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A Further Study of Vectorial Dual-Bent Functions†

Jiaxin Wang, Fang-Wei Fu, Yadi Wei, Jing Yang

Abstract

Vectorial dual-bent functions have recently attracted some researchers’ interest as they play a sig-

nificant role in constructing partial difference sets, association schemes, bent partitions and linear codes.

In this paper, we further study vectorial dual-bent functions F : V
(p)
n → V

(p)
m , where 2 ≤ m ≤ n

2 , V (p)
n

denotes an n-dimensional vector space over the prime field Fp. We give new characterizations of certain

vectorial dual-bent functions (called vectorial dual-bent functions with Condition A) in terms of amorphic

association schemes, linear codes and generalized Hadamard matrices, respectively. When p = 2, we

characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Furthermore,

we characterize certain bent partitions in terms of amorphic association schemes, linear codes and

generalized Hadamard matrices, respectively. For general vectorial dual-bent functions F : V
(p)
n → V

(p)
m

with F (0) = 0, F (x) = F (−x) and 2 ≤ m ≤ n
2 , we give a necessary and sufficient condition on

constructing association schemes. Based on such a result, more association schemes are constructed

from vectorial dual-bent functions.

Index Terms

Vectorial dual-bent functions; Association schemes; Generalized Hadamard matrices; Linear codes;

Bent partitions; Partial difference sets

I. INTRODUCTION

Boolean bent functions were introduced by Rothaus in [17], which have been extensively

studied due to their important applications in cryptography, coding theory, combinatorics and
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sequences. Please refer to book [13] for further understanding Boolean bent functions and their

generalizations, such as p-ary bent functions and vectorial bent functions, where p is an odd

prime.

As a special class of vectorial bent functions, vectorial dual-bent functions introduced by

Çeşmelioğlu et al. [8] have attracted some researchers’ research interest due to their significant

applications in constructing partial difference sets [6], [7], [21], association schemes [3], bent

partitions [23] and linear codes [24]. Recently, for certain vectorial dual-bent functions F :

V
(p)
n → V

(p)
m (called vectorial dual-bent functions with Condition A), where V (p)

n denotes an n-

dimensional vector space over the prime field Fp, Wang et al. in [23] provided a characterization

in terms of partial difference sets. Furthermore, when p is an odd prime, they provided a

characterization in terms of bent partitions. When p = 2, they showed that vectorial dual-

bent functions with Condition A can be used to construct bent partitions, but they did not

give a characterization of vectorial dual-bent functions with Condition A in terms of bent

partitions. As far as we know, apart from the literature [23], there is a lack of research on

the characterizations of vectorial dual-bent functions. As to the applications, Anbar et al. in [3]

considered using vectorial dual-bent functions to construct association schemes. Also, they in [1]

used bent partitions to construct association schemes. Anbar et al. showed that vectorial dual-

bent functions F : V
(p)
n → V

(p)
m with F (0) = 0 and all component functions Fc, c ∈ V (p)

m \{0}

being regular or weakly regular but not regular (that is, the corresponding εFc , c ∈ V
(p)
m \{0} are

all the same) can induce association schemes. Note that for such vectorial dual-bent functions, n

must be even. It is interesting to investigate whether there are other vectorial dual-bent functions

which can be used to construct association schemes.

In this paper, we further study vectorial dual-bent functions F : V
(p)
n → V

(p)
m , where 2 ≤ m ≤

n
2
. We summarize our contributions as below.

• For any prime p, we provide new characterizations of vectorial dual-bent functions F :

V
(p)
n → V

(p)
m with Condition A in terms of amorphic association schemes, linear codes and

generalized Hadamard matrices, respectively.

• We present the relations between bent partitions of V (2)
n of depth 2m and the corresponding

vectorial bent functions, based on which we characterize vectorial dual-bent functions with

Condition A in terms of bent partitions when p = 2.

• Based on the relations between vectorial dual-bent functions with Condition A and bent
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partitions, we give new characterizations of certain bent partitions in terms of amorphic

association schemes, linear codes and generalized Hadamard matrices, respectively.

• For general vectorial dual-bent functions F : V
(p)
n → V

(p)
m with F (0) = 0, F (x) = F (−x)

and 2 ≤ m ≤ n
2
, a necessary and sufficient condition on constructing association schemes

from F is presented. Based on such a result, more association schemes are constructed by

using two classes of vectorial dual-bent functions F : V
(p)
n → V

(p)
m for which n can be odd,

or n is even and the corresponding εFc , c ∈ V
(p)
m \{0} are not all the same.

The rest of the paper is organized as follows. Section II provides necessary preliminaries. In

Sections III-VI, we provide some new characterizations of certain vectorial dual-bent functions.

In Section VII, some new characterizations of certain bent partitions are presented. In Section

VIII, for certain vectorial dual-bent functions, a necessary and sufficient condition on constructing

association schemes is given. In Section IX, we make a conclusion.

II. PRELIMINARIES

In this section, we give the needed results on vectorial dual-bent functions, bent partitions,

partial difference sets, association schemes, generalized Hadamard matrices and linear codes,

respectively. First, we fix some notations used throughout this paper.

• p is a prime and ζp = e
2π
√
−1
p is a complex primitive p-th root of unity.

• Fpn is the finite field with pn elements.

• Fnp is the vector space of the n-tuples over Fp.

• V
(p)
n is an n-dimensional vector space over Fp.

• 〈·〉n denotes a (non-degenerate) inner product of V (p)
n . In this paper, when V

(p)
n = Fpn ,

let 〈a, b〉n = Trn1 (ab), where a, b ∈ Fpn , Trnm(·) denotes the trace function from Fpn to

Fpm , m | n; when V
(p)
n = Fnp , let 〈a, b〉n = a · b =

∑n
i=1 aibi, where a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ Fnp ; when V (p)
n = V

(p)
n1 ×· · ·×V

(p)
ns (n =

∑s
i=1 ni), let 〈a, b〉n =

∑s
i=1〈ai, bi〉ni ,

where a = (a1, . . . , as), b = (b1, . . . , bs) ∈ V (p)
n .

• For any set A ⊆ V
(p)
n , let A∗ = A\{0} and χu(A) =

∑
x∈A χu(x), u ∈ V

(p)
n , where χu

denotes the character χu(x) = ζ
〈u,x〉n
p .

• For a function F : V
(p)
n → V

(p)
m , let DF,i = {x ∈ V

(p)
n : F (x) = i}, i ∈ V

(p)
m and

F (V
(p)
n

∗
) = {F (x), x ∈ V (p)

n

∗
}.
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• For any set A, let δA be the indicator function. In particular, if A = {a}, we simply denote

δ{a} by δa.

A. Vectorial dual-bent functions

A function from V
(p)
n to V

(p)
m is called a vectorial p-ary function, or simply p-ary function

when m = 1. For a p-ary function f : V
(p)
n → Fp, the Walsh transform Wf is defined as

Wf (a) =
∑
x∈V (p)

n

ζf(x)−〈a,x〉np , a ∈ V (p)
n . (1)

The p-ary function f can be recovered by the inverse transform

ζf(x)p =
1

pn

∑
a∈V (p)

n

Wf (a)ζ〈a,x〉np , x ∈ V (p)
n . (2)

A p-ary function f : V
(p)
n → Fp is called bent if |Wf (a)| = p

n
2 for any a ∈ V (p)

n . When p = 2,

that is, f is a Boolean bent function, then n must be even. The Walsh transform of a p-ary bent

function f : V
(p)
n → Fp satisfies that when p = 2, then

Wf (a) = 2
n
2 (−1)f

∗(a), a ∈ V (2)
n , (3)

and when p is an odd prime, then

Wf (a) =

 ±p
n
2 ζf

∗(a)
p , if p ≡ 1 (mod 4) or n is even,

±
√
−1p

n
2 ζf

∗(a)
p , if p ≡ 3 (mod 4) and n is odd,

(4)

where f ∗ is a p-ary function from V
(p)
n to Fp, called the dual of f . A p-ary bent function

f : V
(p)
n → Fp is said to be weakly regular if Wf (a) = εfp

n
2 ζ

f∗(a)
p , where εf is a constant

independent of a, otherwise f is called non-weakly regular. In particular, if Wf (a) = p
n
2 ζ

f∗(a)
p ,

that is, εf = 1, then f is called regular. All Boolean bent functions are regular. The dual f ∗ of

a weakly regular bent function f is also a weakly regular bent function and

(f ∗)∗(x) = f(−x), εf∗ = ε−1f . (5)

A vectorial p-ary function F : V
(p)
n → V

(p)
m is called vectorial bent if all component functions

Fc : V
(p)
n → Fp, c ∈ V (p)

m

∗
defined as Fc(x) = 〈c, F (x)〉m are bent. It is known that if F : V

(p)
n →

V
(p)
m is vectorial bent with all component functions Fc, c ∈ V (p)

m

∗
being regular or weakly regular

but not regular (that is, εFc is a constant independent of c), then n is even and m ≤ n
2

(see [3],
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[7]). A vectorial p-ary bent function F : V
(p)
n → V

(p)
m is called vectorial dual-bent if the set of

the duals (Fc)
∗, c ∈ V (p)

m

∗
of the component functions Fc, c ∈ V (p)

m

∗
of F (together with the zero

function) forms a vector space VF of bent functions of dimension m.

For a vectorial dual-bent function F : V
(p)
n → V

(p)
m , let {(Fc1)∗, . . . , (Fcm)∗} be any basis

of VF , where ci ∈ V (p)
m

∗
, 1 ≤ i ≤ m. Then for any c ∈ V (p)

m

∗
, there is unique nonzero vector

(a
(c)
1 , . . . , a

(c)
m ) ∈ Fmp such that (Fc)

∗ =
∑m

i=1 a
(c)
i (Fci)

∗. Define G : V
(p)
n → V

(p)
m as G(x) =∑m

i=1(Fci)
∗(x)αi, where {α1, . . . , αm} is any basis of V (p)

m . For any c ∈ V (p)
m

∗
, let σ(c) ∈ V (p)

m

∗

be given by the following equation system:

〈σ(c), α1〉m = a
(c)
1 ,

〈σ(c), α2〉m = a
(c)
2 ,

...

〈σ(c), αm〉m = a(c)m .

Then σ is a permutation over V (p)
m

∗
and (Fc)

∗ = Gσ(c), c ∈ V (p)
m

∗
. Since F is vectorial dual-bent,

(Fc)
∗, c ∈ V

(p)
m

∗
are all bent functions and G is vectorial bent. By the argument, one can see

that a vectorial bent function F : V
(p)
n → V

(p)
m is vectorial dual-bent if and only if there exists

a vectorial bent function G : V
(p)
n → V

(p)
m such that (Fc)

∗ = Gσ(c), c ∈ V (p)
m

∗
, where σ is some

permutation over V (p)
m

∗
. The vectorial bent function G is called a vectorial dual of F and denoted

by F ∗. By the above analysis, one can see that the vectorial dual of a vectorial dual-bent function

is not unique. In the following, we show that if F is a vectorial dual-bent function for some

fixed permutation σ over V (p)
m

∗
, then its vectorial dual F ∗ with (Fc)

∗ = (F ∗)σ(c), c ∈ V (p)
m

∗
is

unique.

