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Abstract. We present a cryptographic string commitment scheme that
is computationally hiding and binding based on (modular) subset sum
problems. It is believed that these NP-complete problems provide post-
quantum security contrary to the number theory assumptions currently
used in cryptography. Using techniques recently introduced by Feneuil,
Maire, Rivain and Vergnaud, this simple commitment scheme enables
an efficient zero-knowledge proof of knowledge for committed values as
well as proofs showing Boolean relations amongst the committed bits.
In particular, one can prove that committed bits m0,m1, ...,mℓ satisfy
m0 = C(m1, ...,mℓ) for any Boolean circuit C (without revealing any
information on those bits). The proof system achieves good communi-
cation and computational complexity since for a security parameter λ,
the protocol’s communication complexity is Õ(|C|λ+ λ2) (compared to
Õ(|C|λ2) for the best code-based protocol due to Jain, Krenn, Pietrzak
and Tentes).

1 Introduction

A commitment scheme [7] is a cryptographic protocol that enables one party to
commit to a value (or set of values) without revealing it, while ensuring that
this value cannot be modified. In constructing sophisticated cryptographic pro-
tocols, it can be necessary to prove some property of a committed message with-
out revealing anything more than the property itself. This is usually achieved
through the use of zero-knowledge proofs of knowledge [14]. This commit-and-
prove paradigm [20,11] is used in many areas of applied cryptography (anony-
mous credentials, blockchains, electronic voting, . . . ).

In 1994, Shor [26] introduced a quantum algorithm that could break cryp-
tosystems based on the hardness of factoring large integers or solving discrete
logarithm problems. This has emphasized the need for new cryptographic sys-
tems, leading to the emergence of a new field, known as post-quantum cryptogra-
phy, which focuses on creating cryptographic algorithms that are secure against
quantum (and classical) computers.

The (modular) subset sum problem is to find, given integers t and q, a subset
of given integers γ1, . . . , γn, whose sum is t modulo q. This NP-complete problem
was used in the 1980s, following [22], for the construction of several public-key
encryption schemes. The majority of those schemes were broken using lattice-
based techniques (see [23]), but the problem itself remains unsolvable for spe-
cific parameters and is even thought to be intractable for quantum computers.



A plethora of cryptographic constructions have been proposed whose security
is based on the difficulty of the subset sum problem [15,1,21]. In a celebrated
paper, Impagliazzo and Naor [15] presented in particular a pseudo-random gen-
erator and an elegant bit commitment scheme. We extend the latter to a simple
string commitment scheme and provide efficient zero-knowledge proofs for any
relation amongst committed values using the recent zero-knowledge proof system
proposed by Feneuil, Maire, Rivain, and Vergnaud and based on the MPC-in-
the-head paradigm.

Contributions of the paper

Commitment scheme. We first present a modified version of the bit-commitment
based on the subset sum problem proposed in [15]. This new scheme enables com-
mitments to bit-strings and is related to the one from [15] in a similar manner to
how the well-known Pedersen commitment scheme [24] is related to preliminary
discrete-logarithm based bit-commitments from [10,9].

The design principle is simple but seems to have been overlooked for more
than 30 years (even if similar ideas have been used in lattice-based cryptography).
For a security level λ ∈ N (i.e. against an adversary making 2λ bit-operations
using a 2λ/2-bits memory), it enables to commit to bit-strings of length ℓ ≤
2λ using a 2λ-bits modulus q and (ℓ + 2λ) integers smaller than q. The setup
thus requires O(λ2) random or pseudo-random bits that can be generated easily
using a so-called extendable-output function (XOF). A commitment is a sum
of a (randomized) subset of these integers modulo q; therefore, it is of optimal
bit-length 2λ and can be computed in O(λ2) binary operations. The hiding
property (i.e. one cannot learn anything about the committed message from the
commitment) relies on the hardness of the subset-sum problem, while its binding
property (i.e. one cannot open a commitment to two different messages) relies
on the hardness of the related weighted knapsack problem. With the proposed
parameters, both problems are believed to be resistant to a quantum adversary
that makes at most 2λ/2 qubits operations.

Zero-Knowledge Protocols. Very recently, Feneuil, Maire, Rivain, and
Vergnaud [13] proposed zero-knowledge arguments for the subset sum problem.
They introduced the idea of artificial abort to the so-called MPC-in-the-head
paradigm [16] and achieved an asymptotic improvement by producing arguments
of size O(λ2). Their protocol readily gives a way to prove knowledge of the com-
mitted bit-string without revealing anything about it.

We extend their work to prove that a committed triple (b1, b2, b3) ∈ {0, 1}3
satisfy a Boolean relation (e.g. b1 ∧ b2 = b3 or b1 ⊕ b2 = b3) without revealing
any additional information about them. The bits can be in arbitrary positions
in the same or in different commitments and the proof of the Boolean relation
does not add any overhead compared to the basic opening proof. This flexibility
allows proving that committed bits m0,m1, ...,mℓ satisfy m0 = C(m1, ...,mℓ)
for any Boolean circuit C with good communication and computational com-
plexity. Indeed, by packing the commitments of bits on the circuit wires, we
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obtain a protocol with communication complexity Õ(|C|λ + λ2) where |C| de-
notes the number of AND/XOR gates of C. This has to be compared with the
code-based protocol due to Jain, Krenn, Pietrzak, and Tentes [17]. They provide
a commitment scheme with zero-knowledge proofs from the LPN-assumption (or
hardness of decoding a random linear code). This scheme has Õ(|C|λ2) commu-
nication complexity and allows only proving Boolean relations bit-wise on binary
strings (which may result in a large overhead depending on the circuit consid-
ered). There also exist lattice-based constructions of commitment schemes with
zero-knowledge proofs [6,3,2] but the messages committed are small integers.
They can be used to prove the satisfiability of arithmetic circuits but proving
the satisfiability of a Boolean circuit with these schemes results in an important
overhead in communication and computation.

2 Preliminaries

2.1 Notations

All logarithms are in base 2. We denote the security parameter by λ, which
is given to all algorithms in the unary form 1λ. Unless otherwise stated, algo-
rithms are randomized, and “PPT” stands for “probabilistic polynomial-time”
in the security parameter. Random sampling from a finite set X according to

the uniform distribution is denoted by x
$←− X. The symbol

$←− is also used for
assignments from randomized algorithms, and the symbol ← is used for assign-
ments from deterministic algorithms and calculations. For the sake of simplicity,
we denote the set of integers {1, . . . , N} by [1, N ].

We denote integer vectors in bold print. A vector composed only of 1’s or 0’s
is denoted as 1 or 0 respectively (its length will be clear within the context).
Given two integer vectors of the same length γ and x, ⟨γ,x⟩ denotes their inner-
product. For two bit-strings x ∈ {0, 1}n and y ∈ {0, 1}m, (x∥y) ∈ {0, 1}n+m

denotes the concatenation of x and y, and x · y denotes the component-wise
product.

Two distributions {Dλ}λ and {D̃λ}λ are deemed (t, ϵ)-indistinguishable if,
for any algorithm A running in time at most t(λ), we have

|Pr[A(1λ, x) = 1 | x $←− Dλ]− Pr[A(1λ, x) = 1 | x $←− D̃λ]| ≤ ϵ(λ).

