
HE3DB: An Efficient and Elastic Encrypted Database Via
Arithmetic-And-Logic Fully Homomorphic Encryption

Song Bian
∗

sbian@buaa.edu.cn

Beihang University

Beijing, China

Zhou Zhang
∗

zhouzhang@buaa.edu.cn

Beihang University

Beijing, China

Haowen Pan

panhaowen@buaa.edu.cn

Beihang University

Beijing, China

Ran Mao

maoran_44@buaa.edu.cn

Beihang University

Beijing, China

Zian Zhao

zhaozian@buaa.edu.cn

Beihang University

Beijing, China

Yier Jin

jinyier@gmail.com

University of Science and Technology

of China

Hefei, Anhui, China

Zhenyu Guan
†

guanzhenyu@buaa.edu.cn

Beihang University

Beijing, China

ABSTRACT
As concerns are increasingly raised about data privacy, encrypted

database management system (DBMS) based on fully homomor-

phic encryption (FHE) attracts increasing research attention, as FHE

permits DBMS to be directly outsourced to cloud servers without re-

vealing any plaintext data. However, the real-world deployment of

FHE-based DBMS faces two main challenges: i) high computational

latency, and ii) lack of elastic query processing capability, both of

which stem from the inherent limitations of the underlying FHE

operators. Here, we introduce HE
3
DB, a fully homomorphically en-

crypted, efficient and elastic DBMS framework based on a new FHE

infrastructure. By proposing and integrating new arithmetic and

logic homomorphic operators, we devise fast and high-precision

homomorphic comparison and aggregation algorithms that enable

a variety of SQL queries to be applied over FHE ciphertexts, e.g.,

compound filter-aggregation, sorting, grouping, and joining. In ad-

dition, in contrast to existing encrypted DBMS that only support

aggregated information retrieval, our framework permits further

server-side elastic analytical processing over the queried FHE ci-

phertexts, such as private decision tree evaluation. In the experi-

ment, we rigorously study the efficiency and flexibility of HE
3
DB.

We show that, compared to the state-of-the-art techniques, HE
3
DB

can homomorphically evaluate end-to-end SQL queries as much

as 41×–299× faster than the state-of-the-art solution, completing a

TPC-H query over a 16-bit 10K-row database within 241 seconds.

CCS CONCEPTS
• Security and privacy→ Cryptography; Management and
querying of encrypted data.

KEYWORDS
Fully Homomorphic Encryption; Secure Database Outsourcing

∗
Both authors contributed equally to this research.

†
Corresponding author.

Alice Bob

SecretsA SecretsB

Joint
Computation

ResultResult

Alice Bob

Outsource Storage

Outsourced
Computation

Result

(a) (b)

Figure 1: The conceptual illustrations of (a) a secure multi-
party query evaluation (SQE) scheme and (b) a secure data-
base outsourcing (SDO) scheme.

1 INTRODUCTION
Outsourcing the storage of and computation over private data to

cloud service providers [8, 9, 34, 82] is a common practice for per-

sonal users, enterprises, and even government institutions to lift

the burden of large-scale data management. However, in many

cases, the outsourced data contain sensitive information, and data

owners are concerned with their private data either directly stolen

by the curious cloud service providers [76] or leaked through the

endless data breaches [22, 99]. As a result, data owners and cloud

service providers are interested in building encrypted database in-

frastructures [87], where the entire database is stored in ciphertext

on the cloud. However, due to the inherent complexity of the de-

sign of multi-party secure protocols, the fundamental challenge

facing encrypted databases is how to efficiently and elastically pro-

cess queries on the encrypted data outsourced to the cloud while

preventing various side-channel leakages [23, 50, 68]. In particu-

lar, being elastic means that the database engine can handle both

diverse types of SQL queries and various data analysis algorithms.

https://orcid.org/0000-0003-0467-6203
https://orcid.org/0009-0009-9341-124X
https://orcid.org/0009-0008-4424-6762
https://orcid.org/0009-0004-3925-9607
https://orcid.org/0000-0001-7854-1155
https://orcid.org/0000-0002-8791-0597
https://orcid.org/0000-0002-3959-338X

Song Bian et al.

To tackle the above challenges, existing works propose different

designs of encrypted databases that utilize tools across multiple

fields of research [17, 42, 45, 54, 74, 88, 90, 93, 106, 108]. We cate-

gorize existing designs of encrypted databases into two types of

protocol models: secure multi-party query evaluation (SQE) and

secure database outsourcing (SDO). As illustrated in Figure 1, we as-

sume that no party in an SQE protocol can recover all of the secrets

only by its own. In contrast, SDO refers to the case where one of the

participating parties (e.g., the one who outsources the data) owns

all of the private data. Thus, even though both SQE and SDO prefer

lower protocol overheads, parties involved in SQE are willing to

pay more computation and communication costs in the exchange

of being able to compute over unknown secrets. Meanwhile, for

SDO, client-side workloads need to be strictly smaller than that

without the protocol, otherwise the client can simply perform the

computations locally on its own.

With the optimal round complexity [83] and low online com-

munication, fully homomorphic encryption (FHE) emerges as a

powerful cryptographic primitive for SDO. While FHE was deemed

too slow to DB applications [95], recent advances in FHE cryptog-

raphy [10, 26, 53, 77] have significantly improved the efficiency

and operator usability of FHE, leading to a series of recent works

exploring the practical feasibility of FHE in DB-related tasks [36,

77, 93]. For instance, the very recent work HEDA [93] employs FHE

schemes including the BFV [20, 46] and TFHE [32] to accelerate

filter-aggregation queries over fully homomorphically encrypted

database. Unfortunately, in addition to the relatively slow evalu-

ation speed, HEDA suffers from limited query expressiveness as

the exact algorithmic constructions for the evaluations of many

common SQL statements, such as MIN, MAX, JOIN and ORDER BY,
are left as open questions [93]. Therefore, the main challenge faced

by FHE-based SDO becomes the following question: can we design

an encrypted database scheme over FHE that achieves both fast

query evaluation and elastic data processing at the same time?

1.1 Our Contribution
In this work, we propose HE

3
DB, an FHE-based encrypted database

management system (DBMS) for fast and elastic SDO. We observe

that most existing FHE algorithms, whether specifically designed

for SDO [93] or not [30, 77], do not fully capture the important

properties of encrypted databases, and often fail to meet the key

requirements of SDO. Contrarily, based on the idea of application-

framework co-design, we propose a tailored FHE infrastructure

consisting of DB-specific FHE operators that leverage the numerical

and operational characteristics specific to encrypted databases. As it

turns out, we are able to achieve higher accuracy, faster evaluation

speed, richer query expressiveness and standard security all at once.

In addition, to the best of our knowledge, HE
3
DB is the first FHE-

based DB framework that enables a client to execute outsourced

data analysis algorithms on the queried ciphertext results without

additional rounds of client-server interactions.

The main contributions of this work are summarized as follows.

• An FHE Infrastructure for Encrypted DBMS: We de-

velop novel homomorphic filtering, aggregation and conver-

sion algorithms that are highly composable and specifically

designed for various types of DB operands and complex SQL

operations. As a result, HE
3
DB supports one of the most

complete sets of SQL statements for encrypted databases,

along with online data analysis capability.

• High-Precision Homomorphic Comparison: We ob-

serve that, the key FHE operator for encrypted database

is the high-precision homomorphic comparison operator.

However, the result of a homomorphic comparison is al-

ways binary. Based on the above insight, we devise a new

shift-and-subtract strategy to homomorphically remove

the lower-bit noises from the comparison results, and de-

velop a high-precision homomorphic comparison operator

HomComp. We can evaluate homomorphic comparison with

up to 32-bit precision without using bit-by-bit encryption.

• Homomorphic Aggregations over Filtered Results:
Based on the HomComp operator, we are able to propose

fast algorithms to perform both arithmetic (e.g., SUM, AVG)
and logic (e.g., MIN, MAX) aggregations on the filtered results.

Our arithmetic and logic aggregation can be as much as

58× and 34× faster than existing works, respectively.

• Thorough Experiments: We show that HE
3
DB achieves

7×–113× faster homomorphic filtering based on our ho-

momorphic comparison operator HomComp, 24×–58× faster

COUNT, 34× faster ORDER BY, and 12×–326× faster private
decision tree evaluation using the proposed arithmetic and

logic aggregation algorithms, all against the best-performing

implementations. In addition, we show that HE
3
DB is on

average 41×–299× faster than the state-of-the-art (SOTA)

FHE-based DBMS over end-to-end SQL benchmarks. Our

code is publicly available
1
.

1.2 Related Works
Here, we introduce existing works based on three main groups:

trust-execution-environment-(TEE)-based SQE and SDO, multi-

party-computation-(MPC)-based SQE, and MPC-based SDO. Note

that, here, we consider FHE to be one particular type of general

MPC technique.

1.2.1 TEE-based SDO and SQE. TEE provides a secure hardware

enclave that divides the system into two entities: the trusted TEE en-

clave that can access and compute over all the sensitive data, and the

outside rich execution environment (REE) that is exposed to a strong

adversary capable of monitoring andmanipulating the software and

hardware systems. The objective is to protect the confidentiality

and integrity of the data and algorithms within TEE from the exter-

nal adversary. TEE-based solutions can easily realize both SDO and

SQE simultaneously [5, 7, 12, 13, 45, 70, 81, 90, 101, 105, 109]. For ex-

ample, although earlier techniques are constrained by the memory

hierarchy of TEE [7, 13, 90], newer TEE architectures have largely

abandoned memory integrity verification, thereby removing the

limit on memory size [47, 65]. Subsequently, recent TEE-based tech-

niques [5, 105] have demonstrated that advanced DBMS can be built

over TEE with advanced access control mechanisms. Unfortunately,

TEE-based encrypted databases face two fundamental challenges.

First, the hardware architectural design of TEE can change signifi-

cantly from one to the other, causing security vulnerabilities to be

1
https://github.com/zhouzhangwalker/HE3DB

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

introduced. For example, as mentioned in [105], encrypted database

based on Intel SGX [39] can leak access pattern [45], while that

based on application-specific TEE enclaves [98] do not. Second, as

a common critique for most privacy-preserving computing tasks

based on TEE, it can be discouraging for applications that require a

high level of data confidentiality to adopt a hardware root of trust.

1.2.2 MPC-based SQE. Most MPC-based encrypted databases fo-

cus on developing methods to evaluate queries over contents that

are owned by different participating parties with security against

semi-honest or malicious adversaries e.g., [15, 37, 42, 43, 48, 63, 74,
88, 103, 104, 106]. Due to the inherent complexity of SQE, MPC

protocols vary significantly in terms of their security assumptions,

security properties, efficiency, and usability. The main consequence

of such a design complexity is that protocols tend to be incom-

patible with each other, and it can be very hard to integrate such

protocols into a single database framework. For instance, the recent

encrypted DB protocol Waldo [42] does not support certain SQL

operators such as GROUP BY and JOIN [42]. Although many MPC-

based protocols, such as Secure Yannakakis [106], Secrecy [74]

and Senate [88], do support secure GROUP BY and JOIN operations,

these protocols cannot be easily combined together because Secure

Yannakakis [106] is a two-party protocol that utilizes standard se-

cret sharing, while Waldo and Secrecy assume an honest-majority

three-party setting built over functional secret sharing [19] and

replicated secret sharing [6]. In addition, since secrets are defined to

be distributed over the participating parties, MPC-based techniques

generally require a relatively large amount of communication band-

width and interaction rounds [42]. For example, with proper GPU

acceleration [107], communication can be 6×–1000× slower than
the computation in the state-of-the-art MPC protocols, becoming

the main latency bottleneck.

1.2.3 MPC-based SDO. Different from SQE, methods for SDO ex-

plore how to securely and efficiently outsource a database to an

untrusted server [54, 71, 85, 87, 89, 93], assuming that the server

can be semi-honest ormalicious . Existing MPC-based SDO schemes

generally adopt more than one type of MPC primitives, including

ORAM [45], SE [54, 85, 87], and homomorphic encryption [45, 54,

89]. However, as mentioned earlier, protocols based on SE [24, 41]

introduces side-channel leakages [23, 50–52, 64]. Meanwhile, al-

beit ORAM [97] achieves poly-logarithmic complexity in oblivious

storing and retrieving data items, executing multi-dimensional op-

erations over ORAM, such as sorting, incurs extensive communica-

tions and interactions between the data owner and the cloud server

that can be prohibitive in data outsourcing applications. Finally,

most MPC-based SDO adopt some sort of homomorphic encryption,

e.g., based on partially homomorphic encryption [54, 85, 87, 89]

or leveled homomorphic encryption [71]. Unfortunately, without

additional MPC primitives, both partially and leveled homomor-

phic encryption result in limited query expressiveness and data

analysis capability, either due to complex query encoding schemes

or a-priori bounds over the encryption parameters.

1.2.4 FHE-based SQE and SDO. Different from partially and leveled

homomorphic encryption, FHE [20, 21, 29, 32, 44, 49, 96] is capable

of evaluating complex queries over both outsourced and two-party

secure databases
2
under a semi-honest adversary3. Since FHE was

extremely computationally expensive in the earlier days [89, 95],

protocols over FHE often only implement a small subset of database-

related operations, e.g., supporting PIR [108] or keyword search [31,

69] only. Recently, motivated by the notable progresses made in the

development of fast and flexible FHE primitives [73, 77], new FHE-

based SDO schemes are proposed, e.g., [93]. Nonetheless, in addition

to the slower performance, the query expressiveness of [93] can be

rather restricted, as the scheme does not have support for common

SQL statements such as GROUP BY and ORDER BY. Hence, the key
objective of this work is to significantly boost the computational

performance of FHE-based encrypted database while retaining the

rich query expressiveness and unbounded data analysis capability

of modern DBMS.

2 CRYPTOGRAPHIC PRELIMINARIES
In this section, we summarize some of the important notations for

FHE ciphertext and FHE operators used throughout this work in

Section 2.1, and Section 2.2, respectively.

