
Auditable Obfuscation

Shalini Banerjee and Steven D. Galbraith

University of Auckland, New Zealand
{shalini.banerjee, s.galbraith}@auckland.ac.nz

Abstract. We introduce a new variant of malicious obfuscation. Our
formalism is incomparable to the existing definitions by Canetti and
Varia (TCC 2010), Canetti et al. (EUROCRYPT 2022) and Badrinar
ayanan et al. (ASIACRYPT 2016). We show that this concept is natural
and applicable to obfuscation-as-a-service platforms. We next define a
new notion called auditable obfuscation which provides security against
malicious obfuscation. Finally, we construct a proof of concept of the de-
veloped notions based on well-studied theoretical obfuscation proposals.

1 Introduction

Program obfuscation is used by software developers to protect intellectual prop-
erty in programs [Col18]. Rather than doing the obfuscation themselves, most
developers use obfuscation tools from third parties, such as Tigress [Col23] or
obfuscation-as-a-service providers [Int21]. This leads to the theoretical possibil-
ity of malicious obfuscators that cause the obfuscated program to have some
undesired properties. (We stress that we are not implying any current tools are
malicious; this is discussed in the Tigress FAQ [Col23].) On the mild end of
the spectrum, the malicious obfuscator may result in the program having errors
that were not present in the original source. On the more severe end, a malicious
obfuscator could insert malware into the honest program (using it as a Trojan
Horse) or could insert a master backdoor that allows access to the program when
running on user devices.

This issue has received relatively little attention in the past. Most litera-
ture on obfuscation treats the obfuscator as honest, presumably based on the
assumption that the obfuscator is controlled by the original software developer.
But this does not match the reality of software development, which outsources
obfuscation to third parties.

Canetti and Varia [CV09] introduced the notion of verifiable obfuscation,
which is a related concept. They motivate their work by considering a login pro-
gram that is intended to allow access to Alice, Bob, and Charles. They consider
attacks to tamper with the correct execution of the program. Essentially their
notion of verifiable obfuscation (which they also call verifiable non-malleability)
allows an end user to check that an obfuscated program has not been tampered
with by a third party. The obfuscator itself is still considered honest in their
work.

Badrinarayanan, Goyal, Jain and Sahai [BGJS16] consider the case of a ma-
licious obfuscator and aim to provide assurance to the user running the protocol,
by allowing the user to check a predicate on the program. They give a solution
for iO that triples the overhead (the user has to run three versions of the ob-
fuscated program). Canetti, Chakraborty, Khurana, Kumar, Poburinnaya and
Prabhakaran [CCK+22] follow a similar notion where they use a perfectly bind-
ing commitment that attests some property of the unobfuscated circuit. The
obfuscator returns a semi-functional circuit allowing the user to run a verifica-
tion procedure and derive a fully-functional obfuscated circuit that satisfies the
attested property using subexponentially-secure iO.

Note that the original developer knows the intended behaviour of the pro-
gram, so one might think that they could easily verify the obfuscated program by
simply running the program on some chosen test inputs. For example, this would
detect the cheating in the password example used by Canetti and Varia [CV09].
However, the task of checking correctness of a program can often be much more
complex than this. Also, as we will show in our examples, there are situations
where a malicious obfuscator can introduce a secret hard-to-guess master pass-
word that unlocks every program, and there is no way for the original developer
to be able to guess such a password. Hence, black-box testing the obfuscated
code, while a good idea in practice, does not provide a solution to the problem.

The purpose of this paper is to initiate a study of malicious obfuscation
from the point of view of a software developer using an untrusted obfuscation
tool. Our main conceptual contribution is to explain that a formal definition
of malicious obfuscation can be built using the existing notion of correctness
(also called functionality preserving). Our second main contribution is to show a
proof of concept for auditable obfuscation, which allows a software developer to
audit the obfuscated code provided by a third party tool, and to check that the
obfuscation process has not been malicious. Our main technical contribution is
to demonstrate undetectable malicious obfuscators for a number of obfuscation
schemes in the theoretical literature, in particular conjunction obfuscation and
compute-and-compare obfuscation. Along with that, we give examples of obfus-
cation schemes that cannot be leveraged for introducing malicious functionality.
While the concept of malicious obfuscation has been discussed by many authors,
we believe we are the first to point out undetectable malicious obfuscators for
schemes in the literature.

1.1 Further Perspectives

Our main focus in this paper is to allow a software developer to check that a
third-party obfuscator has behaved honestly. We do not focus on how a user can
determine whether or not an obfuscated program is trustworthy (though this
is also a challenging open question). But there is a third scenario to which our
results can be applied, as we now explain.

Consider an app-store that distributes software and wants to maintain a
reputation as a trusted supplier of good apps. However, for intellectual property

2

reasons, the app-store may be selling obfuscated programs. How can the app-
store know that these programs are not malicious for users?

The obfuscation service is provided by a third party and it may be the original
app developer or the app-store who initiates the obfuscation. But the app-store
itself wants to verify that the obfuscated program is trustworthy.

Our approach to auditable obfuscation allows the app-store to audit the ob-
fuscation process, as long as the app-store is also provided with the original
unobfuscated source code. This is because our audit concept requires verifying
the steps taken by the obfuscator to convert the original source into the ob-
fuscated code. This is where we deviate from Canetti and Varia [CV09], which
do not require a verifier to know the un-obfuscated source. We also differ from
[BGJS16, CCK+22] in that their verifier does not know the un-obfuscated code
and is restricted to determining whether the obfuscated code satisfies some de-
sirable public predicate. However, we do not think this is an issue in practice,
since it is usually the end-users who are untrusted by the software developer,
not the app-store.

A reader might be wondering whether it makes sense to consider a malicious
obfuscator, since the obfuscator is always provided with the original program and
so it can learn what it likes from the program and, for example, make its own
copies to sell later. There are two responses to this critique. First, our methods
apply even if the malicious obfuscator is a software tool that has been acquired
by the software developer or app-store, and is always run in a protected sandbox
and so is not able to transmit secrets back to headquarters. As we will show,
such a tool could still be inserting a master backdoor without needing to interact
with its owner or do any reverse-engineering of the program. Second, as we will
explain in Section 5, reverse-engineering of the program may be difficult and it
might not be possible for a malicious obfuscator to determine any behaviour of
it (such as inputs that are accepted by the program). But we will show in the
case of compute-and-compare obfuscation that a malicious obfuscator can still
insert a master backdoor or other unwanted behaviour into the program.

1.2 Main Contributions

We now summarize our main contributions.

• The first contribution of this work is introducing the notion of malicious ob-
fuscators that inject malicious functionality in the program in a way that is
undetectable even by the original software developer. We argue that this con-
cept is natural, since most developers use third party obfuscation providers.

• Our next contribution is in formulating auditable obfuscation, which provides
security against malicious obfuscators. Our formalism builds on existing se-
curity definitions of obfuscation, while adding a verifiability property. As a
proof of concept, we provide a general approach to auditable obfuscation,
however this proof of concept is not very efficient as it essentially requires
the verifier to re-do the obfuscation process. One can do slightly better by
just checking some random subset of the steps, to get some assurance that

3

the obfuscation is honest. We leave as an open problem for future work the
development of more efficient methods.

• Finally, we demonstrate malicious obfuscators for several well-known theo-
retical obfuscation proposals with strong security guarantees. In particular,
we show malicious obfuscators for the conjunction obfuscators by Bishop,
Kowalczyk, Malkin, Pastro, Raykova and Shi [BKM+18] and Bartesuk, Le-
point, Ma and Zhandry [BLMZ19]. We also show malicious obfuscators
for the compute-and-compare construction by Goyal, Koppula, and Wa-
ters [GKW17], and Wichs and Zirdelis [WZ17]. We prove that our malicious
obfuscators are indistinguishability from honest ones, even with respect to
a verifier who knows the original un-obfuscated program. Additionally, we
show existence of obfuscation schemes that cannot be leveraged to inject ma-
licious functionality. More specifically, we show that the proposed malicious
obfuscation notion does not apply to the hamming-distance obfuscator by
Galbraith and Zobernig [GZ19] and the point-function obfuscator by Bar-
tusek, Ma and Zhandry [BMZ19].

2 Notions of Obfuscation

In this section, we present background definitions for obfuscation from the lit-
erature, and introduce the definitional framework of malicious obfuscators. Fol-
lowing this, we formally define auditable obfuscation. We follow the foundational
work on obfuscation by Barak et al [BGI+12] and use the circuit model for pro-
grams, although in the main body of the paper the programs will be written in
pseudocode.

Malicious obfuscation is the insertion of un-desired functionality or behaviour
into a program. Our main conceptual contribution, which is not deep, is that
malicious obfuscation is therefore a violation of correctness. Hence, to prove that
an obfuscated program has not been maliciously obfuscated it suffices to prove
that the obfuscated program satisfies the same correctness as an output of the
honest obfuscator.

Barak et al [BGI+12] first consider perfect correctness (also called function-
ality preserving), where the obfuscated program C̃ computes the exact same
function as C. However, perfect correctness has turned out to be hard to obtain
in some settings, and so weaker variants of correctness have been considered, and
we will review them in the case of circuits in Definition 1. Section 4.1 of [BGI+12]
mentions approximate correctness, but does not give a formal definition. In fact,
there are several different versions of approximate correctness in the literature,
for example see [GR07, BR17, BKM+18, HMLS07]. We list two of these formu-
lations in Definition 1.

Definition 1 (Distributional Virtual Black-Box Obfuscator (DVBB)
[BBC+14] [BGI+12]). Let λ ∈ N be the security parameter. Let C = {Cλ} be a
family of polynomial-size programs parameterized by inputs of length n(λ), and
let D = {Dλ} be the class of distribution ensembles, where Dλ is a distribution

4

over Cλ . A PPT algorithm O with correctness ϕi is an obfuscator for the family
C and the distribution D, if it satisfies the following conditions:

• Correctness:

- ϕ1 : (Perfect correctness) For every λ ∈ N and every C ∈ Cλ and every
C̃ = O(C),

∀x ∈ {0, 1}n(λ) : C̃(x) = C(x).

