attacks, but it cannot withstand guessing attacks and
dictionary attacks.

2.4 Password
We suggest the following rules to follow in the creation of the
password-

• Password length must be at least ten characters long.

• It should contain at least a capital letter, a small letter, a
digit, and a special symbol.

• Email ID cannot be the password.

• User ID and password cannot be the same.

It is similar to conventional passwords with a length of a
minimum of ten characters. COMB and RockYou2021 have
all the passwords having a length of ten characters or more.
Therefore, it is easy to perform guessing attacks.

However, the password is constituted of ten characters from
26 small-case letters, 26 upper-case letters, 10 digits, and 32
symbols (excluding white space). Therefore, by choosing ten
characters from 94 available characters, the maximum number
of possible passwords is(

94
10

)
= 9,041,256,841,903 (2)

The challenge is to defeat the guessing and dictionary attacks.
Theoretically, a password with ten characters can withstand

6

Table 3: Step-by-step overview of the authentication of a user.
Client Identity Manager
• The same procedure is applied in authentication the
same as Table 2.
• The user performs encryption on the hash values to
send them to the identity manager for authentication-
Enc(Enc(HU ,P R A),SK), Enc(Enc(HP ,P R A),SK),
Enc(Enc(HK ,P R A),SK)
• The user sends the encrypted hash values to the identity
manager.

• Identity manager decrypted the received hash values-
H received

U ← Dec(Dec(Enc(Enc(HU ,P R A),SK),SK),P UA)
H received

P ← Dec(Dec(Enc(Enc(HP ,P R A),SK),SK),P UA)
H received

K ← Dec(Dec(Enc(Enc(HK ,P R A),SK),SK),P UA)
• Identity manager computes a mutually reproducible secret
key K using HK and a master secret word from the identity

manager W , i.e., K W←− G(H received
K).

• The identity manager decrypts the stored hash values-
H decrypted

U ← Dec(Enc(HU ,K),K),
H decrypted

P ← Dec(Enc(HP ,K),K)
• The identity manager compares the hash values
for authentication-
H received

U = H decrypted
U , and H received

U = H decrypted
U

• The identity manager discards H received
K and K.

diverse attacks by above mentioned rules; however, it cannot
withstand dictionary and guessing attacks even if the password
space is large.

2.5 Guessing attacks
Our proposed system comprises two secrets, namely, user ID
and passwords. We assume that all user IDs and passwords
are listed in COMB or RockYou2021. Therefore, it is easy
to perform a guessing or dictionary attack on either the user
ID or the password. Let the user ID and passwords be in the
COMB dictionary (the size of COMB is less than the size
of RockYou2021), i.e., U,P ∈ COMB. But both U and P
must belong to the same user and be correct. Therefore, the
probability of selecting the correct user ID and password from
COMB that belongs to a single user is as given below

1(3279064312
2

) =
1

5376131379476484516
(3)

which is fairly small enough to thwart guessing attacks or
dictionary attacks that motivate us why we should consider
the user ID as a secret word. Apparently, the two secret words
can cause inconvenience to the users. However, we need to
prevent diverse attacks such as password database stolen is-
sues. Thus, the inconvenience is justified. But it cannot ensure
freedom from the domino effect. Moreover, it cannot protect

the password database from being stolen. Therefore, we use a
domain word to prevent such kinds of attacks.

2.6 Domain Word
A user needs to retrieve the domain word, and the domain
word is shuffled with the user ID and password of the user.
The domain word is public and available to all, including
the adversary. For instance, the domain words are usenix.org,
google.com, gmail.com, iacr.org, etc. These words are mixed
with the user ID and password to prevent diverse attacks.

2.7 Shuffling the strings

Algorithm 1 Computing seed value for utilization in the hash
function.

