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Abstract. Blockchain auction plays an important role in the price dis-
covery of digital assets (e.g. NFTs). However, despite their importance,
implementing auctions directly on blockchains such as Ethereum incurs
scalability issues. In particular, the on-chain transactions scale poorly
with the number of bidders, leading to network congestion, increased
transaction fees, and slower transaction confirmation time. This lack of
scalability significantly hampers the ability of the system to handle large-
scale, high-speed auctions that are common in today’s economy.

In this work, we build a protocol where an auctioneer can conduct sealed
bid auctions that run entirely off-chain when parties behave honestly, and
in the event that k bidders deviate (e.g., do not open their sealed bid)
from an n-party auction protocol, then the on-chain complexity is only
O(k logn). This improves over existing solutions that require O(n) on-
chain complexity, even if a single bidder deviates from the protocol. In
the event of a malicious auctioneer, our protocol still guarantees that the
auction will successfully terminate. We implement our protocol and show
that it offers significant efficiency improvements compared to existing
on-chain solutions. Our use of zkSnark to achieve scalability also ensures
that the on-chain contract and other participants do not acquire any
information about the bidders’ identities and their respective bids, except
for the winner and the winning bid amount. 5

1 Introduction

In an online auction, sellers advertise the sale of arbitrary assets and buyers can
place bids as the price they are willing to pay for such assets. Online auctions are
widely used in the current world economy, moving billions of dollars in exchange
for goods and services [1,14]. However, online auctions rely on the trustworthiness
of the auctioneer to correctly run the auction. Blockchains with smart contract
capabilities (e.g., Ethereum) have lately been leveraged to add transparency to
the process: The auction’s logic can be implemented as a smart contract that,
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when deployed on the blockchain, is in charge of (i) receiving the asset from the
seller; (ii) receiving bids while the bidding interval is open; (iii) after the bid
interval is closed, selecting the winning bid according to the type of auction (e.g.,
highest bid in first price sealed bid auctions); and (iv) transferring the winning
bid to the seller whereas the corresponding bidder obtains the auctioned asset.

Although blockchain-based auctions are a promising alternative to online
auctions, there are several obstacles to ensuring the security and privacy of the
participants. Apart from correctness (i.e., seller gets highest bid while corre-
sponding bidder gets the auctioned good), a bidder should not know other bids
before committing to its own (bid privacy). Moreover, from the security point of
view, bidders should not be able to change their committed bids (bid binding)
whereas the auctioneer should not be able to give undue advantage to malicious
bidders (non-malleability). The auction should terminate even in the presence
of malicious participants (liveness), that must get penalized if they deviate from
the protocol (financial fairness). Finally, for practicality bidders should not need
to interact between each other (non-interactivity) and the overall on-chain cost
should not depend on the number of bidders, in the optimistic case (efficiency).

Simultaneously achieving the aforementioned properties is challenging. For
instance, correctness requires comparison across all bids to determine the win-
ning one, while privacy mandates that the actual bid values remain hidden from
bidders and blockchain observers. An off-the-shelf multi-party protocol among
bidders to compute the auction functionality while preserving the required pri-
vacy guarantees would violate the non-interactivity requirement.

In addition to security and privacy, scalability is an efficiency requirement of
utmost importance. Transaction processing in decentralized blockchains is highly
limited to few transactions per second, and doing intensive cryptographic opera-
tions on-chain (such as commit and reveal for sealed bid auctions) are likely to be
very expensive and impractical. Ideally, one would want the entire auction to be
conducted off-chain (excluding the asset transfer from seller to winning bidder).
However, doing so would sacrifice transparency since a malicious auctioneer can
violate, for e.g., auction correctness, and get away with it.

Our System in a Nutshell. We designed a robust system where an auctioneer
coordinates the communication between bidders and the smart contract. The
auctioneer is considered fully malicious for security properties: it cannot steal
users’ funds or abort the auction without being punished financially. Moreover,
our protocol offers bid privacy, that is, bids are hidden even from the auctioneer
during the bidding phase. Finally, in the optimistic case, where the auctioneer
does not deviate, our protocol also offers post-auction privacy. This property rep-
resents an improvement over existing online bidding protocols, such as eBay [3]
or OpenSea [4], which have no privacy since bid information (e.g., bid amounts,
bidder addresses, and the bid history) is always publicly visible.

In the presence of such an auctioneer, our system is designed in stages as fol-
lows. First, at the creation stage, the seller agrees on the auction parameters and
the auction good (e.g., an NFT) with the auctioneer. The auctioneer establishes
the auction by deploying a smart contract in the blockchain with the mentioned
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auction setup information. This information includes the collateral amount the
auctioneer commits to pay if the auction fails. Second, during the bidding stage,
each bidder commits the fully sealed (even to the eyes of the auctioneer) bid to
the auctioneer. During this stage, both parties agree on a collateral amount that
will be forfeited if either party misbehaves. At the end of this stage, each bidder
gets a bid’s inclusion confirmation from the auctioneer, who in turn pushes the
list of bids to the contract in an accumulated form for efficiency. Fixing the set of
fully sealed bids at this point helps to achieve bid binding and bid privacy. After
the bid interval is finished, the opening stage permits two actions from bidders:
Either a bidder opens their sealed bid to the auctioneer if it was included in the
contract in the previous step; or a bidder challenges the auctioneer about the
lack of their sealed bid in the contract. In the former case, the auction enters
the settle stage, which we overview later. In the latter case, the contract’s logic
is such that it can deterministically decide the cheating party and financially
punish them. This functionality helps to achieve financial fairness.

During the final stage, called settle stage, the auctioneer interacts with the
smart contract to indicate the winning bid along with a (zero-knowledge) proof
attesting the veracity of the winning conditions (e.g., the winning bid indeed is
the one with the highest value in a first price sealed bid auction). The auction
ends with the bid being transferred to the winning bidder, who in turns gets
the auctioned asset, whereas the rest of the bidders get refunded. The system
ensures auction correctness and maintains non-interactivity among bidders.
Our Contributions. In this work, we build a protocol where an auctioneer
can conduct sealed bid auctions that run entirely off-chain when parties be-
have honestly, and in the event that k bidders deviate (e.g., do not open their
sealed bid) from an n-party auction protocol, then the on-chain complexity is
only O(k log n). This improves over existing solutions that require O(n) on-chain
complexity even if a single bidder deviates from the protocol (see Section 2).

We have implemented and deployed our protocol on a private EVM chain
using Hyperledger Besu. Our implementation demonstrates that our auction
protocol offers significant efficiency improvements compared to existing on-chain
solutions, resulting in minimal on-chain interactions and enhanced scalability.
Moreover, we have used zkSnark to ensure that the on-chain contract and other
participants do not acquire any information about the bidders’ identities and
their respective bids, except for the winner and the winning bid amount. Finally,
we analyze our protocol in the Universal Composability framework. We provide
an ideal functionality modeling of the auction and show that, under the right
assumptions, our protocol achieves UC security.

2 Related Work

On-chain Auction. Sealed bid auctions can be implemented directly on Layer-
1 as in [7,34,33,6,42,11,13,35,18,20,21,26,27,45]. The auction contract will accept
sealed bids until a certain deadline, registrationDeadline. Following this, and
until another deadline, auctionDeadline, the contract accepts the opening of
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Table 1. On-chain complexity comparison with other works. Here n denotes the num-
ber of bidders.

Auction Protocol All participants are honest k bidders deviate Malicious Auctioneer Privacy

On-chain Auction O(n) O(n) n/a No
State Channels O(1) O(n) n/a No

Auction on (zk)-rollup O(n) O(n) n/a No
Ours O(1) O(k logn) O(n) Yes

the sealed bids. After the auctionDeadline has passed, anyone can invoke the
auction contract to perform an atomic swap of the NFT asset (to the winning
bidder) and the amount corresponding to the highest bid (to the seller).

Note that bidders will be required to post collateral to the auction contract.
The reason for this is two-fold. First, it ensures that the bidder has enough
money to cover the purchase of the NFT in case it wins the auctions. Second,
this collateral can also be used to punish bidders who refuse to open their sealed
bids. This is important since otherwise an adversary can launch the following
malleability attack without incurring any penalty. A malicious user can imper-
sonate multiple bidders with bids ranging from 1 through maxPrice and then
open only the bid which is one more than the highest honest bid. Alternatively,
a malicious seller can similarly impersonate multiple bidders and wait to see the
highest bid and then decide whether to open a higher bid or not.

We note that the main drawback of the above solution is that its on-chain
complexity is proportional to the number of bidders (who have to submit their
sealed bids and the corresponding openings), even if all parties are honest.

Using State Channels. To minimize on-chain complexity, one could use state
channels [2,38,23,22,17,16] to implement the auction off-chain. Parties off-chain
decide on the contract source code of the auction contract and the salt that they
are going to use to deploy the auction contract via the CREATE2 opcode.6 Note
that the contract is not deployed yet, but when deployed, it will be created at
a deterministic address thanks to CREATE2. Now, parties exchange transactions
to the auction contract and attain consensus off-chain on these. If all parties
behave honestly, then the only on-chain footprint of the auction execution is the
exchange of the NFT to the winning bidder. However, if some party misbehaves,
then the auction contract is deployed on-chain, and all the transactions that were
exchanged off-chain are then played back on-chain. There are many subtle details
that we omit here, but the key takeaway is that even if one bidder misbehaves,
the entire auction needs to be carried out on-chain. Thus, the worst case on-chain
complexity in this case is O(n), where n denotes the number of bidders.

Using Rollups. A natural Layer-2 solution would be to “roll up” the straw
man solution (either in an optimistic rollup or a ZK rollup) [37,43,47]. However,
in such solutions, a malicious sequencer can deny an honest bidder from opening
its commitment. This would result in the honest bidder losing its collateral. The
only way to avoid honest bidders from losing money would be to continue the
execution (i.e., dispute resolution) on Layer-1, however, this would result in a

6 https://legacy.ethgasstation.info/blog/what-is-create2/
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worst-case O(n) on-chain complexity. Note that in optimistic and ZK rollups,
rolling up the solution still results in on-chain complexity O(n) even in the
optimistic case, since the transaction data is dependent on n.
Non-sealed Bid Auctions. Typical NFT sales, e.g., via OpenSea [4], are con-
ducted through non-sealed bid English auctions directly on Layer-1. This has
the advantage that the seller does not need to set a max bid price, and the
NFT could be sold potentially for a large sum of money. On the other hand, not
conducting a sealed bid auction opens up various attack vectors, such as insider
trading. Since bidders can submit bids multiple times, this also increases the
total amount of on-chain activity during auction time, thereby increasing the
gas price for regular users (not participating in the auction).
Other Blockchain Auctions. Ethereum Name Service (ENS) [44], which al-
lows users to register human-readable domain names that can be used to inter-
act with Ethereum contracts, uses auctions to auction off newly released domain
names to the highest bidder. Typical DeFi protocols often use auctions to de-
termine the price of assets or to distribute tokens to users. For example, in a
liquidity auction, users can bid on the price of an asset, and the protocol will use
the bids to determine the asset’s price. In a token distribution auction, users can
bid on tokens, and the protocol will distribute the tokens to the highest bidders.
Our work: Using a Programmable Payment Channel. Our approach re-
lies on a new notion called programmable payment channel (PPC) [46], which
can facilitate any off-chain computations between two participants sharing a
channel. In this work, we assume there is an untrusted hub that has a PPC
with each participant. In the scenarios when all participants act honestly, our
design can achieve an O(1) on-chain cost, similar to the efficiency of state chan-
nels. However, diverging from multiparty state channels, our protocol leverages
pairwise state channels (implemented via PPC) to decrease on-chain disputes,
making such interventions primarily necessary only when dealing with malicious
parties. Moreover, our construction embeds sealed bids within a Merkle tree to
optimize on-chain storage costs. However, this approach has a drawback. Should
bidders diverge from the expected behavior, removing their bids comes at a com-
putational cost. Specifically, if k bidders deviate, the system requires O(k log n)
operations to exclude these participants. Nevertheless, this is still more efficient
compared to other existing alternatives. As our system does depend on an un-
trusted auctioneer, a malicious auctioneer could induce O(n) on-chain complex-
ity if they decline to collaborate. However, there is an asymmetry concerning
on-chain tasks that deters such actions. This is because the auctioneer would be
compelled to engage in a challenge-response mechanism with n other bidders.