2.1 Homomorphic Encryption
For FHE notations, we use _ to denote the security parameter and

𝑝 for the plaintext modulus. We use 𝑞/𝑄/𝑄 ′ to indicate different

sizes of ciphertext modulus (generally 𝑄 > 𝑞), and 𝑛/𝑁 /𝑁 ′ spec-
ify lattice dimensions (generally 𝑁 > 𝑛). Z𝑞 refers to the set of

integers modulo 𝑞 and Z𝑞 [𝑥] depicts the set of polynomials with

coefficients in Z𝑞 . We use 𝑅𝑁 and 𝑅𝑁,𝑄 to denote Z[𝑋]/(𝑋𝑁 + 1)
and Z𝑄 [𝑋]/(𝑋𝑁 + 1), respectively, for some ciphertext modulus

𝑄 and polynomial degree 𝑁 . Throughout this paper, we use bold

lowercase letters (e.g., a) for vectors, tilde lowercase letters (e.g., 𝑎)
for polynomials, and bold uppercase letters (e.g., A) for matrices.

For a complete list of notations, please refer to Table 1.

In this work, we mainly adopt the cryptographic constructions

and techniques [16, 18, 28, 33, 55, 57, 58, 62, 73, 77] developed

along both the CKKS [29] and TFHE [32] lanes of FHE schemes.

Therefore, similar to [93], we use ciphertexts that are based on

both the learning with error (LWE) and ring learning with error

(RLWE) hardness problems [78, 91]. Moreover, we also make use of

the ring variant of the GSW encryption scheme proposed in [49].

The concrete definitions are as follows.

• LWE𝑛,𝑞s (𝑚): The LWE ciphertext. Here, we use a symmetric

version of the LWE encryption function encrypting a single integer

message𝑚 ∈ Z𝑝 under the secret key s ∈ Z𝑛𝑞 is given as:

LWE𝑛,𝑞s (𝑚) = (𝑏, a) = (< −a, s > +Δ𝑚 + 𝑒, a) .

where a ∈ Z𝑛𝑞 is chosen uniformly at random, the noise 𝑒 is sampled

from some distribution 𝜒𝑛𝑜𝑖𝑠𝑒 , and Δ = ⌊ 𝑞𝑝 ⌉ is a scaling factor to

protect the least significant bits of the message from the noises.

2
We note that SQE over single-key FHE is limited to a two-party setting, while more

complicated multi-party protocols require further advance in the development of

multi-key FHE schemes [4, 83, 86].

3
It is worth noting that achievingmalicious security in an FHE-based approach requires

supplementary cryptographic tools such as zero-knowledge proofs (ZKP) [100] or

oblivious pseudorandom function (OPRF) [27]. .

Song Bian et al.

Table 1: Summary of Notations

Notation Description

D The database

T The data tables in the database

|T |row/|T |col The number of rows/columns in table T
Q The SQL query.

|Q| The number of predicates in query Q.
W The parameters in data analysis model

_ The security parameter

𝑝 The plaintext modulus

𝑞/𝑄/𝑄 ′ The ciphertext modulus for LWE/RLWE/RGSW
𝑛/𝑁 /𝑁 ′ The lattice dimension for LWE/RLWE/RGSW

𝑙 The number of RLWE in RGSW
Z𝑛𝑞 The set of n-vectors over Z𝑞

𝑅𝑁,𝑄 The cyclotomic ring ZQ [𝑋]/(𝑋𝑁 + 1)
𝜒 The noise distribution

Δ The scaling factor

a/𝑎 An element in vector domain/polynomial ring

A An element in matrix domain

LWE𝑛,𝑞s (𝑚)
An LWE ciphertexts encrypting𝑚

with parameters (𝑛, 𝑞) and secret s

RLWE𝑁,𝑄

𝑠
(�̃�) An RLWE ciphertexts encrypting �̃�

with parameters (𝑁,𝑄) and secret 𝑠

RGSW𝑁 ′,𝑄 ′

s̃ (m) An RGSW ciphertext encryptingm
with parameters (𝑁 ′, 𝑄′) and secret s̃

⋄ Homomorphic matrix-vector multiplication

CMUX Homomorphic selector [32]

PBS Programmable bootstrapping [33]

HomGate Homomorphic gate [32, 44]

RLWEtoLWEs
Converting RLWE to LWEs

(e.g., sample extract index [32])

LWEstoRLWE
Converting LWEs to RLWE

(e.g., repack [26, 77])

LWEtoRGSW
Converting LWE to RGSW

(e.g., circuit bootstrapping [32])

• RLWE𝑁,𝑄

𝑠
(�̃�): The RLWE ciphertext. An RLWE ciphertext is

defined as

RLWE𝑁,𝑄

𝑠
(�̃�) = (˜𝑏, 𝑎) = (−𝑎 · 𝑠 + Δ�̃� + 𝑒, 𝑎) .

for a messages �̃� ∈ 𝑅𝑁,𝑝 encrypted under the secret key 𝑠 ∈ 𝑅𝑁,𝑄 .

Here, 𝑎 ∈ 𝑅𝑁,𝑄 is chosen uniformly at random and Δ = ⌊𝑄𝑝 ⌉ is the
scaling factor.

• RGSW𝑁 ′,𝑄 ′

𝑠
(�̃�): The RGSW ciphertext. First introduced in

[49], given a gadget vector g = (𝑔0, 𝑔1, ..., 𝑔𝑙−1) ∈ Z𝑙𝑄 ′ , the RGSW
encryption of a message �̃� ∈ 𝑅𝑁 ′,𝑝 under the secret key 𝑠 ∈ 𝑅𝑁 ′,𝑄 ′
is:

RGSW𝑁 ′,𝑄 ′

𝑠
(�̃�) = Z + �̃�G = (B,A) ∈ 𝑅2𝑙×2𝑁 ′,𝑄 ′ .

where Z ∈ 𝑅2𝑙×2
𝑁 ′,𝑄 ′ contains 2𝑙 RLWE ciphertexts encrypting zeroes.

G is defined as G = I2 ⊗ g, where I2 is the identity matrix of size 2

and ⊗ refers to the Kronecker product [60] between two matrices.

Roughly speaking, an RGSW ciphertext is basically a collection of

2𝑙 RLWE ciphertexts.

We stress that all (R)LWE ciphertexts contain certain levels of

noise that can be amplified by the homomorphic operators de-

scribed below. Even if such noises may not cause decryption fail-

ures, they contaminate the least significant bits of the plaintext

messages and reduce the precision of the ciphertext until it be-

comes indecipherable.

2.2 Homomorphic Operators
Here, we explain the fundamental homomorphic operators used

throughout this work. Note that, we abbreviate the ciphertext nota-

tions to LWE(𝑚), RLWE(𝑚) and RGSW(𝑚) when the parameters

are not important to the discussion.

2.2.1 Homomorphic Arithmetic Operators. We primarily use homo-

morphic arithmetic operators to evaluate linear (i.e., polynomial)

operations over RLWE ciphertexts. Specifically, operations over

homomorphic arithmetic circuits are outlined as follows.

• + , − and ·: Ciphertext addition, subtraction and multiplica-

tion. In this work, we consider an RLWE ciphertext to be a tu-

ple of polynomials, where additions (+) and multiplications (·) are
supported between ciphertexts. For example, given two RLWE

ciphertexts RLWE0 = (˜𝑏0, 𝑎0) and RLWE1 = (˜𝑏1, 𝑎1). The addi-

tion between the two ciphertexts is defined as RLWE(�̃�0 + �̃�1) =
RLWE(�̃�0) +RLWE(�̃�1) = (˜𝑏0 + ˜𝑏1, 𝑎0 +𝑎1). Similarly, one can de-

fine the homomorphic subtraction between two RLWE ciphertexts.

Finally, given two RLWE ciphertexts RLWE(�̃�0)and RLWE(�̃�1)
which encrypt plaintexts𝑚0 and𝑚1, the homomorphic multipli-

cation RLWE(�̃�0) · RLWE(�̃�1) results in RLWE(�̃�0 · �̃�1). More

details on ciphertext multiplication and the so-called relineariza-

tion process can be found in [20].

• 𝑝 (RLWE(�̃�)): Polynomial evaluation over the input ciphertext.

For any polynomial 𝑝 (𝑥), note that 𝑝 (RLWE(�̃�)) represents the
homomorphic evaluation of 𝑝 over the input ciphertext RLWE(�̃�)
encrypting �̃�, i.e., RLWEout = RLWE(𝑝 (�̃�)) = 𝑝 (RLWE(�̃�)), de-
crypts to 𝑝 (�̃�). Here, the evaluation of 𝑝 can be realized by the

homomorphic multiplication and addition operators. For example,

let 𝑐𝑡 = RLWE(�̃�), if 𝑝 (𝑥) = 𝑥3 + 𝑥 , then 𝑝 (𝑐𝑡) = 𝑐𝑡 · 𝑐𝑡 · 𝑐𝑡 + 𝑐𝑡 . We

note that there also exist more efficient algorithms for evaluating

𝑝 (𝑥) over RLWE(𝑚) [18, 25, 59, 73].

2.2.2 Homomorphic Logic Operators. Different from homomorphic

arithmetic operators, homomorphic logic operators can be faster

when evaluating a deep chain of non-polynomial functions. The

main homomorphic logic operators are summarized as follows.

• CMUX(R/GSW(𝔱),R/LWE(𝑎),R/LWE(𝑏)): The homomorphic

selector. Note that the homomorphic selector works for both RLWE
and LWE ciphertext inputs, and we take the RLWE case as an

example here. Given RLWE(𝑎) and RLWE(𝑏) along with a con-

trol signal RGSW(𝔱) that encrypts a binary plaintext 𝔱 ∈ {0, 1},
CMUX(RGSW(𝔱),RLWE(𝑎),RLWE(𝑏)) homomorphically computes

𝔱 ? RLWE(𝑎) : RLWE(𝑏), (1)

i.e., the function selects RLWE(𝑎) if 𝔱 = 1 and RLWE(𝑏) if 𝔱 = 0.

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

• PBS(LWE(𝑚),BK,𝑇 (𝑥)): The programmable bootstrapping op-

erator. Given an LWE ciphertext 𝑐𝑡 = LWE(𝑚) and a discrete func-

tion 𝑇 (𝑥), and the bootstrapping key BK, PBS outputs LWE(𝑇 (𝑚))
with a constant (i.e., input-independent) noise level.

• HomGate(LWE(𝑚0), LWE(𝑚1), OP): The homomorphic logic

gate. Given two LWE ciphertexts LWE(𝑚0) and LWE(𝑚1) along
with a two-input logic gate OP, HomGate(LWE(𝑚0), LWE(𝑚1), OP)
produces LWE(OP(𝑚0,𝑚1)). Note that, except for homomorphic

NOT gate which is simply the negation of the input LWE ciphertext,

other gates including XOR, AND, OR, NAND, etc., are evaluated

based on PBS. As a result, HomGate always outputs a ciphertext

with a constant level of noise and permits circuits of unbounded

depths to be evaluated over the homomorphic gates.

2.2.3 Homomorphic Format Conversion Operators. Since homo-

morphic operators work on different types of homomorphic cipher-

texts, homomorphic format conversion operators are required to

convert between different ciphertext formats, e.g., from an LWE

ciphertext to an RLWE ciphertext. Here, we briefly summarize the

functionalities for each of the conversion operators.

• RLWEtoLWEs(RLWE(�̃�)): The conversion from one RLWE𝑁,𝑄

𝑠

ciphertext to a set of 𝑁 LWE𝑁,𝑄
s ciphertexts. Like [32], RLWEtoLWEs

outputs 𝑁 LWE ciphertexts 𝑐𝑡0, 𝑐𝑡1, ..., 𝑐𝑡𝑁−1 where 𝑐𝑡𝑖 encrypts the
𝑖-th plaintext coefficient of the message polynomial �̃�.

• LWEstoRLWE(LWE0, · · · , LWE𝑁−1): The conversion from a set

of 𝑁 LWE𝑛,𝑞s ciphertexts to one RLWE𝑁,𝑄

𝑠
ciphertext, which is

basically the inverse of RLWEtoLWEs. However, we note that ex-

isting methods for LWEstoRLWE end up with significantly reduced

precision in the resulting RLWE ciphertext. As later explained in

Section 4.3, due to the underlying cryptographic limitations, ex-

isting methods devised for LWEstoRLWE cannot be directly applied

to a DB setting which requires a large number of high-precision

aggregation operations [26, 77].

• LWEtoRGSW(LWE,BK): The conversion from an LWE𝑛,𝑞s cipher-

text to an RGSW𝑁 ′,𝑄 ′

s̃ ciphertext. LWEtoRGSW is generally used to

convert a HomGate result in the LWE format to an RGSW switching

signal for the CMUX operator.
Due to space limitation, more details about BlindRotate, PBS,

HomGate, RLWEtoLWEs, LWEstoRLWE and LWEtoRGSW can be found

in the related literature [26, 33].

3 FRAMEWORK OVERVIEW
In this section, we first provide a high-level workflow of HE

3
DB

in Section 3.1, and then analyze the threat model and security

guarantees of HE
3
DB in Section 3.2. Lastly, we summarize how to

implement key SQL statements for the filter-aggregation process

in Section 3.3.

3.1 HE3DBWorkflow
The HE

3
DB framework is composed of three interlinked stages: (1)

offline data encryption, (2) online query processing, and (3) online

data analysis. In what follows, we detail the main objective of each

stage and briefly sketch the lower-level FHE operations.

To begin with, in (1) the offline data encryption stage, the client

first needs to encrypt all the data tables in the database using FHE

and outsources the encrypted database to the server. Specifically,

for every table T ∈ D, each column 𝑡𝑖 ∈ T will first be divided

into 𝐽 = ⌈|T |row/𝑁 ⌉ data chunks, each of size 𝑁 . Next, each data

chunk is encoded into a degree-𝑁 plaintext polynomial �̃�𝑖, 𝑗 , and

encrypted into an RLWE ciphertext RLWE(�̃�𝑖, 𝑗). The resulting

encrypted database is thus a set of RLWE ciphertexts {RLWE(�̃�𝑖, 𝑗)}
. Along with the encryption database, the evaluation keys (e.g., BK)
will also be sent to the server. We note that different from existing

bit-by-bit [71] and row-by-row [93] schemes, we encrypt the entire

database using only RLWE ciphertexts, significantly reducing the

client-side encryption complexity and communication burdens.