1: procedure GETSEEDVALUE(ω,L ,S ,τ)
2: for i : 1 to τ do
3: S = PRIMARYHASH(ω,L ,S)
4: end for
5: return S
6: end procedure

Algorithm 1 computes the seed value using a primary hash
function. A primary hash function is a non-secure hash func-

7

tion that produces a hash value of β-bit, for instance, the
murmur hash function. The function iterates τ times to alter
the seed value. Initially, the seed value is public, and it is
converted into a private value using a user ID, password, and
domain word.

Algorithm 2 Left shifting a string to remove the ith character
from ω.

1: procedure SHIFTLEFT(ω, i,L)
2: for j : i to L do
3: ω[j] = ω[j+1]
4: end for
5: end procedure

The user often uses the same user ID and password over
multiple domains; therefore, once the password is compro-
mised, all other domains can be accessed by the adversary.
Therefore, we shuffle the user ID and password with a domain
word. The domain word is public; however, the legitimate
user can correctly reproduce the shuffled word. Algorithm 3
portrays the shuffling between two words with a context (see
Definition 2 for context). The word ω1 and ω2 are shuffled
with the context of the word ω3.

Table 4 shows the example of shuffling two words using a
context, and the inputs are taken as an example for demonstra-
tion purposes. PassPro requires three input strings, namely,
user ID, password, and domain word. The domain word is
shuffled with a user ID and password to prevent the domino
effect. It shows that two different password makes different
shuffled string for user ID and password in test case 1 and 2,
as shown in Table 4. Moreover, the shuffled strings for user
ID and password produce a different output in test case 1 and
3 if we alter the domain word. Also, if we change the user ID,
then the shuffled string for the user ID and password are also
changed, shown in test case 1 and test case 4. Therefore, we
can conclude as follows-

• Different passwords with the same user ID and domain
word translate into different shuffled user IDs and pass-
words.

• Different domain names with the same user ID and pass-
word translate into different shuffled user IDs and Pass-
words.

• Different user IDs with the same password and domain
word translate into different shuffled user IDs and Pass-
words.

PassPro creates different user IDs and Passwords for different
user IDs, passwords, and domain words. Therefore, PassPro
completely eradicates the domino effect issue in password-
based authentication systems. Now, the server can easily re-
construct the user ID and password from the shuffled user ID
and password by removing the characters from the domain

Algorithm 3 Shuffling two strings, ω1 and ω2, with respect to
word ω3. The ω3 is the context of the shuffling. This shuffling
follows a pseudo-random algorithm.

1: procedure SHUFFLE(ω1,ω2,ω3,S)
2: Lω1 ,Lω4 = LENGTH(ω1)
3: Lω2 ,Lω5 = LENGTH(ω2)
4: Lω3 ,Lω6 = LENGTH(ω3)
5: COPY(ω4,ω1) ▷ Copy word ω1 to ω4
6: COPY(ω5,ω2) ▷ Copy word ω2 to ω5
7: COPY(ω6,ω3) ▷ Copy word ω3 to ω5
8: τ = 16,δ = 37,µ = 16
9: S = GETSEEDVALUE(ω1,Lω1 ,S ,τ)

10: τ = S%δ+µ
11: S = GETSEEDVALUE(ω2,Lω2 ,S ,τ)
12: τ = S%δ+µ
13: S = GETSEEDVALUE(ω2,Lω3 ,S ,τ)
14: τ = S%δ+µ
15: while Lω1 ̸= 0 and Lω2 ̸= 0 do
16: if S ∧1 = 0 then
17: S = GETSEEDVALUE(ω2,Lω2 ,S ,τ)
18: τ = S%δ+µ
19: S = GETSEEDVALUE(ω1,Lω1 ,S ,τ)
20: τ = S%δ+µ
21: S = GETSEEDVALUE(ω3,Lω3 ,S ,τ)
22: τ = S%δ+µ
23: k = S%Lω4