3 Preliminaries

3.1 Cryptographic Building Blocks

Notation. We denote by 1λ the security parameter and by negl(λ) a negligible
function in λ. We express a pair of public and private keys by (pk, sk). We use
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Z≥a to denote the set of integers that are greater or equal to a, {a, a + 1, . . . }.
We let PPT denote probabilistic polynomial time. We use [k] to denote the
set, {1, . . . , k} We use a shaded area i, j, k to denote the private inputs in the
relation st : {(a, b, c; i, j, k) : f(a, b, c, i, j, k) = “True”}. We use st[a, b, c . . . ] to
denote those fixed and public values of an instance of the relation st.

Standard Cryptographic Building Blocks. We consider a family of col-
lision resistant hash function H, an existential unforgeability digital signature
scheme, Σ = (KeyGen, Sign, SigVerify) and a binding, hiding, non-interactive,
non-malleable commitment scheme, Γ = (Pcom, Vcom). We also consider a zero-
knowledge Succinct Non-interactive ARgument of Knowledge (zkSnark), Π =
(Setup, Prove, Verify). We consider Merkle tree as an instance for authenti-
cated data structure for set membership. Merkle tree consists of these following
algorithms T = (Init, Prove, Verify, Replace). We refer to Appendix A for the
formal definitions of these cryptographic primitives. To achieve UC security, we
will need UC secure versions of the above primitives (e.g., [24,28]).

3.2 Programmable Payment Channel (PPC) and State Channel

Programmable Payment Channel (PPC). A PPC [46] is a payment channel
between Alice and Bob where either user (e.g., Alice) can authorize a promise for
a one-way payment to the counterparty (e.g., Bob) conditioned on the logic of a
program (code). In the case that Alice issues the promise, Bob can redeem such
promise either optimistically or pessimistically. In the optimistic path, the con-
tract logic is correctly executed off-chain and in the end, Alice provides Bob with
a receipt that credits Bob’s balance by the promised amount. In the pessimistic
path (e.g., Alice is unresponsive), Bob can unilaterally execute the promise’s pro-
gram on-chain and claim the promise’s balance. Several promises can be created
and executed (off-chain) during the lifetime of the PPC for one-way payments
from Alice to Bob and vice versa.

2-Party State Channel from PPC. In order to execute an arbitrary two-
party smart contract off-chain (i.e., sharing a state channel), PPC must enable
both parties to issue two interlocked promises that together encompass the smart
contract’s logic. The concept of interlocked promises means that the state and
logic of Alice’s promise can depend on the state and logic of another promise
from Bob, and vice versa. Interlocked promises enable any party to claim the
payment amount associated to both promises if the other party misbehaves. This
mechanism thereby encourages both parties to adhere to the rules and minimizes
the potential for disputes. In summary, PPC can be used to fully realize off-chain
state channels as shown in [46], allowing any two parties to execute arbitrary
smart contracts off-chain. Next we abstract the concept of interlocked promises,
called covenant, and illustrate it in Fig. 1. We refer to [46] for an explanation of
how to compile any two-party covenant contract into two interlocked promises.
For completeness, we include in Appendix B the detailed construction of PPC
supporting covenants.
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Blockchain, L

Alice (skA) Bob (skB) PPC (vkA, vkB) Ccovenant

(1) Agree on Ccovenant, params

Obtain P from CreateCovenant(Ccovenant, params, ·)

(2a) Co-execute Ccovenant

Register P

VerifyCovenant(P, vkA, vkB)

Deploy Ccovenant.code ∈ P

Challenge an execution of Ccovenant

Respond to the challenge

(2b) Pessimistic Path (Alice misbehaves)(2b) Pessimistic Path (Alice misbehaves)

Fig. 1. An overview of creating and executing promises in PPC. Step (2a) indicates
the optimistic path, while step (2b) indicates a pessimistic path where an on-chain
resolution is needed.

4 Building off-chain Auction from PPC: An Overview

4.1 An Overview of Our Solution: Auction protocol from PPC

System Model. The system consists of an untrusted hub, hub, a set R of
registered users and a blockchain L supporting smart contracts. We assume that
a PPC exists between hub and each u ∈ R, thereby following the hub-and-spoke
model. In our system, any registered user can register as a bidder or as a seller
in any auction. The hub hub acts as the auctioneer. We denote the set of bidders
to be B = {bidder1, . . . , biddern} ⊆ R, and define the seller to be seller ∈ R.

Auction Contract Overview. Our auction contract consists of four primary
functions: Start, SubmitSealedBids, RevealWinner, DeclareFailed. The auc-
tion contract itself advances through various stages: Bidding, Opening, Rebut-
tal, Settle, and Completed. The purposes of these functions are relatively self-
explanatory. The Start function can only be invoked by the hub to initiate
the auction. The SubmitSealedBids function can only be triggered by the hub
to submit a succinct Merkle root value representing all submitted sealed bids.
The RevealWinner takes as input the winning bid and the zkSnark proof from
the hub, proving that the submitted amount is indeed the highest bid. Addi-
tionally, the RevealWinner function removes all unopened bids before verifying
the zkSnark proof. If the auction fails due to the hub’s failure to invoke any
of the previously described functions, the seller retains the option to call the
DeclareFailed function to reclaim the auctioned item, such as an NFT.
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Fig. 2. An overview of the auction protocol. The solid line denotes on-chain actions,
and the dashed line denotes off-chain actions. The dispute settlement between Seller
and Hub is identical to the dispute settlement between seller and bidder.

Seller and Hub: Create the Auction. The seller and hub agree on the pa-
rameters (e.g., maximum bid amount and item) of the auction and ensure that
the seller will receive a payment or get the NFT back. After reaching agreement,
the hub deploys the auction contract (Cauction) containing all agreed-upon pa-
rameters. Once the auction contract is deployed, hub and seller have to agree
on the details of the covenant contract CHSCovenant. The CHSCovenant enforces two
possible outcomes of the auction for the seller: (i) If the auction fails, hub will
pay the maximum bid amount to the seller7; (ii) If there is a winner, hub will
send the seller the amount specified in the sealed bid previously submitted by
the winning bidder.

Once both the seller and hub agree on this contract (CHSCovenant), they will
agree on a covenant based on such a contract. Once a valid covenant is obtained,
the hub starts the auction via an on-chain call that triggers the transfer of the
NFT to the auction contract address, effectively placing the NFT in custody for
the auction’s duration. This action marks the completion of the creation stage.

Bidders and Hub: Bidding, Opening and Rebuttal. The Bidding stage
is divided into two phases: (1) bidders submit their sealed bids to the hub; and
(2) the hub accumulates all the bids and submits them to the auction contract.
To do this, hub and bidders have to agree on the covenant contract, CHBCovenant,
whose logic enforces the different parties to follow the protocol: (i) The hub must
include the sealed bid in the accumulated bids and provide an inclusion proof
for it; (ii) If a bidder does not open their sealed bid, they will be penalized with

7 In addition, the seller will get back its auctioned item via the auction contract
(see Fig. 3 for details).
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an amount agreed in the promise; (iii) If the bidder is the winner, she will pay
the amount committed in the sealed bid.

Once both parties agree on the covenant contract, they obtain the agreed
covenant by both signing on the contract detail and its parameters. During
the Opening stage, either Hub or Bidder can challenge the other party, if they
misbehave (i.e., do not provide an inclusion proof or do not open a sealed bid).
When challenged, either party can respond to the challenge during the Rebuttal
stage via on-chain function calls.

Bidders, Seller, Hub: Settling the Auction. At the end of the auction, after
the hub announces the winner, the auction winner will pay the hub the amount
that she previously committed in the sealed bid during the Bidding stage. The
rest of bidders get their bids back. Finally, the seller will either receive a payment
from the winning bidder via the hub or a penalty from the hub and reclaim the
NFT if the auction fails. This can be done either off-chain during the settle stage
or on-chain during the completed stage.

Fig. 2 gives a high-level overview of our protocol.

4.2 Desired Properties and Threat Model

Desired Properties. The proposed system should provide the following prop-
erties: (P1) Auction Correctness: Our protocol must ensure correctness by un-
equivocally designating the highest bidder as the winner, guaranteeing a seller
payout based on the highest bid amount. (P2) Privacy : Our protocol should
maintain bid-privacy, concealing bid amounts of participants until the opening
phase. In an optimistic scenario without on-chain challenges, only the winning
bid should be disclosed, ensuring post-auction privacy. (P3) Efficiency : For an
honest execution of the protocol, the cost should be lower than alternative so-
lutions outlined in Section 2. Specifically, in an optimistic case, our auction
should demand no interactions among bidders (i.e., non-interactivity). More-
over, we require the on-chain cost to be independent of the number of bidders.
(P4) Liveness: Our protocol achieves liveness if it remains operational even when
a fraction of bidders abort the process or deviate from it. (P5) Security : Our
auction is considered secure if it satisfies the following two properties. Firstly,
it must be non-malleable, preventing a malicious hub from colluding with other
bidders to place bids that depend on the bids of honest bidders (e.g., hub can-
not generate cm′ = Pcom(m+1, r) from Pcom(m, r)). Secondly, the auction should
ensure bid binding, preventing bidders from altering their bids after submitting
their sealed bids. (P6) Financial Fairness: If any participant deviates, they will
be financially penalized, and honest parties will be refunded.

Threat Model. We assume that the cryptographic primitives (cf. Section 3.1)
are secure. Additionally, we consider adversaries to be computationally bounded.
Moreover, we assume the correct execution of the smart contract on the
blockchain. Users are presumed to have continuous access to read the blockchain
state and write to the blockchain. Furthermore, we assume that the adversary
can always read all transactions issued to the contract, while the transactions
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are propagating on the P2P network, and afterward when they are permanently
recorded on the blockchain.

5 Off-chain PPC Auction Construction

5.1 Protocol Setup

Prior to initiating the auction protocol, a one-time trusted setup is necessary
to securely generate all the public parameters required for the cryptographic
building blocks. In Appendix F, we discuss how one can mitigate this trusted
setup. Specifically, the cryptographic building blocks are as follows.
Cryptographic Parameters. The setup algorithm samples hash functions
h2p : F × F → F from collision-resistant hash families. h2p will be used to
initialize the Merkle tree used in our auction contract. The hub decides on the
commitment scheme Γ = (Pcom, Vcom) for the auction protocol. In our auction,
the sealed bid amount will be computed as bid = Pcom(amt; r). In the beginning,
the auction contract stores the root of a Merkle tree, rootbids, initialized from a
list of empty leaves and the collision-resistant hash function, h2p. When a bid-
der makes a bid, the corresponding leaf of this Merkle tree will be computed as
leaf = h2p(bidder, bid). Finally, one needs to define the statement for zkSnark. In
our auction protocol, to reveal the winner, the hub needs to prove the following
claims (i) the revealed winner (winner) participated in the auction during the
bidding stage, (ii) the amount committed by the winner is the highest amount
among all bids. Once the setup (cf. Fig. 8) is finished, Hub can start sharing the
cryptographic parameters, paramsCrypto, with all participants.