A (ℓ, t, ϵ)-pseudo-random generator (PRG) is a deterministic algorithm G that,
for all λ ∈ N, on input a bit-string x ∈ {0, 1}λ outputs G(x) ∈ {0, 1}ℓ(λ) with

ℓ(λ) > λ such that the distributions {G(x) | x $←− {0, 1}λ}λ and {r | r $←−
{0, 1}ℓ(λ)}λ are (t, ϵ)-indistinguishable. From such a generator, with ℓ(λ) = 2λ,
it is possible to construct a tree PRG [19], which takes a root x ∈ {0, 1}λ as input
and generates N = 2t pseudo-random λ-bit strings in a structured fashion as
follows: x is the label of the root of a depth-t complete binary tree in which the
right/left child of each node is labeled with the λ most/least significant bits of
the output of the PRG applied to the root label. This structure allows revealing
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N − 1 pseudo-random values of the leaves by revealing only log(N) labels of the
tree (by revealing the labels on the siblings of the paths from the root to this
leaf).

2.2 Commitments

Definition 1. (Commitment scheme). A commitment scheme is a triple of PPT
algorithms (Setup,Com,Ver) such that:

– Setup(1λ)→ pp. On input λ, the setup algorithm outputs the public param-
eters pp containing a description of the message spaceM.

– Com(pp,m) → (c, aux). On input pp and m ∈ M, the commit algorithm
outputs a commitment-opening pair (c, aux).

– Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp, m ∈ M and (c, aux), the
verifying (or opening) algorithm outputs a bit b ∈ {0, 1}.

Moreover, it satisfies the following correctness property: we have for all λ ∈ N,

Pr[Ver(pp,m, c, aux) = 1 | pp $←− Setup(1λ),m
$←−M, (c, aux)

$←− Com(pp,m)] = 1.

There are two security notions underlying a commitment scheme.

Definition 2. Let t : N → N and ϵ : N → [0, 1]. A commitment scheme
(Setup,Com,Ver) is said:

– (t, ϵ)-computationally hiding if for all two-phases algorithm A = (A1,A2),
we have for all λ ∈ N:

Pr

[
b = b′

∣∣∣∣∣ pp $←− Setup(1λ), (m0,m1, s)
$←− A1(pp), b

$←− {0, 1}
(c, aux)

$←− Com(pp,mb), b
′ $←− A2(c, s)

]
≤ 1

2
+ ϵ(λ)

when A runs in time at most t(λ) in this probabilistic computational game.
– (t, ϵ)-computationally binding if for all algorithm A, we have for all λ ∈ N:

Pr

 m1 ̸= m2

Ver(pp,m1, c, aux1) = 1
Ver(pp,m2, c, aux2) = 1

∣∣∣∣∣ pp $←− Setup(1λ),

(m1,m2, aux1, aux2, c)
$←− A(1λ, pp)}

 ≤ ϵ(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

2.3 Zero-knowledge Arguments

A zero-knowledge protocol for a polynomial-time decidable binary relation R is
defined by two interactive algorithms, a prover P and a verifier V. Both algo-
rithms are given a common input x, and P is given an additional witness w such
that (x,w) ∈ R. The two algorithms then exchange messages until V outputs a
bit b, with b = 1 meaning V accepts P’s claim and b = 0 meaning V rejects it.
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This sequence of messages and the answer b is referred to as a transcript and de-
noted View(P(x,w), Ṽ(x)). In this paper, we consider zero-knowledge argument
of knowledge which are protocols that allow a PPT prover to convince a PPT
verifier that they know a witness w. There are three security notions underlying
a zero-knowledge argument of knowledge.

Definition 3. Let t : N → N, ϵ, α, ζ : N → [0, 1], and R be a polynomial-time
decidable binary relation. A zero-knowledge argument (P,V) for R achieves:

– α-completeness, if for all λ ∈ N and all (x,w) ∈ R, with x ∈ {0, 1}λ,
Pr[View(P(x,w),V(x)) = 1] ≥ 1 − α(λ) ( i.e. P succeeds in convincing V,
except with probability α).

– ϵ-(special) soundness, if for all PPT algorithm P̃ such that for all λ ∈ N
and all x ∈ {0, 1}λ, ϵ̃(λ) := Pr [View(P̃(x),V(x)) = 1] > ϵ(λ), there exists
a PPT algorithm E (called the extractor) which, given rewindable black-box
access to P̃ outputs a witness w such that (x,w) ∈ R in time poly(λ, (ϵ̃−ϵ)−1)
with probability at least 1/2.

– (t, ζ)-zero-knowledge, if for every PPT algorithm Ṽ, there exists a PPT algo-
rithm S (called the simulator) which, given the input statement x ∈ {0, 1}λ
and rewindable black-box access to Ṽ, outputs a simulated transcript whose
distribution is (t, ζ)-indistinguishable from View(P(x,w), Ṽ(x)).

2.4 Subset Sum Problems

We define hereafter two variants of the subset sum problem on which the security
of our commitment scheme relies. The first one is the standard subset sum prob-
lem mentioned in the introduction, while the second one is a slightly stronger
assumption that has already been used in cryptography (see, e.g. [5,27]).

Definition 4. Let t : N → N and ϵ : N → [0, 1]. Let ℓ,m : N → N and modulus
be an algorithm which given λ ∈ N outputs an integer q of bit-length m(λ). We
consider the two following assumptions:

– (t, ϵ)-(decision) subset-sum assumption for (ℓ,m,modulus): for every algo-
rithm A, we have for all λ ∈ N:

Pr

 b = b′

∣∣∣∣∣∣∣
q

$←− modulus(1λ),γ
$←− [0, q − 1]ℓ(λ),x

$←− {0, 1}ℓ(λ),
t0 = ⟨γ,x⟩ mod q, t1

$←− [0, q − 1], b
$←− {0, 1},

b′
$←− A(1λ, q,γ, tb)

 ≤ 1

2
+ϵ(λ)

when A runs in time at most t(λ) in this probabilistic computational game.
– (t, ϵ)-weighted knapsack assumption for (ℓ,m,modulus): for every algorithm
A, we have for all λ ∈ N:

Pr

[
⟨γ,y⟩ = 0 mod q

y ̸= 0 ∈ {−1, 0, 1}ℓ(λ)

∣∣∣∣∣ q $←− modulus(1λ),γ
$←− [0, q − 1]ℓ(λ),

y
$←− A(1λ, q,γ)

]
≤ ϵ(λ)

when A runs in time at most t(λ) in this probabilistic computational game.
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The search version of the subset sum assumption is polynomial-time equiva-
lent to the decision version stated above. The hardness of these problems depends
greatly on the density defined as d(λ) = ℓ(λ)/m(λ). If the density is too small
(e.g. d(λ) < 1/ℓ(λ)) or too large (e.g. d(λ) > ℓ(λ)) then both problems can be
solved in polynomial time (see e.g. [12] and references therein). Coster, Joux,
LaMacchia, Odlyzko, Schnorr, and Stern [12] proved that the subset sum prob-
lem can be solved in polynomial-time with a single call to an oracle that can
find the shortest vector in a special lattice of dimension ℓ(λ)+1 if d(λ) < 0.9408
and Li and Ma proved a similar result for the weighted knapsack problem if
d(λ) < 0.488. It is worth mentioning that these results do not break the assump-
tions in polynomial time since the best algorithm for finding the shortest vector
in these lattices has computational complexity 2Θ(ℓ(λ)) (and cryptographic pro-
tocols relying on these problems with much smaller densities have been proposed,
e.g. [21]).

