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Abstract

This work researches the implementation of the AES family with Pauli-
X gates, CNOT gates and Toffoli gates as the underlying quantum
logic gate set. First, the properties of quantum circuits are investi-
gated, as well as the influence of Pauli-X gates, CNOT gates and Toffoli
gates on the performance of the circuits constructed with those gates.
Based on these properties and the observations on the hardware cir-
cuits built by Boyar et al. and Zou et al., it is possible to construct
quantum circuits for AES’s Substitution-box (S-box) and its inverse
(S-box−1) by rearranging the classical implementation to three parts.
Since the second part is treated as a 4-bit S-box in this paper and can
be dealt with by existing tools, a heuristic is proposed to search opti-
mized quantum circuits for the first and the third parts. In addition,
considering the number of parallelly executed S-boxes, the trade-offs
between the qubit consumption and T · M values for the round func-
tion and key schedule of AES are studied. As a result, quantum circuits
of AES-128, AES-192 and AES-256 can be constructed with 269, 333
and 397 qubits, respectively. If more qubits are allowed, quantum cir-
cuits that outperform state-of-the-art schemes in the metric of T · M
value for the AES family can be reported, and it needs only 474,
538 and 602 qubits for AES-128, AES-192 and AES-256, respectively.

1



2 Optimized quantum implementation of AES

Keywords: AES, quantum circuit, quantum gate, Toffoli depth

1 Introduction

The development of quantum technology challenges the security of modern
cryptography, especially the overwhelming advantage of quantum computers in
solving mathematical problems over the classical ones, which benefits from the
quantum algorithms such as Grover’s Algorithm [12], Simon’s Algorithm [28]
and Shor’s algorithm [27]. In addition, the successful design of quantum proces-
sors such as Sycamore [3] further increases the need for modern cryptography
to prepare in advance for the rapid development of the construction of quantum
computers.

Developing ciphers that are secure in both classical and quantum envi-
ronment is the main research goal of post-quantum cryptography (PQC). In
2016, NIST (National Institute of Standards and Technology) started a pro-
cess to develop new cryptography standards, which was aimed at developing
new standards that resist to quantum attacks. Based on the strength offered by
the existing standards1,2, NIST suggested classifying the security strength of
the submissions into five categories in [24], where the categories 1, 3 and 5 are
related to the quantum resource required to conduct an exhaustive key search
on the AES family [8]. On the other hand, the Grover’s algorithm can achieve
a square root speed-up when searching for a certain element in an unordered
set. Therefore, the research on designing quantum circuits for AES and evalu-
ating the quantum resource of exhaustively searching for the key of the AES
family combined with the Grover’s algorithm have received wide attention.

The researches on the quantum implementation of the AES family mainly
focus on building the circuits with the Pauli-X gate (or NOT gate), the
controlled-NOT gate (also known as C-NOT gate or CNOT gate) and the
Toffoli gate (see [23] for definitions) as the underlying quantum logic gate set
(NCT gate set for short) [1, 11, 14, 15, 18–20, 30, 34]. In 2016, Grassl et
al. [11] first systematically investigated the construction of quantum circuits
for the three variants of AES. Afterwards, Almazrooie et al. [1] optimized the
quantum circuit of the multiplicative inverse over finite fields with the help of
Itoh-Tsujii algorithm [13] and designed a quantum circuit for AES-128 with
fewer qubits. Based on the quantum circuits proposed in [11], the authors
of [18] improved the cost of computing multiplicative inverse and researched
the time-space complexity for searching the key of the AES family. In [19],
the classical hardware implementation of AES S-box given in [5] was adopted
to construct a quantum one, benefit from which, Langenberg et al. proposed
optimized quantum implementations for the AES family with reduced con-
sumption of qubits and quantum logic gates compared with the previous work.

1https://doi.org/10.6028/NIST.FIPS.197
2https://doi.org/10.6028/NIST.FIPS.202.

https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202.
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Along the research direction of designing quantum circuits for AES with the
help of classical implementations, Zou et al. [34] presented optimized quan-
tum circuits for the S-box and S-box−1 simultaneously at ASIACRYPT 2020,
combined with their proposed methods to implement the key schedule and the
round function, both the qubit cost and the T ·M value (the product of the
Toffoli depth and the number of qubits) of the quantum circuits built for the
AES family were reduced. In [30], Wang et al. also reported a quantum circuit
for the case that the output qubits of the S-box are not all 0s to optimize the
implementation of the key schedule for AES-128, by which they saved quantum
gates and qubits at the same time. Recently, new quantum circuits for AES
S-box and its inverse were given to design quantum circuits for AES in [14].
Besides, the authors introduced a method to construct quantum circuit for the
S-box−1 from the S-box circuit by adding some linear transformations. The cir-
cuits of AES S-box with low depth presented in [14] were also applied by Jang
et al. [15], and the T ·M value of the circuits constructed in [15] for the AES
family decreased significantly. In addition, the arithmetic over Finite Fields has
also been applied. In [7], Chung et al. focused on constructing quantum circuits
for AES S-box with the tower-filed construction combined with their proposed
strategies of the trade-off between depth and width. Similarly, by making use
of the algebraic structure, Li et al. [20] designed various quantum circuits for
AES S-box and its inverse to optimize the quantum implementation of AES.

As quantum computation technology develops, the number of qubits that
can be handled by quantum simulators will gradually increase. However, the
progress is very slow [3, 33, 35]. Some early researches investigated qubit
reduction by proposing improved algorithms focus on saving input qubits
for factoring an integer when Shor’s algorithm is adopted, such as [10, 25],
where the number of input qubits can be reduced from 2n to (1 + o(1))n and
(1/2 + o(1))n, respectively. Recently, the authors of [21] studied the problem
of period finding with fewer output qubits based on Simon’s algorithm and
Shor’s algorithm, where they can reduce the number of output qubits from
n to 1. As the authors stated in [21], “although there is steady progress in
constructing larger quantum computers, within the next years the number of
qubits seems to be too limited for tackling problems of interesting size” and
“quantum computers with a very limited number of qubits might still serve as
a powerful oracle that assists us in speeding up classical computations”. Note
that the method of [21] assumed the oracle access of the quantum embedding
of underlying functions, and reduced qubits from the structure of Simon’s algo-
rithm or Shor’s algorithm. However, it is also of great significance to reduce
the oracle qubit consumption of the underlying function itself. Only by com-
bining these two efforts, a quantum circuit with a reduced qubit consumption
can be achieved. It is widely believed that algorithms and circuits with better
performance in qubit requirements may be physically implemented earlier in a
real quantum computer [4, 33, 35]. Therefore, as the authors did in [1, 11, 18–
20, 30, 34], this study focuses on constructing quantum circuits for AES with
fewer qubits, as it is the core component to construct quantum embeddings of
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oracles for quantum attacks. Note that the Clifford+T gate set is also adopted
when designing quantum circuits of the AES family [14–16]. However, a Toffoli
gate can be constructed by several Clifford gates and T gates. On the other
hand, the classical And gates can be simulated by Toffoli gates, which helps
to make better use of classical circuits to construct quantum ones. Thus, this
work adopts the Toffoli gate to investigate the AES quantum circuits. Since
depth is also an important metric, as the authors did in [15, 34], T ·M value
(i.e., the product of the Toffoli depth and the number of qubits) is taken as a
metric to evaluate the trade-off between depth and qubits.

1.1 Our Contributions

First, we outline the influence of Pauli-X gates, CNOT gates and Toffoli gates
on the Toffoli depth of an NCT-based circuit, based on which we illustrate how
the CNOT gate consumption is affected by the s-Xor operations. Meanwhile,
the influence of the operation order on the Toffoli depth of NCT-based circuits
and the conditions under which two consecutive operations are commutative
are also discussed.

Then, we rearrange both the classical implementation of AES S-box and its
inverse into three parts. Specifically, the tower fields architecture decomposes
both the S-box of AES and its inverse into three functions, the top function,
the middle function and the bottom function. The first step of rearranging the
circuit is to derive the operations for calculating the multiplicative inverse over
F24 from the circuit of the middle function and treat them as the second part,
the first part of the rearranged circuit consists of the operations in the circuit
of the middle function for generating the inputs of the second part, while the
third part consists of the remaining operations in the circuit of the middle
function and the bottom function. Both the first part and the third part of the
rearranged circuit take the outputs of the top function as auxiliary variables.

Furthermore, the construction of optimized quantum circuits for AES S-
box and its inverse are investigated based on the rearranged circuits with three
parts. In this work, the second part that calculates the multiplicative inverse
over F24 is treated as a 4-bit S-box for the first time, and the public tools
LIGHTER [17] and LIGHTER-R [9] are taken into account to design its in-
place implementation. Moreover, we detect a quantum style implementation
of the third part by adding unit row vectors and making use of the heuristic
in [32]. As far as we know, this is the first time that the heuristic proposed for
searching optimized s-Xor implementation of linear layers has been applied
to build quantum circuits for AES S-box and its inverse. In addition, an algo-
rithm is proposed to search optimized NCT-based circuits for the remaining
two parts based on our observations on quantum circuits. The heuristic is
designed on the premise of optimizing the Toffoli depth. Moreover, the strat-
egy of randomization is also used to save CNOT gates. Our researches on the
construction of NCT-based circuits for S-box and S-box−1 enrich the method
to build quantum implementations of AES S-box and its inverse based on the
classical implementations produced by tower fields architecture.
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We applied our methods to the hardware circuits of AES S-box and S-
box−1 presented in [5] and [34], respectively. The results reveal that the circuits
obtained in this paper consume fewer qubits, the CNOT gate consumption
and the Toffoli depth are also optimized on the premise of saving qubits. The
details of the quantum resource consumption of AES S-box and its inverse
are listed in Table 7. In order to implement the key schedule without intro-
ducing extra storage qubits, we investigate the implementation of AES S-box
with the initial values of outputs are not all 0s and report an optimized cir-
cuit that maps |x⟩|y⟩|0⟩⊗5 to |x⟩|y ⊕ S(x)⟩|0⟩⊗5. Moreover, since removing the
previous rounds when expanding the round function can save qubits, then, we
investigate the implementation of AES S-box−1 with the initial values of out-
puts are not all 0s and report an optimized circuit that maps |x⟩|y⟩|0⟩⊗5 to
|x⟩|y ⊕ S−1(x)⟩|0⟩⊗5. The comparison of the quantum resource consumption
is shown in Table 8.

Finally, we investigate the implementation of AES with various number of
S-boxes applied in parallel by the method we call partial zig-zag. Combined
with our new technique, NCT-based circuits for all instances of the AES fam-
ily can be constructed with 269, 333 and 397 qubits, respectively. Moreover,
considering the metric of T ·M value, our methods guarantee that the NCT-
based circuits for the AES family outperform state-of-the-art schemes in the
metric of T ·M value. The corresponding schemes consume only 474, 538 and
602 qubits. The details are shown in Table 1, Table 2 and Table 3, where m is
the number of S-boxes3 applied in parallel.

1.2 Organization

Section 2 introduces the notations used throughout this paper and gives a brief
introduction to AES. Then, some properties of quantum circuit are presented
in Section 3. In Section 4, the heuristic for searching optimized quantum cir-
cuits for the first and the third parts of our rearranged circuits are reported,
as well as the quantum circuits for AES S-box and its inverse. The method to
implement the key schedule and the round function are introduced in Section 5,
followed by the applications to the AES family in Section 6. Finally, the
conclusion and the future work are discussed in Section 7.