- ϕ2 : For every λ ∈ N and every C ∈ Cλ, there exists a negligible function
µ(λ), such that:

Pr
O

[∀x ∈ {0, 1}n(λ) : C̃(x) = C(x)] > 1− µ(λ)

where the probability is over the coin tosses of O in computing C̃ = O(C).
This is formulated in Definition 4.1 of [BGI+12].

- ϕ3 : For every λ ∈ N and for every x ∈ {0, 1}n(λ) and every C, there
exists a negligible function µ(λ), such that:

Pr
O

[C̃(x) = C(x)] > 1− µ(λ)

where the probability is over the coin tosses of O. This is called “weak
functionality preservation” in [BLMZ19].

• Polynomial Slowdown : For every λ ∈ N and for every C ∈ Cλ, there exists a
polynomial q such that the running time of C̃ = O(C) is bounded by q (|C|),
where |C| denotes the size of the program.

• Virtual Black-box : For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S with oracle access
to C, such that for every distribution D ∈ Dλ:∣∣∣ Pr

C←Dλ,O,A
[A(O(C)) = 1]− Pr

C←Dλ,S
[SC(1λ) = 1]

∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.

We note that the constructions we study in this paper mainly follow ϕ2 and
ϕ3 correctness and belong to the family of programs with the property that for
a fixed input, a random C ∈ Cλ evaluates to 0 with outstanding probability
(evasive programs).

2.1 Defining Malicious Obfuscators

Our formalism of malicious obfuscators is that the output program does not
have the same correctness guarantee as the honestly obfuscated program. For
example, suppose the malicious obfuscator inserts a master backdoor y that is
accepted by every program it obfuscates. Then correctness ϕ1 and ϕ2 are not

5

possible (a program is never correct on all inputs) and correctness ϕ3 is also not
possible (for the specific input y, we have C(y) = 0 but C̃(y) = 1).

In addition, we require that a polynomial distinguisher cannot detect the
fact that C̃ is maliciously generated, either by inspecting the source code of C̃,
running it on chosen inputs, or both.

In reality, an obfuscation tool is used by many users to obfuscate many
programs. Hence it is necessary for a malicious obfuscator to be undetectable
even when used to obfuscate many programs. Therefore our security definition
allows the distinguisher to receive obfuscations of polynomially many chosen
programs C, including repeated obfuscations of the same program. We do this
by providing oracle access to the obfuscator. We also consider the case where
the malicious obfuscator may be introducing a master backdoor that is the same
for every execution. This is modeled in our formalism as a fixed auxiliary input
aux that is used for all executions.

Definition 2 (Malicious Obfuscation). Let λ, n satisfy the conditions as
given in Definition 1. For any family of programs C and distribution class D
over C, let O be an obfuscator that satisfies the conditions given in Definition 1
with correctness ϕi. Then a malicious obfuscator for the family C and distribu-
tion D is a PPT algorithm A that takes an auxiliary input aux ∈ {0, 1}λ, such
that:

• (Correctness violation) : For any choice of aux, A(1λ, ·, aux) does not satisfy
ϕi.

• (Indistinguishability) : There exists a negligible function µ(λ), such that for
every PPT distinguisher B that has oracle access to an obfuscator (so can
adaptively ask for obfuscations of polynomially many adaptively chosen C ∈
Cλ) ∣∣∣ Pr

aux,B,A
[BA(1λ,·,aux) = 1]− Pr

B,O
[BO(1λ,·) = 1]

∣∣∣ ≤ µ(λ)

where the first probability is taken over the choice of aux and the coin tosses
of B, A, and the second probability is taken over the coin tosses of B, O.

The indistinguishability game is that a distinguisher can and receive obfus-
cations of C. We write BO(·) to indicate that B has access to an oracle that
can be queried on any C (but with respect to fixed aux in the malicious case).
The string aux represents randomly generated secret data that is known to the
malicious obfuscator, such as the value of a master backdoor. The distinguisher
has to decide if it is interacting with the honest obfuscator or a malicious one.

2.2 Formalizing Auditability in Obfuscators

We now define the notion of auditable obfuscation. Recall from the earlier discus-
sions, our goal behind introducing auditable obfuscation is in defending against
malicious obfuscators. Furthermore, we restrict to an efficient verifier (auditor)
who knows the program being obfuscated. Crucially, we require an auditable

6

obfuscation scheme to inherit the properties given in Definition 1, while incor-
porating an auditability property that ensures the correctness of the obfuscation.

There is some relevant previous work in this area. Zobernig, Galbraith and
Russello [ZGR19] present a construction for verifying whether a seemingly opaque
predicate is triggered by a secret input known to the obfuscator such that some
potentially malicious code gets activated. The verification procedure employs
cryptographic hash functions. Their work shows a simple case of verifiability.

At a high-level, auditable obfuscation (AO) is a two-step process: The first
step is carried out by an obfuscator, who runs an efficient algorithm AO.Obf,
that takes as input a program C, and outputs an obfuscated program C̃ along
with a proof π. Informally, π will allow an auditor to verify the correctness of
obfuscation. The second step is performed by a verifier (auditor), who knows C.
Precisely, AO.Verify is an efficient algorithm, such that AO.Verify(1λ, C, C̃, π) =
1, if C̃ is the correct obfuscation of C. We consider an honest obfuscator O with
correctness ϕi and we require: (i) if C̃ satisfies ϕi, then AO.Verify (1λ, C, C̃, π) =
1, and (ii) given a purported obfuscation (C̃, π) ← A(1λ, C), if AO.Verify (1λ,
C, C̃, π) = 1, then C̃ satisfies ϕi.

We now give the formal definition of auditable obfuscation.

Definition 3 (Auditable Obfuscation). Let λ ∈ N be the security parameter
of the system. For any family of polynomial-size programs C = {Cλ} and dis-
tribution ensembles D = {Dλ}, let O be an honest obfuscator that satisfies the
conditions given in Definition 1 with correctness ϕi ∈ ϕ. Then auditable obfus-
cation AO for the family C and distribution class D is a pair of PPT algorithms
(AO.Obf,AO.Verify) such that for every λ ∈ N and every C ∈ Cλ:

• For every (C̃, π)← AO.Obf (1λ, C), AO.Verify (1λ, C, C̃, π)→ {0, 1}.

• (Soundness) : For every PPT adversary A, if [(C̃, π) ← A (1λ, C)] ∧ [1 ←
AO.Verify (1λ, C, C̃, π)], then C̃ satisfies ϕi.

3 Generic Solution for Auditable Obfuscation

The obfuscators we will study are randomised and make a large number of ran-
dom choices during the obfuscation. The attacks we will show on these schemes
involve replacing some of the random values with specially chosen values to
introduce malicious functionality.

Hence, there is a simple solution to auditable obfuscation: First, de-randomise
the obfuscation, by arranging that all random choices are generated using a
pseudorandom number generator on an initial randomly chosen seed. Then the
proof of correct obfuscation is simply the value of the seed. The verifier (auditor)
simply re-computes the obfuscation using the same pseudorandom generator
initialised with that seed value, and checks if the output is the same.

Formally, the auditable obfuscator AO(1λ, C) generates a random seed seed
and generates an arbitrarily long sequence of pseudorandom bits using a pseudo-
random generator PRG(seed). Then AO calls the original (honest) obfuscation

7

algorithm O, where all random numbers are generated using the output of the
PRG. The output of AO is the obfuscated program C̃ = O(C) generated by O,
together with the proof π = seed. The auditor AO.Verify(1λ, C, C̃, seed) simply
uses the same PRG on input seed and runs the obfuscator O to get a program
C ′. The auditor returns 1 if and only if C ′ is equal to the value C̃ given as input
to the auditor.

This approach will satisfy the requirements for auditable obfuscation. Essen-
tially, all a malicious obfuscator can do is bias the choice of randomness (e.g.,
by running the obfuscation polynomially-many times for different choices of seed
until getting a program C̃ = O(C) with the desired properties), but this is not
enough to violate the correctness guarantee from the original obfuscator. We
prove the soundness of this approach in the following meta-theorem.

Theorem 1. Let O be an obfuscator with correctness ϕ and let AO be the
generic auditable obfuscator constructed above. Let PRG be a pseudorandom gen-
erator that is indistinguishable from uniform. Then for every PPT adversary A
and every (C̃, seed) ← A(1λ, C), if AO.Verify(1λ, C, C̃, seed) = 1, then C̃ satis-
fies correctness ϕ.

Proof. Towards a contradiction, we suppose the obfuscated program C̃ does not
satisfy ϕ. The below case handles the case ϕ3, as the other cases are similar.
This means that for fixed C and x

Pr
A

[A(1λ, C)(x) ̸= C(x)] > ϵ(λ)

where ϵ(λ) is a noticeable function in λ.
Since the purported obfuscation C̃ = A(1λ, C) is accepted by AO.Verify, it

follows that the honest obfuscator O could have generated the same program C̃
by choosing the same seed seed. But, A could have tried at most polynomially
many seeds, say p(λ), to bias the output. This means the honest obfuscator
could also have generated the same output with probability 1

p(λ) . This implies

that running O once yields

Pr
O,C

[O(1λ, C)(x) ̸= C(x)] >
ϵ(λ)

p(λ)

which is still a noticeable function in λ. This contradicts the assumption that O
has correctness ϕ. ⊓⊔

We should emphasise that this security result only ensures that the obfus-
cated program has the same approximate correctness guarantee as the honest
scheme. This does not mean that the obfuscated program is perfectly correct,
or that the bad inputs are not biased in some way. It just means that a mali-
cious obfuscator cannot be much different than a random output of the original
obfuscator.

Our solution is not very efficient. Ideally the proof would be short and such
that the verification algorithm is faster than running the obfuscation. Our above

8

scheme at least has a short proof. It is an open problem to obtain an efficient
solution. However we do remark that the verifier could simply check a random
subset of the operations performed by the obfuscator, and accept the program if
they are all computed correctly. This might be sufficient to detect malicious be-
haviour in some situations. One other comment on this problem: Our approach
requires the auditor to understand the obfuscation tool. In practice, the obfus-
cation tool might have its own IP that it wishes to protect, and so it may not
wish to make its processes transparent. Clearly there are many challenges for
future work in this area.

