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ABSTRACT
Fully homomorphic encryption (FHE) can perform computations on
encrypted data, allowing us to analyze sensitive data without losing
its security. The main issue for FHE is its lower performance, espe-
cially for high-precision computations, compared to calculations
on plaintext data. Making FHE viable for practical use requires both
algorithmic improvements and hardware acceleration. Recently,
Klemsa and Önen (CODASPY’22) presented fast homomorphic al-
gorithms for high-precision integers, including addition, multipli-
cation and some fundamental functions, by utilizing a technique
called redundant representation. Their algorithms were applied on
TFHE, which was proposed by Chillotti et al. (Asiacrypt’16).

In this paper, we further accelerate this method by extending
their algorithms to multithreaded environments. The experimental
results show that our approach performs 128-bit addition in 0.41
seconds, 32-bit multiplication in 4.3 seconds, and 128-bit Max and
ReLU functions in 1.4 seconds using a Tesla V100S server.

CCS CONCEPTS
• Security and privacy→ Public key encryption; • Computer
systems organization→Multicore architectures.
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1 INTRODUCTION
Fully homomorphic encryption (FHE), proposed by Gentry [17], has
attracted attention in the research domain of privacy-preserving
applications since it can carry out arbitrary operations in encrypted
form. However, it remains a challenge to efficiently perform high-
precision operations on encrypted data. BGV [6], BFV [16], and
CKKS [7], which are called leveled homomorphic schemes, rely on
polynomial evaluations or arithmetic approximations to perform
arbitrary functions. It has been shown that the time complexity
of polynomial evaluations grows exponentially with increasing
precision (see, e.g. [24]). For CKKS, since bit precision decreases in
the process of performing operations, developersmust pay attention
to the lower bit precision bound throughout the entire process [14].

Another type of FHE is called the fast bootstrapping scheme,
which started with GSW [18] and was developed into FHEW [15]
and TFHE [8, 9]. Bootstrapping is an essential procedure for FHE,

which contains noise in its ciphertext. Repeatedly performing ho-
momorphic operations on ciphertexts will increase noise and cause
decryption errors. Through bootstrapping, the noise in the cipher-
text can be homomorphically initialized. A main feature of TFHE is
its ability to evaluate an arbitrary discrete function (with a look-
up table (LUT)) at no additional cost during bootstrapping. This
procedure is called programmable bootstrapping (PBS) [11] or func-
tional bootstrapping [4]. Unlike conventional gate bootstrapping
[9], which deals with binary ciphertexts, PBS can support multi-bit
ciphertexts.

Since the plaintext space per ciphertext is limited in practice, it is
more challenging to efficiently evaluate arbitrary arithmetic opera-
tions and functions with high precision. For instance, the plaintext
space for TFHE can be at most 8 bits in the latest implementation.
It is not straightforward to evaluate arbitrary high-precision opera-
tions efficiently by combining small-precision ciphertexts only.

To compute any function with arbitrary precision in TFHE, a
few methods have been proposed: CMux-Tree [9], tree-based PBS
[4, 19], and WoP-PBS [3]. However, all of these methods fundamen-
tally require an exponential number of PBS or CMux executions.
For some arithmetic operations and discrete functions, there are
several methods of computing high-precision operations efficiently:
the chaining method [19] and arithmetic algorithms with radix-
based encoding [9, 19], CRT-based encoding [3], and redundant
representation (RR) encoding [13]. Among the above encoding tech-
niques, both RR- and CRT-based encodings offer parallel addition.
Furthermore, RR encoding can construct some fundamental func-
tions such as comparison and max functions because RR encoding
preserves the numerical order of multiple ciphertexts.

In this work, we focus on homomorphic algorithms with RR
encoding, since it is multithread friendly and acceleration by a
GPU can be effective for high-precision numbers. We extend exist-
ing algorithms with RR encoding to multithreaded environments
and implement them efficiently using the CUDA language. The
algorithms we target are as follows: homomorphic addition, scalar
multiplication, multiplication, the sign function, comparison, max,
the rectified linear unit (ReLU) and a conversion function from
binary to RR encoding. We also provide comparative experimental
results with up to 128-bit precision under fair conditions and an
open-source code for third-party evaluation1. To the best of our
knowledge, this is the first hardware acceleration and evaluation
1Our code is publicly available at https://github.com/sh-narisada/cuParmesan.
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method for algorithms on TFHE with RR encoding. We believe
that our work will contribute to the practical realization of FHE on
high-precision integers.

The rest of the paper is organized as follows. Section 2 describes
the notation and preliminaries. In Section 3, we describe previous
works. Section 4 presents our extended algorithms. We evaluate our
acceleration performance in Section 5. Section 6 gives concluding
remarks.

2 PRELIMINARIES
We summarize the symbols used in this work in Table 1. An LWE
sample and a TLWE sample are defined as follows.

Table 1: Notation

Notation Description
𝒂 Vector
⟨𝒂, 𝒃⟩ Inner product of two vectors 𝒂 and 𝒃

Z𝑞 = Z/𝑞Z Quotient ring modulo 𝑞 ∈ Z
T = R/Z = [0, 1) Torus
B = Z2 = {0, 1} Binary

X𝑚 Set of𝑚-dimensional vectors consisting of
elements from a set X

𝑎
$← X 𝑎 is sampled uniformly from the set X

𝑎 ← N(𝜇, 𝜎2) 𝑎 is a real number sampled from a normal
distribution with mean 𝜇 and variance 𝜎2

Definition 2.1 (LWE Sample). An LWE sample is a pair (𝒂, 𝑏) ∈
Z𝑚+1𝑞 , where 𝑏 = ⟨𝒂, 𝒔⟩ + ⌊𝑒⌉ mod 𝑞, 𝒂

$← Z𝑚𝑞 , 𝒔
$← B𝑚 and 𝑒 ←

N(0, 𝜎2).

Definition 2.2 (TLWE Sample). A TLWE sample is a pair (𝒂, 𝑏) ∈
T𝑚+1, where 𝑏 = ⟨𝒂, 𝒔⟩ + 𝑒 mod 1, 𝒂

$← T𝑚 , 𝒔
$← B𝑚 and 𝑒 ←

N(0, 𝜎2).

The only difference between the LWE and TLWE samples is
whether the element is in Z𝑞 or T. In the TFHE implementation,
we always use a discrete torus with fixed precision (e.g., 32-bit
or 64-bit). In this paper, any real number from a discrete torus
is converted to an integer in Z𝑞 . Namely, a discrete torus with 𝑞

elements {0/𝑞, 1/𝑞, . . . , (𝑞 − 1)/𝑞} ⊂ T is regarded as Z𝑞 . We define
an LWE ciphertext as follows:

Definition 2.3 (LWE Ciphertext). An LWE ciphertext is 𝒄 = (𝒂, 𝑏)
∈ Z𝑚+1𝑞 , where 𝑏 = ⟨𝒂, 𝒔⟩ + Δ𝑥 + ⌊𝑒⌉, 𝒂 $← Z𝑚𝑞 , 𝒔

$← B𝑚 and
𝑒 ← N(0, 𝜎2).