Proposition 1. Let F : V
(p)
n → V

(p)
m be a vectorial dual-bent function for some fixed permutation

σ over V (p)
m

∗
. Then its vectorial dual F ∗ with (Fc)

∗ = (F ∗)σ(c), c ∈ V (p)
m

∗
is unique.

Proof: Let {α1, . . . , αm} be any basis of V (p)
m and ci = σ−1(αi), 1 ≤ i ≤ m. Then

{σ(c1), . . . , σ(cm)} is a basis of V (p)
m and for any x ∈ V

(p)
n , there is unique G(x) ∈ V

(p)
m

such that the following equation system hold:
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〈G(x), σ(c1)〉m = (Fc1)
∗(x),

〈G(x), σ(c2)〉m = (Fc2)
∗(x),

...

〈G(x), σ(cm)〉m = (Fcm)∗(x).

Hence, the vectorial dual F ∗ with (Fc)
∗ = (F ∗)σ(c), c ∈ V (p)

m

∗
is unique and F ∗ = G.

In [23], Wang et al. studied vectorial dual-bent functions for which the corresponding permu-

tation σ over V (p)
m

∗
is the identity map. We recall vectorial dual-bent functions with Condition

A defined and studied in [23].

Condition A: Let n ≥ 4 be even and 2 ≤ m ≤ n
2
. Let F : V

(p)
n → V

(p)
m be a vectorial

dual-bent function for which

(Fc)
∗ = (F ∗)c, c ∈ V (p)

m

∗
, (6)

and all component functions Fc, c ∈ V
(p)
m

∗
are regular or weakly regular but not regular. We

denote by ε = εFc for all c ∈ V (p)
m

∗
.

Remark 1. Let n ≥ 4 be even and 2 ≤ m ≤ n
2
. When p = 2, since all Boolean bent functions

are regular, F : V
(2)
n → V

(2)
m is a vectorial dual-bent function with Condition A if and only if F

is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

When p > 3, if F : V
(p)
n → V

(p)
m is a vectorial dual-bent function with Condition A, we show

that all component functions Fc, c ∈ V (p)
m

∗
are regular.

Proposition 2. Let p > 3 be an odd prime. If F : V
(p)
n → V

(p)
m is a vectorial dual-bent function

with Condition A, then all component functions Fc, c ∈ V (p)
m

∗
are regular, that is, ε = 1.

Proof: By the proof of Theorem 1 of [23], if F is a vectorial dual-bent function with

Condition A, then F (ax) = F (x), a ∈ F∗p. Note that Fc(x) − Fc(0), c ∈ V
(p)
m

∗
are all weakly

regular bent functions with Fc(ax) − Fc(0) = Fc(x) − Fc(0), a ∈ F∗p and εFc(x)−Fc(0) = ε. By

Corollary 3.5 of [10], for a weakly regular bent function f : V
(p)
2r → Fp with f(0) = 0, f(ax) =

f(x), a ∈ F∗p, f is regular if p > 3. Therefore, we have ε = 1 if p > 3.

It was shown in [23] that the known bent partitions from (pre)semifields can be obtained from

vectorial dual-bent functions with Condition A, and vectorial dual-bent functions with Condition
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A can be used to construct partial difference sets (see also [21]). In [3], Anbar et al. showed

that vectorial dual-bent functions with Condition A are able to construct amorphic association

schemes. In Sections III-VI, we will further study vectorial dual-bent functions with Condition

A.

B. Bent partitions

Let n be an even positive integer, K be a positive integer divisible by p. Let Γ = {A1, . . . , AK}

be a partition of V (p)
n . Assume that every p-ary function f : V

(p)
n → Fp for which every i ∈ Fp

has exactly K
p

of sets Aj in Γ in its preimage set, is a p-ary bent function. Then Γ is called

a bent partition of V (p)
n of depth K and every such bent function f is called a bent function

constructed from bent partition Γ.

For a bent partition Γ = {Ai, 1 ≤ i ≤ pm} of V (p)
n , the following lemma gives the cardinality

of Ai.

Lemma 1 ( [4]). Let n be an even positive integer. Let Γ = {Ai, 1 ≤ i ≤ pm} be a bent partition

of V (p)
n . Then except one set, denoted by Ai0 , all other sets Ai have the same cardinality, namely

|Ai0| = p
n
2
−m(p

n
2 ∓ 1)± p

n
2 , |Ai| = p

n
2
−m(p

n
2 ∓ 1), i 6= i0.

In [23], Wang et al. studied the relations between vectorial dual-bent functions with Condition

A and bent partitions with Condition C. We recall bent partitions with Condition C defined and

studied in [23].

Condition C: Let n ≥ 4 be even, 2 ≤ m ≤ n
2
. Let Γ = {Ai, i ∈ V (p)

m } be a bent partition

of V (p)
n , which satisfies that aAi = Ai for any a ∈ F∗p and i ∈ V

(p)
m and all bent functions

constructed from Γ are regular or weakly regular but not regular. We denote by ε = εf for all

bent functions f constructed from Γ.

Remark 2. Let n ≥ 4 be even and 2 ≤ m ≤ n
2
. When p = 2, since all Boolean bent functions

are regular, Condition C is trivial for every bent partition of V (2)
n of depth 2m.

When p is odd, it was proved in [23] that bent partitions with Condition C one-to-one

correspond to vectorial dual-bent functions with Condition A.
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Lemma 2 ( [23]). Let p be an odd prime. Let Γ = {Ai, i ∈ V (p)
m } be a partition of V (p)

n , where

n ≥ 4 is even and 2 ≤ m ≤ n
2
. Define F : V

(p)
n → V

(p)
m as F (x) =

∑
i∈V (p)

m
δAi(x)i. Then Γ is a

bent partition with Condition C if and only if F is a vectorial dual-bent function with Condition

A.

C. Partial difference sets and association schemes

Let (G,+) be a finite abelian group of order v and D be a subset of G with k elements.

Then D is called a (v, k, λ, µ) partial difference set of G, if D (−D) = µG + (λ− µ)D + γ0

with D =
∑

g∈D g denoting the element in the group ring Z[G] and −D = {−d, d ∈ D}, where

γ = k−µ if 0 /∈ D and γ = k−λ if 0 ∈ D. By Page 223 of [11], the empty set can be seen as

a (v, 0, λ, 0) partial difference set of any finite abelian group of order v, where λ is any integer.

A partial difference set D is called regular if −D = D and 0 /∈ D. A regular (v, k, λ, µ) partial

difference set is called to be of Latin square type if v = N2, k = s(N−1), λ = N+s2−3s, µ =

s2 − s, and a regular (v, k, λ, µ) partial difference set is called to be of negative Latin square

type if v = N2, k = s(N+1), λ = −N+s2+3s, µ = s2+s. We allow s = 0, which corresponds

to the empty set.

There is an important tool to characterize partial difference sets in terms of characters.

Lemma 3 ( [11], [18]). Let G be an abelian group of order v. Suppose that D is a subset of G

with k elements which satisfies −D = D and 0 /∈ D. Then D is a (v, k, λ, µ) partial difference

set if and only if for each non-principal character χ of G,

χ(D) =
β ±
√

∆

2
,

where χ(D) =
∑

x∈D χ(x), β = λ− µ, γ = k − µ,∆ = β2 + 4γ.

Let X be a nonempty finite set. A d-class association scheme on X is a sequence R0, R1, . . . , Rd

of nonempty subsets of X ×X , satisfying

1. R0 = {(x, x) : x ∈ X};

2. X ×X = R0

⋃
R1

⋃
· · ·
⋃
Rd and Ri

⋂
Rj = ∅ for i 6= j;

3. for any i ∈ {0, . . . , d}, there is j such that R>i = Rj , where R>i = {(y, x) : (x, y) ∈ Ri};

4. for all integers k, i, j ∈ {0, 1, . . . , d}, and for all x, y ∈ X such that (x, y) ∈ Rk, the number

pki,j = |{z ∈ X : (x, z) ∈ Ri, (z, y) ∈ Rj}| depends only on k, i, j and not on (x, y).
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The numbers pki,j are called intersection numbers of an association scheme. If for any i ∈

{0, . . . , d}, R>i = Ri, then the association scheme is called symmetric.

A fusion of an association scheme {R0, R1, . . . , Rd} on X is a partition {A0, A1, . . . , At} of

X × X such that A0 = R0 and each Ai (1 ≤ i ≤ t) is the union of some of Rj, 1 ≤ j ≤ d.

An association scheme is called amorphic if its any fusion is again an association scheme.

The following lemma gives a characterization of amorphic association schemes induced from

partitions.

Lemma 4 ( [19], [20]). Let nonempty sets D0 = {0}, D1, . . . , Dd form a partition of a finite

abelian group G, where d ≥ 3. Define Ri, 0 ≤ i ≤ d as

Ri = {(x, y) ∈ G×G : x− y ∈ Di}.

The following two statements are equivalent.

(1) R0, R1, . . . , Rd form an amorphic association scheme.

(2) D1, . . . , Dd are regular partial difference sets, all of which are of Latin square type, or

all of which are of negative Latin square type.

D. Generalized Hadamard matrices

Let ζm = e
2π
√
−1

m be a complex primitive m-th root of unity. A complex matrix H of size n×n

consisting of integer powers of ζm is called a generalized Hadamard matrix if HH
>

= nIn,

where H is the conjugate matrix of H , H
>

is the transpose matrix of H , and In is the identity

matrix of size n× n. When m = 2, H is simply called a Hadamard matrix.

There is a characterization of p-ary bent functions in terms of generalized Hadamard matrices.

Lemma 5 ( [9], [14]). Let f : V
(p)
n → Fp. Define H =

[
ζ
f(x−y)
p

]
x,y∈V (p)

n

. Then f is a p-ary bent

function if and only if H is a generalized Hadamard matrix.

E. Linear codes

For a vector a = (a1, . . . , an) ∈ Fnp , the Hamming weight of a is defined as wt(a) = |{1 ≤

i ≤ n : ai 6= 0}|. For two vectors a, b ∈ Fnp , the Hamming distance between a and b is defined

as d(a, b) = wt(a− b).
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Let C be a p-ary [n, k] linear code, that is, C is a subspace of Fnp with dimension k. The

minimum Hamming distance d of C is defined as d = min{d(a, b) : a, b ∈ C, a 6= b} =

min{wt(c) : c ∈ C, c 6= 0}. The dual code of C is defined by C⊥ = {u ∈ Fnp : u · c =

0 for all c ∈ C}. If the minimum Hamming weight d⊥ of the dual code C⊥ satisfies d⊥ ≥ 3,

then C is called projective. For any 1 ≤ i ≤ n, let Ai denote the number of codewords in C

whose Hamming weight is i. The sequence (1, A1, . . . , An) is called the weight distribution of

C. The code C is called t-weight if |{1 ≤ i ≤ n : Ai 6= 0}| = t.

The following lemma gives a characterization of a two-weight projective p-ary linear code in

terms of a partial difference set.

Lemma 6 ( [11]). Let D̃ = {d1, . . . , dm}, where di, 1 ≤ i ≤ m are pairwise linearly independent

vectors in V (p)
n . Define

CD̃ = {(〈x, d1〉n, . . . , 〈x, dm〉n) : x ∈ V (p)
n }.