In our construction, we will consider instances of these problems with density
d(λ) ≃ 1 (i.e. q ≃ 2ℓ(λ)) for the subset sum problem since they are arguably the
hardest ones [15]. This will result in instances for the weighted knapsack problem
with density d(λ) > 1 and for conservative security, we will restrict ourselves to
d(λ) ≤ 2. In this case, lattice-based algorithms do not work and the best-known
algorithms use very clever time-memory tradeoffs with the best algorithm due to
Bonnetain, Bricout, Schrottenloher, and Shen [8] having time and memory com-
plexities Õ(20.283ℓ(λ)). These algorithms neglect the cost to access an exponential
memory but even with this optimistic assumption, for ℓ(λ) = 256, all known al-
gorithms require at least a time complexity lower-bounded by 2128 operations or
a memory of size at least 264 bits. There also exists a vast literature on quantum
algorithms for solving these problems (see [8] and references therein) and for
ℓ(λ) = 256, the best quantum algorithm requires about 264 quantum operations
and quantum memory.

3 String Commitments from Subset Sum Problems

3.1 Design Principle

In this section, we present our modified version of the bit-commitment based on
the subset sum problem proposed in [15]. This new scheme enables commitments
to bit-strings.

In [10], Brassard, Chaum, and Crépeau introduced the notion of blob, which
is very similar to bit commitment, and presented an elegant construction based
on the discrete-logarithm problem in groups of known prime order q (see also
[9]). The commitment of a single bit consists of a group element (see Figure
1 (a) for an equivalent form of their commitment). Shortly afterward, Peder-
sen [24] introduced his celebrated commitment scheme that enables committing
to an integer in Zq with a single group element (see Figure 1 (c)). Impagliazzo
and Naor [15] proposed a bit-commitment whose hiding and binding security
properties rely on the subset sum problem. It has many similarities with the
discrete-logarithm-based blob from [10,9] (see Figure 1 (b)).
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m ∈ {0, 1}, r $←− Zq m ∈ {0, 1}, r $←− {0, 1}n

m ∈ Zq, r
$←− Zq m ∈ {0, 1}n, r $←− {0, 1}n

(c = ar
m, aux = r) (c = ⟨am, r⟩, aux = r)

(c = am
0 · ar

1, aux = r) (c = ⟨a0,m⟩+ ⟨a1, r⟩, aux = r)

Commit Verify Commit Verify

Commit Verify Commit Verify

(a) bit commitment [10,9] (b) bit commitment [15]

(c) integer commitment [24] (d) new string commitment

Discrete logarithm

G = ⟨a0⟩ = ⟨a1⟩ group of prime order q

Subset Sum

q ∈ N, a0,a1 ∈ Zn
q

Fig. 1: Illustration of the Similarities between Commitment Schemes

To build our string commitment scheme, we push this analogy and propose
a variant of Pedersen’s protocol based on the subset sum (see Figure 1 (d)).
The design principle is simple and maybe folklore but does not seem to have
been published in this form (even if similar ideas have been used in lattice-based
cryptography).

3.2 Formal Description and Security Analysis

Let ℓ, n,m : N→ N and let modulus be an algorithm which given λ ∈ N outputs
an integer q of bit-length m(λ). Typically, modulus outputs a random m(λ)-bit
prime number or the unique integer q = 2m(λ)−1. The function ℓ defines the
message length while the function n defines the randomness length.

Setup(1λ) → pp. On input λ, the setup algorithm generates a modulus q by

running modulus(1λ) and picks uniformly at random w ∈ Zℓ(λ)
q and s ∈

Zn(λ)
q . It outputs the public parameters pp = (q,w, s) and the message

space isM = {0, 1}ℓ(λ).
Com(pp,m)→ (c, aux). On input pp and m ∈ M, the commit algorithm picks

aux = r ∈ {0, 1}n(λ) uniformly at random, computes c=⟨w,m⟩+⟨s, r⟩modq
and outputs (c, aux).

Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp, m ∈ M and (c, aux), the verifier
outputs 1 if c = ⟨w,m⟩ + ⟨s, r⟩ mod q where r = aux ∈ {0, 1}n(λ), and 0
otherwise.
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We prove that our commitment scheme is hiding and binding assuming the
hardness of the subset sum and the weighted knapsack problems (respectively)
for different lengths in the subset sum problems.

Theorem 1. Let ℓ, n,m : N → N and let modulus be an algorithm which given
λ ∈ N outputs an integer of bit-length m(λ). This commitment scheme above is:

1. (t, ϵ)-computationally hiding if the (t+O(ℓ(λ)m(λ)), ϵ)- subset-sum assump-
tion holds for (ℓ,m,modulus);

2. (t, ϵ)-computationally binding if the (t+O(ℓ(λ)+n(λ)), ϵ)-weighted knapsack
assumption holds for (ℓ+ n,m,modulus).

Proof. Both security reductions are simple.

1. Let A be a (t, ϵ)-adversary against the hiding property of the commitment
scheme. We construct a (t + O(ℓ(λ)m(λ)), ϵ) adversary B breaking the de-
cision subset sum assumption as follows. The algorithm B is given as in-

puts (q,γ, t) where γ ∈ Zn(λ)
q . The algorithm B picks uniformly at random

w ∈ Zℓ(λ)
q , sets s = γ, and runs A1 on input pp = (q,w, s). When A1

outputs two messages m0,m1 ∈ {0, 1}ℓ(λ) and some state information s,
the algorithm B picks uniformly at random a bit b ∈ {0, 1} and runs A2

on c = ⟨w,mb⟩ + t mod q and s. Eventually, when A2 outputs some bit b′,
B outputs 0 if b′ = b and 1 otherwise. A routine argument shows that the
advantage of B for the decision subset sum problem is identical to the one
of A for breaking the hiding property.

2. Let A be a (t, ϵ)-adversary against the binding property of the commitment
scheme. We construct a (t + O(ℓ(λ) + n(λ)), ϵ) adversary B breaking the
weighted knapsack assumption as follows. The algorithm B is given as in-

puts (q,γ) where γ ∈ Zℓ(λ)+n(λ)
q . It sets w = (γ1, . . . , γℓ(λ)) ∈ Zℓ(λ)

q and s =

(γℓ(λ)+1, . . . , γℓ(λ)+n(λ)) ∈ Zn(λ)
q and runs A on input pp = (q,w, s). When A

outputs (m1,m2, aux1, aux2, c), we havem1 ̸= m2 and Ver(pp,m1, c, aux1) =
Ver(pp,m2, c, aux2) = 1 with probability ϵ(λ). In this case, since m1 ̸= m2

and (m1, aux1), (m2, aux2),∈ {0, 1}ℓ(λ)+n(λ), if B outputs the vector y =
(m1, aux1) − (m2, aux2) (where the substraction is done coordinate-wise),
it belongs to {−1, 0, 1}ℓ(λ)+n(λ), is non-zero and satisfies ⟨γ,y⟩ = 0 mod q
(and is thus a solution to the weighted knapsack problem (q,γ)).