We call 𝒔 the secret key. We use𝑚 from vector 𝒔 as the key length.
𝑥 ∈ Z𝑝 is a plaintext with a log2 𝑝-bit plaintext space. Δ = 𝑞/𝑝
denotes a scaling factor, which moves 𝑥 to the most significant bit
(MSB) of the LWE ciphertext. In this paper, we set log2 𝑞 = 64 (the
ciphertext space is 64-bit) and log2 𝑝 = 5 (the plaintext space is
5-bit without padding), and we do not switch between different
plaintext space sizes. An LWE ciphertext that encrypts 𝑥 is denoted
by LWE(𝑥). LWE(𝒙) = [LWE(𝑥0), . . . , LWE(𝑥𝑛−1)] is a list of LWE
ciphertexts encrypted from a list of plaintexts 𝒙 = [𝑥0, . . . , 𝑥𝑛−1].

Ring-LWE (RLWE) is a generalization of LWE from a quotient to
a polynomial ring. An RLWE ciphertext with an 𝑁 -degree polyno-
mial encrypts an 𝑁 -dimensional plaintext vector. An RLWE cipher-
text that encrypts a plaintext vector ℓ ∈ Z𝑁 is written as RLWE(ℓ).
Typically, 𝑁 is chosen from among 29, 210, 211 and 212. TFHE uses
both LWE and RLWE ciphertexts for encryption.

TFHE supports elementwise homomorphic addition and elemen-
twise homomorphic scalar multiplication: given two ciphertexts
LWE(𝑥1) and LWE(𝑥2), we can see that LWE(𝑥1) + LWE(𝑥2) =
LWE(𝑥1 + 𝑥2). For a ciphertext LWE(𝑥) and a (small) plaintext 𝑘 ,
we have 𝑘 · LWE(𝑥) = LWE(𝑘 · 𝑥). To achieve full homomorphism,
we need an additional operation called programmable bootstrap-
ping (PBS).

Definition 2.4 (PBS). The inputs of PBS are an LWE ciphertext
LWE(𝑥), a bootstrapping key bsk and an RLWE ciphertextRLWE(ℓ)
that encrypts a vector ℓ representing a discrete negacyclic function
(LUT) 𝑓 whose output is log2 𝑝-bit. PBS outputs LWE(𝑓 (𝑥)).

PBS consists of three procedures: modulus switching, blind rota-
tion and sample extraction. For a negacyclic function, it satisfies
𝑓 (𝑥 + 𝑝/2) = −𝑓 (𝑥), 𝑥 ∈ Z±𝑝/2 = {−𝑝/2, . . . , 𝑝/2 − 1} (Z±𝑝/2
is a signed representation of Z𝑝 ). We use the same notation for
the function 𝑓 as in [20]. Namely, a log2 𝑝-bit negacyclic function
𝑓 : Z±𝑝/2 → Z±𝑝/2 is written as a list. Let f ∈ Z𝑝/2±𝑝/2 be the list
of function values for the input range [0, 𝑝/2 − 1]. The remaining
half, for the input range [−𝑝/2,−1], is given by negacyclicity. For
instance, given f = [0, 1, 0,−1] with 𝑝 = 4, the negacyclic part is
defined as [0,−1, 0, 1]. We also use the ellipsis ∥ when we want
to explicitly show a negative part of the function. For example,
f = [0, 1 ∥ 0, 1] is an alternative representation of the same function
for the input range [0, 1 ∥ − 2,−1]. If 𝑓 is a non-negacyclic function,
we can convert it to a negacyclic function using an additional bit.

PBS changes the secret key from 𝒔 ∈ B𝑚 to 𝒔′ ∈ B𝑁 by homo-
morphically re-encrypting the LWE ciphertext LWE(𝑥) with the
new secret key 𝒔′. This initializes the noise accumulated in the LWE
ciphertext encrypted with the old key 𝒔. To restore the original key
length, LWE-to-LWE key switching (KS) is used.

Definition 2.5 (KS). The inputs of KS are an LWE ciphertext
LWE(𝑥) encrypted by a secret key 𝒔′ and a key-switching key ksk.
The KS outputs LWE(𝑥) encrypted by a secret key 𝒔.

In this paper, we follow the DP-KS-PBS scheme in [3, 11]. The dot
product (DP) represents any sequence composed of elementwise
homomorphic addition, scalar multiplication and other elementwise
operations such as sign negation and substitution between a list of
LWE ciphertexts. We apply KS after DP by switching the key from
𝒔′ to 𝒔. Immediately after KS, PBS is executed to initialize the noise
accumulated by DP and KS and restore the key from 𝒔 to 𝒔′.

3 RELATEDWORK
This section describes about redundant representation (RR), parallel
addition and parallel homomorphic algorithms with RRs proposed
by Klemsa and Önen [20].
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3.1 Redundant Representation and Parallel
Addition

For a base 𝛽 ≥ 2, we call 𝒙 = [𝑥𝑛−1, . . . , 𝑥1, 𝑥0] ∈ {−𝛽 + 1,−𝛽 +
2, ..., 𝛽 − 1}𝑛 the base-𝛽 RR of 𝑋 ∈ Z iff

𝑋 =

𝑛−1∑︁
𝑖=0

𝛽𝑖𝑥𝑖 . (1)

We may write 𝒙 as a string 𝑥𝑛−1 · · · 𝑥1𝑥0. For example, 1̄10 is a
base-2 RR of −2, where 1̄ denotes −1. We assume that 𝑥𝑖 = 0 for
𝑖 < 0. The base-𝛽 RR is a generalization of the standard base-𝛽
representation. There exist multiple RRs for an integer 𝑋 .

Addition with RRs can eliminate carry propagation and allow
parallelization. Avizienis presented a parallel algorithm for addition
using RRs with 𝛽 = 10 [2]. Later, Chow and Robertson improved
the algorithm with base-2 RRs [12].

We consider the case of 𝛽 = 2, which maximizes the number
of parallels. Let A = {1̄, 0, 1} be an integer set of an RR. Each
element of A is encrypted as 31, 0, 1 with an unsigned integer or as
−1, 0, 1 with a signed integer using plaintext space log2 𝑝 = 5 on
the multivalue TFHE.

3.2 Homomorphic Operations with RR
Encoding

In this section, we briefly explain homomorphic algorithms with
the RR encoding presented in [20].