24: bu f f [i++] = ω4[k]
25: SHIFTLEFT(ω4,k,Lω4)
26: Lω4 = Lω4 −1
27: else
28: S = GETSEEDVALUE(ω2,Lω2 ,S ,τ)
29: τ = S%δ+µ
30: S = GETSEEDVALUE(ω1,Lω1 ,S ,τ)
31: τ = S%δ+µ
32: S = GETSEEDVALUE(ω3,Lω3 ,S ,τ)
33: τ = S%δ+µ
34: k = S%Lω5
35: bu f f [i++] = ω5[k]
36: SHIFTLEFT(ω5,k,Lω5)
37: Lω5 = Lω5 −1
38: end if
39: end while
40: for k : 0 to Lω4 do ▷ Copying the remaining

characters
41: bu f f [i++] = ω4[k]
42: end for
43: for k : 0 to Lω5 do ▷ Copying the remaining

characters
44: bu f f [i++] = ω5[k]
45: end for
46: end procedure

8

Table 4: Example of shuffling two input strings with respect to a context.
Test
case

Context Shuffling
for

String
type

Input String Shuffled
string

256-bit hash value using VORSHA
[6]

1
Pass@1975 User ID User ID Chair@2023 1C7ira5xu9@

oehsni.rg
34f62aaf7f1f352e8c62fa234f9d05a97
9db1a9c2f882ae756c332c275c8faacDomain usenix.org

Chair@2023 Password Password Pass@1975 .urnieg59oxsP
sas@17

c4d05193bab9510b916e65bb81a35e7
6f76a00a4e3760eff9a1c1b1555d83ff0Domain usenix.org

2
Abc@1975 User ID User ID Chair@2023 i9.7urh@gsax

oien1rC5
3b6b1c488bc5e8f0e5a2c73c50bd2cec
69f7ba334327696474c22ad55c5ea080Domain usenix.org

Chair@2023 Password Password Abc@1975 co7rAisxb9e@
1n5u.g

58ff31bd7c4a0520894bbb2ced233098
39988d17fb0724d05f4a105f5bcaac6aDomain usenix.org

3
Pass@1975 User ID User ID Chair@2023 o79x.1aac@5

rpCilhemem
75e9eac6717e7b7300b526f7516b9da2
5b70bf8adb6252f1db66123f7dc63450Domain example.com

Chair@2023 Password Password Pass@1975 seaaslm@7oe.
9xp1cmP5

f8b7b9abd60afec5709a58eaac0318bb
8574f1eb4fc0bc8458919afaf7c684edDomain example.com

4
Pass@1975 User ID User ID Author@2023 ero@.nitmh5sx

cuAuo197
d9498984e3353f91cac2a4f6b13e5a4a
89d27ab5cbdbd4394b734bea6ca699c6Domain usenix.org

Author@2023 Password Password Pass@1975 7mPis5soans@
91uex.c

09b70ab3aba868241e331d613c981304
d7312c5498a450f7bc558796d1c7df69Domain usenix.org

words. Also, the adversary can get the user IDs and passwords
if the adversary is able to steal the entire database. Therefore,
PassPro strongly discourages storing the raw form of user ID
and password in the identity manager. Therefore, it demands
client-side password hashing, which is described in the next
subsection.

2.8 Client-side hashing
PassPro does not transmit the raw password and user ID for
storing it in the password database in the identity manager.
Instead, PassPro uses client-side password hashing for trans-
mission. Firstly, the client shuffles the user ID and password
with a domain word. Secondly, the client of PassPro converts
the shuffled user ID and password into two different hash
values for transmission to the identity manager. The iden-
tity manager of PassPro stores the hash values of the user
ID and password for future authentication. The hash value
of the same user ID and password is invalid for the different
domains. Therefore, these hash values cannot be used in other
domains to gain authentication

For illustration, the U , P and K are constructed by shuf-
fling U and P using a domain word D. Equation (4) shows
the shuffling of two strings with a context and the shuffling
of three strings without a context.