4 Malicious Obfuscators for Conjunctions

We now show that malicious obfuscators exist for schemes in the literature,
that are indistinguishable from honest obfuscators. In this section we focus on
conjunctions, which are also called pattern matching with wildcards.

4.1 Reviewing the [BKM+18] Construction

We review the construction by Bishop et al. [BKM+18] for obfuscating con-
junctions (alternatively called pattern matching with wildcards), and design a
malicious obfuscator, seemingly identical to the honest obfuscation instance. We
first recall the definition of conjunctions.

Definition 4 (Conjunctions). Let n ∈ N and let pat ∈ {0, 1, ⋆}n be a pattern,
where ⋆ is a wildcard character. Let W = {i : pati = ⋆} be the set of wildcard
positions in pat, and let w = |W |. A conjunction function C : {0, 1}n → {0, 1},
x 7→ C(x) on an input x ∈ {0, 1}n is defined as

C(x) =

{
1 , if ∀ pati ̸= ⋆ ∧ xi = pati
0 , otherwise.

Bishop et al. designed an efficient DVBB obfuscator for conjunction functions
using Lagrange interpolation. Their security goal roughly states that a PPT
adversary cannot distinguish the obfuscation of C from obfuscation of a function
that always outputs 0. The construction satisfies “approximate” functionality
preservation (ϕ3 in Definition 1) for an ensemble of uniform distributions. The
scheme relies on the difficulty of the discrete logarithm problem in a group of
size q, and the security proof takes place in the generic group model. Hence we
need q > 22λ where λ is the security parameter.

The high-level overview of the obfuscation is as follows: to obfuscate pat ∈
{0, 1, ⋆}n that has w wildcards, define polynomial F (t) =

∑n−1
k=1 akt

k ∈ Fq[t] with
F (0) = 0. The coefficients a1, . . . , an−1 are sampled uniformly random in Fq,
where q is exponential in n. If the ith bit of the pattern is j, where j ∈ {0, 1} or
if pati = ⋆, then evaluate the polynomial at 2i+ j, otherwise sample a uniformly
random element from Fq. The final step is to publish the 2n field elements in

9

Algorithm 1 Obfuscator OCon(1
λ, C)

1: Sample large prime q > 22λ

2: Select G = ⟨g⟩ of order q
3: Sample (a1, . . . , an−1)

$←− Fq uniformly
4: Let F (t) = a1t

1 + · · ·+ an−1t
n−1

5: for i = 1 to n do
6: for j = 0 to 1 do
7: if (pati == ⋆ ∨ pati == j) then
8: hi,j ← gF (2i+j)

9: else
10: hi,j

$←− Fq uniformly
11: end if
12: end for
13: end for
14: return v = (ghi,j)i∈[n],j∈{0,1}

the exponent of the group G = ⟨g⟩ of order q. The formal description is given
in Algorithm 1, where the input C may be viewed as a circuit that computes
the conjunction function, or as a description of the pattern (in either case, it is
assumed that it is easy to determine pat from C).

Interpolating the polynomial in the exponent with n Lagrange coefficients
corresponding to a correct input x ∈ {0, 1}n gives g0, and the evaluator correctly
accepts the input. For an input that does not match the pattern, a uniformly
random field element in the exponent is returned by the algorithm, and the eval-
uator correctly rejects the input with overwhelming probability. The procedure
is formally described in Algorithm 2.

Algorithm 2 Evaluation (with 2n embedded values (hi,j)i∈[n],j∈{0,1})

Input: n ∈ N, x ∈ {0, 1}n
Output: 0 or 1.

1: for i = 1 to n do
2: γi ←

∏
j ̸=i

2j−xj

2i−xi−xj+2j

3: end for
4: Compute T =

∏n
i=1(hi,xi)

γi

5: if (T == g0) then
6: return 1
7: else
8: return 0
9: end if

10

4.2 Malicious Obfuscator for [BKM+18]

As is clear from Definition 4, a conjunction function C for a pattern pat ∈
{0, 1, ⋆}n with w wildcard characters, defines 2w accepting inputs. Our goal is
to design a malicious obfuscator that allows a certain input string y that does
not match the pattern.

The input y should be fixed and independent of the pattern being obfuscated
(so that y can be a single master backdoor that works for all instances). Fur-
thermore, we require that any poly-time distinguisher B with a priori knowledge
on pat cannot distinguish between honest and purported obfuscation instances.

The malicious obfuscator must accept the 2w inputs strings that correctly
match the pattern. This means that for every pati = ⋆ or pati = j, the elements
hi,j should be correctly structured. Given we require the obfuscator to accept
bad inputs, a näıve solution would be to output hi,j ← gF (2i+j) for every i ∈ [n]
and j ∈ {0, 1}, as the obfuscator would then accept all strings of length n.
Slightly more cleverly, one could add wildcard positions only in those places
where yi does not match the pattern (namely, we are setting pati = ⋆ for all
i such that pati ∈ {0, 1} but pati ̸= yi. Certainly such an obfuscated program
would accept the master backdoor y, but a PPT distinguisher who knows pat
can simply flip the n − w non-wildcard bits one by one, and check if any of
the inputs are accepted in O

(
n
)
time. Hence it is easy to detect this malicious

behaviour. Thus it remains to construct an un-detectable malicious obfuscator
around the apparent constraints.

The basic idea is to choose the random values in Algorithm 1 in a structured
way so that the polynomial interpolation also works for the input y. First, since
y is fixed and independent of C, it might happen that C(y) = 1 anyway. In
this case there is no malicious behaviour and the original obfuscation works.
Similarly, if y matches the pattern except for one non-wildcard position (call it
k) then the malicious obfuscator is exactly the same as an obfuscation of the
pattern where location k is now a wildcard. In this case it is impossible to have an
obfuscated program that accepts y but that can’t be detected by a distinguisher
who checks the wildcard positions.

Hence in reality we focus on the case where C(y) = 0 and where y does not
match the pattern in at least 2 positions (this is the case with overwhelming
probability for evasive conjunctions). So we start with a string y ∈ {0, 1}n such
that C(y) = 0 and y does not match the pattern in at least two positions.
Let Ly be the set of indices in y that do not satisfy the pattern. Note that
such a string would be correctly rejected with overwhelming probability by the
[BKM+18] construction. We require the malicious obfuscator to agree with the
honest obfuscator except for the input string y, which it allows with noticeable
advantage.

To achieve this, we construct the random degree n− 1 polynomial F (t) fol-
lowing Algorithm 1, while we define another polynomial H(t) ∈ Fq[t], such that
H(0) = 0, andH evaluates to the same value as F at the positions where yi satis-
fies pati. We know such a polynomial exists and can be chosen to be not equal to
F if there are at least two positions where y does not match the pattern, as two

11

Algorithm 3 Malicious Obfuscator ACon(1
λ, C, y ∈ {0, 1}n s.t. C(y) = 0)

1: Sample large prime q > 22λ

2: Select G = ⟨g⟩ of order q
3: if (C(y) == 1) then
4: return ODual(1

λ, C)
5: else
6: Sample (a1, . . . , an−1)

$←− Fq uniformly
7: Let F (t) = a1t

1 + · · ·+ an−1t
n−1

8: Let Ly = {k : yk ̸= patk}
9: Sample random degree n− 1 polynomial H(t) ∈ Fq[t] s.t. H(0) = 0 and H(2k+

yk) = F (2k + yk) for all k ̸∈ Ly

10: for i = 1 to n do
11: for j = 0 to 1 do
12: if (pati == ⋆ ∨ pati == j) then
13: hi,j ← gF (2i+j)

14: else
15: if i ∈ Ly then
16: hi,j ← gH(2i+yi)

17: else
18: hi,j

$←− Fq uniformly
19: end if
20: end if
21: end for
22: end for
23: end if
24: return v∗ = (ghi,j)i∈[n],j∈{0,1}

12

distinct degree n− 1 polynomials may intersect at n− 1 points. If y matches the
pattern except at one position, then we have H = F , and that position behaves
as a wildcard. The obfuscation follows Algorithm 1, except that certain random
choices are now defined using H, so that y is accepted. This ensures that the
obfuscated program accepts all inputs satisfying the pattern, as well as the input
y with probability 1. Other inputs are rejected with overwhelming probability.
A distinguisher who does not know y is unable to check whether the allegedly
random group elements have instead been generated using the polynomial H.
The formal description is given in Algorithm 3.

Lemma 1. The program output by Algorithm 3 accepts y and all inputs x that
satisfy the pattern. Algorithm 3 violates ϕ3.

Proof. On input x satisfying the pattern, the correctness follows from the cor-
rectness result by Bishop et al. [BKM+18], since the values hi,xi

used in Algo-
rithm 2 are the same.

On input y, when i ∈ Ly the values hi,yi are equal to gH(2i+yi), while when
i ̸∈ Ly the values hi,yi are equal to gF (2i+yi). But H(2i + yi) = F (2i + yi) on
those values, the Lagrange interpolation again computes gH(0) = g0 and so y
is accepted. Since y is always accepted, but satisfies C(y) = 0 for most C, this
shows that the malicious obfuscator does not satisfy correctness ϕ3. ⊓⊔

One can prove that the scheme is indistinguishable in the generic group
model, but due to lack of space we omit the proof and instead give the details for
the more efficient construction from [BLMZ19]. The indistinguishability shows
that the malicious obfuscator is also distributional VBB in the generic group
model.

4.3 Reviewing the [BLMZ19] Construction

We now present the dual version of conjunction obfuscation by Bartesuk, Lep-
oint, Ma and Zhandry [BLMZ19], which is more efficient than the [BKM+18] con-
struction. The dual scheme takes into account evasive conjunctions with patterns
of length n, and achieves distributional virtual black box security for n−ω(log n)
wildcards in the generic group model with n + 1 group elements, rather than
2n. We start with a high-level overview of the scheme, followed by their formal
descriptions (Algorithms 4 and 5).

