
Do Private Transaction Pools Mitigate
Frontrunning Risk?

Agostino Capponi1, Ruizhe Jia1, and Ye Wang2

1 Columbia University, 2960 Broadway, New York, USA
{ac3827,rj2536}@columbia.edu

2 University of Macau, Avenida da Universidade, Macao, China
wangye@um.edu.mo

Abstract. Blockchain users who submit transactions through private
pools are guaranteed pre-trade privacy but face execution risk. We argue
that private pools serve the intended purpose of eliminating frontrunning
risk, only if such risk is high. Otherwise, some validators may decide to
avoid monitoring private pools to preserve rents extracted from fron-
trunning bots. Private pools intensify the execution arms race for bots,
thus decreasing their payoffs and increasing validators’ rents. The pri-
vate pool option reduces blockspace allocative inefficiencies and raises
aggregate welfare.

1 Introduction

Blockchain technology, initially introduced as the backbone for digital currencies
and decentralized payment systems ([8]), has expanded to support a broad range
of financial services through the development of smart contract technologies [2, 5,
6]. However, as blockchain systems evolve to support broader financial services,
a key concern is the problem of frontrunning attacks and their negative impact
on the efficiency of blockspace allocation.

In a typical public blockchain system, the transactions broadcast through the
peer-to-peer network are visible to any node on the network. By observing these
pending transactions, malicious attackers can execute frontrunning attacks [9, 3],
which have already generated a wealth transfer from victim users over 200 million
USD [10]. These value transfers are also referred to as maximal extractable value
(MEV) [4]. As frontrunning transactions do not generate any value, they only
result in a waste of blockspace and thus reduce allocative efficiency.

Most recently, private transaction submission pools have been proposed as a
solution to mitigate frontrunning [1]. Private pools are implemented with relay
services such as Flashbots and Eden Network, which create a private submission
channel where pending transactions are not publicly observable [13]. As a result,
attackers cannot frontrun them.

We investigate the welfare impact of private submission pools on a public
blockchain. We first propose a game-theoretic model to analyze whether a private
pool would be adopted by participants. Our model features three types of agents,

2 Agostino Capponi, Ruizhe Jia, and Ye Wang

namely validators, users, and attackers; and two pool types, namely a private
and a public mempool. Validators decide whether or not to monitor the private
pool in addition to the public pool. Heterogeneous users submit transactions
to the blockchain either through the public or private pool. Users earn private
value from executing their transactions on the blockchain. Attackers compete to
frontrun transactions sent through the public pool by users.

We then examine whether it would achieve its intended purpose of mitigat-
ing front-running attacks and improving welfare. We show that, in equilibrium,
private pools are adopted at least in part by validators, and in full by attack-
ers. Even though private pools neither eliminate frontrunning attacks nor reduce
transaction fees, we demonstrate that they reduce allocative inefficiencies and
thus raise aggregate welfare. The welfare-maximizing outcome is achieved if all
validators monitor the private pool, and thus no block space is allocated to
frontrunning attackers. However, this outcome may not be attainable in equilib-
rium because validators have a strong incentive to preserve rents extracted from
attackers and frontrunnable users.

2 Institutional Details of Relay Services

In this section, we discuss the “built-in” information leakage problem of blockchain,
and the principles of relay services.

2.1 Blockchain and Information Leakage

A blockchain is a decentralized ledger maintained by nodes distributed over a
P2P network. Every node can issue transactions and broadcast them to every
node in the P2P network. Validators collect transactions into blocks, and append
blocks to the existing chain. Users attach an upfront fee to their submitted
transactions. For many public blockchains, including Ethereum, fees allow users
to gain execution priority, in the sense that validators execute transactions in
decreasing order of fees.

Every node in the blockchain network may observe pending transactions.
This transparency is not of concern for payment transactions, because there
is no gain to be made from frontrunning a payment transaction. However, in-
formation leakage becomes worrisome for DeFi transactions executed through
smart contracts. Frontrunning attacks can then be very costly for users [12,
10]. Frontrunning includes displacement, insertion, and suppression attacks [11].
In a displacement attack, an attacker observes a profitable transaction from a
victim user. She then broadcasts an identical transaction, but with a higher
transaction fee. This frontrunning transaction will then be executed before the
victim transaction. The attacker will earn the profit, while the victim transac-
tion would fail. In an insertion attack, an attacker observes a transaction, say
the buy order of a token in a decentralized exchange (DEX) from a victim user.
She then broadcasts two transactions: a frontrunning transaction with a higher
fee than the victim transaction and a backrunning transaction with a lower fee.

Do Private Transaction Pools Mitigate Frontrunning Risk? 3

The frontrunning transaction buys the same token as the victim transaction,
which results in a higher execution price for the victim transaction due to price
impact. After the victim transaction is executed, the price of the purchased to-
ken again goes up due to price impact. The backrunning transaction then closes
the position by selling this token. The selling price is higher than the purchase
price in the frontrunning transaction, which results in a wealth transfer from
the victim user to the attacker.In a suppression attack, an attacker observes a
transaction from a victim user. She then broadcasts transactions with a higher
fee in order to prevent the victim transaction from being included in the block.
Insertion frontrunning attacks are currently the most common in DeFi [11].

2.2 Relay Services

Relay services are an implementation of private pools. A centralized relay ser-
vice receives transactions from users and forwards them to validators, without
broadcasting on the P2P network. Therefore, users’ transactions cannot be ob-
served by malicious attackers. The relay platform screens validators before they
join and monitor their activities to ensure that they do not exploit observed
information. 3 However, this still requires users to trust the centralized relay
which monitors all the transactions sent through it. Only 8 out of more than
two million transactions submitted through private pools were frontrun by at-
tackers [14]. This validates the frontrunning protection of private pools.

The first relay service, Flashbots, was launched in January 2021. Validators
who join Flashbots prioritize the highest bidding transactions submitted through
the Flashbots relay by including them at the top of a block. The execution
order of transactions is typically determined by a one-round, seal-bid, first-price
auction. Hence, the submitter neither knows the transactions submitted by other
users nor the attached fees. By contrast, transaction fee bidding in the public
pool takes the form of an ascending price auction and may consist of multiple
rounds of bid submissions. Moreover, pending transactions and corresponding
fees are publicly observable.

After the merge, i.e., the transition of the Ethereum blockchain from PoW to
PoS, the implementation of relay services and private pools changed slightly. The
new implementation is called proposer-builder separation (PBS) [7]. First, users
send their transactions privately to block builders. Builders pack transactions
they collect from the private channel as well as the public mempool into a block,
and forward it to the validators . Again, only validators who adopted the relay
service can receive this block. Second, users no longer have to trust validators
for not frontrunning them. This is because validators have to sign a blinded
block (which only includes block headers) and passed it to the builder to fill
in the block content. This means that validators commit to propose the block
constructed by the builders of relay services. In this way, the role of building
a block is delegated from the validators to the builders. Figure 1 depicts the
different implementations of private pools before and after the merge.

3The Flashbots Fair Market Principles (FFMP) can be seen from
https://hackmd.io/@Flashbots/fair-market-principles.

4 Agostino Capponi, Ruizhe Jia, and Ye Wang

Fig. 1: Left depicts the implementation of private pools before the merge, and
right illustrates the implementation of private pools after the merge.

3 Model Setup

The timeline consists of three periods indexed by t, t = 1, 2, 3. There are three
types of agents: blockchain users, attackers, and validators. All agents are risk-
neutral.

Validators. There are N homogeneous, rational validators. They all have the
same probability, 1

N , of earning the right to append a new block to the chain. At
the end of period 3, the validator who appends the next block is drawn randomly
from a uniform distribution. We assume that N is sufficiently large. This winning
validator earns the fees attached to the transactions included in the block. Due
to limited capacity, a validator can include at most B transactions in a block.

There exist two transaction submission channels: public and private pool. In
period 1, validators can choose to adopt the private pool at no cost. We denote
by M , and α = M

N the number and the portion of validators who adopt the
private pool in period 1. All validators can view transactions submitted through
the public pool, but only validators within the private pool can view transactions
submitted through the private pool. Therefore, validators who join the private
pool are able to monitor transactions from both the public and private pools. The
transactions that are submitted to the private pool are not revealed to anyone
other than the validators who adopted the private pool. We abstract away from
the differences in implementation between different relays and between pre- and
post-merge.

At the end of period 3, the winning validator selects the B transactions with
the highest attached fees among those he observes. We assume that any tie will
be broken uniformly at random. The validator decides the execution order as
follows. If he has joined the private pool, then he prioritizes the transactions
submitted through the private pool and executes them first. Those transactions
will be executed in decreasing order of bid fees. Subsequently, the winning val-
idator will include the transactions submitted through the public pool, again in
decreasing order of fees. A validator who has not joined the private pool would
add to his mined block the transactions submitted through the public pool only
in decreasing order of fees.