3Applying m S-boxes in parallel when implementing the SubBytes of the current round also
means that one can apply m S-box−1es in parallel to remove the previous round, since the circuits
designed in this work for AES S-box and its inverse can always be implemented with the same
number of ancilla qubits.
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Table 1 The quantum resource of different NCT-based circuits for AES-128.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[11] 984 12672 151552 166548 1456 12469248
[1] 976 NR 150528 192832 1370 NR
[19] 864 1880 16940 107960 1570 1624320
[34] 512 2016 19788 128517 4528 1032192

[30]
656 NR 18040 101174 1976 NR
400 NR 19064 118980 4528 NR

[14]∗
492 820

17888 126016 2528
403440

374 1558 582692

[18]⋄
984 11088 NR NR NR 10910592
2208 1260 NR NR NR 2782080

[20]⋄
270 11008 16508 81652

1072
2972160

400 1108 15824 82928 443200

[15]⋄
3936 76 12920 84120

800
299136

6368 40 12240 81312 254720

This work

m = 1 269 7396

19608

77408

2224

1989524
m = 1† 274 6480 78448 1775520
m = 2 282 3720 77408 1049040
m = 2† 287 3306 78416 948822
m = 3 295 2622 77444 773490
m = 4 308 1970 77408 606760
m = 4† 313 1700 78272 532100
m = 5 321 1736 77444 557256
m = 6 334 1304 77552 435536
m = 7 347 1304 77480 452488
m = 8 360 1106 77408 398160
m = 8† 365 908 77984 331420
m = 9 373 872 77660 325256
m = 10 386 872 77624 336592
m = 11 399 872 77588 347928
m = 12 412 872 77552 359264
m = 13 425 872 77516 370600
m = 14 438 872 77480 381936
m = 15 451 872 77444 393272
m = 16 464 674 77408 312736
m = 16† 474 476 77984 225624

∗ The quantum resource consumption listed in the table is from Table 6 in [14].
⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in the reference are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.

2 Preliminaries

2.1 Notations

Z+ the set of all positive integers
F2 the finite field containing elements 0 and 1
F2k the finite field containing 2k elements
a⊕ b the Xor of bits a and b over F2

a · b the And of bits a and b over F2

a the inversion of bit a over F2

Definition 1 (NCT-based Circuit) An NCT-based circuit is a quantum circuit
constructed based on Pauli-X gates, CNOT gates and Toffoli gates.

The circuit symbols and functions of the Pauli-X gate, CNOT gate and
Toffoli gate are depicted in Figure 1, where a, b, c ∈ F2.
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Table 2 The quantum resource of different NCT-based circuits for AES-192.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[11] 1112 11088 172032 189432 1608 12329856
[19] 896 1640 19580 125580 1692 1469440
[34] 640 2022 22380 152378 5128 1294080

[20]⋄
334 13144 19196 94180

1160
4390096

464 1340 18400 95696 621760

[15]⋄
4256 92 14688 96112

896
391552

6688 48 14008 92856 321024

This work

m = 1 333 8844

22800

90384

2568

2945052
m = 1† 338 7904 91408 2671552
m = 2 346 4444 90384 1537624
m = 2† 351 4026 91360 1413126
m = 3 359 3190 90428 1145210
m = 4 372 2310 90384 859320
m = 4† 377 2068 91184 779636
m = 5 385 2112 90428 813120
m = 6 398 1584 90560 630432
m = 7 411 1584 90472 651024
m = 8 424 1254 90384 531696
m = 8† 429 1100 90832 471900
m = 9 437 1056 90692 461472
m = 10 450 1056 90648 475200
m = 11 463 1056 90604 488928
m = 12 476 1056 90560 502656
m = 13 489 1056 90516 516384
m = 14 502 1056 90472 530112
m = 15 515 1056 90428 543840
m = 16 528 726 90384 383328
m = 16† 538 572 90832 307736

⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in the reference are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.

Table 3 The quantum resource of different NCT-based circuits for AES-256.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[11] 1336 14976 215040 233836 1943 20007936
[19] 1232 2160 23760 151011 1992 2661120
[34] 768 2292 26774 177645 6103 1760256

[20]⋄
398 15756 23228 114476

1367
6270888

528 1540 22264 116288 813120

[15]⋄
4576 108 18088 117704

1103
494208

6976 56 17408 113744 390656

This work

m = 1 397 10622

27816

109856

3069

4216934
m = 1† 402 9322 111416 3747444
m = 2 410 5324 109830 2182840
m = 2† 415 4724 111312 1960460
m = 3 423 3736 109908 1580328
m = 4 436 2826 109856 1232136
m = 4† 441 2436 111104 1074276
m = 5 449 2488 109908 1117112
m = 6 462 1864 110064 861168
m = 7 475 1844 109920 875900
m = 8 488 1556 109856 759328
m = 8† 493 1270 110688 626110
m = 9 501 1218 110220 610218
m = 10 514 1218 110168 626052
m = 11 527 1218 110116 641886
m = 12 540 1218 110064 657720
m = 13 553 1218 110012 673554
m = 14 566 1218 109960 689388
m = 15 579 1218 109908 705222
m = 16 592 932 109856 551744
m = 16† 602 646 110688 388892

⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in the reference are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.
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Fig. 1 The description of the underlying quantum gates.

Besides, a CNOT gate can be regarded as the transformation that maps
|a⟩|b⟩ to |a⟩|b⊕ a⟩, the operand b is updated as b = b ⊕ a. Consequently, the
application of CNOT gates can be simulated by Xor operations under s-Xor
metric, which is originally a concept for the implementation of matrices.

Definition 2 (s-Xor [17]) Let M be an invertible matrix over F2 with size n × n.
Assuming that x0, x1, ..., xn−1 are the n input bits of M . It is always possible to
perform a sequence of Xor operations xi = xi ⊕ xj with 0 ≤ i, j ≤ n− 1, such that
the n input bits are updated to the n output bits. The s-Xor count of M is defined
as the minimal number of such Xor operations to update the inputs to the outputs.

2.2 Description of the AES Family

The AES family [8] contains three instances, denoted as AES-128, AES-192
and AES-256 respectively according to the length of the key.
Round Function The round function of the AES family consists of
four transformations, i.e., SubBytes, ShiftRows, MixColumns and
AddRoundKey as shown in Figure 2, where r is the round number and
equals 10, 12 and 14 for AES-128, AES-192 and AES-256, respectively. The
SubBytes replaces each byte in the state by another one according to the S-
box. The ShiftRows changes the position of the bytes in the grid by cyclically
rotating the bytes in the ith row to the left by i bytes, where i = 0, 1, 2, 3. The
MixColumns is a linear transformation and it multiplies the right circulant
matrix (0x02, 0x03, 0x01, 0x01) over F28 with each column of the state. Note
that the MixColumns is absent in the last round. The AddRoundKey adds
the round key to the state by bitwise Xor.
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Fig. 2 The encryption of the AES family.
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Key Schedule The key schedule of AES is based on 32-bit words. Denote
the master key by W0,W1, ...,Ws−1, where s = 4 for AES-128, = 6 for AES-
192, = 8 for AES-256. Except the given words (i.e., the words in the master
key), 40, 46 and 52 words are required by AES-128, AES-192 and AES-256
respectively.

For AES-128, the word Wi can be calculated by

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/4), if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, ..., 43.
For AES-192, the word Wi can be calculated by

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/6), if i ≡ 0 mod 6,

Wi−6 ⊕Wi−1, otherwise,

where i = 6, 7, ..., 51.
For AES-256, the word Wi can be calculated by

Wi =


Wi−8 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/8), if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, ..., 59.
The SubWord applies four S-boxes to the bytes in one word. The Rot-

Word cyclically rotates the bytes in the word to the left by one byte. The
Rcon adds the round constant to the word by bitwise Xor.

2.3 Classical Implementations of AES Building Blocks

2.3.1 Classical Implementations of MixColumn

The transformation of MixColumn can be represented as a 32 × 32 binary
matrix over F2. Among the methods of matrix implementation, LUP-type
decomposition [29] can be used to generate an implementation of MixCol-
umn under s-Xor metric. In an s-Xor implementation, the outputs are stored
in the input registers and no extra registers are needed. Meanwhile, one can
easily simulate an Xor operation under s-Xor metric by a CNOT gate. This
is an important reason why the LUP-type decomposition method is commonly
used when constructing quantum circuits for MixColumn [1, 11, 16, 19, 31].
Also based on matrix decomposition theory, Xiang et al. [32] presented an
implementation of MixColumn with 92 Xor operations. Considering the
gate consumption and the convenience of being converted to a quantum imple-
mentation, the s-Xor implementation presented in [32] is used in this work to
build the quantum circuit for the MixColumns.
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2.3.2 Classical Implementations of AES S-box and S-box−1

As the only nonlinear building block of AES, the implementation of S-box
has a crucial impact on the overall implementation performance of the cipher.
Due to the advantage in obtaining an efficient implementation of AES S-box
with a lower gate count, tower fields architecture is widely used in the field of
constructing circuits for AES in hardware application scenarios [5, 6, 22, 31].
Designing quantum circuits from these classical implementations seems to be
a popular approach in recent years. This section investigates the construction
of efficient quantum circuits for AES based on the circuit of the S-box reported
in [5] and the circuit of the S-box−1 given in [34]. By exploiting the tower fields
architecture, Boyar et al. [5] decomposed AES S-box into three transformations
and represented the S-box as S(x) = B · F (U · x), where x is the 8-bit input
of the S-box. Similarly, Zou et al. [34] represented the S-box−1 of AES as
S−1(x) = B

′ ·F ′
(U

′ · x), where x is the 8-bit input of S-box−1. For simplicity,
this section only lists the classical circuit reported in [5].
Top Function U Denote the input of S-box by (x0, x1, ..., x7), the function
U takes (x0, x1, ..., x7) as its input and generates (y0, y1, ..., y21), which can be
calculated as

y0 = x7, y14 = x3 ⊕ x5, y13 = x0 ⊕ x6, y9 = x0 ⊕ x3, y8 = x0 ⊕ x5,
t0 = x1 ⊕ x2, y1 = t0 ⊕ x7, y4 = y1 ⊕ x3, y12 = y13 ⊕ y14, y2 = y1 ⊕ x0,
y5 = y1 ⊕ x6, y3 = y5 ⊕ y8, t1 = x4 ⊕ y12, y15 = t1 ⊕ x5, y20 = t1 ⊕ x1,
y6 = y15 ⊕ x7, y10 = y15 ⊕ t0, y11 = y20 ⊕ y9, y7 = x7 ⊕ y11, y17 = y10 ⊕ y11,
y19 = y10 ⊕ y8, y16 = t0 ⊕ y11, y21 = y13 ⊕ y16, y18 = x0 ⊕ y16.

Middle Function F The function F takes (y0, y1, ..., y21) as its inputs and
generates (z0, z1, ..., z17), which can be calculated as

t2 = y12 · y15, t3 = y3 · y6, t4 = t3 ⊕ t2, t5 = y4 · y0, t6 = t5 ⊕ t2,
t7 = y13 · y16, t8 = y5 · y1, t9 = t8 ⊕ t7, t10 = y2 · y7, t11 = t10 ⊕ t7,
t12 = y9 · y11, t13 = y14 · y17, t14 = t13 ⊕ t12, t15 = y8 · y10, t16 = t15 ⊕ t12,
t17 = t4 ⊕ y20, t18 = t6 ⊕ t16, t19 = t9 ⊕ t14, t20 = t11 ⊕ t16, t21 = t17 ⊕ t14,
t22 = t18 ⊕ y19, t23 = t19 ⊕ y21, t24 = t20 ⊕ y18, t25 = t21 ⊕ t22, t26 = t21 · t23,
t27 = t24 ⊕ t26, t28 = t25 · t27, t29 = t28 ⊕ t22, t30 = t23 ⊕ t24, t31 = t22 ⊕ t26,
t32 = t31 · t30, t33 = t32 ⊕ t24, t34 = t23 ⊕ t33, t35 = t27 ⊕ t33, t36 = t24 · t35,
t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t25 ⊕ t39, t41 = t40 ⊕ t37,
t42 = t29 ⊕ t33, t43 = t29 ⊕ t40, t44 = t33 ⊕ t37, t45 = t42 ⊕ t41, z0 = t44 · y15,
z1 = t37 · y6, z2 = t33 · y0, z3 = t43 · y16, z4 = t40 · y1, z5 = t29 · y7,
z6 = t42 · y11, z7 = t45 · y17, z8 = t41 · y10, z9 = t44 · y12, z10 = t37 · y3,
z11 = t33 · y4, z12 = t43 · y13, z13 = t40 · y5, z14 = t29 · y2, z15 = t42 · y9,
z16 = t45 · y14, z17 = t41 · y8.
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Bottom Function B Denote the output of the S-box by (s0, s1, ..., s7). The
function B takes (z0, z1, ..., z17) as inputs and generates (s0, s1, ..., s7), which
can be calculated as

t46 = z15 ⊕ z16, t47 = z10 ⊕ z11, t48 = z5 ⊕ z13, t49 = z9 ⊕ z10, t50 = z2 ⊕ z12,
t51 = z2 ⊕ z5, t52 = z7 ⊕ z8, t53 = z0 ⊕ z3, t54 = z6 ⊕ z7, t55 = z16 ⊕ z17,
t56 = z12 ⊕ t48, t57 = t50 ⊕ t53, t58 = z4 ⊕ t46, t59 = z3 ⊕ t54, t60 = t46 ⊕ t57,
t61 = z14 ⊕ t57, t62 = t52 ⊕ t58, t63 = t49 ⊕ t58, t64 = z4 ⊕ t59, t65 = t61 ⊕ t62,
t66 = z1 ⊕ t63, s0 = t59 ⊕ t63, s6 = t56 ⊕ t62, s7 = t48 ⊕ t60, t67 = t64 ⊕ t65,
s3 = t53 ⊕ t66, s4 = t51 ⊕ t66, s5 = t47 ⊕ t65, s1 = t64 ⊕ s3, s2 = t55 ⊕ t67.