Definition 5. Let B be the (n+ 1)× 2n dimensional matrix
1 2 . . . 2n
1 22 . . . (2n)2

...
...

...
...

1 2n+1 . . . (2n)n+1

 .

Then matrix B has the property that any of its n + 1 columns form a full
rank matrix.

13

Algorithm 4 Obfuscator ODual(1
λ, C)

1: Sample large prime q > 22λ.
2: Select G = ⟨g⟩ of order q.
3: Let B ∈ Z(n+1)×2n

q as in Definition 5.
4: Initialize error vector e← Z2n×1

q

5: for i = 1 to n do
6: if (pati == ⋆) then
7: e2i−1 = e2i = 0
8: end if
9: if (pati == b) then

10: e2i−b = 0 ; e2i−(1−b)
$←− Zq

11: end if
12: end for
13: return B,v = gBe

To encode a pattern pat ∈ {0, 1, ⋆}n, compute a 2n dimensional error vector
e structured as follows: if the ith bit of the pattern is b, then e2i−b = 0, otherwise
e2i−(1−b) is sampled randomly from Zq. If pati = ⋆, then e2i−1 = e2i = 0. The
obfuscator outputs the encoding of the vector Be in the exponent of the group
G = ⟨g⟩, as gBe ∈ Gn+1.

On input string x ∈ {0, 1}n, the evaluation procedure solves for a vector t,
such that tB = 0 at positions 2i+(1−xi), for every i ∈ [n]. Finally, x is accepted
if tBe = 0, which is tested by computing in the group.

Algorithm 5 Evaluation Eval (with embedded data 1λ,B ∈ Z(n+1)×2n
q , v)

Input: x ∈ {0, 1}n
Output: 0 or 1

1: Define Bx ∈ Z(n+1)×n
q , where column j is set to (Bx)j = B2j−xj

2: Solve for non-zero vector t ∈ Z1×(n+1)
q such that tBx = 0

3: if (
∏n+1

i=1 vti
i == g0) then

4: return 1
5: else
6: return 0
7: end if

The correctness of the scheme is proved by Bartesuk, Lepoint, Ma and
Zhandry [BLMZ19]. They prove DVBB security (for certain parameter ranges
and for uniformly sampled patterns) in the generic group model. Bartusek et al.
[BLMZ19] claim to achieve correctness ϕ3, which informally states that for any
given input, the obfuscation is correct with overwhelming probability over the
coin tosses of the obfuscator and the program (see Definition 1).

14

4.4 Malicious Obfuscator for [BLMZ19]

To construct an obfuscated program that accepts the bad input y ∈ {0, 1}n
with noticeable advantage, we again replace random values with specially chosen
values. We assume y does not match pat (i.e. C(y) = 0 in Definition 4) otherwise
we just have to return an honest obfuscation. Hence we may assume that y does
not match the pattern in at least one entry. Since any n + 1 columns of B are

linearly independent, By ∈ Z(n+1)×n
q will have rank n and there is a unique

one-dimensional space of vectors ty ∈ Z1×(n+1)
q , such that tyBy = 0 (by the

rank-nullity theorem). Since By differs from Bx for every x that satisfies the
pattern, the vector ty differs from the vector t for any honest x.

Recall that the 2n dimensional vector e has n+w zero entries by construction.
To design a purported error vector e∗ that works with both y and the correct
inputs, we fix the n+w positions with zero entries (corresponding to the honest
obfuscation). Computing e∗ is done by finding a non-zero vector in the (2n−1)-
dimensional subspace orthogonal to tB that also has the correctly structured
zero entries.

Let E ∈ Z2n×1
q be the subspace of vectors with basis {e2i−(1−b) : pati = b}.

Let E′ = {w : w ∈ E ∧ tyBw = 0}. Since n + w are fixed zero entries, the
dimension of E′ is n − w − 1. Thus, for an input y that does not match pat,
if the obfuscator selects a vector e∗ from E′ and publishes Be∗, the evaluation
algorithm will accept y, as tyBe∗ = 0. We specify the procedure formally in
Algorithm 6.

Algorithm 6 Malicious Obfuscator ADual(1
λ, C, y ∈ {0, 1}n)

1: Sample large prime q > 22λ.
2: Select G = ⟨g⟩ of order q.
3: Let B ∈ Z(n+1)×2n

q as in Definition 5.
4: if (C(y) == 1) then
5: return ODual(1

λ, C)
6: else
7: Define By ∈ Z(n+1)×n

q , where column j is set to (By)j = B2j−yj

8: Solve for non-zero vector ty ∈ Z1×(n+1)
q such that tyBy = 0

9: Compute E ∈ Z2n×1
q with the basis {e2i−(1−b) : pati = b}

10: Compute E′ = {w : w ∈ E ∧ tyBw = 0}
11: Sample e∗ $←− E′

12: return B,v∗ = gBe∗

13: end if

Lemma 2. The program output by Algorithm 6 accepts y and all inputs x that
satisfy the pattern. Algorithm 6 violates ϕ3.

15

Proof. It is proved by Bartusek et al. [BLMZ19] that the dual scheme satisfies
ϕ3. Hence the following holds for every C and every x ∈ {0, 1}

Pr
ODual

[ODual(1
λ, C)(x) = C(x)] > 1− µ(λ)

where µ(λ) is a negligible function in λ.
Now consider ADual with some fixed master backdoor y. Let C be such that

C(y) = 0 (which is overwhelmingly the case if C corresponds to a uniformly
sampled pattern). Then ODual(1

λ, C)(y) = 1, and so

Pr
ODual

[ODual(1
λ, C)(y) = C(y)] = 0 ̸> 1− µ(λ)

This proves that ADual violates ϕ3. ⊓⊔

4.5 Indistinguishability of our Malicious Obfuscator

We now prove computational indistinguishability of the malicious and honest
obfuscators (specified in Algorithms 4 and 6) in the generic group model. The
generic group model is an abstract model of computation where a generic adver-
sary can access the group structure through oracle calls but cannot exploit the
representation of the group elements. This model is used for the security proofs
in [BKM+18, BLMZ19], so it is natural to use it here.

We use the same formulation of generic group as in Bartesuk, Lepoint,
Ma and Zhandry [BLMZ19]. Specifically, the two oracle calls available are: (i)
sub(σ1, σ2), which computes the handle corresponding to the group element x−y,
where σ1 is a handle for x and σ2 is a handle for y; (ii) isZero(σ), which returns
true if and only if the handle corresponds to the identity element of the group.

The fact that our malicious obfuscator is indistinguishable from the honest
obfuscator in the generic group model implies the distributional VBB security
of the malicious obfuscator under the same conditions as required in [BLMZ19].

We consider a distinguisher B that can request polynomially many obfuscated
programs and determine whether it is interacting with an honest or malicious ob-
fuscator. We require B to be a generic algorithm, and do not give it direct access
to the group. Instead, group elements are replaced by abstract “handles”, and
the algorithm B is required to make oracle queries to compute group operations
(where the group is viewed as an additive group).

Theorem 2. Let λ ∈ N be the security parameter and let n,w be polynomials
in λ with w = n − ω(log n). Let G be a group of prime order q > 22λ. Then
for all PPT distinguishers B in the generic group model, there exists a negligible
function µ(λ), such that for all λ ∈ N, the following holds:∣∣∣ Pr

y,B,ADual

[BADual(1
λ,·,y) = 1] − Pr

B,ODual

[BODual(1
λ,·) = 1]

∣∣∣ ≤ µ(λ)

Proof. We prove the theorem by designing a simulator that plays the role of the
challenger in the security game with B and controls the generic group oracles.

16

The intuition behind the proof is that the simulator “decides” whether to play
as an honest or malicious obfuscator only after the algorithm B has returned its
guess.

Let T be an upper bound on the number of queries made by B to the ob-
fuscation oracle. For simplicity of notation we assume all obfuscation queries
are with respect to the same parameters n,w and use the same prime q (group
order). The general case where the groups are varying is handled using a hybrid
argument. To simulate the generic group we will need to work with linear poly-

nomials in Tn variables. So we work in the ring R = Zq[X
(t)
i] for 1 ≤ i ≤ n and

1 ≤ t ≤ T .
To begin the simulator initializes a list L ← { }, which will keep track of the

generic group queries. We set t = 1, as the counter for the number of obfuscation
queries.

For each query to obfuscate a program C, the simulator first derives from C
the pattern pat. The simulator must set up the n+1 handles that will be provided
to B. Handles are strings in {0, 1}τ , where τ > log2(q). This is done in the O(C)
query part of Algorithm 7. This ensures that the group elements correspond to
Be for some vector e that satisfies the requirements of the scheme. The vector
e has length 2n, and has n+ w entries fixed to zero and n− w entries that are
supposed to be random group elements. The idea of the simulation is to treat
the n−w entries as indeterminates. Hence, in the i-th execution the simulation

introduces n − w variables X
(t)
1 , . . . , X

(t)
n (we only use n − w variables, but for

simplicity of notation we go all the way to n) and sets e to be the vector whose
non-wildcard entries are variables. The simulation then returns n + 1 random
handles to B, where each handle is associated with the polynomial that is given
by the corresponding entry of Be.

Note that, by construction, if B executes the obfuscated program on an input
that matches the pattern, then the final isZero query will return True and the
input will be accepted. On the other hand, if B executes the obfuscated program
on an input that does not match the pattern, then the final isZero query will
return False and the input will be rejected.

After polynomially many oracle queries, B outputs a bit b′. The simulator
now generates a random bit b and proceeds as follows.

If b = 0 then the simulator chooses random vectors (x
(t)
1 , . . . , x

(t)
n) ∈ Zn

q for

each 1 ≤ t ≤ T . We now fix the vector e(t) by evaluating the polynomials on

the point (x
(t)
1 , . . . , x

(t)
n). The values Be(t) are now distributed as in the honest

obfuscation. The simulation has been correct as long as all isZero queries were
answered consistently with this choice of group element. If isZero answered true
then the answer was correct, but some false answers (on non-zero polynomials)
may have been incorrect. Let Q be the number of isZero queries, which is an
upper bound on the number of non-zero polynomials F that might have had the

point (x
(1)
1 , . . . , x

(T)
n) as a root. Note that Q is bounded by a polynomial in the

security parameter. Since the non-zero polynomials F in queries to isZero are all
linear, by the Schwartz–Zippel lemma and the union bound, the probability the
simulation is incorrect is at most Q/q, which is negligible since q > 22λ.