Since a validator’s adoption decision does not affect his probability of mining
the next block, a validator decides whether to adopt a private pool to maximize
the expected transaction fees conditional on him successfully mining the next
block. The expected transaction fees earned from adopting the private pool or
from monitoring the public pool only are both contingent on the adoption choice

Do Private Transaction Pools Mitigate Frontrunning Risk? 5

of users and attackers. We denote the expected fee revenue of the winning val-
idator by rprivate(·) if he adopts the private pool, and by rpublic(·) if he stays on
the public pool only.

Users. There are two types of users, whose type depends on the exogenously
specified nature of the transactions.

The first type of user is one whose pending transaction can be frontrun, if
submitted through the public pool and identified by attackers. We refer to this
user as frontrunnable, and to her transaction as a frontrunnable transaction.
The frontrunnable user gets a private value v0 from executing her transaction.
However, with probability p, attackers recognize that the pending transaction is
frontrunnable, then they can front-run it and earn a profit c ≥ 0. This, in turn,
yields a loss of c to the front run user.

The second type of users are those whose transactions are not frontrunnable,
even if they are broadcast through the public pool. We refer to this type of users
as the non-frontrunnable users, and to their transactions as non-frontrunnable
transactions. There exist B+1 non-frontrunnable users, indexed by i ∈ {1, 2, ..., B+
1}, who extract private values vi, i ∈ {1, 2, ..., B + 1} from their transactions.
Without loss of generality, we let v1 > v2 > ... > vB+1, and v0 > vB−1, (1−p)c >
vB−1. We also impose the following technical assumption to rule out corner cases:

Assumption 1 The difference vB−1 − vB is sufficiently small.4

In period 2, users decide which pools to send their transactions to. A user can
broadcast her transaction through the public pool, through the private pool, or
choose to not submit her transaction. If a frontrunnable transaction is broadcast
through the public pool, it will face the risk of being identified and frontrun by
attackers. If instead a transaction is only broadcast through the private pool,
then it will not be observed by validators who do not monitor the private pool.
Its probability of being included in the next block is at most α. Hence, the
execution risk is determined by the validators’ adoption rate of the private pool.
We index the frontrunnable user as user 0. We denote the pool chosen by user
i, i ∈ I = {0, 1, 2, ..., B+1}, by Ci ∈ {Private,Public,None}. User i also attaches
a transaction fee fi to her transaction.

User i chooses her submission pool Ci and attached fee fi to maximize her
expected payoff:

Ui = E [1Executed,i(vi − fi)− c1frontrun,i] ,

where 1Executed,i is the indicator function for the event “transaction by user i
is included in the block by validator”, 1frontrun,i is the indicator function for the
event “transaction by user i is frontrun by attackers”. We assume that users break

4If there are sufficiently many transactions, i.e., B is sufficiently large, and the
private values that users earn from executing these transactions are drawn from an
i.i.d bounded distribution, then the expectation of the difference between the Bth

order statistic and the (B − 1)th order statistic is sufficiently small.

6 Agostino Capponi, Ruizhe Jia, and Ye Wang

any tie in favor of the public pool. Our assumption is justified by the fact that
it usually requires more sophistication to submit transactions through private
pools such as Flashbots Protect, and the interface for the public mempool is
generally easier to use.

Attackers. There are two competing attackers, indexed by j ∈ J = {1, 2}. The
attackers first screen for the frontrunnable transaction in the public pool and
then exploit it. The attack yields a profit c ≥ 0. Any frontrunnable transaction
pending in the public pool will be identified by both attackers with probability
p.

In period 3, each attacker decides which pools to submit his order if he
has recognized a frontrunnable transaction: public, private, or both. We denote
the pool chosen by attacker j by Vj ∈ {Public,Private,Both}. We denote the
transaction fee bid by attacker j in the private pool by fDj

, and in the public
pool by fLj . attacker j chooses the fee and pool to maximize his expected payoff:

Aj = E [1wins,j1frontrun,0(c− fexecuted,j)] ,

where 1wins,j is the indicator function for the event “the order by attacker j is
executed before the order by the other attacker”, and fexecuted,j is the transaction
fee paid by attacker j. The tie-break rule for attackers is that “both pools” is
their preferred choice, the “public pool” is their second preferred choice, and the
“private pool” is their last choice.

Transaction Fee Bidding. The attacker who bids the highest fee executes the
order. The transaction fee bidding mechanisms in the public and private pools
are different. Transaction fee bidding in the public pool, commonly referred to as
Priority Gas Auctions (PGA), is a variant of an English Auction, i.e., an open-
outcry ascending-price auction. Their main difference is that the transaction fee
bidding in the public pool will end randomly when the validator decides the new
block and stops receiving new transactions.

In period 3, if both attackers submit their transactions to the public pool,
then there are either one round or two rounds of bidding, with the same proba-
bility. The first mover will be either of them with the same probability. In each
round, only one attacker moves, and the bid increment has to be larger than ϵ.
All bids in the public pool are visible to both attackers. To minimize downside
risk, attackers deploy a smart contract. The smart contract would terminate the
transaction if the attack no longer exists. In this case, the transaction would
be deemed as failed, and the corresponding fee is negligible and assumed to be
equal to zero in our model.

The transaction fee bidding in the private pool is a one-round, seal-bid, first-
price auction, where all bidders only submit their bids once to the relay, without
leaking any information to other bidders. If two attackers submit the same order,
then only the transaction submitted by the attacker who attaches the highest
fee will be selected by the validators.

Do Private Transaction Pools Mitigate Frontrunning Risk? 7

Equilibrium. We solve for the subgame perfect equilibrium (SPE) of the game
described above. The strategy profile consists of the private pool’s adoption
decisions by validators, the pool selection and transaction fee bidding strategies
of users, and the pool selection and transaction fee bidding strategies of attackers.
The strategy of user i is a mapping from the private pool’s adoption rate by
validators, α, to her pool choice Ci and transaction fee bid fi. The strategy of
attacker j is a mapping from the private pool’s adoption rate by validators, α,
and users’ actions, (Ci, fi)i∈I to his selected channel Vj and transaction fees
submitted in each pool fDj , fLj . We impose a symmetry restriction that the
strategy used by both attackers are identical.

4 Model Analysis

In this section, we solve for the SPE of the game. We begin by analyzing the
choice of the pool for attackers and users. Subsequently, We study the equilibrium
adoption rate of the private pool, and the corresponding welfare implications.

4.1 Pool Choice of attackers

We analyze attackers’ pool selection strategies, for any adoption rate α of the
private pool, and assuming that the frontrunnable user chooses the public pool.
Note that it suffices to consider this pool choice of the frontrunnable user only,
because if she were to submit through the private pool, her transaction would
not be observable by attackers. Hence, attackers would not be able to submit
any attack order at t = 3. We denote f (B) as the Bth largest fees submitted by
users in period 2.

In order to execute their orders before their competitors, both attackers will
adopt private pools in addition to the public pool. This is because if an attacker
chooses the private pool, then this attacker gains prioritized execution, since
transactions submitted through the private pool are placed at the top of the
block by validators who join this pool. However, using the private pool alone
is not enough. Using the private pool only presents execution risk because a
fraction of the validators may never observe transactions submitted through the
private pool. In this way, attackers also submit their transactions to the public
pool to guarantee execution. The following proposition characterizes the pool
choice and fee-bidding strategies of attackers in equilibrium.

Proposition 1 (Pool Choice and Fees Bid by Attackers) Attackers send
transactions to both the public and private pools in equilibrium. Both attackers
bid c in the private pool. In the public pool, if f0 < c − ϵ, one of the attackers
places an opening bid max(f (B), f0) + ϵ. Afterward, in each bidding round the
attacker increases by the minimal increment ϵ from the previous highest bid. If
f0 ≥ c− ϵ, then the attackers will not bid in the public pool.

Recall that transactions sent through the private pool will be guaranteed to
be prioritized by validators who adopt this pool. To gain this benefit in the “arms

8 Agostino Capponi, Ruizhe Jia, and Ye Wang

race" for priority execution, both attackers participate in the seal-bid, first-price
auction in the private pool and bid truthfully, that is, bid transaction fees equal
to their profits. In contrast, during each round of the PGA in the public pool,
an attacker will only bid slightly higher than the previous highest bids. In this
way, the private pool exacerbates the “arms race” among attackers and increases
their fees paid.

Observe that the fee paid by attackers is pocketed by the winning validator.
Because of competition, the fees bid by attackers is always higher than vB−1, that
is, the minimum fee which guarantees a transaction to be executed by validators.
This suggests that validators extract a portion of MEV.

4.2 Pool Choice of Users

We analyze the selection strategy of the frontrunnable user, for an exogenously
specified relay adoption rate α.