⊓⊔

The hiding property thus relies on the hardness of the subset sum prob-
lem with density n(λ)/m(λ) while its binding property on the hardness of the
weighted knapsack problem with density (ℓ(λ) + n(λ))/m(λ). In the following,
to simplify the protocols, we consider the case where n(λ) = m(λ) (i.e. density
1 subset sum) and ℓ(λ) = n(λ) (i.e. density 2 weighted knapsack). To lighten
the notations, we henceforth denote n = n(λ) = ℓ(λ).
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3.3 Zero-Knowledge Arguments for our Commitment

In this section, we present a zero-knowledge argument of knowledge for our
string commitment. We apply readily the protocol recently proposed by Feneuil
et al. [13] for the subset sum problem. It is based on the MPC-in-the-Head
paradigm and is described in Protocol 1. We provide an explicit description of
the protocol as we use it in the following sections but refer to [13] for details and
precise security analysis.

Prover P Verifier V
w, s ∈ Zn

q

m, r ∈ {0, 1}n, t = ⟨w,m⟩+ ⟨s, r⟩ mod q w, s, t

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:
JaKi, JmKi, JrKi, JcKi ← PRG(seedi) ▷ a ∈ Z2n

q′ , c ∈ Zq′ , JmKi, JrKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
∆m = m−

∑
iJmKi

∆r = r −
∑

iJrKi
∆c = ⟨a,m||r⟩ −

∑
iJcKi

h = H1(∆m,∆r,∆c, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z2n

q′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set
- JtK = ⟨w, JmK⟩+ ⟨s, JrK⟩
- JαK = ε · (1− (JmK||JrK)) + JaK ▷ α ∈ Z2n

q′

The parties open JαK to get α.
The parties locally set

JvK = ⟨α, JmK||JrK⟩ − JcK ▷ v ∈ Zq′

h′ = H2(JtK, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists j ∈ [1, n] such that:
- either JmjKi∗ = 0 with mj = 1
- or JmjKi∗ = A− 1 with mj = 0,
- or JrjKi∗ = 0 with rj = 1
- or JrjKi∗ = A− 1 with rj = 0,

then abort.
ym = m− JmKi∗
yr = r − JrKi∗

(seedi, ρi)i ̸=i∗ , comi∗ ,
ym,yr, ∆c, JαKi∗

−−−−−−−−−−−−−−−−−−→
For all i ̸= i∗,

JaKi, JmKi, JrKi, JcKi ← PRG(seedi)
∆m = ym −

∑
i̸=i∗JmKi

∆r = yr −
∑

i̸=i∗JrKi
For all i ̸= i∗,

Rerun the party i as the prover (i.e. compute JtKi, JαKi, JvKi)
and compute comi.

Check h = H1(∆m,∆r,∆c, com1, . . . , comN )
∆t = ⟨w,∆m⟩+ ⟨s,∆r⟩
∆v = ⟨α,∆m||∆r⟩ −∆c
JtKi∗ = t−∆t−

∑
i ̸=i∗JtKi

JvKi∗ = −∆v −
∑

i ̸=i∗JvKi
Check h′ = H2(JtK, JαK, JvK)
Return 1

Protocol 1: Zero-knowledge argument for string-commitment using batch prod-
uct verification to prove binarity.
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Context. We consider the binary relation R = {(q,w, s, t), (m, r)) | ⟨w,m⟩ +
⟨s, r⟩ = t mod q} where q ∈ N, w, s ∈ Zn

q , t ∈ Zq, and m, r ∈ {0, 1}n. Both
the prover P and the verifier V know (q,w, s, t) and P knows (m, r) and wants
to convince the verifier of this fact. The protocol makes use of a PRG, a tree
PRG [19], a commitment scheme (Setup,Com,Ver) (the one proposed in the
previous section or any other efficient scheme) and two collision-resistant hash
functions H1 and H2. The protocol involves two integer parameters A and a
prime q′ (that depends on n) that are known by P and V.

MPC-in-the-Head. Feneuil et al.’s protocol [13] relies on the MPC-in-the-head
paradigm [16]. The binary relation R defines an NP language and the member-
ship of (q,w, s, t) can be checked easily thanks to the knowledge of (m, r) by
verifying the relations (1) ⟨w,m⟩+ ⟨s, r⟩ = t mod q and (2) m, r ∈ {0, 1}n. To
convince V, P emulates “in their head” a (N − 1)-private multi-party compu-
tation (MPC) protocol with N parties for the relations (1) and (2) where the
witness (m, r) is shared among the N parties (for some parameter N ∈ N).

To shorten the communication, shares and random coins used in the protocol
are generated using the Tree PRG: P randomly and uniformly chooses a master
seed mseed and constructs a tree of depth ⌈logN⌉ by expanding mseed into N
subseeds as explained in Section 2. From these N subseeds seed1, . . . , seedN , P
constructs some additive integer secret sharing with shares in [0, A− 1] denoted
as J·K for the sharing itself and J·Ki for the share of the i-th virtual player (i.e.
a secret integer x is shared as JxK = (JxK1, . . . , JxKN ) ∈ [0, A − 1]N such that
JxK1 + · · · + JxKN = x). Computation is done over Zq′ where q′ is the smallest
prime larger than A.

The verifier V challenges P to reveal the views of a random subset of (N −1)
parties by sending a challenge i∗ ∈ [1, N ] to P who reveals all-but-one subseeds
corresponding to parties i ̸= i∗. In Feneuil et al.’s protocol [13], the integer
secret sharing may reveal information and to avoid this P may abort but with
probability at most (1− 1/A)n (when sharing a n-coordinates vector). The size
of A (and thus of q′) has to be properly chosen to make this probability small
in practice. Eventually, V recomputes the MPC protocol to check the views of
the parties i ̸= i∗ and the commitments. If all tests pass, V accepts the proof
and the soundness error is close to 1/N . To decrease it to a soundness error less
than 2−λ, the protocol is simply repeated about τ ≈ λ/ log(N) times.

The verification of (1) is linear modulo q′ and is therefore free but proving (2)
requires performing some multiplications in the MPC protocol (using the simple
fact that x ∈ {0, 1} if and only if x(1−x) = 0 mod q′). The verification of these
multiplications can be realized following [4]. This implies a communication cost
of 2 log(q′) bits to prove one multiplication. Using a batched version of this
verification protocol [18], one gets a communication cost of (n+ 1) log2 q

′ for n
multiplications. The soundness error of this protocol follows from the Schwartz-
Zippel Lemma [28,25].

Security analysis. The following theorem from [13] states the completeness,
soundness and zero-knowledge of Protocol 1.
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Theorem 2 (Protocol 1). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 1 is a zero-

knowledge proof of knowledge for the relation R with (1− 1/A)
2n
-completeness,

1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

Communication complexity. The communication cost (in bits) of the Protocol 1
with τ repetitions is

4λ+ τ [2n(log2(A− 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] .

Since the rejection rate after τ repetitions (i.e. that any of the τ repetition
aborts) is given by 1− (1− 1/A)2nτ ≃ 2nτ/A where the approximation is tight
when A is sufficiently large. Thus by taking A = Θ(nτ), we get a (small) constant
rejection probability.

Remark 1. Feneuil et al.’s [13] proposed a second approach to prove (2) using
“cut-and-choose”. It can be used to prove the knowledge of a commitment open-
ing but does not adapt well for proving Boolean relations of committed values.