U∪D P−→U

P ∪D U−→P

U∪P ∪D→K

(4)

where ∪ denotes the shuffling of the strings pseudo-randomly.
Equation (4) shows the construction of the shuffled string,

and therefore, the following Equation holds

U ∩D→U
P ∩D→ P

(5)

where ∩ denotes the reversal of the shuffling process. Equa-
tion (5) shows the retrieval of the original string from the
shuffled string. Thus, we hash the shuffled string such that
the original string can never be reconstructed from the hash
value, which is given as follows-

H (U)→HU

H (P)→HP

H (K)→HK

(6)

It is guaranteed that the original string is not possible to re-
construct from HU , HU , and HK . Thus, the hash values
HU , HU , and HK are sent to the identity manager for either
identity creation or authentication.

We show that two different users, let A and B, cannot pro-
duce the same hash values. There are two cases, a) two dif-
ferent user IDs and the same passwords, and b) two different
passwords and the same user IDs. We take the first case by
taking two different user IDs as U1 ̸= U2, and they are non-
empty. The shuffling of the client A’s user ID and password
are given in Equation (7).

U1∪D P−→U1

P ∪D U1−→P1

U1∪P ∪D→K1

(7)

The hash values of the client A’s user ID and password are

9

given in Equation (8).

H (U1)→HU1

H (P1)→HP1

H (K1)→HK1

(8)

The shuffling of the client B’s user ID and password are
shown in Equation (9).

U2∪D P−→U2

P ∪D U2−→P2

U2∪P ∪D→K2

(9)

The hash values of the client B’s user ID and password are
given in Equation (10).

H (U2)→HU2

H (P2)→HP2

H (K2)→HK2

(10)

From Equation (8) and (10), we can draw the Equation (11).

HU1 ̸= HU2

HP1 ̸= HP2

HK1 ̸= HK2

(11)

Therefore, two users with different user IDs with the same
password always create different hash values. Similarly, two
different users having the same user ID but different pass-
words also create different hash values. Let the password be
P1 ̸= P2, and these are non-empty. The shuffled strings of the
client A are given in Equation (12).

U∪D P1−→U3

P1∪D U−→P3

U∪P1∪D→K3

(12)

The hash values of the client A are created using Equation
(13).

H (U3)→HU3

H (P3)→HP3

H (K3)→HK3

(13)

The shuffled strings of the client B are given in Equation (14).

U∪D P2−→U4

P2∪D U−→P4

U∪P2∪D→K4

(14)

The hash values of the client B are given in Equation (14).

H (U4)→HU4

H (P4)→HP4

H (K4)→HK4

(15)

From Equation (13) and (15), we conclude that no two users
can produce the same hash values if the users’ passwords are
different, as shown in Equation (16), even if the user ID and
the domain word are the same.

HU3 ̸= HU4

HP3 ̸= HP4

HK3 ̸= HK4

(16)

Equation (11) and (16) ensure that two different users can-
not produce the same hash values.

2.9 Prevention of the domino effect
The domino effect is a crucial effect to be prevented in
password-based authentication systems. The state-of-the-art
password-based authentication system cannot prevent the
domino effect. PassPro deals with hash values with a shuffled
user ID, password, and domain word. Therefore, it is com-
putationally infeasible to reconstruct the original string from
the hash values HU , HU , and HK if the adversary does not
know the input strings except the domain word. This method
ensures the prevention of the domino effect because differ-
ent domain word creates different shuffled hash values. Thus,
it permits the reuse of user IDs and passwords in multiple
domains. Let us assume a user A uses the U and P at two
domains, namely, the domain words are D1 and D2 where
D1 ̸= D2. The shuffled strings for the domain D1 for user A
are shown in Equation (17).

U∪D1
P−→U5

P ∪D1
U−→P5

U∪P ∪D1→K5

(17)

The shuffled strings for the domain D2 for user A are de-
rived in Equation (18).