The main trade-off faced by the frontrunnable user is straightforward. Using
the private pool exposes her to execution risk but eliminates the risk of being
frontrun. Unlike attackers, the frontrunnable user does not submit through the
private pool to outbid competitors but merely to avoid frontrunning. If the
private pool’s adoption rate of validators is sufficiently large, the execution risk
is small, and the user will adopt the private pool. The following proposition
characterizes her strategy in equilibrium:

Proposition 2 (Pool Choice of Users) There exists a critical threshold 0 ≤
λ ≤ 1 such that the frontrunnable user sends her transaction through the private
pool if and only if α > λ.

4.3 Validators’ Adoption and Equilibrium

We derive the equilibrium adoption rate of the private pool by validators, α∗ =
M∗

N , and characterize the SPE.
For any α = M

N > 0, the validators who adopt private pool receive a higher
payoff than those who only stay on the public pool:

rprivate(α) ≥ rpublic(α). (1)

This is because transactions submitted through the private pool can only be
observed by validators who adopt it. As a result, if the actions of users and
attackers are fixed, each individual validator has an incentive to adopt the private
pool.

However, it does not necessarily mean that all validators will adopt the pri-
vate pool. The situation changes once we account for the strategic responses of
users and attackers. If sufficiently many validators join the private pool, that is,
if α is large enough, then the payoff of each validator may be lower than their
payoff when M = 0, α = M

N = 0. This is because the frontrunnable user may
then route her transaction from the public to the private pool if the execution

Do Private Transaction Pools Mitigate Frontrunning Risk? 9

risk in the private pool is small enough. The migration of this transaction would
eliminate frontrunning opportunities and thus reduce MEV.

In equilibrium, the validators already in the private pool have no incentive
to exit the private pool, that is,

rprivate(
M∗

N
) ≥ rpublic(

M∗ − 1

N
) or M∗ = 0, (2)

, and validators in the public pool have no incentive to adopt the private pool,
that is,

rpublic(
M∗

N
) ≥ rprivate(

M∗ + 1

N
) or M∗ = N. (3)

We first characterize the equilibrium strategy of the frontrunnable user in
the benchmark case where there is no private pool. This is obtained from our
game theoretical framework by setting α = 0, and considering the subgame at
periods t = 2, 3.

Proposition 3 (Only Public Pool Benchmark) If α = 0, there exists a
threshold c1 ≥ 0 such that the frontrunnable user submits the transaction to
the blockchain if and only if c ≤ c1.

If the frontrunning problem is severe, i.e., c > c1, then it is not incentive com-
patible for the frontrunnable user to submit her transaction to the blockchain,
because the cost of being frontrun exceeds the benefit of executing her transac-
tion. Conversely, if the frontrunning problem is not too severe, i.e., c ≤ c1, then
the frontrunnable user submits to the blockchain even if she faces the risk of
being frontrun.

We next characterize the SPE of our game. We refer to the equilibrium where
the adoption rate of private pool is α∗ = 1 as the full adoption equilibrium,
the equilibrium where the adoption rate α∗ ∈ (0, 1) as the partial adoption
equilibrium, and the equilibrium where the adoption rate α∗ = 0 as no adoption
equilibrium.

Proposition 4 (Characterization of the Equilibrium) Let c1 be the crit-
ical threshold identified in Proposition 3. The following statements hold for the
SPE of the game:

1. there exists a full adoption equilibrium where the adoption rate α∗ = 1, the
frontrunnable user selects the private pool, and the attackers do not submit
attack orders.

2. If c ≤ c1, there also exists a partial adoption equilibrium where the adoption
rate of the private pool is α∗ < 1, the frontrunnable user submits her trans-
action through the public pool, and the attackers send their orders to both
pools.

The private pool will be, at least partially, adopted by validators, and the equi-
librium outcome is contingent on the severity of the front-running problem. Sup-
pose the frontrunning problem is severe (c > c1). Recall from proposition 3 that

10 Agostino Capponi, Ruizhe Jia, and Ye Wang

without a private pool, it is too costly for the frontrunnable user to submit
transactions to the blockchain. Thus, she will only submit to the private pool.
In equilibrium, all validators decide to adopt a private pool so that they are
able to observe the transaction submitted by the frontrunnable user and earn
her transaction fee.

Suppose the frontrunning problem is not too severe (c ≤ c1). Recall from
proposition 3 that even without the private pool, the frontrunnable user would
still submit her transaction to the blockchain even if she bears the risk of be-
ing frontrun. In such a case, partial adoption equilibrium will exist. Note that
validators always extract a portion of MEV through the fees paid by attackers.
To maintain MEV and keep the frontrunnable user in the public pool, only a
fraction of validators choose to adopt the private pool in the partial adoption
equilibrium, which creates high execution risk. As a result, the frontrunnable
user prefers to submit through the public pool and face frontrunning risk. In
such a case, the private pool does not prevent frontrunning attack. It may seem
surprising why in the partial adoption equilibrium, validators who only monitor
the public pool have no incentive also to monitor the private pool and observe
more transactions. The reason is that if an additional validator monitors the
private pool, then the execution risk at the private pool would be too low, users
would submit transactions through the private pool instead of the public pool,
and frontrunning risk would be eliminated. This would get rid of MEV and
lower the revenue of all validators, including the marginal validator monitoring
the public pool.

5 Welfare Implications

In this section, we analyze how the private pool impacts transaction fees on
blockchain and agents’ welfare. For our analysis in section 5.1 and 5.2, we se-
lect the equilibrium corresponding to the lowest validators’ adoption rate of the
private pool among all equilibria. 5 In section 5.3, we compare the blockspace al-
location efficiency and welfare implications of different equilibria, and we propose
a solution for always achieving the welfare-maximizing equilibrium.

5.1 Transaction Fees on Blockchain

We begin by showing that a private pool does not serve its intended purpose of
reducing blockchain congestion and transaction fees.

Proposition 5 (Transaction Fees) The option of using the private pool in-
creases the minimum fee that guarantees the execution of a transaction.

5We select according to the following rationale: consider the situation where all
validators are in the public pool. Then some validators may find it profitable to adopt
the private pool. Migration of validators from the public to the private pool continues
until a stable state is reached, where all validators on the public pool have no incentive
to adopt the private pool, and all validators on the private pool are better off not
leaving it.

Do Private Transaction Pools Mitigate Frontrunning Risk? 11

Because a private pool weakly reduces the block space used by attackers,
one would expect a decline in transaction fees. Our analysis shows that this is
not the case. As shown in part 1 of Proposition 4, a private pool may generate
more frontrunnable transactions. This drives up the demand for block space and
consequently results in higher transaction fees. It is crucial to recognize that
higher transaction fees and increased demand for block space are not inherently
detrimental to aggregate welfare. The existence of a private pool alleviates the
friction of frontrunning, which can enhance the demand from users who place
a higher value on their transactions. This improvement in allocative efficiency
contributes positively to the overall welfare of the system.

5.2 Who Benefits from the Private Pool?

We define the welfare of validators as the total expected transaction fees paid
by users and attackers and the welfare of attackers as the sum of their expected
payoffs.

Proposition 6 (Welfare of validators, user, and attackers) A private pool
increases the welfare of validators, reduces the welfare of attackers, increases the
expected payoff of the frontrunnable user, and decreases the expected payoff of
non-frontrunnable users i, i = 1, ..., B − 2.

The increase in welfare for validators can be decomposed into two parts:
an increase in MEV extracted, and an increase in transaction fees due to a
higher demand for block space. First, recall from Proposition 1 that a private
pool exacerbates competition between attackers and increases MEV. This, in
turn, reduces welfare for attackers, because a higher portion of their profits is
transferred to validators who adopt the private pool. Second, recall that a private
pool may incentivize the frontrunnable user to submit her transaction and thus
increase the demand for block space. This, in turn, increases validators’ revenue
from fees.

The payoff of the frontrunnable user increases because she has can now hide
the content of her transaction. It is worth observing that her payoff does not
necessarily increase strictly. Unless the frontrunning problem is very severe, val-
idators do not all adopt the private pool and this creates execution risk. As a
result, the frontrunnable user may still find it preferable to submit through the
public pool and bear frontrunning risk. In such case, her payoff stays unchanged
and payoffs of most non-frontrunnable users decrease. Recall from Proposition
5 that their transaction fees increase with a private pool.

5.3 Aggregate Welfare and Blockspace Allocation

We analyze aggregate welfare, defined as the sum of expected payoffs of valida-
tors, users, and attackers. Note that the profit of attackers and fee revenue of
validators are merely transfers of wealth from users, and transaction fees paid
by attackers to validators are only part of the profits that attackers extract from

12 Agostino Capponi, Ruizhe Jia, and Ye Wang

users. As a result, aggregate welfare is the sum of the private values of users’
transactions added to the block.

