
On Black-Box Verifiable Outsourcing

Amit Agarwal* Navid Alamati† Dakshita Khurana∗

Srinivasan Raghuraman‡ Peter Rindal†

Abstract

We study verifiable outsourcing of computation in a model where the verifier has
black-box access to the function being computed. We introduce the problem of oracle-
aided batch verification of computation (OBVC) for a function class F . This allows a
verifier to efficiently verify the correctness of any f ∈ F evaluated on a batch of n in-
stances x1, . . . , xn, while only making λ calls to an oracle for f (along with O(nλ) calls
to low-complexity helper oracles), for security parameter λ. We obtain the following
positive and negative results:

• We build OBVC protocols for the class of all functions that admit random-self-
reductions. Some of our protocols rely on homomorphic encryption schemes.

• We show that there cannot exist OBVC schemes for the class of all functions
mapping λ-bit inputs to λ-bit outputs, for any n = poly(λ).1

*University of Illinois Urbana-Champaign. {amita2, dakshita}@illinois.edu.
†Visa Research. {nalamati, perindal}@visa.com.
‡Visa Research and MIT. srraghur@visa.com.
1The authors grant IACR a non-exclusive and irrevocable license to distribute the article under the

https://creativecommons.org/licenses/by-nc/3.0/.

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Our techniques . 5
1.3 Related Work . 10

2 Preliminaries 10
2.1 Mathematical Preliminaries and Definitions 11
2.2 Bit fixing Random Oracle Model . 11
2.3 Homomorphic Encryption . 12
2.4 Random Self Reducibility . 13
2.5 No-signaling prover . 14

3 Defining Oracle-aided Batch Verifiable Computation 14

4 Protocol for functions admitting 1-RSR 17

5 Protocol for functions admitting K-RSR 22
5.1 OBVC with multiple provers . 22
5.2 OBVC with a Single Prover . 28

6 Impossibility of oracle-aided batch verifiable computation 33

2

1 Introduction

We study the problem of verifiably outsourcing computation in a model where the verifier
has black-box access to the function being computed as well as to certain low-complexity
helper functions.

A large body of work in the study of delegation, starting with [33, 35], consider the
setting where a computationally bounded prover generates efficiently checkable proofs
π attesting to the correctness of relatively inefficient computation. A major downside of
existing works is that they require the prover and verifier to agree on and use a specific
circuit Cf for computing the function f . In other words, the verification scheme is inher-
ently tied to a fixed (arbitrary) implementation of f which is publicly known to both the
prover (server) and the verifier (client).

On the other hand, consider a scenario where a cloud-based service provider offers
a service computing f (for example, f can be matrix multiplication) on arbitrary client
data. The client would like to ensure correctness of returned outcomes. There are a few
reasons why the “circuit-dependent verification” approach above poses a barrier to verifi-
able computation in this scenario. First of all, the service provider may be using a propri-
etary code/implementation Cf to compute f (e.g. some proprietary matrix multiplication
algorithm) which it is unwilling to disclose to its clients. As such, running a verifiable out-
sourcing protocol where the client/verifier depends on the code Cf is simply not feasible.
Second, even if the company is willing to disclose its code/implementation, the client
would have to audit it (for e.g. using formal verification) to make sure that Cf is indeed a
sound implementation of f , which can be quite complex. Third, the company may make
frequent updates to Cf (for e.g. to add performance optimizations) which would require
the client to keep checking this code continually. Finally, making verification indepen-
dent of the code of f may also lead to efficiency improvements for the verifier in certain
settings. Motivated by these questions, we study the following problem:

What classes of functions admit oracle-aided verifiable computation schemes?

The notion of oracle-aided computation captures “circuit-independence” in the con-
text of verifiable computation, as we discuss next. We consider a batch verification sce-
nario: suppose a verifier is given access to an oracle Of for function f ∈ F . Is it possible
for the verifier, using only λ = log2 n queries to Of , to verify the correctness of a large
batch of computations y1 = f(x1), . . . , yn = f(xn)? Oracle access to Of ensures that the
verification scheme is oblivious to any specific implementation Cf that the server may use
to perform the computation. Indeed, the client can instantiate such an oracle using any
arbitrary implementation C ′

f which need not depend on the server’s implementation Cf .
The restriction of λ oracle queries ensures that even if the oracle Of is instantiated with a
naive/inefficient implementation C ′

f on the client side, the total work performed by the
client over the entire batch will be relatively small (as long as the security parameter λ is
smaller than the batch size).

3

1.1 Our Results

Motivated by the above considerations, we formalize the notion of oracle aided verifiable
computation (OBVC) in the batched setting. At a high level, an OBVC protocol for func-
tion class F , defined on ℓ bit inputs, consists of a weak client who wishes to outsource
the computation of some function f ∈ F on a batch of n instances, let’s say x1, . . . , xn, to
a powerful server. The client is assisted by a function oracle Of along with some helper
oracles Og1 , . . . ,Ogm which are computationally “weaker” than Of . This is formalized by
requiring that the combined time complexity of helper oracles be smaller than the time
complexity of the function f i.e.

∑m
i=1 Tgi(ℓ) = o(Tf (ℓ)). The server can use an arbitrary

implementation Cf of the function f . The completeness guarantee of OBVC ensures that
the client, when interacting with an honest server (i.e. a server holding a correct cir-
cuit Cf for f and following the protocol steps), always outputs the correct evaluation i.e.
f(x1), . . . , f(xn). On the other hand, the soundness guarantee of OBVC ensures that a ma-
licious server (i.e. a server who deviates from the protocol or uses an incorrect circuit C ′

f)
cannot make the client accept incorrect evaluations on any input in the batch, except with
some negligible probability.

We require the scheme to have the following efficiency properties: i) the number of
oracle queries made by V to the function oracleOf is O(λ), ii) the number of queries made
to each helper oracle Ogi is O(nλ), iii) there is a constant c such that the running time of
the verifier (as an oracle machine) is λc · o(n · Tf (ℓ)), where Tf (ℓ) is the time complexity
of computing f on ℓ bit inputs. Note that the efficiency condition ensures that the OBVC
protocol is non-trivial in that the verifier efficiency is better than computing the function
on all n inputs in time n ·O(Tf (ℓ)) or, by making O(n) oracle queries to Of .

Random Self Reducible Functions. In this work, we build an OBVC scheme for the
class of all Random Self-Reducible (RSR) functions. We now briefly describe this prop-
erty. If a function f admits K RSR, then computing f on any chosen input x can be re-
duced to computing f on a set of uniformly random (not necessarily independent) inputs
r1, . . . , rK , where K is some fixed constant dependent on f . More formally, there exists a
randomized algorithm called RSR.Encode which takes as input x and outputs a set of ran-
dom instances r1, . . . , rK . We will sometimes call these random instances as “shares” of
the original input x (borrowing the terminology from secret-sharing literature). Given the
evaluation of f on these random instances, f(r1), . . . , f(rK), there exists a deterministic
algorithm called RSR.Decode which outputs f(x). Moreover, RSR.Encode and RSR.Decode
are much “simpler” to compute than f and this is formalized by requiring that the com-
bined time complexity of RSR.Encode and RSR.Decode is much less than that of f . (Note
that these only depend on the functionality f and not on its circuit/implementation.)
Many useful functions such as integer multiplication, matrix multiplication, polynomial
multiplication, integer division, exponentiation, and trigonometric functions such as sine
and cos admit RSR. In our positive result, we assume that the RSR.Encode and RSR.Decode
functions are available to the verifier as helper oracles.

Theorem 1. (Informal) Let Fℓ be the class of all Random Self-Reducible functions on ℓ = ℓ(λ) bit
inputs. Assuming homomorphic encryption scheme (HE) for Fℓ, there exists an OBVC scheme for

4

Fℓ.

In this work, we are also interested in studying the limitations of OBVC schemes. In
other words, we would like to understand whether all large classes of functions can admit
OBVC schemes. To that end, we have the following result:

Theorem 2. (Informal) Let Fλ be the class of all functions mapping λ bit inputs to λ bit outputs.
Then, Fλ does not admit an OBVC scheme.

We will elaborate upon these two results in the next section.

1.2 Our techniques

Positive result. Let us start by describing a simplified version of our idea (which doesn’t
directly work). Consider the following protocol: The client sends all n instances, x1, . . . , xn,
to the server and the server is supposed to respond with y1 = f(x1), . . . , yn = f(xn). On
receiving y1, . . . , yn from the server, the client performs a cut-and-chose style check on
some small subset T , where |T | = λ (λ being the security parameter), in the following
way: It randomly selects T ⊂ [n] and checks whether yi = Of (xi) for all i ∈ T , where Of

is an oracle that returns the evaluation of f . If the check fails, the client aborts. Otherwise,
the client outputs y1, . . . , yn. On an intuitive level, if the server is cheating on some in-
stance xi0 where i0 ∈ [n], then it runs the risk of being caught in the cut-and-chose check.
However, this strategy fails since even if |T | = n − 1, the prover can get away with a
probability atleast 1

n
, which is non-negligible. Hence this basic scheme does not work.

The major downside of the above scheme is that a malicious server can corrupt the
computation on a single instance and go undetected with non-negligible probability. One
may attempt to resolve this issue using error correction. In more detail, we could force
a malicious server to corrupt the computation on many parts of a codeword in order to
successfully corrupt the computation on a single instance. This would hopefully reduce
the probability of a malicious server going undetected. However, this alone does not
suffice. The real issue that the above example highlights is that a malicious server can,
with probability 1, selectively corrupt the computation on a single instance xi in the batch
where i ∈ [n], error-corrected or otherwise. Unless the verifier is invoking the oracle
Of on all n instances, it runs the risk of accepting a bad set of y1, . . . , yn. This is true
even if one employs error correction techniques on each instance as the adversary may be
able to identify the error-corrected instances corresponding to each instance. Our idea to
tackle this is to leverage the property of Random Self-Reduction (RSR). In the following
description, we will assume that we are dealing with the class of functions admitting RSR,
and that the RSR.Encode and RSR.Decode functions are available to the verifier as helper
oracles.

Suppose our function f of interest admits K RSR with K = 1. As a first step, we
will show that RSR helps us to reduce the probability of selective corruptions from 1 to
1
n

. Looking ahead, our next step will be to show that assuming this lower probability of
selective corruptions, error-correction tools, i.e., repetition and majority decoding, can be
used to achieve negligible soundness error. For our first step, we modify our previous ba-
sic protocol in the following way: Instead of sending x1, . . . , xn to the server, we will first

5

map each instance xi to a uniformly random instance ri using RSR.Encode, shuffle the set
{r1, . . . , rn}, and send this shuffled set to the server. After receiving the answers from the
server, the client will perform a cut-and-chose check as described earlier. If the cut-and-
chose check passes, it reverse shuffles the server’s responses and applies RSR.Decode to
each of them to get the actual outputs. We claim that this protocol reduces the probability
of selective corruptions to 1

n
, i.e., the prover cannot selectively corrupt the computation on

a particular instance xi0 with probability better than 1
n

. This follows because a 1 RSR is a
random mapping, and have shuffled the random mappings of the instance as well.

Having achieved this lower probability of selective corruptions, we move on to our next
and final step for the case of K = 1. We claim that we can now boost the soundness of this
protocol by performing repetitions and majority decoding in the following way: For each
instance xi in the batch, we apply RSR.Encode independently λ times, where λ is a secu-
rity parameter, to get {ri,j}i∈[n],j∈[λ]. We then proceed as described earlier i.e. the client
randomly shuffles {ri,j}i∈[n],j∈[λ], sends this shuffled set to the server and performs cut-
and-chose check on the server’s responses. If the cut-and-chose check passes, it reverse
shuffles the server’s responses and applies RSR.Decode to each of them. Additionally, it
performs a majority decoding on the results of RSR.Decode to get the final outputs. If the
cut-and-chose check passes, it ensures that any random subset of size λ of the server’s
responses will have less than λ

2
corruptions (except with negligible probability) due to

Hoeffding’s bound. Note that this holds regardless of having achieved a low probability
of selective corruptions. But crucially, the low probability of selective corruptions allows to
translate the guarantee on random subsets of size λ to subsets that precisely correspond
to the repetitions of each instance. This, in turn, ensures that the majority decoding for
each instance will always result in the correct output. To further illustrate this, note that
if we skip the shuffling step (that was partially responsible for a low probability of se-
lective corruptions) and only perform random mapping (using RSR.Encode) along with
repetitions, it won’t get us negligible soundness error. This is because a cheating server
can again selectively corrupt only {ri0,j}j∈[λ] i.e., all the random instances in every rep-
etition corresponding to a particular input xi0 and avoid detection with non-negligible
probability.