3 Observations on NCT-based Circuits

Quantum Toffoli Depth Although linear operations themselves are con-
sidered not to increase the Toffoli depth, but the propagation of Toffoli depth
caused by CNOT gates cannot be ignored. If the Toffoli depth of two variables
are the same before they are taken as the inputs of a CNOT gate, the depth of
these two variables remain unchanged after the CNOT gate, which is beyond
doubt. But if the Toffoli depth of the operands of a CNOT gate are not the
same, the Toffoli depth for one of the operands should be changed. We give the
following properties to illustrate the update of Toffoli depth caused by logic
gates in an NCT-based circuit.

Property 1 For a Pauli-X gate that maps |a⟩ to |a⊕ 1⟩, the application of the
Pauli-X gate will not change the Toffoli depth of a.

Property 2 For a CNOT gate that maps |a⟩|b⟩ to |a⟩|b⊕ a⟩, denote the input Toffoli
depth of a and b by da and db respectively. After the application of the CNOT gate,
da and db are updated as

da = db = max{da, db}.

Property 3 For a Toffoli gate that maps |a⟩|b⟩|c⟩ to |a⟩|b⟩|c⊕ a · b⟩, denote the
input Toffoli depth of a, b and c by da, db and dc respectively. After the application
of the Toffoli gate, da, db and dc are updated as

da = db = dc = max{da, db, dc}+ 1.

Example 1 demonstrates the update of Toffoli depth caused by CNOT gates
and Toffoli gates.

Example 1 Take Circuit 1 and Circuit 2 listed in Table 4 as an example. Suppose that
the initial Toffoli depth of all variables is zero. Denote the Toffoli depth of a, b, ..., g
by (da, db, ..., dg), where di is the Toffoli depth of variable i and i ∈ {a, b, ..., g}.
The evolution of the Toffoli depth vector at each step are listed in the 3rd and 6th
columns in Table 4.
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Table 4 The Toffoli depth of each operation.

No. Circuit 1 Toffoli depth No. Circuit 2 Toffoli depth
1 a = a⊕ b (0, 0, 0, 0, 0, 0, 0) 1 b = b⊕ a (0, 0, 0, 0, 0, 0, 0)
2 c = c⊕ a · d (1, 0, 1, 1, 0, 0, 0) 2 c = c⊕ b · d (0, 1, 1, 1, 0, 0, 0)
3 b = b⊕ e (1, 0, 1, 1, 0, 0, 0) 3 b = b⊕ a⊕ e (1, 1, 1, 1, 1, 0, 0)
4 f = f ⊕ b · g (1, 1, 1, 1, 0, 1, 1) 4 f = f ⊕ b · g (1, 2, 1, 1, 1, 2, 2)

One can easily check that both circuits listed in Table 4 perform the same
function. However, Circuit 2 costs one more CNOT gate than Circuit 1 (caused
by the third operation in Circuit 2 ). Besides, the Toffoli depth of Circuit 2 is
two, while the Toffoli depth of Circuit 1 is one. The only difference between
Circuit 1 and Circuit 2 is the variable chosen to store the intermediate value
a⊕ b in the first operation, by which, the circuits in Table 4 show the effect of
selecting a specific bit to store the result of an s-Xor operation on the overall
Toffoli depth of a quantum circuit. This can be summarized with the following
observation.

Observation 1 Given a quantum circuit with Toffoli gates involved, the Toffoli
depth and the CNOT gate consumption of the quantum circuit may be affected by the
specific arrangement of CNOT gates.

In addition, take the third operation of Circuit 2 in Table 4 (i.e., b =
b⊕ a⊕ e) as an example, among the three operands, the Toffoli depth of b is
1 while other operands are with Toffoli depth 0. The execution of the third
operation causes the Toffoli depth of a and e to increase by 1 due to the
influence of b, which has a higher Toffoli depth. But what if the value b ⊕ e
(the target value of the third operation) can be obtained before the Toffoli
depth of b is increased? This inspires us to investigate the effect of the order
of operations on Toffoli depth and give rise to the following observation.

Observation 2 Given a quantum circuit with Toffoli gates involved, the Toffoli depth
of the circuit may be affected by the order of operations.

Example 2 For a quantum circuit denoted by Circuit 3 in Table 5, a is not the
operand of the second operation, and d is not the operand of the first operation.
Consequently, the first two operations in Circuit 3 are commutative, as shown with
Circuit 4 in Table 5. Thus, the Toffoli depth can be reduced by 1 as listed in the
sixth column of Table 5.

Table 5 The Toffolil depth of the operations.

No. Circuit 3 Depth vector No. Circuit 4 Depth vector
1 a = a⊕ b · c (1, 1, 1, 0, 0, 0) 1 d = d⊕ b (0, 0, 0, 0, 0, 0)
2 d = d⊕ b (1, 1, 1, 1, 0, 0) 2 a = a⊕ b · c (1, 1, 1, 0, 0, 0)
3 e = e⊕ d · f (1, 1, 1, 2, 2, 2) 3 e = e⊕ d · f (1, 1, 1, 1, 1, 1)
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Note that it is not always possible to exchange two consecutive operations.
Denote qubit by variable t in the following facts, it follows that ti and tj are
two different qubits if and only if i ̸= j.

Fact 1 Given a quantum circuit with m qubits t0, t1, ..., tm−1, if two consecutive
operations are in the form of ta = ta ⊕ tb, tc = tc ⊕ td, where a, b, c, d ∈ [0,m − 1],
a ̸= b and c ̸= d, the order of these two operations can be exchanged when one of the
following conditions holds: (i) a = c; (ii) a ̸= c, d and b ̸= c.

Fact 2 Given a quantum implementation with the m involved qubits are denoted by
t0, t1, ..., tm−1, if two consecutive operations are in the form of ta = ta ⊕ tb, tc =
tc ⊕ td · te or vice versa, where a, b, ..., e ∈ [0,m− 1], a ̸= b and c ̸= d ̸= e, the order
of these two operations can be exchanged when one of the following conditions holds:
(i) a = c; (ii) a ̸= c, d, e and b ̸= c.

Fact 3 Given a quantum circuit with m qubits t0, t1, ..., tm−1, if two consecutive
operations are in the form of ta = ta⊕tb·tc, td = td⊕te·tf , where a, b, ..., f ∈ [0,m−1],
a ̸= b ̸= c, d ̸= e ̸= f , the order of these two operations can be exchanged when one
of the following conditions holds: (i) a = d; (ii) a ̸= d, e, f and d ̸= b, c.

The proof of Fact 1 is given in Appendix A, Fact 2 - 3 can be proved in the
same way.

4 New NCT-based Circuits of AES S-box and
S-box−1

The quantum circuit of AES S-box−1 can be constructed from the classical one
presented in [34], which was decomposed in the same way as the authors did
in [5] to represent AES S-box, or from the quantum circuit designed for the
S-box by adding some linear transformations [14], which dose not affect the
structure of the classical circuit presented in [5]. Therefore, only the optimized
quantum implementation of AES S-box is discussed in this section, the S-box−1

of AES can be implemented similarly.

4.1 Observations on the Adopted Classical Circuits of
S-box

Middle Functions F For the implementation of F reported in [5] (as listed
in Subsection 2.3), Zou et al. [34] pointed out that the outputs of F can be
calculated with the knowledge of t29, t33, t37, t40 and the inputs of AES S-box.
Furthermore, one can easily find that t29, t33, t37, t40 are the outputs of the
multiplicative inverse in F24 , and t21, t22, t23, t24 are the inputs. Essentially,
the function that maps (t21, t22, t23, t24) to (t29, t33, t37, t40) is a permutation
and thus can be regarded as a 4-bit S-box as shown in Table 6.
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Table 6 The 4-bit S-box within F .

(t21, t22, t23, t24) 0 1 2 3 4 5 6 7 8 9 a b c d e f
(t29, t33, t37, t40) 0 6 2 4 9 3 d 5 1 e c 7 8 a b f

Compared with searching the s-Xor implementation for linear layers, the
design of the quantum implementation of S-boxes is tricky, especially for large
S-boxes. Nevertheless, for a 4-bit S-box, the public tools LIGHTER4 and
LIGHTER-R5, which are proposed in [17] and [9] respectively, can be used
to search an optimized reversible circuit with fewer logic gates. However, only
LIGHTER is used in this paper for the 4-bit S-box shown in Table 6. The
discussion on LIGHTER and LIGHTER-R is presented in Appendix B.
Bottom Functions B The function B generates the outputs of AES S-box,
which are linear expressions of zi, where i = 0, 1, ..., 17. As pointed in [34], B
can be expressed as a matrix. Note that the matrix corresponding to B is of
size 8× 18 and rank 8. In order to obtain an optimized s-Xor implementation
of B, one can extend its corresponding matrix to be invertible by adding unit
row vectors. Then, the heuristic6 proposed in [32] can be used.

4.2 Heuristic for Searching Optimized NCT-based
Circuits for S-box

According to the analysis in Subsection 4.1, the middle functions F can be
divided into three parts. The first part takes (y0, y1, ..., y21) (i.e., the outputs
of the top function U) as inputs and generates (t21, t22, t23, t24) as outputs.
In this section, the first part of the middle function F and the top function
U are combined and denoted by f1, which takes (x0, x1..., x7) as inputs and
generates (t21, t22, t23, t24) as outputs. The second part of the middle function
F is a 4-bit S-box which is denoted by S4 as shown in Table 6. S4 takes
(t21, t22, t23, t24) as inputs and generates (t29, t33, t37, t40) as outputs. Similarly,
the third part of the middle function F , the top function U and the bottom
function B are combined and denoted by f2, which takes (t29, t33, t37, t40) (i.e.,
the outputs of the 4-bit S-box) and (x0, x1..., x7) as inputs and calculates
(s0, s1..., s7) as outputs. The reversible circuit of S4 with 2-input And gates,
2-input Xor gates and 1-input Not gates can be obtained with LIGHTER
by introducing an additional variable. Consequently, this section focuses on
constructing quantum circuits for f1 and f2 with a lower Toffoli depth as it
is another important factor that affects the metric of T ·M value. The main
idea is to try to execute more nonlinear operations in parallel.

In the following, f1 is taken as an example to illustrate how to get an
optimized quantum circuit. Denote X and S the input set and the output set
of f1, i.e., X = {x0, x1, ..., x7} and S = {t21, t22, t23, t24}. According to the
classical implementation of the S-box, the implementation of f1 is listed as

4http://jeremy.jean.free.fr/pub/fse2018 layer implementations.tar.gz
5https://github.com/vdasu/lighter-r
6https://github.com/xiangzejun/Optimizing Implementations of Linear Layers

 http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz
https://github.com/vdasu/lighter-r
https://github.com/xiangzejun/Optimizing_Implementations_of_Linear_Layers
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follows.

t21 = t21 ⊕ y12 · y15, t22 = t22 ⊕ t21, t21 = t21 ⊕ y3 · y6, t22 = t22 ⊕ y4 · y0,
t22 = t22 ⊕ y8 · y10, t23 = t23 ⊕ y14 · y17, t21 = t21 ⊕ t23, t23 = t23 ⊕ y5 · y1,
t23 = t23 ⊕ y13 · y16, t24 = t24 ⊕ y2 · y7, t24 = t24 ⊕ y13 · y16, t24 = t24 ⊕ y8 · y10,
a = a⊕ y9 · y11, t21 = t21 ⊕ a, t22 = t22 ⊕ a, t23 = t23 ⊕ a,
t24 = t24 ⊕ a, a = a⊕ y9 · y11, t21 = t21 ⊕ y20, t22 = t22 ⊕ y19,
t23 = t23 ⊕ y21, t24 = t24 ⊕ y18,

where a is an ancilla qubit, and yi (i = 0, 1, ..., 21) is the output of the top
function U and linear related to x0, x1, ..., x7.