Remark 2. It is worth mentioning that our commitment and argument of knowl-
edge of opening can be easily generalized to a proof of partial opening by re-
vealing bits of the committed message, modifying the value of the commitment
accordingly and proving the knowledge of the remaining hidden bits. This en-
ables to provide a range proof of the committed message at no additional cost.

4 Zero-Knowledge Arguments for Boolean Relations

Using a batched version of the verification protocol [4,18] for multiplications of
the form xy = c with x, y, c ∈ Zq′ and c a public value, one gets a commu-
nication cost of (n + 1) log2 q

′ bits for n multiplications. In the following, we
deal with multiplications of the form xy = z, where z is a linear combination of
shared elements, and the communication cost remains (n + 1) log2 q

′ bits for n
multiplications.

4.1 AND Gate

Coordinate-wise AND Gates. We first consider the case where three n-bits vec-
tors m1,m2,m3 are committed and P wants to prove that m1 ·m2 = m3.
Note that proving that m1 and m2 are binary and that m1 ·m2 = m3 mod q′

implies that m3 is binary and m1 ·m2 = m3. In addition, P has to prove that
the three random vectors r1, r2, r3 used in the commitment are all binary (since
no relation is proved between them). Using this approach, P has to prove 6n
multiplications and therefore the argument requires sending 6n + 1 integers in
Zq′ via [4,18].

Actually, it is possible to batch some verification equations and reduce this
number from 6n+1 to 5n+1. Indeed, checking m1 ·m2 = m3 mod q′ and (for

11



instance) the binarity of m2 is equivalent (with a small soundness error coming
from the Schwartz-Zippel Lemma) to check that

λ1m
2 · (1−m2) + λ2m

1 ·m2 = λ2m
3 mod q′ (1)

for λ1, λ2 ∈ Zq′ random elements chosen by V. Hence, we can batch all the
multiplications checking by verifying the component-wise product

(m1||r1||r2||r3||m2) ·((1−(m1||r1||r2||r3))||λ1(1−m2)+λ2m
1) = (0||λ2m

3)

and obtain Protocol 2.

Arbitrary AND Gates. Protocol 2 is similar to the protocols from [17,6,3,2] since
it can be used only to prove multiplication coordinate-wise. We generalize it to
obtain a more flexible protocol able to prove relations such as m1

i ∧m2
j = m3

k

for arbitrary coordinates i, j, k ∈ [1, n].
Assume P has to prove the satisfiability of K ≥ 1 AND gates with compo-

nents belonging to L ≥ 1 committed vectors {mℓ}1≤ℓ≤L ∈ {0, 1}n. Suppose that
there areM ≤ K AND gates such that each of them has at least one coordinate of
a fixed committed vectormℓ as input (for some ℓ ∈ [1, L]). Assume theseM gates

are of the form mℓ
xk
∧mℓk

yk
= m

ℓ′k
zk for k ∈ [1,M ], ℓk, ℓ

′
k ∈ [1, L], xk, yk, zk ∈ [1, n]

(again, we fix the vector mℓ). Moreover, as seen previously to check that mℓ

is binary, V can verify mℓ ◦ (1 −mℓ) = 0 mod q′. Then we can batch these
verifications as

λ0m
ℓ · (1−mℓ) +

M∑
k=1

λkm
ℓ
xk
mℓk

yk
exk =

M∑
k=1

λkm
ℓ′k
zkexk mod q′

i.e.

mℓ · [−λ0m
ℓ +

M∑
k=1

λkm
ℓk
yk
exk ] = −λ0m

ℓ +

M∑
k=1

λkm
ℓ′k
zkexk mod q′ (2)

where ei is the i-th vector of the canonical basis of Zn
q′ and {λk}0≤k≤M ∈ Zq′

are random elements chosen by V. Thus, P can batch all the gates’ evaluation
checking satisfying that at least one input for each of these gates belongs to
the same committed vector. This batching can include the binary verification of
this specific vector. In other words, the number of equations does not depend
anymore on the number of gates (i.e. is independent of the distribution of AND
gates over the committed bits). We obtain the generalized Protocol 3 as a direct
extension of Protocol 2 (essentially the batching part is slightly different) which
can be found in Appendix A.

Security analysis. The following theorems state the completeness, soundness,
and zero-knowledge of Protocol 2 and Protocol 3. The proofs are similar to
those in [13] and are omitted due to lack of space.
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Prover P Verifier V
w, s ∈ Zn

q ,m
k, rk ∈ {0, 1}n for 1 ≤ k ≤ 3

m1 ·m2 = m3, tk = ⟨w,mk⟩+ ⟨s, rk⟩ w, s, tk

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi) ▷ a ∈ Z5n
q′ , c ∈ Zq′ , JmkKi, JrkKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

∆mk = mk −
∑

iJm
kKi

∆rk = rk −
∑

iJr
kKi

∆c = −⟨a,m1||r1||r2||r3||m2⟩ −
∑

iJcKi
h = H1({∆mk,∆rk}1≤k≤3,∆c,
com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z5n
q′ , λ1, λ2

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- JtkK = ⟨w, JmkK⟩+ ⟨s, JrkK⟩ for 1 ≤ k ≤ 3
- JαK = ε · ((1− Jm1||r1||r2||r3K)||
λ1(1− Jm2K) + λ2Jm1K) + JaK ▷ α ∈ Z5n

q′ (computation in Zq′)
The parties open JαK to get α.
The parties locally set

JvK = ⟨α, Jm1||r1||r2||r3||m2K⟩ − JcK−
⟨ε,0||λ2Jm3K⟩ ▷ v ∈ Zq′ (computation in Zq′)

h′ = H2({JtkK}1≤k≤3, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either Jmk
j Ki∗ = 0 with mk

j = 1

- or Jmk
j Ki∗ = A− 1 with mk

j = 0,

- or Jrkj Ki∗ = 0 with rkj = 1

- or Jrkj Ki∗ = A− 1 with rkj = 0,
then abort.

ymk = mk − JmkKi∗ and

yrk = rk − JrkKi∗ for k ∈ [1, 3]

(seedi, ρi)i ̸=i∗ , comi∗ ,
{ymk ,yrk}1≤k≤3, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗,

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi)
For all i ̸= i∗,

Rerun the party i as the prover
and compute the commitment comi.

For 1 ≤ k ≤ 3,

∆mk = ymk −
∑

i ̸=i∗JmkKi
∆rk = yrk −

∑
i ̸=i∗JrkKi

∆tk = ⟨w,∆mk⟩+ ⟨s,∆rk⟩
JtkKi∗ = tk −∆tk −

∑
i̸=i∗JtkKi

∆v = ⟨α,∆m1||∆r1||∆r2||∆r3||∆m2⟩
−∆c− ⟨ε,0||λ2∆m3; ⟩
JvKi∗ = −∆v −

∑
i ̸=i∗JvKi

Check h = H1({∆mk,∆rk}1≤k≤3,∆c,
com1, . . . , comN )

Check h′ = H2({JtkK}1≤k≤3, JαK, JvK)
Return 1

Protocol 2: Zero-knowledge argument for AND.
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Theorem 3 (Protocol 2). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 2 is a zero-

knowledge proof of knowledge for the relation R with (1− 1/A)
6n
-completeness,

1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

Theorem 4 (Protocol 3). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 3 is a zero-

knowledge proof of knowledge for the relation R with (1− 1/A)
2Ln

-completeness,
1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

Remark 3. Note that Protocol 2 and 3 have the same soundness as Protocol 1.
This follows from the Schwartz-Zippel Lemma, since the underlying multinomial
still has the same degree after batching, and so it does not impact the soundness
error. The rejection rates are bigger than in Protocol 1 since respectively 6n and
2Ln sharing over the integers are emulated instead of 2n in Protocol 1. This
requires a slight increase of A (as shown in Table 1).