We now turn towards the case of functions which admit K RSR where K > 1. Com-
pared to K = 1 case, this case is much more tricky to handle for the following reason.
Suppose we invoke RSR.Encode on each instance xi (without any repetitions) to form a
set of random instances {r1i , . . . , rKi }. As with the K = 1 case, a natural extension of the
previous approach in order to thwart selective corruptions would be to gather all the n ·K
random instances {rki }i∈[n],k∈[K], shuffle them, and send them to the server. In the K = 1
setting, we argued that the prover cannot selectively corrupt the computation on a partic-
ular instance xi0 with probability better than 1

n
due to the random mapping and shuffling

step. However, this is no longer true for the K > 1 case. The reason is that although
each individual share in the set {r1i0 , . . . , r

K
i0
}, corresponding to a particular instance xi0 ,

is uniformly random, the joint distribution is not necessarily uniform. For example, it
may happen that any two shares in the set {r1i0 , . . . , r

K
i0
} completely reveal the instance

xi0 . Therefore, an unbounded server can potentially try a brute force approach to find
out which shares correspond to a particular instance xi0 and then selectively corrupt the
computation on those shares.

6

To handle this, we make the following observation. Suppose we are dealing with a
restricted kind of “non-communicating” prover Pno-com. Such a prover is defined as a tuple
of K non-communicating provers Pno-com = (P1

no-com, . . . ,P
K
no-com). While each prover in the

tuple can be an arbitrary unbounded machine, the restriction is that they are not allowed
to communicate with each other during the protocol execution. The idea then is to modify
the protocol in the following manner: Instead of sending all K shares corresponding of
each instance xi to a single prover, we will only send the kth shares of each instance to the
kth non-communicating prover Pk

no-com. On receiving the responses from each Pk
no-com, the

verifier applies an independent cut-and-chose check on the responses sent by each Pk
no-com.

Since each individual prover is now receiving only a single share (for each instance xi),
we can re-apply the soundness logic discussed for the K = 1 RSR case after doing λ
independent repetitions. This means that for each individual non-communicating prover
Pk
no-com, if the cut-and-chose check passes, then any random subset of size λ of the Pk

no-com
responses will have less than λ

2K
2 corruptions (except with negligible probability) due to

Hoeffding’s bound. It turns out that ensuring fewer than λ
2K

corruptions with respect to
each instance i ∈ [n] and prover Pk

no-com suffices for the majority decoding argument (as
mentioned in the K = 1 RSR case) to go through.

Note that eventually we would like to construct a protocol which is sound against
a single prover P. To this end, we introduce an intermediate notion of a “no-signaling
prover” where we ease the non-communicating restriction in Pno-com. Formally, a “no-
signaling prover” is defined as a tuple of K provers Pno-com = (P1

no-sig, . . . ,P
K
no-sig). While

each prover in the tuple can be an arbitrary unbounded machine, the restriction is that for
all k ∈ [K], the distribution of the responses of the kth prover Pk

no-sig should be independent
of the shares received by the other provers {Pi

no-sig}i∈[K],i ̸=k. We then show that our mod-
ified protocol for handling arbitrary non-communicating provers is also sound against
arbitrary no-signaling provers. Intuitively, the reason why this works is because the cut-
and-chose check that we apply on each individual Pk

no-sig responses is local. In more detail,
suppose Predk is a binary predicate capturing the following event: there exists i0 ∈ [n]
such that the server Pk

no-sig responds incorrectly to more than λ
2K

fraction of RSR instances
{ri0,j}j∈[λ] and the cut-and-chose check on its responses passes. Since this predicate is
local, i.e., the predicate output depends only on the responses of Pk

no-sig, it can be shown
that any Pk

no-sig which makes Predk true with non-negligible probability (over the random-
ness of the verifier) directly implies a non-communicating prover Pk

no-com which makes
Predk true with non-negligible probability (thus contradicting our soundness analysis for
arbitrary non-communicating provers).

Finally, we show that the restriction to a no-signaling set of provers can be removed
by a slight modification to the protocol where the verifier simply encrypts each RSR in-
stance {rki,j}i∈[n],j∈[λ],k∈[K] under an independent public-key pki,j,k before sending it to a
single server P. If the public-key encryption scheme is homomorphic, then the server
can compute the answers to verifier messages “under the hood” of the HE scheme (using
HE.Eval) and send the encrypted responses back to the verifier. The verifier then simply
decrypts all the responses and runs the no-signaling verifier (which is identical to the

2We use λ
2K as opposed to λ

2 as this is what we need in the setting of K provers to make the rest of the
analysis work out.

7

non-communicating verifier) to derive the final output. With this transformation, it can
be shown that the soundness of the previous protocol (i.e., without applying encryption)
against arbitrary unbounded no-signaling provers Pno-sig directly implies soundness of
the transformed protocol (i.e., after applying encryption) against arbitrary computation-
ally bounded provers P. Formally, the analysis uses a reduction to the semantic security of
the encryption scheme.

An Illustrative Application. Consider the following use-case of verifiably outsourcing
the decryption operation in Goldwasser Micali (GM) cryptosystem. To recall, the public
key of such a scheme consists of a pair (c,N) where N = p · q, a product of two large
primes, and c is an arbitrary non-residue in ZN . The secret-key consists of the primes
(p, q). Ciphertexts encrypting the bit 0 (resp. bit 1) are essentially residues (resp. non-
residues with Jacobi symbol 1) in Z∗

N . Decryption requires computing the residuosity
of a ciphertext x ∈ Z∗

N . This is easy if the secret key (p, q) is known, however, without
the secret-key, decryption is computationally hard assuming the hardness of quadratic
residuosity problem.

Now suppose that a client holds a batch of n ciphertexts, x1, . . . , xn, along with the
public key (c,N). On the other hand, a server holds the secret key (p, q). The server
is willing to decrypt ciphertexts for the client but would like to maintain the privacy of
secret-keys. On the other hand, the client would like to have an assurance that the server
is correctly performing the decryption operation for the client. In essence, the specific
function that the client is trying to batch outsource in this scenario is the residuosity func-
tion over Z∗

N , henceforth denoted by fres. Formally, fres(x) = 1 if x is residue mod N and
−1 otherwise.

Our protocol provides a novel solution by leveraging the RSR property of fres. Since
fres is a multiplicative function, it holds that for all x, r ∈ Z∗

N :

fres(x) = fres(x · r) · fres(r
−1)

This implies that fres admits a K RSR with K = 2 in the following manner. RSR.Encodefres

on an input x outputs two random instances r1, r2 where r1 := x · r and r2 := r−1, where
r ← Z∗

N . RSR.Decodefres on input y1 := fres(r1) and y2 := fres(r2) simply outputs y1 · y2.

Negative result. Towards a negative result, an ideal goal would be to tightly character-
ize functions that do not admit an OBVC scheme. However, getting such a strong negative
result seems difficult as there might be arbitrary properties of functions (other than RSR)
that one could potentially leverage in order to construct an OBVC scheme. Therefore,
we settle for a weaker goal where we show that it is impossible to construct an OBVC
scheme for a “large enough” function class F . Specifically, we consider the function class
Fλ = {{0, 1}λ → {0, 1}λ}, the class consisting of all functions mapping λ bit inputs to λ
bit outputs.

We now adopt the following approach: Suppose there exists a OBVC scheme Π for Fλ

and let fλ be a function sampled randomly from Fλ. Then we show that there exists a ma-
licious prover P∗ that breaks the soundness of Π with non-negligible probability. Allow-
ing fλ to be sampled randomly from Fλ enables us to model this game in the well-known

8

Random Oracle Model (ROM) [7]. In this terminology, the oracle Of will be identical to a
Random Oracle (RO). Let n be the number of instances in the batch and t be the number
of queries that V is allowed to make to Of . For the OBVC scheme to be meaningful, we
know that t should be strictly less than n. However, note that in our OBVC definition, we
also allow the verifier to have access to poly(λ) function-dependent helper oracles, each
of which can be invoked O(nλ) times. To model these helper oracles faithfully in ROM,
we will assume that these are encoded as an s-bit auxiliary input aux and handed over
to the verifier as a preprocessing advice. Note that this aux can depend arbitrarily on the
entire RO function table, for example, it can contain global information about the entire
RO function f .

Our idea to construct a malicious prover P∗ that breaks the soundness of any potential
OBVC scheme Π in this ROM setting is as follows. Let Q denote the set of queries that
the V makes to Of during the protocol. Since t < n, it holds that a randomly sampled
instance xϕ from the batch {x1, . . . , xn} will be outside Q with probability atleast 1− t/n.
Therefore, we can switch into a hybrid where the prover locally reprograms the value of
f(xϕ) to a random value ∆ in the image of f . Intuitively, one could invoke a lazy-sampling
argument for ROM to argue that this change will go unnoticed to the verifier if it does not
query Of at xϕ. Indeed, if this were true, then it would have been sufficient to break
soundness with non-negligible probability. However, there is a subtle flaw in directly
applying such a lazy-sampling argument. Recall that we are in a setting where the verifier
is allowed to compute auxiliary information aux aboutOf before the protocol begins. This
hinders a direct application of lazy-sampling argument as aux might potentially contain
information (for e.g. a small digest) about the entire Of . Hence, it is no longer true that
points outside Q are independent from the verifier’s view.

To resolve this, we apply some of the techniques that were developed in earlier works
[19, 20, 38] which studied security of cryptographic protocols where adversary can con-
tain auxiliary information about the Random Oracle, also known as the Auxiliary Input
Random Oracle (AI-RO) model. We specifically use the results in [19] where authors define
a new relaxed model called Bit-Fixing Random Oracle (BF-RO) model. At a high level, in
the BF-RO model, the aux is constrained so that it only contains information about p points
(p is a tunable parameter) in Of which can be chosen arbitrarily. Based on this modeling,
the authors show that security theorems proved in BF-RO model can be carried over to
the AI-RO model with a loss in advantage proportional to st/p (recall that s is the length
of advice string in AI-RO model and t is the number of queries to Of). By setting s, t, p
appropriately, one can get negligible loss in advantage.

Returning to our setting, recall that it was not possible to apply lazy sampling in the
AI-RO model we were dealing with. Therefore, as a first step, we will restrict ourselves to
the BF-RO model where aux is constrained so that it only contains information about/fixes
some p points of the random oracle. Let us denote these set of p points by P . Fortu-
nately, in this model, we can apply the lazy-sampling technique for the points outside P .
Therefore, as long as we can ensure that xϕ is outside both P and Q (recall that Q is the
set of queries that the verifier makes during the protocol), then the malicious prover P∗

which we described earlier will work. We show formally that this is indeed the case for
all α′ ∈ (0, 1], p ∈ 2(1−α′)λ, thus giving us an impossibility result for OBVC in the BF-RO
model. Finally, we are also able to apply a lemma from [19] to lift our impossibility result

9

from the BF-RO model to the AI-RO model with appropriate setting of parameters.

1.3 Related Work

Our idea of verifiable computation of functions in a “circuit-independent” fashion is in-
spired from the early works on Self-Testing/Self-Correcting programs [8, 34]. In these
works, it was shown that if a program P correctly computes a random self-reducible
(RSR) function f on “most” inputs, then it can be used to correctly compute f on “all”
inputs using only oracle access to P . However, a major limitation of these works is that
the adversarial program is limited to a stateless machine. In other words, the response
provided by P on a particular query is not allowed to depend on the previous queries.
In our work, we consider the setting of arbitrary stateful prover which is strictly general
than a stateless program.

Later works [9] extended this idea to deal with adaptive programs (i.e. programs
whose response in a particular query can depend on the previous queries arbitrarily) but
protocols in this setting required two or more independent copies of the program which,
analogously, can be thought of as non-communicating provers. This work requires an ad-
ditional property of “downward self-reducibility” (which roughly means that computing
f on input x of size ℓ can be reduced to computing f on random “smaller” instances of
size ℓ− 1). Thus, our result, which only relies on random-self-reducibility to instances of
the same size, is more general.

Rubinfeld [37] extended the work on program checking to a batched setting where the
verifier is trying to verify the computation of P on batch of n inputs. Again, this work was
limited to stateless program as opposed to stateful prover which we consider. Bellare et.
al. [6] proposed a different approach to batch verification for the specific case of modular
exponentiation by allowing the verifier to compute the modular exponentiation function
on some small number of inputs on its own.

As discussed earlier in the introduction, succinct non-interactive arguments (SNARGs)
for P (where proof size and verification time are polylogarithmic in the security parame-
ter) and batch arguments (BARGs) for NP, where a batch of statements can be verified in
time that is sublinear in the number of statements [28, 29, 30, 26, 11, 36, 4, 12, 27, 14, 25,
15, 16, 32, 24, 39] are closely related primitives. A related line of work [22, 17, 2] similarly
considers the possibility of using FHE and a preprocessing stage to perform verifiable
computation. Unfortunately, all of these works require the verifier to have non-black-box
access to the circuit Cf for the function f , and are therefore not applicable to the setting
of black-box verification.