Next, twomain steps in (2), the online query processing stage, are

homomorphic filtering and homomorphic aggregation. For filter-

ing, we execute a number of homomorphic comparisons to realize

the SELECT, JOIN, GROUP BY, and ORDER BY filtering operations on

encrypted data items, and more details on the exact input-output

behaviors of these SQL statements are provided in Section 3.3. Then,

logic (MIN, MAX, Top-k) and arithmetic (SUM, AVG) aggregations are
executed according to the statements in the queries. To better con-

vey our idea, we first summarize how the SQL statements are built

over the proposed FHE operators in Section 3.3. Later in Section 4,

the proposed high-precision homomorphic comparison, aggrega-

tion, and conversion operators are presented.

If needed, the server performs further computations on the aggre-

gated results in (3), the online data analysis stage. In most practical

applications, the client also wishes to outsource some data analy-

sis algorithms. Here, we assume that the data analysis algorithm

Analysis contains a set of algorithm parametersW, which belongs

to either the client or the server. Unfortunately, due to the limit

of ciphertext noise level [71, 93] or incompatible plaintext encod-

ing [54], queried results produced by existing FHE-based SDO often

cannot be further processed without additional client-server inter-

actions. In contrast, through the carefully designed homomorphic

aggregation and conversion operators, HE
3
DB permits arbitrary

Analysis to be applied on the queried ciphertext results. A detailed

presentation for the data analysis stage can be found in Section 5.

3.2 Threat Model and Security
Threat Model: Our security goal is to protect the outsourced data-

base D owned by the client C from the semi-honest server S, and
our threat model is similar to that in previous works[35, 54, 71, 89,

93]. We assume that S honestly follows the protocol to execute

the queries and data analysis algorithms, but acts as a probabilistic

polynomial time adversary and perform computations to learn as

much as possible from D owned by C. The concrete public and
private data from the perspective of the server is as follows.

Public Data:

• |D|: the size of the database, i.e., the number of data tables

in D.

• |T |row, |T |col: the number of rows as well as the number

of columns in some table T ∈ D.

• |Q|: the number of filtering predicates in a SQL query Q.
• Attr, |Attr|: The attribute label (e.g., gender, date) and the

range of the attribute (e.g., |Gender| = 2).

• The logic connection (e.g., AND, OR) between the filtering

predicates in a SQL query.

• The aggregation functions (e.g., SUM, MIN) in a SQL query.

Song Bian et al.

Homomorphic Logic Aggregation (Section 4.3)

1

1

0

0

1

1

0

0

Table

DateID
2158 20221201

2158 20221202

2158 20221130

2157 20230101

HR
108

110

100

125

DateID
2158 20221201

2158 20221202

2158 20221130

2157 20230101

HR
108

110

100

125

Homomorphic Arithmetic Aggregation (Section 4.4)

Homomorphic Predicate Evaluation

(Section 4.2)

1

1

0

0

1

1

0

0

=

HomComp HomComp HomComp

Date>=
20221201

Date<=
20221231

ID==
2158

1

1

1

0

1

1

1

0

1

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

Hom
Gate

Hom
Gate

Filter
result

LWEsToRLWE

1

1

0

0

1

1

0

0

SUM

1

1

0

0

108

110

NaN

NaN

108

110

NaN

NaN

HomMIN 108

108

110

100

125

108

110

100

125

108

110

0

0

108

110

0

0

218

0

0

0

218

0

0

0

LWEs RLWE RLWE RLWE RLWE

108

NaN

108

NaN
...

...

...

.
.
.

C
M
U
X

LWEs LWEs LWE

MIN(HR)

SUM(HR)

SELECT ,
FROM health
WHERE

SUM(HR) MIN(HR)

Query

AND Date >= 20221201

ID==2158

AND Date <= 20221231

SELECT ,
FROM health
WHERE

SUM(HR) MIN(HR)

Query

AND Date >= 20221201

ID==2158

AND Date <= 20221231

LWEs LWEs LWEs

Data
Analysis

Data
Analysis

Figure 2: An example processing flow illustration in query evaluation. Here, we show how to perform logic aggregation (HomMIN)
and arithmetic aggregations. Plaintext values in the figure are used only to demonstrate the range for each of the attributes.

Table 2: Summary of Operation Costs for Each Homomorphic SQL Statement.

SQL Statement #HomComp #HomGate #CMUX #LWEtoRGSW

SELECT |T |row · |Q| |T |row · (|Q| − 1) 0 0

JOIN |T𝑎 |row · |T𝑏 |row 0 0 0

GROUP BY |T |row · |Attr| 0 0 0

ORDER BY |T |row log
2

2
|T |row 0 |T |row (log2

2
|T |row + 1) |T |row (log2

2
|T |row + 1)

MIN/MAX |T |row − 1 0 2|T |row − 1 2|T |row − 1
| Q |, | T |row and |Attr | are all public data known to the server.

• Analysis: the data analysis algorithm without parameters

(i.e., only the procedures).

Private Data:
• T𝑖, 𝑗 , for 𝑖 ∈ |T |row, 𝑗 ∈ |T |col : exact values of the database

items for all T ∈ D.

• Q𝑖 ∈ Q, for 𝑖 ∈ |Q|: the predicate values in the SQL query.

• 𝑤𝑖 ∈ W, for 𝑖 ∈ |W|: the weight values of the data analysis
algorithm Analysis.

Security of HE3DB: Since the private data are all encrypted
using FHE, the security of HE

3
DB can be directly reduced to that

of the underlying FHE scheme. Traditional FHE schemes, such as

B/FV [20], CKKS [29], and TFHE [32], all guarantee security under

chosen plaintext attacks, which translates to a semi-honest security

on private client data. Assuming the circular security of FHE [21],

switching between different ciphertext formats preserves the over-

all semi-honest security of the protocol. However, the parameters

of such ciphertext formats need to be jointly adjusted to achieve

the same level of security. Note that, since HE
3
DB performs a linear

scan of the entire database for each query and protects both the

query values as well as the intermediate results throughout the

whole process, HE
3
DB is secure against access patterns and volume

leakage attacks [68].

3.3 Key Operators in Filter-Aggregation
Since a SQL query can contain a variety of composed filtering and

aggregation statements, HE
3
DB breaks each statement down to

atomic operators that can be directly implemented using FHE. Here,

we use the simple plaintext SQL query shown in Figure 2 as an

illustration for the statement evaluation process.

• SELECT. The homomorphic SELECT operator takes as inputs

|Q| encrypted predicates with |T |
col
· 𝐽 (𝐽 = ⌈|T |row/𝑁 ⌉) columns

of RLWE ciphertexts, and outputs a set of LWE ciphertexts sc =

(𝑠𝑐0, 𝑠𝑐1, ..., 𝑠𝑐 | T |row−1). Here, each 𝑠𝑐𝑖 is an LWE ciphertext that

encrypts either 1 (true) or 0 (false), indicating if the 𝑖-th row of

T is selected. Functionally, the homomorphic SELECT operator

consists two steps: i) individual predicate evaluation, and ii) logic

connection between the predicates. In HE
3
DB, encrypted predicate

evaluations (as shown in Figure 2) are realized as homomorphic

logical comparisons (>, ≥, <, ≤,==,≠) between ciphertexts based

on the HomComp operator. Since HomComp is one of the key building

blocks for our framework, more discussions on HomComp are deliv-

ered in Section 4.1. Besides, the unbounded-depth logic connection

(AND, OR) between the individual comparison results can be im-

plemented by the HomGate operator defined in Section 2.2. Since

FHE-based filtering is inherently a linear scan, the cost of HomComp
in SELECT is |T |row · |Q| as each predicate requires the comparison

between the queried predicate value and all items in the correspond-

ing column of the encrypted table (|T |row). In addition, connecting

|Q| predicates cost |T |row · (|Q| − 1) HomGate operations, as the

|Q| predicates contains (|Q| − 1) logic connections between the

individual comparison results.

• JOIN. A homomorphic inner join is composed of the Cartesian

product of the two encrypted tables and the evaluation of the join

condition, which can simply be implemented by the homomorphic

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

comparison operator HomComp. Thus, for two data tables T𝑎 and T𝑏 ,
the cost of HomComp in JOIN is |T𝑎 |row · |T𝑏 |row.
• GROUP BY. To evaluate the homomorphic GROUP BY operator,

we generate multiple copies of the original query Q, where each
copy is equipped with an additional equality test over the group

attribute. For example, a GROUP BY on the attributeGender = {0, 1}
can be implemented by the two queries Q AND Gender == 0 and
Q AND Gender == 1. Let the range of the GROUP BY attribute Attr
be |Attr|, the cost of GROUP BY is |T |row · |Attr| HomComp operations.
• Aggregation functions. As shown in Figure 2, after the ho-

momorphic predicate evaluation, we get |T |row LWE ciphertexts

encrypting the filtering results. The homomorphic aggregation

computes the functions on the filtered rows. HE
3
DB supports both

logic aggregation (such as MIN, MAX, and Top-k) and arithmetic ag-

gregation (such as SUM, AVG, and COUNT) functions, and we detail

the exact constructions in Section 4.2 and Section 4.3. Addition-

ally, we note that, ORDER BY is essentially a logic aggregation, and

can be implemented similar to Top-k. The main challenge for all

types of homomorphic logic aggregations is how to apply numerical

comparisons only on the filtered result. Since a logic mismatch is

represented using a value 0 in most existing homomorphic compar-

ison operators [35, 77], comparing logic mismatches and legitimate

attribute values may produce incorrect aggregation results. We

detail our method to overcome this challenge in Section 4.2.

4 CRYPTOGRAPHIC BUILDING BLOCKS
In this section, we introduce the main cryptographic tools we de-

velop, namely, the homomorphic comparison operator HomComp for
homomorphic predicate evaluation (Section 4.1), the homomorphic

minimum and maximum operators HomMIN and HomMAX for homo-

morphic logic aggregation (Section 4.2), and a new LWEstoRLWE
operator for homomorphic arithmetic aggregation (Section 4.3).

4.1 Homomorphic Predicate Evaluation
Since predicate evaluations are essentially concatenated compar-

isons, the core computation here is the comparison between two en-

crypted ciphertexts. In this section, we outline a series of homomor-

phic algorithms we devised that lead to the proposed homomorphic

comparison algorithm HomComp, which supports unbounded-depth

homomorphic predicate evaluation.

4.1.1 The Main Building Block: HMSB. We first discuss the homo-

morphic most significant bit (MSB) extraction algorithm, HMSB,
which is the key building block in instantiating HomComp. We first

point out that, as observed in the existing works [75, 77, 93], the

comparison between two ciphertexts 𝑐𝑡𝑎 and 𝑐𝑡𝑏 encrypting inte-

gers 𝑎 and 𝑏 can be evaluated by extracting the MSB from 𝑐𝑡𝑎 − 𝑐𝑡𝑏 ,
since the MSB of the subtraction result encrypts a value of 0 when

𝑎 ≥ 𝑏 and a value of 1 when 𝑎 < 𝑏 in the two’s complement repre-

sentation. However, we observe that existing homomorphic MSB

extraction algorithms following the PBS procedure [77] proposed
in [33] may not fit encrypted databases due to their low accuracy.

In particular, such algorithms can only successfully extract the MSB

when the plaintext message (which is the subtraction result 𝑎 − 𝑏
here) is an integer that is less than 6 bits (the full PBS-based MSB ex-

traction algorithm and the explanation on the precision constraints

can be found in the Appendix).

Algorithm 1: 2𝑘-bit HMSB
Input :A LWE ciphertext 𝑐𝑡𝐼 = LWE(𝑚), where

𝑚 = 2
𝑘 ·𝑚1 +𝑚0.

Input :A bootstrapping key BK.
Output :An LWE ciphertext 𝑐𝑡𝑂 = LWE(MSB(𝑚)).

1 𝑐𝑡1 ← 2
𝑘−1𝑐𝑡𝐼 ; ⊲ 𝑐𝑡1 = LWE(22𝑘−1LSB(𝑚1) + 2𝑘−1𝑚0)

2 𝑐𝑡2 ← HMSB𝑘+1 (𝑐𝑡1) ; ⊲ 𝑐𝑡2 = LWE(22𝑘−1LSB(𝑚1))
3 𝑐𝑡3 ← 𝑐𝑡1 − 𝑐𝑡2 ; ⊲ 𝑐𝑡3 = LWE(2𝑘−1𝑚0)
4 𝑐𝑡4 ← PBS(𝑐𝑡3,BK,𝑇 (𝑥) = 𝑥

2
𝑘−1) ; ⊲ 𝑐𝑡4 = LWE(𝑚0)

5 𝑐𝑡5 ← 𝑐𝑡𝐼 − 𝑐𝑡4 ; ⊲ 𝑐𝑡5 = LWE(2𝑘𝑚1)
6 𝑐𝑡𝑂 ← HMSB𝑘 (𝑐𝑡5) ; ⊲ 𝑐𝑡𝑂 = LWE(MSB(𝑚))
Return :𝑐𝑡𝑂 = LWE(MSB(𝑚))

𝑚1𝑚0 𝑒

𝑐𝑡3 ← 𝑐𝑡1 − 𝑐𝑡2

𝑐𝑡5 ← 𝑐𝑡𝐼 − 𝑐𝑡4
1

𝑐𝑡𝐼

𝑐𝑡1

𝑐𝑡2

𝑐𝑡3

𝑐𝑡4

𝑐𝑡5

𝑐𝑡𝑂

𝑚0

𝑚0

𝑚0

𝑚1

𝑘𝑘

𝑘 𝑘

𝑘

𝑘

1

11

𝑘

𝑒

𝑒

𝑒

𝑒

𝑒

𝑒

𝑐𝑡1 ← 2𝑘−1𝑐𝑡𝐼

𝑐𝑡2 ← HMSBk+1(𝑐𝑡1)

𝑐𝑡4 ← PBS(𝑐𝑡3, 𝑩𝑲,
𝑥

2𝑘−1
)

𝑐𝑡𝑂 ← HMSBk(𝑐𝑡5)

Figure 3: A line-by-line illustration of how Algorithm 1
works with the input ciphertext 𝑐𝑡𝐼 = RLWE(2𝑘𝑚1 +𝑚0).