17

Algorithm 7 Oracle handler

O(C) query:

1: Initialize e(t) ∈ R2n, where R = Zq[X
(t)
1 , . . . , X

(t)
n], to be the zero vector

2: for i = 1 to n do
3: if (pati == b) then

4: e
(t)

2i−(1−b) ← X
(t)
i

5: end if
6: end for
7: Compute (F1, . . . , Fn+1) = Be(t) ∈ Rn+1

8: Sample random handles (σ1, . . . , σn+1) from {0, 1}τ
9: L ← L ∪ {(σi, Fi)i∈[n+1]}
10: t← t+ 1
11: return (σ1, . . . , σn+1)

Sub(σi, σj) query

1: Let Fi, Fj ∈ Zq[X
(1)
1 , . . . , X

(T)
n] be such that (σi, Fi) ∈ L and (σj , Fj) ∈ L (if they

don’t exist return ⊥)
2: Let F = Fi − Fj

3: if ∃σ : (σ, F) ∈ L then
4: Return σ
5: else
6: σ

$←− {0, 1}τ
7: L ← L ∪ {(σ, F)}
8: Return σ
9: end if

isZero(σ) query

1: Let F ∈ Zq[X
(1)
1 , . . . , X

(T)
n] be such that (σ, F) ∈ L (return ⊥ if none exists)

2: if (F == 0) then
3: Return True
4: else
5: Return False
6: end if

18

Now consider the case when b = 1. Then the simulator chooses a malicious
input y ∈ {0, 1}n. This represents the choice of aux in Definition 2. Since there
are polynomially many chosen C, each corresponding to some evasive pattern
pat, then y does not satisfy any of the patterns with overwhelming probability.

Now, we imagine choosing the vectors e(t) as in the malicious scheme. Once

again, this is the same as choosing a point (x
(t)
1 , . . . , x

(t)
n) ∈ Zn

q , but this time

subject to the additional linear constraint tyBe(t) = 0. We model this by defining

additional linear polynomials F0(X
(t)
1 , . . . , X

(t)
n) that correspond to the condi-

tion tyBe(t) = 0. The simulation chooses the point (x
(t)
1 , . . . , x

(t)
n) ∈ Zn

q uni-
formly at random. Again, the only things we need to be concerned about are

whether F0(x
(t)
1 , . . . , x

(t)
n) = 0 and whether queries to isZero were answered in-

correctly. This is the same as the case b = 0, except there are T additional
linear constraints. Hence, as in the previous case, the probability the simulation
is incorrect is bounded by (Q+ T)/q, which is negligible. Let

p = Pr
B,ODual

[BODual(1
λ,·) = 1]

be the probability that B outputs 1 in the honest game. Let Fail be the event
that the simulation answers an isZero query incorrectly when b = 0. Then in the
simulation we have p = Pr[B = 1|¬Fail]. Hence, in the simulation we have

Pr
B,ODual

[BODual(1
λ,·) = 1] = pPr[¬Fail] + Pr[B = 1|Fail]Pr[Fail] = p+ µ1(λ)

for some negligible function µ1(λ).
Similarly, let Fail′ be the event that the simulation is incorrect when b = 1.

We have shown that Pr[Fail′] is negligible. When event Fail′ does not occur, the
view of B is identical to the view of B when playing the game with b = 0 against
an honest obfuscator, since none of the generic group queries have detected the
additional linear equation that is due to the malicious choice of input y. Hence

Pr [BADual = 1|¬Fail′] = p.

It follows that
Pr [BADual = 1] = p+ µ2(λ)

for some negligible function µ2(λ). This completes the proof. ⊓⊔

4.6 Auditable Obfuscator for [BLMZ19]

We now design the auditable obfuscator AODual(1
λ, C) that provides security

against the malicious obfuscator ADual(1
λ, C, y). We follow the construction of

Section 3, namely to de-randomise the obfuscation and to provide the seed for
the PRG as the proof π that the obfuscation has been correctly followed.

To be precise, ODual(1
λ, C) is expected to choose the non-zero entries ran-

domly from Zq, so our auditable obfuscator AODual uses the PRG output to

19

generate all such group elements. The algorithm AODual.Verify simply recom-
putes the obfuscation using the given seed. By Theorem 1, if the verify algorithm
accepts then the obfuscated program has the intended correctness and no mali-
cious behaviour has been introduced.

5 Malicious Obfuscation for Compute-and-Compare
Programs

Compute-and-compare obfuscation is a very general tool that solves a wide
class of obfuscation problems. In fact, almost all previous provable obfuscation
schemes for evasive functions are special cases of evasive compute-and-compare
programs. Solutions to compute-and-compare obfuscation have been given by
Wichs and Zirdelis [WZ17], and Goyal, Koppula and Waters [GKW17] (who call
it “lockable obfuscation”). The two schemes are very similar and are both based
on the learning with errors (LWE) assumption. Our techniques apply to both
schemes, but we only present the details for the obfuscation scheme by Wichs
and Zirdelis [WZ17], as this gives the main idea for both constructions.

We show that malicious obfuscators exist for compute-and-compare obfusca-
tion constructions. This is a particularly important class, since it is not necessar-
ily easy to reverse-engineer a compute-and-compare function even when given
the original program. For example, if the function computes a cryptographic
hash H then one can obfuscate the program “Does H(x) = h?” without know-
ing an accepting input. Our malicious obfuscator can sample its own secret input
x0 and compute h0 = H(x0) and ensure that the obfuscated program accepts
inputs that evaluate to h or h0, giving the malicious obfuscator a master back-
door even though it would otherwise have been hard to find an input when given
the program C in the clear.

We first recall the definition of compute-and-compare programs.

Definition 6 (Compute-and-compare programs). Let ℓin, ℓout ∈ N. Let
f : {0, 1}ℓin → {0, 1}ℓout be a polynomial-time computable function and let
α ∈ {0, 1}ℓout be a target value. A compute-and-compare program on input
x ∈ {0, 1}ℓin is defined as

CC[f, α](x) =

{
1 , if f(x) = α

0 , otherwise.

We focus on the case of evasive compute-and-compare programs, meaning
that if one samples a random y and sets α = f(y), then there is a negligible
probability that other random inputs x satisfy f(x) = α. Indeed, Wichs and
Zirdelis [WZ17] require α to have high pseudo-entropy in the security parameter
λ and the branching program length, which requires ℓout to be sufficiently large.

20

5.1 Reviewing the [WZ17] Construction

We now review the compute-and-compare construction by Wichs and Zirdelis
[WZ17] which achieves DVBB security under the learning with errors (LWE)
assumption.

For obfuscating this class of programs, the [WZ17] construction employs
GGH15 encodings by Gentry, Gorbunov and Halevi [GGH15] in a restricted
setting. We state the LWE problem by Regev [Reg09].

Definition 7 (Decisional LWE (DLWE)). Let q ∈ N be a large prime and
let n, m ∈ N. Let χ be a noise distribution over Zq. The (n, q, χ)-DLWE prob-
lem of dimension m states that the following distributions are computationally
indistinguishable:

(A, sA+ e)
c
≈ (A,u) : A

$←− Zn×m
q , s← Zn

q , e← χm,u
$←− Zm

q

Extending the work of [ACPS09], where security is achieved for a secret
s ← χn, the authors in [WZ17] show that for a noise distribution χ = χ(λ),
bounded by β = β(λ), such that H∞(χ) ≥ ω(log λ), the following holds:

(A,SA+E)
c
≈ (A,U) : A

$←− Zn×m
q ,S← χn×n,E← χn×m,U

$←− Zn×m
q

where ∥S∥∞ ≤ β, ∥E∥∞ ≤ β.
The GGH15 scheme [GGH15] encodes secrets along edges of a directed acyclic

graph, where each node u associates a matrix Au and a trapdoor tu. Encoding
a matrix S along Au ⇝ Av is given by Cu = A−1u (SuAv + E), where the
notation Cu = A−1u (Y) means Cu is a low-norm matrix such that AuCu = Y.
Multiplying encodings of Su, Sv along Au ⇝ Av ⇝ Aw satisfies the relation
AuCuCv = SuSvAw + (small error).

Wichs and Zirdelis [WZ17] restrict to a case where S is tensored with an
identity matrix Iw ∈ {0, 1}w×w and GGH15 encoding of Iw

⊗
S is computed

instead, where
⊗

denotes the Kronecker product of the matrices. They prove
semantic security under the Decisional LWE assumption:

(Au, (Iw
⊗

S)Av +E)
c
≈ (A,U)

The directed encoding scheme in [WZ17] encodes the same LWE secret S ∈ Xn×n

along multiple paths {A0 ⇝ A′0, . . . ,Aw−1 ⇝ A′w−1}.

Lemma 3. (Lattices with Trapdoors [Ajt99, GKPV10, MP12]) Let n,m, q sat-
isfy the conditions in Definition 7. There exists a pair of PPT algorithms (TrapSamp,
SampPre) defined as follows:

– (A, tA)← TrapSamp(1n, 1m, q): A randomized algorithm that samples a ma-
trix A ∈ Zn×m

q and trapdoor tA, where q ≥ 2, m > 2n log q.
– C ← SampPre(A,A′, tA): A pre-sampling algorithm that samples a low-

norm matrix C such that AC = A′, where A,A′ ∈ Zn×m
q .

21

Then for q ≥ 2, m > 2n log q, n ≥ 1, the following distributions are statistically
indistinguishable:

1. A
s
≈ Ã : (A, tA)← TrapSamp(1n, 1m, q), Ã

$←− Zn×m
q .