The circuit shown above is obtained by simply eliminating redundant tem-
porary variables in the classical implementation and rewriting it in a quantum
style. Note that one ancilla qubit is allocated for f1, this is due to the fact
that the 4-bit S-box S4 is an odd permutation, and at least one ancilla qubit is
needed to construct its in-place implementation [26]. Thus, this ancilla qubit
can be used in f1 before the implementation of S4, however, it should be reset
to 0 and be reused to construct the quantum circuit for S4.

Denote by Y the set of auxiliary variables, it follows that Y =
{y0, y1, ..., y21} for f1. For the sake of saving qubits, there is no need to pre-
compute all the values of yi when implementing f1, as this needs at least
22− 8 = 14 extra qubits. Specifically, the values of yi are computed on the fly.
Taking t21 = t21 ⊕ y12 · y15 as an example, the values of y12 and y15 are com-
puted in an in-place manner when needed, that is the s-Xor metric is adopted
to update the value of two qubits of (x0, x1, ..., x7) to be equal to y12 and y15.
After the computation of t21 is completed, (x0, x1, ..., x7) can be updated for
the following operations in a similar way. Moreover, executing nonlinear oper-
ations in parallel as much as possible is the main idea of this work to reduce
the depth. Assume that the operations t21 = t21⊕y12 ·y15 and t22 = t22⊕y4 ·y0
are executed parallelly, it requires that (x0, x1, ..., x7) should be updated such
that four of which equal to the value of y12, y15, y4 and y0. However, this is not
always possible.

Property 4 Let yi, i ∈ [0,m− 1] be m linear combinations of x0, x1, ..., xn−1, with
m ≤ n. x0, x1, ..., xn−1 can be updated under s-Xor metric such that m of which
are equal to y0, y1, ..., ym−1 if and only if y0, y1, ..., ym−1 are linear independent. In
this case, the s-Xor implementations of y0, y1, ..., ym−1 can be stored in m qubits of
x0, x1, ..., xn−1.

Algorithm 1 presents a procedure to classify the nonlinear operations of f1
and f2 that can be performed concurrently, the usage of which is illustrated
by taking f1 as an example.
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Algorithm 1 Classification of the Nonlinear Operations

Input: The implementation (denoted by Imp) for fi (i = 1, 2) with input set X
and output set S, the expressions of the auxiliary variables in Y ;

Output: The classification of the nonlinear operations Classify(Imp, Y ) of Imp;
1: E ← ∅; ▷ The set of classified nonlinear operations;
2: l← |Imp|; ▷ The number of operations in Imp;
3: N ← 0; ▷ The number of elements in E;
4: C0 ← ∅; ▷ The first set of nonlinear operations to be applied in parallel;
5: for i = 0, l − 1 do
6: flag ← false;
7: if the ith operation oi is nonlinear, i.e., formed as ti0 = ti0 ⊕ yj0 · yj1 then
8: if C0 = ∅ then
9: C0 = C0 ∪ {oi};

10: else
11: for j = 0, N do
12: if oi can be moved to be adjacent to the last operation in Cj then
13: if oi shares no operand with any operation in Cj then
14: if all y′s in oi ∪ Cj are linear independent then
15: Cj = Cj ∪ {oi};
16: flag ← true;
17: break;
18: end if
19: end if
20: end if
21: end for
22: if flag = false then
23: N = N + 1;
24: CN ← ∅;
25: CN = CN ∪ {oi};
26: end if
27: end if
28: end if
29: end for
30: for i = 0, N do
31: E = E ∪ {Ci};
32: end for
33: return E = {C0, C1, ..., CN};

Example 3 First, the set E used to store the classification of the nonlinear operations
should be initialized to be empty. Update C0 as C0 = {t21 = t21 ⊕ y12 · y15} since
the first operation is nonlinear and the set E is empty. The next nonlinear operation
t21 = t21⊕y3 ·y6 can not be moved to be adjacent with the operation in C0 due to the
second operation in the implementation. Thus, it should be added to C1. The third
nonlinear operation t22 = t22⊕y4 ·y0 can be moved to be adjacent with the operation
in C0, and y12, y15, y4, y0 are linear independent. According to Property 4, the third
nonlinear operation can be executed in parallel with the operation in C0. Hence,
t22 = t22⊕y4·y0 can be added to C0. The fourth nonlinear operation t22 = t22⊕y8·y10
shares the operand t22 with the second operation in C0 and can be added to C1.
The remaining nonlinear operations can be analyzed similarly and the process ends
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Algorithm 2 Search Optimized NCT-based Circuits

Input: The implementation (denoted by Imp) for fi (i = 1, 2) with input set X and
output set S, the expressions of the auxiliary variables in Y ;

Output: Optimized NCT-based circuit of fi;
1: E ← ∅; ▷ The set to be expanded;
2: Rearrange Imp randomly according to Fact 1 - 3;
3: E ← Classify(Imp, Y ); ▷ Algorithm 1
4: N ← |E|; ▷ The number of elements in E;
5: for i = 0, N − 1 do
6: Move the operations in Ci to be adjacent;
7: Index← ∅;
8: l← |Ci|; ▷ The number of elements in Ci;
9: for j = 0, l − 1 do

10: t← the number of auxiliary variables in the jth element of Ci;
11: for k = 0, t− 1 do
12: if yk is linear related to δ elements of X, denoted by xi0 , ..., xiδ−1

then

13: xi′ ← rand(xi0 , xi1 , ..., xiδ−1
); ▷ to store the value of yk;

14: while xi′ ∈ Index do
15: xi′ ← rand(xi0 , xi1 , ..., xiδ−1

);
16: end while
17: Index = Index ∪ {xi′ };
18: add the s-Xor implementation of yk to Imp before operations in

Ci;
19: update X and replace yk by xi′ in the operation of Ci;
20: end if
21: end for
22: end for
23: end for
24: return Imp;

by returning E = {{t21 = t21⊕y12 ·y15, t22 = t22⊕y4 ·y0, t23 = t23⊕y14 ·y17, t24 =
t24 ⊕ y2 · y7}, {t21 = t21 ⊕ y3 · y6, t22 = t22 ⊕ y8 · y10, t24 = t24 ⊕ y13 · y16}, {t23 =
t23⊕y5 ·y1, t24 = t24⊕y8 ·y10, a = a⊕y9 ·y11}, {t23 = t23⊕y13 ·y16, a = a⊕y9 ·y11}}.

Based on the classification of nonlinear operations and the observations
introduced in Section 3, Algorithm 2 presents a procedure to search optimized
NCT-based circuits for f1 and f2.

Due to space limitations, the set E returned in Example 3 is taken as an
example to illustrate the procedure of implementing the operations in C0.

Example 4 According to Example 3, C0 = {t21 = t21 ⊕ y12 · y15, t22 = t22 ⊕ y4 ·
y0, t23 = t23 ⊕ y14 · y17, t24 = t24 ⊕ y2 · y7}. First, initialize Index to be empty and
move the operations in C0 to be adjacent. According to the classical implementation
of auxiliary variables, y12 can be calculated as y12 = x0⊕x3⊕x5⊕x6. Suppose that x0
is chosen randomly from {x0, x3, x5, x6} to store the value of y12 under s-Xor metric.
Thus, x0 can not be used to store the value of any other auxiliary variables in C0.
Then Index is updated as Index = {x0} and x0 = x0⊕x3⊕x5⊕x6 is added to Imp
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before t21 = t21⊕y12·y15. Next, consider y15 which can be recomputed as x0⊕x4⊕x5,
where x0 has been updated as x0 = x0⊕x3⊕x5⊕x6. Since x0 has been used to store
the value of y12, only x4 or x5 can be chosen to store the value of y15 under s-Xor
metric. Assuming that x4 is chosen, then add x4 to Index and insert x4 = x4⊕x5⊕x0
before the operation t21 = t21 ⊕ y12 · y15. The remaining elements of C0 can be
updated in the same way. Replace the y′s in C0 by the corresponding elements in
Index and Algorithm 2 returns {x0 = x0 ⊕ x3 ⊕ x5 ⊕ x6, x4 = x4 ⊕ x5 ⊕ x0, x1 =
x1 ⊕ x2 ⊕ x3 ⊕ x7, x3 = x3 ⊕ x5, x2 = x2 ⊕ x0 ⊕ x6, x6 = x6 ⊕ x5 ⊕ x1 ⊕ x0, x5 =
x5⊕x1⊕x2⊕x3⊕x4, t21 = t21⊕x0 ·x4, t22 = t22⊕x1 ·x7, t23 = t23⊕x3 ·x2, t24 =
t24 ⊕ x6 · x5} as one of the in-place implementation of the elements of C0.

The strategy of randomization is adopted in Algorithm 2. The step of
randomly rearranging Imp by using Fact 1 - 3 (i.e., line 2) is aimed at providing
different input for Algorithm 1, which is related to the Toffoli depth. According
to Observation 1, each time a variable is randomly selected from the input set
for calculating an auxiliary variable from Y (i.e., line 13 to line 16), a different
implementation of the auxiliary variable will be obtained. Therefore, for each
call to Algorithm 2, a different NCT-based circuit may be returned. Thus, one
can run Algorithm 2 several times and keep the best one with the Toffoli depth
as the primary consideration.

4.3 Reversible Circuits of AES S-box

4.3.1 Circuits for |x⟩|0⟩⊗n S-box−−−→ |x⟩|S(x)⟩|0⟩⊗(n−8)

In this section, five qubits are allocated to build the quantum circuit for f1,
four of which are used to store the values of t21, t22, t23, t24, and the rest one
is an ancilla qubit. Applying Algorithm 2 to f1, an NCT-based circuit of f1
can be obtained, which costs 5 ancilla qubits, 12 Toffoli gates, and 45 CNOT
gates. The Toffoli depth of the circuit is 3. The implementation is listed in
Appendix D.1.

The quantum circuit of S4 with Toffoli depth 6 is listed in Appendix D.2,
which only costs one ancilla qubit (denoted by a). The ancilla qubit allocated
for this part can reuse the one from f1. Since f2 requires no ancilla qubits, it
is not necessary to reset the ancilla qubit in the quantum circuits of S4, and
this also helps to save Toffoli gates and reduce Toffoli depth. The circuit for S4

consumes 6 Toffoli gates and 4 CNOT gates. If 2 ancilla qubits are allocated
for S4, the Toffoli depth of the circuit listed in Appendix D.2 can be reduced
from 6 to 5. As listed in Appendix D.3, in which a and b represent ancilla
qubits, the circuit consumes 6 Toffoli gates and 5 CNOT gates.

Different from f1, when devising a quantum style implementation of f2,
the first step generates an implementation of the bottom function B based
on the observation presented in Subsection 4.1. The bottom function B takes
(z0, z1, ..., z17) as inputs and generates the outputs of AES S-box. Among
the 18 inputs of B, 8 of them store the outputs of AES S-box under s-
Xor metric. Using the implementation of the bottom function, a quantum
style implementation of f2 can be derived, which is listed in Appendix C.
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It is worth noting that the auxiliary variable set Y for f2 consists of
t29, t33, t37, t40, t41, t42, t43, t44, t45, y0, y1, ..., y21 where ti (i = 41, 42, ..., 45) are
linear combinations of the outputs of the 4-bit S-box, i.e., t29, t33, t37, t40, and
yj (j = 0, 1, ..., 21) are linear expressions of the inputs of AES S-box. Thus,
the input set for f2 is X = {t29, t33, t37, t40, x0, x1, ..., x7}. Then, an optimized
NCT-based circuit can be obtained by applying Algorithm 2, which costs 21
Toffoli gates, 55 CNOT gates and 4 Pauli-X gates. The Toffoli depth of the
circuit is 6. The implementation is listed in Appendix D.4.