Algorithm 2: 𝑡𝑘-bit HMSB
Input :A LWE ciphertext 𝑐𝑡𝐼 = LWE(𝑚), where

𝑚 =
∑𝑡
𝑖=0 2

𝑖𝑘 ·𝑚𝑖 .

Input :A bootstrapping key BK.
Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE(MSB(𝑚)).

1 if 𝑡 == 1 then
2 𝑐𝑡𝑂 ← HMSB𝑘 (𝑐𝑡𝐼)
3 else
4 𝑐𝑡1 ← 2

𝑡𝑘−1𝑐𝑡𝐼
5 𝑐𝑡2 ← HMSB𝑘+1 (𝑐𝑡1)
6 𝑐𝑡3 ← 𝑐𝑡1 − 𝑐𝑡2
7 𝑐𝑡4 ← PBS(𝑐𝑡3,BK,𝑇 (𝑥) = 𝑥

2
𝑡𝑘−1)

8 𝑐𝑡5 ← 𝑐𝑡𝐼 − 𝑐𝑡4
9 𝑐𝑡𝑂 ← HMSB(𝑡−1)𝑘 (𝑐𝑡5)
Return :𝑐𝑡𝑂 = LWE(MSB(𝑚))

To overcome the precision loss problem while retaining high

performance, we propose a new homomorphic MSB extraction

algorithm HMSB. The key idea of HMSB is to iterate the PBS algorithm
a certain number of times over the same ciphertext, such that we can

extract the MSB of arbitrary-precision messages. We do note that

HMSB is not the first to adopt iterative bootstrapping for improving

the accuracy of homomorphic computations. For instance, [11] also

employs the same idea and devised a high-precision ciphertext

bootstrapping algorithm.

Song Bian et al.

Algorithm 3: HomComp
Input :Two ciphertexts 𝑐𝑡𝑎 = LWE(𝑎), 𝑐𝑡𝑏 = LWE(𝑏).
Input :Comparison operator cmp.
Input :A bootstrapping key BK.
Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE(𝑐) where 𝑐 = 1 if 𝑎

cmp 𝑏 is True, else 𝑐 = 0.

1 switch cmp do
2 case ≥ do 𝑐𝑡𝑂 ← HomGate((HMSB(𝑐𝑎 − 𝑐𝑏),NOT));
3 case > do 𝑐𝑡𝑂 ← HMSB(𝑐𝑏 − 𝑐𝑎);
4 case ≤ do 𝑐𝑡𝑂 ← HomGate(HMSB(𝑐𝑏 − 𝑐𝑎),NOT);
5 case < do 𝑐𝑡𝑂 ← HMSB(𝑐𝑎 − 𝑐𝑏);
6 case == do
7 𝑐𝑡𝑂 ← HomGate(HMSB(𝑐𝑎 −𝑐𝑏), HMSB(𝑐𝑏 −𝑐𝑎),NOR)
8 case ≠ do
9 𝑐𝑡𝑂 ← HomGate(HomComp(𝑐𝑡𝑎, 𝑐𝑡𝑏 ,==),NOT)
Return :𝑐𝑡𝑂 = LWE(𝑐)

We start with a PBS-based MSB extraction algorithm, named

PBS-HMSB. We assume that PBS-HMSB can successfully extract the

MSB of a ^-bit integer (e.g., as mentioned, ^ = 6 using the original

PBS method proposed in [33]). Let 𝑘 = ^ − 1 (e.g., 𝑘 = 5 in our

implementation), we show how to construct a 2𝑘-bit homomorphic

MSB extraction algorithm based on PBS-HMSB in Algorithm 1. First,

given a 2𝑘-bit input ciphertext 𝑐𝑡𝐼 = LWE(𝑚), it is obvious that
𝑚 = 2

𝑘 ·𝑚1 +𝑚0. Our critical insight is that the MSB of 𝑐𝑡𝐼 depends

on the first bit of the plaintext, so we can homomorphically remove

the remaining bits to construct a 𝑘-bit ciphertext. To achieve the

bit removal, as depicted in Figure 3, we homomorphically shift the

internal plaintext message towards the left and turns LWE(2𝑘 ·
𝑚1 +𝑚0) into LWE(𝑚0). Next, we can homomorphically subtract

LWE(𝑚0) from LWE(𝑚) = LWE(2𝑘 ·𝑚1 +𝑚0), and get LWE(2𝑘 ·
𝑚1). Then, we can apply PBS-HMSB to extract the MSB of the 𝑘-bit

plaintext message𝑚1, which is also the MSB of LWE(𝑚), i.e., 𝑐𝑡𝐼 .
However, to correctly bootstrap the ciphertext 𝑐𝑡3 in Algorithm 1,

the MSB of the encrypted plaintext must be set to zero [33, 77].

To address this problem, we leave the MSB as is in the shifting

processing such that it can later be zeroed out (as indicated in lines

2-3 of Algorithm 1).

Based on a similar idea, we can extend the 2𝑘-bit HMSB to arbi-

trary precision 𝑡𝑘 for any positive integer 𝑡 by repeatedly shifting

and subtracting 𝑘-bit plaintext messages. As formalized in Algo-

rithm 2, we first recursively discard the least significant 𝑘 bits of

the initial 𝑡𝑘-bit ciphertext 𝑡 times until only the most significant

𝑘 bits remain. Then, we simply apply PBS-HMSB with ^-bit preci-

sion and accurately extract the MSB of the input ciphertext with

𝑡𝑘-bit-precision plaintext message.

4.1.2 HomComp Based on HMSB. Based on the arbitrary-precision

HMSB algorithm devised above, we can carry out arbitrary-precision

comparisons between the queried attributes and the DB items. Let

𝑐𝑡𝑎 and 𝑐𝑡𝑏 be the two LWE ciphertexts that encrypt 𝑎 and 𝑏, and

cmp be the type of comparison to be performed (≥, >, ≤, <,==,≠).
HomComp(𝑐𝑡𝑎, 𝑐𝑡𝑏 , cmp) outputs an LWE ciphertext encrypting 1 if

the predicate 𝑎 cmp 𝑏 is true and 0 if 𝑎 cmp 𝑏 is false. The HomComp al-
gorithm can be easily constructed using HMSB with some additional

Algorithm 4: HomMIN
Input :Two LWE ciphertexts

𝑐𝑡𝑎 = LWE(𝑎), 𝑐𝑡𝑏 = LWE(𝑏).
Input :A bootstrapping key BK.
Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE(MIN(𝑎, 𝑏)).

1 𝑐𝑡 ← HomComp(𝑐𝑡𝑎, 𝑐𝑡𝑏 , ≤)
2 𝐶 ← LWEtoRGSW(𝑐𝑡,BK)
3 𝑐𝑡𝑂 ← CMUX(𝐶, 𝑐𝑡𝑎, 𝑐𝑡𝑏)
Return :𝑐𝑡𝑂 = LWE(MIN(𝑎, 𝑏))

Algorithm 5: HomMINAgg
Input :An RLWE ciphertext of the aggregated column

𝑐𝑡 = RLWE(�̃�) where �̃�𝑖 =𝑚𝑖 for 𝑖 ∈ Z | T |row .
Input :Filtered result 𝑐 𝑓 = (𝑐 𝑓0, 𝑐 𝑓1, ..., 𝑐 𝑓 | T |row−1), where

𝑐 𝑓𝑖 = LWE(𝑓𝑖), 𝑓𝑖 = 0 or 1.

Input :The pre-defined constant LWENaN.
Input :A bootstrapping key BK.
Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE(MIN(𝑚𝑡0 , ...,𝑚𝑡𝑓 −1))

where 𝑓 =
∑ | T |row−1
𝑖=0

𝑓𝑖 and 𝑓𝑡0 , 𝑓𝑡1 , ..., 𝑓𝑡𝑓 −1 = 1.

1 ct← RLWEtoLWEs(𝑐𝑡) = (𝑐𝑡0, 𝑐𝑡1, ..., 𝑐𝑡 | T |row−1)
2 for 𝑖 = 0 to |T |row − 1 do
3 𝐶𝑖 ← LWEtoRGSW(𝑐 𝑓𝑖 ,BK)
4 𝑐𝑡𝑖 ← CMUX(𝐶, 𝑐𝑡𝑖 , LWENaN)
5 for 𝑖 = 0 to log

2
|T |row − 1 do

6 for 𝑗 = 0 to 2
log

2
| T |row−𝑖−1 − 1 do

7 𝑐𝑡
2
𝑖+1 · 𝑗 ← HomMIN(𝑐𝑡

2
𝑖+1 · 𝑗 , 𝑐𝑡2𝑖+1 · 𝑗+2𝑖 ,BK)

Return :𝑐𝑡𝑂 = 𝑐𝑡0

homomorphic gates. We summarize the exact arithmetic procedure

for HomComp in Algorithm 3. The complexity of our HomComp algo-
rithm can be expressed by the following lemma, where the formal

proof is given in the Appendix.

Lemma 4.1. Given the two 𝑡𝑘-bit ciphertext 𝑐𝑡𝑎 , 𝑐𝑡𝑏 with a com-
parison operator HomComp, the Algorithm 3 outputs LWE ciphertext
𝑐𝑡𝑂 = LWE(𝑐) where 𝑐 = 1 if 𝑎 cmp 𝑏 is True, else 𝑐 = 0. The number
of PBS evaluated by Algorithm 3 is 2𝑡 − 1 or 2𝑡 .

4.2 Homomorphic Logic Aggregation
Most existing homomorphically encrypted database techniques [71,

93] only support arithmetic aggregation (e.g., SUM or AVG). To sup-

port logic aggregation such as MIN, MAX, Top-k and SQL statement

such as ORDER BY, we propose new two-input logic operators that

can be used to construct arbitrary logic aggregation functions. Due

to space limitation, we use HomMIN as an example in this section. Our

methodology applies generally to other types of logic aggregations.

4.2.1 Homomorphic MIN and MIN aggregation. While there exists

prior works [30, 77] for computing HomMIN and HomMAX operators,
such techniques cannot be directly applied to a homomorphically

encrypted database due to two major obstacles. The first obstacle

is the low evaluation speed and unstable aggregation precision.

For example, while [30] can achieve high-precision HomMIN eval-

uation, the method incurs a large number of latency overheads.

On the other hand, although [77] can evaluate HomMIN and HomMAX

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

relatively fast (but still slower than our proposed technique), the

technique suffers from the low precision (< 6-bit) problem. The

second obstacle is how to evaluate logic aggregations only on fil-

tered rows. For a set of homomorphically filtered results, the server

cannot distinguish between an attribute value originally encrypted

to be zero and a filtered attribute that is set to be zero. Therefore,

when performing operations such as HomMIN, we can produce in-

correct results if we aggregate on invalid rows that are marked as

zeroes because they are filtered by the SQL statements.

To tackle the above two obstacles, we propose a new homomor-

phic logic aggregation procedure. For the first barrier, we introduce

a new mechanism to homomorphically evaluate MIN (and MAX). We

point out that, for two numbers 𝑎 and 𝑏, prior works [30, 77] adopts

the following formula to compute the MIN function.

MIN(𝑎, 𝑏) = (𝑎 ≤ 𝑏) ? 𝑎 : 𝑏 =
𝑎 + 𝑏
2

− |𝑎 − 𝑏 |
2

(2)

However, evaluating the absolute function in HE will either be too

slow or too inaccurate. To avoid the absolute function, we propose

to implement MIN using the homomorphic comparison HomComp
proposed in Section 4.1 and the homomorphic selector CMUX defined
in Section 2.2. Essentially, we compute

HomMIN(𝑎, 𝑏) = GSW(𝑎 ≤ 𝑏) ? 𝑐𝑡𝑎 : 𝑐𝑡𝑏 , (3)

where GSW(𝑎 ≤ 𝑏) = LWEtoRGSW(HomComp(𝑐𝑡𝑎, 𝑐𝑡𝑏 , ≤). Observe
that Eq. (3) is precisely Eq. (1), and we sketch the full algorithm

in Algorithm 4. That is, using HomComp, 𝑎 ≤ 𝑏 can be homomor-

phically evaluated with high precision and high evaluation speed.

In addition, since CMUX is also a fast operator (around 1000× faster

than HomComp), our HomMIN operator can be both faster and more

accurate than existing solutions [30, 77].

Next, we solve the second obstacle by defining a constant ci-

phertext LWENaN encrypting NaN, i.e., a ‘not a number’ ciphertext.

As detailed in Algorithm 5, the key idea is simple: before compar-

ing two LWE ciphertexts, we first use the encrypted filtered result

GSW(𝔱) to pre-filter the input ciphertext 𝑐𝑡𝑖 by computing

GSW(𝔱) ? 𝑐𝑡𝑖 : LWENaN, (4)

which is again a CMUX operation. Note that, in practice, LWENaN
can be initialized to be the largest value in the range of the plaintext

message space (and the smallest value in the case of HomMAXAgg).
Then, we can proceed to build a conventional min-tree of depth

log
2
|T |row to calculate the minimum value over all rows in the

attribute column. The complexity analysis of the algorithm is pro-

vided in Lemma 4.2 (the proof can be found in the Appendix).

Lemma 4.2. In Algorithm 5 the number of homomorphic CMUXgates
is 2|T |row − 1. The number of homomorphic LWEtoRGSW operators is
2|T |row − 1, and the number of homomorphic HomComp operators is
|T |row − 1.