3.2.1 Homomorphic Addition.

The inputs of homomorphic addition with RRs are LWE cipher-
texts LWE(𝒙) and LWE(𝒚) for the𝑛-bit RR 𝒙,𝒚 ∈ A𝑛 , which encode
𝑛-bit integers 𝑋 and 𝑌 . The outputs are LWE ciphertexts LWE(𝒛)
of the 𝑛-bit RR 𝒛 encoding an integer 𝑍 satisfying 𝑍 = 𝑋 + 𝑌 .

Klemsa and Önen presented several parallel addition algorithms
for TFHE using RRs with 𝛽 = 2 and 𝛽 = 4 [20]. We focus on the most
efficient algorithm with 𝛽 = 2, described in Algorithm 1. We begin
by giving the outline. LWE(𝑥) is occasionally abbreviated as 𝑥 for
simplicity. First,𝑤𝑖 ← 𝑥𝑖+𝑦𝑖 is computed in parallel by elementwise
addition. Next, 𝑞𝑖 is calculated by elementwise addition and scalar
multiplication. In Line 4, PBS with a function 𝑓𝑞 is applied to each 𝑞𝑖 .
𝑓𝑞 is a function defined as [0, 0, 0, 0, 1, 1, 1, 1, 1 ∥−1,−1,−1,−1, 0, 0, 0];
i.e., 𝑓𝑞 (𝑥) = 1 if 4 ≤ 𝑥 ≤ 8, 𝑓𝑞 (𝑥) = −1 if −8 ≤ 𝑥 ≤ −4, and
𝑓𝑞 (𝑥) = 0 otherwise.

In the original paper, the number of bits for 𝒛 was set to 𝑛 + 1
to store the carry bit. We unify the number of bits for the input
and output as 𝑛; i.e., we do not compute𝑤𝑛, 𝑞𝑛 and 𝑧𝑛 . If overflow
occurs, we address it by simply selecting a larger 𝑛. In Line 6,
the 2-bit identity function 𝑓𝐼 (𝑥) = 𝑥 for 𝑥 ∈ {0, 1,−1}, defined
as [0, 1, 0,−1], is evaluated by PBS. Note that 𝑓𝐼 is essential for
removing the noise accumulated on𝑤𝑖 . PBS involves 2𝑛 executions,
and the number of parallel operations is 𝑛.

3.2.2 Homomorphic Scalar Multiplication.
The inputs of the arithmetic are a plaintext 𝑘 ∈ Z and LWE cipher-
texts LWE(𝒙) of the 𝑛-bit RR 𝒙 ∈ A𝑛 , which encode an 𝑛-bit integer
𝑋 ∈ Z. The outputs are the LWE ciphertexts LWE(𝒛) of the 𝑛-bit RR
𝒛 encoding an integer 𝑍 satisfying 𝑍 = 𝑘×𝑋 . Algorithm 2 describes

Algorithm 1: ParallelAdd [20]
Input: 𝑛-bit RRs 𝒙,𝒚 ∈ A𝑛 of 𝑋,𝑌 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑋 + 𝑌

1 for 𝑖 ∈ [0, 𝑛 − 1] in parallel do
2 𝑤𝑖 ← 𝑥𝑖 + 𝑦𝑖
3 𝑞𝑖 ← 𝑤𝑖−1 + 3𝑤𝑖 ⊲ sync threads
4 𝑞𝑖 ← 𝑓𝑞 (𝑞𝑖 ) ⊲ PBS
5 𝑧𝑖 ← 𝑤𝑖 − 2𝑞𝑖 + 𝑞𝑖−1 ⊲ sync threads
6 𝑧𝑖 ← 𝑓𝐼 (𝑧𝑖 ) ⊲ PBS
7 return 𝒛

homomorphic scalar multiplication, which is performed with at
most𝑚/2 additions, where𝑚 is the length of the binary string 𝒌 of
|𝑘 |. |𝑘 | is the absolute value of 𝑘 . Since 𝒌 is plaintext, we can skip
the addition for 𝑘𝑖 = 0. Moreover, the number of occurrences of 1
and 1̄ in 𝒌 can be reduced by conversion from binary to redundant,
as shown in Lines 4 and 5, where 𝒔 ⊑ 𝒌 means that 𝒔 is a substring
of 𝒌 .

Homomorphic left shift for LWE ciphertexts 𝒙 can be performed
by popping an LWE ciphertext and appending an LWE ciphertext of
zeros: LWE(𝒙 ≪ 1) = [LWE(𝑥𝑛−2), . . . , LWE(𝑥0), LWE(0)]. The
sign function sgn(𝑘) is applied at the end of the algorithm. PBS
requires at worst𝑚𝑛 executions, and the number of parallel opera-
tions is 𝑛 since we need at most𝑚/2 homomorphic additions and
each addition requires 2𝑛 PBSs.

Algorithm 2: ParallelScalarMul [20]
Input: 𝑛-bit RR 𝒙 ∈ A𝑛 of 𝑋 ∈ Z, 𝑘 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑘 × 𝑋

1 𝒌 ← standard binary representation of |𝑘 | with𝑚 bits
2 while 01𝑟 ⊑ 𝒌 for some 𝑟 ≥ 2 do
3 for the largest 𝑟 , replace 01𝑟 with 10𝑟−11̄

4 end
5 replace every 1̄1 with 01̄

6 𝒛 ← 0
7 for 𝑖 ∈ [0,𝑚 − 1], 𝑘𝑖 ≠ 0 do
8 𝒛 ← ParallelAdd(𝒛, 𝑘𝑖 · (𝒙 ≪ 𝑖))
9 return sgn(𝑘) · 𝒛

3.2.3 Homomorphic Multiplication.

Klemsa et al. also demonstrated parallel homomorphic multi-
plication for RRs in their implementation [21]. The input is a pair
of LWE ciphertexts LWE(𝒙) and LWE(𝒚), which encode 𝑛-bit in-
tegers 𝑋 and 𝑌 . The outputs are LWE ciphertexts LWE(𝒛), which
encode an integer 𝑍 satisfying 𝑍 = 𝑋 × 𝑌 . We give the pseudocode
in Algorithm 3.

First, we want to compute the homomorphic multiplication of
two LWE ciphertexts LWE(𝑥𝑖 ·𝑦 𝑗 ) for each 𝑖, 𝑗 . LWE(𝑥𝑖 ·𝑦 𝑗 ) can be
calculated by one PBS with 𝑓× defined as [0, 0,−1, 0, 1 ∥1, 0,−1, 0].
We can verify that 𝑓× (3𝑥 + 𝑦) = 𝑥 · 𝑦 for 𝑥,𝑦 ∈ {−1, 0, 1}. Then, we
sum 𝑛 vectors𝒘 𝑗 for 0 ≤ 𝑗 ≤ 𝑛 − 1 to 𝒛 by calling the ParallelAdd
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algorithm 𝑛 times. In [21], the authors also applied Karatsuba mul-
tiplication to further reduce the time complexity. The required
number of PBSs in Algorithm 3 is 3𝑛2 since we need 𝑛2 PBSs for
𝑓× and 2𝑛2 PBSs for 𝑛 parallel additions. The maximum number of
parallel operations is 𝑛2 in Line 2.