When devising a complete NCT-based circuit for AES S-box, the circuits
of f1, S4 and f2 should be applied sequentially at the very beginning to get
the outputs of AES S-box. The above three circuits overwrite the values stored
in the ancilla qubits allocated for the S-box, which means those ancilla qubits
cannot be reused. To reset ancilla qubits, several operations in the circuits of
f1, S4 and f2 should then be applied again in reverse order. Notably, after
being updated by the f1 circuit in an in-place manner, the inputs of AES S-box
(i.e., x0, x1, ..., x7) are then updated by the f2 circuit with s-Xor operations.
Besides, the outputs of S4 are also updated by the f2 circuit similarly. Con-
sequently, the linear operations applied to t29, t33, t37, t40 and x0, x1, ..., x7 in
the f2 circuit should be applied one more time in reverse order to reset their
values to be equal to the outputs of S4 and f1 respectively. Finally, the ancilla
qubits can be reset by applying the inverse circuits of S4 and f1.
Circuits for the S-box−1 When designing quantum circuit for the S-box−1

with the classical one proposed in [34], Algorithm 2 returns a circuit with
Toffoli depth 26. If the method proposed in [14] is adopted, the 4 Pauli-X gates
and linear transformation L−1 (given in [14]) applied to the inputs of the S-box
can be combined with the top function U of the classical circuit given in [5],
without changing the middle function F and the bottom function B. Thus,
the quantum circuit constructed for the S4 of AES S-box can also be used for
designing the circuit of the S-box−1. By applying Algorithm 2, a circuit with
Toffoli depth 24 can be acquired. The circuit is listed in Appendix E and will
be used to construct the NCT-based circuits for AES in this paper.

The quantum resource consumption of different NCT-based circuits are
summarized in Table 7.

4.3.2 Circuits for |x⟩|y⟩|0⟩⊗(n−8) S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8)

As shown in Subsection 2.3, B generates the outputs of the S-box with the out-

puts of F . Therefore, the only difference between the circuits for |x⟩|0⟩⊗n S-box−−−→
|x⟩|S(x)⟩|0⟩⊗(n−8) and |x⟩|y⟩|0⟩⊗(n−8) S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8) is the
implementation of F and B.

The construction of the NCT-based circuit proposed in this work for func-
tion B is based on the heuristic given in [32], and the output qubits s0, s1, ..., s7
have never been involved in any nonlinear operation. That is, the influence of
y can be removed by applying a sequence of CNOT gates for the circuit shown
in Appendix D.
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Table 7 The comparison of different NCT-based circuits for outputs are |0⟩⊗8.

Operation Source #Qubits #Toffoli #CNOT #Pauli-X Toffoli Depth

S-box

[19] 16 55 314 4 40
[30] 16 55 322 4 40
[16] 120 34 186 4 6

[34]
6 52 326 4 41
7 48 330 4 39
8 46 332 4 37

[20]
6 48 236 4 36
7 48 238 4 34
8 46 240 4 32

[14]
120 34 212 4 4
202 78 355 4 3

This work
5 57 193 4 24
6 57 195 4 22

S-box−1

[14] 6 52 368 8 41

This work
5 58 187 10 26∗

5 57 205 8 24†

6 57 207 8 22†

∗ Constructed based on the classical circuit given in [34].
† Constructed based on the classical circuit given in [5].

Take the output bit s0 in the circuit shown in Appendix D.4 as an example.
The bit s0 is only used to update the values of s1, s2 and s6 by applying CNOT
gates. As a result, the influence of the initial value in s0 can be removed by
Xoring s0 to s1, s2 and s6 before s0 is updated. In short, before applying
the circuit shown in Appendix D.4, adding the operations formed as si =
si ⊕ sj in the circuit listed in Appendix D.4 in an inverse order can remove
the propagation of initial values, where i, j ∈ [0, 7] and i ̸= j. Finally, the
circuit built for the S-box when outputs are all 0s can be transformed to the
one that maps |x⟩|y⟩|0⟩⊗5 to |x⟩|y ⊕ S(x)⟩|0⟩⊗5. The operations added before
the circuit shown in Appendix D.4 are listed as follows.

s1 = s1 ⊕ s0, s4 = s4 ⊕ s3, s6 = s6 ⊕ s7, s7 = s7 ⊕ s4, s3 = s3 ⊕ s1,
s0 = s0 ⊕ s3, s2 = s2 ⊕ s0, s5 = s5 ⊕ s2, s2 = s2 ⊕ s6, s4 = s4 ⊕ s6,
s3 = s3 ⊕ s5, s1 = s1 ⊕ s6, s7 = s7 ⊕ s2, s6 = s6 ⊕ s0, s0 = s0 ⊕ s4.

Compared with the circuit that maps |x⟩|0⟩⊗13 to |x⟩|S(x)⟩|0⟩⊗5, the circuit
for the S-box with nonzero output values costs 15 CNOT gates more than the
one shown in Appendix D.

Similarly, the circuit for the transformation that maps |x⟩|y⟩|0⟩⊗5 to
|x⟩|y ⊕ S−1(x)⟩|0⟩⊗5 can be deduced from the one shown in Appendix E by
adding the operations listed in Appendix F. The cost of different NCT-based
circuits built for the S-box and the S-box−1 with outputs are not all 0s are
listed in Table 8.
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Table 8 The comparison of different NCT-based circuits for outputs are not |0⟩⊗8.

Operation Source #Qubits #Toffoli #CNOT #Pauli-X Toffoli Depth

S-box

[34]
7 68 352 4 60
8 64 356 4 58
9 62 358 4 56

[30] 16 55 322 4 40

[20]
6 48 272 4 36
7 48 274 4 34
8 46 276 4 32

[14] 6 52 336 4 41

This work
5 57 208 4 24
6 57 210 4 22

S-box−1

[34]

7 69 335 24 62
8 67 337 24 60
9 65 339 24 60
10 63 341 24 60

[20]
6 48 272 8 36
7 48 274 8 34
8 46 276 8 32

This work
5 58 200 10 26∗

5 57 226 8 24†

6 57 228 8 22†

∗ Constructed based on the classical circuit given in [34].
† Constructed based on the classical circuit given in [5].

5 Schemes for the Round Function and the
Key Schedule

5.1 The Partial Zig-zag Method for Round Function

The pipeline, zig-zag and improved zig-zag methods are often used to design
the overall structure for AES with a complete round function and its inverse for
reducing depth. However, those methods require much qubits. In order to save
qubits, constructing a partial round function and its inverse is adopted. The
mechanism was adopted in [2] to design quantum circuits for SHA-2/SHA-3,
and also be discussed in [14] to construct quantum circuits for AES based on
double-depth S-box circuits, by which, two sequential S-boxes will be applied.
In this paper, the strategy of implementing a partial round function and its
inverse will be called partial zig-zag method and be discussed more extensively.

Assuming a0, a1, ..., a15 are the 16 8-qubit inputs, and a16 is an 8-qubit
tuple. The partial zig-zag method works as follows. First, the circuit |x⟩|0⟩ →
|x⟩|S(x)⟩ to |a0⟩|a16⟩ is applied to get the output of the first S-box. Then,
the circuit |x⟩|y⟩ → |x⟩|y ⊕ S−1(x)⟩ is applied to |a16⟩|a0⟩. This means once
the S-box circuit has been applied to update a certain byte, the qubits of the
corresponding input byte can be reset to zero by using the quantum circuit
of S-box−1, in this case, the S-box output of the first byte is stored in a16
and the input byte a0 is reset to zero. Thus, a0 can be reused to store the
S-box output of the second byte in a similar way. Therefore, the partial zig-
zag method can execute the S-box layer of AES in sequential, and one S-box
is performed each time. Moreover, one can parallelly execute more S-boxes if
more ancilla qubits are available. In the following, denote by m the number
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of S-boxes that are parallelly executed. Clearly, m = 1 is the case described
as above, m = 16 is equivalent to the improved zig-zag method. Generally,
more S-boxes are applied in parallel means more qubits are needed to store the
outputs of S-boxes. At the same time, more ancilla qubits are needed for these
parallelly executed S-boxes. In the case that m S-boxes are applied in parallel,
the number of allocated storage qubits for the next round is 8m. In other
words, only 128 + 8m qubits are required using the partial zig-zag method.

Denote the state of the ith round byRi, the partial zig-zag method for AES-

128 when m = 4 is shown in Figure 3, where R
1
4
i represents the application of

S-boxes to four bytes for the ith round, and R
− 1

4
i means resetting four bytes

of the ith round.
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Fig. 3 The procedure for the SubBytes when m = 4.

5.2 Scheme for the Key Schedule

The research in [16] reveals that a quantum circuit that maps |x⟩|y⟩|0⟩⊗(n−8) to
|x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8) can be used to reduce the qubit consumption of the key
schedule. Based on such circuit, the authors of [15, 16, 20, 30] implemented the
key schedule without introducing storage qubits. In this paper, the framework
presented in [16] is adopted to implement the key schedules for all instances of
AES. The scheme for AES-128 is shown in Figure 4 as an example to illustrate
the procedure.

6 NCT-based Circuits of AES

6.1 The Scheme for the AES Family

This section estimates the circuit cost with m parallel S-boxes. For a given m,
the allocated qubits for AES are also determined, i.e., k qubits for the master
key (k = 128, 192 and 256 for the three instances of AES, respectively), 128
qubits for the first round, (8 + 5)m qubits7 for the m parallel S-boxes, where

7Note that an NCT-based circuit that costs 6 ancilla qubits is also designed for AES S-box,
however, in order to save qubits, only 5 ancilla qubits are allocated for each S-box in the very
beginning.
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Fig. 4 The scheme for the key schedule of AES-128, where kji represents the jth byte in
the ith round key, SB∗ is the modified SubBytes, RC is the Xor of the round constant.

m ∈ [1, 16]. The case of m = 4 for AES-128 is taken as an example to illustrate
the encryption of the AES family.
The First Round In the process of the key whitening, the plaintext is
Xored to the master key for saving qubits. For a given plaintext, the key
whitening can be implemented by inverting the qubits in the master key cor-
responding to the bits in the plaintext with a value of 1. Therefore, at most
128 Pauli-X gates are required to implement the key whitening. For m = 4,
there are 128 + 4 × 13 = 180 qubits with zero value for the first round. The
first round requires 20 S-boxes, 4 for the key schedule and 16 for the round
function. Due to the qubit consumption of the quantum circuits constructed
for the S-box in Section 4, 180 qubits with zero value is enough for us to imple-
ment the first round within an S-box depth of 2. The implementation of the
first round is depicted in Figure 5, where X represents the Pauli-X gate, Ancn

represents the usage of n ancilla qubits, Sj
in and Sj

out are the inputs and the
outputs of j S-boxes. Specifically, the first round starts with applying 12 S-
boxes to the bytes in the state, after which 84 qubits with value zero are left.
Inverting the bits in the state according to the plaintext again can recover 64
bits of the master key, by which, partial words of the round key can be gener-
ated. Note that the first word of the round key, i.e.,W4, should be calculated
with the knowledge of W0 and W3. Hence, among the 12 S-boxes applied in
step (b), 8 should be applied to the first and the fourth words in the state as
shown in Figure 5 with step (b).