5.2 Auction Protocol

Auction Creation (Hub ↔ Seller). Before the auction begins, the Hub and
Seller jointly establish the auction’s parameters and cryptographic specifications.
Once agreed, the Hub deploys the auction contract, Cauction, on-chain incorpo-
rating these predefined parameters (cf. Fig. 3). Subsequently, a covenant, as
defined in Fig. 4, is established to ensure either a payout to the seller or reim-
bursement in the event of an auction failure. With the covenant in place, the
Seller authorizes the auction contract to facilitate the transfer of the auction
item, allowing the Hub to start the auction. This action signals the start of the
bidding and associated stages, as visually represented in Fig. 9.

Once the hub starts the auction, bidders can obtain paramscrypto and
paramsauction from Cauction and initiate a protocol with the hub to place bids.
This protocol progresses through different stages. In the following, we describe
in detail the interaction between the hub and bidders in each stage.
Bidding (Hub ↔ Bidders). In the first step, the bidder and the hub de-
fine parameters for the CHBCovenant contract, with the bidder registering their
sealed bid within these parameters. Specifically, the bidder selects a bid amount,
commits to this amount. This contract ensures both parties follow the auction
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Start() /*Hub starts the auction*/

1 : Require msg.sender = hub

2 : Invoke nftAddress.TransferFrom(seller, address(this), tokenID)

3 : Set Tstart ← block.time

SubmitSealedBids(numBids, rootbids) /*Bidding Stage*/

1 : Require msg.sender = hub

2 : Require GetStage() = “Bidding” ∧ accSubmitted = “False”

3 : if numBids = 0 : Require rootbids = rootbids // Default root with 0 bids

4 : Set (numBids, rootbids)← (numBids, rootbids)

5 : Set accSubmitted← “True”

RevealWinner(amtwinner,winner, π,UnopenedBids) /*After Opening Stage*/

1 : Require msg.sender = hub

2 : if numBids = 0 : Set resultSubmitted← “True”

3 : else :

4 : Require GetStage() = “Settle” ∧ resultSubmitted = “False”

5 : Invoke UpdateRoot(UnopenedBids) // Remove unopened bids

6 : Require Π.Verify(vkwinner, [rootbids,winner, amtwinner, numBids], π) = 1

7 : Set (amtwinner,winner)← (amtwinner,winner)

8 : Invoke nftAddress.TransferFrom(address(this),winner, tokenID)

9 : Set resultSubmitted← “True”

DeclareFailed() /*Auction Failed*/

1 : Require GetStage() = “Completed”

2 : if accSubmitted = “False” ∨ resultSubmitted = “False” : auctionFailed← “True”

3 : if auctionFailed ∨ numBids = 0 : Invoke nftAddress.TransferFrom(address(this), seller, tokenID)

GetStage() /* Auction Stages; Durations = [Tbidding,TbidSubmit,Topening,Trebuttal,Tsettle]*/

1 : if Tstart = 0 : return “NotStarted”

2 : if block.time < (Tstart + Tbidding) : return “Bidding”

3 : if block.time < (Tstart + Tbidding + Topening) : return “Opening”

4 : if block.time < (Tstart + Tbidding + Topening + Trebuttal) : return “Rebuttal”

5 : if block.time < Tstart +
∑

Durations ∧ resultSubmitted = “False” : return “Settle”

6 : return “Completed”

UpdateRoot(UnopenedBids) /*Remove Unopened Bids*/

1 : Require msg.sender = hub

2 : Parse [(ij , bidderj , bidj , pathj , CHBCovenant.addr, σj)]j∈B′ ← UnopenedBids

3 : For each j ∈ [k] : // Replace unopened bids with a default value.

- Require SigVerify(bidderj , CHBCovenant.addr, σj) = 1 // Covenant is authorized

- Require CHBCovenant.openingChallenged = “True” // Hub challenged opening previously

- Require CHBCovenant.openingResolved = “False” // Bidder did not open

- Compute leafij = h2p(bidderj , bidj)

- rootbids ← T.Replace(ij , leafj , rootbids, pathj , 0) // replace valid unopened leaf with 0

- numBids← numBids− 1

Fig. 3. Auction Contract, Cauction initialized with params = (paramscrypto, paramsauction)
where paramscrypto is parameters generated during the setup phase (cf. Section 5.1) and
paramsauction = (seller, hub, tokenID, nftAddress,Durations,maxBid) includes mutually
agreed-upon parameters between hub and seller. In the code above, address(this) refers
to the address of the auction contract; Moreover, if any line of the code fails (e.g.,
invoking other contracts’ functions) the state of the contract is rolled back.
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Resolve() /*Update seller’s balance according to Auction’s outcome*/

1 : Require Auction.GetStage() = “Completed”

2 : if Auction.auctionFailed = “True” : return maxBid

3 : return Auction.amtwinner;

Fig. 4. A covenant contract, CHSCovenant, between Hub and Seller, initialized with
paramsHSCovenant = (maxBid, Cauction.addr, salt).

protocol. Once the hub verifies the logic and parameters and confirms their va-
lidity, they proceed. Then, both the hub and the bidder produce a covenant from
the CHBCovenant contract as defined in Fig. 5, ensuring that the hub will include
the bidder’s bid and provide the inclusion proof, while the bidder commits to
revealing their bid by a specified stage or face penalties.

Opening (Hub ↔ Bidders). After the bidding phase, the protocol advances
to the opening stage. During this phase, the hub’s responsibility is to provide
the inclusion proof to the bidder, confirming the presence of the bidder’s sealed
bid within the Merkle root. If the hub fails to provide this proof, the bidder can
initiate an on-chain challenge using the covenant contract (see Fig. 5). Assuming
all goes smoothly, the bidder proceeds to reveal their bid to the hub. However,
if the bidder fails or refuses to disclose their bid, the hub can also employ the
covenant to initiate an on-chain challenge against the bidder.

Rebuttal (Hub ↔ Bidders). In the rebuttal stage, both parties are granted
additional time to tackle any challenges that may have arisen during the opening
phase. This phase essentially functions as a buffer, affording either the hub or the
bidder the opportunity to respond adequately to challenges related to inclusion
proof and bid openings.

Settling (Hub): Announcing Winner Step. After the rebuttal stage con-
cludes, the hub must reveal the winner through the RevealWinner() call of the
auction contract. This step is straightforward if all bidders open their bids. How-
ever, if some bidders refuse to open their bids, the hub will be unable to generate
a zkSnark proof on the existing rootbids, as the zkSnark defined in Eq. (1) re-
quires all bids to be opened. To ensure the continuity of our protocol, the hub
needs to perform the following operations:

(i) Removing Unopened Bids. The hub must reveal the set of unopened
bids, UnopenedBids, on-chain to update the Merkle root accordingly. Crucially,
to prevent a malicious hub from actively excluding certain bidders, the hub must
provide the address of the covenant (i.e., CHBCovenant) deployed on-chain for each
unopened bid, along with the bidder’s signature to prove prior authorization of
the covenant address. Once the auction contract verifies the signature, it checks
that the hub had previously challenged the bidder and received no response (i.e.,
openingChallenged = “True” and openingResolved = “False”). It then updates
the Merkle tree root by replacing the unopened bid with 0.

(ii) Revealing Winner via zkSnark Proof. With all unopened bids removed,
the hub can compute the updated root, rootbids, containing only opened bids,
and issue a valid zero-knowledge proof, π, for the statement described in Eq. (1).
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/*Bidder challenges inclusion proof and hub responds*/

ChallengeInclusion()

1 : Require:

2 : - msg.sender = bidderi

3 : - Auction.GetStage() = “Opening”

4 : Set inclusionChallenged← “True”

RespondInclusion(i, pathi)

1 : Compute leafi = h2p(bidderi, bidi)

2 : Require:

3 : - msg.sender = hub

4 : - Auction.GetStage() ∈ {“Opening”, “Rebuttal”}
5 : - T.Verify(i, leafi,Auction.rootbids, pathi) = 1

6 : Set inclusionResolved← “True”;
/*Hub challenges opening, and bidder responds*/

ChallengeOpening(i, pathi)

1 : Compute leafi = h2p(bidderi, bidi)

2 : Require:

3 : - msg.sender = hub

4 : - Auction.GetStage() = “Opening”

5 : - T.Verify(i, leafi,

Auction.rootbids, pathi) = 1

6 : Set openingChallenged← “True”

RespondOpening(amti, ri)

1 : Require:

2 : - msg.sender = bidderi

3 : - Auction.GetStage() ∈ {“Opening”, “Rebuttal”}
4 : - Vcom(amti, ri, bidi) = 1

5 : Set openingResolved← “True”

/*Update bidder’s or hub’s balances*/

Resolve()

1 : Require Auction.GetStage() = “Completed”

// punish hub if auction fails

2 : if Auction.auctionFailed = “True” : return (2 · maxBid, 0)

// punish if the hub misbehaves

3 : if inclusionChallenged = “True” ∧ inclusionResolved = “False” : return (2 · maxBid, 0)

// punish if the bidder misbehaves

4 : if openingChallenged = “True” ∧ openingResolved = “False” : return (0, 2 · maxBid)

// update balance if the bidder is the winner

5 : if Auction.winner = bidder : return (maxBid− Auction.amtwinner,maxBid + Auction.amtwinner)

// refund both parties if auction fails

6 : return (maxBid,maxBid)

Fig. 5. A covenant contract, CHBCovenant, between Hub and Bidder, initialized with
paramsHBCovenant = (maxBid, bidderi, hub, Cauction.addr, bidi, salt, σi). Here Auction =
Cauction.addr.

Once the proof is verified by Cauction, only the winner and the winning amount
will be accepted, and the NFT will be transferred to the winner. In the event of
tied highest bids, our circuit can be configured to output either the first or the
last highest bidder.

Settling (Seller ↔ Hub, Hub ↔ Bidders): Off-chain Updating Channel
Balances. During this stage, each pair (hub and seller, hub and bidder) can
honestly update the PPC’s balances according to the outcome of the auction
(in PPC [46], this update is done through a signed message named a receipt).
However, if any party refuses to settle off-chain, the other party can resolve this
on-chain in the following completed stage.

Settling (Seller ↔ Hub, Hub ↔ Bidders): On-chain Updating Channel
Balances. Ideally, the protocol should have finished after the settled stage, and
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there should not be any on-chain action after settlement. However, malicious
parties may refuse to update the channel balances. Hence, the honest party needs
to resolve this during the completed stage by registering the previously agreed
covenant with the PPC contract. Then, he can settle through the Resolve()
function call.

Finally, the detailed protocol description can be found in Appendix C.
Security Analysis. We analyze our protocol in the UC framework. We formally
state our theorem as follows. Our formal theorem is stated in terms of a hybrid
world involving hybrid ideal functionalities Fledger (modeling the ledger) and FSC

(modeling a 2-party state channels functionality) and we refer the reader to [46]
for definitions of these. Recall that [46] shows how the (pairwise) state channel
functionality FSC can be emulated via PPC channels. All the formalization and
proofs can be found in Appendix D.

Theorem 1. Assuming the existence of non-interactive UC secure commit-
ments and non-interactive UC secure zkSnark and collision-resistant hash func-
tions, there exists a protocol that UC-realizes Fauctions in the (FSC,Fledger)-hybrid
world. Furthermore, when the hub is honest, the maximum number of on-chain
calls (made via FSC,Fledger) is O(k) with total size O(k log n) where k denotes
the number of adversarial bidders and n denotes the total number of bidders.

Corollary 1. Assuming all underlying cryptographic primitives are secure, our
auction protocol achieves all properties defined in Section 4.2.