2. (A, tA,C)
s
≈ (A, tA, C̃) : C ← SampPre(A,A′, tA),A,A′ ← Zn×m

q ,

“small” matrix C̃← Zm×m
q .

At a high-level, the encoding scheme generates base matrix and trapdoor
(B, tB) ← TrapSamp(1w.n, 1m, q) and employs Algorithm 8 to calculate w en-
codings.

Algorithm 8 Encode(B,B′,S, tB)

1: Parse B =

 A0

...
Aw−1

 and B′ =

 A′
0

...
A′

w−1

, where Ai, A
′
i ∈ Zn×m

q

2: E← χwn×m, where E =

 E0

...
Ew−1

3: Set V = (Iw

⊗
S)B′ +E

4: return C← SampPre(B,V, tB)

The algorithms TrapSamp, SampPre and Encode all access a random tape T .
Later, we will de-randomize these algorithms by replacing T with a pseudoran-
dom generator PRG.

The compute-and-compare obfuscator encodes a function f which can be rep-
resented by a polynomial length permutation branching program, rather than any
polynomial-sized circuit. Note that, any circuit of size O

(
L
)
and depth O

(
logL

)
can be converted to permutation branching program of length polynomial in L.
In what follows, we define permutation branching programs.

Definition 8 (Permutation branching Programs). Let L,w, ℓin ∈ N and
let (x1, . . . , xℓin) ∈ {0, 1}ℓin be an input sequence. A permutation branching pro-
gram of length L and width w computes a function P : {0, 1}ℓin → {0, 1},
(x1, . . . , xℓin) 7→ P (x1, . . . , xℓin) based on a graph G defined as follows: G has
(L+ 1)w nodes grouped into L+ 1 levels of w nodes each, denoted by

{vi,j}i∈[L+1],j∈{0,1,...,w−1}.

For 1 ≤ i ≤ L+1 define I(i) ∈ {1, . . . , ℓin} to be such that I(i) ≡ i mod ℓin. At
each level i′ ≤ L, one processes input variable xI(i′) as follows: vi′,j associates
permutations πi′,0(j), πi′,1(j) which define the branch to walk to reach the nodes
vi′+1,j1 and vi′+1,j2 , j1 ̸= j2. At input (x1, . . . , xℓin), the function starts from
node v1,0 (without loss of generality) at level 1, and at each level i′ ≤ L follows

22

permutation πi′,xI(i′)(ji′) till it reaches the terminal node at level L + 1 labeled

by vL+1,b, b ∈ {0, 1}.

Consider a family of distribution ensembles D = {Dλ}λ∈N, where every
D ∈ Dλ is polynomial-time samplable. Then D determines a program collec-
tion F = {Fλ}λ∈N = {f : {0, 1}ℓin(λ) → {0, 1}ℓout(λ)}, where f is computable by
ℓout polynomial-size permutation branching programs. The [WZ17] construction
obfuscates CC[f, α] where f ∈ F and α ∈ {0, 1}ℓout such that HHILL(α|f) ≥
γ(λ, L), where γ exceeds some polynomial threshold in λ and length L of the
permutation branching program. Concretely, γ > nm log q + ω(log λ) ensures
that CC[f, α] is evasive.

Precisely, the compute-and-compare obfuscator works as follows: let (P (k))k∈[ℓout]

be a sequence of permutation branching programs corresponding to each out-
put bit of f , where the programs have a common length L and width w. For

1 ≤ k ≤ ℓout, sample matrices A
(k)
i,j with trapdoors t

(k)
i,j corresponding to nodes

v
(k)
i,j , where i ≤ L, 0 ≤ j < w. At level L + 1 of the branching program, se-

lect matrices such that A
(1)
L+1,α1

+ · · · + A
(ℓout)
L+1,αℓout

= 0 (mod q), where α =

(α1, . . . , αℓout) ∈ {0, 1}ℓout is the target value. To achieve this, sample uniformly

random matrices A
(k)
L+1,j and set A

(ℓout)
L+1,αℓout

= −
∑ℓout−1

k=1 A
(k)
L+1,αk

. Next, sam-

ple secret low-norm matrices Si,0 and Si,1 with ∥Si,b∥∞ ≤ β which are the same
across the ith levels of all the ℓout branching programs. Encode the secret matri-

ces into C
(k)
i,0 and C

(k)
i,1 following the directed encoding scheme discussed above,

such that for an input x = (x1, . . . , xℓin), the following condition is satisfied:

A
(k)
1,0

(
L∏

i=1

C
(k)
i,xI(i)

)
c
≈

(
L∏

i=1

Si,xI(i)

)
A

(k)

L+1,P (k)(x)

where the common secret
∏L

i=1 Si,xI(i)
is encoded along all the ℓout LWE samples.

In the end, the obfuscator outputs (A
(k)
1,0) and the encodings (C

(k)
i,0),C

(k)
i,1) for

i ∈ [L]. The procedure is formally specified in Algorithm 9.

On input x, the evaluation procedure calculates D(k) = A
(k)
1,0

(∏n
i=1 C

(k)
i,xI(i)

)

and checks whether
∑ℓout

k=1 D
(k) ≤ βℓout(2mβ)L−1. Note that, for an accepting

input (f(x) = α), the summation of ℓout LWE samples reduces to
∑ℓout

k=1 E
(k)

as
∑ℓout

k=1 A
(k)

L+1,P (k)(x)
= 0. Since ∥E(k)∥∞ ≤ βℓout(2mβ)L−1, the evaluation

procedure allows the input. If f(x) ̸= α, the summation of the LWE samples
will be uniformly random and contain large entries with high probability. We
give the details in Algorithm 10.

Wichs and Zirdelis prove that their compute-and-compare construction sat-
isfies correctness ϕ2, which states that for every (f, α) ← Dλ the obfuscation
is correct on all inputs x ∈ {0, 1}ℓin except with negligible probability over the
coin tosses of the obfuscator.

23

Algorithm 9 Obfuscator OCC(1
λ, (P (k))k∈[ℓout])

1: for k = 1 to ℓout do
2: Parse P (k) = (π

(k)
i,b)i∈[L],b∈{0,1}

3: Sample A
(k)
n+1,j

$←− Zn×m
q , j ∈ {0, . . . , w − 1}

4: if k = ℓout then
5: A

(ℓout)
L+1,αℓout

= −
∑ℓout−1

l=1 A
(l)
L+1,αl

6: end if

7: Set B
(k)
L+1 =

A

(k)
L+1,0

...

A
(k)
L+1,w−1

8: for i = 1 to L do

9: Sample (B
(k)
i , t

(k)
i)← TrapSamp(1wn, 1m, q) with B

(k)
i =

A

(k)
i,0

...

A
(k)
i,w−1

10: end for
11: end for
12: for i = 1 to L do
13: for b = 0 to 1 do
14: Sample Si,b ← Xn×n

15: for k = 1 to ℓout do

16: C
(k)
i,b ← Encode

(
B

(k)
i , π

(k)
i,b (B

(k)
i+1),Si,b, t

(k)
i

)
, where

π(B
(k)
i+1) =

A

(k)

i+1,π(0)

...

A
(k)

i+1,π(w−1)

17: end for
18: end for
19: end for
20: return {A(k)

1,0}k∈[ℓout], {(C
(k)
i,0 ,C

(k)
i,1)}k∈[ℓout],i∈[L]

Algorithm 10 Evaluation Eval (with embedded values 1λ, (A
(k)
1,0), (C

(k)
i,0 ,C

(k)
i,1))

and input x ∈ {0, 1}ℓin
Output: 0 or 1

1: for k = 1 to ℓout do
2: Compute D(k) = A

(k)
1,0

(∏L
i=1 C

(k)
i,xI(i)

)

3: end for

4: if (∥
∑ℓout

k=1 D(k)∥∞ ≤ β ℓout (2mβ)L−1) then
5: return 1
6: else
7: return 0
8: end if

24

5.2 Malicious Obfuscator for [WZ17]

We show a malicious obfuscator ACC for the [WZ17] construction that violates
correctness condition ϕ2. We require ACC to provide noticeable advantage in ac-
cepting a bad input, such that an efficient distinguisher, who is a priori informed
of (f , α), cannot tell apart the honest and purported obfuscation instances.

As already noted, unlike our prior constructions of malicious obfuscators,
ACC does not know the set of accepting inputs. Given CC[f, α] is evasive in
nature, finding an accepting input has a probability negligible in λ. Furthermore,
inverting f requires computations of order exponential in λ.

To design a malicious obfuscator, we sample an input y ∈ {0, 1}ℓin . We think
of y as a fixed backdoor that is used in all executions of the obfuscator. Let
α′ = f(y). Since the function is evasive we have α′ ̸= α with overwhelming
probability. Hence y should not be accepted by the input program CC[f, α]
with overwhelming probability. Recall that in the [WZ17] construction, the top-

level matrices are sampled such that A
(ℓout)
n+1,αℓout

= −
∑ℓout−1

k=1 A
(k)
L+1,αk

, while the

remaining ℓoutw−1 matrices are uniformly random in Zn×m
q . To ensure that y is

accepted by the program, we impose an additional constraint
∑ℓout

k=1 A
(k)
L+1,α′

k
= 0

mod q.
To do this, note that α′ ̸= α implies there is some index z ∈ [ℓout] such

that αz ̸= α′z. The malicious obfuscator then chooses all matrices A
(k)
L+1,j for

k ̸= z at random, and then solves A
(z)
L+1,αz

= −
∑

k ̸=z A
(k)
L+1,αk

and A
(z)
L+1,α′

z
=

−
∑

k ̸=z A
(k)
L+1,α′

k
. This ensures that ACC accepts all correct inputs, along with

y as
∑ℓout

k=1 D
(k) ≈ 0 holds for either of the cases. We describe the steps formally

in Algorithm 11.

Lemma 4. The program output by Algorithm 11 accepts y and all correct inputs
x. Algorithm 11 violates ϕ2.

Proof. To prove the above theorem, we show that ACC violates ϕ3, which implies
violating correctness ϕ2.