Then CD̃ is a two-weight [m,n] projective linear code if and only if D = F∗pD̃ = {ydi : y ∈

F∗p, 1 ≤ i ≤ m} is a regular partial difference set in V
(p)
n . Furthermore, if the two nonzero

weights of CD̃ are w1 and w2, then the parameters of the (v, k, λ, µ) partial difference set D are

v = pn, k = m(p−1), λ = k2+3k−p(k+1)(w1+w2)+p
2w1w2, µ = k2+k−pk(w1+w2)+p

2w1w2.

III. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF AMORPHIC ASSOCIATION SCHEMES

In this section, we give a characterization of vectorial dual-bent functions with Condition A

in terms of amorphic association schemes.

In Theorem 6 of [23], Wang et al. characterized vectorial dual-bent functions F with Condition

A in terms of partial difference sets D∗F,I , where I is an arbitrary nonempty subset of V (p)
m and

DF,I =
⋃
i∈I DF,i. In the following, based on Theorem 6 of [23], we give a characterization of

vectorial dual-bent functions with Condition A in terms of partial difference sets D∗F,i, i ∈ V
(p)
m .

Proposition 3. Let F : V
(p)
n → V

(p)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. The following two

statements are equivalent.

(1) F is a vectorial dual-bent function with Condition A.

(2) For any i ∈ V
(p)
m , D∗F,i is a regular (pn, si(p

n
2 − ε), εp

n
2 + s2i − 3εsi, s

2
i − εsi) partial

difference set, where si = p
n
2
−m + εδF (0)(i), ε ∈ {±1} is a constant with ε = 1 if p 6= 3.
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Proof: If (1) holds, then (2) holds by Theorem 6 of [23] and Proposition 2. In the following,

we prove that if (2) holds, then (1) holds.

By Lemma 3, if (2) holds, then for any u ∈ V
(p)
n and i ∈ V

(p)
m , we have χu(DF,i) =

pn−mδ0(u) + εp
n
2 − εpn2−m or χu(DF,i) = pn−mδ0(u)− εpn2−m. For any u ∈ V (p)

n , let

nu = |{i ∈ V (p)
m : χu(DF,i) = pn−mδ0(u) + εp

n
2 − εp

n
2
−m}|.

Since pnδ0(u) =
∑

x∈V (p)
n
ζ
〈u,x〉n
p = χu(V

(p)
n ) and

χu(V
(p)
n ) =

∑
i∈V (p)

m

χu(DF,i)

= nu(p
n−mδ0(u) + εp

n
2 − εp

n
2
−m) + (pm − nu)(pn−mδ0(u)− εp

n
2
−m)

= pnδ0(u) + εp
n
2 (nu − 1),

we have nu = 1. Therefore, for any nonempty set I ⊆ V
(p)
m and u ∈ V (p)

n ,

χu(DF,I) = pn−mδ0(u)|I|+ εp
n
2 − εp

n
2
−m|I| or χu(DF,I) = pn−mδ0(u)|I| − εp

n
2
−m|I|, (7)

where DF,I =
∑

i∈I DF,i. For any i ∈ V (p)
m , define Ei = {u ∈ V (p)

n : χu(DF,i) = pn−mδ0(u) +

εp
n
2 − εp

n
2
−m}. We claim that Ei

⋂
Ej = ∅ for any i 6= j and

⋃
i∈V (p)

m
Ei = V

(p)
n . If there

exists i 6= j such that Ei
⋂
Ej 6= ∅, then there is u ∈ V (p)

n such that χu(DF,i) = χu(DF,j) =

pn−mδ0(u)+εp
n
2−εpn2−m and χu(DF,i

⋃
DF,j) = 2pn−mδ0(u)+2εp

n
2−2εp

n
2
−m, which contradicts

Eq. (7). Thus, Ei
⋂
Ej = ∅ for any i 6= j. If there is u ∈ V (p)

n such that u /∈ Ei for any i ∈ V (p)
m ,

then χu(DF,i) = pn−mδ0(u) − εp
n
2
−m for any i ∈ V

(p)
m and χu(V

(p)
n ) =

∑
i∈V (p)

m
χu(DF,i) =

pnδ0(u)−εpn2 , which contradicts χu(V
(p)
n ) =

∑
x∈V (p)

n
ζ
〈u,x〉n
p = pnδ0(u). Thus,

⋃
i∈V (p)

m
Ei = V

(p)
n .

By the above arguments, we can obtain

χu(DF,I) = pn−mδ0(u)|I|+ εp
n
2
−m(pmδEI (u)− |I|),

where EI =
∑

i∈I Ei. Then by Lemma 1 of [23], F is a vectorial dual-bent function with

Condition A.

Remark 3. For a vectorial dual-bent function F : V
(p)
n → V

(p)
m with Condition A, by Proposition

3, D∗F,i, i ∈ V
(p)
m are all regular partial difference sets of Latin square type if ε = 1, and

D∗F,i, i ∈ V
(p)
m are all regular partial difference sets of negative Latin square type if ε = −1.

The following corollary is directly from Proposition 3 and Remark 1.
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Corollary 1. Let F : V
(2)
n → V

(2)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. The following two

statements are equivalent.

(1) F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

(2) For any i ∈ V (2)
m , D∗F,i is a regular (2n, si(2

n
2 −1), 2

n
2 +s2i −3si, s

2
i −si) partial difference

set, where si = 2
n
2
−m + δF (0)(i).

Based on Proposition 3 and Lemma 4, we give the following theorem, which characterizes

vectorial dual-bent functions with Condition A in terms of amorphic association schemes.

Theorem 1. Let F : V
(p)
n → V

(p)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. Denote I = F (V

(p)
n

∗
).

Define

Rid = {(x, x) : x ∈ V (p)
n },

Ri = {(x, y) : x, y ∈ V (p)
n , x− y ∈ D∗F,i}, i ∈ I.

The following two statements are equivalent.

(1) F is a vectorial dual-bent function with Condition A.

(2) {Rid, Ri, i ∈ I} is an |I|-class amorphic association scheme for which |I| ≥ 3 and for

any i ∈ I , the intersection number pidi,i = pn−m − εpn2−m + δF (0)(i)(εp
n
2 − 1), where ε ∈ {±1}

is a constant with ε = 1 if p 6= 3.

Furthermore, if (1) or (2) holds, then the following statement holds:

(3) I = V
(p)
m and |I| = pm except one case that p = 3, n = 2m and ε = −1 (in such a case,

I = V
(3)
m \{F (0)} and |I| = 3m − 1).

Proof: If (1) holds, then (2) and (3) follow from Theorem 3 of [3], Proposition 4 of [23]

and Proposition 2. In the following, we prove that if (2) holds, then (1) and (3) hold.

Note that i ∈ I if and only if D∗F,i is nonempty. By Lemma 4, {Rid, Ri, i ∈ I} is an amorphic

association scheme if and only if for any i ∈ I , D∗F,i is a regular (pn, si(p
n
2 − ε′), ε′pn2 + s2i −

3ε′si, s
2
i − ε′si) partial difference set, where si is a positive integer, ε′ ∈ {±1} is a constant.

From |D∗F,i| = pidi,i = pn−m − εpn2−m + δF (0)(i)(εp
n
2 − 1), i ∈ I , we have

si(p
n
2 − ε′) = pn−m − εp

n
2
−m + δF (0)(i)(εp

n
2 − 1), i ∈ I.

Assume that ε′ 6= ε, that is, ε′ = −ε. Let i ∈ I\{F (0)}, then si(p
n
2 + ε) = p

n
2
−m(p

n
2 − ε).

Since gcd(p
n
2 + ε, p

n
2
−m) = 1, then (p

n
2 + ε) | (p

n
2 − ε), which implies that ε = −1 and
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p = 3, n = 2, which contradicts n ≥ 4. Therefore, ε′ = ε and for any i ∈ I , D∗F,i is a regular

(pn, si(p
n
2 − ε), εpn2 + s2i − 3εsi, s

2
i − εsi) partial difference set, where si = p

n
2
−m + εδF (0)(i).

Note that 0 ∈ DF,F (0) and |D∗F,i| = 0 if i ∈ V (p)
m \I .

If DF,F (0) = {0}, then F (0) /∈ I and

pn = |V (p)
n | =

∑
i∈V (p)

m

|DF,i|

=
∑

i∈V (p)
m \{F (0)}

|D∗F,i|+ |DF,F (0)|

=
∑
i∈I

|D∗F,i|+ 1

= p
n
2
−m(p

n
2 − ε)|I|+ 1.

(8)

From Eq. (8), we have p
n
2
−m | (pn−1), which implies that n = 2m. Further, by Eq. (8) and |I| ≤

pm−1 = p
n
2 −1, we obtain ε = −1, |I| = pm−1, I = V

(p)
m \{F (0)}. Note that p = 3 since ε = 1

when p 6= 3. In this case, for any i ∈ V (3)
m , D∗F,i is a regular (3n, si(3

n
2 +1),−3

n
2 +s2i +3si, s

2
i +si)

partial difference set, where si = 1−δF (0)(i). By Proposition 3, F is a vectorial dual-bent function

with Condition A.

If D∗F,F (0) is nonempty, then F (0) ∈ I and

pn = |V (p)
n | =

∑
i∈V (p)

m

|DF,i|

=
∑

i∈V (p)
m \{F (0)}

|D∗F,i|+ |DF,F (0)|

=
∑

i∈I\{F (0)}

|D∗F,i|+ |DF,F (0)|

= p
n
2
−m(p

n
2 − ε)(|I| − 1) + (p

n
2
−m + ε)(p

n
2 − ε) + 1,

which implies that |I| = pm, that is, I = V
(p)
m . Thus for any i ∈ V

(p)
m , D∗F,i is a regular

(pn, si(p
n
2 − ε), εpn2 + s2i − 3εsi, s

2
i − εsi) partial difference set, where si = p

n
2
−m + εδF (0)(i).

By Proposition 3, F is a vectorial dual-bent function with Condition A.

Furthermore, the analysis mentioned above shows that statement (3) holds.

Remark 4. Keep the same notation as in Theorem 1. If F is a vectorial dual-bent function with

Condition A, then by Corollary 1 of [19], the intersection numbers of the amorphic association
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scheme induced from F are given by the following equations:

piid,id = pjid,i = pji,id = pidi,j = 0, piid,i = pii,id = pidid,id = 1, pidi,i = si(p
n
2 − ε),

pii,i = εp
n
2 − 2 + (si − ε)(si − 2ε), pji,i = si(si − ε), pji,j = si(sj − ε), pki,j = sisj,

where i, j, k ∈ F (V
(p)
n

∗
) are distinct, si = p

n
2
−m + εδF (0)(i), ε ∈ {±1} is a constant with ε = 1

if p 6= 3.

The following corollary is directly from Theorem 1 and Remark 1.

Corollary 2. Let F : V
(2)
n → V

(2)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. Define

Rid = {(x, x) : x ∈ V (2)
n },

Ri = {(x, y) : x, y ∈ V (2)
n , x+ y ∈ D∗F,i}, i ∈ V (2)

m .

The following two statements are equivalent.