Algorithm 3: ParallelMul [21]
Input: 𝑛-bit RRs 𝒙,𝒚 ∈ A𝑛 of 𝑋,𝑌 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑋 × 𝑌

1 𝒘 ← 0 ⊲ 𝑛 × 𝑛 matrix
2 for 𝑖, 𝑗 ∈ [0, 𝑛 − 1] in parallel do
3 𝑤 𝑗,𝑖 ← 𝑓× (3𝑥𝑖 + 𝑦 𝑗 ) ⊲ PBS
4 𝒛 ← 0 ⊲ 𝑛 vector
5 for 𝑗 ∈ [0, 𝑛 − 1] do
6 𝒛 ← ParallelAdd(𝒛,𝒘 𝑗 )
7 return 𝒛

3.2.4 Fundamental Functions.
In addition to the homomorphic arithmetic algorithms described
thus far, the authors presented homomorphic sign, comparison,
max, and ReLU algorithms in [20]. The next section addresses these
algorithms as well. We refer the readers to the original paper [20]
for more details.

4 PROPOSED METHOD
Since the homomorphic algorithms described in the previous sec-
tion can be bitwise parallelized, they are well suited for GPU im-
plementations. Recall that an LWE ciphertext is a vector of length
𝑁 + 1, the number of parallels for 𝑛-bit operations such as addition
can be increased from 𝑛 to 𝑛(𝑁 + 1) if we perform elementwise par-
allelization for LWE ciphertexts. Note that unlike multi-core CPUs,
GPUs can handle a significantly larger number of threads, making
parallel schemes fundamentally different from CPU parallelism.

To implement homomorphic algorithms with RRs for a GPU
environment, we use the Concrete-cuda library [25] developed by
Zama. All of our implementations are based on the Parmesan library
version 0.0.20-alpha [21], which is the official implementation of
[20].

4.1 Architecture
We follow the architecture of Concrete-cuda. Data transfer between
the CPU (host) and GPU (server) is minimized as much as possi-
ble. For example, the keys generated by the host (bsk, ksk) are
transferred and stored in the server beforehand. If the set of homo-
morphic operations to be run on the server is known, the necessary
buffers and LUTs can be allocated in GPU memory in advance.
During the actual computation process, the input data converted
to binary are transferred to the server, where homomorphic opera-
tions for RRs are performed. If a binary representation is required in
the server, the homomorphic conversion algorithm described later
can be used to homomorphically convert the RRs to binary. The
outputs are transferred to the host as RRs. Finally, the user decrypts
the data and converts them from RRs to desired representations.

The runtime bottleneck in homomorphic operations is PBS.
AmortizedPBS is a core procedure of the Concrete-cuda library,

which can perform PBS on multiple ciphertexts and LUTs con-
currently. The inputs of AmortizedPBS are bsk, ksk, a list of LUTs
[𝑓0, . . . , 𝑓𝑛−1] and the input LWEs [LWE(𝑥0), . . . , LWE(𝑥𝑛−1)]. The
output is a list of LWEs [LWE(𝑓0 (𝑥0)), . . . , LWE(𝑓𝑛−1 (𝑥𝑛−1))]. We
develop multithreaded algorithms based on the design concept of
minimizing the number of required AmortizedPBS operations as
much as possible. Thereafter, each algorithm is evaluated by the
number of AmortizedPBS calls.

4.2 Multithreaded Algorithms
In this section, we extend algorithms proposed in [20] for multi-
threaded environments. Note that all of our algorithms are based
on the original algorithms proposed in [20].

4.2.1 Homomorphic Multiparallel Addition.
We extend ParallelAdd for multiparallel environments by allowing
elementwise parallelization of LWE ciphertext for each procedure.
Algorithm 4 describes multiparallel addition for 𝑛-bit RRs with 2
AmortizedPBS calls. LWE(𝑥)𝑖 denotes the 𝑖-th element of the LWE
ciphertext 𝒄 = (𝒂, 𝑏) ∈ Z𝑁+1. Namely, LWE(𝑥)𝑖 = 𝑎𝑖 if 0 ≤ 𝑖 < 𝑁

and LWE(𝑥)𝑖 = 𝑏 if 𝑖 = 𝑁 . The number of parallels in Line 1 is
𝑛(𝑁 + 1) since we assign each pair (𝑖, 𝑗) to each thread in the GPU.
In Line 4, AmortizedPBS is executed for the LWE vector LWE(𝒒) of
length 𝑛(𝑁 + 1) so that 𝒒← 𝑓𝑞 (𝒒) in parallel. To run the algorithm,
two additional buffers LWE(𝒘) and LWE(𝒒) of length 𝑛(𝑁 + 1) are
required to store the intermediate calculations.

Note that homomorphic subtraction of two integers in the RR
can be implemented by HomMPSub(𝒙,𝒚) ← HomMPAdd(𝒙,−𝒚),
where−𝒚 is obtained by negating all elements in𝒚: LWE(𝑦𝑖 ) 𝑗 ← 𝑞−
LWE(𝑦𝑖 ) 𝑗 for each 𝑖 and 𝑗 . This is because (1) the negation of an RR
is obtained by negating all bits, and (2) if a plaintext 𝑦 is encrypted
in (𝒂, 𝑏), then (−𝒂,−𝑏) encrypts −𝑦. Thus, HomMPSub(𝒙,𝒚) can
also be fully parallelized.

Algorithm 4: HomMPAdd

Input: 𝑛-bit RRs 𝒙,𝒚 ∈ A𝑛 of 𝑋,𝑌 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑋 + 𝑌

1 for 𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
2 LWE(𝑤𝑖 ) 𝑗 ← LWE(𝑥𝑖 ) 𝑗 + LWE(𝑦𝑖 ) 𝑗
3 LWE(𝑞𝑖 ) 𝑗 ← LWE(𝑤𝑖−1) 𝑗 + 3 · LWE(𝑤𝑖 ) 𝑗
4 𝒒← AmortizedPBS(bsk, ksk, [𝑓𝑞] ∗ 𝑛, 𝒒) ⊲ Parallel PBS
5 for 𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
6 LWE(𝑧𝑖 ) 𝑗 ← LWE(𝑤𝑖 ) 𝑗 − 2 · LWE(𝑞𝑖 ) 𝑗
7 LWE(𝑧𝑖 ) 𝑗 ← LWE(𝑧𝑖 ) 𝑗 + LWE(𝑞𝑖−1) 𝑗
8 𝒛 ← AmortizedPBS(bsk, ksk, [𝑓𝐼 ] ∗ 𝑛, 𝒛) ⊲ Parallel PBS
9 return 𝒛

4.2.2 Homomorphic Multiparallel Scalar Multiplication.
Algorithm 5 describes multiparallel scalar multiplication. In Line 2,
we use the same conversion algorithm for 𝒌 as in Algorithm 2. In
Line 6, each 𝑥𝑖−𝑑 is 𝑑-bit shifted to the left in parallel by𝑤𝑖 ← 𝑥𝑖−𝑑
if 𝑖 −𝑑 ≥ 0. We discard the 𝑑 leftmost values by padding the 𝑑 right-
most values with 𝑑 zeros. After that, two AmortizedPBS operations
are called by HomMPAdd. In total, at most 𝑚/2 AmortizedPBS
operations are required for the algorithm. Note that the number
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of AmortizedPBS calls can be further reduced if we use a more
sophisticated conversion algorithm for 𝒌 (e.g. [23]).