U∪D2
P−→U6

P ∪D2
U−→P6

U∪P ∪D2→K6

(18)

We know that D1 ̸= D2 and non-empty; therefore, it pro-
duces different shuffled strings. Hence, Equation (19) holds.

U5 ̸= U6

P5 ̸= P6

K5 ̸= K6

(19)

The hash values for the shuffled string with domain D1 for
user A are given in Equation (20).

H (U5)→HU5

H (P5)→HP5

H (K5)→HK5

(20)

10

Similar to Equation (20), the hash values for the domain D2
for the same user are demonstrated in Equation (21).

H (U6)→HU6

H (P6)→HP6

H (K6)→HK6

(21)

By referring to Equation (19), we can conclude that the hash
values cannot be the same in Equation (20) and (21). Hence,
Equation (22) shows the inequality.

HU5 ̸= HU6

HP5 ̸= HP6

HK5 ̸= HK6

(22)

Equation (22) shows that the hash values cannot be the
same for the same user ID and password for different do-
mains. Thus, there is no domino effect. Moreover, the identity
manager and adversary do not know the original input strings
of the user IDs and passwords.

2.10 Transmission of the user’s hash values
The user transmits the encrypted hash val-
ues using a shared secret key SK as
Enc(Enc(HU ,P R C),SK), Enc(Enc(HP ,P R C),SK),
and Enc(Enc(HK ,P R C),SK). The identity manager
decrypts the encrypted hash values as follows-

H received
U = Dec(Dec(Enc(Enc(HU ,P R C),SK),SK),P UC)

H received
P = Dec(Dec(Enc(Enc(HP ,P R C),SK),SK),P UC)

H received
K = Dec(Dec(Enc(Enc(HK ,P R C),SK),SK),P UC)

(23)

where P UC is the public key of the user C . The retrieved
hash value H received

U , and H decrypted
P are used to compare the

existing hash values from the database of the identity man-
ager. However, these hash values are stored in the database
of the identity manager for future authentication purposes
by encrypting using an individual secret key. The received
H received

K is used to reconstruct an individual key for encryp-
tion or decryption.

2.11 Mutually reproducible secret key
Algorithm 4 is used to generate a mutually reproducible se-
cret key, K, using a shuffled hash value HK and identity
manager’s master secret word W . It is computationally in-
feasible to reproduce K without these two inputs for a large
bit-sized key. Alternatively, the client permits the identity
manager to reproduce the individual secret key K for encryp-
tion or decryption of the hash values of the user. Algorithm 4
is similar to VORSHA-3D-S [6], and the key difference is that
Algorithm 4 produces bits based on a context, W . The W

Algorithm 4 Algorithm for the mutually reproducible secret
key generation for symmetric encryption or decryption.

1: procedure GENKEY(HK ,W ,S ,η)
2: LHK

= LENGTH(HK)

3: LW = LENGTH(W)
4: τ = 16,δ = 37,µ = 16,θ = 13297
5: S = GETSEEDVALUE(W ,LW ,S ,τ)
6: S = GETSEEDVALUE(HK ,LHK

,S ,τ)
7: τ = S%δ+µ
8: r = GENDIM(S ,θ)
9: S = GETSEEDVALUE(W ,LW ,S ,τ)

10: S = GETSEEDVALUE(HK ,LHK
,S ,τ)

11: τ = S%δ+µ
12: c = GENDIM(S ,θ)
13: X = prime[r],Y = prime[c]; ▷ X ̸= Y
14: for i : 1 to X do
15: for j : 1 to Y do
16: S = GETSEEDVALUE(W ,LW ,S ,τ)
17: hv = GETSEEDVALUE(HK ,LHK

,S ,τ)
18: ρ = hv%31;
19: bit = (hv∧ (1 << ρ))>> ρ

20: V [i][j] = bit
21: S = hv
22: end for
23: end for
24: for k : 1 to η do
25: S = GETSEEDVALUE(W ,LW ,S ,τ)
26: hv = GETSEEDVALUE(HK ,LHK