The fact that the [WZ17] scheme satisfies ϕ3 means: for all λ ∈ N, f ∈ F ,
α ∈ {0, 1}ℓout(λ) and x ∈ {0, 1}ℓin , the following holds

Pr
OCC

[OCC(1
λ, (P (k))k∈[ℓout]))(x) = CC[f, α](x)] > 1− µ(λ)

where µ(λ) is a negligible function in λ. In particular, for the fixed input string
y ∈ {0, 1}ℓin then we require for every (P (k))k∈[ℓout]),

Pr
OCC

[OCC(1
λ, (P (k))k∈[ℓout]))(y) = CC[f, α](y)] > 1− µ(λ).

Let CC[f, α] be such that CC[f, α](y) = 0. (This holds with overwhelming
probability in λ.) The malicious obfuscator ensures thatACC(1

λ, (P (k))k∈[ℓout]), y)
(y) = 1 with probability 1. Hence we have

Pr
ACC

[ACC(1
λ, (P (k))k∈[ℓout]), y)(y) ̸= CC[f, α](y)] > 1− µ(λ)

where µ(λ) is negligible in λ. This proves that ACC violates ϕ3. ⊓⊔

25

Algorithm 11 Malicious Obfuscator ACC

(
1λ, (P (k))k∈[ℓout]), y ∈ {0, 1}ℓin)

1: if (f(y) == α) then
2: return OCC(1

λ, (P (k))k∈[ℓout]))
3: else
4: Set α′ = f(y)

5: Compute z
$←− {1, . . . , ℓout}, s.t. α′

z ̸= αz

6: for k = 1 to ℓout do
7: Parse P (k) = (π

(k)
i,b)i∈[L],b∈{0,1}

8: Sample A
(k)
L+1,j

$←− Zn×m
q , j ∈ {0, . . . , w − 1}

9: if (k == z) then

10: A
(z)
L+1,αz

= −
∑

l ̸=z A
(l)
L+1,αl

11: A
(z)

L+1,α′
z
= −

∑
l ̸=z A

(l)

L+1,α′
l

12: end if
13: Set B

(k)
L+1 as in line 7 of Algorithm 9.

14: Sample (B
(k)
i , t

(k)
i) as in lines 8-10 of Algorithm 9.

15: end for
16: Construct C

(k)
i,j as in lines 12-19 of Algorithm 9.

17: return {A(k)
1,0}k∈[ℓout], {(C

(k)
i,0 ,C

(k)
i,1)}k∈[ℓout],i∈[L]

18: end if

5.3 Indistinguishability of Obfuscators

We now prove that, under certain conditions, our malicious obfuscation cannot
be detected by any distinguisher B who has knowledge of the program being
obfuscated and who makes at most T adaptive queries to the obfuscator. In
particular, our result requires ℓout to be large enough with respect to the LWE
parameters (n,m, q) and the value of T . This is similar to the condition on
ℓout that appears in Claim 4.12 of [WZ17]. We remark that our proof follows
an approach used in [WZ17] that ensures statistical indistinguishability, thus
computational assumptions are needed for our result.

Let (P (k))k∈[ℓout]) be a chosen compute-and-compare program and let P ′ be a
program output by the obfuscation oracle in the security game of Definition 2. As
we have noted, just knowing (P (k))k∈[ℓout]) does not imply knowledge of one or
more inputs x such that f(x) = α. However, let us assume that the distinguisher
B does know some such inputs. Then the distinguisher can run the program
P ′ on such inputs x and check they are accepted. The distinguisher can also
choose some random x′, check that f(x′) ̸= α, and run P ′(x′) to check that it
rejects such inputs. Our malicious obfuscator has chosen an input y and defined
α′ = f(y). Hence the program will accept any input x′ such that f(x′) = α′.
Such malicious behaviour could be detected by B if there are many inputs that
map under f to α′. This is why we require that f is evasive.

Theorem 3. Let D = {Dλ}λ∈N be a family of distribution ensembles, such that
(C,α) ← Dλ satisfies HHILL(α|f) ≥ γ(λ, n), where λ is the security parameter,

26

and ℓin, ℓout, L, w, n, m, q be polynomials in λ. Let (actually, it is the entropy
to be bounded) ℓout = nmT log q + ω(log λ). Then for all PPT distinguishers
B, there exists a negligible function µ(λ), such that for all λ ∈ N, for all pairs
ACC(1

λ, ·, y) and OCC(1
λ, ·), the following holds:∣∣∣ Pr

y,B,ACC

[BACC(1λ,·,y) = 1]− Pr
B,OCC

[BOCC(1λ,·) = 1]
∣∣∣ ≤ µ(λ)

Proof. The only difference between the honest and malicious obfuscator is line
7 of Algorithm 11. We have to recall that the distinguisher can request up to T
obfuscations of chosen circuits, including repeated obfuscations of the same cir-
cuit. Hence, for the worst case we assume that there are T requests to obfuscate
the same f and α, and for which the malicious obfuscator would insert the same
backdoor α′ = f(y). The computation in line 7 is

A
(z)
L+1,α′

z
= −

∑
l ̸=z

A
(l)
L+1,α′

l
=
∑
l ̸=z

(α′l(A
(l)
L+1,0 −A

(l)
L+1,1)−A

(l)
L+1,0.

Following the same proof technique as [WZ17], we view A
(z)
L+1,α′

z
as the output

of a universal hash function h(α′1, . . . , α
′
ℓout

) =
∑ℓout−1

k=1 (α′k(A
(k)
0 −A

(k)
1)−A

(k)
0

for certain matrices A
(k)
0 ,A

(k)
1 (we set A

(z)
b = 0). As this is repeated up to T

times, we concatenate all T output matrices. The output set of the hash function
is thus (Zn×m

q)T , which has size qnmT . This family is universal. Furthermore,
the entropy of α is bounded as HHILL(α

′
1, . . . , α

′
ℓout
|f) ≥ nmT log q + ω(log λ)

and thus, by the leftover-hash lemma, the hash values (being the T maliciously
formed matrices) are statistically indistinguishable from uniformly random. ⊓⊔

5.4 Auditable Obfuscator for [WZ17]

We now give the construction of our auditable obfuscatorAOCC

(
1λ, (P (k))k∈[ℓout]))

that provides security against ACC

(
1λ, (P (k))k∈[ℓout]), y). In particular, we incor-

porate a verification procedure to ensure that the obfuscated program satisfies
correctness ϕ2. We follow the construction of Section 3, namely to de-randomise
the obfuscation and to provide the seed for the PRG as the proof π that the
obfuscation has been correctly followed. Recall that the malicious obfuscator
(see Algorithm 11) samples the top-level matrices with an additional constraint∑ℓout

k=1 A
(k)
n+1,α′

k
= 0 instead of sampling them uniformly at random from Zn×m

q .

This malicious behaviour is prevented by the auditable obfuscator enforcing that
all matrices are chosen at random as required. Hence the auditor should defi-
nitely confirm the generation of all ℓoutw− 1 of the top level matrices. Applying
Theorem 1, if the verify algorithm accepts then the obfuscated program has the
intended correctness and no malicious behaviour has been introduced.

6 Other Obfuscation Schemes

We now show examples of randomised obfuscators that cannot be exploited to
allow a master backdoor input. In particular, we discuss the obfuscation scheme

27

for fuzzy matching under Hamming distance [GZ19]. We show that its correct-
ness proof is incomplete, but that a small tweak gives perfect correctness and
so a malicious backdoor cannot be inserted. We also briefly review the [BMZ19]
scheme by Bartusek, Ma and Zhandry and show that the natural attempt to
introduce a backdoor into their scheme is easily detected.

6.1 Reviewing the [GZ19] Construction

The hamming-ball membership obfuscator [GZ19] achieves DVBB security based
on the distributional decisional modular subset product assumption. We write ∆
for the hamming distance between binary strings.

Definition 9 (Hamming-Ball Membership Programs). Let r, ℓ ∈ N. Let
Hamα,r denote a hamming-ball of radius r < ℓ around the center α ∈ {0, 1}ℓ. A
hamming-ball membership program P : {0, 1}ℓ → {0, 1} on an input x ∈ {0, 1}ℓ
is defined as

PHamα,r (x) =

{
1 , if ∆(α, x) ≤ r

0 , otherwise.

The authors restrict to “evasive” hamming-ball membership programs P =
{PHamα,r

: α← D}, where distribution D ∈ {0, 1}ℓ has high min-entropy.

Definition 10 (Distributional Decisional Modular Subset Product As-
sumption [GZ19]). Let λ ∈ N be the security parameter and let r, ℓ be poly-
nomials in λ, with r < ℓ

2 −
√
ℓλ log 2. Let D be a distribution over {0, 1}ℓ

with hamming-ball min-entropy λ. Let B ∈ N be such that B = O(ℓ log(ℓ)).
The distributional decisional modular subset product assumption, denoted by
(ℓ, r, B,D)−DMSP states that the following distributions on ((pi)i∈[ℓ], q, A) are

computationally indistinguishable: The first distribution samples (α1, . . . , αℓ)
$←−

D, (p1, . . . , pℓ) a sequence of distinct primes sampled uniformly from {2, . . . , B},
q a uniformly sampled safe prime in {Br, . . . , (1 + o(1))Br}, and A =

∏ℓ
i=1 p

αi
i

mod q. The second distribution samples (p1, . . . , pℓ) and q in the same way, but
samples A uniformly in Z∗q .

For correctness the [GZ19] scheme uses an auxiliary point-function obfuscator
OPT (with ϕ2 correctness) which encodes c ∈ {0, 1}ℓ in a point function f :
{0, 1}ℓ → {0, 1} defined as fc(x) = 1 if x = c, and 0 otherwise.

The hamming-ball membership obfuscator works as follows: to encode α in a
hamming ball Hamα,r, sample distinct primes (p1, . . . , pℓ) uniformly at random
in {2, . . . , B}, together with a large prime modulus q (safe prime), such that∏

i∈I pi < q
2 , for all I ⊂ {1, . . . , ℓ}, |I| ≤ r. The final step is to compute A =∏ℓ

i=1 p
αi
i mod q andOPT (α), and publish the values, along with the ℓ+1 primes.