Algorithm 5: HomMPScalarMul

Input: 𝑛-bit RR 𝒙 ∈ A𝑛 of 𝑋 ∈ Z, 𝑘 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑘 × 𝑋

1 𝒛 ← 0
2 𝒌 ← compressed pattern of |𝑘 | in Algorithm 2 with𝑚 bits
3 for 𝑑 ∈ [0,𝑚 − 1], 𝑘𝑑 ≠ 0 do
4 for 𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
5 if 𝑖 − 𝑑 ≥ 0 then
6 LWE(𝑤𝑖 ) 𝑗 ← LWE(𝑥𝑖−𝑑 ) 𝑗 ⊲ Parallel Shift
7 else
8 LWE(𝑤𝑖 ) 𝑗 ← LWE(0) 𝑗 ⊲ Parallel Shift
9 LWE(𝑤𝑖 ) 𝑗 ← 𝑘𝑑 · LWE(𝑤𝑖 ) 𝑗

10 𝒛 ← HomMPAdd(𝒛,𝒘)
11 if sgn(𝑘) = −1 then
12 for 𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
13 LWE(𝑧𝑖 ) 𝑗 ← −1 · LWE(𝑧𝑖 ) 𝑗
14 return 𝒛

4.2.3 Homomorphic Multiparallel Multiplication.
We perform homomorphic multiplication for 𝑛-bit RRs with 1 +
2 log2 𝑛 AmortizedPBS calls in Algorithm 6. In Line 3, 𝑢 𝑗𝑛+𝑖 ←
𝑥𝑖 · 𝑦 𝑗 is computed by AmortizedPBS on 𝑛2 vectors with 𝑓× in
parallel. Then, every 𝑗-th vector 𝒖 𝑗 ← 𝒙 · 𝑦 𝑗 is shifted to the left 𝑗
times: 𝒛 𝑗 ← 𝒖 𝑗 ≪ 𝑗 . Note that we discard elements that are left
out by the shift and pad the rightmost values with zeros for each 𝒖 𝑗 .
This operation can be fully parallelized using an additional buffer.

Now, we need to take the sum over each vector 𝒛 𝑗 . Parallel
reduction is applied to reduce the depth of the homomorphic ad-
dition from 𝑛 to log2 𝑛. The key here is to generalize HomMPAdd
for multiple inputs of RRs. To do so, elementwise addition corre-
sponding to Line 2 of Algorithm 1 is performed for two vectors:
𝒘 𝑗 ← 𝒛 𝑗𝑛

2𝑑
+𝒛 (2𝑗+1)𝑛

2𝑑+1
. In this line, we merge two RRs 𝒛 𝑗𝑛

2𝑑
and 𝒛 (2𝑗+1)𝑛

2𝑑+1
,

which correspond to the left and right nodes in the binary tree at
depth 𝑑 . Then, each𝒘 𝑗 is concatenated with 0 between them to be
processed concurrently later so that the resultant vector after Line
14 is 𝒘 = [𝒘0, 0,𝒘1, 0, . . . , 0,𝒘2𝑑−1, 0], which has length 2𝑑 (𝑛 + 1).
By inserting one such extra zero between representations in this
way, if the 𝑖-th element𝑤𝑖 = 𝒘 [𝑖] of𝒘 is the inserted zero, we have
𝑞𝑖 = 𝒒[𝑖] = 0 after Line 172, thereby preventing 𝑞𝑖−1 (= 0) from
contaminating 𝑣𝑖 in Line 20. Thus, after padding, exactly the same
process as in HomMPAdd can be performed on 𝒘 so that the 𝒘𝑖s
are processed concurrently. In Line 21, we have a vector containing
the sum of two numbers [𝒗0, ◦, 𝒗1, ◦, . . . , ◦, 𝒗2𝑑−1, ◦] where the ◦s
are trash values3. For the next depth 𝑑 − 1, 𝒗 is restored to the
appropriate position in 𝒛 by excluding the trash values. Finally, 𝒛0
contains the sum of the 𝒛 𝑗 s, i.e., the product of the two integers.

2This can be confirmed with a calculation by simply noting that 𝑤𝑖 = 0 and using the
property of 𝑓𝑞 in Algorithm 1.
3The positions of these trash values correspond to the positions of the inserted zeros.

Algorithm 6: HomMPMul

Input: 𝑛-bit RRs 𝒙,𝒚 ∈ A𝑛 of 𝑋,𝑌 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = 𝑋 × 𝑌

1 for 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑘 ∈ [0, 𝑁 ] in parallel do
2 LWE(𝑢 𝑗𝑛+𝑖 )𝑘 ← 3 · LWE(𝑥𝑖 )𝑘 + LWE(𝑦 𝑗 )𝑘
3 𝒖 ← AmortizedPBS(bsk, ksk, [𝑓×] ∗ 𝑛2, 𝒖)
4 for 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑘 ∈ [0, 𝑁 ] in parallel do
5 if 𝑖 − 𝑗 ≥ 0 then
6 LWE(𝑧 𝑗𝑛+𝑖 )𝑘 ← LWE(𝑢 𝑗𝑛+𝑖− 𝑗 )𝑘 ⊲ Parallel Shift
7 else
8 LWE(𝑧 𝑗𝑛+𝑖 )𝑘 ← LWE(0)𝑘 ⊲ Parallel Shift
9 for 𝑑 ∈ [log2 𝑛 − 1, 0] do

10 for 𝑖 ∈ [0, 𝑛], 𝑗 ∈ [0, 2𝑑 − 1], 𝑘 ∈ [0, 𝑁 ] in parallel do
11 if 𝑖 ≠ 𝑛 then
12 LWE(𝑤 𝑗 (𝑛+1)+𝑖 )𝑘 ←