(1) F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

(2) {Rid, Ri, i ∈ V (2)
m } is a 2m-class amorphic association scheme for which for any i ∈ V (2)

m ,

the intersection number pidi,i = 2n−m − 2
n
2
−m + δF (0)(i)(2

n
2 − 1).

IV. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF LINEAR CODES

In this section, we give a characterization of vectorial dual-bent functions with Condition A

in terms of linear codes.

First, we introduce a notation. For a set D ⊆ V
(p)
n

∗
, let D̃ be a subset of D, denoted by

D̃ = {x1, . . . , xt}, for which xj, 1 ≤ j ≤ t are pairwise linearly independent, and for any

x ∈ D, there exist a ∈ F∗p and xj such that x = axj . Note that when p = 2, D̃ = D.

Theorem 2. Let F : V
(p)
n → V

(p)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. Denote I = F (V

(p)
n

∗
).

Define

CD̃∗F,i
= {cα = (〈α, x〉n)x∈D̃∗F,i

: α ∈ V (p)
n }, i ∈ I.

The following two statements are equivalent.

(1) F is a vectorial dual-bent function with Condition A.
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(2) For any i ∈ I , CD̃∗F,i is a two-weight [
pn−m−εp

n
2−m+δF (0)(i)(εp

n
2 −1)

p−1 , n] projective linear code

and the two nonzero weights are

w1 = pn−m−1 +
1− ε+ 2εδF (0)(i)

2
p
n
2
−1,

w2 = pn−m−1 +
−1− ε+ 2εδF (0)(i)

2
p
n
2
−1,

where ε ∈ {±1} is a constant with ε = 1 if p 6= 3.

Furthermore, if (1) or (2) holds, then the following statement holds:

(3) I = V
(p)
m except one case that p = 3, n = 2m and ε = −1 (in such a case, I =

V
(3)
m \{F (0)}).

Proof: (1) ⇒ (2): If (1) holds, then (3) holds by Proposition 4 of [23] and Proposition 2.

Since F is a vectorial dual-bent function with Condition A, by the proof of Theorem 1 of [23], we

have F (ax) = F (x), a ∈ F∗p, which implies that D∗F,i = F∗pD̃∗F,i, i ∈ I . For any i ∈ I , by Proposi-

tion 3, we have that D∗F,i is a regular (pn, si(p
n
2−ε), εpn2 +s2i−3εsi, s

2
i−εsi) partial difference set,

where si = p
n
2
−m+εδF (0)(i), ε ∈ {±1} is a constant with ε = 1 if p 6= 3. By Lemma 6, CD̃∗F,i is

a two-weight projective linear code with parameters [
pn−m−εp

n
2−m+δF (0)(i)(εp

n
2 −1)

p−1 , n] and the two

nonzero weights are w1 = pn−m−1 +
1−ε+2εδF (0)(i)

2
p
n
2
−1, w2 = pn−m−1 +

−1−ε+2εδF (0)(i)

2
p
n
2
−1.

(2) ⇒ (1): If (2) holds, then by Lemma 6, for any i ∈ I , F∗pD̃∗F,i is a regular (pn, si(p
n
2 −

ε), εp
n
2 + s2i − 3εsi, s

2
i − εsi) partial difference set, where si = p

n
2
−m + εδF (0)(i). Note that for

any i ∈ I , D∗F,i ⊆ F∗pD̃∗F,i and |D∗F,i| ≤ |F∗pD̃∗F,i| = si(p
n
2 − ε). Then

pn − 1 =
∑
i∈I

|D∗F,i| ≤
∑
i∈I

|F∗pD̃∗F,i| =
∑
i∈I

si(p
n
2 − ε) = (p

n
2 − ε)

∑
i∈I

p
n
2
−m + εδF (0)(i),

which yields that

|I|p
n
2
−m + εδI(F (0)) ≥ p

n
2 + ε. (9)

If F (0) /∈ I , then DF,F (0) = {0} and by Inequality (9), |I|pn2−m ≥ p
n
2 + ε. By |I| ≤ pm − 1,

we obtain ε = −1, n = 2m, |I| = pm − 1, I = V
(p)
m \{F (0)}. Note that p = 3 since ε = 1

when p 6= 3. In this case,
∑

i∈V (3)
m \{F (0)} |D

∗
F,i| =

∑
i∈V (3)

m \{F (0)} |F
∗
3D̃
∗
F,i|, which implies that for

any i ∈ V
(3)
m \{F (0)}, we have D∗F,i = F∗3D̃∗F,i. Therefore, for any i ∈ V

(3)
m , D∗F,i is a regular

(3n, si(3
n
2 + 1),−3

n
2 + s2i + 3si, s

2
i + si) partial difference set, where si = 1 − δF (0)(i). By

Proposition 3, F is a vectorial dual-bent function with Condition A.
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If F (0) ∈ I , then D∗F,F (0) is nonempty and by Inequality (9), |I|pn2−m + ε ≥ p
n
2 + ε, that

is, |I| ≥ pm. By |I| ≤ pm, we have |I| = pm, I = V
(p)
m . In this case,

∑
i∈V (p)

m
|D∗F,i| =∑

i∈V (p)
m
|F∗pD̃∗F,i|, which implies that for any i ∈ V (p)

m , we have D∗F,i = F∗pD̃∗F,i. Therefore, for

any i ∈ V
(p)
m , D∗F,i is a regular (pn, si(p

n
2 − ε), εp

n
2 + s2i − 3εsi, s

2
i − εsi) partial difference

set, where si = p
n
2
−m + εδF (0)(i). By Proposition 3, F is a vectorial dual-bent function with

Condition A.

Furthermore, the analysis mentioned above shows that statement (3) holds.

The following corollary is directly from Theorem 2 and Remark 1.

Corollary 3. Let F : V
(2)
n → V

(2)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. Define

CD∗F,i = {cα = (〈α, x〉n)x∈D∗F,i : α ∈ V (2)
n }, i ∈ V (2)

m .

The following two statements are equivalent.

(1) F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

(2) For any i ∈ V (2)
m , CD∗F,i is a two-weight [2n−m − 2

n
2
−m + δF (0)(i)(2

n
2 − 1), n] projective

linear code and the two nonzero weights are w1 = 2n−m−1, w2 = 2n−m−1 − 2
n
2
−1 + δF (0)(i)2

n
2 .

V. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF GENERALIZED HADAMRAD MATRICES

In this section, we give a characterization of vectorial dual-bent functions with Condition A

in terms of generalized Hadamard matrices.

Since the case of p being odd is more complicated, we first consider the case of p = 2.

Theorem 3. Let F : V
(2)
n → V

(2)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. For any c ∈ V (2)

m

∗
,

define

Hc =
[
(−1)Fc(x+y)

]
x,y∈V (2)

n
,

where Fc(x) = 〈c, F (x)〉m. The following two statements are equivalent.

(1) F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

(2) Hc, c ∈ V (2)
m

∗
are all Hadamard matrices and for any c 6= d ∈ V (2)

m

∗
, HcHd = 2

n
2Hc+d.

Proof: (1) ⇒ (2): Since F is a vectorial bent function, that is, Fc, c ∈ V (2)
m

∗
are all Boolean

bent functions, by Lemma 5 we have that Hc, c ∈ V (2)
m

∗
are all Hadamard matrices. For a matrix
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M = [ai,j], denote ai,j by (M)i,j . For any c 6= d ∈ V (2)
m

∗
and i, j ∈ V (2)

n , since F is vectorial

bent, we have

(HcHd)i,j =
∑
u∈V (2)

n

(−1)Fc(u+i)+Fd(u+j)

= 2−2n
∑
u∈V (2)

n

∑
x∈V (2)

n

WFc(x)(−1)〈u+i,x〉n
∑
y∈V (2)

n

WFd(y)(−1)〈u+j,y〉n

= 2−n
∑
u∈V (2)

n

∑
x,y∈V (2)

n

(−1)(Fc)
∗(x)+(Fd)

∗(y)+〈u+i,x〉n+〈u+j,y〉n

= 2−n
∑

x,y∈V (2)
n

(−1)(Fc)
∗(x)+(Fd)

∗(y)+〈i,x〉n+〈j,y〉n
∑
u∈V (2)

n

(−1)〈u,x+y〉n

=
∑
x∈V (2)

n

(−1)(Fc)
∗(x)+(Fd)

∗(x)+〈i+j,x〉n

= W(Fc)∗+(Fd)∗(i+ j).

(10)

Since F is vectorial dual-bent with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
, we have (Fc)

∗ + (Fd)
∗ = (F ∗)c +

(F ∗)d = (F ∗)c+d = (Fc+d)
∗. Thus by Eq. (5) and Eq. (10) we obtain

(HcHd)i,j = W(Fc+d)∗(i+ j) = 2
n
2 (−1)Fc+d(i+j) = 2

n
2 (Hc+d)i,j,

which implies that HcHd = 2
n
2Hc+d.

(2) ⇒ (1): Since Hc, c ∈ V (2)
m

∗
are all Hadamard matrices, by Lemma 5 we have that Fc, c ∈

V
(2)
m

∗
are all Boolean bent functions, that is, F is vectorial bent. For any c 6= d ∈ V

(2)
m

∗
and

i, j ∈ V (2)
n , from Eq. (10) and HcHd = 2

n
2Hc+d, we have

W(Fc)∗+(Fd)∗(i+ j) = 2
n
2 (−1)Fc+d(i+j). (11)

By Eq. (11), for any c 6= d ∈ V (2)
m

∗
, we have that (Fc)

∗ + (Fd)
∗ is a Boolean bent function and

((Fc)
∗ + (Fd)

∗)∗ = Fc+d, which implies that

(Fc)
∗ + (Fd)

∗ = (Fc+d)
∗. (12)

Let {α1, . . . , αm} be an arbitrary fixed basis of V (2)
m . For any x ∈ V (2)

n , let G(x) ∈ V (2)
m be given

by the following equation system

September 23, 2023 DRAFT



18



〈α1, G(x)〉m = (Fα1)
∗(x),

〈α2, G(x)〉m = (Fα2)
∗(x),

...

〈αm, G(x)〉m = (Fαm)∗(x).

Then G is a function from V
(2)
n to V (2)

m satisfying Gαi = (Fαi)
∗, 1 ≤ i ≤ m. For any c ∈ V (2)

m

∗
,

denote c by c = αi1 + · · ·+ αit . Then

Gc(x) = 〈c,G(x)〉m

= 〈αi1 , G(x)〉m + · · ·+ 〈αit , G(x)〉m

= Gαi1
(x) + · · ·+Gαit

(x)

= (Fαi1 )∗(x) + · · ·+ (Fαit )
∗(x).

(13)

Combine Eq. (12) and Eq. (13), we obtain

Gc(x) = (Fαi1+···+αit )
∗(x) = (Fc)

∗(x).

For any c ∈ V
(2)
m

∗
, since Gc = (Fc)

∗ is a Boolean bent function, we have that G is vectorial

bent. Therefore, F is vectorial dual-bent with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
, where F ∗ = G.

Below we give an example to illustrate Theorem 3.

Example 1. Let F : F26 × F26 → F22 be defined by

F (x1, x2) = Tr62(x1x
58
2 ).