4.2.2 Extending to Other Types of Aggregations. As mentioned,

the HomMAX and HomMAXAgg can be implemented in a very similar

way as HomMIN and HomMINAgg, except that LWENaN needs to be

defined as the smallest value possible here. Meanwhile, to achieve

homomorphic ORDER BY, we propose a simple swap function based

Algorithm 6: LWEstoRLWE
Input :𝐿 LWE ciphertexts (LWE0, LWE1, ..., LWE𝐿−1)

where LWE𝑖 = LWE𝑛,𝑞s (𝑚𝑖) = (𝑏𝑖 , ai) and
𝑚𝑖 = 0/1.

Input :A conversion key CK = RLWE𝑁,𝑄0

𝑠
(E(s)).

Input :A precision parameter 𝛿 , range parameter (𝑢, 𝑣)
Output :An RLWE ciphertext 𝑐𝑡 = RLWE𝑁,𝑄

𝑠
(E(m)),

where m𝑖 =𝑚𝑖 ± 𝑒 for 𝑖 ∈ Z𝐿
1 Let b← [𝑏0, 𝑏1, ..., 𝑏𝐿−1], A← [a0, a1, ..., aL−1]𝑇 ∈ Z𝐿×𝑛𝑞

2 𝑐𝑡1 ← CK ⋄A ; ⊲ 𝑐𝑡1 = RLWE𝑁,𝑄1

𝑠
(E(As))

3 𝑐𝑡2 ← 𝑐𝑡1 + (E(b, 0)) ; ⊲ 𝑐𝑡2 = RLWE𝑁,𝑄1

𝑠
(E(As + b))

4 𝑐𝑡3 ← HomMod(𝑐𝑡2, 𝑞) ; ⊲ 𝑐𝑡3 = RLWE𝑁,𝑄2

𝑠
(E(m))

5 Generate the approximate polynomial 𝑝 (𝑥)
6 𝑐𝑡 ← 𝑝

Round
(𝑐𝑡3) ; ⊲ 𝑐𝑡 = RLWE𝑁,𝑄3

𝑠
(E(𝑝

Round
(m)))

Return :𝑐𝑡 = RLWE𝑁,𝑄

𝑠
(E(𝑝

Round
(m)))

on the HomMIN/HomMAX operators as

HASwap(𝑐𝑡𝑎, 𝑐𝑡𝑏) = HomMAX(𝑐𝑡𝑎, 𝑐𝑡𝑏), HomMIN(𝑐𝑡𝑎, 𝑐𝑡𝑏) (5)

HDSwap(𝑐𝑡𝑎, 𝑐𝑡𝑏) = HomMIN(𝑐𝑡𝑎, 𝑐𝑡𝑏), HomMAX(𝑐𝑡𝑎, 𝑐𝑡𝑏), (6)

depending the ascending (HASwap) and descending (HDSwap) orders
requested by ORDER BY. Based on the homomorphic swap oper-

ators, it is easy to construct the sorting function by the existing

sorting algorithms such as quick sort [61], and bitonic sorting [14].

Finally, Top-k can be implemented by first executing a descending

ORDER BY, and then selecting the first 𝑘 LWE ciphertexts.

4.3 Homomorphic Arithmetic Aggregation
To support homomorphic arithmetic aggregations (such as SUM,
COUNT, and AVG), the |T |row LWE ciphertexts which encrypt the

filtered results have to be packed in an RLWE ciphertext as arith-

metic aggregation over LWE ciphertexts are slow. In this section,

we propose a new homomorphic ciphertext conversion algorithm

LWEstoRLWE and the associated homomorphic arithmetic aggrega-

tions procedure.

4.3.1 Homomorphic ciphertext conversion LWEstoRLWE. Existing
works in converting LWE ciphertexts into an RLWE ciphertext

include PEGASUS [77] and the method of Chen et al. [26]. Taking
advantage of SIMD packing arithmetic homomorphic circuits, PE-

GASUS [77] performs fast ciphertext conversion but suffers from

the low-precision problem due to the noise growth in homomor-

phic arithmetic circuits. In contrast, Chen et al. [26] packs the

LWE ciphertexts by evaluating a series of recursive homomorphic

automorphisms [56]. We point out that Chen et al. [26] enjoys
high-precision packing capability, but induces a higher amount of

latency overheads.

Here, we design a homomorphic LWEstoRLWE algorithm that

achieves both, a fast algorithm that can accurately pack a set of

LWE ciphertexts into one RLWE ciphertext. Our critical insight

is that, in a homomorphically encrypted database, the predicate

results are in a very limited range, e.g., usually only 0’s and 1’s

to express the logical validity of the database entries. Thus, we

Song Bian et al.

can actually “correct” the errors on the low-precision ciphertext to

obtain a high-precision ciphertext.

The detailed algorithm LWEstoRLWE involves the following steps.
First of all, in Algorithm 6, we are given 𝐿 LWE filtering results

LWE0, LWE1, ..., LWE𝐿−1 where LWE𝑖 = LWE
𝑛,𝑞
s (𝑚𝑖) = (𝑏𝑖 , ai)

with a conversion key CK. The conversion key CK is an RLWE

ciphertext RLWE𝑁,𝑄0

𝑠
(E(s)) that encrypts the secret s, where E

stands for the CKKS encoding function [29]. On Line 1, we fol-

low [77] and rearrange the ciphertexts to construct a ciphertext vec-

tor b = [𝑏0, 𝑏1, ..., 𝑏𝐿−1] and a ciphertextmatrixA = [a0, a1, ..., aL−1]𝑇 ∈
Z𝐿×𝑛𝑞 . Next, on Line 2, we evaluate the homomorphic matrix mul-

tiplication [56, 67, 77] CK ⋄ A to get 𝑐𝑡1 = RLWE𝑁,𝑄1

𝑠
(E(As)).

Then, on Line 3, we homomorphically add b to 𝑐𝑡1 and get 𝑐𝑡2 =

RLWE𝑁,𝑄1

𝑠
(E(As + b)). After the above transforms, we obtain the

ciphertext 𝑐𝑡2 encrypting As + b = m + 𝑡q. To remove the 𝑡q term,

on Line 4, we follow [18, 28, 66, 73] to apply HomMod to the mod 𝑞
function homomorphically on 𝑐𝑡2, and get 𝑐𝑡3. At this stage, we ob-

tain a packed but imprecise RLWE ciphertext 𝑐𝑡3 = RLWE(E(m))
encrypting the vector of messages m packed from the input. Here,

we observe that for each m𝑖 ∈ m, m𝑖 equals either 1 ± 𝑒 or 0 ± 𝑒 ,
where the noise 𝑒 in inevitably added via the above transforms.

To correct the errors, on Line 5 in Algorithm 6, we generate

a polynomial 𝑝
Round

(𝑥) to approximate the rounding function

Round(𝑥). Following [18], given an interval [𝑢, 𝑣] and a pre-defined
precision parameter 𝛿 , we want to obtain a polynomial 𝑝

Round
(𝑥) =∑𝑛−1

𝑖=0 𝑎𝑖𝑥
𝑖
such that

∀𝑥 ∈ [𝑢, 𝑣], |𝑝
Round

(𝑥) − ⌈𝑥⌋ | < 2
−𝛿 , (7)

where 2
−𝛿

is negligible. Based on the equioscillation theorem [80],

𝑝
Round

(𝑥) is the best possible approximation of the round function

if and only if

∃𝑥0 ≤ ...𝑥𝑖 ... ≤ 𝑥𝑛 ∈ [𝑢, 𝑣], (8)

𝑝
Round

(𝑥𝑖) − ⌈𝑥⌋ = 𝜖 (−1)𝑖 |𝑝
Round

(𝑥) − ⌈𝑥⌋ |∞ (9)

where 𝜖 = ±1. Taking Equation (9) as the judgment condition, we

can construct the Remez iteration algorithm [92] to obtain the poly-

nomial 𝑝 (𝑥) meets the requirement of Equation (7). Upon obtaining

𝑝
Round

(𝑥), we can perform the approximate homomorphic round-

ing function on Line 6. As explained in Section 2.2, 𝑝
Round

(𝑥) can
be directly applied to the RLWE 𝑐𝑡3 produced on Line 4, and we get

the final output 𝑐𝑡 = RLWE(E(𝑝
Round

(m))). Here, the guarantee is
that the noises in 𝑝

Round
(m) will strictly be smaller than that in m.

4.3.2 Homomorphic arithmetic aggregation. Using the filtered re-

sults packed in an RLWE ciphertext 𝑐𝑡𝑝𝑎𝑐𝑘 based on the proposed

LWEstoRLWE operator described above, we can finally aggregate

over the target attribute. Let the RLWE ciphertext encrypting items

in the column be 𝑐𝑡𝑎 , we describe how to implement three types of

conventional arithmetic aggregation functions, namely, COUNT, SUM
and AVG. Note that the first two functions can be implemented us-

ing simple inner products between ciphertexts. Concretely, COUNT
function can be implemented by the inner product between 𝑐𝑡𝑝𝑎𝑐𝑘
and the vector 𝐼 = (1, 1, ..., 1), while SUM is also an inner product

between 𝑐𝑡𝑝𝑎𝑐𝑘 and 𝑐𝑡𝑎 . The homomorphic inner product of two

RLWE ciphertexts can be implemented over ciphertexts in both the

slot format [67, 77] or in the coefficient format [62, 93]. Furthermore,

DB result

Arith. Agg.

Logic Agg.

LWE

RLWE-Slot

RLWE-Coeff.

Conversion

Slot to
Coeff.

LWE

RLWE-Slot

RLWE-Coeff.

Data Analysis

Extract

Slot to
Coeff.

Figure 4: The conversion procedures to turn the aggregation
results into data analysis inputs.

the AVG function can be evaluated by AVG() = SUM() × COUNT()−1,
where the inverse function can be implemented based on [30].

5 ANALYZING AGGREGATED RESULTS
Since prior works only focus on the design of SQL evaluated over

encrypted data, the capability of further data processing on the

queried result is mostly left unexplored. Here, we first discuss how

to efficiently bridge the gap between the database query and online

data analysis, and then show a case study using private decision

tree evaluation.

5.1 Bridging DB Aggregation and Data Analysis
As shown in Figure 4, to support efficient data analysis algorithms

using both arithmetic and logic operators, we need to convert the

queried results into three different ciphertext formats: an LWE ci-

phertext (LWE), an RLWE ciphertext with slot encoding (RLWE-Slot),
and an RLWE ciphertext with coefficient encoding (RLWE-Coeff).

We first discuss the conversion algorithms for logic aggregations.

Note that, logic aggregation produces LWE ciphertexts as results.

Therefore, as sketched in Figure 4, no conversion is necessary if

the subsequent data analysis acts on LWE ciphertexts. For other

formats of ciphertexts, the following operators can be applied.

• To RLWE-Slot: Converting a set of LWE ciphertexts into an

RLWE ciphertext in slot representation is precisely the proposed

LWEstoRLWE operator described in Section 4.3.

• To RLWE-Coeff: Conversion between the slot and coefficient

forms of an RLWE ciphertext is well-studied in existing litera-

ture [25, 58, 59, 72]. Thus, converting multiple LWE ciphertexts

into an RLWE-Coeff ciphertext can be constructed by applying the

LWEstoRLWE operator followed by the slot-to-coefficient transform.

Unlike logic aggregations, the arithmetic aggregation results are

RLWE ciphertexts in the slot representation. Hence, we can apply

the following conversions to the resulting ciphertext for subsequent

data processing.

• To LWE: We can simply apply RLWEtoLWEs to extract LWE

ciphertexts from an RLWE ciphertext.

• To RLWE-Coeff: We can simply apply the slot-to-coefficient

transform above to convert RLWE-Slot into RLWE-Coeff [58].

5.2 Case Study: Private Decision Tree
Here, we take private decision tree evaluation (PDTE) as an example

to combine the evaluation flows of HE
3
DB. A PDTE algorithm [35,

77] basically implements the following function over a set of LWE

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

Table 3: The Proposed Parameter Sets

Ciphertext Parameters

LWE 𝑛 = 672,
⌈
log

2
𝑞
⌉
= 32

RLWE 𝑁 = 65536,
⌈
log

2
𝑄
⌉
= 653

RGSW 𝑁 ′ = 2048,
⌈
log

2
𝑄 ′

⌉
= 64

ciphertexts.

{LWEoutput,𝑖 } = PDTEval({LWEinput, 𝑗 },W), (10)

where a set of ciphertext inputs {LWEinput,𝑖 } are classified into ℓ

output ciphertext classes {LWEoutput, 𝑗 } based on the pre-trained

parametersW. Similar to existing works [35], inputs and outputs of

PDTEval are all LWE ciphertexts, since the evaluations of decision

trees consist mostly of non-linear operations. As mentioned, we

have two possible formats of ciphertext after the evaluation of

an SQL query with aggregation: LWE and RLWE-Slot. Since logic
aggregation naturally produces an LWE ciphertext, the output can

directly be fed into a PDTE algorithm. Meanwhile, if we need to

carry out PDTE over the arithmetically aggregated results, we can

simply apply RLWEtoLWEs, as described in Section 5.1, and proceed

with the evaluation of Equation (10).

Remark: Since most existing FHE-based PDTE algorithms are

designed for two-party secure computing [35, 77], the model pa-

rametersW in Equation (10) are assumed to be known to the server.

However, such an assumption does not always hold true in SDO,

where the data analysis algorithm can also be outsourced [79, 95]. In

particular, switching PDTE to a computation outsourcing setting ac-

tually requires a complete re-design of the evaluation protocol. Due

to space limitation, we provide a complete description of our pro-

posed SDO-orient PDTE algorithm based on the proposed HomComp
operator in the Appendix.

6 EVALUATION
Throughout the experiments, we wish to answer the following two

main research questions (RQs).