6 Evaluation

6.1 Parameters and PPC Implementation

Choices of cryptographic primitives. We use Groth’s zkSnark [30] due to
its efficiency in terms of proofs’ size and the verifier’s cost. For cryptographic
hash functions, we use Poseidon hash function [29] for h2p. Arithmetic circuits
using Poseidon hash yield a lower number of constraints and operations when
compared to arithmetic circuits relying on other hash functions (i.e. SHA-256,
Keccak). Moreover, the Poseidon hash function is not only designed specifically
for zkSnark applications but also highly efficient for smart contract applications
in terms of gas costs. We use ECDSA for our signature scheme. Finally, the com-
mitment scheme and the Merkle tree can be directly instantiated using Poseidon
hash functions.
Software. For the arithmetic circuit construction, we use the Circom library [31]
to construct the circuit, Cwinner, described in Equation (1). We use Groth’s zk-
Snark proof system implemented by the snarkjs library [32] to perform the
trusted setup for obtaining the proving and evaluation keys during the auction
setup (cf. Fig. 8) and to generate the prover and verifier programs, as well as to
compute the witness. We deploy our auction protocol to a private PoW EVM
chain running on Hyperledger Besu v23.1.0. Our auction smart contracts consist
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Table 2. On-chain gas costs for participants in our protocol.

Operations On-chain Cost Invoking Party Case

Deploying cryptographic libraries 4, 507, 969 hub One-time Setup

Deploying Cauction 1, 449, 003 hub Optimistic
approve NFT Transfer 49, 233 seller Optimistic
Start Auction 92, 612 hub Optimistic
SubmitSealedBids 87, 138 hub Optimistic
RevealWinner 763, 444 hub Optimistic

Registering CHSCovenant 459, 140 hub or seller Pessimistic
Registering CHBCovenant 3, 029, 708 hub or bidder Pessimistic

of 1156 lines of Solidity code. We also have a Java application and Python client
for the off-chain protocol, which have 8461 and 1528 lines of code, respectively.

Hardware. We conducted our experiments on a MacBook Pro equipped with
a 2.6GHz 6-Core Intel Core i7 and 16 GB of memory.

Implementation of Programmable Payment Channel (PPC). We have
implemented a Programmable Payment Channel (PPC) as outlined in Section 4.
This auction process takes place off-chain and is secured by collateral held in
PPC established between the hub and participating parties. To assess the auc-
tion protocol, we have deployed a modified version of PPC detailed in [46]. The
pseudocode of the contract used for the payment channel can be found in Fig. 7.
The initial cost of deploying and establishing a PPC between the hub and each
participating party is 3, 243, 988 gas. This represents a one-time cost that not
only covers multiple auctions (up to the available channel funds) but also fa-
cilitates other other off-chain applications. In an optimistic scenario where no
disputes arise in any auctions or other applications, the closure of the channel
will consume 146, 908 gas, spreading the cost across all off-chain transactions.

6.2 Performance

Off-chain costs: zkSnark setup and proving cost. We evaluated our auc-
tion protocol at various tree depths. Note that greater tree depths allow for
accommodating a larger number of bidders. Table 3 presents the zkSnark setup
cost for the statement in Eq. (1). Note that these costs are off-chain, while the
on-chain costs remain constant regardless of the tree depth.

On-chain costs: Hub, sellers, and bidders. Table 2 shows all on-chain costs
for the hub, seller, and bidders in both optimistic and pessimistic cases. In this
optimistic case, bidders do not have to issue any on-chain transactions; therefore,
we do not include it in the table. For the pessimistic case, we consider the cost
of registering a covenant on the PPC contract for participants.

Comparison With Other Auction Designs. We also implemented two other
versions of the auction protocol. First, an on-chain auction where bidders have
to bid and open their bids on-chain. Second, a naive version of our construction
where the hub does not leverage zero-knowledge proof in revealing the winner.
Figure 6 gives a comparison of these protocols.
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Tree
depth

#Contraints
(Cwinner)

Setup
Time

Key Sizes
(ekwinner, vkwinner =
4.0KB)

Proving
Time

4 14, 444 33.213s 7.9MB 3.071s

6 54, 626 55.983s 30.0MB 6.142s

8 213, 896 268.5s 118MB 17.493s

10 849, 518 1001.3s 468MB 61.347s

Table 3. Off-chain Costs: zkSnark Setup
and Proving. For a tree of a depth d, it can
support up to 2d bidders.

7 Conclusion

Auction protocols serve a crucial function in both real-world and blockchain
systems, as they facilitate the discovery of the true value of digital assets and
goods while promoting fairness. Despite their significance, there is an absence of
efficient auction protocols in blockchain, primarily due to the considerable gas
costs and limited scalability associated with on-chain transactions. Furthermore,
such auctions lack adequate privacy protections for bidders, as the amounts of
their bids and their identities are exposed on the public blockchain.

In this work, we presented a novel multi-party off-chain auction protocol,
which is built upon a two-party programmable payment channel. Our imple-
mentation demonstrates that our auction protocol is significantly more efficient
compared to existing on-chain solutions, resulting in a minimal on-chain inter-
action and improved scalability. Additionally, in terms of privacy, we employed
zkSnark to ensure that the on-chain contract and other participants do not gain
any knowledge about the bidders and their bids, except for the identity of the
winner and the winning bid amount.
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Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.
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A Cryptographic Building Blocks

Collision-Resistant Hash Functions. A family H of hash functions is

collision-resistant, iff for all PPT A given h
$←− H, the probability that A finds

x, x′, such that h(x) = h(x′) is negligible. We refer to the cryptographic hash
function h as a fixed function, h : {0, 1}∗ → {0, 1}λ. For the formal definitions
of the cryptographic hash function family, we refer the reader to [40].
Digital Signature. A cryptographic digital signature allows the verification of
the authenticity and integrity of a digital message or transaction.

Definition 1 (Digital Signature). A digital signature scheme, Σ, with a mes-
sage spaceM and a signature space, S consists of three algorithms:

– (sk, vk)← KeyGen(1λ): The probabilistic generation algorithm takes as input
the security parameter and outputs a pair (sk, vk) of secret key and verifica-
tion key.

– σ ← Sign(m, sk) for any m ∈ M: The signing algorithm is a probabilistic
algorithm that takes a private key sk and a message m from the message
spaceM as input and outputs a signature σ in the signature space S.

– 0/1 ← SigVerify(σ,m, vk) The verifying algorithm is a deterministic al-
gorithm that takes a public key vk, a message m, and a signature σ, and
outputs the validity of the signature, b ∈ {0, 1}.

We require the signature scheme Σ to satisfy the correctness and the existential
unforgeability properties of a digital signature scheme.
Commitment Scheme. A commitment scheme allows an entity to commit to
a value while keeping it hidden, with the option of later revealing the value. A
commitment scheme contains two rounds: committing and revealing. During the
committing round, a client commits to selected values while concealing them
from others. During the revealing round, the client can choose to reveal the
committed value.

Definition 2 (Commitment Scheme). A commitment scheme consists of
two algorithms:

– cm ← Pcom(m, r) accepts a message m and a secret randomness r as inputs
and returns the commitment string cm.

– 0/1 ← Vcom(m, r, cm) accepts a message m, a commitment cm and a de-
commitment value r as inputs, and returns 1 if the commitment is opened
correctly and 0 otherwise.

A commitment scheme should satisfy the properties of hiding, binding, non-
malleable, and non-interactive. In particular, hiding reveals nothing about the
committed data, binding implies that no adversary can modify the committed
data after it is committed, and non-malleability implies that given a commit-
ment, cm = Pcom(m, r), an adversary cannot output cm′ = Pcom(m

′, r′) on a
message m′ that is related to m. Finally, non-interaction means there is no in-
teraction between participants. For the formal definitions of these properties, we
refer readers to [19].
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zkSnark. A zero-knowledge Succinct Non-interactive ARgument of Knowledge
(zkSnark) is a “succinct” non-interactive zero-knowledge proofs (NIZK) for arith-
metic circuit satisfiability. For a field F, an arithmetic circuit C takes as inputs
elements in F and outputs elements in F. We adopt a similar definition from
Zerocash [41] to define the arithmetic circuit satisfiability problem. An arith-
metic circuit satisfiability problem of a circuit C : Fn × Fh → Fl is captured
by the relation stC : {(x,wit) ∈ Fn × Fh : C(x,wit) = 0l}, with the language
LC = {x ∈ Fn | ∃ wit ∈ Fl s.t C(x,wit) = 0l}.

Definition 3 (zkSnark [41]). A zero-knowledge Succinct Non-interactive AR-
gument of Knowledge for arithmetic (zkSnark) circuit satisfiability is a triple of
efficient algorithms (Setup, Prove, Verify):

– (ek, vk)← Setup(1λ, C) takes as input the security parameter and the arith-
metic circuit C, outputs an evaluation key ek, and a verification key vk.

– π ← Prove(ek, x,wit) takes as input the evaluation key ek and (x,wit) ∈ RC ,
outputs a proof π for the statement x ∈ LC

– 0/1← Verify(vk, x, π) takes as input the verification key vk, the public input
x, the proof, π, outputs 1 if π is valid proof for x ∈ LC .

Apart from Correctness, Soundness, and Zero-knowledge properties, a zk-
Snark requires two additional properties, Succinctness and Simulation Ex-
tractability [30].
Merkle Tree. In this work, we are only interested in the Merkle tree as an
authenticated data structure for set membership.

Definition 4 (Merkle Tree [8]). A Merkle tree is an authenticated data struc-
ture using a collision-resistant hash function h. A Merkle tree consists of four
algorithms that work as follows:

– root← Init(1λ, X) takes the security parameter and a list X = (x1, . . . , xn)
as inputs and outputs a root, root.

– pathi ← Prove(i, x,X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and X =
(x1, . . . , xn) as inputs, and outputs the proof pathi, a list of internal nodes
inside the tree, that can be used to recompute the root.

– 0/1← Verify(i, xi, root, pathi) takes an element, xi ∈ {0, 1}∗, an index 1 ≤
i ≤ n, root ∈ {0, 1}λ and a proof path as inputs. The algorithm outputs 1 if
path is correctly verified and 0 otherwise. The verification time is logarithmic
in the size of the list X.

– root′ ← Update(i, x,X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and X
as inputs, and outputs root′ = Init(1λ, X ′) where X ′ is X but xi ∈ X is
replaced by x.

A Merkle tree should satisfy the properties of correctness and security. For the
formal definitions of these properties, we refer to the cryptography introduction
book of Boneh and Shoup [8].
Efficient Replace. The update algorithm described previously needs the entire
set X to be able to recalculate the root. Nevertheless, it is feasible to update
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the root without knowing the entire set. Specifically, we can update the root
in O(log(|X|)) operations using only the information about the membership of
the node that one wants to replace and the current root. This update will allow
an efficient on-chain update of the Merkle tree. In our protocol, this allows us
to maintain the auction protocol’s continuity, even if certain bidders decline to
disclose their bids.

– root′/⊥ ← Replace(i, x, root, pathi, x
′): takes as input the index i, the old

element x and its membership proof pathi, and the new element, x′ that we
want to put in i position. The algorithm verifies the membership of both x
in the old root using pathi, abort otherwise. Once the verification returns 1,
it recomputes the root root′ using x′ and pathi.