,S ,τ)
27: i = (hv%X)+1
28: S = hv
29: S = GETSEEDVALUE(W ,LW ,S ,τ)
30: hv = GETSEEDVALUE(HK ,LHK

,S ,τ)
31: j = (hv%Y)+1
32: S = hv
33: K[k] = V [i][j]
34: end for
35: return K
36: end procedure

influences the seed value generation process. Consequently,
Algorithm 4 features memory hardness to defeat parallelism.
Thus, it is difficult for the adversary to reproduce the mutu-
ally reproducible secret key to decrypt from the password
database.

Algorithm 4 calculates the dimension of the bit vector, V ,
using a function, and the function is defined in [6], where the
vector dimensions are X and Y . Initially, Algorithm 4 fills
the vector V using pseudo-random bits. In the later phase, it
retrieves the pseudo-random bits to form the key K.

The identity manager computes a mutually reproducible
secret key using the following pseudo-random number gener-

11

ator.
G(HK)

W−→ K (24)

where W is a master secret word from the identity manager
and K is a pseudo-random key. Equation (24) represents Al-
gorithm 4 in the context of W . The key K can be reproduced
using a valid HK and W consistently.

2.12 Encryption and decryption of the hash
values in the password database

This process involves encryption and decryption using a sym-
metric key, termed as a mutually reproducible secret key,
K. Users’ hash values are encrypted and inserted into the
database of the identity manager in the identity creation. The
identity manager decrypts the encrypted hash values from the
database of the identity manager for authentication.

2.12.1 Encryption

The identity manager encrypts the hash values of the user
ID and password using an individual key. The identity man-
ager requires a hash value to produce the key to encrypt. The
identity manager stores HU , HP by encrypting using an in-
dividual key, K. The K is produced by Algorithm 4 using HK

and W . In identity creation, the HU , and HP are encrypted
by the identity manager using K and inserted these encrypted
hash values into the database. The hash values are encrypted
as Enc(HU ,K), and Enc(HP ,K). For authentication, the en-
crypted hash values are decrypted using the same individual
key for comparison.

Let us assume two different users, A and B, encrypt their
user IDs and passwords to store them in the password
database. The user A sends HU1 , HP1 , and HK1 to the iden-
tity manager. Similarly, the user B also sends HU2 , HP2 , and
HK2 to the identity manager. Therefore, the identity manager
produces two mutually reproducible secret keys, K1 and K2,
for the hash values of the user A and B, respectively. Let
us assume that the email ID for the user A and B are EA
and EB, respectively. Thus, the identity manager encrypts the
hash values of A and inserts the encrypted hash values into
the password database against the email ID EA, as shown in
Equation (25).

EA

{
Enc(HU1 ,K1)

Enc(HP1 ,K1)
(25)

Similarly, the identity manager inserts the encrypted hash
values of the user B and inserts the encrypted hash values into
the password database against the email ID EB, as shown in
Equation (26).

EB

{
Enc(HU2 ,K2)

Enc(HP2 ,K2)
(26)

It is not required to encrypt the user’s email IDs because it is
public. The email IDs are used to index the users’ hash values
in the password database.

2.12.2 Decryption

The identity manager receives HK to reproduce a key K to
decrypt the encrypted HU and HU from its database.

H decrypted
U = Dec(Enc(HU ,K),K)

H decrypted
P = Dec(Enc(HP ,K),K)

(27)

The decrypted hash values in Equation (27) are used to match
the hash value sent from the user for authentication.

2.13 Authentication
The identity manager compares the decrypted hash values
from the user and decrypted hash values from the password
database. For authentication, the client sends the hash values
to the identity manager using public key encryption followed
by symmetric key encryption. The identity manager generates
the mutually reproducible secret key using Algorithm 4 by
its master secret word W and shuffled hash value HK . Thus,
the identity manager retrieves H received

U , H received
P , H decrypted

U

and H decrypted
P for comparison as given in Equation (28).