With a public pool only, blockspace allocation is inefficient for two reasons.
First, the frontrunnable user may not have enough incentive to submit her trans-
action because of high frontrunning risk. Blockspace is then allocated to users
who earn less private value, resulting a social waste. Second, even if the fron-
trunnable user does submit her transaction, attackers will front-run her. The
attack order is a wealth transfer but takes up blockspace that might have been
used by transactions yielding private values to users. This is, again, socially
inefficient. We provide an example of the blockspace allocation inefficiency in
Appendix A.

The following proposition illustrates how introducing private pool reduces
both types of inefficiencies and improve welfare:

Proposition 7 (Aggregate Welfare) The followings statements hold:

1. A private pool weakly raises aggregate welfare.
2. Aggregate welfare is maximized if all validators adopt the private pool.
3. If c > c1, then the unique full adoption equilibrium is socially efficient; if

c ≤ c1, any partial adoption equilibrium is not socially efficient.

The above result can be intuitively understood as follows. With both a private
and a public pool, users can send their transactions privately, and blockspace us-
age by attackers weakly decreases. Thus, both types of inefficiencies are reduced,
and higher aggregate welfare is attained. The maximum aggregate welfare can
only be achieved if frontrunning risk is mitigated. If all validators adopt the pri-
vate pool, the frontrunnable user can submit her transaction privately without
facing execution risk. As a result, frontrunning risk is eliminated, no attacker
demands block space, and the block only includes the B users’ transactions with
the highest private values. Hence, aggregate welfare is maximized.

With the private pool, the social optimum is attained in equilibrium if the
frontrunning problem is severe. Otherwise, the ecosystem may reach a partial
adoption equilibrium where frontrunning attack still occurs, and social waste
due to blockspace misallocation is not mitigated. This inefficient blockspace al-
location occurs because the marginal validator does not want to forgo the rent
from MEV. Although there is no investment required for validators to adopt the
private pool, the cause of partial adoption equilibrium is still reminiscent of the
classical hold-up problem: sellers under-invest (validators do not fully adopt)
in the first stage, despite it being socially optimal, because the gains from the
investment are appropriated by the buyers (front-runnable users).

This misalignment of incentives between validators and the front-runnable
user can be resolved if both parties can sign a contract requiring users to pay
an additional fee for each order executed through the private pool. In this way,
validators are willing to adopt the private pool, and the resulting full adoption
equilibrium is socially efficient.

Do Private Transaction Pools Mitigate Frontrunning Risk? 13

Proposition 8 (Attaining Full Adoption) There exists θ ≥ 0 such that if
the frontrunnable user commits at t = 1 to make a payment θ to any valida-
tor who executes her transaction sent through the private pool, then (i) a full
adoption equilibrium is attained, and the aggregate welfare is maximized; (ii) the
expected payoff of all validators strictly increases; (iii) the expected payoff of the
frontrunnable user does not decrease.

In the partial adoption equilibrium, the total attack loss of the frontrunnable
user, c, equals the total MEV extracted by validators and attackers. The portion
of the MEV earned by validators, denoted as m, is in the form of fees paid by at-
tackers, and the rest of the MEV, c−m, is captured by attackers. Frontrunnable
users are willing to pay as much as c for the complete elimination of frontrunning
risks, and validators are willing to fully adopt the private channel and eliminate
frontrunning if the benefit of doing so is larger than m, i.e., the MEV they
extracted in the partial adoption equilibrium. In this way, if the frontrunnable
user pre-commits to make a payment θ > m to any validator executing her trade
sent through the private pool, then it is incentive compatible for all validators
to adopt the private pool. This maximizes aggregate welfare. Moreover, as long
as θ < c, the payoff of the frontrunnable user increases. This contract can be
implemented in a straightforward manner. The relay service can set up a reward
pool, that is, a smart contract which allows users to voluntarily deposit tokens
into it. Any validator who joins the relay service and successfully mines a new
block including transactions sent through this relay can claim the tokens de-
posited in the reward pool. Alternatively, private pools can also charge users flat
fees for each transaction successfully executed. In other words, one should allow
frontrunnable users to pay for their pre-trade privacy and incentivize validators
to adopt private pools.

6 Empirical Analysis

In this section, we provide empirical support for the main implications of our
model. Section 6.1 lists the model implications. Section 6.2 describes our dataset.
Section 6.3 defines the key variables and stylized facts. Section 6.4 presents our
empirical results.

6.1 Testable Implications

Our model generates the following implications:

1. A private pool will be partially adopted by validators (see Proposition 4).
2. Validators who adopt the private pool have a higher expected payoff than

those who stay in the public pool. (See equation (1))
3. Users submit transactions through the private pool when the frontrunning

risk is high (see Proposition 4).
4. Attackers’ transaction fees increase with a private pool. This is implied from

Proposition 6.

14 Agostino Capponi, Ruizhe Jia, and Ye Wang

6.2 Data

We use transaction-level data from Uniswap and Sushiswap to identify frontrun-
ning attacks. We run our own Ethereum node to get access to the blockchain
history. A modified geth client is used to export all transaction receipts where
a swap event was triggered by a smart contract of Uniswap or Sushiswap. Our
dataset contains all swap transactions from block number 10000835 created on
May 4, 2020 to block number 12344944 created on April 30, 2021. For the AMMs
transactions in the data, we follow the heuristics described in [12] to identify
frontrunning attacks and calculate their revenues.

We use the API services provided by Flashbots to collect transactions sub-
mitted through the private channel to the validators. We collect data starting
from February 11, 2021, when the first Flashbots block was mined, till July 31,
2021. This choice eliminates the influence of the new fee mechanism introduced
by EIP 1559 after August 2021.

We source the Ethereum block data from Blockchair. The data cover the
period from May 1, 2020 to July 31, 2021. The data include the gas fee revenues
earned by validators.

6.3 Definition of Variables and Stylized Facts

We describe the main variables used in our statistical analysis, and describe
empirical regularities from our data set.

Adoption Rate of the private pool by validators. We estimate the
adoption rate of the private pool in day t using the number of blocks mined in
day t that contains Flashbots transactions divided by the total number of blocks
mined in day t.

Validators’ Revenue per Block. If a validator mines a block that con-
tains transactions submitted through Flashbots, then his revenue accounts for
Flashbots transactions in this block plus gas fee proceeds from transactions sub-
mitted through the mempool. If a validator mines a block that only contains
transactions submitted through mempool, then his revenue consists of gas fees
paid by those transactions. We do not account for the fixed block reward in our
measure of validators’ revenue.

Attackers’ Cost-to-Revenue Ratio . For each frontrunning attack order
identified, the attacker’s cost-to-revenue ratio is measured by the gas fee paid
by this attacker divided by the revenue of the frontrunning attack. Both the gas
fee and attack revenue are in the unit of ether.

Users’ Probability of Being Frontrun. For each transaction submit-
ted through the public mempool, we examine whether it is frontrunnable and
whether it has been frontrun using a methodology described in Appendix C.2.
The probability of being frontrun in day t is the number of transactions that
were frontrun in day t divided by the number of all frontrunnable transactions
submitted on that day.

Proportion of Users’ Transaction Sent Through the Private Pool.
For each transaction submitted through Flashbots, we examine whether it would

Do Private Transaction Pools Mitigate Frontrunning Risk? 15

be frontrunnable if were submitted through the public mempool. The proportion
of transactions sent through Flashbots in day t is the number of frontrunnable
transactions submitted through Flashbots during day t divided by the number
of all frontrunnable transactions submitted during that day.

Descriptive Statistics and Stylized Facts.
The summary statistics of the data are shown in Table 3 in Appendix D. The

estimated adoption rate of Flashbots is shown in Figure 2 in Appendix D. The
average Flashbots’ adoption rate by miner validators is about 35%, which sup-
ports our model implication that the private pool is at least partially adopted.
For miner validators who join Flashbots, we plot the proportion of revenue ex-
tracted from Flashbots transactions in Figure 3 in Appendix D. It is readily ob-
served that Flashbots transactions contribute a nontrivial (around 15%) portion
to the revenues of miner validators who joined Flashbots. The distribution of the
cost-to-revenue ratio of attackers is plotted in Figure 4 in Appendix D. A direct
comparison of panel (a)-(c) indicates that the cost-to-revenue ratio for attackers
who submit their transactions through Flashbots is higher than that of attackers
who use the public mempool. The average cost-to-revenue ratio increased after
the introduction of Flashbots. Figure 5 in Appendix D plots the daily average
cost-to-revenue ratio of attackers in the public mempool and Flashbots. After
the introduction of Flashbots, the cost-to-revenue ratio from transactions sub-
mitted through Flashbots steadily increases while the cost-to-revenue ratio from
transactions sent through the public mempool decreased. Our model offers a
plausible explanation for this observed pattern: as the validators’ adoption rate
of private channels increases, more attackers migrate from the public mempool
to the private channel, which increases competition and raises transaction fees.
Figure 6 in Appendix D plots users’ probability of being frontrun (red) and
the proportion of users’ transactions submitted through Flashbots (black). The
graph suggests that users migrate to Flashbots as they face higher frontrunning
risk.