2 Preliminaries

Throughout the paper, we use bold-letters to indicate vectors (which can sometimes be
equivalently represented as strings). For a vector v of length n, we use the notation vi
to indicate the ith co-ordinate of v where i ∈ [n]. For a subset S ⊆ [n], we use vS :=
(vi)i∈S to denote the subvector of v restricted to the positions i ∈ S. For a bit string
b = (b1, . . . , bn) ∈ {0, 1}n of arbitrary length n ≥ 0, we use RW(b) and HW(b) to indicate

10

the relative and absolute hamming weight of b respectively. Throughout the paper, we
use λ to indicate the security parameter. By poly(λ) and negl(λ), we mean the class λO(1)

and 1
λω(1) . We sometimes abuse notation and use poly(λ) and negl(λ) to refer to a member

from the class poly(λ) and negl(λ) respectively. Given a security parameter λ, we use PPT
to denote probabilitic poly(λ)-time Turing Machines and non-uniform PPT to denote PPT
machines with poly(λ)-sized advice. We say that two distribution ensembles X = {Xλ}λ∈N
and Y = {Yλ} are computationally indistinguishable, denoted by X ≈c Y , if for every
non-uniform PPT algorithm D, there exists a negligible function negl(λ) such that for all
λ ∈ N, we have |Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ negl(λ).

2.1 Mathematical Preliminaries and Definitions

Theorem 3 (Hoeffding’s inequality [23]). Let b ∈ {0, 1}nm be a bitstring with relative ham-
ming weight µ = RW(b). Let the random variables X1, . . . , Xk be obtained by sampling k entries
from b with replacement, i.e. the Xi’s are independent and Pr[Xi = 1] = µ. Furthermore, let
the random variables Y1, . . . , Yk be obtained by sampling k entries from b without replacement.
Then, for any δ > 0, the random variables X̄ = 1

k

∑
i Xi and Ȳ = 1

k

∑
i Yi satisfy:

Pr[|Ȳ − µ| ≥ δ] ≤ Pr[|X̄ − µ| ≥ δ] ≤ 2 · e−2δ2k

Definition 1. An (N,M) source is a random variable X with range [M]N . A source is called
p-bit-fixing if it is fixed on at most p coordinates and uniform on the rest.

Theorem 4 ([19]). Let X be distributed uniformly over [M]N and Z := f(X), where f : [M]N →
{0, 1}s is an arbitrary function. For any γ > 0 and p ∈ N, there exists a family {Yz}z∈{0,1}s of
convex combinations Yz of p-bit-fixing (N,M)-sources such that for any distinguisher D taking
an s-bit input and querying at most t < p coordinates of its oracle,

|Pr[DX(f(X) = 1)]− Pr[DYf(X)(f(X)) = 1]| ≤ (s+ log 1/γ) · t
p

+ γ

2.2 Bit fixing Random Oracle Model

In this section, we will define the Auxiliary Input Random Oracle (AI-RO) and Bit fixing
Random Oracle (BF-RO) model as described in Coretti et. al. [19]. An oracleO consists of
two interfaces O.pre and O.main. We will define two types of entities (modeled as turing
machines) and their access to O.

• Two-stage entity : Such an entity E is split up into two parts E = (E1, E2). The first
part E1 can access O.pre and the second part E2 can access O.main. Furthermore, E1
can pass on some auxiliary information to the second part.

• Single-stage entity: Such an entity E only accesses O.main.

Let FM,N be the set of all possible functions f : [M] → [N]. Now we will define
different types of oracles that we will use:

11

• Auxiliary Input Random Oracle AI-RO(M,N): Samples a random function table
F ← FM,N ; outputs F at O.pre; answers queries x ∈ [M] at O.main by the corre-
sponding value F (x) ∈ [N].

• Bit fixing Random Oracle BF-RO(p,M,N): Samples a random function table F ←
FM,N ; outputs F atO.pre; takes a list atO.pre of at most p query/answer pairs (called
“bit-fixing” pairs), {(xi, yi)}i∈[p], that override F in the corresponding position i.e.
∀i ∈ [p], we set F (xi) = yi. Then it answers queries x ∈ [M] at O.main by the
corresponding value F (x) ∈ [N].

2.3 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)
is a quadruple of PPT algorithms as follows.

• Key Generation: The algorithm (pk, sk) ← HE.Keygen(1λ) takes a unary representa-
tion of the security parameter λ and outputs a public encryption key pk, and a secret
decryption key sk.

• Encryption: The algorithm c← HE.Encpk(µ) takes the public key pk and a single bit
message µ ∈ {0, 1} and outputs a ciphertext c. For encrypting ℓ bit messages, we
can simply invoke HE.Enc bit-by-bit.

• Decryption: The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk and a ciphertext
c and outputs a message µ∗ ∈ {0, 1}.

• Homomorphic Evaluation: The algorithm cf ← HE.Evalpk(f, c1, . . . , cℓ) takes the
public key pk, a function f : {0, 1}ℓ → {0, 1} and a set of ciphertexts c1, . . . , cℓ and
outputs a ciphertext cf 3.

As mentioned in [13], the representation of function f can vary between schemes, and
it is best to leave this issue outside of the syntactic definition for our purposes.

The above algorithms must satisfy the following properties:

• CPA-security: A scheme HE is IND-CPA secure if the following holds:

{c← HE.Encpk(0) : (pk, sk)← HE.Keygen(1λ)}λ

≈c

{c← HE.Encpk(1) : (pk, sk)← HE.Keygen(1λ)}λ

where λ ∈ N.
3For syntactic simplicity, we only consider functions with a single bit output. The generalization to

functions with arbitrary output length can be done by splitting a multi-bit output function into multiple
functions with single bit output.

12

• F-homomorphism: Let Fℓ ⊆ {{0, 1}ℓ → {0, 1}} be a set of functions where ℓ =
ℓ(λ). A scheme HE is F-homomorphic (or, homomorphic for the class F) if for any
sequence of functions fℓ ∈ Fℓ and respective inputs µ1, . . . , µℓ ∈ {0, 1}, it holds that:

Pr

[
HE.Decsk(HE.Evalpk(f, c1, . . . , cℓ)) ̸= f(µ1, . . . , µℓ) :

pk, sk ← HE.Keygen(1λ)
∀i ∈ [ℓ], ci ← HE.Encpk(µi)

]
= negl(λ)

• Compactness: A scheme HE is compact if there exists a polynomial s = s(λ) such
that the output length of HE.Eval is at most s bits long (regardless of f or the number
of inputs).

2.4 Random Self Reducibility

Intuitively, a function f has Random Self Reducibility (RSR) property if computing f on
a given input x can be “easily” reduced to computing f on uniformly random inputs. We
now provide a formal definition inspired by [5, 8].

Definition 2 (Random Self Reduction (RSR)). A function f : D → R is K random self re-
ducible (henceforth denoted by K-RSR) if there exists a pair of algorithms (RSR.Encode,RSR.Decode)
where,

• RSR.Encode(x) : This is a randomized algorithm which takes an ℓ bit input x ∈ {0, 1}ℓ ∩D
and outputs K values r1, . . . rK , where each ri ∈ {0, 1}ℓ ∩ D. It also outputs a state st.

• RSR.Decode({y1, . . . , yK}, st): This is a deterministic algorithm which takes as input K
values {yi}i∈[K] from R, along with a state st, and outputs a value y ∈ R.

The above algorithms must satisfy the following properties.

• Correctness: For all ℓ ∈ N and x ∈ {0, 1}ℓ ∩ D, we have:

Pr

[
RSR.Decode({y1, . . . , yK}, st) = f(x) :

{r1, . . . , rK}, st ← RSR.Encode(x)
∀i ∈ [K] : yi := f(ri)

]
= 1

• Uniformity: For all ℓ ∈ N, x ∈ {0, 1}ℓ ∩ D, i ∈ [K],

{ri : r1, . . . , rK ← RSR.Encode(x)} ≡ Uℓ

where Uℓ is the uniform distribution on ℓ bit strings.

• Efficiency: Let TRSR.Encode(ℓ) and TRSR.Decode(ℓ) be the time complexity of RSR.Encode and
RSR.Decode respectively on inputs of size ℓ. Let Tf (ℓ) be the (worst-case, over all inputs of

13

size ℓ) time complexity of computing f 4. Then, the efficiency condition requires that for all
constants c > 0:

TRSR.Encode(ℓ) + TRSR.Decode(ℓ) = o(Tf (ℓ))

Blum et. al. [8] showed that many interesting and useful functions, such as modular
multiplication, modular exponentiation, integer division, matrix multiplication, polyno-
mial multiplication (over a ring) admit efficient random self reductions. Later works also
extended RSR to trigonometric functions such as sine and cosine [18, 3], and real-valued
functions such as floating-point exponentiation and floating point logarithm [21].

2.5 No-signaling prover

We define the notion of no-signaling prover in a manner similar to prior works [10, 31].
Intuitively, for a no-signaling set of provers Pno-sig = (P1, . . . ,PK), the response of each
prover Pi is allowed to depend on the queries to all provers as a function but the distribu-
tion of each prover’s response (modeled as a random variable) should be (computation-
ally) independent of the queries sent to the other provers.

Definition 3 (No-signaling prover). Let Q denote the alphabet of the queries. A prover system
Pno-sig = (P1, . . . ,PK) is called a no-signaling multi-prover system if the following holds:

{
Game0k(x, {yi0}i∈[K],i ̸=k,{yi1}i∈[K],i ̸=k)

}
k∈[K],x∈Q,yi0∈Q,yi1∈Q

≈c{
Game1k(x, {yi0}i∈[K],i ̸=k,{yi1}i∈[K],i ̸=k)

}
k∈[K],x∈Q,yi0∈Q,yi1∈Q

where the games are formally defined below:

Game0k(x, {yi0}i∈[K],i ̸=k, {yi1}i∈[K],i ̸=k)

1 : Send x to Pk.
2 : ∀i ∈ [K], i ̸= k : send yi0 to Pi.
3 : Receive z from Pk.
4 : Output z.

Game1k(x, {yi0}i∈[K],i ̸=k, {yi1}i∈[K],i ̸=k)

1 : Send x to Pk.
2 : ∀i ∈ [K], i ̸= k : send yi1 to Pi.
3 : Receive z from Pk.
4 : Output z.

3 Defining Oracle-aided Batch Verifiable Computation

We provide two definitions for Oracle-aided Batch Verifiable Computation - one in the
single server setting (OBVC) and the other in multi-server setting (MOBVC).

4In cases where Tf (ℓ) is not known, due to circuit lower bound barriers, we can fix Tf (ℓ) to be the best
known time complexity for computing f on (worst-case) inputs of size ℓ. For example, if f is the matrix
multiplication function of two ℓ × ℓ bit matrices, then we can set Tf (ℓ) = ℓ2.3728596 for inputs of length
2ℓ2 (encoding two ℓ × ℓ sized bit-matrix as a bit-string) based on the fastest known matrix multiplication
algorithm [1]

14

Definition 4 (Oracle-aided Batch Verifiable Computation). Let ℓ ∈ N parameterize input
length, m = poly(ℓ) for some polynomial poly(·), n denote a number of instances, and λ denote a
security parameter. Let fℓ be an arbitrary function in a class Fℓ ⊆ {{0, 1}ℓ → {0, 1}∗}, and let
X = {0, 1}ℓ denote the domain of fℓ.

An oracle-aided batch verifiable computation OBVC for the function class Fℓ is an interac-
tive protocol between a randomized client/verifier V and a deterministic server/prover P, with the
following syntax.

• The client V obtains input a batch of n inputs, x = x1, . . . , xn, where each xi ∈ X .

• The server P obtains a circuit Cf for computing f .

• The client V interacts with the server P, and can additionally make oracle calls to a function
oracle Of as well as to m helper oracles Og1 , . . . ,Ogm . Finally, V outputs OUT where OUT
is either y1, . . . , yn where yi ∈ Range(f) or OUT = ⊥.

The protocol satisfies the following properties.

• Non-triviality: The combined time complexity of helper oracles is smaller than the time
complexity of the function f i.e.

∑m
i=1 Tgi(ℓ) = o(Tf (ℓ)).

• Completeness: Let OUT(⟨P(Cf),V
Of ,{Ogi}i∈[m]⟩) denote the output of V at the end of proto-

col. For all l ∈ N, fl ∈ Fl, n ∈ N, x ∈ X n, λ ∈ N,

PrV[OUT = fl(x1), . . . , fl(xn)] = 1

where the probability is taken over the internal coin tosses of V.

• Soundness: There exists a negligible function negl(·) s.t. for all adversarial P∗, for all l ∈
N, fl ∈ Fl, n = poly(λ),x ∈ X n, λ ∈ N,

PrV[OUT = f(x1), . . . , f(xn) ∨ OUT = ⊥] ≥ 1− negl(λ)

where the probability is taken over the internal coin tosses of V.

When referring to computational soundness, we quantify over all non-uniform PPT provers
P∗.

• Privacy: For all adversarial P∗, there exists a simulator SimP s.t. there exists a negligible
function negl(·) s.t. for all λ ∈ N, fλ ∈ Fλ, n ∈ N,x ∈ X n,

VIEW(P∗) ≈c Sim(1λ, 1n,X)

• Efficiency: For every ℓ ∈ N, fℓ ∈ Fℓ, n ∈ N, x ∈ X n and λ ∈ N, the number of oracle
queries made by V to the function oracleOf is O(λ) and the number of queries made to each
helper oracle Ogi is O(nλ). Furthermore, there is a constant c such that the running time of
the verifier (as an oracle machine) is λc · o(n · Tf (ℓ)).