Besides, the round keys are generated in an in-place way, and no additional
storage qubits are required by the key schedule. It means that the 4 S-boxes
for computing W4 and the remaining 4 S-boxes applies to the bytes in the



24 Optimized quantum implementation of AES

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128 

|0128 

|0
128

 

|0128 

|0128 

|0128 

R1

R2

R3

R4

|0128 

|0128 

|0128 

|0128 

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128 

|0128 

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128 

|0128 

|0128 

|0128 

|0128 

|0128 

|0128 

|0128 

|0128 

|0128 

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4 

 

𝑅1
−
1
4 

 

𝑅1
−
1
4 

 

𝑅2

1
4 

 

𝑅1
−
1
4 

 

𝑅1
−
1
4 

 

𝑅2

1
4 

 

𝑅1  𝑅2  

𝑅2

1
4 

 

𝑅2
−
1
4 

 

𝑅3

1
4 

 

𝑅3

1
4 

 

𝑅2
−
1
4 

 

𝑅3

1
4 

 

𝑅3

1
4 

𝑅2
−
1
4 

 

𝑅2
−
1
4 

 

𝑅3  

𝑅8  

𝑅8
−
1
4 

 

𝑅9

1
4 

 

𝑅9

1
4 

 

𝑅8
−
1
4 

 

𝑅9

1
4 

 

𝑅9

1
4 

𝑅8
−
1
4 

 

𝑅9  

𝑅7
−
1
4 

 

𝑅8
−
1
4 

 

𝑅9
−
1
4 

 

𝑅9
−
1
4 

 

𝑅9
−
1
4 

 

𝑅9
−
1
4 

 
𝑅10  

𝑅10

1
4  

 

𝑅10

1
4  

 

𝑅10

1
4  

 

𝑅10

1
4  

 

… 4 round AES … 

|0160 

|032 

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128 

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m 

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7 

|s6 

|s5 

|s4 

|s3 

|s2 

|s1 

|s0 

|s7 

|s6 

|s5 

|s4 

|s3 

|s2 

|s1 

|s0 

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X 

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h

if
tR

o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1  

 

𝑆𝑖𝑛
1  

 

𝑆𝑖𝑛
3  

 

𝑆𝑜𝑢𝑡
3  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X 

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4  

 𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
8

Anc
24

𝑆𝑜𝑢𝑡
4  

 

Anc
24

0

M
ix

C
o
lu

m
n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X 

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16  

 

𝑆𝑜𝑢𝑡
8  

 

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4  

 

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16  

 

S
h

if
tR

o
w

s

M
ix

C
o
lu

m
n

s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8  

 

Anc

𝑆𝑜𝑢𝑡
−8  

 

Anc

𝑆𝑖𝑛
8  

 

𝑆𝑜𝑢𝑡
8  

 

Anc

𝑆𝑖𝑛
−8 

 

X 

W2

W3

𝑆𝑖𝑛
−8 

 

𝑆𝑜𝑢𝑡
−8  

 

Anc

𝑆𝑖𝑛
4  

 

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a 

|b 

|a 

|b⊕a  

CNOT gate

|a |a⊕1 

Pauli-X gate

|a 

|b 

|a 

|b 

Toffoli gate

|c |c⊕a·b  

X

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4  

 

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e 

F
ir

st
 R

o
u
n

d

0

0

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
−4  

 

𝑆𝑖𝑛
−4 

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
−4 

 

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
−4  

 

0 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
−4 

 𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
−4  

 

0 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
−4 

 𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
−4  

 

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4 

 

|032 

Input Key

|032 

|032 

|032 

|032 

R2

𝑅2

1
4 

 
𝑅2

1
4 

 
𝑅2

1
4 

 

𝑅1
−
1
4 

 

𝑅1
−
1
4 

 𝑅1
−
1
4 

 

𝑅1
−
1
4 

 

|032 

SB*

SB*

SB*

SB*

RC

|    

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

|0 

Anc
16

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e 

F
ir

st
 R

o
u
n

d

0

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

X

W10

W11

W9

W8

S
R

M
C

A
K

Anc
20

Rcon

W0

W1

W2

W3

X

𝑅𝑆𝑖𝑛
4  

 

Anc
20

Rcon

X

P

𝑅𝑆𝑖𝑛
4  

 

(a)

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

0

Anc
20

Anc
20

0 𝑆𝑜𝑢𝑡
4  

 𝑆𝑖𝑛
4  

 

Anc
20

0 𝑆𝑜𝑢𝑡
4  

 𝑆𝑖𝑛
4  

 

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
20

𝑅𝑆𝑖𝑛
1  

 

Anc
20

𝑅𝑆𝑖𝑛
4  

 

invMC+invSR

S
u

b
B

y
te

s

𝑅𝑆𝑖𝑛
1  

 𝑅𝑆𝑖𝑛
1  

 𝑅𝑆𝑖𝑛
1  

 

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X 

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

𝑆𝑜𝑢𝑡
4  

 

X

X

X

0

0

0

288-307

0

0

0

M
ix

C
o
lu

m
n

s

S
h
if

tR
o
w

s

W3

W2

W3

W1

A
d
d

R
o

u
n

d
K

e
y

W4

P P Rcon P

P

P

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
20

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
20

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
20

Anc
20

Anc
20

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4  

 

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4  

 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
−4 

 

𝑆𝑜𝑢𝑡
−4  

 

𝑆𝑖𝑛
2  

 

𝑆𝑜𝑢𝑡
2  

 

X

W10

W11

W9

W8

Anc
8

Anc
20

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

T
h

e 
F

ir
st

 R
o
u
n

d

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
4  

 

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
2  

 

𝑆𝑜𝑢𝑡
2  

 

Anc
10

Anc
20

𝑆𝑜𝑢𝑡
−4  

 𝑆𝑜𝑢𝑡
−4  

 𝑆𝑜𝑢𝑡
−4  

 

𝑆𝑖𝑛
−4 

 
𝑆𝑖𝑛
−4 

 
𝑆𝑖𝑛
−4 

 

Anc
8

Anc
12

Anc
4

Anc
16

Anc
10

0

0

0

0

0

0

0

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4  

 

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4  

 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
4  

 

𝑆𝑖𝑛
−4 

 

𝑆𝑜𝑢𝑡
−4  

 

X

W10

W11

W9

W8

Anc
8

Anc
24

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-479

0

0

0

0

0

0

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 𝑆𝑜𝑢𝑡
4  

 

𝑆𝑖𝑛
4  

 

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
4  

 

𝑆𝑜𝑢𝑡
4  

 

Anc
16

Anc
16

𝑆𝑜𝑢𝑡
−4  

 𝑆𝑜𝑢𝑡
−4  

 𝑆𝑜𝑢𝑡
−4  

 

𝑆𝑖𝑛
−4 

 
𝑆𝑖𝑛
−4 

 
𝑆𝑖𝑛
−4 

 

Anc
16

Anc
8

Anc
24

0

0

0

0

0

0

0

Rcon

Anc
8

480-483 0

T
h
e 

F
ir

st
 R

o
u
n
d

0 Anc
20

Anc
4 0

8

8

8

8 

8

8

8

8

8

8

8

8

8

8

8

8

𝑘𝑖
0 

 

|    𝑘𝑖
1 

 

|    𝑘𝑖
2 

 

|    𝑘𝑖
3 

 

|    𝑘𝑖
5 

 

|    𝑘𝑖
6 

 
|    𝑘𝑖
7 

 

|     𝑘𝑖
10  

 

|     𝑘𝑖
13  

 

|     𝑘𝑖
15  

 

|     

|    𝑘𝑖
4 

 

|    𝑘𝑖
8 

 

|    𝑘𝑖
9 

 

|     

|     𝑘𝑖
14  

 

𝑘𝑖
12 

 

𝑘𝑖
11 

 

Anc
8

Anc
16

Anc
4

Fig. 5 The quantum circuit for the first round of AES-128.

state can be implemented in parallel. The procedure is shown in Figure 5 with
step (c), after which 52 qubits with zero value are left. The first round is
completed with step (d), which contains the implementation of ShiftRows,
MixColumns and AddRoundKey.
The Rest Rounds The implementation of the second round is shown in
Figure 6, where S−j

in and S−j
out are the inputs and the outputs of j S-box−1es.
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Fig. 6 The quantum circuit for the second round of AES-128.

After the first round, there are 52 qubits with zero value. Each application
of 4 S-boxes for the round function will increase both the S-box depth and the
S-box−1 depth by 4 (as shown in Figure 6 with step (a)), while the key schedule
only increases the S-box depth by 1 (as shown in Figure 6 with step (b)). The
remaining operations of the second round are shown in Figure 6 with step (c).
The rest rounds can be implemented in the same way as the second round.

6.2 The Quantum Resource Estimate

The circuits constructed for AES S-box and it inverse are the only two nonlin-
ear components used for designing NCT-based circuits of AES. However, due
to the number of ancilla qubits allocated for each S-box or S-box−1, different
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quantity of various circuits constructed for S-box and S-box−1 will be applied.
The S-boxes in the first round can be implemented with different circuits that
consume 5 or 6 ancilla qubits, which will be discussed later. For the rest rounds,
it can be easily verified that the last (16 mod m) S-boxes in the round func-
tion, the last (16 mod m) S-box−1es for removing the previous round and the
4 S-boxes for the key schedule can alway be implemented by the quantum cir-
cuits that consume 6 ancilla qubits if 16

m /∈ Z+. For the case that 16
m ∈ Z+,

the 4 S-boxes for the key schedule can also be implemented by the quan-
tum circuit that consumes 6 ancilla qubits. Denote the circuits constructed

for |x⟩|0⟩⊗(n+8) S-box−−−→ |x⟩|S(x)⟩|0⟩⊗n and |x⟩|S(x)⟩|0⟩⊗n S-box−1

−−−−−→ |x⟩|0⟩⊗(n+8)

by Sn and S−1∗
n respectively, where n ∈ {5, 6} is the number of allocated

ancilla qubits. Similarily, the circuit for |x⟩|y⟩|0⟩⊗14 S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗6

is denoted by S∗
6 . Denote by CnotS5

the CNOT gate consumption of the
circuit constructed for S5, the cost of other gates are denoted in the same
way. The total number of applied SubWord operations and the number of
applied SubWord except the first round are denoted by w and w

′
, where

w = 10, 8, 13, w
′
= 9, 7, 13 for the three instances of AES respectively. Denote

by r the round number and r = 10, 12, 14 for AES-128, AES-192 and AES-
256, respectively. For simplicity, (16 mod m) is denoted by z and (16 − (16
mod m)) is denoted by z

′
in the following equations.

The number of CNOT gates consumed by an NCT-based circuit of AES
except the nonlinear component in the first round can be calculated by



128r + 4 · CnotS∗
6
· w

′
+ (4 · 92 + 16 · CnotS5+

16 · CnotS−1∗
5

)(r − 1) + t, if
16

m
∈ Z+,

128r + 4 · CnotS∗
6
· w

′
+ (4 · 92 + z

′
· CnotS5

+

z · CnotS6
+ z

′
· CnotS−1∗

5
+ z · CnotS−1∗

6
)(r − 1) + t, otherwise,

where t = 3 · 32w for AES-128 and AES-256, = 3 · 32w − 2 · 32 + 4 · 32(r −w)
for AES-192.

The number of Pauli-X gates consumed by an NCT-based circuit of AES
except the nonlinear component in the first round can be calculated by


128 · 2 +HW (Rcon) + 4 ·XS∗

6
· w

′
+ 16(XS5

+XS−1∗
5

)(r − 1), if
16

m
∈ Z+,

128 · 2 +HW (Rcon) + 4 ·XS∗
6
· w

′
+ (z

′
·XS5

+ z ·XS6
+

z
′
·XS−1∗

5
+ z ·XS−1∗

6
)(r − 1), otherwise,

where HW (Rcon) is the Hamming weight of all the round constants.
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The number of Toffoli gates consumed by an NCT-based circuit of AES
except the nonlinear component in the first round can be calculated by

4 · ToffoliS∗
6
· w

′
+ 16(ToffoliS5

+ ToffoliS−1∗
5

)(r − 1), if
16

m
∈ Z+,

4 · ToffoliS∗
6
· w

′
+ (z

′
· ToffoliS5

+ z · ToffoliS6
+

z
′
· ToffoliS−1∗

5
+ z · ToffoliS−1∗

6
)(r − 1), otherwise.

For better understanding of the gate cost, the number of CNOT gates
consumed by the AES-128 circuit for the case that 16

m ∈ Z+ is taken as an
example and be presented in Appendix G.