LWE(𝑧 𝑗𝑛2

2𝑑
+𝑖
)𝑘 + LWE(𝑧 (2𝑗+1)𝑛2

2𝑑+1
+𝑖
)𝑘

13 else
14 LWE(𝑤 𝑗 (𝑛+1)+𝑖 )𝑘 ← LWE(0)𝑘 ⊲ Zero Padding
15 for 𝑖 ∈ [0, 2𝑑 (𝑛 + 1)], 𝑗 ∈ [0, 𝑁 ] in parallel do
16 LWE(𝑞𝑖 ) 𝑗 ← LWE(𝑤𝑖−1) 𝑗 + 3 · LWE(𝑤𝑖 ) 𝑗
17 𝒒← AmortizedPBS(bsk, ksk, [𝑓𝑞] ∗ 2𝑑 (𝑛 + 1), 𝒒)
18 for 𝑖 ∈ [0, 2𝑑 (𝑛 + 1)], 𝑗 ∈ [0, 𝑁 ] in parallel do
19 LWE(𝑣𝑖 ) 𝑗 ← LWE(𝑤𝑖 ) 𝑗 − 2 · LWE(𝑞𝑖 ) 𝑗
20 LWE(𝑣𝑖 ) 𝑗 ← LWE(𝑣𝑖 ) 𝑗 + LWE(𝑞𝑖−1) 𝑗
21 𝒗 ← AmortizedPBS(bsk, ksk, [𝑓𝐼 ] ∗ 2𝑑 (𝑛 + 1), 𝒗)
22 for 𝑖 ∈ [0, 𝑛], 𝑗 ∈ [0, 2𝑑 − 1], 𝑘 ∈ [0, 𝑁 ] in parallel do
23 if 𝑖 ≠ 𝑛 then LWE(𝒛 𝑗𝑛2

2𝑑
+𝑖
)𝑘 ← LWE(𝒗 𝑗 (𝑛+1)+𝑖 )𝑘

24 return 𝒛0

4.2.4 Homomorphic Multiparallel Sign and Comparison.
The sign function can be used as a component to implement the
comparison operation, max function, and ReLU function. Bourse et
al. proposed homomorphic parallel sign and comparison algorithms
for base-𝛽 radix representations [5]. Klemsa et al. realized that these
algorithms can be directly applied to RRs [20].

We describe a parallel sign algorithm for multiparallel environ-
ments using parallel reduction on a binary tree in Algorithm 7.
The output of Algorithm 7 is LWE(1) if 𝑋 > 0, LWE(−1) if 𝑋 < 0,
and LWE(0) otherwise. Intuitively, the algorithm stores each 𝑥𝑖
in a leaf of the binary tree. Each pair of nodes 𝑣𝑖 , 𝑣 𝑗 (𝑖 < 𝑗) is
then merged so that the sign of the node 𝑣 𝑗 corresponding to the
upper digit of the two nodes will be stored in the parent node
𝑣 ′
𝑖
. In Line 3, the right node corresponding to the 𝑛𝑖

2𝑑 -th bit for 𝒙

and the left node corresponding to the (2𝑖+1)𝑛2𝑑+1 -th bit are merged.
Then, 𝑓sgn, defined as [0, 1, 1, 1, 0,−1,−1,−1], is concurrently ap-
plied to each 𝑥 𝑛𝑖

2𝑑
+ 2𝑥 (2𝑖+1)𝑛

2𝑑+1
. After that, the sign of the subtree

is stored: 𝑥 𝑛𝑖

2𝑑
← sgn(𝒙 [ 𝑛𝑖

2𝑑
,
𝑛 (𝑖+1)

2𝑑
) ) . At the end of the loop, 𝑥0 ←

sgn(𝒙 [0,𝑛−1] ) = sgn( [𝑥𝑛−1, . . . , 𝑥0]) is computed after log2 𝑛 calls
of AmortizedPBS. We give an example of the parallel reduction
algorithm used in HomMPSign in Figure 1.
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Algorithm 7: HomMPSign

Input: 𝑛-bit RR 𝒙 ∈ A𝑛 of 𝑋 ∈ Z
Output: sgn(𝑋 ) ∈ {−1, 0, 1}

1 for 𝑑 ∈ [log2 𝑛 − 1, 0] do
2 for 𝑖 ∈ [0, 2𝑑 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
3 LWE(𝑤𝑖 ) 𝑗 ← LWE(𝑥 𝑛𝑖

2𝑑
) 𝑗 + 2 · LWE(𝑥 (2𝑖+1)𝑛

2𝑑+1
) 𝑗

4 𝒘 ← AmortizedPBS(bsk, ksk, [𝑓sgn] ∗ 2𝑑 ,𝒘)
5 for 𝑖 ∈ [0, 2𝑑 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
6 LWE(𝑥 𝑛𝑖

2𝑑
) 𝑗 ← LWE(𝑤𝑖 ) 𝑗

7 return 𝑥0

To implement the homomorphic comparison for two integers 𝒙
and 𝒚 (HomMPComparison(𝒙,𝒚)) in an RR, we first compute the
difference of 𝒙 and𝒚 in parallel with 𝒛 ← HomMPSub(𝒙,𝒚). Then,
HomMPSign(𝒛) = HomMPComparison(𝒙,𝒚) is satisfied since it
outputs LWE(1) if 𝒙 > 𝒚, LWE(0) if 𝒙 = 𝒚, and LWE(−1) otherwise.
HomMPComparison(𝒙,𝒚) requires to perform AmortizedPBS for
2 + log2 𝑛 times.

𝑋 = 142

𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7

011̄01̄101

⊲ AmortizedPBS

𝑑 = 211̄11

⊲ AmortizedPBS

𝑑 = 11̄1

⊲ AmortizedPBS

𝑑 = 01sgn(𝑋 ) = 1

Figure 1: An example of the parallel reduction algorithm
used in HomMPSign for an 8-bit RR 1011̄01̄10 with 3
AmortizedPBS executions. Each LWE(𝑥𝑖 ) is parallelized with
𝑁 threads.

4.2.5 Homomorphic Multiparallel Max and ReLU Functions.
We also extend the homomorphic parallel max algorithm for RRs
proposed in [20] by utilizing the AmortizedPBS function as de-
scribed in Algorithm 8. The output of Algorithm 8 is LWE(𝒙) if
𝒙 ≥ 𝒚 and LWE(𝒚) otherwise. HomMPComparison+ uses 𝑓sgn+ ,
defined as [1, 1, 1, 1,−1 − 1,−1,−1] when 𝑑 = 0, instead of 𝑓sgn
to output LWE(1) if 𝒙 ≥ 𝒚 and LWE(−1) otherwise. Then, we
concurrently compute 𝑥𝑖 ← 𝑥𝑖 + 2𝑠 and 𝑦𝑖 ← 𝑦𝑖 − 2𝑠 for each 𝑖 .
AmortizedPBS is applied for the concatenation of 𝒙 and 𝒚, using
the function 𝑓max, defined as [0,−1, 0, 1 ∥ 0, 0, 0], so that it outputs
𝑥𝑖 (resp. 𝑦𝑖 ) if 𝑠 = 1 (resp. 𝑠 = −1) and 0 otherwise for each 𝑖 . Finally,
max(𝒙,𝒚) is obtained by performing elementwise parallel addition.
We require 3 + log2 𝑛 calls of AmortizedPBS for HomMPMax in
total. To compute the ReLU for 𝒙 , we only need to callHomMPMax
with ReLU(𝒙) = HomMPMax(𝒙, 0).