15

Note that the efficiency condition ensures that the OBVC protocol is non-trivial in the
sense that the V is doing something better than the trivial strategies where it computes
the function on all n inputs on its own using an internal algorithm in time n ·O(Tf (ℓ)) or,
alternatively, does the same task by making O(n) oracle queries to Of .

We now define mutli-server Oracle-aided Batch Verifiable Computation which is a
generalization of the single server definition to mutliple servers. Also, in this definition,
we do not require the privacy condition.

Definition 5 (Multi-server Oracle-aided Batch Verifiable Computation). Let ℓ ∈ N parame-
terize input length, m = poly(ℓ) for some polynomial poly(·), n denote a number of instances, and
λ denote a security parameter. Let fℓ be an arbitrary function in a class Fℓ ⊆ {{0, 1}ℓ → {0, 1}∗},
and let X = {0, 1}ℓ denote the domain of fℓ.

An K multi-server oracle-aided batch verifiable computation K-MOBVC for the function class
Fℓ is an interactive protocol between a randomized client/verifier V and a deterministic multi-
server/multi-prover system P = (P1, . . . ,PK), with the following syntax.

• The client V obtains input a batch of n inputs, x = x1, . . . , xn, where each xi ∈ X .

• The server P obtains a circuit Cf for computing f .

• The client V interacts with each server/prover {Pi}i∈[K], and can additionally make oracle
calls to a function oracle Of as well as to m helper oracles Og1 , . . . ,Ogm . Finally, V outputs
OUT where OUT is either y1, . . . , yn where yi ∈ Range(f) or OUT = ⊥.

The protocol satisfies the following properties.

• Non-triviality: The combined time complexity of helper oracles is smaller than the time
complexity of the function f i.e.

∑m
i=1 Tgi(ℓ) = o(Tf (ℓ)).

• Completeness: Let OUT(⟨P(Cf),V
Of ,{Ogi}i∈[m]⟩) denote the output of V at the end of proto-

col. For all l ∈ N, fl ∈ Fl, n ∈ N, x ∈ X n, λ ∈ N,

PrV[OUT = fl(x1), . . . , fl(xn)] = 1

where the probability is taken over the internal coin tosses of V.

• Soundness: There exists a negligible function negl(·) s.t. for all adversarial P∗, for all l ∈
N, fl ∈ Fl, n = poly(λ),x ∈ X n, λ ∈ N,

PrV[OUT = f(x1), . . . , f(xn) ∨ OUT = ⊥] ≥ 1− negl(λ)

where the probability is taken over the internal coin tosses of V.

When referring to computational soundness, we quantify over all non-uniform PPT provers
P∗.

• Efficiency: For every ℓ ∈ N, fℓ ∈ Fℓ, n ∈ N, x ∈ X n and λ ∈ N, the number of oracle
queries made by V to the function oracleOf is O(λ) and the number of queries made to each
helper oracle Ogi is O(nλ). Furthermore, there is a constant c such that the running time of
the verifier (as an oracle machine) is λc · o(n · Tf (l)).

16

4 Protocol for functions admitting 1-RSR

In the following section, we provide a construction of OBVC scheme for functions ad-
mitting 1-RSR. The idea behind our protocol is simple: First the verifier maps each of
its instance xi to a uniformly random instance si using the RSR.Encode function. Then
it sends all the randomized instances {si}i∈[n] to the prover in a shuffled order, and the
prover is supposed to respond back with {f(si)}i∈[n]. Intuitively, this shuffling, coupled
with the fact that RSR.Encode outputs a uniformly random sample, prevents a malicious
prover from selectively providing incorrect responses on some instances (for e.g. the sev-
enth instance x7). However, note that a malicious prover might still provide incorrect
responses on some indices not knowing which instances they correspond to. To tackle
this, the verifier uses a cut-and-choose based checking mechanism. Specifically, it selects
a small random subset of the indices, gets the correct answer for those indices from the
oracleOf , and then checks whether the prover’s responses match. This check ensures that
if the prover is misbehaving on “too many” indices, then he will be caught with “over-
whelming” probability. Formally, once the check passes, it is ensured that the prover is
not lying on more than some (fixed) constant fraction of indices except with some negli-
gible probability. However, note that, our soundness condition requires the output of the
verifier be correct on all instances (and not just most of the instances). To achieve this, we
perform a parallel repetition of each instance for some security parameter λ many times
and then select the majority of responses as the correct answer. Intuitively, we can select
our parameters in a way so that if the cut-and-chose check passes, then it is ensured that
the majority, among λ repetitions, encodes the correct answer for that instance.

17

Protocol 4
Common input: 1λ, 1n

V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles ORSR.Encodef ,
ORSR.Decodef

P’s additional input: Circuit Cf for computing f .

1. ∀i ∈ [n], V generates λ independent RSR instances, si,1, . . . , si,λ, where
si,j, sti,j ← ORSR.Encodef (xi). It sets s := s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ.

2. V samples a random permutation π on [nλ] and sets s′ := π(s). It sends s′ to P.

3. ∀i ∈ [n], j ∈ [λ], P computes z′i,j = Cf (s
′
i,j).

4. P sets z′ := z1,1, . . . , z1,λ, . . . , zn,1, . . . , zn,λ and sends z′ to V.

5. V samples a random subset T ⊂ [n] × [λ] of size λ and checks whether the
following holds:

∀(i, j) ∈ T : z′i,j = f(s′i,j)

6. If the check fails, then V outputs ⊥. Otherwise it proceeds.

7. V computes z = π−1(z′).

8. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef (zi,j, sti,j).

9. ∀i ∈ [n], V computes ufinal
i = Majority(ui,1, . . . , ui,λ).

10. V outputs ufinal
1 , . . . , ufinal

n .

Theorem 5. There exists a OBVC scheme (Definition 4), specifically Protocol 4, for the class
F1-RSR

ℓ consisting of all ℓ bit functions that admit 1-RSR with soundness against arbitrary un-
bounded provers.

Corollary 6. For all 0 < δ < 1, n ∈ O(2λ
δ
), Protocol 4 is an OBVC scheme for F1-RSR

ℓ with
soundness error negl(λ). Alternatively, one could set λ = ω(log n) and get a soundness error of
negl(n).

In the rest of this section, we will prove Theorem 5. We note that the completeness of
our protocol follows directly from the correctness property of RSR. We now proceed to
discuss non-triviality, privacy, efficiency and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier uses two
helper oracles namelyORSR.Encodef andORSR.Decodef . By Definition 2, we know that TRSR.Encode(ℓ)+
TRSR.Decode(ℓ) = o(Tf (ℓ)). Hence, our protocol satisifes the non-triviality condition.

The privacy of our scheme follows directly from the uniformity condition of RSR.
More formally, the simulator Sim(1λ, 1n,X) simply samples nλ uniformly random in-
stances from X and outputs it. Since each share si,j in Protocol 4 is a uniformly random
and independent (from everything else) element from X , the simulation is perfect.

18

For efficiency, we note that each helper oracle is invoked exactly nλ times, the func-
tion oracle Of is invoked exactly λ times and the running time of V is exactly O(nλ) as
shuffling, majority and cut-and-chose check can be computed in linear time.

Soundness Analysis. The high level intuition behind the soundness is the following: If
the checking phase in Protocol step 5, 6 passes, then with high probability the verifier will
output correct values i.e. with high probability, all ufinal

i will equal f(xi). To prove this,
we will have to show that, for each i ∈ [n], the majority of {ui,j}j∈[λ] will be equal to f(xi)
(with high probability) if the testing phase passes.

To do so, we first consider the following experiment which basically captures the exe-
cution of Protocol 4 with an arbitrary fixed prover P∗ and defines random variables b and
its inverse binv.

Experiment Exp1-RSR(P∗,x)

1 : ∀i ∈ [n], j ∈ [λ], si,j ← RSR.Encode(xi)

2 : s := s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ

3 : π ← random permutation on [nλ]

4 : s′ := π(s)

5 : z′ ← P∗(s′)

6 : T ← random λ sized subset of [n]× [λ]

7 : ∀i ∈ [n], j ∈ [λ], bi,j =

{
0 ; z′i,j = f(s′i,j)

1 ; otherwise

8 : b := b1,1, . . . , b1,λ, . . . , bn,1, . . . , bn,λ

9 : binv := π−1(b)

Now, based on the above experiment, we define the advantage of an adversarial
prover P∗ for an arbitrary instance x:

Adv1-RSR
δ,∆ (P∗,x) = Pr


∃i ∈ [n],RW(binv

i,1 || . . . ||binv
i,λ) > δ +∆∧

RW(bT) = 0

: Exp1-RSR(P∗,x)


In a protocol execution with malicious prover P∗, b will be an arbitrary bitstring. We

will now prove some properties about any arbitrary bitstring b which will enable us to
finally establish the soundness claim.

Lemma 1. Suppose b ∈ {0, 1}nλ is an arbitrary bitstring of length nλ. We sample a uniformly
random subset T ⊂ [nλ] and use bT to denote the corresponding |T | sized substring of b. Let
Bδ

T = {b′ ∈ {0, 1}nλ : |RW(b′) − RW(bT)| < δ} be the set of all nλ-length strings which are
"δ-close" to the substring bT in terms of relative Hamming weight. Then, for all b ∈ {0, 1}nλ and
real-valued δ ∈ (0, 1):

19

PrT [b /∈ Bδ
T] ≤ 2 · e−2δ2|T |

where the probability is over the sampling of subset T .

Proof. The proof for the above lemma follows directly from Hoeffding’s bound (Theorem
3).

Lemma 2. Suppose b ∈ {0, 1}nλ is an arbitrary bitstring of length nλ. Let P1, . . . , Pn be a
random partitioning of the bits of b where each partition contains exactly λ bits. Then, for all
b ∈ {0, 1}nλ, ∀i ∈ [n], ∀∆ ∈ (0, 1):

Pr[|RW(b)− RW(bPi
)| ≥ ∆] ≤ 2 · e−2∆2λ

where the probability is over the sampling of random partition.

Proof. The proof follows directly from Hoeffding’s bound (Theorem 3).

Corollary 7. Let F denote a indicator random variable denoting the following failure event:

F =

{
1 ∃i ∈ [n], s.t. |RW(b)− RW(bPi

)| ≥ ∆

0 otherwise

Then, we have that:

Pr[F = 1] ≤ n · 2 · e−2∆2λ

Proof. The proof follows directly by applying Lemma 2 and union bounding across all n
partitions.

Lemma 3. Suppose b is an arbitrary bitstring from {0, 1}nλ. We probe a random substring bT , of
size |T |, from b. Also, let P1, . . . , Pn be a random partitioning of the bits of b where each partition
contains exactly λ bits. Then, for all n ∈ N, λ ∈ N, b ∈ {0, 1}nλ, real valued δ,∆ ∈ (0, 1), it
holds that:

Pr

 ∃i ∈ [n],RW(Pi) ≥ δ +∆∧
RW(bT) = 0

 ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Proof. Consider the following indicator random variables.

Eδ
1 =

{
1 b ∈ {b′ ∈ {0, 1}nλ : |RW(b′)− RW(bT)| ≥ δ}
0 otherwise

E∆
2 =

{
1 ∃i ∈ [n], s.t. |RW(b)− RW(bPi

)| ≥ ∆

0 otherwise

E3 =

{
1 RW(bT) ̸= 0

0 otherwise

20

From the probability bounds from Lemma 1 and Lemma 2, we get the following
bound. For all b ∈ {0, 1}nλ, for all real-valued δ,∆ ∈ (0, 1):

Pr[Eδ
1 = 1 ∧ E∆

2 = 1] ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ (1)

This implies that:

Pr[(Eδ
1 = 1 ∧ E∆

2 = 1)
∧

E3 = 0] ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

=⇒ Pr

 ∃i ∈ [n],RW(Pi) ≥ δ +∆∧
RW(bT) = 0

 ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Claim 1. For all n ∈ N, x ∈ X n and for all arbitrary unbounded provers P∗:

Adv1-RSR
δ,∆ (P∗,x) ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Proof. This follows directly from Lemma 3 and the definition of Adv1-RSR
δ,∆ .

Claim 2. Fix |T | = λ. Then for all 0 < δ < 1, for n = 2λ
δ , for all x ∈ X n and for all arbitrary

unbounded provers P∗,

Adv1-RSR
δ=0.25,∆=0.25(P

∗,x) = negl(λ)

Proof. By setting δ = 0.25, ∆ = 0.25 in Claim 1, we get:

Adv1-RSR
δ=0.25,∆=0.25(P

∗,x) ≤ 2

20.18|T | +
2n

20.18λ

For n ≤ 20.17λ and |T | = λ, we get,

Adv1-RSR
δ=0.25,∆=0.25(P

∗,x) ≤ 2

20.18λ
+

2n

20.18λ

= negl(λ)

which proves the claim.