The communication cost (in bits) of Protocol 2 with τ repetitions is:

4λ+ τ [n(6 log2(A− 1) + 5 log2(q
′)) + log2(q

′) + λ log2 N + 2λ] ,

and for the generalized Protocol 3:

4λ+ τ [2Ln(log2(A− 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] .

We notice that it does not depend on the number K of AND gates to prove.

4.2 XOR Gate

Coordinate-wise XOR Gates. We first consider, as above, the case where three
n-bits vectorsm1,m2,m3 are committed and P wants to prove thatm1⊕m2 =
m3 (coordinate-wise).

Let f be the polynomial f(x) = 2x − x2 defined over Zq′ with q′ ≥ 3 a
prime number. One can easily check that if m1 and m2 are binary vectors, then
f(m1 +m2) mod q′ = m1 ⊕m2 ∈ {0, 1}. Thus, proving that f(m1 +m2) =
m3 mod q′ in conjunction with the argument of knowledge of opening of the
corresponding commitments, implies m1 ⊕m2 = m3.

With the same techniques as Protocol 2 for the ∧ gate, we obtain Protocol 5
for bit-wise ⊕ gates which can be found in Appendix A.

Arbitrary XOR Gates. Again, this protocol is not enough flexible and can not
be used to prove relations such as m1

i ⊕m2
j = m3

k for arbitrary i, j, k ∈ [1, n],
but we outline how to generalize it.

Assume that P has to prove the satisfiability of K XOR gates with input-
s/output belonging to L committed vectors {mℓ}1≤ℓ≤L ∈ {0, 1}n. As for the

AND gates, suppose that there are M ≤ K gates of the form mℓ
xk
⊕mℓk

yk
= m

ℓ′k
zk
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for k ∈ [1,M ], ℓk, ℓ
′
k ∈ [1, L], xk, yk, zk ∈ [1, n]. We assume the binarity of each

committed vector is checked during the protocol, so that

f(mℓ
xk

+mℓk
yk
) = 2(mℓ

xk
+mℓk

yk
)− (mℓ

xk
+mℓk

yk
)2 = mℓ

xk
⊕mℓk

yk
= m

ℓ′k
zk mod q′.

Moreover, as seen previously, to check that mℓ is binary, V can verify mℓ · (1−
mℓ) = 0 mod q′. We can batch these equations as

λ0m
ℓ · (1−mℓ) +

K∑
k=1

λk

(
2(mℓ

xk
+mℓk

yk
)− (mℓ

xk
+mℓk

yk
)2
)
exk

=

K∑
k=1

λkm
ℓ′k
zkexk mod q′.

If the binarity ofmℓk andmℓ is proven elsewhere, V is convinced thatmℓk
yk
mℓk

yk
=

mℓk
yk

mod q′ and mℓ
xk
mℓ

xk
= mℓ

xk
mod q′. Hence, the batching equation becomes

mℓ · [−λ0m
ℓ − 2

M∑
k=1

λkm
ℓk
yk
exk ]

= −λ0m
ℓ +

M∑
k=1

λk

(
m

ℓ′k
zk −mℓk

yk
−mℓ

xk

)
exk mod q′, (3)

where ei is the i-th vector of the canonical basis of Zn
q′ and {λk}0≤k≤M ∈ Zq′

are random elements chosen by V.

Security analysis. The theorems stating the completeness, soundness and zero-
knowledge of the protocol for the bit-wise XOR and its generalization are the
same as Theorems 3 and 4 (respectively). This follows directly from Remark 3.

The communication complexity (in bits) of the protocol for arbitrary XOR
gates with τ repetitions is:

4λ+ τ [2Ln(log2(A− 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] ,

while the one for the bit-wise XOR is a subcase when L = 3. We notice that the
size is the same as Protocol 3 and is independent of K.

4.3 Instantiation and Performances

We present sets of parameters for an instantiation of our commitment scheme
withm(λ) = ℓ(λ) = n(λ) = 256 (i.e. with security based on density 1 subset-sum
and density 2 weighted knapsack). We present performances for the component-
wise protocols for AND and XOR gates. To decrease the rejection rate, we use
a strategy introduced in [13] that consists in allowing P to abort in 0 ≤ η < τ
out of the τ iterations and V accepts the proof if the prover can answer to τ − η
challenges among the τ iterations. This relaxed proof has a significantly lower
rejection rate (at the cost of a small increase of the soundness error).
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Protocol
Parameters

Proof size Rej. rate Soundness err.
τ η N A

Protocol 1 (Opening) 21 3 256 213 35.4 KB 0.035 133 bits

Protocol 1 (Opening) 19 2 256 213 33.3 KB 0.104 128 bits

Protocol 2 (AND) 21 3 256 215 98.9 KB 0.014 133 bits

Protocol 2 (AND) 19 2 256 215 93.4 KB 0.054 128 bits

Protocol 5 (XOR) 21 3 256 215 107.4 KB 0.014 133 bits

Protocol 5 (XOR) 19 2 256 215 101.3 KB 0.054 128 bits

Table 1: Comparison of performances with n = 256 and q ≈ 2256.

5 Verification of Circuit Evaluation

Let C be a Boolean circuit with |C| gates (AND or XOR) and T input bits. Let
m ∈ {0, 1}T and v1, . . . , v|C| ∈ {0, 1} be committed elements such that m is an
input that satisfy C and the v’s are the outputs of each gates of C when evaluated
on m, i.e. C(m1, . . . ,mT ) = v|C| = 1. The prover P wants to prove that m in-
deed satisfies C. For this purpose, we will use protocols that have been presented
in the previous sections. For simplicity, we assume without loss of generality that
T ≤ n. Since n bits can be committed via the same commitment (n is the size
of the subset-sum instance), we need |C|/n + 1 string commitments. We intro-
duce the following notation to simplify the batching equation: for k ∈ [0, |C|/n],
v0 = (m||v1|| . . . ||vn−T ), . . . ,v

|C|/n = (v|C|−T+1|| . . . ||v|C|||0). Following the
batching from Equation (2) and Equation (3), we can set x,y, z as follows so
that the circuit satisfiability verification consists in checking that x · y = z:

y = (v0|| . . . ||v|C|/n||r0|| . . . ||r|C|/n),

x =

−λ0v
0 +

n∑
i=1

|C|/n∑
j=0

n∑
k=1

λvj
k

(
δ0,i,j,kv

j
k − 2ζ0,i,j,kv

j
k

)
ei|| . . .