6.4 Empirical Results

We provide empirical support to the main testable implications of our model.

Miner Validators’ Revenue. We estimate the following linear model to com-
pare the revenues of miner validators who monitor the private pool against the
revenues of miner validators who only monitor the public pool:

MinerRevenuet = γt + ρ11Private + ϵt, (4)

where t indexes the date, MinerRevenuet is the revenue of miner per block, γt
is the day fixed effects, 1Private is a dummy variable for Flashbots blocks, and ϵt
is an error term. We cluster our standard errors at the day level. The coefficient
ρ1 quantifies the change in revenue per block after a miner joins Flashbots.

The estimates in Table 4 in Appendix D indicate that miners who adopt
Flashbots on average increases their revenues by about 0.16 ETH per block. This

16 Agostino Capponi, Ruizhe Jia, and Ye Wang

Table 1: Results from regressing the cost-to-revenue ratio of attackers on a
dummy variable equal to one after the introduction of Flashbots and zero oth-
erwise, and another dummy variable equal to one if the attack order has been
submitted through Flashbots and zero otherwise. The data covers the period
from May 4, 2020 to Jul 31, 2021. Asterisks denote significance levels (***=1%,
**=5%, *=10%).

Dependent variables: Cost-to-Revenue Ratio
(a) (b)

Intercept 0.300∗∗∗ 0.300∗∗∗

(0.001) (0.001)
After 0.091∗∗∗ 0.013∗∗∗

(0.001) (0.001)
Private 0.441∗∗∗

(0.002)

Observations 428,685 428,685
R2 0.03 0.19

finding supports our model implication that the expected payoff of validators who
adopt the private pool is higher than the expected payoff of validators who stay
only on the public pool. In addition, the coefficient estimates reveal that these
relationships are statistically and economically significant.

Cost-to-Revenue Ratio of attackers We estimate the following linear models
to compare the cost-to-revenue ratio of attackers before and after the introduc-
tion of Flashbots:

CostRevRatio = ρ21After + ϵ, (5)

CostRevRatio = ρ31After + ρ41Private + ϵ, (6)

where CostRevRatio is the cost-to-revenue ratio of attackers, 1After is a dummy
variable which equals one after the introduction of Flashbots and zero other-
wise. 1Private is a dummy variable which equals one for transactions submitted
through Flashbots and zero for transactions sent through the public mempool.
ϵ is an error term. The coefficient ρ2 quantifies the difference in the cost-to-
revenue ratio of attackers before and after the introduction of Flashbots. The
coefficient ρ4 quantifies the difference between the cost-to-revenue ratio of attack-
ers who submit through the public mempool and attackers who send transactions
through Flashbots, after the introduction of Flashbots.

Table 1 (a) indicates that, after the introduction of Flashbots, the average
cost-to-revenue ratio of attackers increased by around 0.09, an increment that
is almost a third of the average cost-to-revenue ratio before the introduction of
Flashbots (around 0.3). Table 1 (b) indicates that the average cost-to-revenue
ratio of attackers who submitted transactions through Flashbots is 0.44 higher

Do Private Transaction Pools Mitigate Frontrunning Risk? 17

than that of attackers who only submitted through the public mempool. These
findings suggest that the increase in the cost-to-revenue ratio after the introduc-
tion of Flashbots can be mostly attributed to the use of Flashbots by attackers.
All results are statistically and economically significant. The regression results
support our model implication that the introduction of Flashbots increases the
cost of attackers and lowers their welfare.

Migration of Users We estimate the following linear model to measure the
relationship between users’ probability of being frontrun and their choice of
public versus private pools:

ProportionPrivate = κFrontrunProb+ ϵ, (7)

ProportionPrivate is the proportion of frontrunnable transactions sent through
Flashbots, FrontrunProb is the probability of being frontrun for transactions
sent through the public mempool venue, and ϵ is an error term. The coefficient
κ quantifies the sensitivity of users’ choice of pools (Flashbots versus public
mempool) to the frontrunning risk faced by users.

We find that an increase in the probability of being frontrun is positively cor-
related (60% correlation) with a higher proportion of transactions sent through
Flashbots. Table 5 shows the regression details in Appendix D. A 1% increase
in the probability of being frontrun is associated with a 0.6% increase in the
proportion of frontrunnable transactions submitted through Flashbots. The co-
efficient estimates indicate that these relationships are statistically and econom-
ically significant. In summary, this regression supports our model implication
that frontrunnable users migrate from the public to private pools when they
face higher frontrun risk.

7 Conclusion

The usage of private pools exposes users to execution risk, but also allow them
to protect the content of their transactions which are sent privately to valida-
tors and not broadcast in the public mempool. We have shown that private
pools are welfare enhancing because they increase the amount of blockspace as-
signed to value generating transactions, and thus result in a higher allocative
efficiency. However, our analysis shows that private pools neither necessarily
eliminate frontrunning risk nor reduce the transaction costs on blockchain. This
is the case because rent-seeking validators are relucant to forgo their huge rents
extracted from attackers. Existing empirical evidence is supportive of such pre-
diction. In the period between May 2020 and April 2021, frontrunning attacks
have generated MEV above 100 million USD, of which around 35% has been
extracted by validators. This is also the reason why relay services are referred to
as “Frontrunning as a service (FaaS)" instead of “Frontrunning prevention ser-
vice”. Essentially, a private pool provides an efficient, transparent platform for
attackers to extract MEV, which exacerbates the arms race between attackers

18 Agostino Capponi, Ruizhe Jia, and Ye Wang

and redistributes higher MEV to validators. However, it has not achieved its
intended purpose of eliminating or mitigating frontrunning.

We have presented a solution to achieve full adoption and eliminate frontrun-
ning. Such a solution requires users to credibly commit to paying an additional
fee to validators for executing their orders privately. Alternative solutions to
the frontrunning problem would be to reshape the communication mechanism
between nodes, such as encrypting the mempool, or change the transaction or-
dering mechanism, for example introducing fair sequencing of orders. Whether
a contractual solution such as the one proposed in this paper would be more
effective than a solution at the protocol level is left for future research.

References

1. Capponi, A., Jia, R., Wang, Y.: Blockchain private pools and price discovery. In:
AEA Papers and Proceedings. vol. 113, pp. 253–256. American Economic Associ-
ation (2023)

2. Cong, L.W., Li, Y., Wang, N.: Token-Based Platform Finance. Journal of Financial
Economics 144(3), 972–991 (2022)

3. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927 (2020)

4. Daian, P.: Mev for the next trillion, it’s time to get serious. . . | flashbots (Oct
2022), https://writings.flashbots.net/mev-for-the-next-trillion

5. Gan, J.R., Tsoukalas, G., Netessine, S.: Initial coin offerings, speculation, and asset
tokenization. Management Science 67(2), 914–931 (2021)

6. Harvey, C.R., Ramachandran, A., Santoro, J.: DeFi and the Future of Finance.
Working paper (2021)

7. Heimbach, L., Kiffer, L., Torres, C.F., Wattenhofer, R.: Ethereum’s proposer-
builder separation: Promises and realities. arXiv preprint arXiv:2305.19037 (2023)

8. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Unpublished
manuscript (2008)

9. Park, A.: The Conceptual Flaws of Constant Product Automated Market Making.
Working paper (2021)

10. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark
is the forest? arXiv preprint arXiv:2101.05511 (2021)

11. Torres, C.F., Camino, R., et al.: Frontrunner jones and the raiders of the dark
forest: An empirical study of frontrunning on the ethereum blockchain. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 1343–1359 (2021)

12. Wang, Y., Zuest, P., Yao, Y., Lu, Z., Wattenhofer, R.: Impact and User Percep-
tion of Sandwich Attacks in the DeFi Ecosystem. In: ACM Conference on Human
Factors in Computing Systems (CHI), New Orleans, LA, USA (May 2022)

13. Weintraub, B., Torres, C.F., Nita-Rotaru, C., State, R.: A flash (bot) in the pan:
measuring maximal extractable value in private pools. In: Proceedings of the 22nd
ACM Internet Measurement Conference. pp. 458–471 (2022)

14. Yang, S., Zhang, F., Huang, K., Chen, X., Yang, Y., Zhu, F.: Sok: Mev countermea-
sures: Theory and practice (2022). https://doi.org/10.48550/ARXIV.2212.05111,
https://arxiv.org/abs/2212.05111

Do Private Transaction Pools Mitigate Frontrunning Risk? 19

A Example of Inefficiency in Blockspace Allocation

We provide an example to exemplify the two causes of blockspace allocation
inefficiency. Suppose that the block capacity is 3, and there are four transac-
tions whose values are v0 > v1 > v2 > v3 respectively. Let the first transaction
be frontrunnable and the rest be non-frontrunnable. Consider the efficient allo-
cation of blockspace that maximizes the aggregate welfare. Table 2a illustrates
the efficient allocation where the most economically valuable three transactions
v0, v1, v2 are included in the block. The efficient allocation may not be achievable
because of two types of inefficiency arise from frontrunning risk. Table 2b illus-
trates the type 1 inefficiency when frontrunning risk is severe (c > v0). In such
a case, the frontrunnable transaction (v0) will not submit her transactions, and
the blockspace is allocated to transactions with lower values, v1, v2, v3. Table 2c
illustrates the type 2 inefficiency where blockspace is taken by the frontrunning
attack transaction. The attack transaction does not have value but merely trans-
fer an amount c from the frontrunnable user, so the first two slots combined only
add v0 to the aggregate welfare. In such a case, only two slots are allocated to
economically meaningful transactions, and the aggregate welfare is only v0 + v1.