B Programmable Payment Channel Construction (PPC)

For completeness, in this section, we provide the detailed construction of PPC
contract as described in [46].
CREATE2 Opcode. PPC relies on a new Ethereum Virtual Machine op-
code, CREATE2, that was introduced in EIP-1014. The CREATE2 opcode allows to
predict the contract’s address before the contract is deployed. It computes the
address of the created contract as, addr = H(0xFF, sender, salt, C) where Sender
is the contract’s creator, H is Keccak-256, salt is a 256-bit value chosen by the
creator, and the output addr is the address of the contract C.
PPC Contract. We present the detailed implementation of programmable pay-
ment channels contract in Fig. 7. The programmable payment channel contract
is initialized with a channel id cid, the parties’ public keys vkA and vkB , and an
expiry time claimDuration by which the channel settles the amounts deposited.
We track the deposit amount and the credit amount (which will be monotoni-
cally increasing) for the two parties. In addition, we also track a receipt id and an
accumulator value Acc. We will describe what these are for below, but for now
think of receipts as keeping track of received promises that have been resolved
off-chain, and the accumulator as keeping track of received promises that have
not yet been resolved.
From PPC to Two-party State Channel. Yang et al. [46] showed how
PPC can realize a state channel by compiling a contract into two interlocked
promises (i.e., covenant) that can be used with the PPC contract. This is done
by precomputing the on-chain addresses of both promises and initialized each
other with the addresses included inside the parameters. In this work, we omit
these technical details and refer the reader to [46] for this generic compiler. We
call the two interlocked promises a covenant, and it works as follows:

(1) Opening a PPC Both parties can unilaterally open a PPC by deploying
an instance of a PPC contract (cf. Fig. 7) on-chain that includes data of both
parties (e.g., their addresses vkA, vkB). At any point of time, both parties can
top up their balance via an on-chain function call, Deposit().
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Deposit(amt)

1 : Require status = “Active” ∧ caller.vk ∈ {A.addr, B.addr}
2 : if caller.vk = A.addr : A.deposit← A.deposit+ amt

3 : if caller.vk = B.addr : B.deposit← B.deposit+ amt

RegisterReceipt(R)

1 : Require status ∈ {“Active”, “Closing”}
2 : if status = “Active” : chanExpiry← now + claimDuration ∧ status← “Closing”

3 : Require caller.vk ∈ {A.addr, B.addr}
4 : if caller.vk = A.addr :

- Require SigVerify(R.σ, [cid, R.idx, R.credit, R.Acc], B.addr)

- Set A.rid← R.idx, A.credit← R.credit, A.Acc← R.Acc

5 : else :

- Abort if SigVerify(R.σ, [cid, R.idx, R.credit, R.Acc], A.addr)

- Set B.rid← R.idx, B.credit← R.credit, B.Acc← R.Acc

RegisterPromise(P )

1 : Require status ∈ {“Active”, “Closing”}
2 : if status = “Active” : chanExpiry← now + claimDuration, status← “Closing”

3 : Require caller.vk ∈ {A.addr, B.addr}
4 : Require [P.addr, P.receiver] ̸∈ unresolvedPromises

5 : if P.sendr = A.addr : sendr← A, receiver← B

6 : else : sendr← B, receiver← A

7 : Require SigVerify(P.σ, [cid, P.rid, P.sendr, P.receiver, P.addr], sendr.addr)

8 : if caller.vk = receiver.addr ∧ P.rid < receiver.rid :

Require: ACC.VerifyProof(Acc, P.addr, P.proof)

9 : Invoke Deploy(P.byteCode, P.salt)

10 : Set unresolvedPromises.push([P.addr, receiver])

Close()

1 : Require caller.vk ∈ {A.addr, B.addr}
2 : if caller.vk = A.addr : A.closed← T; else B.closed← T

3 : if A.closed ∧ B.closed, status← “Closed”

4 : if status = “Active” : chanExpiry← now + claimDuration, status← “Closing”

Withdraw()

1 : Require status ∈ {“Closing”, “Closed”}
2 : if status = “Closing”, Require now > chanExpiry

3 : For each (addr, receiver) ∈ unresolvedPromises :

receiver.credit← receiver.credit+ addr.resolve()

4 : Let total = A.deposit+ B.deposit

5 : Invoke transfer(A.addr,min(total,max(0, A.deposit+ A.credit− B.credit)),

6 : Invoke transfer(B.addr,min(total,max(0, B.deposit+ B.credit− A.credit))

Fig. 7. PPC contract
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(2) Creating a Covenant Both parties can engage in an interactive, off-chain
protocol to mutually agree on the contract’s logic (denoted by Ccovenant) that they
want to execute on their previously opened PPC. In a bit more detail:

– P ← ⟨CreateCovenant(Ccovenant, params, skA), CreateCovenant(Ccovenant,
params, skB)⟩: This is a two-party protocol to mutually agree on a con-
tract Ccovenant. Once both parties agree on parameters (e.g., params =
(amtA, amtB , salt)) to be supplied to the contract Ccovenant, they both sign
the payload consisting of the smart contract code and its initialization pa-
rameters. Finally, both parties will receive P = (Ccovenant, params, σA, σB)
which acts as authorization from both parties.
Remark 1. We note that this is a two-step protocol, where one party needs to
initiate the covenant creation step. It’s possible for the other party to decline
a response with a signature yet subsequently register the covenant on-chain.
Nevertheless, once the covenant is registered on-chain, the initiating party
will receive the signature of the non-initiating party.

– 0/1 ← VerifyCovenant(P, vkA, vkB): This function takes as input the
covenant P , and two signature verification keys, vkA and vkB , and returns
1 if the covenant P was successfully authorized by both Alice and Bob.

(3) Executing a Covenant Upon agreeing on a covenant P , both parties can
begin executing functions specified in the covenant contract, Ccovenant, off-chain
(i.e., the optimistic path). During the protocol, if one party fails to respond,
the other party can bring the covenant on-chain via the PPC contract. Upon
receiving a valid covenant P , the PPC contract deploys the Ccovenant encapsulated
within P to the blockchain. After that, the other party can bring the latest state
on-chain and wait for the unresponsive party to respond (i.e., the pessimistic
path). Any covenant P deployed through PPC is considered unresolved.
(4) Closing a PPC At any point in time, either party can request to close the
channel. When the channel is in a closing stage, no new covenants are created and
parties bring their not yet executed covenants to the PPC contract (see above).
After submitting all outstanding covenants (and their on-chain execution), the
PPC contract queries all unresolved covenants to settle their balances.

C Detailed Protocol

In this section, we detail all the missing protocols. In particular, the protocol
setup, subprotocol between hub, and subprotocol between seller and between
hub and bidders.

C.1 Protocol Setup

Prior to initiating the auction protocol, a one-time trusted setup is to securely
generate all public parameters for the cryptographic components used in our
protocol. Specifically, the cryptographic components include the following.
Proving Statement. In our auction protocol, to reveal the winner, the hub
needs to prove the following claims (i) the revealed winner (winner) participated
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AuctionSetup(1λ)

1 : Sample h2p : F× F→ F
2 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d} where xi = 0 for all xi ∈ X

3 : Let T be a Merkle tree instance parameterized with h2p :

− Run rootbids = T.Init(1λ, X),

4 : Let Γ = (Pcom, Vcom) be a commitment scheme.

5 : Construct Cwinner for the statement described in Eq. (1)

6 : Let Π be a zkSnark instance :

− Run (ekwinner, vkwinner)← Π.Setup(1λ, Cwinner)

7 : Return paramsCrypto = (F, h2p, Γ, T,Π, ekwinner, vkwinner, rootbids)

Fig. 8. Auction’s cryptographic parameters setup

in the auction during the bidding stage, (ii) the amount committed by the winner
is the highest amount among all bids.

stWinner : {(rootbids,winner, amtwinner, numBids;

w, {j, leafj , pathj , bidderj , amtj , rj}j∈[numBids]) :

// leaves are computed correctly

bidj = Pcom(amtj , rj) ∧ leafj = h2p(bidderj , bidj) for j ∈ [numBids] ∧
// bids are included in the computation of rootbids previously

T.Verify(j, leafj , rootbids, pathj) = 1 ∧
// winner has the highest amount

winner = bidderw ∧ amtwinner = amtw = max({amtj}j∈[numBids])}
(1)

In the case of equal highest bid amounts, we can design the circuit for this
statement to output the first or last bidder with the highest bid amount.

C.2 Subprotocol between Hub and Seller

the protocol between hub and seller work as follows.
(1) Auction parameters agreement. Before starting the auction, Hub and
Seller agree on the details of the auction contract, Cauction (cf. Fig. 3), the
cryptographic parameters (paramscrypto), the auction parameters, paramsauction,
consisting of the seller’s address, seller, the hub’s address, hub, the address of
the item, tokenID, the address of the NFT contract, nftAddress, the durations
of different bidding stages, Durations = (Tbidding,Topening,Trebuttal,Tsettle), and the
max bid amount, maxBid. At the end of this step, both parties know the contract,
Cauction and the parameters, params = (paramscrypto, paramsauction)
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(2) Hub deploys the auction contract initialized with agreed param-
eters. Once both parties agree to the parameters, the Hub deploys the auc-
tion contract on-chain and initializes it with the agreed-upon parameters (i.e.,
paramscrypto, paramsauction).
(3) Create a covenant from the contract, CHSCovenant. Once the auc-
tion contract is deployed, both hub and seller run CreateCovenant protocol
on the contract code CHSCovenant (cf. Fig. 4) and parameters for the contract
paramsHSCovenant = (maxBid, Cauction.addr, salt) to obtain the PHSCovenant which
serves as an authorization from both parties on the code and the parameters for
the contract. The covenant PHSCovenant guarantees either a payout for the seller
if there is a winner, or a reimbursement for the seller with the amount maxBid
by the hub if the auction fails.
(4) Seller approves NFT transfer. Once the covenant is created between the
seller and the hub, the seller can approve the auction contract to transfer the
token, tokenID, to itself to start the auction.
(5) Hub starts the auction. Upon receiving approval from the seller, the hub
can start the auction anytime by invoking Start(). Upon the Start() event,
nftAddress will transfer the ownership of tokenID to the auction contract, and
the auction moves to the subprotocol between the hub and the bidders (i.e.,
Bidding, Opening, and Rebuttal stages).

Steps (1)-(5) capture the creation stage in our protocol. Figure 9 gives a
pictorial illustration of how these steps work.
(6) Settlement between Seller and Hub. Once the auction is finished, hub
updates the channel balance according to the auction’s outcome. As we described
in Section 3.2 and Fig. 1, in PPC, this step can have two possible paths:

– (6a: Optimistic Path) Hub follows the protocol. It can either pay the seller
the same amount as the highest bidder’s bid if there is one, or pay the
amount maxBid if the auction fails. Note that this channel update can be
done efficiently by issuing a signature on the channel state (i.e., receipt).
Upon receiving this receipt, the seller can always register this receipt with
the PPC contract to update the channel state.

– (6b: Pessimistic Path) Hub refuses to follow the protocol by providing wrong
receipt or seller ignores the receipt. If the hub refuses to send the receipt,
the seller can choose to register the covenant PHSCovenant with the PPC con-
tract and request payment directly on-chain according to the outcome of the
auction (i.e., Cauction). This happens when the auction is in the completed
stage.

We provide a detailed protocol on how hub and seller agree on on the creation
of the auction in Fig. 10, and Fig. 11 outlines how this settlement step works.

C.3 Subprotocol between Hub and Bidders

Bidding Stage. This stage is for bidders to place bids with the hub and mutu-
ally agree on the parameters for the covenant contract with the hub.

27



Blockchain, L

Seller, S, (skseller) Hub (skhub) NFT Contract Auction Contract

Creation

(1) Agree on auction parameters

(2) Deploy Auction Contract

(3) PHSCovenant ← CreateCovenant(CHSCovenant, params, ·)

(4) Invoke Approve(Auction,TokenID)

(5) Invoke Start() to start the auction

TransferFrom(Seller,Auction,TokenID)

Fig. 9. PPC Auction: Subprotocol between seller and hub.

(1) Parameters agreement (e.g., sealed bid) for the bidder-hub con-
tract, CHBCovenant. This step allows each bidder to agree with the hub on the
parameters for the CHBCovenant (cf. Fig. 5), and register the sealed bid as one of
these parameters. CHBCovenant makes sure both parties follow all subsequent steps
of the protocol.