4.2.6 Homomorphic Multiparallel Conversion.
Due to the redundancy of RRs, performing arithmetic operations on
RRs may increase the number of redundant bits. For instance, the

Algorithm 8: HomMPMax

Input: 𝑛-bit RRs 𝒙,𝒚 ∈ A𝑛 of 𝑋,𝑌 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ A𝑛 of 𝑍 = max(𝑋,𝑌 )

1 𝑠 ← HomMPComparison+ (𝒙,𝒚) ⊲ 𝑠 ∈ {−1, 1}
2 for 𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [0, 𝑁 ] in parallel do
3 LWE(𝑥𝑖 ) 𝑗 ← LWE(𝑥𝑖 ) 𝑗 + 2 · LWE(𝑠) 𝑗
4 LWE(𝑦𝑖 ) 𝑗 ← LWE(𝑦𝑖 ) 𝑗 − 2 · LWE(𝑠) 𝑗
5 [𝒙,𝒚] ← AmortizedPBS(bsk, ksk, [𝑓max] ∗ 2𝑛, [𝒙,𝒚])
6 𝒛 ← 𝒙 +𝒚 ⊲ In parallel
7 return 𝒛

redundant addition of 01̄1̄ and 100 (−3+4) yields 011̄, which is 1 bit
longer than the non-redundant representation of one. To remove
this redundancy, we want a homomorphic conversion algorithm
from redundant to binary. In [20], the authors outlined a conversion
algorithm for RRs with base 𝛽 = 4. In this work, we present a
multithreaded conversion algorithm for 𝛽 = 2with𝑛 AmortizedPBS
operations in Algorithm 9.

In the algorithm, we use 𝑓1 and 𝑓2, defined as [0, 1, 0 ∥ 1] and
[0, 1, 0, 0 ∥ 1, 1], respectively. It can be shown that the 𝑛-bit binary
string 𝒛 of an integer 𝑋 in the range −2𝑛−1 ≤ 𝑋 ≤ 2𝑛−1 − 1 and
any RR 𝒙 of 𝑋 satisfy 𝑧𝑖 = 𝑓1 (𝑥𝑖 + 𝑐𝑖 ) for all 0 ≤ 𝑖 ≤ 𝑛 − 1 by
setting 𝑐0 = 0 and 𝑐𝑖+1 = 𝑓2 (2𝑥𝑖 + 𝑐𝑖 ). The PBS operation for 𝑓1 and
𝑓2 can be run concurrently in AmortizedPBS by inputting the pair
of functions [𝑓1, 𝑓2] and the pair of inputs [𝑎, 𝑏]. This halves the
number of required AmortizedPBS calls from 2𝑛 to 𝑛. We confirmed
in our experiments that the runtime of the conversion is reduced
by half compared to that of a naive implementation with 2𝑛 PBSs.
Note that a fully parallel conversion algorithm does not exist since
this concept contradicts the impossibility of parallel addition with
a non-redundant representation.

Algorithm 9: HomMPConversion

Input: 𝑛-bit RR 𝒙 ∈ A𝑛 of 𝑋 ∈ Z
Output: 𝑛-bit RR 𝒛 ∈ B𝑛 of 𝑋

1 𝑐 ← 0
2 for 𝑖 ∈ [0, 𝑛 − 1] do
3 for 𝑗 ∈ [0, 𝑁 ] in parallel do
4 LWE(𝑎) 𝑗 ← LWE(𝑥𝑖 ) 𝑗 + LWE(𝑐) 𝑗
5 LWE(𝑏) 𝑗 ← 2 · LWE(𝑥𝑖 ) 𝑗 + LWE(𝑐) 𝑗
6 [𝑧𝑖 , 𝑐] ← AmortizedPBS(bsk, ksk, [𝑓1, 𝑓2], [𝑎, 𝑏])
7 return 𝒛

5 EXPERIMENTS
We verify our GPU implementation using one NVIDIA Tesla V100S
server with 80 streaming multiprocessors (SMs) as the GPU and one
Intel Core i9-12900 with 24 threads as the CPU. Our implementation
is based on Parmesan [21] version 0.0.20-alpha4, Concrete-core [10]

4Very recently, Parmesan 0.1.0 was released, which is a more sophisticated version
based on the new TFHE-rs library. However, we could not apply the parameter sets
listed below due to execution errors. Therefore, we use a previous version in this paper
and would like to leave a comparison with the latest version for future work.
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Table 2: List of parameters used [22, 26]

Name Security Level log2 𝑝 𝑚 𝑁 ℓPBS log2 (𝐵PBS) ℓKS log2 (𝐵KS) 𝜎2 for LWE 𝜎2 for RLWE
CNCR-M2-C3-128 128 5 776 2048 1 23 5 4 2−37 2−104

TFHE-M2-C0-128 128 2 656 512 2 8 4 3 2−29 2−49

TFHE-M2-C2-128 128 4 742 2048 1 23 5 3 2−34 2−103

TFHE-M2-C3-128 128 5 856 4096 1 22 6 3 2−40 2−124

version 1.0.1, and Concrete-cuda [25] version 0.1.1. We use CUDA
11.0, cargo and rustc version 1.70 to build our implementation.

The TFHE parameter sets used in our experiments are derived
from [22] and the TFHE-rs library [26], as shown in Table 2. The
security levels are obtained from the lattice-estimator5 [1].

5.1 Comparison with Parmesan 0.0.2-alpha

Table 3: Runtime of 32/64/128-bit homomorphic addition,
scalar multiplication and multiplication compared to that of
Parmesan [20] using the parameter CNCR-M2-C3-128.

Addition [ms] Scalar Mul. [ms] Multiplication [s]
𝑛 [20] Ours [20] Ours [20] Ours (2𝑛)
32 383 126 1, 255 594 21.49 3.00
64 690 142 2, 184 628 99.28 11.46
128 1, 258 183 5, 101 825 400.81 45.66

We compare the runtimes of homomorphic addition, scalar mul-
tiplication and multiplication between Parmesan 0.0.2-alpha and
our implementation. In this experiment, our implementation also
computes (𝑛 + 1)-bit values since Parmesan 0.0.2-alpha outputs
(𝑛+1) bits for 𝑛-bit addition in the default settings. For scalar multi-
plication, we set 𝑘 = 3195 (12 bits) as in [22]. For multiplication, we
modified our implementation to output 2𝑛 LWE ciphertexts instead
of 𝑛 to unify the experimental condition with that of Parmesan
0.0.2-alpha. Both implementations used the CNCR-M2-C3-128 pa-
rameter. Table 3 shows the results. From the results, we can confirm
the acceleration of multithreaded addition for high-precision inte-
gers. Furthermore, it has been shown that our GPU implementation
provides acceleration for scalar multiplication and multiplication,
which consist of multiple parallel additions.