H decrypted
U = H received

U

H decrypted
P = H received

P

(28)

If Equation (28) holds, then the user is authenticated; oth-
erwise, authentication fails.

2.14 Variable hashing
Due to the presence of a rainbow table attack, it demands
a variable-sized secure hash algorithm, and we incorporate
the client-side password hashing using VORSHA-3D-S [6].
It features memory hardness. Also, it produces a variable-
sized and randomized secure hash value. A variable-sized
hash function can be used to perform client-side password
hashing. The variable-sized hash function produces an output
in a range [µ,λ) where λ= µ+δ. Alternatively, a correct input
string can have (λ−µ) correct hash values. For example, there
are a total of 768 correct hash values for a given input string
if λ = 1024 and µ = 256. Therefore, it thwarts rainbow table
attacks because no one can produce the correct hash value
with a correct length except the legitimate users.

2.15 Client-side password metering
PassPro does not store or deal with the raw form of user IDs
and passwords. Therefore, PassPro cannot offer AJAX ser-
vice to verify the password strength. Also, PassPro cannot

12

suggests the password vulnerability as shown in Figure 1. In-
stead, PassPro offers a client-side password-strength metering
system such that the password’s strength can be suggested to
the user.

Algorithm 5 User ID or password strength checking algo-
rithm. For password, L ≥ 10 and for user ID, L ≥ 8.

1: procedure STRENGTHMETER(ω,L , f lag)
2: if f lag = 1 then ▷ Case for password.
3: ℓ= 9
4: else ▷ Case for user ID.
5: ℓ= 7
6: end if
7: if L ≤ ℓ then
8: Invalid length.
9: Exit

10: end if
11: if ISEMAIL(ω) = true then
12: An email ID cannot be the user ID or password.
13: Exit
14: end if
15: for i : 0 to L do
16: if ω[i]≤ 65 and ω[i]≥ 90 then
17: CC =CC+1 ▷ Capital letter counter.
18: else if ω[i]≤ 97 and ω[i]≥ 122 then
19: SC = SC+1 ▷ Small letter counter.
20: else if ω[i]≤ 48 and ω[i]≥ 57 then
21: DC = DC+1 ▷ Digit counter.
22: else if ω[i] = 32 then
23: Invalid: It cannot contain white space.
24: Exit
25: else
26: SyC = SyC+1 ▷ Symbol counter.
27: end if
28: end for
29: min = MINIMUM(CC,SC,DC,SyC) ▷ Minimum

among four variables.
30: if min≤ 1 then
31: Invalid
32: Exit
33: else if min = 1 then
34: Weak
35: else if min = 2 then
36: Good
37: else if min = 3 then
38: Strong
39: else
40: Very strong
41: end if
42: end procedure

Algorithm 5 imposes the rules of PassPro as described in
subsection 2.3 and 2.4. Algorithm 5 checks the length of the
user ID and password. The minimum length of the user ID is

eight characters, and the minimum length of the password is
ten characters. Also, it imposes restrictions on using an email
ID as a user ID or password. Moreover, Algorithm 5 counts
the capital letters, small letters, digits, and symbols used in
the user ID and password. The CC, SC, DC, and SyC are the
counters of capital letters, small letters, digits, and symbols
present in the input string. The minimum value is used to
decide the strength of the password or user ID. To qualify for
user ID, the minimum value must be 1. Alternatively, the user
ID must contain at least one small letter, one capital letter,
one digit, and one symbol. Similarly, the minimum value for
a password is also 1 to qualify as a password. Therefore, the
password must contain at least a small letter, a capital letter, a
digit, and a symbol.