Remark 1. Claim 2 shows that one of the following two events will happen (except with some
negligible probability): 1) the relative hamming weight in each random partition Pi of b is less
than 0.5 or 2) the relative hamming weight of the random substring bT is non-zero. In Case 1, this
implies that for all i ∈ [n], more than 50% of the zi,j are correct. This ensures that for all i ∈ [n],
more than 50% of {ui,j}j∈[λ] will equal to f(xi). If this happens, for all i ∈ [n], ufinal

i will be equal
to f(xi) due to the majority rule. In Case 2, the verifier will simply detect and abort as prescribed
in Step 5 and 6 of the protocol. This concludes our soundness analysis.

21

5 Protocol for functions admitting K-RSR

In this section, we will extend the basic protocol from Section 4 to the more general case
of functions which admit K-RSR for any constant K > 1. As an intermediate step, we will
construct a protocol which is sound against a restricted class of provers. Specifically, we
will consider a setting where the prover is a tuple of K no-signaling provers as defined
in Definition 3. Finally, we will show how this “no-signaling” constraint can be com-
putationally enforced using homomorphic encryption. Our final protocol will be sound
against an arbitrary non-uniform PPT prover P.

5.1 OBVC with multiple provers

Protocol 5.1 describes our OBVC construction for functions that admit K-RSR. At a high
level, the protocol is a simple extension of Protocol 4 in the following way: In K-RSR, each
invocation of RSR.Encode(xi) will yield K shares, each being uniformly random (although
jointly they may be not). The verifier simply executes K instances of the protocol for 1-
RSR setting where the kth prover Pk receives all the kth shares. In the end, the verifier
simply aggregates the result from all the K provers and computes the output.

22

Protocol 5.1
Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles ORSR.Encodef ,
ORSR.Decodef .
P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances
{si,1,k}k∈[K], . . . , {si,λ,k}k∈K . Formally, ∀i ∈ [n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ←
ORSR.Encodef (xi).

2. ∀k ∈ [K], the following steps are performed:

(a) V sets sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k.

(b) V samples a random permutation πk on [nλ] and sets s′k := πk(sk). It
sends s′k to Pk.

(c) ∀i ∈ [n], j ∈ [λ],Pk computes z′i,j,k := Cf (s
′k
i,j)

(d) Pk sets z′k := z′1,1,k, . . . , z
′
1,λ,k, . . . , z

′
n,1,k, . . . , z

′
n,λ,k. It sends z′k to V.

(e) V samples a random subset T k ⊂ [n] × [λ] of size λ and checks whether
the following holds:

∀(i, j) ∈ T k : z′ki,j = Of (s
′k
i,j)

(f) If the check fails, then V outputs ⊥. Otherwise it proceeds.

(g) V computes zk := (πk)
−1
(z′k).

3. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef ({zki,j}k∈[K], sti,j).

4. ∀i ∈ [n], V sets ufinal
i = Majority(ui,1, . . . , ui,λ)

5. V outputs ufinal
1 , . . . , ufinal

n

Theorem 8. There exists a K-MOBVC scheme (Definition 5), specifically Protocol 5.1, for the
class FK-RSR

ℓ consisting of all ℓ bit functions that admit K-RSR for any K ≥ 1 with soundness
against arbitrary unbounded no-signaling provers Pno-sig = (Pno-sig1 , . . . ,Pno-sigK).

Corollary 9. For all 0 < δ < 1, n ∈ O(2λ
δ
), Protocol 5.1 is an MOBVC scheme for FK-RSR

ℓ with
soundness error negl(λ). Alternatively, one could set λ = ω(log n) and get a soundness error of
negl(n).

In the rest of this section, we will prove Theorem 8. We note that the completeness
of Protocol 5.1 follows directly from the correctness property of RSR. We now proceed to
discuss non-triviality, efficiency and prove soundness.

Non-triviality. In our protocol, the verifier uses two helper oracles namely ORSR.Encodef

andORSR.Decodef . By Definition 2, we know that TRSR.Encode(ℓ)+TRSR.Decode(ℓ) = o(Tf (ℓ)).
Hence, our protocol satisifes the non-triviality condition.

23

Efficiency. For efficiency, we note that each helper oracle is invoked exactly nλ times,
the function oracle Of is invoked exactly Kλ times and the running time of V is exactly
O(nKλ) as shuffling, majority and cut-and-chose check can be computed in linear time.
Here K is a constant which depends on the function f (but independent of n, λ and ℓ).

Before proving soundness against no-signaling provers, we consider a relaxed case
of “non-communicating” provers as an intermediate step. Such a prover is a tuple of K
“non-communicating” local algorithms i.e. Pno-com = (P1, . . . ,PK) where the next-message
function of each Pi only depends on the messages it exchanges with V, and not on the
interaction of V with other provers {Pj}j∈[K],j ̸=i.

Soundness analysis for non-communicating provers. We consider the following exper-
iment which captures the execution of Protocol 5.1 with an arbitrary non-communicating
prover P∗

no-com and defines random variables bk and its inverse binvk.

Experiment ExpK-RSR(P∗
no-com,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k

4 : πk ← random permutation on [nλ]

5 : s′
k
:= πk(sk)

6 : z′
k ← P∗

no-comk(s
′k)

7 : T k ← random λ sized subset of [n]× [λ]

8 : ∀i ∈ [n], j ∈ [λ], bki,j =

{
0 ; z′ki,j = f(s′ki,j)

1 ; otherwise

9 : bk := bk1,1, . . . , b
k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

10 : binvk := (πk)−1(bk)

11 : Parse binvkas binv
1,1

k
, . . . , binv

1,λ
k
, . . . , binv

n,1
k
, . . . , binv

n,λ
k

Based on the above experiment, we now define the advantage of the kth prover P∗
no-comk,

for any arbitrary k ∈ [K], on an arbitrary instance x in the following way.

AdvK-RSR
δ,∆ (P∗

no-comk
,x) = Pr


∃i ∈ [n],RW(binvk

i,1|| . . . ||binvk
i,λ) > δ +∆∧

RW({bki,j}(i,j)∈Tk) = 0

: ExpK-RSR(P∗
no-com,x)


(1)

Lemma 4. For all n ∈ N, λ ∈ N, x ∈ X n and for all arbitrary unbounded non-communicating
provers P∗

no-com = (P∗
no-com1, . . . ,P

∗
no-comK), k ∈ [K] and real valued δ,∆ ∈ (0, 1),

AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤ 2 · e−2δ2|Tk| + n · 2 · e−2∆2λ

24

Proof. This follows from Claim 1 and the fact that each individual share in K-RSR is uni-
formly random (and hence the view of P∗

no-comk in Protocol 5.1 is identical to the view of
P∗ in Protocol 4).

Soundness analysis for no-signaling provers. In this section, we will extend the sound-
ness analysis of Protocol 5.1 from non-communicating multi-provers to multi-provers
who can communicate arbitrarily but follow a special “no-signaling” requirement which
we formalize in Definition 3. To do so, we consider the following experiment which ba-
sically captures the execution of Protocol 5.1 with an arbitrary fixed no-signaling prover
P∗
no-sig = (Pno-sig1 , . . . ,Pno-sigK) and defines random variables bk and its inverse binvk. This

experiment is identical to ExpK-RSR(P∗
no-com,x) defined earlier except that we have switched

from P∗
no-com to P∗

no-sig.

Experiment ExpK-RSR(P∗
no-sig,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k

4 : πk ← random permutation on [nλ]

5 : s′
k
:= πk(sk)

6 : z′
k ← P∗

no-sigk(s
′k)

7 : T k ← random λ sized subset of [n]× [λ]

8 : ∀i ∈ [n], j ∈ [λ], bki,j =

{
0 ; z′ki,j = f(s′ki,j)

1 ; otherwise

9 : bk := bk1,1, . . . , b
k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

10 : binvk := (πk)−1(bk)

11 : Parse binvkas binv
1,1

k
, . . . , binv

1,λ
k
, . . . , binv

n,1
k
, . . . , binv

n,λ
k

Based on the above experiment, we now define the advantage of the kth prover Pno-sigk
in Equation 2 and denote it by AdvK-RSR(P∗

no-sigk
,x).

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) = Pr


∃i ∈ [n],RW(binvk

i,1|| . . . ||binvk
i,λ) > δ +∆∧

RW(bk
Tk) = 0

: ExpK-RSR(P∗
no-sig,x)


(2)

Lemma 5. Assume there exists a function ϵ(·, ·, ·, ·, ·) such that for any arbitrary non-communicating
multi-prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1],∆ ∈ [0, 1], k ∈ K, n ∈ poly(λ),

25

x ∈ X n, λ ∈ N, it holds that AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤ ϵ(λ, n, δ,∆, K). Then it follows that
for any arbitrary no-signaling multi-prover P∗

no-sig = (P∗
1, . . . ,P

∗
K), there exists a negligible func-

tion negl(·) such that for all δ ∈ [0, 1],∆ ∈ [0, 1], k ∈ K, n = poly(λ), x ∈ X n, λ ∈ N, it holds
that:

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) ≤ ϵ(λ, n, δ,∆, K) + negl(λ)

Proof. Suppose the lemma is false i.e there exists a no-signaling multi-prover P∗
no-sig =

(P∗
no-sig1

, . . . ,P∗
no-sigK

) and a fixed polynomial p(·) such that for infinitely many λ ∈ N, there
exists δ∗ ∈ [0, 1],∆∗ ∈ [0, 1], k∗ ∈ K,n∗ ∈ poly(λ), x∗ ∈ X n such that

AdvK-RSR
δ,∆ (P∗

no-sigk∗
,x∗) ≥ ϵ(λ, n∗, δ∗,∆∗, K) +

1

poly(λ)

Given this, we can construct a new prover P∗
no-com = (P∗

no-com1, . . . ,P
∗
no-comK) which will

contradict the ϵ upper bound for the advantage of P∗
no-comk.

P∗
no-comk=k∗

1 : Receive s′k=k∗ .
2 : For all k ∈ [K], k ̸= k∗, set s′k := 0nλ, where 0 is a default element.
3 :

4 : For all k ∈ [K], send s′k to P∗
no-sigk

.

5 : For all k ∈ [K], receive z′k from P∗
no-sigk

.

6 : Output z′k
∗
.

P∗
no-comk ̸=k∗

1 : Receive s′k.
2 : Output ⊥.

From the above construction, it follows that:

AdvK-RSR
δ,∆ (P∗

no-comk∗ ,x
∗) = Pr


∃i ∈ [n],RW(binvk

∗

i,1|| . . . ||binvk
∗

i,λ) > δ +∆∧
RW(bk∗

T) = 0

: Exp′K-RSR(P∗
no-sig,x)


(3)

, where the experiment Exp′K-RSR(P∗
no-sig,x) is defined as follows (the difference from

ExpK-RSR(P∗
no-sig,x) have been highlighted in blue):

26

Experiment Exp′K-RSR(P∗
no-sig,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : sk :=

{
s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k ; k = k∗

0nλ ; otherwise

4 : πk ← random permutation on [nλ]

5 : s′
k
:= πk(sk)

6 : z′
k ← P∗

no-sigk(s
′k)

7 : T k ← random λ sized subset of [n]× [λ]

8 : ∀i ∈ [n], j ∈ [λ], bki,j =

{
0 ; z′ki,j = f(s′ki,j)

1 ; otherwise

9 : bk := bk1,1, . . . , b
k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

10 : binvk := (πk)−1(bk)

11 : Parse binvkas binv
1,1

k
, . . . , binv

1,λ
k
, . . . , binv

n,1
k
, . . . , binv

n,λ
k

Let p indicate the R.H.S probability value in Equation 3. By the no-signaling property
established in Definition 3, there exists negl(·) such that:

p ≥ AdvK-RSR
δ,∆ (P∗

no-sigk=k∗
,x∗)− negl(λ)

Since we have assumed (towards contradiction) that AdvK-RSR
δ,∆ (P∗

no-sigk=k∗
,x∗) ≥ ϵ(λ, n∗, δ∗,∆∗, K)+

1
poly(λ)

, it follows that:

AdvK-RSR
δ,∆ (P∗

no-comk∗ ,x
∗) = p ≥ ϵ(λ, n∗, δ∗,∆∗, K) +

1

poly(λ)
− negl(λ)

This directly contradicts the fact that for any arbitrary non-communicating multi-
prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1],∆ ∈ [0, 1], k ∈ K, n = poly(λ), x ∈ X n, λ ∈ N,

it holds that AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤ ϵ(λ, n, δ,∆, K).

We will now define the advantage of the overall prover system P∗
no-sig = (P∗

no-sig1
, . . . ,P∗

no-sigK
)

as follows:

AdvK-RSR
δ,∆ (P∗

no-sig,x) = Pr


∃i ∈ [n],RW(

∣∣∣∣∣∣
j∈[λ],k∈[K]

binvk
i,j) > (δ +∆)

∧
RW(b1

T 1|| . . . ||b1
TK) = 0

: ExpK-RSR(P∗
no-sig,x)


(4)

Claim 3. Fix |T 1| = . . . = |TK | = λ and let K be some fixed constant. Then, for all 0 < δ < 1,
for n ∈ O(2λ

δ
), for all x ∈ X n and for all arbitrary unbounded no-signaling provers P∗

no-sig,

27

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗
no-sig,x) = negl(λ)

Proof. From Lemma 4 and Lemma 5, we know that:

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) ≤ ϵ(λ, n, δ,∆, K) + negl(λ)

where ϵ(λ, n, δ,∆, K) = 2 · e−2δ2|Tk| + n · 2 · e−2∆2λ.
By union bound, we note that AdvK-RSR

δ,∆ (P∗
no-sig,x) ≤ Σk∈KAdv

(1,K)-RSR
δ,∆ (P∗

no-sigk
,x).