• RQ1: How efficient are the individual components of HE
3
DB

compared to (SOTA) methods? (Section 6.2, Section 6.3)

• RQ2: How does the performance of HE
3
DB in specific SQL

queries and end-to-end data analysis benchmark compare

to other methods? (Section 6.4)

6.1 Experiment Setup
The entire HE

3
DB is implemented using C++17 and compiled with

GCC 10.3.0 based on Microsoft SEAL [94], OpenPEGASUS [3], and

TFHEpp [102]. For single-core microbenchmarks, the experiments

are carried out on an Intel XeonGold 6226R processor with 512GB of

RAM. Meanwhile, the experiments for the TPC-H benchmarks [40]

reported in Section 6.4 are performed on two servers with a total

of four Intel Xeon Gold 5318Y processors with 96 cores and 1TB of

RAM. The instantiated parameters are outlined in Table 3, which

provide at least 128-bit of security level according to [2]. We fix the

standard deviation 𝜎 of the noise distribution 𝜒 and set the security

level _ to meet the Homomorphic Encryption Standard [1].

6.2 Qualitative Assessments for HomComp
Since HomComp is one of the key homomorphic operators proposed

in this work, we first compare our HomCompwith other related homo-

morphic comparison algorithms qualitatively, and defer quantita-

tive results to Section 6.3. In the beginning, we note that approache

like PEGASUS [77] focus on evaluating arbitrary logic functions

over homomorphically encrypted ciphertext, while HE
3
DB con-

centrates on the design of a homomorphic comparison algorithm.

Therefore, our method achieves better comparison accuracy as well

as efficiency than [77]. In contrast to general methods, the very

recent work from Liu et al. [75] achieves large-precision homomor-

phic sign evaluation through the iterative use of the homomorphic

floor function. While the method in [75] shares similarities with

HomComp, we achieve better efficiency than [75], and a more detailed

complexity analysis is included in the Appendix. SortingHat [35]

proposes an efficient plaintext-ciphertext comparison algorithm,

where one of the inputs to the comparison is known to the server.

Nonetheless, under an SDO setting, SortingHat shows poor effi-

ciency for ciphertext-ciphertext comparisons. The method of An-

tonio et al. [53] encrypts the input in a bit-wise manner, where

binary circuits can be used to construct fast and high-precision

homomorphic comparison. However, due to the encoding scheme,

the algorithm in [53] produces a comparison result of {−1, 0, 1},
which cannot be used as filters for subsequent aggregations. Simi-

larly, the polynomial approximation technique proposed by Cheon

et al. [30] cannot support encrypted aggregations over results from

equality tests ==, for the approximate polynomial evaluates to 1/2
when the inputs are equal. On the other hand, some works also

suggest to encrypt all database items bit-by-bit in a SIMD manner

to accelerate the comparison process [69, 71]. However, in such

approaches, the client encrypts the entire database using an a-priori
fixed-set parameters that are dependent on the pre-defined max-

imum predicate depth. As a result, any query that requires more

predicate evaluations than the pre-defined maximum depth cannot

be directly evaluated. Here, the only solution is to re-encrypt entire

database using a new set of encryption parameters, which can be

too costly for SDO clients.

6.3 Evaluating Cryptographic Building Blocks
To answer RQ1, we benchmark the efficiency of each of the crypto-

graphic building blocks proposed in Section 4, including homomor-

phic comparison in Section 4.1, homomorphic MIX/MAX evaluation

in Section 4.2 and ciphertext conversion in Section 4.3.

First of all, we compare the proposed HomComp with the best

known existing works that support unbounded-depth predicate

evaluation, and the results are summarized in Table 5.We re-implement

some of the existing works based on their open-source implementa-

tions [3, 38, 84] to fit our purpose (i.e., ciphertext-ciphertext compar-

ison). As observed in Table 5, we are 7×–113× faster than existing

methods. Meanwhile, we can reduce the ciphertext size by as much

as 4.75× owing to our elastic ciphertext management policy. In

addition, as we can see from Figure 5, our speedups are consistent

across different comparison operators.

Next, we compare the latency performance of the proposed ho-

momorphic MIN/MAX algorithms and SQL ORDER BY operator to

PEGASUS [77] and Cheon et al. [30] with a varying number of

Song Bian et al.

Table 4: Qualitative Comparisons Between Homomorphic Comparison Algorithms

Kortekaas [71] Antonio et al. [53] Pegasus [77] Liu et al. [75] SortingHat [35] Cheon et al. [30] Ours

Cipher-cipher comp.
+ ! ! ! ! % ! !

Full comparison ! n++ ! ! ! n++ !

32-bit precision ! ! % ! ! ! !

Unbounded depth % % ! ! ! % !

Flexible parameter. n∗ % ! % % n∗ !
Efficiency High High Low Low Low High High

Storage High High Low Low High High Low

+
Cipher-cipher comparison refers to the case where both of the inputs to the comparison function are ciphertexts

∗
Changing encryption parameters requires the re-encryption the database

++
Do not support encrypted aggregations over results from equality comparison

0 8 16 24 32
Precision (bits)

101

102

103

104

105

La
te

nc
y

(m
s)

PEGASUS
SortingHat
Liu et al.
HE3DB

(a) Homomorphic ≥

0 8 16 24 32
Precision (bits)

101

102

103

104

105

La
te

nc
y

(m
s)

PEGASUS
SortingHat
Liu et al.
HE3DB

(b) Homomorphic ==

0 8 16 24 32
Precision (bits)

101

102

103

104

105

La
te

nc
y

(m
s)

PEGASUS
SortingHat
Liu et al.
HE3DB

(c) Homomorphic >

Figure 5: Benchmark results for homomorphic comparison for the ≥,==, > comparison operators with varying bit precision.

2 4 16 64 256
Number of inputs

102

104

106

108

1010

La
te

nc
y

(m
s)

Cheon et al.
PEGASUS
HE3DB

(a) 4-bit MIN

2 4 16 64 256
Number of inputs

102

104

106

108

1010

La
te

nc
y

(m
s)

Cheon et al.
PEGASUS
HE3DB

(b) 16-bit MIN

Figure 6: Benchmark results for Homomorphic MIN.

2 4 16 32 64
Number of inputs

102

104

106

108

1010

La
te

nc
y

(m
s)

Cheon et al.
PEGASUS
HE3DB

(a) 4-bit ORDER BY

2 4 16 32 64
Number of inputs

102

104

106

108

1010

La
te

nc
y

(m
s)

Cheon et al.
PEGASUS
HE3DB

(b) 16-bit ORDER BY

Figure 7: Benchmark results for Homomorphic ORDER BY.

inputs and bit precision for the inputs. As depicted in Figure 6 and

Figure 7, our performance is on average around one order of magni-

tude faster than PEGASUS [77], and two orders of magnitude faster

than [30]. Note in Figure 6 (b) and Figure 7 (b) the histograms of

PEGASUS [77] are left blank, for PEGASUS cannot support homo-

morphic MIN/MAX and ORDER BY functions over 16-bit operands.
Lastly, to test the performance of the proposed LWEstoRLWE op-

erator, we compare our algorithm to PEGASUS [77] and Chen et
al. [26] over the task of converting 2

15
LWE ciphertexts into one

RLWE ciphertext. Although PEGASUS [77] achieves the lowest la-

tency (56𝑠), the method can only obtain 4 bits of precision, which is

not practical in most DB applications. Although both the proposed

LWEstoRLWE and Chen et al. [26] achieves higher precision (≥ 16

bits), HE
3
DB can be as much as 2× faster than [26].

6.4 SQL Benchmarks
To answer the RQ2, we test the end-to-end performance of HE

3
DB

using the TPC-H benchmarks [40] and compare our results with

the corresponding works [54, 93]. Since SAGMA [54] only uses HE

for aggregation, the comparisons are placed in the Appendix.

We compare HE
3
DB with HEDA, one of the most recent FHE-

based encrypted DBMS that supports unbounded-depth filter [93].

As shown in Figure 8, on the same set of TPC-H queries, HE
3
DB is

on average 299× faster on TPC-H Query 1 and 41× faster on TPC-H

Query 6. To closely examine the performance breakdown of HE
3
DB,

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

Table 5: Benchmark Results for Homomorphic ≥

Precision Methods Latency (ms) Ciphertext (kB)

4

PEGASUS [77] 681 37.83× 8 2×
SortingHat [35] 444 24.67× 10 2.5×
Liu et al. [75] 2040 113× 16 4×

Ours 18 1× 4 1×

16

PEGASUS [77] — — — —

SortingHat [35] 2186 8.13× 38 2.38×
Liu et al. [75] 7992 29.71× 16 1×

Ours 269 1× 16 1×

32

PEGASUS [77] — — — —

SortingHat [35] 4329 7.67× 76 4.75×
Liu et al. [75] — — — —

Ours 564 1× 16 1×
− means the method does not support or implement such bits of precision.

212 214 216 218 220

Rows

101

102

103

104

105

106

La
te

nc
y

(s
)

4x 14x 48x 146x
299x

HEDA
HE3DB

(a) Query 1

212 214 216 218 220

Rows

101

102

103

104

105

106

La
te

nc
y

(s
)

4x 11x 25x
36x

41x

HEDA
HE3DB

(b) Query 6

Figure 8: Comparison between HE3DB and HEDA [54] on
their modified TPC-H Query 1 and Query 6 with varying
sizes of |T |row.

Q1 Q4 Q6 Q12 Q14 Q15 Q17 Q19
Query

102

104

106

108

1010

1012

La
te

nc
y

(s
)

10K Filter
10K Aggregation
1M Filter
1M Aggregation

Figure 9: Latency performance of HE3DB on various TPC-H
benchmark over 10K rows and estimated latency on 1M rows.

we test a variety of the TPC-H benchmark queries on our HE
3
DB

framework, and the results are outlined in Figure 9. As the figure

shows, while the filtering and aggregation latency is somewhat

balanced on smaller databases, the filtering latency becomes the

main performance bottleneck as the size of the database gets larger.

Overall, we can evaluate an end-to-end SQL query over a 10K-row

database within 241 seconds.

For the evaluation of the private decision tree, we provide a

brief summary of the evaluation results obtained over multiple de-

cision tree models under a computation outsourcing setting, where

both the inputs and the model weights of the decision trees are

ciphertexts. To enable fair comparisons, we use the same datasets

as in [35], and reworked the implementation of [35] such that the

solution in [35] can also operate over encrypted inputs and model

weights. While detailed comparison results can be found in the ap-

pendix, we achieve 12x–326x faster evaluation speed than [35] over

a wide range of datasets and input sizes. Thus, by adding the power-

ful online data analysis capability to the expressive query evaluation

framework, HE
3
DB is able to significantly improve the efficiency,

usability and practical applicability of outsourcing databases se-

curely.

7 CONCLUSIONS
In this work, we propose HE

3
DB, an FHE-based encrypted database

framework that enables expressive SQL statements to be efficiently

queried on large-scale encrypted DBMS.We observe that a new FHE

infrastructure needs to be developed to meet the usability, security,

and efficiency demands from the encrypted DBMS. By designing

comparison, aggregation, and conversion operators specifically

for encrypted databases, we can outperform the best-known FHE

algorithms on all DB-related task benchmarks. In particular, we

are able to achieve 41×–299× reduction in query latency against

the state-of-the-art FHE-based encrypted database solution on a

1M-record encrypted database.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and shepherds for their valu-

able comments and helpful feedback. This work was partially sup-

ported by National Natural Science Foundation of China through

projects 62002006, 62202028, 62172025, U21B2021, 61972019, U2241213,

and the CCF-Huawei Populus euphratica project.

REFERENCES
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, ShafiGoldwasser, Sergey

Gorbunov, Shai Halevi, JeffreyHoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. J. Math. Cryptol. 9, 3 (2015), 169–203. http://www.

degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

[3] Alibaba-Gemini-Lab. [n. d.]. Pegasus: Bridging Polynomial and Non-polynomial

Evaluations in Homomorphic Encryption. Retrieved October 19, 2022 from

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS

[4] Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. 2021. Computing

Blindfolded on Data Homomorphically Encrypted under Multiple Keys: A

Survey. ACM Computing Surveys (CSUR) 54, 9 (2021), 1–37.
[5] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish

Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann,

Nikolas Ogg, et al. 2020. Azure SQL database always encrypted. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data.
1511–1525.

[6] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell,

Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized

honest-majority MPC for malicious adversaries—breaking the 1 billion-gate

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS

Song Bian et al.

per second barrier. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
843–862.

[7] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,

and Ravi Ramamurthy. 2015. Transaction processing on confidential data using

cipherbase. In 2015 IEEE 31st International Conference on Data Engineering. IEEE,
435–446.

[8] AWS. 2023. Machine Learning on AWS. https://aws.amazon.com/machine-

learning/?nc2=h_ql_sol_use_ml. Accessed: 2023-01-01.

[9] Azure. 2023. Azure Machine Learning. https://azure.microsoft.com/en-us/

products/machine-learning/. Accessed: 2023-01-01.

[10] Youngjin Bae, Jung Hee Cheon,Wonhee Cho, Jaehyung Kim, and Taekyung Kim.

2022. META-BTS: Bootstrapping Precision Beyond the Limit. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi (Eds.). ACM, 223–234. https://doi.org/10.1145/

3548606.3560696

[11] Youngjin Bae, Jung Hee Cheon,Wonhee Cho, Jaehyung Kim, and Taekyung Kim.

2022. META-BTS: Bootstrapping Precision Beyond the Limit. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi (Eds.). ACM, 223–234. https://doi.org/10.1145/

3548606.3560696

[12] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio

Honda, and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value

Stores using Shielded Execution. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). 173–190.

[13] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based

database with privacy and data confidentiality. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. 205–216.

[14] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications. InAmerican
Federation of Information Processing Societies: AFIPS Conference Proceedings: 1968
Spring Joint Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968.
Thomson Book Company, Washington D.C., 307–314. https://doi.org/10.1145/

1468075.1468121

[15] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie

Rogers. 2016. SMCQL: Secure querying for federated databases. arXiv preprint
arXiv:1606.06808 (2016).

[16] Song Bian, Dur-e-Shahwar Kundi, KazumaHirozawa,Weiqiang Liu, and Takashi

Sato. 2021. APAS: Application-Specific Accelerators for RLWE-Based Homo-

morphic Linear Transformations. IEEE Trans. Inf. Forensics Secur. 16 (2021),

4663–4678.