(a) Efficient Allocation

Position Transaction

1 v0
2 v1
3 v2

Total v0 + v1 + v2

(b) Type 1 Inefficiency

Position Transaction

1 v1
2 v2
3 v3

Total v1 + v2 + v3

(c) Type 2 Inefficiency

Position Transaction

1 c
2 v0 -c
3 v1

Total v0 + v1
Table 2: This table illustrates the two types of blockspace allocation inefficien-
cies. Table 2a illustrates the efficient allocation where aggregate welfare is max-
imized. Table 2b illustrates the type 1 inefficiency when frontrunning risk is
severe (c > v0). In such a case, the frontrunnable transaction will not submit
her transactions, and the blockspace is allocated to transactions with lower val-
uations. Table 2c illustrates the type 2 inefficiency where the first block space is
taken by the attack transaction. In such a case, only two slots are allocated to
economically meaningful transactions.

B Technical Results and Proofs

Proof (Proofs of Proposition 1). If the frontrunnable user does not submit to the
blockchain or submit to the private pool, then the attackers will have no user to
front-run, and thus they will not submit any transactions.

20 Agostino Capponi, Ruizhe Jia, and Ye Wang

If the Bth largest bid submitted by users in period 2, f (B), is larger than or
equal to c−ϵ, then both attackers will not submit. This is because the cost of get-
ting on the blockchain will be larger than the gain from executing a frontrunning
attack.

We then consider the case where users submit to the blockchain through
the public pool, and f (B) < c − ϵ. We also only consider the case where both
attackers observe the frontrunnable user’s transaction, otherwise, there will be no
frontrunning in period 3. We first outline all six potential equilibrium outcomes
for the pool selection of attackers. We then solve for the equilibrium transaction
fee bidding strategies in all six cases. Finally, we solve for the equilibrium venue
selection strategies of attackers.

There are six potential equilibrium outcomes for attackers’ pool selection:
(1) Both attackers choose the private pool; (2) One attacker chooses the private
pool, and the other attacker chooses the public pool; (3) One attacker chooses
the private pool, and the other attacker chooses both private and public pool;
(4) One attacker chooses the public pool, and the other attacker chooses both
public and private; (5) Both attackers choose the public pool; (6) Each attacker
chooses both public and private pool.

Case 1: Both attackers choose the private pool. Since it is a seal-bid, first-price
auction for a constant value c, both attackers bid c in equilibrium. Note that
no matter how large the frontrunnable user bids in the public pool, transactions
submitted through the private will always have priority execution when the
block is appended by a validator monitoring the private pool. Consequently, the
attackers can still successfully frontrun by bidding c even if the frontrunnable
user bids f0 > c.

Case 2: one attacker chooses the private pool, and the other attacker chooses the
public pool. As there is no competition for execution in the private pool, the
attacker will bid the lowest bid to get on chain f (B)+ ϵ in the private pool when
he observes an attack opportunity. In the public pool, the other attacker will bid
f0 + ϵ if f (B) ≤ f0 < c− ϵ, in order to outbid the frontrunnable user. However,
if the transaction cost, f0 + ϵ, exceeds the gain from the attack, c, the attacker
will not bid in the public pool. If f (B) > f0 the attacker will bid only f (B) + ϵ.

Case 3: One attacker chooses the private pool, and the other attacker chooses
both the private and public pools. Both attackers bid c in the private pool. They
bid truthfully in the private pool because this is a sealed-bid first-price auction,
where both bidders have the same constant valuation of c. As for the attacker
submitting to both pools, he will bid f0+ϵ in the public pool if f (B) < f0 < c−ϵ,
f (B)+ϵ in the public pool if f (B) ≥ f0, and not bid in the public pool if f0 > c−ϵ.

Case 4: one attacker chooses the public pool, and the other attacker chooses
both private and public pool. We first consider the strategy of the attacker who
submits transactions to both public and private pools. In the private pool, this
attacker always bids f (B) + ϵ due to the absence of competition.

Do Private Transaction Pools Mitigate Frontrunning Risk? 21

In the public pool, the attackers’ strategy is influenced by the value of f0.
One attacker will always submit an opening bid equal to f0 + ϵ in the public
pool if vB−1 < f0 < c− ϵ, and equal to vB−1+ ϵ in the public pool if vB−1 > f0.
No attacker will bid in the public pool if f0 ≥ c− ϵ. If the auction lasts a single
round, then the attacker who submits the opening bid wins the auction. If the
auction lasts two rounds, then another attacker also joins in the auction. The
later attacker will submit a bid ϵ higher than the previous bid.

Case 5: both attackers choose the public pool. If both attackers choose the public
pool, their bidding strategy is the same as in Case 4.

Case 6: both attackers choose both public and private pools If both attackers
choose both public and private pools, they all bid truthfully in the private pool.
This is because the bidding mechanism is a sealed-bid, first-price auction where
both attackers have the same valuation. In the public pool, they all use the same
bidding strategy as in Case 4.

We then calculate the expected equilibrium payoff of each attacker for all six
cases, and construct the following payoff matrices.

If f (B) ≥ f0, the payoff matrices of both attackers are as follows:

A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),

(1− α)(c− (f (B) + ϵ))

0,

(1− α)(c− (f (B) + ϵ))

Public (1− α)(c− (f (B) + ϵ)),

α(c− (f (B) + ϵ))

1
2
(c− (f (B) + 2ϵ)),

1
2
(c− (f (B) + 2ϵ))

1
2
(1− α)(c− (f (B) + 2ϵ)),

1
2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

All (1− α)(c− (f (B) + ϵ)),
0

1
2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ)),

1
2
(1− α)(c− (f (B) + 2ϵ))

(1
2
(c− (f (B) + 2ϵ))(1− α)),

(1
2
(c− (f (B) + 2ϵ))(1− α))

In this case, it is easy to check that the unique symmetric nash equilibrium for
this subgame is achieved when both attackers use both the private and the public
pool. When both attackers use the private pool only, both of their payoffs are
zero, and both attackers can deviate to either using the public pool only or using
both pools and have a strictly better payoff. This is because α(c− (f (B) + ϵ)) >
0,∀α > 0 and (1− α)(c− (f (B) + ϵ)) > 0,∀α < 1. When both attackers use the
public pool only, any attacker can profitably deviate to using both pools. This
is because the payoff of using both pools is strictly higher:

1

2
(c− (f (B) + 2ϵ)) <

1

2
(c− (f (B) + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

When both attackers are using both pools, they do not have any profitable
deviation.

If f (B) < f0 < c− ϵ, the payoff matrices of both attackers are as follows:

22 Agostino Capponi, Ruizhe Jia, and Ye Wang

A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Public
0,

α(c− (f (B) + ϵ))

1
2
(c− (f0 + 2ϵ)),

1
2
(c− (f0 + 2ϵ))

1
2
(1− α)(c− (f0 + 2ϵ)),

1
2
(c− (f0 + 2ϵ))(1− α) + α(c− (f (B) + ϵ))

All (1− α)(c− (f0 + ϵ)),
0

1
2
(c− (f0 + 2ϵ))(1− α) + α(c− (f (B) + ϵ)),

1
2
(1− α)(c− (f0 + 2ϵ))

(1
2
(c− (f0 + 2ϵ))(1− α)),

(1
2
(c− (f0 + 2ϵ))(1− α))

In this case, following the same procedure as the previous case, we can easily
verify that the unique symmetric nash equilibrium for this subgame is achieved
when both attackers use both the private and the public pool.

If f0 > c − ϵ, the payoff matrices of both attackers are as follows. It is easy
to check that the symmetric Nash equilibria are achieved when both attackers
use the private pool or when both attackers use both pools.