3 Conclusion

In this paper, we presented password security and protection
and presented a novel method called PassPro. We have demon-
strated that PassPro addresses the issues of the domino effect,
which allows users to reuse the same user ID and password in
multiple domains. Moreover, PassPro guarantees that no one
can retrieve the original user ID and password. Consequently,
it prevents the publishing of passwords by adversaries. Fur-
thermore, PassPro also guarantees that the hash values in an
identity manager are invalid in other identity managers. We
have also presented that PassPro encrypts the users’ hash val-
ues with separate keys. The keys are produced or reproduced
mutually by the user and the identity manager. Hence, we
present a mutually reproducible secret key. Thus, it requires
a mutually reproducible secret key to decrypt the hash val-
ues from the identity manager. Consequently, the adversary
cannot decrypt the hash values even if the identity manager
provides the password database to the adversary. The mutu-
ally reproducible secret key follows the property of memory
hardness, and it is designed based on pseudo-random number
generation. We have demonstrated the use of shuffling the
user ID, password, and domain word, where the order of the
shuffled string can be reproduced by legitimate users consis-
tently. However, it is difficult to reproduce the order of the
shuffled strings by adversaries. The shuffling process creates
unique strings even if the same user ID and password are used
in multiple domains. Thus, we have completely solved the
issues of password-based authentication systems. However, a
user needs to enter an email ID and two secrets, namely, user
ID and password, in PassPro. Therefore, it creates inconve-
nience for the users. However, the password database stealing
issue is a major concern for users. Therefore, it justifies the
inconvenience caused.

13

References

[1] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich.
Argon2: New generation of memory-hard functions for
password hashing and other applications. In 2016
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 292–302, 2016.

[2] Weili Han, Ming Xu, Junjie Zhang, Chuanwang Wang,
Kai Zhang, and X. Sean Wang. Transpcfg: Transferring
the grammars from short passwords to guess long pass-
words effectively. IEEE Transactions on Information
Forensics and Security, 16:451–465, 2021.

[3] Wenjian Luo, Yamin Hu, Hao Jiang, and Junteng Wang.
Authentication by encrypted negative password. IEEE
Transactions on Information Forensics and Security,
14(1):114–128, 2019.

[4] Bernard Meyer. COMB: over 3.2 Billion Email/Password
Combinations Leaked | Cybernews. [Online], avail-
able at https://cybernews.com/news/largest-
compilation-of-emails-and-passwords-leaked-
free, July 2022.

[5] Edvardas Mikalauskas. RockYou2021: Largest
Ever Password Compilation Leaked | Cy-
bernews, July 2022. [Online], Available at
https://cybernews.com/security/rockyou2021-
alltime-largest-password-compilation-leaked.

[6] Ripon Patgiri, Laiphrakpam Dolendro Singh, and Dal-
ton Meitei Thounaojam. Vorsha: A variable-sized, one-
way and randomized secure hash algorithm. Cryptol-
ogy ePrint Archive, Paper 2023/110, 2023. https://
eprint.iacr.org/2023/110.

[7] Hung-Min Sun, Yao-Hsin Chen, and Yue-Hsun Lin.
opass: A user authentication protocol resistant to pass-
word stealing and password reuse attacks. IEEE Trans-
actions on Information Forensics and Security, 7(2):651–
663, 2012.

14

https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/news/largest-compilation-of-emails-and-passwords-leaked-free
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked
https://eprint.iacr.org/2023/110
https://eprint.iacr.org/2023/110

	Introduction
	Motivation
	Our proposed work
	Key contributions
	Our results
	Shuffling with a context
	Client-side hashing
	Domino-effect
	Encryption and decryption
	Password database stealing
	Guessing and dictionary attacks

	PassPro: The proposed system
	Identity creation
	Authentication process
	User ID
	Password
	Guessing attacks
	Domain Word
	Shuffling the strings
	Client-side hashing
	Prevention of the domino effect
	Transmission of the user's hash values
	Mutually reproducible secret key
	Encryption and decryption of the hash values in the password database
	Encryption
	Decryption

	Authentication
	Variable hashing
	Client-side password metering

	Conclusion