Assuming that the partial zig-zag method executes m S-boxes in parallel,
and l extra ancilla qubits are allocated for the key schedule (which will be
explained later). The number of consumed qubits is

128 + k + 13m+ l,

where k is the key length.
Denote by dS5

the Toffoli depth of the circuit constructed for S5, the Toffoli
depth of other circuits designed for the S-box and the S-box−1 are denoted in
the same way.
Case for l = 0 Assuming that m S-boxes are applied each time. If 16

m ∈ Z+,
the 16 S-boxes in the round function and the 16 S-box−1es for removing the
previous round will be implemented with the circuits that consume 5 ancilla
qubits. The SubWord of the key schedule can be implemented by using the
circuit that costs 6 ancilla qubits within ⌈ 24

13m⌉ S-box depth (case 1). Otherwise,
if 16

m /∈ Z+, 2 of the S-boxes for the key schedule can be implemented in
parallel with last (16 mod m) S-boxes for the SubBytes, and the remaining
2 S-boxes can be implemented in parallel with last (16 mod m) S-box−1es
for removing the previous round (case 2). In this case, only the circuits that
consume 6 ancilla qubits will be used, since (16 mod m) · 14+ 2 · 6 ≥ 13m and
((16 mod m) ·6+2 ·6) ≥ (13m−(16 mod m) ·8) always hold. The Toffoli depth
of the circuit except the first round can be calculated by

Case 1:

(
16

m
· dS5

+
16

m
· dS−1∗

5
)(r − 1) + ⌈ 24

13m
⌉ · dS∗

6
· w

′
.

Case 2:

⌊16
m

⌋(dS5 + dS−1∗
5

)(r − 1) + (dS6 + dS−1∗
6

)(r − w
′
− 1) + (max{dS6 , dS∗

6
}+

max{dS−1∗
6

, dS∗
6
})w

′
.

Case for l > 0 According to the analysis for l = 0, the S-boxes in the key
schedule do not increase the S-box depth if 16

m /∈ Z+. Therefore, only the cases
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that 16
m ∈ Z+ are discussed for l > 0. In this case, the increased S-box depth

caused by updating the key schedule can be reduced by adding some ancilla
qubits. For the cases that m = 1, 2, 4 or 8, one S-box for the key schedule can
be executed in parallel with m S-boxes for the round function or with m S-
box−1es for removing the previous round. Only 5 ancilla qubits are required.
For the case that m = 16, the encryption of one round can be completed with
an S-box depth and S-box−1 depth of 1. The Toffoli depth can be reduced by
applying 2 S-boxes for the key schedule with 16 S-boxes for the round function
and another 2 S-boxes with 16 S-box−1es. This requires 10 ancilla qubits. Note
that for l > 0, once the 4 S-boxes for the key schedule have been applied, the
ancilla qubits for the key schedule can be used by the round function if the 16
S-boxes or 16 S-box−1es have not been fully applied. In this case, the circuits
of S-box and S-box−1 that cost 6 ancilla qubits can be applied to reduce the
Toffoli depth if l ≥ m, since all the m S-boxes or S-box−1es after this can
be applied in parallel by using the circuits with Toffoli depth 22. The Toffoli
depth of the circuit except the first round is


(2(max{dS5 , dS∗

5
}+max{dS−1∗

5
, dS∗

5
}) + (

16

m
− 2)(dS6

+

dS−1∗
6

))(r − 1), if m = 1, 2, 4, 8,

(max{dS5 , dS∗
5
}+max{dS−1∗

5
, dS∗

5
})(r − 1), if m = 16.

Depth of the First Round The first round of AES dose not need to apply
S-box−1, and only AES-128 and AES-192 apply SubWord in the first round.
Assuming that l (l = 0, 5, 10) ancilla qubits are allocated for the S-boxes in
the key schedule of AES, there are 128 + 13m+ l zero qubits available for the
first round. The S-box depth for the first round of AES with various m are
presented in Table 9. Each S-box and S-box−1 are allocated 6 ancilla qubits
unless otherwise specified.

Table 9 The S-box depth of the first round of AES.

AES-128/AES-192 AES-256

l

S-box depth m
1 2 3 ≥ 4 1 2 3-5 6 7 ≥ 8

0 4 3 3 2 3 2† 2 2 1⋆ 1
5 3⋆ 3 2⋇ 2 3 2 2 1⋆ 1 1

10 3† 3 2 2 3 2 2 1⋆ 1 1
⋆ All the S-boxes and S-box−1es are allocated 5 ancilla qubits.
⋇ Only the 13 S-boxes in the first S-box depth are allocated 5 ancilla qubits.
† Only the 11 S-boxes in the first S-box depth are allocated 5 ancilla qubits.

The resource estimate of different NCT-based circuits constructed for three
instances of the AES family are listed in Table 1, Table 2 and Table 3.
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7 Conclusion

This work researched the construction of optimized NCT-based circuits for the
AES family. First of all, quantum circuits for AES S-box and its inverse were
investigated based on classical ones. To this end, the properties as well as the
factors that affect the Toffoli depth and CNOT gate consumption of the quan-
tum circuit were investigated. Moreover, both the classical implementation of
AES S-box and its inverse were divided into three parts, and the application
of the existing tools or heuristic on those parts were investigated. In addition,
a heuristic was proposed to search optimized NCT-based circuits for the first
part and the third part of the rearranged S-box and S-box−1 circuits. The
experimental results reveal that the quantum circuits designed in this work for
AES S-box and S-box−1 with optimized CNOT gate consumption and Toffoli
depth have advantages in qubit consumption. Then, this work researched the
implementation of the key schedule and the round function of AES. By apply-
ing the framework based on partial round functions which is called partial
zig-zag method in this paper, different NCT-based circuits were constructed
for the AES family. The results show that it requires only 269, 333 and 397
qubits to implement the three instances of AES with NCT gate set. Besides,
taking the trade-off of Toffoli depth and qubits into consideration, NCT-based
circuits for AES-128, AES-192 and AES-256 that outperform state-of-the-art
schemes in the metric of T · M value can be constructed with only 474, 538
and 602 qubits.

When evaluating the depth of the quantum circuit, this work focuses on the
Toffoli depth. Since a Toffoli gate can be decomposed into several Clifford gates
and T gates, one can also research the construction of quantum circuits for AES
with Clifford+T gates and the T -depth should be considered in this case. On
the other hand, construction of the NCT-based circuits for odd permutations
can also be a direction for future research.
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A The Proof of Fact 1

Proof Based on the values of a and c, the proof proceeds in two cases:
Case 1: if a = c, the two operations can be rewritten as ta = ta⊕ tb, ta = ta⊕ tc,

after which the value of qubit ta is ta ⊕ tb ⊕ tc. Assume that the operations are
changed to ta = ta ⊕ tc, ta = ta ⊕ tb, the final value of ta is not changed. Thus, the
order of these two operations can be exchanged.

Case 2: if a ̸= c, d and b ̸= c, it follows that a, c, d are pairwise distinct since
a ̸= b and c ̸= d. In addition, the operations have no influence on the values of tb
and td. Therefore, exchanging the order of these two operations does not result in
any change of the values stored in ta and tc. □

B Discussion on LIGHTER and LIGHTER-R

Before illustrating the method of using LIGHTER, the following definition is
introduced.

Definition 3 (odd permutation [26]) A permutation is called odd if it can be written
as the product of an odd number of transpositions.

The even permutation can be defined in the similar way.
It is obviously that the 4-bit S-box shown in Table 6 is odd (as well as the

one derived from the inverse of AES S-box). The researches of [26] reveal that
the NCT-based circuit for an even permutation can be constructed without
temporary storage, but for an odd permutation, one wire of temporary storage
is required. It means that one can not construct a quantum circuit for an odd
permutation by using the tool LIGHTER-R only based on NCT gate set. To
this end, the following strategies are investigated to construct an NCT-based
circuit for an odd permutation.
Strategy 1 First, expand a 4-bit odd permutation to be a 5-bit one by
adding one bit in the most significant bit of the inputs, whose corresponding
output bit is identical to the input. There is no doubt that the resulting 5-bit
permutation is even. Then, modify the code to make the tool LIGHTER-R
compatible with 5-bits permutation as its input and search the NCT-based
circuit for the resulting 5-bit even permutation. Unfortunately, due to the large
search space, none implementation for the S-box shown in Table 6 returned.
Strategy 2 The underlying logic gate set of the tool LIGHTER can be
customized as needed. Considering the relation between the NCT gate set and
the classical And gate, Xor gate and Not gate, one can specify that the
tool LIGHTER only uses And gates, Xor gates and Not gates to search an
optimized in-place implementation for a 4-bit odd permutation. Certainly, this
comes at the cost of an auxiliary variable, which means an ancilla qubit will
be consumed by LIGHTER in this case.
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C The Quantum Style Circuit of f2 of AES
S-box

s6 = s6 ⊕ t44 · y15, s1 = s1 ⊕ t37 · y6, s0 = s0 ⊕ t43 · y16, s4 = s4 ⊕ t40 · y1,
s3 = s3 ⊕ t44 · y12, s5 = s5 ⊕ t37 · y3, s2 = s2 ⊕ t43 · y13, s7 = s7 ⊕ t40 · y5,
s0 = s0 ⊕ s4, s6 = s6 ⊕ s0, s2 = s2 ⊕ t42 · y9, s0 = s0 ⊕ t42 · y11,
s5 = s5 ⊕ t45 · y14, s0 = s0 ⊕ t45 · y17, s7 = s7 ⊕ s2, s1 = s1 ⊕ s6,
s2 = s2 ⊕ t29 · y2, s3 = s3 ⊕ s5, s6 = s6 ⊕ t33 · y0, s4 = s4 ⊕ s6,
s4 = s4 ⊕ t29 · y7, s5 = s5 ⊕ t33 · y4, s3 = s3 ⊕ t42 · y9, s6 = s6 ⊕ t45 · y17,
s6 = s6 ⊕ t41 · y10, s7 = s7 ⊕ t45 · y14, s2 = s2 ⊕ s6, s5 = s5 ⊕ s2,
s2 = s2 ⊕ s0, s0 = s0 ⊕ s3, s3 = s3 ⊕ s1, s7 = s7 ⊕ s4,
s2 = s2 ⊕ t41 · y8, s6 = s6 ⊕ s7, s4 = s4 ⊕ s3, s1 = s1 ⊕ s0.

D The Reversible Circuit of AES S-box

D.1 The Reversible Circuit for Generating t21, t22, t23, t24.
x6 = x6 ⊕ x5 ⊕ x3 ⊕ x0, x4 = x6 ⊕ x5 ⊕ x4, x1 = x7 ⊕ x3 ⊕ x2 ⊕ x1,
x5 = x5 ⊕ x3, x2 = x5 ⊕ x2 ⊕ x0, x3 = x3 ⊕ x1 ⊕ x0,
x0 = x4 ⊕ x3 ⊕ x2 ⊕ x0, t21 = t21 ⊕ x6 · x4, t22 = t22 ⊕ x1 · x7,
t23 = t23 ⊕ x5 · x2, t24 = t24 ⊕ x3 · x0, t22 = t22 ⊕ t21,
t21 = t21 ⊕ t23, x5 = x6 ⊕ x5, x4 = x4 ⊕ x2,
x1 = x6 ⊕ x1, x7 = x7 ⊕ x4 ⊕ x2, x3 = x5 ⊕ x3 ⊕ x1,
x0 = x7 ⊕ x4 ⊕ x0, x6 = x6 ⊕ x5 ⊕ x3, x2 = x2 ⊕ x0,
t23 = t23 ⊕ x5 · x4, t21 = t21 ⊕ x1 · x7, t24 = t24 ⊕ x3 · x0,
a = a⊕ x6 · x2, t21 = t21 ⊕ a, t22 = t22 ⊕ a,
t23 = t23 ⊕ a, t24 = t24 ⊕ a, x1 = x3 ⊕ x1,
x7 = x7 ⊕ x0, t22 = t22 ⊕ x3 · x0, t23 = t23 ⊕ x1 · x7,
t24 = t24 ⊕ x5 · x4, a = a⊕ x6 · x2, x6 = x6 ⊕ x2,
t21 = t21 ⊕ x6, x3 = x3 ⊕ x0, t22 = t22 ⊕ x3,
x5 = x5 ⊕ x4, t23 = t23 ⊕ x5, x5 = x7 ⊕ x5 ⊕ x1,
t24 = t24 ⊕ x5.