Then by Proposition 3 of [23], F is a vectorial dual-bent function with Condition A. For any

c ∈ F∗22 , define

Hc =
[
(−1)Tr

6
1(c(x1+y1)(x2+y2)

58)
]
(x1,x2),(y1,y2)∈F26×F26

.

Then by Theorem 3, Hc, c ∈ F∗22 are all Hadamard matrices and HcHd = 64Hc+d for any

c 6= d ∈ F∗22 .

In the following, we consider the case of p being odd. First, we need a lemma.

For an odd prime p, define U (1)
p = {ζ ip : 0 ≤ i ≤ p− 1} and U (−1)

p = {−ζ ip : 0 ≤ i ≤ p− 1}.
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Lemma 7. Let p be an odd prime. Let F : V
(p)
n → V

(p)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
.

For any c ∈ V (p)
m

∗
and z ∈ V (p)

n , define

H(z)
c =

[
ζFc(x−y)−〈z,x−y〉np

]
x,y∈V (p)

n
, (14)

where Fc(x) = 〈c, F (x)〉m. The following two statements are equivalent.

(1) F is a vectorial bent function with all component functions Fc, c ∈ V (p)
m

∗
being regular or

weakly regular but not regular, that is, εFc = ε for all c ∈ V (p)
m

∗
, where ε ∈ {±1} is a constant.

(2) H(z)
c , c ∈ V (p)

m

∗
, z ∈ V (p)

n are all generalized Hadamard matrices for which there exists a

constant ε ∈ {±1} such that

p−
n
2

∑
i∈V (p)

n

(H(z)
c )i,0 ∈ U (ε)

p for all c ∈ V (p)
m

∗
, z ∈ V (p)

n , (15)

where for a matrix M = [ai,j], denote ai,j by (M)i,j .

Proof: (1) ⇒ (2): Since F is a vectorial bent function, Fc, c ∈ V (p)
m

∗
are all bent functions.

Further, Fc(x) − 〈z, x〉n is bent for any c ∈ V
(p)
m

∗
and z ∈ V

(p)
n since WFc(x)−〈z,x〉n(a) =

WFc(z + a), a ∈ V (p)
n . By Lemma 5, we have that H(z)

c , c ∈ V (p)
m

∗
, z ∈ V (p)

n are all generalized

Hadamard matrices. For any c ∈ V (p)
m

∗
and z ∈ V (p)

n , we have

p−
n
2

∑
i∈V (p)

n

(H(z)
c )i,0 = p−

n
2

∑
i∈V (p)

n

ζFc(i)−〈z,i〉np = p−
n
2WFc(z). (16)

Since F is vectorial bent with εFc = ε, c ∈ V (p)
m

∗
, by Eq. (16) we have that Eq. (15) holds.

(2)⇒ (1): Since H(0)
c , c ∈ V (p)

m

∗
are all generalized Hadamard matrices, by Lemma 5 we have

that Fc, c ∈ V (p)
m

∗
are all bent functions, then F is vectorial bent. By Eq. (15) and Eq. (16), we

have that for any c ∈ V (p)
m

∗
, the component function Fc is weakly regular with εFc = ε.

Based on Lemma 7, with a similar proof as Theorem 3, we give the following theorem,

which provides a characterization of vectorial dual-bent functions with Condition A in terms of

generalized Hadamard matrices when p is an odd prime.

Theorem 4. Let p be an odd prime. Let F : V
(p)
n → V

(p)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
.

Let matrices H(z)
c , c ∈ V (p)

m

∗
, z ∈ V (p)

n be defined by Eq. (14). For simplicity, denote H(0)
c by Hc.

The following two statements are equivalent.

(1) F is a vectorial dual-bent function with Condition A.
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(2) H(z)
c , c ∈ V (p)

m

∗
, z ∈ V (p)

n are all generalized Hadamard matrices for which there exists a

constant ε ∈ {±1} with ε = 1 if p 6= 3 such that Eq. (15) holds and HcHd
>

= εp
n
2Hc−d for

any c 6= d ∈ V (p)
m

∗
.

Proof: (1)⇒ (2): Since F is a vectorial dual-bent function with Condition A, by Proposition

2, we have that for any c ∈ V (p)
m

∗
, Fc is weakly regular bent with εFc = ε, where ε ∈ {±1} is

a constant with ε = 1 if p 6= 3. By Lemma 7, we have that H(z)
c , c ∈ V

(p)
m

∗
, z ∈ V

(p)
n are all

generalized Hadamard matrices and Eq. (15) holds. For any c 6= d ∈ V (p)
m

∗
and i, j ∈ V (p)

n , since

F is vectorial bent with εFc = ε, c ∈ V (p)
m

∗
, we have

(HcHd
>

)i,j =
∑
u∈V (p)

n

ζFc(i−u)−Fd(j−u)p

= p−2n
∑
u∈V (p)

n

∑
x∈V (p)

n

WFc(x)ζ〈i−u,x〉np

∑
y∈V (p)

n

WFd(y)ζ−〈j−u,y〉np

= p−n
∑
u∈V (p)

n

∑
x∈V (p)

n

εζ(Fc)
∗(x)+〈i−u,x〉n

p

∑
y∈V (p)

n

εζ−(Fd)
∗(y)−〈j−u,y〉n

p

= p−n
∑

x,y∈V (p)
n

ζ(Fc)
∗(x)−(Fd)∗(y)+〈i,x〉n−〈j,y〉n

p

∑
u∈V (p)

n

ζ〈u,y−x〉np

=
∑
x∈V (p)

n

ζ(Fc)
∗(x)−(Fd)∗(x)+〈i−j,x〉n

p

= W(Fc)∗−(Fd)∗(j − i).

(17)

Since F is vectorial dual-bent with (Fc)
∗ = (F ∗)c, c ∈ V (p)

m

∗
, for any c 6= d ∈ V (p)

m

∗
we have

(Fc)
∗ − (Fd)

∗ = (F ∗)c − (F ∗)d = (F ∗)c−d = (Fc−d)
∗. Hence by Eq. (5) and Eq. (17) we have

(HcHd
>

)i,j = W(Fc−d)∗(j − i) = εp
n
2 ζFc−d(i−j)p = εp

n
2 (Hc−d)i,j,

which implies that HcHd
>

= εp
n
2Hc−d.

(2) ⇒ (1): Since H(z)
c , c ∈ V (p)

m

∗
, z ∈ V (p)

n are all generalized Hadamard matrices and there is

a constant ε ∈ {±1} such that Eq. (15) holds, by Lemma 7 we have that F is a vectorial bent

function for which for any c ∈ V (p)
m

∗
, Fc is weakly regular with εFc = ε. For any c 6= d ∈ V (p)

m

∗

and i, j ∈ V (p)
n , by Eq. (17) and HcHd

>
= εp

n
2Hc−d, we have

W(Fc)∗−(Fd)∗(j − i) = εp
n
2 ζFc−d(i−j)p . (18)
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By Eq. (18), for any c 6= d ∈ V (p)
m

∗
, we have that (Fc)

∗− (Fd)
∗ is a weakly regular bent function

with ε(Fc)∗−(Fd)∗ = ε and ((Fc)
∗ − (Fd)

∗)∗(x) = Fc−d(−x), which implies that

(Fc)
∗ − (Fd)

∗ = (Fc−d)
∗. (19)

Since Eq. (19) holds for all c 6= d ∈ V (p)
m

∗
, for any c, d ∈ V (p)

m

∗
with c+ d 6= 0, we have

(Fc)
∗ + (Fd)

∗ = (Fc+d)
∗. (20)

Let {α1, . . . , αm} be an arbitrary fixed basis of V (p)
m . For any x ∈ V (p)

n , let G(x) ∈ V (p)
m be given

by the following equation system

〈α1, G(x)〉m = (Fα1)
∗(x),

〈α2, G(x)〉m = (Fα2)
∗(x),

...

〈αm, G(x)〉m = (Fαm)∗(x).

Then G is a function from V
(p)
n to V (p)

m satisfying Gαi = (Fαi)
∗, 1 ≤ i ≤ m. For any c ∈ V (p)

m

∗
,

denote c by c = ai1αi1 + · · ·+ aitαit , where aij ∈ F∗p, 1 ≤ j ≤ t. Then by Eq. (20) we have

Gc(x) = 〈c,G(x)〉m

= ai1〈αi1 , G(x)〉m + · · ·+ ait〈αit , G(x)〉m

= ai1Gαi1
(x) + · · ·+ aitGαit

(x)

= ai1(Fαi1 )∗(x) + · · ·+ ait(Fαit )
∗(x)

= (Fai1αi1 )∗(x) + · · ·+ (Faitαit )
∗(x)

= (Fai1αi1+···+aitαit )
∗(x)

= (Fc)
∗(x).

For any c ∈ V (p)
m

∗
, since Gc = (Fc)

∗ is bent, we have that G is vectorial bent. Therefore, F is

vectorial dual-bent with (Fc)
∗ = (F ∗)c, c ∈ V (p)

m

∗
, where F ∗ = G.

Below we give an example to illustrate Theorem 4.

Example 2. Let F : F36 × F36 → F32 be defined by

F (x1, x2) = Tr62(x1x
717
2 ).
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Then by Proposition 3 of [23], F is a vectorial dual-bent function with Condition A and the

corresponding ε = 1. For any c ∈ F∗32 , z = (z1, z2) ∈ F36 × F36 , define

H(z)
c =

[
ζ
Tr61(c(x1−y1)(x2−y2)717)−Tr61(z1(x1−y1)+z2(x2−y2))
3

]
(x1,x2),(y1,y2)∈F36×F36

.

Denote H(0)
c by Hc. Then by Theorem 4, H(z)

c , c ∈ F∗32 , z = (z1, z2) ∈ F36×F36 are all generalized

Hadamard matrices for which

729−1
∑

i∈F36×F36

(H(z)
c )i,(0,0) ∈ {1, ζ3, ζ23} for all c ∈ F∗32 , z = (z1, z2) ∈ F36 × F36 ,

and HcHd
>

= 729Hc−d for any c 6= d ∈ F∗32 .

VI. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF BENT PARTITIONS WHEN p = 2

When p is an odd prime, a characterization of vectorial dual-bent functions with Condition A

in terms of bent partitions has been given in [23], see Lemma 2. In this section, when p = 2,

we give a characterization of vectorial dual-bent functions with Condition A in terms of bent

partitions. First, we give a lemma, which characterizes bent partitions of V (2)
n of depth 2m in

terms of vectorial bent functions.

Lemma 8. Let Γ = {Ai, i ∈ V (2)
m } be a partition of V (2)

n , where n ≥ 4 is even, 2 ≤ m ≤ n
2
.

Define F : V
(2)
n → V

(2)
m as

F (x) =
∑
i∈V (2)

m

δAi(x)i.

The following two statements are equivalent.

(1) Γ is a bent partition.

(2) F is a vectorial bent function for which there exists a function G : V
(2)
n → V

(2)
m and a set

S ⊆ V
(2)
n such that

(Fc)
∗(x) = Gc(x) + δS(x), c ∈ V (2)

m

∗
, x ∈ V (2)

n .

Proof: (1) ⇒ (2): By the result in [9], for any Boolean bent function f : V
(2)
n → F2 and

u ∈ V (2)
n , j ∈ F2, we have

χu(Df,j) =

 2n−1δ0(u) + 2
n
2
−1, if f ∗(u) = j,

2n−1δ0(u)− 2
n
2
−1, if f ∗(u) = j + 1.