[17] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam

O’Neill. 2021. 𝜖psolute: Efficiently Querying Databases While Providing Dif-

ferential Privacy. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. ACM, 2262–2276. https://doi.org/10.1145/3460120.3484786

[18] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza,

and Jean-Pierre Hubaux. 2021. Efficient Bootstrapping for Approximate Ho-

momorphic Encryption with Non-sparse Keys. In Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12696). Springer,
587–617. https://doi.org/10.1007/978-3-030-77870-5_21

[19] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function secret sharing for mixed-mode

and fixed-point secure computation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 871–900.

[20] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus

Switching from Classical GapSVP. In CRYPTO. 868–886.
[21] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS. 309–325.
[22] Carole Cadwalladr and Emma Graham-Harrison. 2018. Revealed: 50 million

Facebook profiles harvested for Cambridge Analytica in major data breach. The
guardian 17 (2018), 22.

[23] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. 668–679.

[24] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Annual cryptology conference. Springer,
353–373.

[25] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved Bootstrapping

for Approximate Homomorphic Encryption. In Advances in Cryptology - EU-
ROCRYPT 2019 - 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11477). Springer,
34–54. https://doi.org/10.1007/978-3-030-17656-3_2

[26] HaoChen,Wei Dai,Miran Kim, and Yongsoo Song. 2021. Efficient Homomorphic

Conversion Between (Ring) LWE Ciphertexts. In Applied Cryptography and
Network Security (Lecture Notes in Computer Science, Vol. 12726). Springer, 460–
479.

[27] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI

from Fully Homomorphic Encryption with Malicious Security. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. ACM, 1223–1237.

[28] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2018. Bootstrapping for Approximate Homomorphic Encryption. In Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10820).
Springer, 360–384. https://doi.org/10.1007/978-3-319-78381-9_14

[29] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homo-

morphic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT.
409–437.

[30] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun-Hee Lee, and Keewoo

Lee. 2019. Numerical Method for Comparison on Homomorphically Encrypted

Numbers. In ASIACRYPT, Vol. 11922. Springer, 415–445.
[31] Jung Hee Cheon, Miran Kim, and Myungsun Kim. 2016. Optimized Search-and-

Compute Circuits and Their Application to Query Evaluation on Encrypted

Data. IEEE Trans. Inf. Forensics Secur. 11, 1 (2016), 188–199. https://doi.org/10.

1109/TIFS.2015.2483486

[32] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. J. Cryptol. 33, 1
(2020), 34–91.

[33] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. 2021. Im-

proved Programmable Bootstrapping with Larger Precision and Efficient Arith-

metic Circuits for TFHE. In ASIACRYPT. 670–699.
[34] Google Cloud. 2023. Cloud SQL. https://cloud.google.com/sql/. Accessed:

2023-01-01.

[35] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. 2022.

SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic En-

cryption and Transciphering. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022. ACM, 563–577. https://doi.org/10.1145/3548606.3560702

[36] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia

Iliashenko, Kim Laine, andMichael Rosenberg. 2021. Labeled psi from homomor-

phic encryption with reduced computation and communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
1135–1150.

[37] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implementation (Boston, MA, USA).

259–282.

[38] KU Leuven COSIC. [n. d.]. Private decision tree evaluation via Homomorphic

Encryption and Transciphering. Retrieved November 30, 2022 from https:

//github.com/KULeuven-COSIC/SortingHat

[39] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology
ePrint Archive (2016).

[40] Transaction Processing Performance Council. 2022. TPC BENCHMARK𝑇𝑀 H
Standard Specification. Technical Report. San Francisco,CA.

[41] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions.

In Proceedings of the 13th ACM conference on Computer and communications
security. 79–88.

[42] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. 2022.

Waldo: A Private Time-Series Database from Function Secret Sharing. In 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May
22-26, 2022. IEEE, 2450–2468. https://doi.org/10.1109/SP46214.2022.9833611

[43] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and

Saurabh Shintre. 2020. SEAL: Attack mitigation for encrypted databases via

adjustable leakage. In 29th USENIX Security Symposium (USENIX Security 20).
2433–2450.

[44] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In EUROCRYPT. 617–640.
[45] Saba Eskandarian andMatei Zaharia. 2019. ObliDB: Oblivious Query Processing

for Secure Databases. Proc. VLDB Endow. 13, 2 (2019), 169–183. https://doi.org/

10.14778/3364324.3364331

[46] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. IACR Cryptol. ePrint Arch. (2012), 144. http://eprint.iacr.

org/2012/144

[47] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu

Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI

Enclave. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). 275–294.

https://aws.amazon.com/machine-learning/?nc2=h_ql_sol_use_ml
https://aws.amazon.com/machine-learning/?nc2=h_ql_sol_use_ml
https://azure.microsoft.com/en-us/products/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1109/TIFS.2015.2483486
https://cloud.google.com/sql/
https://doi.org/10.1145/3548606.3560702
https://github.com/KULeuven-COSIC/SortingHat
https://github.com/KULeuven-COSIC/SortingHat
https://doi.org/10.1109/SP46214.2022.9833611
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

[48] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel

Hamlin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K

Cunningham. 2017. Sok: Cryptographically protected database search. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 172–191.

[49] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. In CRYPTO. 75–92.
[50] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.

2018. Pump up the volume: Practical database reconstruction from volume

leakage on range queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 315–331.

[51] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.

2019. Learning to reconstruct: Statistical learning theory and encrypted database

attacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1067–1083.
[52] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:

New Volume Attacks against Range Queries. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 361–378.

[53] Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2021. Revisiting the

functional bootstrap in TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021,
2 (2021), 229–253. https://doi.org/10.46586/tches.v2021.i2.229-253

[54] Timon Hackenjos, Florian Hahn, and Florian Kerschbaum. 2020. SAGMA:

Secure Aggregation Grouped by Multiple Attributes. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. ACM, 587–601. https:

//doi.org/10.1145/3318464.3380569

[55] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved RNS Variant

of the BFV Homomorphic Encryption Scheme. In CT-RSA. 83–105.
[56] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In CRYPTO. 554–571.
[57] Shai Halevi and Victor Shoup. 2020. Design and implementation of HElib: a

homomorphic encryption library. IACR Cryptol. ePrint Arch. (2020).
[58] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. 2019. Improved Homo-

morphic Discrete Fourier Transforms and FHE Bootstrapping. IEEE Access 7
(2019), 57361–57370.

[59] Kyoohyung Han and Dohyeong Ki. 2020. Better Bootstrapping for Approximate

Homomorphic Encryption. In Topics in Cryptology - CT-RSA 2020 - The Cryp-
tographers’ Track at the RSA Conference 2020, San Francisco, CA, USA, February
24-28, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12006). Springer,
364–390. https://doi.org/10.1007/978-3-030-40186-3_16

[60] Harold V. Henderson, Friedrich Pukelsheim, and Shayle R. Searle. 1983. On the

history of the kronecker product. Linear and Multilinear Algebra 14, 2 (1983),
113–120. https://doi.org/10.1080/03081088308817548

[61] C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (01 1962), 10–16. https:

//doi.org/10.1093/comjnl/5.1.10 arXiv:https://academic.oup.com/comjnl/article-

pdf/5/1/10/1111445/050010.pdf

[62] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Chee-

tah: Lean and Fast Secure Two-Party Deep Neural Network Inference. In 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August
10-12, 2022. USENIX Association, 809–826. https://www.usenix.org/conference/

usenixsecurity22/presentation/huang-zhicong

[63] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private

large-scale databases with distributed searchable symmetric encryption. In

Cryptographers’ Track at the RSA Conference. Springer, 90–107.
[64] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

pattern disclosure on searchable encryption: ramification, attack andmitigation..

In Ndss, Vol. 20. Citeseer, 12.
[65] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vin-

nie Scarlata. 2021. Supporting intel sgx on multi-socket platforms.

https://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf.

[66] Charanjit S. Jutla and Nathan Manohar. 2022. Sine Series Approximation of the

Mod Function for Bootstrapping of Approximate HE. In Advances in Cryptology
- EUROCRYPT 2022 - 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3,
2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13275). Springer,
491–520. https://doi.org/10.1007/978-3-031-06944-4_17

[67] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference.

In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. USENIX Association, 1651–1669.

[68] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016.

Generic Attacks on SecureOutsourcedDatabases. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016. ACM, 1329–1340. https://doi.org/10.1145/2976749.2978386

[69] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. 2015. SHIELD:

scalable homomorphic implementation of encrypted data-classifiers. IEEE
Trans. Comput. 65, 9 (2015), 2848–2858.

[70] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk

Huh. 2019. Shieldstore: Shielded in-memory key-value storage with sgx. In

Proceedings of the Fourteenth EuroSys Conference 2019. 1–15.
[71] Y.A.M. Kortekaas. 2020. Access Pattern Hiding Aggregation over Encrypted

Databases. http://essay.utwente.nl/83874/

[72] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No.

2021. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption

Using Optimal Minimax Polynomial Approximation and Inverse Sine Function.

InAdvances in Cryptology - EUROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12696). Springer, 618–647. https://doi.org/10.1007/978-3-030-77870-5_22

[73] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,

and HyungChul Kang. 2022. High-Precision Bootstrapping for Approximate

Homomorphic Encryption by Error Variance Minimization. In Advances in
Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13275).
Springer, 551–580. https://doi.org/10.1007/978-3-031-06944-4_19

[74] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. 2021.

Secrecy: Secure collaborative analytics on secret-shared data. arXiv preprint
arXiv:2102.01048 (2021).

[75] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. 2021. Large-Precision Ho-

momorphic Sign Evaluation using FHEW/TFHE Bootstrapping. IACR Cryptol.
ePrint Arch. (2021), 1337. https://eprint.iacr.org/2021/1337

[76] Jack Lu. 2019. Assessing the cost, legal fallout of Capital One data breach.

Law360 Expert Analysis (2019).
[77] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. 2021.

PEGASUS: Bridging Polynomial and Non-polynomial Evaluations in Homo-

morphic Encryption. In 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 1057–1073. https:

//doi.org/10.1109/SP40001.2021.00043

[78] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices

and learning with errors over rings. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 1–23.

[79] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song

Bian. 2021. Virtual Secure Platform: A Five-Stage Pipeline Processor over TFHE.

In 30th USENIX Security Symposium (USENIX Security 21). 4007–4024.
[80] Robert Mayans. 2006. The chebyshev equioscillation theorem. Journal of Online

Mathematics and Its Applications 6 (2006).
[81] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and

Raluca Ada Popa. 2018. Oblix: An Efficient Oblivious Search Index. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. IEEE Computer Society, 279–296. https:

//doi.org/10.1109/SP.2018.00045

[82] MonogoDB. 2023. Application-Driven Analytics. https://www.mongodb.com/

use-cases/analytics. Accessed: 2023-01-01.

[83] Pratyay Mukherjee and Daniel Wichs. 2016. Two round multiparty computa-

tion via multi-key FHE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 735–763.

[84] openfheorg. [n. d.]. OpenFHE - Open-Source Fully Homomorphic Encryption

Library. Retrieved December 31, 2022 from https://github.com/openfheorg/

openfhe-development

[85] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran

Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna

Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.

In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,

587–602.

[86] Chris Peikert and Sina Shiehian. 2016. Multi-key FHE from LWE, revisited. In

Theory of cryptography conference. Springer, 217–238.
[87] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. [n. d.]. Arx: An Encrypted

Database using Semantically Secure Encryption. Proceedings of the VLDB
Endowment 12, 11 ([n. d.]).

[88] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and

Joseph M Hellerstein. 2021. Senate: A Maliciously-Secure MPC Platform for

Collaborative Analytics. In 30th USENIX Security Symposium (USENIX Security
21). 2129–2146.

[89] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: protecting confidentiality with encrypted query

processing. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011. ACM, 85–100.

https://doi.org/10.1145/2043556.2043566

[90] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure

database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
264–278.

[91] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and

cryptography. J. ACM 56, 6 (2009), 34.

[92] Eugene Y Remez. 1934. Sur la détermination des polynômes d’approximation

de degré donnée. Comm. Soc. Math. Kharkov 10, 196 (1934), 41–63.

https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.1145/3318464.3380569
https://doi.org/10.1145/3318464.3380569
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1080/03081088308817548
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/5/1/10/1111445/050010.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/5/1/10/1111445/050010.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1145/2976749.2978386
http://essay.utwente.nl/83874/
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-031-06944-4_19
https://eprint.iacr.org/2021/1337
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1109/SP.2018.00045
https://www.mongodb.com/use-cases/analytics
https://www.mongodb.com/use-cases/analytics
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://doi.org/10.1145/2043556.2043566

Song Bian et al.

Algorithm 7: BlindRotate

Input :A Test polynomial 𝑣 = 𝑣0 + 𝑣1𝑥 + ... + 𝑣𝑁−1𝑥𝑁−1.
Input :An LWE ciphertext 𝑐𝑡 = LWE𝑛,𝑞s (𝑚) = (𝑏, a).
Input :A bootstrapping key BK, where

BK [𝑖] = RGSW𝑁,𝑄

𝑠
(s𝑖), for 𝑖 ∈ [1, 𝑛]

Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE𝑁,𝑄

𝑠
(𝑣𝑚).

1 𝑏 ←
⌈
2𝑁
𝑞 𝑏

⌋
and a←

⌈
2𝑁
𝑞 a𝑖

⌋
.

2 Initialize 𝐴𝐶𝐶 ← 𝑋 −𝑏 · (𝑣, 0) ∈ RLWE𝑁,𝑄

𝑠
(.).