|| − λ|C|/nv
|C|/n +

n∑
i=1

|C|/n∑
j=0

n∑
k=1

λvj
k

(
δ|C|/n,i,j,kv

j
k − 2ζ|C|/n,i,j,kv

j
k

)
ei

||1− r1|| . . . ||1− r|C|/n
)

where r0, . . . , r|C|/n is the randomness used in the commitment and the vector
z can be computed as a linear combination of v0, . . . ,v|C|/n. As above, ei is the
i-th vector of the canonical basis of Zn

q′ , λ’s are random public values chosen by
the verifier V, and the binary elements ζ and δ depend on the circuit structure,
i.e. δℓ,i,j,k = 1 if and only if vℓi ∧ vjk = vup for some u ∈ [0, |C|/n] and v ∈ [1, n]

(and ζℓ,i,j,k = 1 if and only if vℓi ⊕ vjk = vup ). Hence, V has to check x · y = z to
be convinced of the binarity of the vectors, and of the satisfiability of the circuit.
The full protocol is given as Protocol 6 in Appendix A.
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Theorem 5 (Protocol 6). Let the PRG used in Protocol 6 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. The protocol 6 is a zero-

knowledge proof of knowledge for the relation R with (1− 1/A)
2(|C|+n)

-comple-
teness, 1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

The communication cost (in bits) of Protocol 6 with τ repetitions is:

4λ+ τ [2(|C|+ n)(log(A− 1) + log(q′)) + log(q′) + λ logN + 2λ] .

With n = 2λ and A = Θ((|C|+n)τ) (for a small constant rejection probability),

its asymptotic complexity is Θ
(

λ(|C|+λ)
logN log

(
λ(|C|+λ)

logN

)
+ λ2

)
. With N = Θ(λ)

to minimize, we get asymptotic complexity Θ̃(λ|C| + λ2) to be compared with
Θ̃(|C|λ2) in [17] (which can only prove Boolean relations bit-wise on binary
strings and may result in a large overhead depending on the circuit considered).
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A Description of Protocols 3, 5, and 6

In order to describe the circuit during Protocol 3, we set S ← ∅. Then construct

S as follows: if mℓ
xk
∧mℓk

yk
= m

ℓ′k
zk for k ∈ [1,M ], {ℓ, ℓk, ℓ′k} ∈ [1, L]3, {xk, yk, zk} ∈

[1, n]3, then S = S ∪ {(ℓ, xk; ℓk, yk; ℓ
′
k, zk)}.
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Prover P Verifier V
w, s ∈ Zn

q , S
For 1 ≤ ℓ ≤ L,

mℓ, rℓ ∈ {0, 1}n
tℓ = ⟨w,mℓ⟩+ ⟨s, rℓ⟩ ∈ Zq tℓ for 1 ≤ ℓ ≤ L

x · y = z as described in Section 4 S,w, s

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

JaKi, JcKi, {JmℓKi, JrℓKi}1≤ℓ≤L

← PRG(seedi) ▷ a ∈ Z2Ln
q′ , c ∈ Zq′ , JmℓKi, JrℓKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
For 1 ≤ ℓ ≤ L:

∆mℓ = mℓ −
∑

iJm
ℓKi

∆rℓ = rℓ −
∑

iJr
ℓKi

∆c = −⟨a,y⟩ −
∑

iJcKi
h = H1({∆mℓ,∆rℓ}1≤ℓ≤L,∆c, com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z2Ln
q′ , {λi}1≤i≤L+K

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- JtℓK = ⟨w, JmℓK⟩+ ⟨s, JrℓK⟩ for ℓ ∈ [1, L]
- JαK = ε · JxK + JaK ▷ α ∈ Z2Ln

q′

The parties open JαK to get α.
The parties locally set

JvK = ⟨α, JyK⟩ − JcK− ⟨ε,z⟩ ▷ v ∈ Zq′

h′ = H2({JtℓK}1≤ℓ≤L, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ ℓ ∈ [1, L] and j ∈ [1, n] such that:

- either Jmℓ
jKi∗ = 0 with mℓ

j = 1

- or Jmℓ
jKi∗ = A− 1 with mℓ

j = 0,

- or JrℓjKi∗ = 0 with rℓj = 1

- or JrℓjKi∗ = A− 1 with rℓj = 0,
then abort.

ymℓ = mℓ − JmℓKi∗ and yrℓ = rℓ − JrℓKi∗ for ℓ ∈ [1, L]

(seedi, ρi)i ̸=i∗ , comi∗ ,
{ymℓ ,yrℓ}1≤ℓ≤L, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗:

JaKi, JcKi, {JmℓKi, JrℓKi}1≤ℓ≤L ← PRG(seedi)
Rerun the party i as the prover and compute comi.

For ℓ ∈ [1, L]:

∆mℓ = ymℓ −
∑

i̸=i∗JmℓKi
∆rℓ = yrℓ −

∑
i̸=i∗JrℓKi

∆tk = ⟨w,∆mℓ⟩+ ⟨s,∆rℓ⟩
JtℓKi∗ = tℓ −∆tℓ −

∑
i ̸=i∗JtℓKi

∆v = ⟨α,∆x⟩ −∆c− ⟨ε,∆z⟩
JvKi∗ = −∆v −

∑
i̸=i∗JvKi

Check h = H1({∆mℓ,∆rℓ}1≤ℓ≤L,
∆c, com1, . . . , comN )

Check h′ = H2({JtℓK}1≤ℓ≤L, JαK, JvK)
Return 1

Protocol 3: Zero-knowledge argument for arbitrary AND gates.
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Prover P Verifier V
w, s ∈ Zn

q ,m
k, rk ∈ {0, 1}n for 1 ≤ k ≤ 3

m1 ⊕m2 = m3, tk = ⟨w,mk⟩+ ⟨s, rk⟩ w, s, tk for 1 ≤ k ≤ 3

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi) ▷ a ∈ Z6n
q′ , c ∈ Zq′ , JmkKi, JrkKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

∆mk = mk −
∑

iJm
kKi

∆rk = rk −
∑

iJr
kKi

∆c = −⟨a,m1||m2||r1||r2||r3||m1 +m2⟩ −
∑

iJcKi
h = H1({∆mk,∆rk}1≤k≤3,∆c, com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z6n
q′ , λ1, λ2

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- JtkK = ⟨w, JmkK⟩+ ⟨s, JrkK⟩, 1 ≤ k ≤ 3
- JαK = ε · ((1− Jm1||m2||r1||r2||r3K)||
m1 +m2) + JaK ▷ α ∈ Z6n

q′ (computation in Zq′)
The parties open JαK to get α.
The parties locally set

JvK = ⟨α, Jm1||m2||r1||r2||r3||m1 +m2K⟩−
JcK− ⟨ε,0||J2(m1 +m2)−m3K⟩ ▷ v ∈ Zq′ (computation in Zq′)

h′ = H2({JtkK}1≤k≤3, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either Jmk
j Ki∗ = 0 with mk

j = 1

- or Jmk
j Ki∗ = A− 1 with mk

j = 0,

- or Jrkj Ki∗ = 0 with rkj = 1

- or Jrkj Ki∗ = A− 1 with rkj = 0,
then abort.

ymk = mk − JmkKi∗ and

yrk = rk − JrkKi∗ for k ∈ [1, 3]

(seedi, ρi)i ̸=i∗ , comi∗ ,
{ymk ,yrk}1≤k≤3, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗,

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi)
For all i ̸= i∗,

Rerun the party i as the prover
and compute the commitment comi.