(21)
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By Eq. (21) and the definition of bent partitions, we have that for any fixed u ∈ V (2)
n ,

χu(DF,i) = χu(Ai) =

 2n−mδ0(u)− 2
n
2
−m, if i ∈ V (2)

m \{G(u)},

2n−mδ0(u)− 2
n
2
−m + 2

n
2 , if i = G(u),

(22)

or

χu(DF,i) = χu(Ai) =

 2n−mδ0(u) + 2
n
2
−m, if i ∈ V (2)

m \{G(u)},

2n−mδ0(u) + 2
n
2
−m − 2

n
2 , if i = G(u),

(23)

where G is some function from V
(2)
n to V (2)

m . Let

S = {u ∈ V (2)
n : χu(DF,i), i ∈ V (2)

m satisfy Eq. (23)}.

Then for any c ∈ V (2)
m

∗
and u ∈ V (2)

n we obtain

WFc(u) =
∑
x∈V (2)

n

(−1)〈c,F (x)〉m+〈u,x〉n

=
∑
i∈V (2)

m

∑
x∈V (2)

n :F (x)=i

(−1)〈c,F (x)〉m+〈u,x〉n

=
∑
i∈V (2)

m

(−1)〈c,i〉m
∑

x∈V (2)
n :F (x)=i

(−1)〈u,x〉n

=
∑
i∈V (2)

m

(−1)〈c,i〉mχu(DF,i)

=



∑
i∈V (2)

m

(−1)〈c,i〉m(2n−mδ0(u) + 2
n
2
−m − 2

n
2 δG(u)(i)), if u ∈ S,

∑
i∈V (2)

m

(−1)〈c,i〉m(2n−mδ0(u)− 2
n
2
−m + 2

n
2 δG(u)(i)), if u /∈ S,

=


(2n−mδ0(u) + 2

n
2
−m)

∑
i∈V (2)

m

(−1)〈c,i〉m − 2
n
2 (−1)〈c,G(u)〉m , if u ∈ S,

(2n−mδ0(u)− 2
n
2
−m)

∑
i∈V (2)

m

(−1)〈c,i〉m + 2
n
2 (−1)〈c,G(u)〉m , if u /∈ S,

=

2
n
2 (−1)1+〈c,G(u)〉m , if u ∈ S,

2
n
2 (−1)〈c,G(u)〉m , if u /∈ S,

which implies that F is a vectorial bent function with (Fc)
∗(x) = Gc(x) + δS(x), c ∈ V (2)

m

∗
, x ∈

V
(2)
n .
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(2) ⇒ (1): With the same argument as in the proof of Proposition 3 of [21], for any u ∈

V
(2)
n , i ∈ V (2)

m we have

χu(DF,i) = 2n−mδ0(u) + 2−m
∑

c∈V (2)
m

∗

WFc(u)(−1)〈c,i〉m . (24)

Since F is a vectorial bent function with (Fc)
∗(x) = Gc(x) + δS(x), c ∈ V (2)

m

∗
, by Eq. (24) we

have

χu(Ai) = χu(DF,i)

= 2n−mδ0(u) + 2
n
2
−m

∑
c∈V (2)

m

∗

(−1)(Fc)
∗(u)+〈c,i〉m

= 2n−mδ0(u) + 2
n
2
−m

∑
c∈V (2)

m

∗

(−1)Gc(u)+δS(u)+〈c,i〉m

= 2n−mδ0(u) + (−1)δS(u)2
n
2
−m

∑
c∈V (2)

m

∗

(−1)〈c,G(u)+i〉m

= 2n−mδ0(u) + (−1)δS(u)2
n
2
−m(2mδG(u)(i)− 1).

(25)

For any union D of 2m−1 sets of {Ai, i ∈ V (2)
m }, we have

χu(D) =

 2n−1δ0(u) + (−1)δS(u)2
n
2
−1, if AG(u) ⊆ D,

2n−1δ0(u)− (−1)δS(u)2
n
2
−1, if AG(u) * D.

(26)

Let f : V
(2)
n → F2 be a function for which for each j ∈ F2, there are exactly 2m−1 sets Ai in Γ

in its preimage set. By Eq. (26), for any u ∈ V (2)
n we have

χu(Df,j) =

 2n−1δ0(u) + (−1)δS(u)2
n
2
−1, if j = g(u),

2n−1δ0(u)− (−1)δS(u)2
n
2
−1, if j = g(u) + 1,

where g(u) = f(AG(u)). Then we obtain

Wf (u) =
∑
x∈V (2)

n

(−1)f(x)+〈u,x〉n

=
∑
j∈F2

∑
x∈V (2)

n :f(x)=j

(−1)f(x)+〈u,x〉n

=
∑
j∈F2

(−1)j
∑

x∈V (2)
n :f(x)=j

(−1)〈u,x〉n

=
∑
j∈F2

(−1)jχu(Df,j)
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= (2n−1δ0(u) + (−1)δS(u)2
n
2
−1)(−1)g(u) + (2n−1δ0(u)− (−1)δS(u)2

n
2
−1)(−1)g(u)+1

= 2
n
2 (−1)g(u)+δS(u),

which implies that f is a Boolean bent function, and thus Γ is a bent partition.

The following theorem gives a characterization of vectorial dual-bent functions F : V
(2)
n →

V
(2)
m with Condition A in terms of bent partitions.

Theorem 5. Let F : V
(2)
n → V

(2)
m , where n ≥ 4 is even and 2 ≤ m ≤ n

2
. The following two

statements are equivalent.

(1) F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
.

(2) Γ = {DF,i, i ∈ V
(2)
m } is a bent partition of V (2)

n with χu(DF,i) ∈ {−2
n
2
−m,−2

n
2
−m +

2
n
2 }, u ∈ V (2)

n

∗
, i ∈ V (2)

m .

Proof: By the proof of Lemma 8, F is a vectorial dual-bent function with (Fc)
∗ = (F ∗)c, c ∈

V
(2)
m

∗
if and only if Γ = {DF,i, i ∈ V

(2)
m } is a bent partition with χu(DF,i) ∈ {2n−mδ0(u) −

2
n
2
−m, 2n−mδ0(u) − 2

n
2
−m + 2

n
2 }, u ∈ V

(2)
n , i ∈ V

(2)
m . In the following, we only need to show

that when Γ = {DF,i, i ∈ V (2)
m } is a bent partition and χu(DF,i) ∈ {−2

n
2
−m,−2

n
2
−m + 2

n
2 }, u ∈

V
(2)
n

∗
, i ∈ V (2)

m , then χ0(DF,i) = |DF,i| ∈ {2n−m − 2
n
2
−m, 2n−m − 2

n
2
−m + 2

n
2 }, i ∈ V (2)

m .

For any i ∈ V (2)
m , let bi = |{u ∈ V (2)

n

∗
: χu(DF,i) = −2

n
2
−m + 2

n
2 }|. Assume that there is i

such that |DF,i| /∈ {2n−m − 2
n
2
−m, 2n−m − 2

n
2
−m + 2

n
2 }. Then by Lemma 1, there exists i0 such

that |DF,i0| = 2n−m + 2
n
2
−m− 2

n
2 , |DF,i| = 2n−m + 2

n
2
−m, i 6= i0. Let j ∈ V (2)

m with j 6= F (0), i0.

Then 0 /∈ DF,j and |DF,j| = 2n−m + 2
n
2
−m. Since∑

u∈V (2)
n

χu(DF,j) =
∑
u∈V (2)

n

∑
x∈DF,j

(−1)〈u,x〉n =
∑

x∈DF,j

∑
u∈V (2)

n

(−1)〈u,x〉n = 2nδDF,j(0) = 0,

and ∑
u∈V (2)

n

χu(DF,j) = |DF,j|+ (−2
n
2
−m + 2

n
2 )bj − 2

n
2
−m(2n − 1− bj)

= 2
n
2
−m(2

n
2 − 2n + 2 + 2mbj),

we have

2n = 2
n
2 + 2mbj + 2. (27)

Note that bj 6= 0 by n ≥ 4. Since m ≤ n
2
, we have 2m | 2n, 2m | 2n

2 , 2m | 2mbj . Thus by Eq. (27),

2m | 2, which contradicts m ≥ 2. Therefore, |DF,i| ∈ {2n−m−2
n
2
−m, 2n−m−2

n
2
−m+2

n
2 }, i ∈ V (2)

m .
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Below we give an example to illustrate Theorem 5.

Example 3. Let F : F26 × F26 × F24 × F24 → F22 be defined by

F (x1, x2, x3, x4) = (Tr42(x3x
14
4 ))3Tr62(x

52
1 x2 − x1x582 ) + Tr62(x1x

58
2 ) + Tr42(αx3x

14
4 ),

where α is a primitive element of F24 . By Theorem 5 of [23], F is a vectorial dual-bent

function with Condition A. By Theorem 5, {DF,i, i ∈ F22} is a bent partition with χu(DF,i) ∈

{−256, 768}, u ∈ (F26 × F26 × F24 × F24)
∗, i ∈ F22 .

VII. NEW CHARACTERIZATIONS OF CERTAIN BENT PARTITIONS

In this section, we give some new characterizations of bent partitions with Condition C when p

is an odd prime, and bent partitions with condition given in Theorem 5 when p = 2, respectively.

Theorem 6. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p)
m } be a partition of V (p)

n , where n ≥ 4

is even and 2 ≤ m ≤ n
2
. Denote 0 ∈ Ai0 and I = {

∑
i∈V (p)

m
δAi(x)i : x ∈ V (p)

n

∗
}. The following

statements are pairwise equivalent.

(1) Γ is a bent partition with Condition C.

(2) For any i ∈ V (p)
m , A∗i is a regular (pn, si(p

n
2 −ε), εpn2 +s2i−3εsi, s

2
i−εsi) partial difference

set, where si = p
n
2
−m + εδi0(i), ε ∈ {±1} is a constant with ε = 1 if p 6= 3.

(3) Let

Rid = {(x, x) : x ∈ V (p)
n },

Ri = {(x, y) : x, y ∈ V (p)
n , x− y ∈ A∗i }, i ∈ I.

Then {Rid, Ri, i ∈ I} is an |I|-class amorphic association scheme for which |I| ≥ 3 and for

any i ∈ I , the intersection number pidi,i = pn−m − εpn2−m + δi0(i)(εp
n
2 − 1), where ε ∈ {±1} is

a constant with ε = 1 if p 6= 3.

(4) Let

CÃ∗i
= {cα = (〈α, x〉n)x∈Ã∗i

: α ∈ V (p)
n }, i ∈ I,

where Ã∗i is a subset of A∗i for which any two elements in Ã∗i are linearly independent and

for any x ∈ A∗i , there exist a ∈ F∗p, x′ ∈ Ã∗i such that x = ax′. Then for any i ∈ I , CÃ∗i is a
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two-weight [
pn−m−εp

n
2−m+δi0 (i)(εp

n
2 −1)

p−1 , n] projective linear code and the two nonzero weights are

w1 = pn−m−1 +
1− ε+ 2εδi0(i)

2
p
n
2
−1,

w2 = pn−m−1 +
−1− ε+ 2εδi0(i)

2
p
n
2
−1,

where ε ∈ {±1} is a constant with ε = 1 if p 6= 3.