The bidder chooses an amount amti from [0, . . . ,maxBid], samples a
nonce, ri, and computes bidi = Pcom(amti, ri). The bidder specifies the logic
of CHBCovenant initialized with the following parameters, paramsHBCovenant =
(maxBid, bidderi, hub, Cauction.addr, bidi, salt, σi) where maxBid and Cauction.addr
are from Cauction, σi is a valid signature on the address of CHBCovenant. This
address can be computed using the CREATE2 opcode. Finally, the bidder sends
(CHBCovenant, paramsHBCovenant) to the hub. Once the hub verifies the logic of
CHBCovenant and paramsHBCovenant, the hub and bidder move to the next step.
(2) Create a covenant from the contract CHBCovenant. Both hub and bidder
will run CreateCovenant() on CHBCovenant initialized with paramsHBCovenant to
obtain PHBCovenant. This covenant ensures two things: (i) hub will agree to include
the bidder’s bid and provide the inclusion proof or get punished otherwise, and
(ii) the bidder will open the sealed bid eventually before the end of the rebuttal
stage or get punished otherwise.
(3) Hub accumulates sealed bids and update the auction contract.
Before the bidding stage finishes, hub will accumulate all submitted sealed bids
into a Merkle tree where the leaf is leafi = h2p(bidderi, bidi) and submit the
rootbids to the auction contract (cf. function SubmitSealedBids()). This step
minimizes the data to be included on-chain.

Remark 2. It should be noted that our protocol requires that the collateral must
be equivalent to the maxBid, an important element of the covenant’s parameters.
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Create Auction Protocol

Preliminaries. seller wishes to auction its NFT tokenID in contract
nftAddress, with the following parameters: maxBid price for the maximum
bid and Durations that identifies the different stages of our protocol.
Let L be the blockchain that both seller and hub use to post transactions,
CHSCovenant to be the agreed covenant that hub and seller agree on (see Fig. 4),
Cauction be the publicly available contract Fig. 3, paramscrypto be the pub-
lic cryptographic parameters used the Auction contract shown in Fig. 8,
CreateCovenant() be an idealized protocol that allows both hub and seller
to agree on the covenant. CreateCovenant() can be instantiated using two
interlocked promises in PPC.

Protocol.

1. seller begins by performing the following steps:
(a) paramsauction ← (hub, seller, nftAddress, tokenID,maxBid,Durations);
(b) Send [CreateAuction, (paramsauction, paramscrypto)] to hub.

2. Upon receiving [CreateAuction, (paramsauction, paramscrypto)] from a
seller, hub performs the following steps:
(a) Verify all parameters in paramsauction and paramscrypto;
(b) params← (paramsauction, paramscrypto);
(c) L.DeployContract(Cauction, params);

(d) Upon Cauction is deployed at Cauction.addr, Hub samples salt
$←− {0, 1}λ

and sets paramsHSCovenant = (maxBid, Cauction.addr, salt);
(e) Participate in CreateCovenant(CHSCovenant, paramsHSCovenant, ·) with

seller;
(f) Once CreateCovenant() outputs a valid covenant PHSCovenant =

(CHSCovenant.code, paramsHSCovenant, σhub, σseller), Hub waits for the
seller to approve the transfer. Abort otherwise.

3. Upon receiving valid [PHSCovenant] from CreateCovenant() protocol, seller
performs the following steps:
(a) Invoke nftAddress.Approve(tokenID,Auction);

4. When nftAddress.getApproved(tokenID) = Auction, hub invokes
Auction.Start();

Fig. 10. Detailed subprotocol between seller and hub

This requirement is to impose a financial penalty on the bidder in case of any
deviation from the established protocol.

Opening Stage. Once the bidding stage is over, the protocol advances to the
opening stage. During this stage, the hub has to provide the inclusion proof to
the bidder to prove that her bid has been included in the Merkle root, and once
the bidder receives this proof, she has to open her bid to the hub. In particular,
this stage works as follows.
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Blockchain, L

Seller, S, (skseller) Hub (skhub) PPC CHSCovenant Auction Contract

Settling

(6a) Update channel’s balance

Completed

Register PHSCovenant

Deploy CHSCovenant

Invoke Withdraw()

Invoke CHSCovenant.Resolve()

Update seller’s balance based on Cauction

(6b) Pessimistic Path (Hub does not send receipt)(6b) Pessimistic Path (Hub does not send receipt)

Fig. 11. PPC Auction: Protocols between seller and hub. Settling stage: step (6a)
indicates the optimistic path where Hub is honest and sends the receipt and step (6b)
is when hub does not send the receipt

(4) Hub sends bidder the inclusion proof. In this step, the hub must prove
the bidder that her bid has been included. In this step, there can be two possible
scenarios:

– (4a: Optimistic Path) Both Hub and Bidder follow the protocol. Hub sends
back the Merkle path, pathi, proving that leafi = h2p(bidderi, bidi) is included
in the computation of rootbids. Once the bidder receives the proof and verifies
the validity of the proof, she advances to the next step.

– (4b: Pessimistic Path) Either one of them does not follow the protocol. In this
case, bidder can register PHBCovenant with the PPC contract. Upon receiving
a valid covenant, the PPC contract will deploy CHBCovenant on-chain, and
at this point, bidderi can directly challenge (cf. ChallengeInclusion()) the
hub to provide the inclusion proof on-chain (via RespondInclusion()).

(5) Bidder sends hub the opening of the sealed bid. In this step, the
bidder has to open her previous sealed bid by sending the hub the opening (i.e.,
amt, r). There can be two possible scenarios:

– (5a: Optimistic Path) Both parties follow the protocol. In particular, if the
bidder sends a valid opening (amti, ri) (i.e. Vcom(amti, ri, bidi) = 1), hub
advances to the next step.

– (5b: Pessimistic Path) If one of them decides not to follow the protocol.
In this case, the hub can register PHBCovenant with the PPC contract. Upon
receiving a valid covenant, the PPC contract will deploy CHBCovenant.code
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on-chain. Once CHBCovenant is on-chain, the hub can challenge the bidder,
bidderi, on the opening of bidi (cf. ChallengeOpening()), and the bidder
will have to respond to the challenge on-chain (via RespondOpening()).

Rebuttal Stage. We note that upon receiving any challenge during the opening
stage, both parties can either respond immediately or respond during the rebut-
tal stage. Hence, the goal of this rebuttal stage is to give both parties enough
time to reply to any existing on-chain challenges (cf. ChallengeInclusion or
ChallengeOpening).
(6) Rebuttal to any existing on-chain challenges. During the rebuttal
stage, either hub or bidder can respond to any existing on-chain challenges (cf.
RespondInclusion() and RespondOpening()) from the other party.

Step (1)-(6) captures three stages of our protocol, namely, the bidding, open-
ing and rebuttal stage. Figure 13 illustrates the protocol between the hub and
bidders.

Remark 3. To safeguard against auction failure due to zero participants, one can
require that the seller initiates the auction by placing a sealed bid as the first
bidder. This approach also allows the seller to set a minimum price for the item
up for trade. Without loss of generality, we define seller = bidder0.

Finally, in Figure 12, we described in detail the protocol between Bidders
and Hub.
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Subprotocol between Hub and Bidders

Preliminaries. After creating the Auction, bidders and hub begin the Bid-
ding protocol. Without loss of generality, here we focus on the interactions of
a single bidder, bidderi and hub, hub. Let L be the chain that both parties
seller and hub use to post transactions, CHBCovenant to be the condition/logic
of the covenant that hub and bidder want to agree on, known by both parties
(see Fig. 5), CPPC be the contract of the PPC channel between hub and bid-
der, Cauction be the publicly available contract Fig. 3, params = (paramsauction,
paramscrypto) to be the public parameters known by both hub and bidder after
the deployment Cauction, maxBid to be the value that both hub and bidder
have previously agreed to be paid to bidder in case of an auction failure,
CreateCovenant() be an idealized protocol that allows both hub and bidder
to agree on the covenant. CreateCovenant() can be instantiated using two
interlocked promises in PPC.

Protocol.

1. bidder waits till Cauction.GetStage() = “Bidding” and begins by perform-
ing the following steps:
(a) Sample salt, ri ← {0, 1}λ
(b) Compute: CHBCovenant.addr = H(0xFF, CPPC.addr, salt, CHBCovenant.code)
(c) Sign: σi ← Sign(CHBCovenant.addr, skbidderi)
(d) Chose amti ∈ [0,maxBid], bidi = Pcom(amti, ri)
(e) Set: paramsHBCovenant = (maxBid, bidderi, hub, CAuction.addr, bidi, salt, σi)
(f) Participate in CreateCovenant(CHBCovenant, paramsHBCovenant, ·) with

the hub;
(g) Once CreateCovenant() outputs a valid covenant PHBCovenant, bidder

waits for hub to return the inclusion proof. Abort, otherwise.
2. Upon receiving all [PHBCovenant,i] from the CreateCovenant() protocol

with bidder, bidderi, hub performs the following steps:
(a) (maxBid, bidderi, hub, CAuction.addr, bidi, salt, σi) ← paramsHBCovenant;
(b) Compute leafi = h2p(bidderi, bidi);
(c) Compute rootbids = T.Init(1λ, {leaf1, . . . , leafnumBids, 0, . . . })
(d) Invoke SubmitSealedBids(numBids, rootbids);
(e) Compute pathi for bidderi, send [InclusionProof, (i, pathi)] to

bidderi.
3. Upon receiving [InclusionProof, (i, pathi)] from a hub, bidderi performs

the following steps:
(a) Retrieve rootbids from Cauction;
(b) Compute leafi = h2p(bidderi, bidi)
(c) If T.Verify(i, leafi, rootbids) = “False”: challenge hub by

registering PHBCovenant with the PPC contract, then invoke
ChallengeInclusion() on CHBCovenant;

(d) Upon receiving a valid opening, send [Opening, (amti, ri)] to the hub.
4. Upon receiving [Opening, (amti, ri)] from a bidderi, hub performs the

following steps:
(a) If Vcom(amti, ri, bidi) = “False”: challenge the bidder by registering

PHBCovenant with the PPC contract, then invoke ChallengeOpening()
on CHBCovenant;

(b) Upon receiving a valid opening, hub stores mi, ri, and wait for the
rebuttal period to be over.

Fig. 12. Bidder and Hub bidding protocol
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Blockchain, L

bidderi, (skbidderi) Hub (skhub) PPC CHBCovenant Auction Contract

Bidding Stage

(1) Agree on CHBCovenant, paramsHBCovenant

(2) PHBCovenant ← CreateCovenant(CHBCovenant, . . . )

Wait for other bidders to bid

(3) rootbids = T.Init(1λ, (leaf1, . . . )

(3) Invoke SubmitSealedBids(numBids, rootbids)

Opening Stage

(4a) Send inclusion proof, (i, pathi)

Register PHBCovenant

Deploy CHBCovenant

Invoke ChallengeInclusion()

Invoke RespondInclusion(i, pathi)

(4b) Challenge (Hub does not send inclusion proof)(4b) Challenge (Hub does not send inclusion proof)

(5a) Send amti, ri s.t. Vcom(amti, ri, bidi) = 1

Register PHBCovenant

Deploy CHBCovenant

Invoke ChallengeOpening(i, pathi)

Invoke RespondOpening(amti, ri)

(5b) Challenge (Bidder does not open)(5b) Challenge (Bidder does not open)

Rebuttal

Invoke RespondInclusion(pathi)

Invoke RespondOpening(amti, ri)

(6) Responds to existing challenges(6) Responds to existing challenges

Fig. 13. PPC Auction: Subprotocol between bidder and hub.
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D Formalization

The ideal functionality Fauction is presented in Figures 14 and 15. The
ideal functionality somewhat closely follows the structure of the protocol it-
self, and has similar stages whose durations are specified by Durations =
[Tbidding,Topening,Trebuttal,Tsettle]. The other parameters in the auction are the
usual parameters hub, seller, nft and maxBid. For ease of notation we define the
cumulative durations T⋆

bidding,T
⋆
opening,T

⋆
rebuttal,T

⋆
settle as in Figure 14. We assume

that the ideal functionality has access to the balances hashmap through the ideal
functionality Fledger.