A1,
A2

Private Public All

Private 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Public
0,

α(c− (f (B) + ϵ))

0,
0

0,

α(c− (f (B) + ϵ))

All 0,
0

α(c− (f (B) + ϵ)),
0

0,
0

Proof (Proof of Proposition 2). If the frontrunnable user chooses the private
pool, her optimal fee will be vB + ϵ, and her expected payoff is

α(v0 − (vB + ϵ)).

This is because she does not face frontrunning risk, so she only has to bid
a sufficiently high fee to ensure that she will get on the chain. In this way, her
optimal choice is to “barely" outbid the Bth user. Note that the optimal fee
choice of user i, i = 1, 2, ..., B − 1 will also be vB + ϵ.

We then show that if instead, the frontrunnable user chooses the public pool,
her optimal fee will be vB−1 + ϵ, and her expected payoff is

(v0 − c ∗ p− (vB−1 + ϵ))).

If she chooses a fee below vB−1, she would not get on the chain and have a
lower payoff −c ∗ p. If she chooses any fee f0 in between vB−1 + ϵ and c− ϵ, her
payoff will be (v0 − c ∗ p− f0)) < (v0 − c ∗ p− (vB−1 + ϵ))). If she chooses a fee
above c−ϵ, then her payoff will be (v0−c∗α∗p−f0)) <= (v0−c∗α∗p−c+ϵ)) <
v0− c ∗ p− (vB−1+ ϵ)). This is because we assume (1− p) ∗ c > vB−1. The above

Do Private Transaction Pools Mitigate Frontrunning Risk? 23

argument shows that the optimal fee of the frontrunnable user in the public pool
is vB−1 + ϵ. Note that the optimal fee choice of user i, i = 1, 2, ..., B− 2 will also
be vB−1 + ϵ.

Comparing the payoff in the two cases, that is, using public pool and using
the private pool, we have that the frontrunnable user chooses the public pool if
and only if α > λ = v0−c∗p−(vB−1+ϵ))

v0−(vB+ϵ)

Proof (Proof of Proposition 3). Suppose α = 0. If the frontrunnable user submits
through the public pool, then the payoff of the frontrunnable user is

v0 − c ∗ p− (vB−1 + ϵ)).

The quantity above is positive if and only if c < c1 = 1
p (v0− (vB−1+ ϵ)). If it

is positive, then the frontrunnable user will submit her transaction. Otherwise,
she will not submit to the blockchain.

Proof (Proof of Proposition 4). If c > c1, the frontrunnable user will only use
the private pool. This is because the payoff received from submitting through
the public channel is v0−c∗p−(vB−1+ϵ)) < 0, while the payoff from submitting
through the private pool is α(v0 − (vB−1 + ϵ)) ≥ 0.

Validators who monitor the public pool only earn rlit(α) = vB+1 + ϵ+ (B −
1)(vB + ϵ) after validating a block. Consider a marginal validator with small
mass 1

N > 0 who migrates from the public to the private pool. The payoff of
each such validator is rprivate(α+ 1

N) = B(vB + ϵ) > vB+1+ ϵ+(B− 1)(vB + ϵ).
In equilibrium, all validators monitor the private pool.

If c ≤ c1, we can show that ⌊Nλ⌋ is a equilibrium, and it is easy to verify
that the other equilibrium is 1.

At ⌊Nλ⌋, consider a marginal validator with sufficiently small mass 1
N > 0

monitoring the private pool. The payoff of each such validator is equal to (B −
1)(vB−1+ ϵ)+c∗p+(1−p)vB−1. If these validators migrate to only monitor the
public pool, their payoff from the public pool is (B−1)(vB−1+ϵ)+(vB−1+2ϵ) <
(B− 1)(vB−1 + ϵ) + c ∗ p+ (1− p)vB−1. Hence, there is no incentive for them to
migrate.

Consider a marginal validator with sufficiently small mass 1
N > 0 who only

monitor transactions through the public pool. Their payoff is equal to (B −
1)(vB−1 + ϵ) + (vB−1 + 2ϵ). If they migrate to monitor transactions submitted
through the private pool, their payoff is equal to rprivate(

⌊Nλ⌋
N + 1

N) = B(vB+ϵ) <
(B− 1)(vB−1+ ϵ)+ (vB−1+2ϵ). There is no incentive for them to migrate. This
is because if α > λ, the frontrunnable user migrates to the private pool, and
there is no longer a frontrunning attack.

At ⌊Nλ⌋, the frontrunnable user still submits to the public pool as shown
in Proposition 2, and the attackers submit to both public and private pools as
shown in Proposition 1.

Proof (Proof of Proposition 5).
If c > c1, the frontrunnable trader does not submit transactions at all, thus

the minimum fee that guarantees the execution of a transaction is vB and the

24 Agostino Capponi, Ruizhe Jia, and Ye Wang

total fee of all transactions is B · (vB+1 + ϵ). With a private pool, the execution
fee increases to (vB + ϵ), while the total fee increases to B · (vB + ϵ).

If c ≤ c1, the minimum fee that guarantees the execution of a transaction is
always (vB−1 + ϵ).

Proof (Proof of Proposition 6).
We compare the welfare of validators, frontrunnable users, and attackers

separately, with and without a private pool. We first consider the case where
c < c1.

Without a private pool, the expected payoff of the frontrunnable user before
the private pool is allowed is

v0 − (vB−1 + ϵ)− c

.
The expected payoff of the winning validator is

(vB−1 + ϵ) ∗ (B − 1) + (vB−1 + 2ϵ)

.
The expected payoff of attackers is

1

2
(c− (vB−1 + 2ϵ))

.
The expected payoff of all non-frontrunnable users is

B−2∑
i=1

vi − (vB−1 + ϵ) ∗ (B − 2)

.
Then, we consider the welfare of different stakeholders in SPE.
When α∗ = ⌊λN⌋, the frontrunnable user selects the public pool and the

attackers select both. The expected payoff of the frontrunnable user is v0 −
(vB−1 + ϵ) − c. The payoff of the winning validator is (vB−1 + ϵ) ∗ (B − 1) + c
if she monitors the private pool. The expected payoff of the winning validator
is (vB−1 + ϵ) ∗ (B − 1) + (vB−1 + 2ϵ) if she monitors the public pool only. The
payoff of attackers is (12 (c − (vB−1 + 2ϵ))(1 − α)). The expected payoff of all
non-frontrunnable users is

∑B−2
i=1 vi − (vB−1 + ϵ) ∗ (B − 2).

We then consider the case where c > c1. Without a private pool, the expected
payoff of the frontrunnable user before the private pool is allowed is 0, as she
will not submit her transaction to the blockchain. The expected payoff of the
winning validator is

(vB+1 + ϵ) ∗B

. The expected payoff of attackers is 0. The expected payoff of all non-frontrunnable
users is

Do Private Transaction Pools Mitigate Frontrunning Risk? 25

B∑
i=1

vi − (vB+1 + ϵ) ∗B

.
Then, we consider the welfare of different stakeholders in SPE.
When α∗ = 1, the frontrunnable user selects the private pool. The expected

payoff of the frontrunnable user is v0 − (vB + ϵ). The payoff of the winning
validator is (vB + ϵ) ∗ B. The payoff of attackers is 0. The expected payoff of
all non-frontrunnable users is

∑B−1
i=1 vi − (vB + ϵ) ∗ (B − 1). It is easy to verify

that the payoff of validators and frontrunnable users indeed increases, while the
welfare of other agents decreases.

Proof (Proof of Proposition 7).
The aggregate welfare of all stakeholders is the sum of the valuations of

transactions included in the block.
If c > c1, then the frontrunnable trader does not submit transactions without

the option of a private pool. Therefore, the aggregate social welfare of stakehold-
ers is

∑B
i=1 vi. Because full adoption is the only equilibrium in this scenario, the

aggregate social welfare will increase to
∑B−1

i=0 vi after allowing for a private
pool.

If c ≤ c1, the expected aggregate social welfare of stakeholders without a
private pool is

∑B−2
i=0 vi. The expected aggregate social welfare of stakeholders

if a private pool is allowed is still
∑B−2

i=0 vi
Therefore, the possibility of a private pool weakly raises aggregate welfare in

all equilibria.
If the private pool is fully adopted, the sum of valuations of transactions

included in the block is
∑B−1

i=0 vi, and the maximized aggregated welfare is
achieved. If a private pool is only partially adopted, an attack transaction is
included in the block, and the aggregate welfare is only

∑B−2
i=0 vi.

Proof (Proof of Proposition 8). If c > c1, there exists a unique full adoption
equilibrium at which the aggregate welfare is maximized. The required payment
is then zero.

If c ≤ c1, there exists a partial adoption equilibrium. At this equilibrium,
the adoption rate of the private pool is α∗ = λ. At equilibrium, the expected
attack loss of the frontrunnable user is c. c is also the sum of the expected attack
revenues of the two attackers. The sum of expected transaction fees paid by two
attackers is (1− α∗)(vB−1 + 2ϵ) + α∗c.