Assuming |T 1| = . . . = |TK | = |T |, we get that:

AdvK-RSR
δ,∆ (P∗

no-sig,x) ≤ 2K · e−2δ2|T | + n · 2K · e−2∆2λ +K · negl(λ)

By setting δ = 0.25/K, ∆ = 0.25/K, we get:

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗
no-sig,x) ≤

2K

20.18|T |/K2 +
2nK

20.18λ/K2 +K · negl(λ)

For constant K, n ≤ 2
0.17λ
K2 and |T | = λ, we get,

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗
no-sig,x) ≤

2K

2
0.18
K2 λ

+
2nK

2
0.18
K2 λ

+K · negl(λ)

= negl(λ)

Remark 2. Claim 3 shows that one of the following two events will happen (except with some neg-
ligible probability): 1) For all i ∈ [n], the relative hamming weight of the string

∣∣∣∣∣∣
j∈[λ],k∈[K]

binvk
i,j

is less than 0.5/K or 2) the relative hamming weight of the substring b1
T 1|| . . . ||b1

TK is non-zero.
In Case 1, this implies that for all i ∈ [n], for more than 50% of the j values, all {zki,j}k∈[K] are
correct. This ensures that for all i ∈ [n], more than 50% of {ui,j}j∈[λ] will equal to f(xi). If this
happens, for all i ∈ [n], ufinal

i will be equal to f(xi) due to the majority rule. In Case 2, the verifier
will simply detect and abort as prescribed in the protocol. This concludes our soundness proof.

5.2 OBVC with a Single Prover

We will now provide a OBVC protocol for all the class of all K-RSR functions which is
sound against a single non-uniform PPT prover. The protocol construction is almost iden-
tical to the Protocol 5.1 except for the following modification: The verifier samples a fresh
HE key pair for each RSR instance and encrypts it before sending it to the prover. The
prover is supposed to respond with HE encrypted values obtained by performing a ho-
momorphic evaluation of the circuit Cf on the ciphertexts sent by the verifier. We describe
the protocol formally in Figure 5.2.

28

Protocol 5.2
Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles ORSR.Encodef ,
ORSR.Decodef .
P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances
{si,1,k}k∈[K], . . . , {si,λ,k}k∈K . Formally, ∀i ∈ [n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ←
ORSR.Encodef (xi).

2. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V generates pki,j,k, ski,j,k ← HE.Keygen(1λ).

3. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V computes cti,j,k ←
HE.Encpki,j,k(1

λ, si,j,k). For all k ∈ [K], it sets sk :=
(ct1,1,k, pk1,1,k), . . . , (ct1,λ,k, pk1,λ,k), . . . , (ctn,1,k, pkn,1,k), . . . , (ctn,λ,k, pkn,λ,k).

4. ∀k ∈ [K], V samples a random permutation πk on [nλ] and sets s′k := πk(s
k).

5. V sends s′1, . . . , s′K to P.

6. ∀k ∈ [K], P parses s′ki,j as (ct∗, pk∗) and computes ct′i,j,k := HE.Evalpk∗(Cf , ct∗).

7. ∀k ∈ [K], P sets z′k := ct′1,1,k, . . . , ct
′
1,λ,k, . . . , ct

′
n,1,k, . . . , ct

′
n,λ,k.

8. P sends z′1, . . . , z′K to V.

9. ∀k ∈ [K], V samples a random subset T k ⊂ [n] × [λ] of size λ and checks
whether the following holds:

∀(i, j) ∈ T k : HE.Decski′,j′,k(z
′k
i,j) = f(ski′,j′)

where (i′, j′) := π−1
k (i, j).

10. If the check fails, then V outputs ⊥. Otherwise it proceeds.

11. ∀k ∈ [K], V computes zk := π−1
k (z′k).

12. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef ({wi,j,k}k∈[K], sti,j), where
wi,j,k = Decski,j,k(z

k
i,j)

13. ∀i ∈ [n], V sets ufinal
i = Majority(ui,1, . . . , ui,λ)

14. V outputs ufinal
1 , . . . , ufinal

n

Theorem 10. Let FK-RSR
ℓ denote the class of all ℓ bit functions that admit K-RSR for any K ≥ 1.

Assuming a homomorphic encryption scheme for FK-RSR
ℓ , there exists a OBVC scheme (Defini-

tion 4), specifically Protocol 5.2, for FK-RSR
ℓ with soundness against arbitrary non-uniform PPT

provers.

Corollary 11. For all λ = ω(log n), Protocol 5.2 is an OBVC scheme for FK-RSR
ℓ with soundness

29

error negl(n) against non-uniform PPT provers.

In the rest of this section, we will prove Theorem 10. We note that the completeness of
Protocol 5.2 follows directly from the correctness property of RSR and F-homomorphism
property of the HE scheme. We now proceed to discuss non-triviality, privacy, efficiency
and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier uses two
helper oracles namelyORSR.Encodef andORSR.Decodef . By Definition 2, we know that TRSR.Encode(ℓ)+
TRSR.Decode(ℓ) = o(Tf (ℓ)). Hence, our protocol satisfies the non-triviality condition.

The privacy of our protocol follows directly from the CPA-security of the underlying
HE scheme. More formally, the simulator Sim(1λ, 1n,X) simply runs the verifier V on
inputs x1 = . . . = xn = 0 where 0 is a default element in the domain of f . By the CPA-
security of HE scheme and a standard hybrid argument, the view of the server in the real
protocol will be computationally indistinguishable from the simulated view.

For efficiency, we note that each helper oracle is invoked exactly nλ times and the
function oracleOf is invoked exactly Kλ times. For security parameter λ, let THE.Keygen(λ),
THE.Enc(λ) and THE.Dec(λ) denote the time-complexity of HE.Keygen, HE.Enc and HE.Dec
respectively. Then the running time of V is exactly O(nKλ(THE.Keygen(λ) + ℓ · THE.Enc(λ) +
ℓ · THE.Dec(λ))) as the bottleneck cost comes from generating HE keys for each of the nKλ
shares i.e. {si,j,k}i∈[n],j∈[λ],k∈[K] and then encrypting and decrypting them. The other steps
like shuffling, majority and cut-and-chose check can be computed in linear time. Here K
is a constant which depends on the function f (but independent of n, λ and ℓ).

Soundness Analysis. Now we will show how the security of Protocol 5.1 against arbi-
trary no-signaling multi-prover Pno-sig can be carried over to the security of Protocol 5.2
against arbitrary non-uniform PPT prover P. As mentioned earlier, the main ingredient
used in Protocol 5.2 is an HE scheme. The main idea behind the security proof amounts
to showing that any malicious PPT prover in Protocol 5.2 will conform to the notion of
no-signaling prover as defined in Definition 3.

To do so, we first consider the following experiment which basically captures the ex-
ecution of Protocol 5.2 with an arbitrary fixed computationally bounded prover P∗ and
defines random variables bk and its inverse binvk.

30

Experiment ExpK-RSR(P∗,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : ∀i ∈ [n], j ∈ [λ], pki,j,k, ski,j,k ← HE.Keygen(1λ)

4 : ∀i ∈ [n], j ∈ [λ], cti,j,k ← HE.Encpki,j,k(si,j,k)

5 : sk := (ct1,1,k, pk1,1,k), . . . , (ct1,λ,k, pk1,λ,k), . . . , (ctn,1,k, pkn,1,k), . . . , (ctn,λ,k, pkn,λ,k)

6 : πk ← random permutation on [nλ]

7 : s′
k
:= πk(sk)

8 : (z′
1
, . . . , z′

K
)← P∗(s′

1
, . . . , s′

K
)

9 : ∀k ∈ [K] :

10 : T k ← random λ sized subset of [n]× [λ]

11 : ∀i ∈ [n], j ∈ [λ], bki,j =

{
0 ;HE.Decski′,j′,k(z

′k
i,j) = f(ski′,j′) where (i′, j′) := π−1

k (i, j)

1 ; otherwise

12 : bk := bk1,1, . . . , b
k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

13 : binvk := (πk)−1(bk)

Based on the above experiment, we now define the advantage of prover P∗ in Protocol
5.2 in the following way.

Adv
(1,K)-RSR
δ,∆ (P∗,x) = Pr


∃i ∈ [n],RW(

∣∣∣∣∣∣
j∈[λ],k∈[K]

binvk
i,j) > (δ +∆)

∧
RW(b1

T1
|| . . . ||b1

Tk) = 0

: ExpK-RSR(P∗,x)


(5)

Claim 4. Assume there exists a negligible function µ : N → R s.t. for all arbitrary no-signaling
provers P∗

no-sig, n ∈ poly(λ), x ∈ X n, λ ∈ N, we have AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗
no-sig,x) ≤ µ(λ).

Then, assuming the existence of a homomorphic encryption scheme HE, for all non-uniform PPT
prover P∗, n ∈ poly(λ), x ∈ X n, λ ∈ N, we have:

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗,x) ≤ µ(λ)

Proof. Suppose the claim is false. Then there exists a non-uniform PPT prover P∗, n∗ ∈
poly(λ), x∗ ∈ X n, λ∗ ∈ N such that:

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗,x∗) > µ(λ∗)

Given this, we can now construct a no-signaling prover P∗
no-sig = (P∗

no-sig1
, . . . ,P∗

no-sigK
)

which will contradict the µ(·) upper bound for the advantage of arbitrary no-signaling
provers. We define P∗

no-sigk
, the kth prover in the no-signaling system P∗

no-sig, in the follow-
ing way.

31

P∗
no-sigk

1 : Receive s′k.
2 : ∀i ∈ [n], j ∈ [λ], generate pki,j,k, ski,j,k ← HE.Keygen(1λ).

3 : ∀i ∈ [n], j ∈ [λ], compute cti,j,k ← HE.Encpki,j,k(1
λ, s′i,j,k).

4 : Set t′k := (ct1,1,k, pk1,1,k), . . . , (ct1,λ,k, pk1,λ,k), . . . , (ctn,1,k, pkn,1,k), . . . , (ctn,λ,k, pkn,λ,k).

5 : Send t′k to P∗.
6 : Receive u′k from P∗.
7 : For all i ∈ [n], j ∈ [λ]: compute z′i,j,k = HE.Decski,j,k(1

λ, u′ki,j).

8 : Set z′k = z′1,1,k, . . . , z
′
1,λ,k∗ , . . . , z

′
n,1,k∗ , . . . , z

′
n,λ,k∗

9 : Output z′k.

From our construction, it is clear that:

AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗
no-sig,x

∗) = AdvK-RSR
δ=0.25/K,∆=0.25/K(P

∗,x∗) > µ(λ∗)

Now the remaining part to show is that the system P∗
no-sig = (P∗

no-sig1
, . . . ,P∗

no-sigK
) is

indeed no-signaling. We will prove this via reduction to the semantic security of the
underlying HE scheme used in Protocol 5.2.

Suppose that the system is not no-signaling w.r.t P∗
no-sigk∗

i.e. there exists a PPT distin-
guishers D and a fixed polynomial q(·) such that for infinitely many λ ∈ N, there exists
x ∈ X nλ, {yi

0}i∈[K],i ̸=k∗ where yi
0 ∈ X nλ, {yi

1}i∈[K],i ̸=k∗ where yi
1 ∈ X nλ,

∣∣∣Pr[D(Game0k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗)) = 1]−

Pr[D(Game1k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗))) = 1]
∣∣∣ ≥ 1

q(λ)

where the games are formally defined in Definition 3. Now we can build a reduction
R as follows:

R(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗)

1 : Send {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗ to the IND-CPA challenger.

2 : Receive {t′i}i∈[K],i ̸=k∗ from the IND-CPA challenger.

3 : ∀i ∈ [n], j ∈ [λ], generate pki,j , ski,j ← HE.Keygen(1λ).

4 : ∀i ∈ [n], j ∈ [λ], compute cti,j ← HE.Encpki,j (1
λ, xi,j).

5 : Set t′k
∗
:= ct1,1, . . . , ct1,λ, . . . , ctn,1, . . . , ctn,λ.

6 : (u′1, . . . ,u′K)← P∗(t′1, . . . , t′K)

7 : For all i ∈ [n], j ∈ [λ]: compute z′i,j = HE.Decski,j (1
λ, u′k

∗
i,j).

8 : Set z′ = z′1,1, . . . , z
′
1,λ, . . . , z

′
n,1, . . . , z

′
n,λ.

9 : Send z′ to D and receive a bit b.
10 : Output b.