Transfer stage. At a high level, the ideal functionality Fauctions operates as
follows. It waits to receive the transfer message from the seller specifying the
nft that it wishes to auction off. On receiving it, the ideal makes itself the owner
of the nft (until the auction concludes) and locks up maxBid from the balance
of the seller. (Note that we will be abstracting out the covenants from the ideal
world.) This concludes the Transfer stage, and Tstart is initialized to the current
time (indicating the start of the auction).

Bidding stage. In the bidding stage, the bidders submit their bids to the ideal
functionality. After doing some sanity checks (including checking if the bidder
has sufficient balance), the ideal functionality forwards the bidder identity bidderi
(and not the bid amount) to the hub. If the hub responds with ok, then this would
correspond to a successful covenant creation in the real world, and consequently
in the ideal, we would lock up maxBid amount from the hub as well as bidderi.
No bid submission is allowed after this stage.

Opening stage. In the opening stage, all the bids (in particular, from those
parties that the hub agreed to create a covenant with) are revealed to the hub.

Settling stage. In this stage, we expect the simulator to send a message of the
form (reveal, S) and a message of the form (settle, S1, S2). Briefly speaking,
the set S corresponds to the set of bidders among whom the winner is selected.
Note that when the hub is honest, we enforce that the set S includes all honest
bidders. (When the hub is dishonest, some honest bidders may be excluded.)
The set S1 corresponds to the set of parties for whom the hub compensates with
a balance increase of maxBid in the covenant. The set S2 corresponds to the set
of parties who compensate the hub with a balance increase of maxBid in the
covenant. Note that the ideal functionality Fauction ensures that S2 ⊆ C thereby
guaranteeing that the honest parties never compensate the hub. Likewise the
ideal enforces that when the hub is corrupt, either honest parties get included
in the auction, i.e., the set S or they get compensated, i.e., included in the set
S1. On the other hand, when the hub is honest, it is guaranteed that all honest
parties get included in the auction, i.e., in the set S, and also that the hub never
compensates any (dishonest) party (i.e., the set S1 = ∅). The ideal Fauction then
computes the winner of the auction, and sets nft.owner to the winner.

Resolve stage. In this stage, each of the participants are allowed to send a
resolve message to the ideal. This corresponds to the parties resolving the
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covenants in the real world. First, when the seller submits a resolve message,
then if the winner is properly defined, the balances are adjusted to reflect the
money transfer from the hub to the seller corresponding to the winning bid.
When the bidder or the hub submits a resolve message, then the balances of the
corresponding bidder and the hub are adjusted depending on the auction winner
and the sets S1, S2, as shown in Figure 15. At a high level, if the auction win-
ner is not decided (i.e., the auction failed), then the bidder that sent a resolve
message will get an additional maxBid (remember we locked up maxBid from
the bidder’s balance in the bidding stage) as compensation. Next, if the bidder
happens to be the winner then the original deposit of maxBid minus the winning
bid is returned to the bidder. Likewise for the hub, the original deposit plus the
winning bid is returned. Finally, if the bidder is not the winner, then the hub
and the bidder are returned their original deposit of maxBid. This concludes the
description of the ideal functionality in Figures 14 and 15.

We now state our formal theorem. Our formal theorem is stated in terms
of a hybrid world involving hybrid ideal functionalities Fledger and FSC and we
refer the reader to [46] for definitions of these. Recall that [46] shows how the
(pairwise) state channel functionality FSC can be emulated via PPC channels.
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Fauction

Preliminaries. The parties involved are the bidders bidderi, i ∈ [n], the
hub hub, and the seller seller. The NFT being auctioned is nft. We assume
Fauction has access to nft through the ideal functionality Fledger. The maxi-
mum bid price set by the seller is maxBid. The durations of the various stages
of the auction are defined by Durations = [Tbidding,Topening,Trebuttal,Tsettle].
Let t denote the current time and the starting time Tstart = ∞. The auction
parameters paramsauction are (hub, seller, nft,maxBid,Durations). We define cu-
mulative times (after Tstart has been reinitialized from ∞ in Transfer below)
as Durations⋆ = [T⋆

bidding,T
⋆
opening,T

⋆
rebuttal,T

⋆
settle], where

– T⋆
bidding = Tstart + Tbidding,

– T⋆
opening = T⋆

bidding + Topening,
– T⋆

rebuttal = T⋆
opening + Trebuttal,

– T⋆
settle = T⋆

rebuttal + Tsettle

The bids submitted by the parties are maintained by the ideal functionality
in the hashmap bids. (For ease of presentation, we assume Fauction has access
to the hashmap balances through the ideal functionality FSC.) Without loss
of generality, we define bidder0 = seller.

Transfer. When the seller seller first submits a message of the form
(transfer, nft):

– If nft.owner ̸= seller, return ⊥.
– Send the message (transfer, seller) to the hub hub.
• If hub responds with (ok, seller), then set

∗ nft.owner = Fauction,
∗ balances[hub] = balances[hub]−maxBid,
∗ bids[0] = 0,
∗ Tstart = t,

and return success.
• Else, return ⊥.

Bid. When bidder bidderi first submits a message of the form (bid, amti):

– If t ̸∈ [Tstart,T
⋆
bidding], return ⊥.

– If balances[bidderi] < maxBid, return ⊥.
– If amti > maxBid, return ⊥.
– Send the message (bid, bidderi) to the hub hub.
• If hub responds with (ok, bidderi), then set

∗ bids[i] = amti,
∗ balances[bidderi] = balances[bidderi]−maxBid,
∗ balances[hub] = balances[hub]−maxBid,

and return success.
• Else, return ⊥.

Fig. 14. Ideal auction functionality Fauction (Part 1 of 2)
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Fauction (contd.)

Open. When bidder bidderi first submits the message open:

– If t ̸∈ [T⋆
bidding,T

⋆
opening], return ⊥.

– If bids[i] = ⊥, return ⊥.
– Send the message (open, bidderi, bids[i]) to the hub hub, and return

success.

Settle. When the simulator first submits the message (reveal, S), and addi-
tionally submits the message (settle, S1, S2):

– If t ̸∈ [T⋆
rebuttal,T

⋆
settle], return ⊥.

– If the hub is honest and (H ̸⊆ S or S1 ̸= ∅), where H is the set of honest
parties, return ⊥.

– If the hub is corrupt and H ̸⊆ S∪S1, where H is the set of honest parties,
return ⊥.

– If S2 ̸⊆ C, where C is the set of corrupt parties, return ⊥.
– If 0 ̸∈ S, return ⊥.
– Set winner = argmaxj∈S bids[j].
– Set nft.owner = bidderwinner.
– Send the message (winner,winner) to the simulator and all parties, and

return success.

Resolve. When the seller seller first submits the message resolve, or the hub
hub submits the message (resolve, seller):

– If t ≤ T⋆
settle, return ⊥.

– If winner = ⊥, set balances[seller] = balances[seller] +maxBid.
– If winner ̸= ⊥, set
• balances[hub] = balances[hub] + (maxBid− bids[winner]),
• balances[seller] = balances[seller] + bids[winner]

– Return success.

When the bidder bidderi first submits the message resolve, or the hub hub
submits the message (resolve, bidderi):

– If t ≤ T⋆
settle, return ⊥.

– If winner = ⊥, set balances[bidderi] = balances[bidderi] + 2 · maxBid and
return success.

– If i ∈ S1, set balances[bidderi] = balances[bidderi] + 2 ·maxBid and return
success.

– If i ∈ S2, set balances[hub] = balances[hub]+2·maxBid and return success.
– If winner = bidderi, set
• balances[hub] = balances[hub] + (maxBid+ bids[winner]),
• balances[bidderi] = balances[bidderi] + (maxBid− bids[winner])

– If winner ̸= bidderi, set
• balances[hub] = balances[hub] +maxBid,
• balances[bidderi] = balances[bidderi] +maxBid

– Return success.

Fig. 15. Ideal auction functionality Fauction (Part 2 of 2)37



Theorem 1. Assuming the existence of non-interactive UC secure commit-
ments and non-interactive UC secure zkSnark and collision-resistant hash func-
tions, there exists a protocol that UC-realizes Fauctions in the (FSC,Fledger)-hybrid
world. Furthermore, when the hub is honest, the maximum number of on-chain
calls (made via FSC,Fledger) is O(k) with total size O(k log n) where k denotes
the number of adversarial bidders and n denotes the total number of bidders.

Proof sketch. We now sketch the proof of the theorem. We start by sketching the
description of the simulator with some brief inline arguments to prove indistin-
guishability of the simulation from the real execution.

Case 1: Hub is Corrupt. We first consider the case when the hub is corrupt.
In the real protocol, the seller and hub agree on the auction parameters. Then

the hub sends a message to Fledger to deploy the auction contract. The simulator
acting as Fledger accepts the auction contract, and checks if the parameters are
as agreed by the seller. Then the seller begins by notifying the hub of its intent
to create a covenant via FSC (note that the covenant hardcodes the auction
contract address). The simulator acting as FSC waits for such a message, and
upon receiving it forwards it to the hub. If the hub also responds to creating the
covenant, then the simulator responds with (ok, seller) message to Fauction.

In a similar way to the above, we handle covenant creation with the bidders.
In more detail, if the simulator receives the message (bid, bidderi), then the
simulator acting as FSC sends a message to the hub notifying that the covenant
creation process has been initiated by the bidder bidderi. If the hub responds
with ok for the covenant creation, then the simulator respoinds with (ok, bidderi)
to Fauction. Note that the covenant has the sealed bid (i.e., commitment to the
bid) encoded in it. For this purpose, the simulator will use a commitment to
the zero string. (This step will be indistinguishable from the protocol due to
the hiding property of the commitment.) For covenants submitted to FSC by
malicious bidders, the simulator uses the extractor of the noninteractive UC-
secure commitment scheme in order to find the bids of the malicious bidders,
and then submits the message (bid, amti) to Fauction in the Open stage.

Following this, the hub submits the accumulator to Fledger. The simulator
acting as Fledger accepts the value. Then acting as honest bidders, the simulator
will request inclusion proof from the hub. Let Schall-inc denote the set of honest
bidders for whom the hub did not provide an inclusion proof. For each bidder
in Schall-inc, the simulator simulates a call to the covenant on FSC whereby the
bidder is challenging inclusion on the covenant. If for a given bidder, the hub
responds by submitting a valid inclusion proof to the covenant on FSC, then the
simulator adds this bidder to the set Srebut-inc.

Next, in the real protocol, the hub may send messages to the covenant on
FSC challenging opening for some bidders. For every honest bidder, the simulator
acting as the hub to Fauction would have received the bids in the clear. Therefore,
when the hub challenges opening for honest bidders, the simulator uses these
values to equivocate the commitment values specified in the covenant. Denote
the set of dishonest bidders for whom the hub challenged opening on the covenant
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on FSC by Schall-open. Acting as FSC, the simulator waits to receive messages from
the adversary acting as dishonest bidders on the covenant. If the adversary sends
a successful opening to the challenges on the covenant, then the simulator adds
these dishonest bidders to the set Srebut-open.