The formal procedure is given in Algorithm 12.
On input x ∈ {0, 1}ℓ, the evaluation procedure computes X =

∏ℓ
i=1 p

xi
i

mod q and E = AX−1 mod q. The idea is to recover the error vector (ei)i∈[ℓ] ∈
{−1, 0, 1}ℓ from E =

∏ℓ
i=1 p

αi−xi
i mod q using the convergents of the continued

28

fraction representation of E
q . Note that, E can be expressed as ND−1 mod q,

where N =
∏ℓ

i=1 p
ui
i mod q, D =

∏ℓ
i=1 p

vi
i mod q, ui, vi ∈ {0, 1} and uivi = 0

for all i. Then, there exists an s ∈ Z, such that ED = N+sq holds. By Theorem
4, s

D is a convergent of E
q when ND < q

2 (which happens when PHamα,r
(x) = 1).

The evaluation algorithm computes the set C of convergents of E
q . This enables

extracting s
D , followed by recovering ui, vi and reconstructing the error vector

(ei)i∈[ℓ]. More specifically, for each h
k ∈ C, k and kE mod q are factored over

(p1, . . . , pℓ) using Algorithm 13 to determine N and D that contains distinct
primes from the sequence, subsequently flipping bits in (ei)i∈[ℓ]. At the end, the
algorithm compares OPT (x ⊕ e) with α′. If x ̸∈ Hamα,r, then with high prob-
ability the factors of N , D will not be unique and/or not contained in (pi)i∈[ℓ]
and the algorithm correctly rejects the input. We give details in Algorithm 14.

Algorithm 12 Obfuscator OH(1λ, P,OPT)

1: Sample distinct primes (p1, . . . , pℓ) randomly from {2, . . . , B}, where B = O
(
ℓ log ℓ

)
2: Sample safe prime q such that

∏
i∈I pi <

q
2
, for all I ⊂ {1, . . . , ℓ}, |I| ≤ r

3: A←
∏ℓ

i=1 p
αi
i mod q

4: Compute α′ ← OPT (α)
5: return ((p1, . . . , pℓ), q, A, α′)

Definition 11 (Continued Fractions and Convergents). Let z ∈ Q. The
continued fraction representation of z is of the form

z = a0 +
1

a1 +
1

. . . +
1

an

where ai ∈ N+ for i > 0 and a0 ∈ N. The mth convergent of z, given by hm

km
, is

defined as hm = amhm−1+hm−2 h−1 = 1, h−2 = 0, km = amkm−1+km−2 k−1 =
0, k−2 = 1. where 0 ≤ m ≤ n, hm, km are co-prime integers.

Theorem 4 (Diophantine Approximation). Let β ∈ R. Then, there exists
p
q ∈ Q, such that for |β − p

q | <
1

2q2 ,
p
q is a convergent of β.

Galbraith and Zobernig are not precise about the correctness guarantees of
their scheme. They show that every input within the hamming ball Hamα,r is
correctly accepted by the obfuscator, but they do not discuss whether every input
outside the set is rejected with overwhelming probability. In fact, it seems that
there will typically be some points just outside the boundary of the Hamming
ball Hamα,r which will be accepted by the program (based on the choice of primes

29

(p1, . . . , pℓ)). So the scheme does not have ϕ2 correctness, but it probably has ϕ3

correctness. Perfect correctness can be achieved by adding an extra check in line
11 of Algorithm 14: check that the Hamming weight of e is ≤ r. This additional
correctness check prevents malicious obduscation for the [GZ19] scheme.

Algorithm 13 Factor((p1, . . . , pℓ), a ∈ N)

1: F ← { };
2: for i = 1 to ℓ do
3: if pi|a then
4: a← a/pi
5: end if
6: end for
7: if (a == 1) then
8: return F
9: else
10: return ⊥
11: end if

6.2 Reviewing the [BMZ19] Construction

We now discuss the non-malleable point-function obfuscation scheme by Bar-
tusek, Ma and Zhandry [BMZ19] that follows correctness ϕ3 and achieves DVBB
in the generic group model. Let G = ⟨g⟩ be a group of prime order 2λ−1 < q < 2λ,
where λ is the security parameter. For a fixed x ∈ Zq, sample public val-

ues a, b, c
$←− Zq and publish gP (x), gQ(x), gR(x) as the obfuscation of x, where

P (x) = ax+ x2 + x3 + x4 + x5, Q(x) = bx+ x6, R(x) = cx+ x7. The evaluation
procedure simply calculates the three polynomials, maps them to the exponent
space, and finally compares the values with the published obfuscation. Note that,
there are at most four roots y ̸= x of the fifth-degree polynomial P (x), and for
each such value, (x6−y6)+(x−y)b = 0 and (x7−y7)+(x−y)c = 0 with negligi-
ble probability by a union bound. Having a secret backdoor input y would imply
the following holds: P (x) = P (y), Q(x) = Q(y) and R(x) = R(y). This can be
detected by a poly-time distinguisher B who knows x. By the same argument,
there does not exist a malicious obfuscator for the point-function obfuscator by
Fenteany and Fuller [FF20].

7 Conclusions

One of the open challenges in this area would be to develop more efficient ver-
ification algorithms, so that an auditor does not need to do roughly the same
work as the obfuscator.

30

Algorithm 14 Evaluation Eval(with embedded values 1λ, (pi)i∈[ℓ], q, A, α′,OPT)

Input: ℓ = ℓ(λ), x ∈ {0, 1}ℓ
Output: 0 or 1

1: X ←
∏ℓ

i=1 p
xi
i mod q ; E ← AX−1 mod q ; C ← {h

k
: h

k
is a convergent of E

q
}

2: for h
k
∈ C do

3: e← (0, . . . , 0) ∈ {0, 1}ℓ
4: F ← Factor((pi)i∈[ℓ], k); F ′ ← Factor((pi)i∈[ℓ], kE mod q)
5: if F ̸=⊥ and F ′ ̸=⊥ then
6: for i = 1 to ℓ do
7: if pi ∈ F ∪ F ′ then
8: ei ← 1
9: end if
10: end for
11: if (α′ == OPT (x⊕ e)) then
12: return 1
13: end if
14: end if
15: end for
16: return 0

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In Advances in Cryptology-CRYPTO 2009: 29th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, pages 595–618. Springer, 2009.

Ajt99. Miklós Ajtai. Generating hard instances of the short basis problem. In
Automata, Languages and Programming: 26th International Colloquium,
ICALP’99 Prague, Czech Republic, July 11–15, 1999 Proceedings 26, pages
1–9. Springer, 1999.

BBC+14. Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth,
and Amit Sahai. Obfuscation for evasive functions. In Theory of Cryptog-
raphy Conference, pages 26–51. Springer, 2014.

BGI+12. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. Journal of the ACM (JACM), 59(2):1–48, 2012.

BGJS16. Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai.
Verifiable functional encryption. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, volume 10032 of Lecture Notes in Computer
Science, pages 557–587, 2016.

BKM+18. Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana
Raykova, and Kevin Shi. A simple obfuscation scheme for pattern-matching
with wildcards. In Annual International Cryptology Conference, pages 731–
752. Springer, 2018.

BLMZ19. James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New
techniques for obfuscating conjunctions. In Annual International Confer-

31

ence on the Theory and Applications of Cryptographic Techniques, pages
636–666. Springer, 2019.

BMZ19. James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between
fixed and random generators in group-based assumptions. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II
39, pages 801–830. Springer, 2019.

BR17. Zvika Brakerski and Guy N Rothblum. Obfuscating conjunctions. Journal
of Cryptology, 30(1):289–320, 2017.

CCK+22. Ran Canetti, Suvradip Chakraborty, Dakshita Khurana, Nishant Kumar,
Oxana Poburinnaya, and Manoj Prabhakaran. Coa-secure obfuscation and
applications. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 731–758. Springer, 2022.

Col18. Christian Collberg. Code obfuscation: Why is this still a thing? In Proceed-
ings of the Eighth ACM Conference on Data and Application Security and
Privacy, pages 173–174, 2018.

Col23. C. Collberg. the tigress c obfuscator. https://tigress.wtf/index.html,
2023.

CV09. Ran Canetti and Mayank Varia. Non-malleable obfuscation. In Theory of
Cryptography Conference, pages 73–90. Springer, 2009.

FF20. Peter Fenteany and Benjamin Fuller. Same point composable and nonmal-
leable obfuscated point functions. In Applied Cryptography and Network
Security: 18th International Conference, ACNS 2020, Rome, Italy, October
19–22, 2020, Proceedings, Part II 18, pages 124–144. Springer, 2020.

GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilin-
ear maps from lattices. In Theory of Cryptography: 12th Theory of Cryptog-
raphy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part II 12, pages 498–527. Springer, 2015.

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption, 2010.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 612–621. IEEE, 2017.

GR07. Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. In
Theory of Cryptography Conference, pages 194–213. Springer, 2007.

GZ19. Steven D Galbraith and Lukas Zobernig. Obfuscated fuzzy hamming dis-
tance and conjunctions from subset product problems. In Theory of Cryp-
tography Conference, pages 81–110. Springer, 2019.

HMLS07. Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for
cryptographic purposes. In Theory of Cryptography Conference, pages 214–
232. Springer, 2007.

Int21. InterTrust. Whitecryption code protection.
https://theiabm.org/wp-content/uploads/2021/02/

whitecryption-code-protection-obfuscation-data-sheet.pdf, 2021.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Eurocrypt, volume 7237, pages 700–718. Springer,
2012.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

32

https://tigress.wtf/index.html
https://theiabm.org/wp-content/uploads/2021/02/whitecryption-code-protection-obfuscation-data-sheet.pdf
https://theiabm.org/wp-content/uploads/2021/02/whitecryption-code-protection-obfuscation-data-sheet.pdf

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-
grams under lwe. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 600–611. IEEE, 2017.

ZGR19. Lukas Zobernig, Steven D Galbraith, and Giovanni Russello. When are
opaque predicates useful? In 2019 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 168–175. IEEE, 2019.

33

	Auditable Obfuscation