32

From the construction, it is clear that:

Pr[R output 1|Challenger encrypts{yi
0}i∈[K],i ̸=k∗] =

Pr[D(Game0k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗)) = 1]

Pr[R output 1|Challenger encrypts{yi
1}i∈[K],i ̸=k∗] =

Pr[D(Game1k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗)) = 1]

Therefore, we have:∣∣∣Pr[R output 1|Challenger encrypts{yi
0}i∈[K],i ̸=k∗]

− Pr[R output 1|Challenger encrypts{yi
1}i∈[K],i ̸=k∗]

∣∣∣
=

∣∣∣Pr[D(Game0k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗)) = 1]

− Pr[D(Game1k∗(x, {yi
0}i∈[K],i ̸=k∗ , {yi

1}i∈[K],i ̸=k∗))) = 1]
∣∣∣ ≥ 1

q(λ)

This contradicts the IND-CPA security of the HE scheme.

6 Impossibility of oracle-aided batch verifiable computa-
tion

Definition 6. A (s(λ), t(λ), q(λ), n(λ)) OBVC scheme Π = (P,V) in the O model is defined as
follows.

• The verifier V which is a two-staged entity i.e. V = (V1,V2). V1 is computationally un-
bounded; it interacts with O.pre and outputs an s-bit “advice” string. V2 is computation-
ally bounded and also query bounded. It takes an s-bit auxiliary input and makes at most t
queries to O.main.

• The prover P which is a single staged entity and makes at most q queries to O.main. There
is no computational bound on the prover.

We will use the notation ⟨PO,VO⟩Π to denote the following protocol interaction:

• V1 interacts with O.pre and outputs an s-bit “advice” string.

• V1 passes a s-bit auxiliary input aux to V2.

• Sample a batch of instances I ⊆ [M] where |I| = n. Send I to V2.

• P and V2 interact with each other while having access to O.main.

• V2 returns OUT in the end.

The scheme Π satisfies the following properties.

33

• Completeness: For all λ ∈ N,

Pr[OUT = O(xI
1), . . . ,O(xI

n)] = 1

• Soundness: For all adversarial P∗, there exists a negligible function negl(·) s.t. for all λ ∈ N:

Pr[OUT = O(xI
1), . . . ,O(xI

n) ∨ OUT = ⊥] = 1− negl(λ)

• Efficiency: We say that an OBVC scheme is efficient if the s(λ) ∈ poly(λ) and t(λ) ∈
o(n(λ)).

Theorem 12. For all n ∈ poly(λ), α′ ∈ (0, 1], t ∈ o(n), q = q(λ), s ∈ poly(λ), for every
(s, t, q, n) OBVC scheme Π = (P,V) in the O := BF-RO(M = 2λ, N = 2λ, p = 2(1−α′)λ) model,
there exists a malicious prover Pmal and noticeable function ϵ′(λ) s.t. for all λ ∈ N:

Pr
[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ : OUT← ⟨PO

mal,V
O⟩Π

]
≥ ϵ′(λ)

Proof. To prove the above theorem, we will first establish some variable notations which
will be defined and used later in our hybrids. WLOG we will assume that P makes q
distinct queries to O during the protocol denoted Qprover = {zP1 , . . . , zPq }. For V1, we will
denote p bit-fixing query/answer pairs by set Qbit-fixing = {(zV1

1 , yV1
1), . . . , (zV1

p , yV1
p)}. Also

WLOG we will assume that V2 makes t distinct queries denoted by Qverifier = {zV2
1 , . . . , zV2

t }
which are outside the bit-fixing query set, i.e., for all i ∈ [t], j ∈ [p], zV2

i ̸= zV1
j . Let the set

of n instances be denoted by I = {xI
1, . . . , x

I
n} and outputs of V2 be denoted by yI1 , . . . , y

I
n.

Now suppose there exists an OBVC scheme Π with parameters n ∈ poly(λ), s ∈ poly(λ), t ∈
o(n), q = q(λ), α′ ∈ (0, 1], p = 2(1−α′)λ which contradicts the theorem. We consider the fol-
lowing experiments:

• Hyb0: Execute ⟨PO,VO⟩Π, where O := BF-RO(p,M,N), and output whatever V2 out-
puts i.e. OUT.

Claim 5. For all λ ∈ N, it holds that:

Pr[OUT = O(xI
1), . . . ,O(xI

n)|Hyb0] = 1

Proof. This follows directly from the completeness of the OBVC scheme.

• Hyb1: Execute ⟨PO,VO⟩Π, where O := BF-RO1(p,M,N), and output whatever V2

outputs i.e. OUT, where BF-RO1(p,M,N) is defined as:

BF-RO1.pre: Same as BF-RO.pre

BF-RO1.main: Answer queries via lazy-sampling. Specifically, for each query
x ∈ [M]: If x has been queried before (either at pre or main), answer F (x). Otherwise,
sample y ← [N], set F (x) := y, and answer with y.

34

Claim 6. For all λ ∈ N, it holds that:

Hyb1 = Hyb0

Proof. Hyb1 is identical to Hyb0 for the following reason: For every query x /∈ Qbit-fixing,
F (x) in Hyb0 is a uniformly random and independent value. Therefore, sampling
F (x) lazily in Hyb1 doesn’t change the distribution of the experiment.

Corollary 13. For all λ ∈ N, it holds that:

Pr[yI1 = O(xI
1) ∧ . . . ∧ yIn = O(xI

n)|Hyb1] = 1

Proof. This follows directly from Claim 5 and Claim 6.

• Hyb2: Execute ⟨PO,VO⟩Π, where O := BF-RO2(p,M,N), and output whatever V2

outputs i.e. OUT. We now define BF-RO2(p,M,N):

BF-RO2.pre: Same as BF-RO1.pre

BF-RO2.main: Same as BF-RO2.main. Additionally sample ϕ ← [n] and ∆ ← [N]
in the beginning and store it.

Claim 7. For all λ ∈ N, it holds that:

Hyb2 = Hyb1

Proof. The only difference between the two hybrids is that in Hyb2 we additionally
sample a random value ϕ and ∆. However, since these values are not used any-
where in Hyb2, therefore Hyb2 is identical to Hyb1 by construction.

Corollary 14. For all λ ∈ N, it holds that:

Pr[yI1 = O(xI
1) ∧ . . . ∧ yIn = O(xI

n)|Hyb2] = 1

Proof. This follows directly from Claim 7 and Corollary 13.

Claim 8. Let rI , rV1 , rP, rV2 , rO, rϕ,∆ denote the random tapes of sampling set I , P,V1,V2,O, (ϕ,∆)
respectively. Let RHyb2 denote the set of all r = (rI , rP, rV1 , rV2 , rO, rϕ,∆) in Hyb2 such that
none of the following bad events occur.

1. V2 queries xϕ (recall that ϕ ∈ [n])

2. ∃i ∈ [n] s.t. xI
i ∈ Qbit-fixing

For all λ ∈ N, it holds that:

Prr[r ∈ RHyb2] ≥ 1− np

M
− t

n

35

Proof. Assuming there are n instances and V2 makes atmost t queries where t ≪ n,
we can bound the probability of occurrence of the first bad event by t

n
. This holds

because over the randomness of rϕ,∆, ϕ is a uniformly random and independent
(from everything else) sample from [n].

To bound the probability of occurrence of the second bad event, we observe that for
each i ∈ [n], the probability that xI

i ∈ Qbit-fixing is atmost p
M

(since each xI
i is sampled

randomly from [M]). By union bounding over all i ∈ [n], we get a bound of np
M

.

Therefore, by a union bound, the probability that none of the bad events happen is
at least 1− np

M
− t

n
. Specifically,

Prr[r ∈ RHyb2] ≥ 1− np

M
− t

n

In other words, the set RHyb2 contains at least a 1 − np
M
− t

n
fraction of all possible

tuples of random tapes.

• Hyb3: Execute ⟨PO,VO′⟩Π which is defined as follows, and output whatever V2 out-
puts i.e. OUT.

1. Set O := BF-RO1(p,M,N).

2. Create O′ as a wrapper around O where O′.pre simply forwards all queries to
O.pre. The O′.main interface will be defined later.

3. V1 interacts with O′.pre and outputs an s-bit “advice” string.

4. V1 passes a s-bit auxiliary input aux to V2.

5. Sample a batch of instances I ⊆ [M] where |I| = n. Send I to V2.

6. P and V2 interact with each other where P has access to O.main and V2 has
access to O′.main. The O′.main interface works as follows: It samples ϕ ← [n]
and ∆ ← [N] in the beginning and stores it. On receiving a query x ∈ [M]: If
x = xI

ϕ, return ∆. Else forward the query to O.main to get a response y, and
then return y.

7. V2 returns OUT in the end where OUT is parsed as yI1 , . . . , yIn.

Claim 9. Let rI , rP, rV1 , rV2 , rO, rϕ,∆ denote the random tapes of sampling set I , P,V1,V2,O,O′

respectively. Let RHyb2 denote the set of all r = (rI , rP, rV1 , rV2 , rO, rϕ,∆) in Hyb2 such that
none of the following bad events occur.

1. V2 queries xϕ.

2. ∃i ∈ [n] s.t. xI
i ∈ Qbit-fixing

For all λ ∈ N, it holds that:

∀r ∈ RHyb2 : Hyb3(r) = Hyb2(r)

36

Proof. We claim that for every fixing of r = (rI , rP, rV1 , rV2 , rO, rϕ,∆) where r ∈ RHyb2 ,
Hyb2 and Hyb3 proceed identically. In particular, the output of the hybrid, denoted
by yI1 , . . . , y

I
n, will be identical in both hybrids if r ∈ RHyb2 . This can be seen using

the following inductive argument. Suppose the protocol is divided into s stages
where vi represents the joint view of P and V2 after the ith query (made by either P
or V2). Let qi denote the response to the ith query (made by either P or V2). Let g
denote the view transition function which takes as input rP, rV2 , vi, qi and outputs
vi+1. As a base case, it is easy to see that v0 is identical between Hyb2 and Hyb3. For
the inductive case, we assume that vi is identical between Hyb2 and Hyb3. Now we
will show that for all r ∈ RHyb2 , vi+1 will also be identical between Hyb2 and Hyb3.
Observe that this depends on the value that qi+1 takes in the hybrid. Since the oracle
for V2 is identical in both hybrids except at the point xϕ, the only way qi+1 could
differ between the two hybrids is if the (i+1)th query is made by V2 at xϕ. However,
since we are conditioning on r ∈ RHyb2 , this case is ruled out. Therefore, qi+1 will
be identical between the two hybrids and, using the transition function g, it follows
that vi+1 is also identical.

Corollary 15. For all λ ∈ N, it holds that:

Pr[yI1 = O(xI
1) ∧ . . . ∧ yIn = O(xI

n)|Hyb3] ≥ 1− np

M
− t

n

Proof. By Claim 9, it holds that:

Prr∈RHyb2 [y
I
1 = O(xI

1) ∧ . . . ∧ yIn = O(xI
n)|Hyb3] = 1

Moreover, since r is sampled uniformly at random and the set RHyb2 is fixed, we get
that Prr[r ∈ RHyb2] ≥ 1− np

M
− t

n
. Therefore,

Pr[yI1 = O(xI
1) ∧ . . . ∧ yIn = O(xI

n)|Hyb3] ≥ 1− np

M
− t

n

Corollary 16. For all λ ∈ N, it holds that:

Pr[yIϕ = O(xI
ϕ) ∧ yIϕ ̸= ∆|Hyb3] ≥

(
1− np

M
− t

n

)(
1− 1

N

)
Proof. Since ∆ is a uniformly random and independent value sampled from [M], it
is not equal to O(xI

ϕ) except with probability 1
N

. Furthermore, Corollary 15 already
shows that the probability of occurrence of yIϕ = O(xI

ϕ) is atleast 1− np
M
− t

n
.

• Hyb4: Execute ⟨PO′
,VO⟩Π, where O′ is defined in the previous hybrid, and output

whatever V2 outputs i.e. OUT which is parsed as yI1 , . . . , yIn.

37

Claim 10. For all λ ∈ N, it holds that:

Hyb4 = Hyb3

Proof. The hybrids are identical by construction.

Corollary 17. For all λ ∈ N, it holds that:

Pr[yIϕ = O′(xI
ϕ) ∧ yIϕ ̸= O(xI

ϕ)|Hyb4] ≥
(
1− np

M
− t

n

)(
1− 1

N

)

Proof. This follows directly from Claim 10 and Corollary 16.

Remark 3. Note that the event where yIϕ = O′(xI
ϕ) ∧ yIϕ ̸= O(xI

ϕ) in Hyb4 directly con-
tradicts the soundness of the OBVC scheme Π. In this hybrid, one can re-think PO′ as a
malicious prover Pmal which has access to O and overwrites the response by O to its query
at xI

ϕ by ∆. Then, one can see that the soundness is contradicted due to the following rea-
son: the correct output for instance xϕ w.r.t V2’s oracle access in Hyb4 is O(xI

ϕ). For all
n = poly(λ), α′ ∈ (0, 1], p = 2(1−α′)λ for , t ∈ o(n) and M,N = Ω(2λ), the probability of
occurrence of this event is greater than 1

poly(λ)
which is non-negligible in λ (specifically it is

noticeable in λ). This directly contradicts the soundness requirement of Π.

We will now lift the above theorem from the Bit-fixing RO model to Auxiliary-input
RO model.