We note that according to the preliminary results for the latest
version of Parmesan (version 0.1.0) in [22], they achieved a 284 ms
runtime for 32-bit addition using a different security parameter. We
leave the comparison with this new version for future work.

5.2 Benchmarks for Other Functions
We measure the runtime of the homomorphic sign, comparison,
max (ReLU), and conversion functions with the latest 128-bit secu-
rity parameter TFHE-M2-C3-128 provided by the TFHE-rs library.
Table 4 shows the results. We achieved runtimes of approximately 1
second for the sign, comparison and max functions when operating
with 128-bit integers. However, it is observed that the conversion
function is costly since a fully parallel algorithm for this function
is fundamentally unattainable. Compared with the results in [20],
5https://github.com/malb/lattice-estimator

the runtime of the sign function for 31-bit integers, 12 threads, and
90-bit security is 619ms, and that of the max function is 2, 028ms.

Table 4: Runtime of 32/64/128-bit homomorphic sign, com-
parison, max (ReLU), and conversion functions using the
parameter TFHE-M2-C3-128 in milliseconds.

𝑛 Sign Comparison Max (ReLU) Conversion
32 633 755 926 3, 824
64 774 905 1, 098 7, 603
128 879 1, 063 1, 415 15, 135

5.3 Comparison with a GPU Implementation
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Radix-based parallel addition
RR-based parallel addition

Figure 2: Runtime comparison between multiparallel ad-
dition algorithms using radix decomposition [13] with
the parameter TFHE-M2-C0-128 and RR with the parameter
TFHE-M2-C3-128.

To observe the effect of carry propagation on runtime in the
addition algorithm under the same environment, we implemented
a homomorphic addition algorithm presented by Clet et al. for a
GPU environment with radix decomposition (𝛽 = 2) [13] using
the Concrete-cuda library. The pseudocode is presented in the ap-
pendix. Although this algorithm requires carry propagation, it can
be partially parallelized. We used the TFHE-M2-C0-128 parameter
for the algorithm, which is much smaller than TFHE-M2-C3-128
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for the RR-based implementation with the same security level. We
measured the runtimes for both algorithms up to 512 bits.

The results are shown in Figure 2. Despite the difference in
parameters, RR-based addition was found to be more efficient for
additions with large-precision integers. We also observed that the
runtime growth rate of the algorithm using RR is smaller than that
of the radix-based method since the former can parallelize as many
threads as possible for a large 𝑛.

5.4 Comparison with the TFHE-rs Library
Finally, we compared our implementation with the TFHE-rs library
[26], which is a state-of-the-art implementation of TFHE developed
by Zama. In this experiment, we used TFHE-M2-C3-128 for our
implementation and TFHE-M2-C2-128 for TFHE-rs.

Table 5: Runtime of homomorphic addition, scalar multipli-
cation and multiplication compared to TFHE-rs version 0.2.4
[3].We selected parameters used in TFHE-rs: TFHE-M2-C3-128
for our implementation and TFHE-M2-C2-128 for TFHE-rs.

Addition [ms] Scalar Mul. [ms] Multiplication [s]
𝑛 [3] Ours [3] Ours [3] Ours
32 335 284 1, 652 1,268 2.19 4.30
64 693 330 3, 301 1,469 6.95 15.62
128 1, 417 411 6, 832 1,950 24.11 70.63

The results can be found in Table 5. For addition and scalar
multiplication, our algorithm scales better as precision increases.
However, for multiplication, our implementation is less efficient
than TFHE-rs. One of the reasons is that our implementation cannot
scale well for the Karatsuba algorithm, while TFHE-rs can. This is
due to the efficiency of multiple PBSs. We measured the amortized
runtime required for one PBS in Table 6. If the number of LWE ci-
phertexts is sufficiently large, AmortizedPBS is faster than TFHE-rs.
However, if the number of LWE ciphertexts is small, AmortizedPBS
is much slower than TFHE-rs. The performance degradation with a
low number of threads is a specific challenge for GPUs. One possible
solution could be a hybrid approach involving CPU parallelization.

Table 6: Comparison of (amortized) runtime in milliseconds
required for one PBS operation under different parameters.

PBS in TFHE-rs AmortizedPBS

Param. / #LWEs 1 100 10000 1 100 10000
TFHE-M2-C2-128 19 2.03 1.75 66 0.87 0.56
TFHE-M2-C3-128 46 4.91 4.22 151 2.08 1.26

6 CONCLUSION
In this paper, we presented a GPU implementation of homomor-
phic operations with base-2 redundant representation for multibyte
integers. Our experimental results show hardware acceleration of
some homomorphic arithmetic operations up to 128-bit integers.
Future work includes the improvement of multithreaded homomor-
phic multiplication by utilizing divide-and-conquer methods and

pruning unnecessary operations. It is also essential to incorporate
the latest TFHE implementations (Parmesan 0.1.0 and TFHE-rs)
into hardware implementations and conduct comprehensive exper-
iments comparing them. In addition, it is important to perform a
performance comparison with GPU implementations of other FHE
schemes and to measure application-level performance.
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A PARALLEL ALGORITHM OF
HOMOMORPHIC ADDITIONWITH RADIX
DECOMPOSITION

The 𝑛-bit parallel homomorphic addition algorithm with 𝑛 calls
of AmortizedPBS for base-2 radix representation is described in
Algorithm 10. 𝑓𝑎 is a function defined as [0, 1, 0, 1] used to compute
(𝑥𝑖 + 𝑦𝑖 + 𝑐) mod 2, and 𝑓𝑏 is a function defined as [0, 0, 1, 1] used
to compute ⌊(𝑥𝑖 + 𝑦𝑖 + 𝑐)/2⌋ for 𝑥𝑖 , 𝑦𝑖 , 𝑐 ∈ {0, 1}.

Algorithm 10: HomMPRadixAdd

Input: 𝒙,𝒚 ∈ B𝑛 of 𝑋,𝑌 ∈ Z for some 𝑛 ∈ Z
Output: 𝒛 ∈ B𝑛 of 𝑍 = 𝑋 + 𝑌

1 𝑐 ← 0
2 for 𝑖 ∈ [0, 𝑛 − 1] do
3 for 𝑗 ∈ [0, 𝑁 ] in parallel do
4 LWE(𝑤) 𝑗 ← LWE(𝑥𝑖 ) 𝑗 + LWE(𝑦𝑖 ) 𝑗 + LWE(𝑐) 𝑗
5 [𝑧𝑖 , 𝑐] ← AmortizedPBS(bsk, ksk, [𝑓𝑎, 𝑓𝑏 ], [𝑤,𝑤])
6 return 𝒛
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