(5) Let

H(z)
c =

[
ζ
〈c,

∑
i∈V (p)

m
δAi (x−y)i〉m−〈z,x−y〉n

p

]
x,y∈V (p)

n

, c ∈ V (p)
m

∗
, z ∈ V (p)

n ,

and Hc = H
(0)
c . Then H

(z)
c , c ∈ V

(p)
m

∗
, z ∈ V

(p)
n are all generalized Hadamard matrices for

which there exists a constant ε ∈ {±1} with ε = 1 if p 6= 3 such that Eq. (15) holds and

HcHd
>

= εp
n
2Hc−d for any c 6= d ∈ V (p)

m

∗
.

Furthermore, if any one of the above statements holds, then I = V
(p)
m and |I| = pm except

one case that p = 3, n = 2m and ε = −1 (in such a case, I = V
(3)
m \{i0} and |I| = 3m − 1).

Proof: By Lemma 2, statement (1) holds if and only if F : V
(p)
n → V

(p)
m is a vectorial

dual-bent function with Condition A, where

F (x) =
∑
i∈V (p)

m

δAi(x)i.

Then the result follows from Proposition 3 and Theorems 1, 2, 4.

Theorem 7. Let Γ = {Ai, i ∈ V (2)
m } be a partition of V (2)

n , where n ≥ 4 is even and 2 ≤ m ≤ n
2
.

Denote 0 ∈ Ai0 . The following statements are pairwise equivalent.

(1) Γ is a bent partition with χu(Ai) ∈ {−2
n
2
−m,−2

n
2
−m + 2

n
2 }, u ∈ V (2)

n

∗
, i ∈ V (2)

m .

(2) For any i ∈ V (2)
m , A∗i is a regular (2n, si(2

n
2 − 1), 2

n
2 + s2i − 3si, s

2
i − si) partial difference

set, where si = 2
n
2
−m + δi0(i).

(3) Let

Rid = {(x, x) : x ∈ V (2)
n },

Ri = {(x, y) : x, y ∈ V (2)
n , x+ y ∈ A∗i }, i ∈ V (2)

m .

Then {Rid, Ri, i ∈ V (2)
m } is a 2m-class amorphic association scheme for which for any i ∈ V (2)

m ,

the intersection number pidi,i = 2n−m − 2
n
2
−m + δi0(i)(2

n
2 − 1).

(4) Let

CA∗i = {cα = (〈α, x〉n)x∈A∗i : α ∈ V (2)
n }, i ∈ V (2)

m .
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Then for any i ∈ V (2)
m , CA∗i is a two-weight [2n−m − 2

n
2
−m + δi0(i)(2

n
2 − 1), n] projective linear

code and the two nonzero weights are

w1 = 2n−m−1,

w2 = 2n−m−1 − 2
n
2
−1 + δi0(i)2

n
2 .

(5) Let

Hc =
[
(−1)

〈c,
∑
i∈V (2)

m
δAi (x+y)i〉m

]
x,y∈V (2)

n

, c ∈ V (2)
m

∗
.

Then Hc, c ∈ V (2)
m

∗
are all Hadamard matrices and HcHd = 2

n
2Hc+d for any c 6= d ∈ V (2)

m

∗
.

Proof: By Theorem 5, statement (1) holds if and only if F : V
(2)
n → V

(2)
m is a vectorial

dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V (2)

m

∗
, where

F (x) =
∑
i∈V (2)

m

δAi(x)i.

Then the result follows from Corollaries 1, 2, 3 and Theorem 3.

Remark 5. As far as we know, the known bent partitions Γ of V (2)
n of depth 2m with m ≥ 2

given in [2], [12], [23] all satisfy the statement (1) of Theorem 7.

VIII. ASSOCIATION SCHEMES FROM GENERAL VECTORIAL DUAL-BENT FUNCTIONS WITH

F (0) = 0, F (x) = F (−x) AND 2 ≤ m ≤ n
2

In [3], Anbar et al. showed that vectorial dual-bent functions F : V
(p)
n → V

(p)
m with F (0) = 0

and all component functions Fc, c ∈ V
(p)
m

∗
being regular or weakly regular but not regular

(that is, εFc , c ∈ V
(p)
m

∗
are all the same) can induce association schemes. Note that for such

vectorial dual-bent functions, n must be even and m ≤ n
2
. In this section, we give a necessary

and sufficient condition on constructing association schemes from general vectorial dual-bent

functions F : V
(p)
n → V

(p)
m with F (0) = 0, F (x) = F (−x) and 2 ≤ m ≤ n

2
. Note that the known

vectorial dual-bent functions F all satisfy F (x) = F (−x). Based on our result, more association

schemes can be yielded from some vectorial dual-bent functions F : V
(p)
n → V

(p)
m for which n

can be odd, or n is even and εFc , c ∈ V
(p)
m

∗
are not all the same. First, we need two lemmas.

Lemma 9. Let F : V
(p)
n → V

(p)
m be a vectorial dual-bent function with F (0) = 0, F (x) =

F (−x), and F ∗ be a vectorial dual of F . Then F ∗ is also a vectorial dual-bent function with

F ∗(0) = 0, F ∗(x) = F ∗(−x).
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Proof: Since F ∗ is a vectorial dual of F , (Fc)
∗ = (F ∗)σ(c), c ∈ V (p)

m

∗
for some permutation σ

over V (p)
m

∗
. Since F is vectorial dual-bent, we have that (Fc)

∗, c ∈ V (p)
m

∗
are all bent functions. By

Theorem 3.1 of [15], for any p-ary bent function f whose dual f ∗ is also bent, (f ∗)∗(x) = f(−x)

holds. Thus, for any c ∈ V (p)
m

∗
,

((F ∗)c)
∗(x) = ((Fσ−1(c))

∗)∗(x) = Fσ−1(c)(−x) = Fσ−1(c)(x),

which implies that F ∗ is a vectorial dual-bent function and a vectorial dual of F ∗ is F . When

p = 2, obviously F ∗(x) = F ∗(−x), and by the proof of Corollary 2 and Proposition 5 of [7], we

have F ∗(0) = 0. When p is an odd prime, for any p-ary bent function f with f(x) = 0, f(x) =

f(−x), by Proposition II. 1 of [16], f ∗(0) = 0, f ∗(x) = f ∗(−x). Thus for any c ∈ V (p)
m

∗
, from

Fc(0) = 0, Fc(x) = Fc(−x), we have (F ∗)σ(c)(0) = (Fc)
∗(0) = 0, (F ∗)σ(c)(−x) = (Fc)

∗(−x) =

(Fc)
∗(x) = (F ∗)σ(c)(x), which implies that F ∗(0) = 0, F ∗(x) = F ∗(−x).

Lemma 10. Let F : V
(p)
n → V

(p)
m be a vectorial dual-bent function with F (0) = 0, F (x) =

F (−x) and 2 ≤ m ≤ n
2
, and F ∗ be a vectorial dual of F . Denote εFc(0) = p−

n
2 ζ
−(Fc)∗(0)
p WFc(0),

c ∈ V (p)
m

∗
. Then

• When m < n
2
, then |F (V

(p)
n

∗
)| = |F ∗(V (p)

n

∗
)| = pm;

• When n is even and m = n
2
, if εFc(0) = −1 for all c ∈ V

(p)
m

∗
, then |F (V

(p)
n

∗
)| =

|F ∗(V (p)
n

∗
)| = pm−1, and if εFc(0), c ∈ V (p)

m

∗
are not all−1, then |F (V

(p)
n

∗
)| = |F ∗(V (p)

n

∗
)| =

pm.

Proof: By Proposition 3 of [21] and Eq. (24), for any u ∈ V (p)
n , i ∈ V (p)

m we have

|D∗F,i| = pn−m + p−m
∑

c∈V (p)
m

∗

WFc(0)ζ−〈c,i〉mp − δ0(i). (28)

Since F ∗ is a vectorial dual of F , (Fc)
∗ = (F ∗)σ(c), c ∈ V

(p)
m

∗
for some permutation σ

over V (p)
m

∗
. For any c ∈ V

(p)
m

∗
, WFc(0) = εFc(0)p

n
2 ζ

(Fc)∗(0)
p = εFc(0)p

n
2 ζ

(F ∗)σ(c)(0)
p . Since F is

vectorial dual-bent with F (0) = 0, F (x) = F (−x), by Lemma 9 we have F ∗(x) = 0 and

WFc(0) = εFc(0)p
n
2 , c ∈ V (p)

m

∗
. By Eq. (28), for any i ∈ V (p)

m we have

|D∗F,i| = pn−m + p
n
2
−m

∑
c∈V (p)

m

∗

εFc(0)ζ−〈c,i〉mp − δ0(i). (29)
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By Eq. (29), for any i ∈ V (p)
m

∗
, if |D∗F,i| = 0, then

|
∑

c∈V (p)
m

∗

εFc(0)ζ−〈c,i〉mp | = p
n
2 .

Since m ≤ n
2
, we have |

∑
c∈V (p)

m

∗ εFc(0)ζ
−〈c,i〉m
p | ≤ pm − 1 < p

n
2 . Hence, for any i ∈ V

(p)
m

∗
,

|D∗F,i| 6= 0. When i = 0, by Eq. (29) we have that |D∗F,0| = 0 if and only if

p
n
2
−m

∑
c∈V (p)

m

∗

εFc(0) = 1− pn−m.

When n is odd, by Theorem 1 of [5],

εFac(0) = εFc(0)η1(a) for any a ∈ F∗p, c ∈ V (p)
m

∗
, (30)

where η1 denotes the quadratic character of Fp. From Eq. (30) and
∑

a∈F∗p
η1(a) = 0, we can

obtain
∑

c∈V (p)
m

∗ εFc(0) = 0. Thus, when n is odd, |D∗F,0| 6= 0 and |F (V
(p)
n

∗
)| = pm. When

n is even and m < n
2
, p | pn2−m

∑
c∈V (p)

m

∗ εFc(0) (Note that εFc(0) ∈ {±1} when n is even)

and p - (1 − pn−m), thus |D∗F,0| 6= 0 and |F (V
(p)
n

∗
)| = pm. When n is even, m = n

2
and

εFc(0) = −1, c ∈ V (p)
m

∗
, p

n
2
−m∑

c∈V (p)
m

∗ εFc(0) = 1 − pn−m, thus |D∗F,0| = 0 and |F (V
(p)
n

∗
)| =

pm − 1. When n is even, m = n
2

and εFc(0), c ∈ V
(p)
m

∗
are not all −1, p

n
2
−m∑

c∈V (p)
m

∗ εFc(0)

6= 1 − pn−m, thus |D∗F,0| 6= 0 and |F (V
(p)
n

∗
)| = pm. From the above arguments, we have that

the result of Lemma 10 holds for F . By Lemma 9, we have that F ∗ is also vectorial dual-

bent with F ∗(0) = 0, F ∗(−x) = F ∗(x). By Proposition 2 of [22], for any p-ary bent function

f : V
(p)
n → Fp which satisfies that n is even, f(x) = f(−x) and the dual f ∗ is also bent,

εf∗(0) = εf (0) holds. When n is even, since Fc, c ∈ V (p)
m

∗
are all bent with Fc(x) = Fc(−x) and

the duals (Fc)
∗, c ∈ V (p)

m

∗
are also bent, we have ε(F ∗)c(0) = ε(Fσ−1(c))

∗(0) = εFσ−1(c)
(0), c ∈ V (p)

m

∗

and {ε(F ∗)c(0), c ∈ V (p)
m

∗
} = {εFc(0), c ∈ V (p)

m

∗
}. Therefore, the result of Lemma 10 also holds

for F ∗.