Theorem 18. For all n ∈ poly(λ), α ∈ (0, 1], q = 2(1−α)λ, t ∈ o(n), s ∈ poly(λ), for every
(s, t, q, n) OBVC scheme Π = (P,V) in the O := AI-RO(M = 2λ, N = 2λ), there exists a
malicious prover Pmal and noticeable function ϵ(λ) s.t. for all λ ∈ N:

Pr
[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ : OUT← ⟨PO

mal,V
O⟩Π

]
≥ ϵ(λ)

Proof. Suppose the theorem is false i.e. ∃(s, t, q, n) OBVC scheme Π in the AI-RO(M,N),
s.t. for some n ∈ poly(λ), s ∈ poly(λ), t ∈ o(n), α ∈ (0, 1], q = 2(1−α)λ s.t. for all malicious
provers Pmal and noticeable function ϵ(λ):

Pr
[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ : OUT← ⟨PO

mal,V
O⟩Π

]
< ϵ(λ)

where O := AI-RO(M = 2λ, N = 2λ).
Given the verifier algorithm V = (V1,V2) in the AI-RO model, we will now construct

a Bit-fixing verifier V′ = (V′
1,V

′
2) which will contradict Theorem 12.

38

• V′
1 internally simulates V1 to compute u ← VAI-RO.pre

1 where |u| = s. We know by
Theorem 4 that there exists a family {Yv}v∈{0,1}s of convex combinations of p-bit-
fixing sources. V′

1 samples one of the p-bit-fixing sources Y ′ from Yu. Let Qbit-fixing be
the set of p fixed points in Y ′. V′

1 sends Qbit-fixing to BF-RO.pre (recall that BF-RO.pre
takes a list of at most p query/answer pairs called “bit-fixing” pairs) and outputs u.
Let Ou denote the resulting bit-fixed oracle.

• V′
2 works exactly like V2 with oracle access to Ou.

Now consider the following (oracle-aided) distinguisher D:
DO(u ∈ {0, 1}s)

1. Sample I ⊆ [M] where |I| = n.

2. Compute OUT← ⟨PO
mal,V

O
2 (I, u)⟩Π

3. Set b := 1 if OUT ̸= O(xI
1), . . . ,O(xI

n) ∧ OUT ̸= ⊥. Otherwise set b := 0.

4. Output b.

The total number of queries made by D is tcomb = t + q + n where t is the number
of queries made by V2, q is the number of queries made by Pmal and n is the number of
queries made by D in Step 3 (which equals the number of instances).

Now we note that by construction of D, it follows that:

Pr[DO:=AI-RO(M=2λ,N=2λ)(u) = 1] =

Pr

[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ :

O := AI-RO(M = 2λ, N = 2λ)
OUT← ⟨PO

mal,V
O⟩Π

]
and

Pr[DOu] = Pr

[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ :

O := BF-RO(p,M = 2λ, N = 2λ)

OUT← ⟨PO
mal,V

′O⟩Π

]
Recall thatOu is defined as follows: Let {Yv}v∈{0,1}s be a family of convex combinations

of p-bit-fixing sources guaranteed to exist by Theorem 4. We compute u ← VAI-RO.pre
1 ,

sample one of the p-bit-fixing sources Y ′ from Yu, and set Ou := Y ′

By Theorem 4, we know that:

∣∣∣Pr[DO:=AI-RO(M=2λ,N=2λ)(u) = 1]− Pr[DOu(u) = 1]
∣∣∣ ≤ (s+ log 1/γ) · tcomb

p
+ γ

Setting γ = 1
2λ
, s = poly(λ), tcomb = 2(1−α)λ and p = 2(1−α′)λ, where α > α′, we get that:∣∣∣Pr[DO:=AI-RO(M=2λ,N=2λ)(u) = 1]− Pr[DOu(u) = 1]

∣∣∣ ≤ negl(λ)

39

Therefore,

Pr[DOu(u) = 1] ≤ Pr[DO:=AI-RO(M=2λ,N=2λ)(u) = 1] + negl(λ)

=⇒ Pr

[
OUT ̸= O(xI

1), . . . ,O(xI
n) ∧ OUT ̸= ⊥ :

O := BF-RO(p,M = 2λ, N = 2λ)

OUT← ⟨PO
mal,V

′O⟩Π

]
≤ ϵ(λ) + negl(λ)

Since the above inequality holds for every noticeable ϵ(·), it contradicts Theorem 12.

Acknowledgments

A. Agarwal and D. Khurana were supported in part by NSF CAREER CNS-2238718,
DARPA SIEVE and an award from Visa Research. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through Award HR00112020024.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are provided “AS
IS” and intended for informational purposes only and should not be relied upon for op-
erational, marketing, legal, technical, tax, financial or other advice. Visa Inc. neither
makes any warranty or representation as to the completeness or accuracy of the infor-
mation within this document, nor assumes any liability or responsibility that may result
from reliance on such information. The Information contained herein is not intended as
investment or legal advice, and readers are encouraged to seek the advice of a competent
professional where such advice is required.

These materials and best practice recommendations are provided for informational
purposes only and should not be relied upon for marketing, legal, regulatory or other ad-
vice. Recommended marketing materials should be independently evaluated in light of
your specific business needs and any applicable laws and regulations. Visa is not respon-
sible for your use of the marketing materials, best practice recommendations, or other
information, including errors of any kind, contained in this document.

References

[1] Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 522–539. SIAM (2021)

[2] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient ver-
ification via secure computation. In: International Colloquium on Automata, Lan-
guages, and Programming. pp. 152–163. Springer (2010)

40

[3] Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approximate computations
over the reals. In: Proceedings of the twenty-fifth annual ACM symposium on The-
ory of Computing. pp. 786–795 (1993)

[4] Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Succinct delegation
for low-space non-deterministic computation. In: Diakonikolas, I., Kempe, D., Hen-
zinger, M. (eds.) STOC. pp. 709–721. ACM (2018). DOI: 10.1145/3188745.3188924,
https://doi.org/10.1145/3188745.3188924

[5] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions: Im-
provements and applications. Journal of Cryptology 10(1), 17–36 (1997)

[6] Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryptogra-
phy and checking. In: Latin American Symposium on Theoretical Informatics. pp.
170–191. Springer (1998)

[7] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. pp. 62–73 (1993)

[8] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to nu-
merical problems. In: Proceedings of the twenty-second annual ACM symposium
on Theory of computing. pp. 73–83 (1990)

[9] Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive pro-
grams. In: Distributed Computing and Cryptography: Proceedings of a DIMACS
Workshop, October 4-6, 1989. vol. 2, p. 107. American Mathematical Soc. (1991)

[10] Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive ram and batch np delegation
from any pir. Cryptology ePrint Archive (2016)

[11] Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive delegation and batch np veri-
fication from standard computational assumptions. In: Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing. pp. 474–482 (2017)

[12] Brakerski, Z., Kalai, Y.: Witness indistinguishability for any single-round argument
with applications to access control. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds.) PKC 2020: 23rd International Conference on Theory and Practice of Public
Key Cryptography, Part II. Lecture Notes in Computer Science, vol. 12111, pp. 97–
123. Springer, Heidelberg, Germany, Edinburgh, UK (May 4–7, 2020). DOI: 10.1007/
978-3-030-45388-6_4

[13] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on computing 43(2), 831–871 (2014)

[14] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.,
Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen, E. (eds.)
51st Annual ACM Symposium on Theory of Computing. pp. 1082–1090. ACM Press,
Phoenix, AZ, USA (Jun 23–26, 2019). DOI: 10.1145/3313276.3316380

41

http://dx.doi.org/10.1145/3188745.3188924
https://doi.org/10.1145/3188745.3188924
http://dx.doi.org/10.1007/978-3-030-45388-6_4
http://dx.doi.org/10.1007/978-3-030-45388-6_4
http://dx.doi.org/10.1145/3313276.3316380

[15] Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
– CRYPTO 2021, Part IV. Lecture Notes in Computer Science, vol. 12828, pp. 394–
423. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). DOI: 10.1007/
978-3-030-84259-8_14

[16] Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for \mathcal{P} from LWE. In: 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022. pp. 68–79. IEEE (2021). DOI: 10.1109/FOCS52979.2021.
00016, https://doi.org/10.1109/FOCS52979.2021.00016

[17] Chung, K.M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully
homomorphic encryption. In: Annual Cryptology Conference. pp. 483–501. Springer
(2010)

[18] Cleve, R., Luby, M.: A note on self-testing/correcting methods for trigonometric
functions. International Computer Science Inst. (1990)

[19] Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity. In:
Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29-May 3, 2018 Proceedings, Part I. pp. 227–258. Springer (2018)

[20] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with aux-
iliary input, revisited. In: Advances in Cryptology–EUROCRYPT 2017: 36th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part II. pp. 473–495.
Springer (2017)

[21] Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate functions. In: STOC. vol. 91,
pp. 32–42. Citeseer (1991)

[22] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In: Annual Cryptology Conference. pp. 465–
482. Springer (2010)

[23] Hoeffding, W.: Probability inequalities for sums of bounded random variables. The
collected works of Wassily Hoeffding pp. 409–426 (1994)

[24] Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022, Part II. Lecture Notes in Computer Science, vol.
13276, pp. 520–549. Springer, Heidelberg, Germany, Trondheim, Norway (May 30 –
Jun 3, 2022). DOI: 10.1007/978-3-031-07085-3_18

[25] Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: Snargs for bounded depth com-
putations and PPAD hardness from sub-exponential LWE. In: Khuller, S., Williams,

42

http://dx.doi.org/10.1007/978-3-030-84259-8_14
http://dx.doi.org/10.1007/978-3-030-84259-8_14
http://dx.doi.org/10.1109/FOCS52979.2021.00016
http://dx.doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
http://dx.doi.org/10.1007/978-3-031-07085-3_18

V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, Virtual Event, Italy, June 21-25, 2021. pp. 708–721. ACM (2021). DOI: 10.1145/
3406325.3451055, https://doi.org/10.1145/3406325.3451055

[26] Kalai, Y., Paneth, O.: Delegating ram computations. In: Theory of Cryptography:
14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3,
2016, Proceedings, Part II 14. pp. 91–118. Springer (2016)

[27] Kalai, Y.T., Paneth, O., Yang, L.: Delegation with updatable unambiguous proofs and
PPAD-hardness. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020, Part III. Lecture Notes in Computer Science, vol. 12172, pp. 652–673.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2020). DOI:
10.1007/978-3-030-56877-1_23

[28] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.) Ad-
vances in Cryptology – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677,
pp. 143–159. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20,
2009). DOI: 10.1007/978-3-642-03356-8_9

[29] Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. pp. 565–574. ACM (2013). DOI:
10.1145/2488608.2488679, http://doi.acm.org/10.1145/2488608.2488679

[30] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: STOC. pp. 485–494. ACM (2014)

[31] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. pp. 485–494 (2014)

[32] Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical soundness, post-
quantum security, and SNARGs. In: Nissim, K., Waters, B. (eds.) TCC 2021: 19th
Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science, vol.
13042, pp. 330–368. Springer, Heidelberg, Germany, Raleigh, NC, USA (Nov 8–11,
2021). DOI: 10.1007/978-3-030-90459-3_12

[33] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing. pp. 723–732
(1992)

[34] Lipton, R.: New directions in testing. Distributed computing and cryptography 2,
191–202 (1991)

[35] Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–
1298 (2000)

43

http://dx.doi.org/10.1145/3406325.3451055
http://dx.doi.org/10.1145/3406325.3451055
https://doi.org/10.1145/3406325.3451055
http://dx.doi.org/10.1007/978-3-030-56877-1_23
http://dx.doi.org/10.1007/978-3-642-03356-8_9
http://dx.doi.org/10.1145/2488608.2488679
http://doi.acm.org/10.1145/2488608.2488679
http://dx.doi.org/10.1007/978-3-030-90459-3_12

[36] Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption and publicly
verifiable non-interactive arguments. Cryptology ePrint Archive, Report 2017/903
(2017), http://eprint.iacr.org/2017/903

[37] Rubinfeld, R.: Batch checking with applications to linear functions. Information Pro-
cessing Letters 42(2), 77–80 (1992)

[38] Unruh, D.: Random oracles and auxiliary input. In: Advances in Cryptology-
CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2007. Proceedings 27. pp. 205–223. Springer (2007)

[39] Waters, B., Wu, D.J.: Batch arguments for NP and more from standard bilinear group
assumptions. IACR Cryptol. ePrint Arch. p. 336 (2022), https://eprint.iacr.org/2022/
336

44

https://eprint.iacr.org/2022/336
https://eprint.iacr.org/2022/336

	Introduction
	Our Results
	Our techniques
	Related Work

	Preliminaries
	Mathematical Preliminaries and Definitions
	Bit fixing Random Oracle Model
	Homomorphic Encryption
	Random Self Reducibility
	No-signaling prover

	Defining Oracle-aided Batch Verifiable Computation
	Protocol for functions admitting 1-RSR
	Protocol for functions admitting K-RSR
	OBVC with multiple provers
	OBVC with a Single Prover

	Impossibility of oracle-aided batch verifiable computation