Finally, the simulator, acting as Fledger waits to receive a UC secure zkSnark
proof π from the dishonest hub on the auction contract. Then using the ex-
tractor implied by UC security, the simulator obtains the witness which yields
a set S corresponding to the set of bidders among whom the winner is calcu-
lated (cf. Equation 1). The simulator then submits the message (reveal, S) and
(settle, S1 = Schall-inc \ Srebut-inc, S2 = Schall-open \ Srebut-open) to Fauction in the
Settle stage.

The simulation in theResolve stage is fairly straightforward. If the simulator
acting as FSC receives a resolve message from the hub then the simulator forwards
this message to Fauction. On the other hand, for every honest bidder bidderi in S1,
the simulator submits the message (resolve, bidderi) to Fauction. This completes
the description of the simulator.

It is straightforward to see that this simulation can be proven indistinguish-
able from the real execution.

Case 2. Hub is Honest. Next we consider the case when the hub is honest.
In the real protocol, the seller and hub agree on the auction parameters. Then

the simulator simulating the honest hub sends a message to Fledger to deploy the
auction contract, and notifies the seller. When the seller begins by notifying the
hub of its intent to create a covenant via FSC (note that the covenant hard-
codes the auction contract address), the simulator acting as FSC waits for such
a message, and upon receiving it sends the message (transfer, nft) to Fauction.

Next, we handle covenant creation with the bidders. In more detail, if the
simulator acting as FSC receives a message to initiate the covenant creation from
a dishonest bidder, then it extracts the bid amount (thanks to the simulation
extractability of the UC-secure noninteractive commitment scheme; note that the
covenant has the sealed bid encoded in it). Then the simulator sends (bid, amti)
to Fauction, and emulates the hub in completing the covenant creation.

In the next step, the simulator will use a commitment to the zero string for
sealed bids corresponding to the honest bidders, and then creates an accumulator
root combining the dishonest bids along with the (honest) zero bids. Acting as
Fledger, the simulator submits the accumulator root to the auction contract, and
notifies the adversary. (This step will be indistinguishable from the protocol due
to the hiding property of the commitment.)

Then when the dishonest bidders request an inclusion proof from the simu-
lator (acting as honest hub), it will provide the correct inclusion proofs (recall
that the accumulator does contain all the dishonest bids).

Next, the simulator acting as the honest hub will request openings from
the dishonest bidders. If the bidder provides an opening which is different from
what the simulator extracted earlier, then the simulator aborts and outputs
⊥. (Note that this will happen with negligible probability due to the binding
property of the commitment.) If the bidder refuses to provide an opening, then
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the simulator acting as FSC will submit a challenge opening (i.e., on behalf of a
request from the emulated hub) to the dishonest bidder and adds it to the set
Schall-open. If the bidder responds to the challenge, then the simulator acting as
FSC will receive the opening. As before, if the opening is different from what
the simulator extracted, then the simulation is aborted. Otherwise, the bidder
is added to the set Srebut-open. The simulator constructs the set S by adding all
the honest bidders to it, and also all the dishonest bidders who provided the
expected opening (either directly or on the covenant to FSC). The simulator
then sends the message (reveal, S ∪ {0}) and additionally submits the message
(settle, S1 = ∅, S2 = Schall-open \ Srebut-open) to Fauction.

The simulator then receives the identity of the winner from Fauction. Now
the simulator has all the information that it needs to provide a simulated proof
according to Equation 1, i.e., using the zero-knowledge simulator implied by the
UC-security of the employed zkSnark scheme.

Once all this is done, the simulation in the Resolve stage is fairly straight-
forward. If the simulator acting as FSC receives a resolve message from any of
the dishonest bidders, then the simulator forwards this message to Fauction. This
completes the description of the simulator.

It is straightforward to see that this simulation can be proven indistinguish-
able from the real execution.

Finally, we briefly discuss the onchain complexity of our protocol. Excluding
the update root operation, the number (and size) of onchain interactions wrt
auction contract is O(1) (transfer to and fro of the nft, and submission of the
accumulator root and the zkSnark proof). When the hub is honest, the number
of update root operations is bounded by the number of adversarial bidders, and
since each update operation requires log n on-chain operations, the maximum size
of such operations is bounded by O(k log n). When the hub is honest, there are
no disputes between the hub and the honest bidders, and thus all the interactions
happen offchain via FSC. Between the hub and a dishonest bidder, the disputes
may be resolved onchain via FSC. However, the dispute resolution process is
limited to challenging and rebutting inclusions and openings. The maximum
onchain calls is therefore O(k), and with total data size O(k log n).

E Achieved Properties

In this part, we provide an informal discussion on how Fauction, and consequently
our auction protocol satisfies all desired properties defined in Section 4.2.
Auction Correctness. That the ideal functionality Fauction correctly imple-
ments auction is straightforward. The winner is chosen as the one who has the
maximum bid among a set of bidders S submitted by the simulator. When the
hub is honest, this set must include all the honest parties. On the other hand,
when the hub is dishonest, we ensure that either an honest party is included in
the auction or it gets compensated by the hub.

Verifying the correctness of our auction protocol is straightforward by ex-
amining the logic of our contracts. By assuming that the underlying blockchain
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and cryptographic primitives are secure and correct, our protocol ensures that
once the covenants are created between participants, they must adhere to the
execution of the protocol.

Privacy. That the ideal functionality Fauction achieves privacy is straightfor-
ward. In particular, only the winning bid is revealed to all parties—all the other
(honest) bids are hidden from every other bidder and the seller. Note that the
hub is made aware of all the bids during the Opening stage. However, this is
after the Bidding stage, so the malicious bids are independent of the honest
bids. Note that a malicious hub can reveal the Therefore, if the hub is honest,
we get post-auction privacy as well.

Our protocol achieves the desired privacy properties when both the hub and
bidders follow the protocol. In particular, our protocol achieves auction pri-
vacy because of the hiding property of the commitment scheme. Hub will not
learn anything about the committed amounts from users’ sealed bids. Under
an optimistic case, our protocol also achieves post-auction privacy due to the
zero-knowledge property of the zkSnark scheme. Other bidders will not learn
any information about the witness, aside from the amount of the winning bid
and the address of the winner. The only time other bidders will learn about
the amount committed to the sealed bid is when either the hub or a bidder is
malicious, and an on-chain challenge is triggered.

Efficiency. That the ideal functionality Fauction is efficient in terms of on-chain
operations is relatively straightforward. To see why, we need to keep track of
interactions of Fauction with Fledger. Such interaction happens only in the context
of nft transfers, once in the Transfer stage (when the nft is transferred from the
seller to Fauction), and once in the Settle stage (when the nft is transferred from
Fauction to the winner of the auction). The interactions between an honest hub
and an honest bidder happens completely off-chain. When either the hub or the
bidder is malicious, the balance adjustment in the Resolve stage may happen
onchain, but this also means that the corresponding FSC (or PPC) channel will
end up being closed (i.e., onchain).

Our auction protocol achieves efficiency due to the scalability property of
PPC. In particular, bidders do not need to issue any on-chain transactions if both
the hub and bidders follow the protocol. The only on-chain actions required from
the hub are to start the auction, submit the Merkle root, and reveal the winner.
Similarly, between the seller and the hub, in the optimistic case where both
parties follow the protocol, the only on-chain action needed from the seller is to
approve the NFT transfer on-chain. Finally, the on-chain cost is independent of
the number of bidders due to the properties of the underlying zkSnark scheme.
This scheme enables the smart contract to verify the validity of a statement with
a constant cost, regardless of the size of the witness set (in our case, the number
of bidders). Thus, scalability is preserved even as the number of participants in
the auction increases.

Liveness. That the ideal functionality Fauction ensures liveness just follows from
inspection.
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Our construction ensures liveness for two reasons. Firstly, the covenant re-
quires bidders to open bids either off-chain or on-chain; otherwise, they may
face financial penalties. Secondly, if malicious bidders are willing to pay the cost
and do not open their sealed bids, we introduce a replacement mechanism that
allows the hub to remove unopened bids from the Merkle tree. This enables the
hub to issue a correct zkSnark proof based on all existing opened bids.
Security. That the ideal functionality Fauction provides security is also straight-
forward. In particular, we wish to re-iterate that the dishonest bids are indepen-
dent of the honest bids. This is true even when the hub is honest, whereby the
hub must submit all the bids before the honest bids are revealed to it. It is also
straightforward to see that the parties can bid exactly once.

Our construction directly satisfies non-malleability due to the non-malleable
property of the underlying commitment scheme. This prevents a malicious hub
from colluding with other bidders to issue a bid related to honest bidders. Simi-
larly, the bid binding property is ensured by the binding property of the under-
lying commitment scheme.
Financial Fairness. That the ideal functionality Fauction is financially fair fol-
lows from the fact that the honest parties’ balances are never decreased (except
of course when the winner happens to be an honest party). In particular, in the
Settle stage, we ensure that S2 ⊆ C (recall that S2 is the subset of bidders who
get their balances decreased, i.e., the hub’s balance is increased (on the pairwise
channel)) and also that that when the hub is corrupt, H ⊆ S ∪ S1, and finally
when teh hub is honest, we ensure that H ⊆ S and that S1 = ∅. Recall that
S1 is the subset of bidders whose balance is increased, and S is the subset of
bidders who are eligible to be the winner of the auction.

Our auction protocol ensures financial fairness due to the covenant contract
agreement. Specifically, once both parties mutually agree on the covenant con-
tract, it enforces adherence to the subsequent steps of the protocol for each party.
As a result, any deviation from the agreed-upon process by either party will lead
to a financial penalty.

F Discussion

Trusted Setup in zkSnark. The use of Groth16’s zkSnark requires a trusted
setup to generate the evaluation and proving keys for the circuit. However, re-
lying on a trusted third party for this setup is undesirable because if a ma-
licious third party can generate the keys, she can forge arbitrary valid proofs
without knowing the witness. There are two possible ways to deal with this lim-
itation. One possible solution is to employ a multi-party computation (MPC)
setup, where multiple users contribute shares to the trusted setup. Several works
[9,5,10] have proposed protocols for such trusted setups, demonstrating that as
long as at least one participant is honest, the zkSnark instance remains se-
cure. For example, the Zcash team performed an MPC setup for their protocol
parameters in 2017 [39]. A second approach is to use universal setup zkSnark
constructions [36,12,25,15] that can accommodate any circuits within a bounded
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size from a pre-generated common reference string. These constructions offer the
advantage of a universal setup that can be easily integrated into our system in
the future.
Duration Lengths. In Section 5, we discuss the different stages of the auction
protocol: bidding, opening, rebuttal, and settling. However, specific timings for
these stages were not provided due to their dependence on factors such as the
number of bidders, blockchain block creation rate, and the communication delay
between the bidders and the hub. Here, we provide insights into these factors.

The bidding and settling stages involve a single on-chain transaction each,
while the opening and rebuttal stages do not require any on-chain transaction in
the optimistic case (i.e., no party deviates from the protocol) and can have up to
n (number of bidders) on-chain transactions8 in the worst-case scenario. Thus,
the duration of all stages will rely on the time taken for transaction finality.
Additionally, the bidding and opening stages involve multiple off-chain interac-
tions between bidders and hub. During the bidding stage, there are four message
exchanges for each bidder, and in the opening stage, there is one message ex-
change.9. Thus, the timing of these stages will be dependent on the network
delay between the hub and bidders for message exchange. Furthermore, the pre-
processing time to create transactions for the auction contract needs to be taken
into account. Specifically, in the bidding stage, the hub accumulates sealed bids
and provides inclusion proof for each bid. In our experiments, we were able to
process 10,000 bids in less than a second. However, the generation of zk proofs
in the settling stage heavily depends on the number of bidders (exact numbers
are provided in Table 3), impacting the overall timing.

8 These on-chain transactions for the opening and rebuttal stage can be submitted
simultaneously.

9 Hub can process the messages of different bidders concurrently.
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