The following theorem gives a necessary and sufficient condition on constructing association

schemes from general vectorial dual-bent functions F : V
(p)
n → V

(p)
m with F (0) = 0, F (x) =

F (−x) and 2 ≤ m ≤ n
2
.

Theorem 8. Let F : V
(p)
n → V

(p)
m be a vectorial dual-bent function with F (0) = 0, F (x) =

F (−x) and 2 ≤ m ≤ n
2
, and F ∗ be a vectorial dual of F . Denote I = F (V

(p)
n

∗
) and εFc(x) =

September 23, 2023 DRAFT



31

p−
n
2 ζ
−(Fc)∗(x)
p WFc(x), c ∈ V (p)

m

∗
, x ∈ V (p)

n . Define

Rid = {(x, x) : x ∈ V (p)
n },

Ri = {(x, y) : x, y ∈ V (p)
n , x− y ∈ D∗F,i}, i ∈ I.

Then

• I = V
(p)
m and |I| = pm except one case that n is even, m = n

2
and εFc(0) = −1, c ∈ V (p)

m

∗

(in such a case, I = V
(p)
m

∗
and |I| = pm − 1).

• The following two statements are equivalent.

(1) {Rid, Ri, i ∈ I} is an |I|-class association scheme.

(2) For any β, β′ ∈ V (p)
n

∗
with F ∗(β) = F ∗(β′), εFc(β) = εFc(β

′), c ∈ V (p)
m

∗
.

Proof: By Lemma 10 and its proof, we have that I = V
(p)
m and |I| = pm except one case

that n is even, m = n
2

and εFc(0) = −1, c ∈ V (p)
m

∗
(in such a case, I = V

(p)
m

∗
and |I| = pm− 1).

Since F ∗ is a vectorial dual of F , (Fc)
∗ = (F ∗)σ(c), c ∈ V (p)

m

∗
for some permutation σ over

V
(p)
m

∗
. By

WFc(x) = εFc(x)p
n
2 ζ(Fc)

∗(x)
p = εFc(x)p

n
2 ζ

(F ∗)σ(c)(x)
p , c ∈ V (p)

m

∗
, x ∈ V (p)

n ,

where εFc(x) ∈ {±1,±
√
−1} with εFc(x) = 1 if p = 2, we have that for any β, β′ ∈ V (p)

n

∗
,

WFc(β) = WFc(β
′), c ∈ V (p)

m

∗

⇔ εFc(β) = εFc(β
′), (F ∗)σ(c)(β) = (F ∗)σ(c)(β

′), c ∈ V (p)
m

∗

⇔ εFc(β) = εFc(β
′), c ∈ V (p)

m

∗
, F ∗(β) = F ∗(β′).

(31)

By Lemma 10, |F (V
(p)
n

∗
)| = |F ∗(V (p)

n

∗
)|. Therefore, by relation (31),

|{(WFc(β))
c∈V (p)

m

∗ : β ∈ V (p)
n

∗}| = |I|

⇔ for any β, β′ ∈ V (p)
n

∗
with F ∗(β) = F ∗(β′), εFc(β) = εFc(β

′), c ∈ V (p)
m

∗
.

By Theorem 2 of [3] (Note that I = F (V
(p)
n ) in Theorem 2 of [3] should be corrected as

I = F (V
(p)
n

∗
)), {Rid, Ri, i ∈ I} is an |I|-class association scheme if and only if

|{(WFc(β))
c∈V (p)

m

∗ : β ∈ V (p)
n

∗}| = |I|.

Hence, {Rid, Ri, i ∈ I} is an |I|-class association scheme if and only if for any β, β′ ∈ V (p)
n

∗

with F ∗(β) = F ∗(β′), we have εFc(β) = εFc(β
′), c ∈ V (p)

m

∗
.
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The following corollary is directly from Theorem 8, which states that for a vectorial dual-bent

function F : V
(p)
n → V

(p)
m with F (0) = 0, F (x) = F (−x) and 2 ≤ m ≤ n

2
, association schemes

can be induced from F if Fc is weakly regular for any c ∈ V (p)
m

∗
.

Corollary 4. Let F : V
(p)
n → V

(p)
m be a vectorial dual-bent function with F (0) = 0, F (x) =

F (−x) and 2 ≤ m ≤ n
2
. Denote I = F (V

(p)
n

∗
). Define

Rid = {(x, x) : x ∈ V (p)
n },

Ri = {(x, y) : x, y ∈ V (p)
n , x− y ∈ D∗F,i}, i ∈ I.

If Fc is weakly regular for any c ∈ V (p)
m

∗
, then {Rid, Ri, i ∈ I} is an |I|-class association scheme,

where I = V
(p)
m and |I| = pm except one case that n is even, m = n

2
and εFc = −1, c ∈ V (p)

m

∗

(in such a case, I = V
(p)
m

∗
and |I| = pm − 1).

By using two classes of vectorial dual-bent functions F : V
(p)
n → V

(p)
m given in [8], [21] for

which n can be odd, or n is even and εFc , c ∈ V
(p)
m

∗
are not all the same, we can obtain more

association schemes.

Corollary 5. Let p be an odd prime. Let F : Fpn → Fpm be defined as F (x) = Trnm(αx2),

where m ≥ 2,m | n,m 6= n. Denote I = F (F∗pn). Define

Rid = {(x, x) : x ∈ Fpn},

Ri = {(x, y) : x, y ∈ Fpn , x− y ∈ D∗F,i}, i ∈ I.

Then {Rid, Ri, i ∈ I} is an |I|-class association scheme, where I = Fpm and |I| = pm except

one case that n is even, m = n
2

and ηn(α) = ξn (in such a case, I = F∗pm and |I| = pm − 1),

where ηn denotes the quadratic character of Fpn , ξ = 1 if p ≡ 1 (mod 4) and ξ =
√
−1 if

p ≡ 3 (mod 4).

Proof: Obviously, F (0) = 0, F (x) = F (−x). By Example 1 of [8], F is a vectorial dual-

bent function for which for any c ∈ F∗pm , the component function Fc(x) = Trn1 (αcx2) is weakly

regular with εFc = (−1)n−1ξnηn(αc). Then the result follows from Corollary 4.

Below we give an example to illustrate Corollary 5.

Example 4. Let p = 3, n = 6,m = 2. Define F (x) = Tr62(x
2), x ∈ F36 . Then F is a vectorial

dual-bent function for which for any c ∈ F∗32 , the component function Fc(x) = Tr61(cx
2) is
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weakly regular with εFc = (−1)6−1(
√
−1)6η6(c) = η6(c). Note that {η6(c) : c ∈ F∗32} = {±1}.

Let

Rid = {(x, x) : x ∈ F36},

Ri = {(x, y) : x, y ∈ F36 , x− y ∈ D∗F,i}, i ∈ F32 .

By Corollary 5, {Rid, Ri, i ∈ F32} is a 9-class association scheme.

Corollary 6. Let p be an odd prime. Let r1, r2,m be positive integers with m ≥ 2,m | r1,m | r2.

For i ∈ Fpm , define H(i;x) : Fpr1 → Fpm as H(0;x) = Trr1m(α1x
2), H(i;x) = Trr1m(α2x

2) if i is

a square in F∗pm , H(i;x) = Trr1m(α3x
2) if i is a non-square in F∗pm , where αj, 1 ≤ j ≤ 3 are all

squares or all non-squares in F∗pr1 . Define G : Fpr2×Fpr2 → Fpm as G(y1, y2) = Trr2m(βy1L(y2)),

where β ∈ F∗pr2 and L(x) =
∑
aix

qi(q = pm) is a q-polynomial over Fpr2 inducing a permutation

of Fpr2 . Let F : Fpr1 × Fpr2 × Fpr2 → Fpm be defined as

F (x, y1, y2) = H(Trr2m(γy22);x) +G(y1, y2),

where γ ∈ F∗pr2 . Define

Rid = {(x, x) : x ∈ Fpr1 × Fpr2 × Fpr2},

Ri = {(x, y) : x, y ∈ Fpr1 × Fpr2 × Fpr2 , x− y ∈ D∗F,i}, i ∈ Fpm .

Then {Rid, Ri, i ∈ Fpm} is a pm-class association scheme.

Proof: It is easy to see that F (0, 0, 0) = 0, F (x, y1, y2) = F (−x,−y1,−y2). By Theorem

1 of [21] and its proof, F is a vectorial dual-bent function for which for any c ∈ F∗pm , the

component function Fc is weakly regular with εFc = (−1)r1−1ξr1ηr1(α1c), where ηr1 denotes the

quadratic character of Fpr1 , ξ = 1 if p ≡ 1 (mod 4) and ξ =
√
−1 if p ≡ 3 (mod 4). Then the

result follows from Corollary 4.

Below we give an example to illustrate Corollary 6.

Example 5. Let p = 5, r1 = r2 = 9,m = 3 and α be a primitive element in F59 . Then

n = r1 + 2r2 = 27 is odd. For i ∈ F53 , let H(i;x) = Tr93(x
2), x ∈ F59 if i = 0 and H(i;x) =

Tr93(α
2x2), x ∈ F59 if i ∈ F∗53 . Define F : V

(5)
27 → F53 as F (x, y1, y2) = H(Tr93(y

2
2);x) +

Tr93(y1y2) = (Tr93(y
2
2))124Tr93((α

2− 1)x2) + Tr93(x
2 + y1y2), where V (5)

27 = F59 × F59 × F59 . Let

Rid = {(x, x) : x ∈ V (5)
27 },

Ri = {(x, y) : x, y ∈ V (5)
27 , x− y ∈ D∗F,i}, i ∈ F53 .
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By Corollary 6, {Rid, Ri, i ∈ F53} is a 125-class association scheme.

IX. CONCLUSION

In this paper, we further studied vectorial dual-bent functions F : V
(p)
n → V

(p)
m , where 2 ≤

m ≤ n
2
. First, we gave new characterizations of vectorial dual-bent functions with Condition A

in terms of amorphic association schemes (Theorem 1), linear codes (Theorem 2), generalized

Hadamard matrices (Theorems 3 and 4), and bent partitions when p = 2 (Theorem 5). Second,

based on the relations between vectorial dual-bent functions with Condition A and bent partitions,

new characterizations of certain bent partitions in terms of amorphic association schemes, linear

codes and generalized Hadamard matrices were presented (Theorems 6 and 7). Finally, for general

vectorial dual-bent functions F : V
(p)
n → V

(p)
m with F (0) = 0, F (x) = F (−x), 2 ≤ m ≤ n

2
, we

gave a necessary and sufficient condition on constructing association schemes (Theorem 8) and

more association schemes were constructed (Corollaries 5 and 6).
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