D.2 The Reversible Circuit for S4 with Toffoli Depth 6.

t23 = t23 ⊕ t22 · t24, t24 = t24 ⊕ t23, t22 = t22 ⊕ t21 · t24,
t24 = t24 ⊕ t22 · t23, t23 = t23 ⊕ t24 (t33), t22 = t22 ⊕ t21 (t40),
t21 = t21 ⊕ t22 · t24, a = a⊕ t23 · t22, t24 = t24 ⊕ a · t21 (t37),
t21 = t21 ⊕ t22 (t29).

D.3 The Reversible Circuit for S4 with Toffoli Depth 5.

t23 = t23 ⊕ t22 · t24, t24 = t24 ⊕ t23, t22 = t22 ⊕ t21 · t24,
t24 = t24 ⊕ t22 · t23, t23 = t23 ⊕ t24 (t33), t22 = t22 ⊕ t21 (t40),
b = b⊕ t22, a = a⊕ t23 · t22, t21 = t21 ⊕ b · t24,
t24 = t24 ⊕ a · t21 (t37), t21 = t21 ⊕ t22 (t29).
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D.4 The Reversible Circuit for the Outputs of AES
S-box.

x3 = x3 ⊕ x1 ⊕ x0, x0 = x4 ⊕ x2 ⊕ x0, x6 = x6 ⊕ x2,
t22 = t22 ⊕ t21, t23 = t24 ⊕ t23, t21 = t24 ⊕ t23 ⊕ t21,
s0 = s0 ⊕ t22 · x4, s5 = s5 ⊕ t24 · x3, s6 = s6 ⊕ t23 · x0,
s2 = s2 ⊕ t21 · x6, x5 = x7 ⊕ x5 ⊕ x4 ⊕ x1, x3 = x6 ⊕ x3 ⊕ x1,
t23 = t23 ⊕ t22, t24 = t24 ⊕ t23 ⊕ t21, s2 = s2 ⊕ t22 · x5,
s5 = s5 ⊕ t23 · x3, s4 = s4 ⊕ t24 · x7, s0 = s0 ⊕ s4,
s6 = s6 ⊕ s0, s7 = s7 ⊕ s2, s1 = s1 ⊕ s6,
s3 = s3 ⊕ s5, x7 = x7 ⊕ x4 ⊕ x2, x4 = x4 ⊕ x0,
t22 = t24 ⊕ t22 ⊕ t21, s6 = s6 ⊕ t22 · x7, s3 = s3 ⊕ t21 · x6,
s0 = s0 ⊕ t23 · x4, s4 = s4 ⊕ s6, x5 = x5 ⊕ x1,
t22 = t22 ⊕ t21, s6 = s6 ⊕ t23 · x4, s0 = s0 ⊕ t21 · x2,
s7 = s7 ⊕ t24 · x1, s2 = s2 ⊕ t22 · x5, x4 = x4 ⊕ x2,
x0 = x7 ⊕ x0, x7 = x7 ⊕ x2, x1 = x5 ⊕ x3 ⊕ x1,
t23 = t23 ⊕ t21, t24 = t24 ⊕ t23, t21 = t24 ⊕ t22 ⊕ t21,
s6 = s6 ⊕ t23 · x4, s1 = s1 ⊕ t24 · x0, s4 = s4 ⊕ t22 · x7,
s3 = s3 ⊕ t21 · x1, s2 = s2 ⊕ s6, s5 = s5 ⊕ s2,
s2 = s2 ⊕ s0, s0 = s0 ⊕ s3, s3 = s3 ⊕ s1,
s7 = s7 ⊕ s4, x6 = x6 ⊕ x3, x5 = x6 ⊕ x5 ⊕ x3,
t22 = t24 ⊕ t23 ⊕ t22 ⊕ t21, t21 = t24 ⊕ t21, s2 = s2 ⊕ t23 · x6,
s7 = s7 ⊕ t22 · x3, s5 = s5 ⊕ t21 · x5, s6 = s6 ⊕ s7,
s4 = s4 ⊕ s3, s1 = s1 ⊕ s0, s6 = s6 ⊕ 1,
s7 = s7 ⊕ 1, s1 = s1 ⊕ 1, s2 = s2 ⊕ 1.

E The Reversible Circuit of AES S-box−1

E.1 The Reversible Circuit for Generating t21, t22, t23, t24.

x6 = x7 ⊕ x6 ⊕ x1 ⊕ x0 ⊕ 1, x1 = x5 ⊕ x3 ⊕ x2 ⊕ x1, x3 = x6 ⊕ x3 ⊕ x0,
x0 = x5 ⊕ x2 ⊕ x0 ⊕ 1, x4 = x4 ⊕ x1 ⊕ x0, x5 = x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ 1,
x7 = x7 ⊕ x5 ⊕ x2 ⊕ x1, x2 = x3 ⊕ x2 ⊕ 1, t21 = t21 ⊕ x6 · x1,
t22 = t22 ⊕ x3 · x0, t23 = t23 ⊕ x4 · x5, t24 = t24 ⊕ x7 · x2,
x6 = x6 ⊕ x4, x5 = x5 ⊕ x1, x3 = x6 ⊕ x4 ⊕ x3,
x0 = x1 ⊕ x0, x7 = x7 ⊕ x6 ⊕ x3, x2 = x5 ⊕ x2 ⊕ x0,
x4 = x7 ⊕ x4, x1 = x5 ⊕ x2 ⊕ x1, t22 = t22 ⊕ t21,
t21 = t21 ⊕ t23, t23 = t23 ⊕ x6 · x5, t21 = t21 ⊕ x3 · x0,
t24 = t24 ⊕ x7 · x2, a = a⊕ x4 · x1, t21 = t21 ⊕ a,
t22 = t22 ⊕ a, t23 = t23 ⊕ a, t24 = t24 ⊕ a,
x3 = x7 ⊕ x3, x0 = x2 ⊕ x0, a = a⊕ x4 · x1,
t22 = t22 ⊕ x7 · x2, t23 = t23 ⊕ x3 · x0, t24 = t24 ⊕ x6 · x5,
x4 = x4 ⊕ x1, t21 = t21 ⊕ x4, x2 = x7 ⊕ x2,
t22 = t22 ⊕ x2, x5 = x6 ⊕ x5, t23 = t23 ⊕ x5,
x5 = x5 ⊕ x3 ⊕ x0, t24 = t24 ⊕ x5.
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E.2 The Reversible Circuit for the Outputs of AES
S-box−1.

t22 = t22 ⊕ t21, t21 = t23 ⊕ t21, t23 = t24 ⊕ t23,
x5 = x6 ⊕ x5 ⊕ x3 ⊕ x0, x4 = x4 ⊕ x1, x2 = x7 ⊕ x5 ⊕ x2 ⊕ x1,
x7 = x7 ⊕ x3, s2 = s2 ⊕ t22 · x5, s4 = s4 ⊕ t21 · x4,
s3 = s3 ⊕ t23 · x2, s7 = s7 ⊕ t24 · x7, t24 = t24 ⊕ t23 ⊕ t22 ⊕ t21,
t23 = t23 ⊕ t22, x7 = x7 ⊕ x4 ⊕ x3, s4 = s4 ⊕ t22 · x6,
s1 = s1 ⊕ t21 · x4, s0 = s0 ⊕ t24 · x0, s7 = s7 ⊕ t23 · x7,
s2 = s2 ⊕ s0, s3 = s3 ⊕ s2, s6 = s6 ⊕ s4,
s5 = s5 ⊕ s3, s1 = s1 ⊕ s7, t24 = t24 ⊕ t22 ⊕ t21,
t22 = t23 ⊕ t22, t21 = t24 ⊕ t21, x0 = x5 ⊕ x1 ⊕ x0,
x7 = x7 ⊕ x6, x5 = x5 ⊕ x2, x6 = x6 ⊕ x3,
s3 = s3 ⊕ t24 · x0, s1 = s1 ⊕ t22 · x7, s2 = s2 ⊕ t23 · x5,
s4 = s4 ⊕ t21 · x6, s0 = s0 ⊕ s3, t22 = t24 ⊕ t22,
t24 = t24 ⊕ t21, x0 = x1 ⊕ x0, x2 = x2 ⊕ x1 ⊕ x0,
s3 = s3 ⊕ t23 · x5, s0 = s0 ⊕ t21 · x0, s5 = s5 ⊕ t22 · x2,
s2 = s2 ⊕ t24 · x1, t24 = t24 ⊕ t23, x1 = x5 ⊕ x1,
x7 = x7 ⊕ x6 ⊕ x3, s3 = s3 ⊕ t24 · x1, s6 = s6 ⊕ t23 · x7,
s4 = s4 ⊕ s3, s7 = s7 ⊕ s4, t22 = t24 ⊕ t22,
t21 = t24 ⊕ t23 ⊕ t21, x7 = x7 ⊕ x4, x6 = x6 ⊕ x4,
s4 = s4 ⊕ t24 · x7, s6 = s6 ⊕ t22 · x3, s7 = s7 ⊕ t21 · x6,
s6 = s6 ⊕ s2, s0 = s0 ⊕ s6, s1 = s1 ⊕ s4,
s4 = s4 ⊕ s0, s2 = s2 ⊕ s5, s0 = s0 ⊕ s3,
s4 = s4 ⊕ s7, s2 = s2 ⊕ s7, s7 = s7 ⊕ s1,
s1 = s1 ⊕ s6, s1 = s1 ⊕ s5, s3 = s3 ⊕ s6,
s5 = s5 ⊕ s0.

F The Reversible Circuit Added If Not All
Output Qubits Are 0s.

s5 = s5 ⊕ s0, s3 = s3 ⊕ s6, s1 = s1 ⊕ s5, s1 = s1 ⊕ s6, s7 = s7 ⊕ s1,
s2 = s2 ⊕ s7, s4 = s4 ⊕ s7, s0 = s0 ⊕ s3, s2 = s2 ⊕ s5, s4 = s4 ⊕ s0,
s1 = s1 ⊕ s4, s0 = s0 ⊕ s6, s6 = s6 ⊕ s2, s7 = s7 ⊕ s4, s4 = s4 ⊕ s3,
s0 = s0 ⊕ s3, s1 = s1 ⊕ s7, s5 = s5 ⊕ s3, s6 = s6 ⊕ s4, s3 = s3 ⊕ s2,
s2 = s2 ⊕ s0.

G An Example of Calculating the CNOT Gate
Consumption of AES-128.

For the NCT-based circuit of AES-128, the number of CNOT gates consumed
by the AddRoundKey and the MixColumns are 128×r and 4×92×(r−1),
respectively, where r is the round number. Suppose that 5 ancilla qubits are
allocated for each of the m parallel S-boxes in the round function, one can
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also use the S-box−1 circuit that consumes 5 ancilla qubits to remove the
previous round, after which, there are 8 ×m + 5 ×m qubits with value zero
available for the S-boxes in the key schedule. For the case that 16

m ∈ Z+,
8×m+5×m > 6 always hold. It follows that the S-boxes in the key schedule
can be implemented with the circuit that consumes 6 ancilla qubits. In each
round of AES-128, it requires 16 S-boxes to implement the SubBytes in the
round function, 16 S-box−1es to remove the previous round, and 4 S-boxes for
the key schedule. Denote by CnotS∗

5
, CnotS−1∗

5
, CnotS∗

6
the CNOT gate count

of the S-box circuit that consumes 5 ancilla qubits, the CNOT gate count
of the S-box−1 circuit that consumes 5 ancilla qubits, and the CNOT gate
count of the S-box circuit that consumes 6 ancilla qubits, respectively. The
CNOT consumption of the nonlinear components except the first round can
be calculated as (16×CnotS5

∗ + 16×CnotS−1∗
5

)× (r− 1) + 4×CnotS∗
6
×w′,

where w
′
is the number of SubWord operations used in the key schedule

except the first round and equals 9 for AES-128. In addition, word-wise Xor
is applied in the key schedule to implement Wi = Wi−4 ⊕Wi−1, which means
3 × 32 × w CNOT gates are required, where w is the number of SubWord
operations used in the key schedule and equals 10 for AES-128.
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