3 for 𝑖 = 0 to 𝑛 − 1 do
4 𝐴𝐶𝐶 ← CMUX(BK𝑖 , 𝑋 −a[𝑖] · 𝐴𝐶𝐶,𝐴𝐶𝐶)
5 𝑐𝑡𝑂 ← RLWEtoLWEs(𝐴𝐶𝐶) [0]
Return :𝑐𝑡𝑂 = LWE𝑁,𝑄

s̃ (𝑣𝑚)

[93] Xuanle Ren, Le Su, Zhen Gu, Sheng Wang, Feifei Li, Yuan Xie, Song Bian, Chao

Li, and Fan Zhang. 2022. HEDA: Multi-Attribute Unbounded Aggregation over

Homomorphically Encrypted Database. Proc. VLDB Endow. 16, 4 (2022), 601–614.
https://www.vldb.org/pvldb/vol16/p601-gu.pdf

[94] SEAL 2021. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

[95] Zihao Shan, Kui Ren, Marina Blanton, and Cong Wang. 2018. Practical secure

computation outsourcing: A survey. ACM Computing Surveys (CSUR) 51, 2
(2018), 1–40.

[96] Nigel P. Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD

operations. Des. Codes Cryptogr. 71, 1 (2014), 57–81.
[97] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an

extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[98] G Edward Suh, Charles W O’Donnell, and Srinivas Devadas. 2007. Aegis: A

single-chip secure processor. IEEE Design & Test of Computers 24, 6 (2007),

570–580.

[99] Lawrence J Trautman and Peter C Ormerod. 2017. Corporate Directors’ and

Officers’ Cybersecurity Standard of Care: The Yahoo Data Breach. American
University Law Review 66, 5 (2017), 3.

[100] Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. 2023. Verifiable

Fully Homomorphic Encryption. CoRR abs/2301.07041 (2023). https://doi.org/

10.48550/arXiv.2301.07041 arXiv:2301.07041

[101] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.

StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Proc.
Priv. Enhancing Technol. 2019, 3 (2019), 370–388.

[102] virtualsecureplatform. [n. d.]. TFHEpp. Retrieved October 19, 2022 from

https://github.com/virtualsecureplatform/TFHEpp

[103] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei

Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation

on big data. In Proceedings of the Fourteenth EuroSys Conference 2019. 1–18.
[104] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.

2022. IncShrink: Architecting Efficient Outsourced Databases using Incremen-

tal MPC and Differential Privacy. In SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 818–832.

https://doi.org/10.1145/3514221.3526151

[105] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan

Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, et al. 2022. Operon: An encrypted

database for ownership-preserving data management. Proceedings of the VLDB
Endowment 15, 12 (2022), 3332–3345.

[106] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over

Private Data. In Proceedings of the 2021 International Conference on Management
of Data. 1969–1981.

[107] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A GPU

Platform for Secure Computation. In 31st USENIX Security Symposium (USENIX
Security 22). 827–844.

[108] Xun Yi, Mohammed Golam Kaosar, Russell Paulet, and Elisa Bertino. 2012.

Single-database private information retrieval from fully homomorphic encryp-

tion. IEEE Transactions on Knowledge and Data Engineering 25, 5 (2012), 1125–

1134.

[109] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed

analytics platform. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). 283–298.

Algorithm 8: ^-bit PBS-HMSB

Input :A LWE ciphertext 𝑐𝑡𝐼 = LWE𝑛,𝑞s (𝑚) = (𝑏, a),
where𝑚 𝑖𝑛[0, 2𝑘 − 1].

Input :A constant ` = 𝑞/4.
Input :A bootstrapping key BK, where

BK [𝑖] = RGSW𝑛,𝑞
s (s𝑖), for 𝑖 ∈ [1, 𝑛]

Output :A LWE ciphertext 𝑐𝑡𝑂 = LWE𝑛,𝑞s (MSB(𝑚)).
1 𝑣 ← ` · (1 + 𝑥2 + 𝑥3 + ... + 𝑥𝑁−1)
2 𝐴𝐶𝐶 ← BlindRotate(𝑣, 𝑐𝑡𝐼 ,BK)
3 𝑐𝑡𝑂 = (𝑏′, a′) ← RLWEtoLWEs(𝐴𝐶𝐶) [0]
Return :𝑐𝑡𝑂 = (𝑏′ + `, a′) = LWE𝑛,𝑞s (MSB(𝑚))

A PROOF FOR LEMMA 4.1 AND LEMMA 4.2
Proof. Lemma 4.1 First, we prove the correctness of the Algo-

rithm 3. If the comparison operator is ≥, the line 2 in Algorithm 3

results LWE(NOT(MSB(𝑎−𝑏)). the predicate𝑎 ≥ 𝑏 is equal to MSB(𝑎−
𝑏) == 0. If 𝑎 ≥ 𝑏, the predicate is True, and LWE(NOT(MSB(𝑎−𝑏)) =
LWE(1). If𝑎 < 𝑏, the predicate is False, and LWE(NOT(MSB(𝑎−𝑏)) =
LWE(0). Other comparison operators are the same. The number

of PBS in Algorithm 3 includes the PBS in HMSB and HomGate. From
Algorithm 2, the number of PBS evaluated in a 𝑡𝑘-bit ciphertext

MSB extraction is 2× (𝑡 − 1) + 1 = 2𝑡 − 1. Meanwhile, one HomGate
includes one PBS as we discussed in Section 2.2. Thus, the number

of PBS in Algorithm 3 is 2𝑡 − 1 when the comparison operator is

>, < and 2𝑡 when the comparison operator is ≥, ≤,==,≠. □

Proof. Lemma 4.2 In Algorithm 5, the first for loop (line 2-

4) includes |T |row LWEtoRGSW and CMUX, the second for loop (line

5-7) contains 2
log

2
| T |row−1 + 2log2 | T |row−2 + ... + 20 = |T |row − 1

HomMIN. As shown in Algorithm 4, each HomMIN has one HomComp,
one LWEtoRGSW and one CMUX. Therefore, the total number of CMUX
gates is |T |row + |T |row − 1 = 2|T |row − 1, the whole number of

LWEtoRGSW operators is |T |row + |T |row − 1 = 2|T |row − 1, the

number of HomComp is |T |row − 1. □

B COMPLEXITY COMPARISON BETWEEN
HE3DB AND [75]

Here, we take a closer look at the detailed complexity analysis

between HE
3
DB and [75]. Although both the methods of HE

3
DB

and [75] achieve high-precision MSB extraction by removing the

lower bits of the ciphertext, there is a fundamental difference be-

tween the two approaches. For a message 𝑚 encrypted in a ci-

phertext c = (a, 𝑏), [75] clear the the lower bits of𝑚 through the

HomFloor function, which set the least 𝑘 = log (𝑞/𝛼) bits of𝑚 to

be zeroes. Then, HomSign repeatedly calls HomFloor to clear all

the lower bits of𝑚. In contrast, in our method, we multiply (a, 𝑏)
by a factor of 2

𝑘−1
, and take out a 𝑘-bit segment of𝑚 using TFHE

PBS. The difference here is essential: [75] takes out the least 𝑘-bit

segment of𝑚 by taking c = (a, 𝑏) mod 𝑞. while HE3DB take out a

𝑘-bit segment of𝑚 by multiplying (a, 𝑏) with 2
𝑘−1

and then reduce

the result by 𝑄 (e.g., the real ciphertext modulus). In practice, the

parameter 𝑞 in [75] can only be as large as 2𝑁 = 4096 in most

AP/GINX type bootstrapping procedures for efficiency reasons.

Meanwhile, 𝛼 = 2
8
is required to separate𝑚 from the LWE errors

https://www.vldb.org/pvldb/vol16/p601-gu.pdf
https://github.com/Microsoft/SEAL
https://doi.org/10.48550/arXiv.2301.07041
https://doi.org/10.48550/arXiv.2301.07041
https://arxiv.org/abs/2301.07041
https://github.com/virtualsecureplatform/TFHEpp
https://doi.org/10.1145/3514221.3526151

HE3DB: An Efficient Encrypted Database via Fully Homomorphic Encryption

electricity_10bits phoneme_10bits artificial_11bits breast_11bits spam_11bits housing_11bits steel_11bits artificial_16bits housing_16bits
Datasets and Input size

101

102

103

104

105

La
te

nc
y

(s
)

326x
175x

138x

12x

15x 35x

12x

126x

32x

SortingHat
HE3DB

Appendix Figure A1: Running time of our PTDE algorithm compared to SortingHat [35]

1024 2048 4096 8192
Rows

1000
2000
4000

16000

La
te

nc
y

(m
s)

SAGMA
HE3DB

(a) COUNT

1024 2048 4096 8192
Rows

10000

20000

40000

La
te

nc
y

(m
s)

SAGMA
HE3DB

(b) SUM

Appendix Figure A2: Comparison with SAGMA [54] on ag-
gregation function COUNT and SUM.

𝑒 , resulting in a maximum 𝑘 = 4. Moreover, without the multiplica-

tion between (a, 𝑏) with 2
𝑘−1

, [75] has to scale down to a smaller

ciphertext modulus in each iteration to keep the pre-removed 𝑘

bits in the least log𝑞 bits, which results in more complicated noise

management. Consequently, HE
3
DB has fewer parameter require-

ments and achieves larger 𝑘 (e.g., 𝑘 = 5) than [75] in each iteration.

When 𝑁 and𝑄 become large, we may see further differences as the

methods of determining 𝑘 between HE
3
DB and [75].

C ADDITIONAL COMPARISONS AGAINST
SAGMA

As SAGMA [54] only uses HE in its aggregation process, we only

compare HE
3
DB with SAGMA on the arithmetic aggregation tasks.

As shown in Figure A2, we can obtain 23× and 58× faster in COUNT
and SUM operations on a 8192-row database, respectively.

D EVALUATING PRIVATE OUTSOURCED
DECISION TREE

Aprivate decision treemodelCM includes the encryption of thresh-

old 𝑐𝑡𝑖 , the attribute index 𝑎𝑖 and the encryption of label 𝑐𝑤𝑖 . Algo-

rithm 9 shows our PDTE algorithm, which involves the following

steps:

• Line 1-2, Initialization: Server initializes the value of each node

as the encryption of 0, denoted by 𝑣 𝑗 for all 𝑗 ∈ {0, ..., 𝔡− 2}, except
the root, denoted by 𝑣0, which contains the encryption of 1.

• Line 3-5, Comparison: For each decision node 𝑖 , server com-

putes the Homomorphic Comparison function 𝑐𝑏𝑖 ← [𝑐𝑟𝑎𝑣 ≥ 𝑐𝑡𝑖],

Algorithm 9: PDTEval based on HomComp

Input :Private decision tree Model CM={(𝑐𝑡0, ..., 𝑐𝑡2𝔡−2),
(a0, ..., 𝑎2𝔡−2), (𝑐𝑤0, ..., 𝑐𝑤𝔡−1)}

Input :Query results CR= (𝑐𝑟0, 𝑐𝑟1, ..., 𝑐𝑟 |𝐺 |)
Output :𝔡 values of leaves: 𝑧0, ..., 𝑧𝔡−1

1 Initialize root value 𝑣0 as LWE
𝑛,𝑞
s (1)

2 Initialize other node value 𝑣 𝑗 as

LWE
𝑛,𝑞
s (0), 𝑗 ∈ {1, ..., 2𝔡 − 2}

3 for 𝑖 = 0 to 2𝔡 − 2 do
4 𝑐𝑏𝑖 ← HomComp(𝑐𝑟𝑎𝑖 , 𝑐𝑡𝑖 , ≥)
5 for 𝑖 = 1 to log𝔡 do
6 for 𝑗 = 0 to 2

𝑖−1 − 1 do
7 𝑣

2
𝑖+2∗𝑗 ← HomGate(𝑐𝑏

2
𝑖−1−1+𝑗 , 𝑣2𝑖−1−1+𝑗 , AND)

𝑣
2
𝑖+2∗𝑗−1 ← 𝑣

2
𝑖−1−1+𝑗 − 𝑣2𝑖+2∗𝑗

8 for 𝑖 = 0 to 𝔡 − 1 do
9 𝑧𝑖 ← 𝑣

2
log𝔡−1+𝑖

Return :𝑧0, ..., 𝑧𝔡−1

we denote the controller bit of each node by 𝑐𝑏𝑖 corresponding to

the node 𝑖 for 𝑖 ∈ {0, ..., 𝔡 − 2}.
• Line 6-10, Traversal: Then the server moves root value 𝑣0 from

the root to a desired leaf. The path depends on the controller bits

on each node. Take node 𝑖 as an example, if node 𝑖 has value 𝑣𝑖 and

the controller bit of 𝑖 is 𝑐𝑏𝑖 , the value of the left child node (denoted

by 𝑣𝐿𝑐𝑖)and the right child node (denoted by 𝑣𝑅𝑐𝑖) are compute as

𝑣𝑅𝑐𝑖 = HomAND(𝑐𝑏𝑖 , 𝑣𝑖), 𝑣𝐿𝑐𝑖 = 𝑣𝑖 − 𝑣𝑅𝑐𝑖 . After traversal, the value
of the root (which is the encryption of 1) is copied to the desired

place.

Finally, only one leaf has a value which is the encryption of 1, we

can easily get this unique label value.

Evaluation Results: As shown in Figure A1, since Sorting-

Hat [35] does not target on evaluating private decision under a

secure computation outsourcing setting, we can achieve up to 300×
speedup using Algorithm 9.

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 Cryptographic Preliminaries
	2.1 Homomorphic Encryption
	2.2 Homomorphic Operators

	3 Framework Overview
	3.1 HE3DB Workflow
	3.2 Threat Model and Security
	3.3 Key Operators in Filter-Aggregation

	4 Cryptographic Building Blocks
	4.1 Homomorphic Predicate Evaluation
	4.2 Homomorphic Logic Aggregation
	4.3 Homomorphic Arithmetic Aggregation

	5 Analyzing Aggregated Results
	5.1 Bridging DB Aggregation and Data Analysis
	5.2 Case Study: Private Decision Tree

	6 Evaluation
	6.1 Experiment Setup
	6.2 Qualitative Assessments for HomComp
	6.3 Evaluating Cryptographic Building Blocks
	6.4 SQL Benchmarks

	7 Conclusions
	Acknowledgments
	References
	A Proof for Lemma 4.1 and Lemma 4.2
	B Complexity Comparison between HE3DB and largeprecision
	C Additional Comparisons against SAGMA
	D Evaluating Private Outsourced Decision Tree