For 1 ≤ k ≤ 3,

∆mk = ymk −
∑

i ̸=i∗JmkKi
∆rk = yrk −

∑
i ̸=i∗JrkKi

∆tk = ⟨w,∆mk⟩+ ⟨s,∆rk⟩
JtkKi∗ = tk −∆tk −

∑
i̸=i∗JtkKi

∆v = ⟨α,∆m1||∆m2||∆r1||∆r2||∆r3||
∆m1 +∆m2⟩ −∆c− ⟨ε,0||2(∆m1+
∆m2)−∆m3; ⟩
JvKi∗ = −∆v −

∑
i ̸=i∗JvKi

Check h = H1({∆mk,∆rk}1≤k≤3,∆c,
com1, . . . , comN )

Check h′ = H2({JtkK}1≤k≤3, JαK, JvK)
Return 1

Protocol 4: Zero-knowledge argument for XOR.
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Prover P Verifier V
w, s ∈ Zn

q ,m
k, rk ∈ {0, 1}n for 1 ≤ k ≤ 3

m1 ⊕m2 = m3, tk = ⟨w,mk⟩+ ⟨s, rk⟩ w, s, tk for 1 ≤ k ≤ 3

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi) ▷ a ∈ Z6n
q′ , c ∈ Zq′ , JmkKi, JrkKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

∆mk = mk −
∑

iJm
kKi

∆rk = rk −
∑

iJr
kKi

∆c = −⟨a,m1||m2||r1||r2||r3||m1 +m2⟩ −
∑

iJcKi
h = H1({∆mk,∆rk}1≤k≤3,∆c, com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z6n
q′ , λ1, λ2

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- JtkK = ⟨w, JmkK⟩+ ⟨s, JrkK⟩, 1 ≤ k ≤ 3
- JαK = ε · ((1− Jm1||m2||r1||r2||r3K)||
m1 +m2) + JaK ▷ α ∈ Z6n

q′ (computation in Zq′)
The parties open JαK to get α.
The parties locally set

JvK = ⟨α, Jm1||m2||r1||r2||r3||m1 +m2K⟩−
JcK− ⟨ε,0||J2(m1 +m2)−m3K⟩ ▷ v ∈ Zq′ (computation in Zq′)

h′ = H2({JtkK}1≤k≤3, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either Jmk
j Ki∗ = 0 with mk

j = 1

- or Jmk
j Ki∗ = A− 1 with mk

j = 0,

- or Jrkj Ki∗ = 0 with rkj = 1

- or Jrkj Ki∗ = A− 1 with rkj = 0,
then abort.

ymk = mk − JmkKi∗ and

yrk = rk − JrkKi∗ for k ∈ [1, 3]

(seedi, ρi)i ̸=i∗ , comi∗ ,
{ymk ,yrk}1≤k≤3, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗,

JaKi, JcKi, {JmkKi, JrkKi}1≤k≤3

← PRG(seedi)
For all i ̸= i∗,

Rerun the party i as the prover
and compute the commitment comi.

For 1 ≤ k ≤ 3,

∆mk = ymk −
∑

i ̸=i∗JmkKi
∆rk = yrk −

∑
i ̸=i∗JrkKi

∆tk = ⟨w,∆mk⟩+ ⟨s,∆rk⟩
JtkKi∗ = tk −∆tk −

∑
i̸=i∗JtkKi

∆v = ⟨α,∆m1||∆m2||∆r1||∆r2||∆r3||
∆m1 +∆m2⟩ −∆c− ⟨ε,0||2(∆m1+
∆m2)−∆m3; ⟩
JvKi∗ = −∆v −

∑
i ̸=i∗JvKi

Check h = H1({∆mk,∆rk}1≤k≤3,∆c,
com1, . . . , comN )

Check h′ = H2({JtkK}1≤k≤3, JαK, JvK)
Return 1

Protocol 5: Zero-knowledge argument for XOR.
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Prover P Verifier V
C, w, s ∈ Zn

q′

For 0 ≤ ℓ ≤ |C|/n
vℓ, rℓ ∈ {0, 1}n
tℓ = ⟨w,vℓ⟩+ ⟨s, rℓ⟩

x · y = z as described in Section 5 C,w, s, tℓ for 0 ≤ ℓ ≤ |C|/n
mseed

$←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

JaKi, JcKi, {JvℓKi, JrℓKi}0≤ℓ≤|C|/n

← PRG(seedi) ▷ a ∈ Z2(|C|+n)

q′ , c ∈ Zq′ , JrℓKi, JvℓKi ∈ [0, A− 1]n

comi = Com(seedi; ρi)
For 0 ≤ ℓ ≤ |C|/n:

∆rℓ = rℓ −
∑

iJr
ℓKi

∆vℓ = vℓ −
∑

iJv
ℓKi

∆c = −⟨a,y⟩ −
∑

iJcKi
h = H1({∆rℓ,∆vℓ}0≤ℓ≤|C|/n,∆c, com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z2(|C|+n)

q′

{λi}0≤i≤|C|(1+1/n)
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- JtℓK = ⟨w, JvℓK⟩+ ⟨s, JrℓK⟩ for ℓ ∈ [0, |C|/n]
- JαK = ε · JxK + JaK ▷ α ∈ Z2(|C|+n)

q′

The parties open JαK to get α.
The parties locally set JvK = ⟨α, JyK⟩ − JcK− ⟨ε, JzK⟩ ▷ v ∈ Zq′

h′ = H2({JtℓK}0≤ℓ≤|C|/n, JαK, JvK)
h′

−−−−−−−−−−−−−−−−−−→
i∗

$←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ ℓ ∈ [0, |C|/n], j ∈ [1, n] such that:

- either JvℓjKi∗ = 0 with vℓj = 1

- or JvℓjKi∗ = A− 1 with vℓj = 0,

- or JrℓjKi∗ = 0 with rℓj = 1

- or JrℓjKi∗ = A− 1 with rℓj = 0,
then abort.

yvℓ = vℓ − JvℓKi∗ and yrℓ = rℓ − JrℓKi∗
(seedi, ρi)i ̸=i∗ , comi∗ ,

{yvℓ ,yrℓ}0≤ℓ≤|C|/n, ∆c, JαKi∗
−−−−−−−−−−−−−−−−−−→

For all i ̸= i∗,

JaKi, JcKi, {JvℓKi, JrℓKi}0≤ℓ≤|C|/n ← PRG(seedi)
Rerun the party i as the prover and compute comi.

For 0 ≤ ℓ ≤ |C|/n,
∆vℓ = yvℓ −

∑
i ̸=i∗JvℓKi, ∆rℓ = yrℓ −

∑
i ̸=i∗JrℓKi

∆tℓ = ⟨w,∆vℓ⟩+ ⟨s,∆rℓ⟩
JtℓKi∗ = tℓ −∆tℓ −

∑
i̸=i∗JtℓKi

∆v = ⟨α,∆x⟩ −∆c− ⟨ε,∆z⟩, JvKi∗ = −∆v −
∑

i ̸=i∗JvKi
Check h = H1({∆vℓ,∆rℓ}0≤ℓ≤|C|/n,∆c, com1, . . . , comN )

Check h′ = H2({JtℓK}ℓ, JvK)
Return 1

Protocol 6: Zero-knowledge argument for Circuit Satisfiability.
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