If the frontrunnable user commits to pay θ = c to the validator who executes
her order in the private pool. When (vB−1 + ϵ) − (vB + ϵ) is sufficiently small,
rprivate(λ+

1
N) = B(vB + ϵ)+ c > (B−1)(vB−1+ ϵ)+(vB−1+2ϵ) = rlit(λ+

1
N).

In this way, a marginal validator will move to monitor the private pool, and any
partial adoption equilibrium does not exist. In addition, the frontrunnable user
is not worse off after making the payment.

26 Agostino Capponi, Ruizhe Jia, and Ye Wang

C Empirical Methodology

C.1 Frontrunning attacks

In this section, we explain the methodology used to identify frontrunning attacks.
We identify a two-legged trade (TA1, TA2) as a frontrunning attack, and a trans-
action TV as the corresponding victim transaction, if the following conditions
are met:

1. TA1 and TA2 are included in the same block, and TA1 is executed before TA2.
TA1 and TA2 have different transaction hashes.

2. TA1 and TA2 swap assets in the same liquidity pool, but in opposite direc-
tions. The input amount for the swap in TA2 is equal to the output amount
of the swap in TA1. In this way, the transaction TA2 closes the position built
up in the first leg TA1.

3. TV is executed between TA1 and TA2. TV swaps assets in the same liquidity
pool as TA1 and TA2. TV swaps assets in the same direction as TA1.

4. Every transaction TA2 is mapped to exactly one transaction TA1.

There exists frontrunning attacks where TA1 and TA2 are placed in different
blocks. However, attackers normally prefer to include TA1 and TA2 in one block
to minimize inventory risk. Nonetheless, the above procedure allows us to find a
lower bound for the number of frontrunning attacks. The revenue of a frontrun-
ning attack is the difference between the output of TA2 and the input of TA1,
and the profit is the revenue minus the gas fee paid for these two transactions.

C.2 Frontrunnable Transactions

In this section, we provide that methodology to identify transactions vulnera-
ble to frontrunning attacks. Observe that not all frontrunnable transactions are
exploited by attackers.

There were 17, 644, 672 transactions in the given time frame. The input token
of 9, 003, 759 of these transactions is ETH. We only focus on those transactions.
This is because most attackers are bots, and only conduct attacks where ETH
serves as input token. For each transaction, we calculate the optimal revenue
that an attacker can attain by frontrunning this transaction. If the revenue is
positive, then we identify this transaction as frontrunnable.

A swap transaction often has a slippage tolerance threshold m which speci-
fies the minimum amount of output token to be received in the transaction. If
the price impact of the frontrunning transaction TA1 is too large, the slippage
tolerance threshold of the victim transaction TV may be triggered and TV will
automatically fail. In this case, the attack will not be profitable. This is why
we have to account for the slippage tolerance threshold for each swap transac-
tion in our calculation. Formally, let v be the amount of input token specified
in the victim transaction TV , and m the minimum amount of output token to
be received. Let x be the amount of input token swapped in the frontrunning

Do Private Transaction Pools Mitigate Frontrunning Risk? 27

N Mean SD 10th 50th 90th
Panel A: Miner validator Data

Daily Private Pool Adoption Rate 171 0.343 0.239 0.01 0.346 0.613
Revenues of Validators on Flashbots (ETH) 377,366 0.972 17.82 0.235 0.606 2.2
Proportion of Revenue From Flashbots (ETH) 377,366 0.139 0.148 0.024 0.086 0.326
Revenues of validators on public mempool (ETH) 2,582,015 1.161 9.585 0.231 0.832 2.36

Panel B: attacker Data
attack Revenue on Flashbots (ETH) 29,465 0.248 0.495 0.042 0.125 0.497
attack Cost on Flashbots (ETH) 29,465 0.182 0.363 0.032 0.092 0.371
Cost-to-revenue Ratio of attackers on Flashbots 29,465 0.755 0.151 0.51 0.801 0.901

attack Revenue on public mempool (ETH) 394,239 0.204 0.571 0.033 0.091 0.408
attack Cost on public mempool (ETH) 394,239 0.04 0.093 0.004 0.023 0.069
Cost-to-revenue Ratio of attackers which scan public mempool 394,239 0.309 0.239 0.021 0.261 0.662

Panel C: User Data
Daily Probability of Being Attacked 80 0.165 0.034 0.120 0.165 0.209
Daily Ratio of frontrunnable transactions on Flashbots 80 0.033 0.038 0 0.01 0.09

Table 3: Summary statistics of the data set.

transaction TA1. Let r1 and r2 represent the liquidity reserves of input token
and output token in the pool. The transaction fee in Uniswap and Sushiswap is
0.3%. The victim transaction will not fail if

v · 0.997 · (r2 − x·0.997·r2
r1+0.997·x)

(r1 + x) + 0.997 · v
≥ m.

We solve the largest x that satisfies the above inequality. The result can be
written as

maxInputA1(r1, r2, v,m) =
5.01505 · 10−7 · t√

m
− 1.0015r1 − 0.4985v,

where

t =
√
9000000r21m+ 3976036000000r1r2v − 5964054000r1mv + 988053892081mv2.

The maxInputA1 is the largest trade size of transaction TA1 such that TV

will not fail. We can then calculate the output amount in the second leg of
the attack TA2 which closes the position built up in TA1. TV is frontrunnable
if the constructed frontrunning attack yields a positive revenue. In total, we
identify 3, 612, 343 frontrunnable transactions with ETH as the input token.

D Empirical Results

28 Agostino Capponi, Ruizhe Jia, and Ye Wang

2021-02 2021-04 2021-05 2021-07
0

0.2

0.4

0.6

0.8

Date (YYYY-MM)

P
ri

va
te

P
oo

lA
do

pt
io

n
R

at
e

of
M

in
er

s

Fig. 2: Adoption rate of Flashbots.

2021-02 2021-04 2021-05 2021-07
0

0.05

0.1

0.15

0.2

Date ((YYYY-MM))

P
ro

po
rt

io
n

of
R

ev
en

ue
fr

om
pr

iv
at

e
P
oo

l

Fig. 3: Proportion of Flashbots miners’ revenue coming from transactions
on Flashbots.

Table 4: Results from regressing a binary variable, indicating whether or not
the miner of the block joins Flashbots, on revenue from mining the block. The
regression data covers the period from Nov 1, 2020 to July 31, 2021. Time fixed
effects are included for all regressions. Standard errors are clustered at the day
level. Asterisks denote significance levels (***=1%, **=5%, *=10%).

Dependent variables: Miner Validator’s Revenue per Block

Intercept 1.21∗∗∗

(0.06)
Private 0.16∗∗∗

(0.032)

Day fixed effects? yes
Observations 1,762,017

R2 0.02

Do Private Transaction Pools Mitigate Frontrunning Risk? 29

Fig. 4: Panel (a) - top left: Distribution of the cost-to-revenue ratio of attackers
in the public mempool before the introduction of Flashbots. Panel (b) - top
right: Distribution of the cost-to-revenue ratio of attackers on Flashbots. Panel
(c) - bottom: Distribution of the cost-to-revenue ratio of attackers in the public
mempool after the introduction of Flashbots.

2020-05 2020-08 2020-11 2021-03
0

0.2

0.4

0.6

0.8

1

Date (YYYY-MM)

D
ai

ly
A
ve

ra
ge

C
os

t
R

ev
en

ue
R

at
io

Fig. 5: Daily average cost-to-revenue ratio of attackers. Blue (dotted): attackers
in public mempool before the introduction of Flashbots, Black (dashed): attack
transactions through Flashbots, Orange (solid): attack transactions through the
public mempool after the introduction of Flashbots.

30 Agostino Capponi, Ruizhe Jia, and Ye Wang

2021-02 2021-03 2021-03 2021-04 2021-05
0

0.1

0.2

0.3

Date (YYYY-MM)

P
ro

ba
bi

lit
y

of
B

ei
ng

Fr
on

tr
un

0

0.1

0.2

0.3

P
ro

po
ti

on
of

U
si

ng
D

ar
k

V
en

ue

Fig. 6: Black (solid): the daily average probability that a frontrunnable trans-
action is attacked. Red (dotted): daily proportion of frontrunnable transactions
submitted through Flashbots.

Table 5: Results from regressing the proportion of frontrunnable transactions
sent through Flashbots on the probability of being frontrun. The data covers a
sample period from Feb 11, 2020, to May 1, 2021. Asterisks denote significance
levels (***=1%, **=5%, *=10%).

Dependent variables:
Proportion of Transactions Through Flashbots

Intercept -0.066∗∗

(0.18)
Probability of Being Frontrun 0.605∗∗∗

(0.010)

Observations 80
R2 0.3

