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Abstract—We propose a new compiler framework that au-
tomates code generation over multiple fully homomorphic en-
cryption (FHE) schemes. While it was recently shown that
algorithms combining multiple FHE schemes (e.g., CKKS and
TFHE) achieve high execution efficiency and task utility at
the same time, developing fast cross-scheme FHE algorithms
for real-world applications generally require heavy hand-tuned
optimizations by cryptographic experts, resulting in either high
usability costs or low computational efficiency. To solve the
usability and efficiency dilemma, we design and implement
HEIR, a compiler framework based on multi-level intermediate
representation (IR). To achieve cross-scheme compilation of
efficient FHE circuits, we develop a two-stage code-lowering
structure based on our custom IR dialects. First, the plaintext
program along with the associated data types are converted
into FHE-friendly dialects in the transformation stage. Then,
in the optimization stage, we apply FHE-specific optimizations
to lower the transformed dialect into our bottom-level FHE
library operators. In the experiment, we implement the entire
software stack for HEIR, and demonstrate that complex end-
to-end programs, such as homomorphic K-Means clustering
and homomorphic data aggregation in databases, can easily be
compiled to run 72–179× faster than the program generated by
the state-of-the-art FHE compilers.

I. INTRODUCTION

Fully homomorphic encryption (FHE) is a type of general
secure multi-party computing (MPC) techniques that enable the
participating parties to jointly evaluate arbitrary functions se-
curely. Due to its low round complexity and low communication
bandwidth, FHE finds applications in two-party secure function
evaluation, such as privacy-preserving machine learning as a
service [1–6], and secure computation outsourcing, e.g., secure
database [7] and program outsourcing [8].

In spite of its many theoretical merits, programs over FHE
ciphertexts are known to be both slow to run and hard to
design. First, the running times of tasks at scale can range
from hours [9] to days [7, 8] to complete. Second, we see
that even the same program can run at drastically different
speeds. For example, a homomorphic matrix-vector product of
dimension 2048× 1001 can take up to 1.5 s to complete using
the so-called slot representation [10–12], but only costs 0.11 s
when the coefficient representation [4] is adopted. Therefore,
we observe a usability-efficiency trade-off, where the designs of
FHE protocols either require cryptographic experts to hand-tune
the exact homomorphic operators, or the designed protocols
suffer from significant performance penalties.

In addition to operator choices, the design of FHE program
is further complicated by the ciphertext-operator compatibility

problem. As mentioned above, computing homomorphic matrix-
vector product using the coefficient representation can be
faster than the slot representation. However, a ciphertext in
the coefficient representation is incompatible with certain
FHE operators, such as homomorphic squaring, homomor-
phic filtering, and non-polynomial operators. In fact, without
heavy tuning on function-approximation polynomials [13–17],
neither slot nor coefficient representations are efficient on non-
polynomial homomorphic operators. In particular, some recent
works [3, 7, 8] demonstrate that high-precision unbounded-
depth homomorphic Boolean circuits can be better handled by
TFHE/FHEW-like FHE schemes [18, 19].

FHE compiler thus appears as an effective way to solve
the usability-efficiency dilemma. Here, we briefly summarize
existing compiler designs, and defer a more detailed discussion
in Section I-B. Roughly speaking, we can classify existing FHE
compilers into two main categories: arithmetic and logic. First,
one line of compiler designs study how to efficiently leverage
the single-instruction-multi-data (SIMD) properties [20] of ring
elements to better implement arithmetic functions over FHE
ciphertexts. However, many real-world applications contain
non-polynomial computations, such as comparisons, bit-wise
operations, etc. To avoid being restricted to polynomial func-
tions, a different FHE compilation approach explores how logic
synthesis and instruction set architecture (ISA) designs can
be used to convert plaintext programs directly into executable
programs over FHE ciphertexts [8, 21, 22]. Although logic FHE
compilation can effectively handle programs that contain both
polynomial and non-polynomial functions, the performance of
homomorphic logic circuits can be unsatisfactory due to the lack
of immediately deployable SIMD capability [21, 22]. Besides,
most existing FHE compilers leverage domain-specific language
(DSL) to assist program compilation [23–26]. While FHE-
specific DSL can be handy for fine-tuning output programs,
coding over DSLs can be as challenging as that on FHE
primitives [23], especially for programmers not familiar with
FHE cryptography. Hence, a natural question that arises is as
follows: can we design an FHE compiler that is both usable to
non-experts and more efficient than circuit-based approaches?

A. Our Contributions

In this work, we propose HEIR, an FHE compiler frame-
work that translates functional complete plaintext programs
into efficient programs on FHE ciphertexts. Specifically, by
designing a set of new multi-level intermediate representation



(IR) dialects tailored for FHE, we can fully utilize the SIMD
capability [2, 4, 20] of FHE ciphertexts. Furthermore, the
proposed program transformation passes can seamlessly extract
non-polynomial computations out of the plaintext program
and map the target computations into proper FHE operators.
Consequently, HEIR can simultaneously achieve superior
performance against circuit-based compiler frameworks and
functional complete usability compared to compilers that can
only handle polynomial functions. In summary, the main
contributions of this work are summarized as follows.
• A DSL-Free Functional Complete FHE Compiler: To

the best of our knowledge, HEIR is the first compiler
framework that is DSL-free, functional complete, and does
not solely rely on Boolean-circuit representation. Here,
our key observation is that a multi-level IR framework is
essential to cross-scheme FHE program segmentation and
operator scheduling.

• Automated Type Conversions: We notice that segment-
ing plaintext programs without the assistance of DSL
can be highly challenging, especially when the program
contains polynomial and non-polynomial functions that
interleave with each other. We propose a new type
conversion system to transform a plaintext program into
an set of FHE-friendly IR dialects, and instantiate the
corresponding bottom-level FHE operators.

• FHE-Specific Code Lowering: We realize that simply
transforming high-level program structures and data types
into FHE programs not only causes performance degrada-
tion but also produces incompatible expressions. Therefore,
we incorporate optimization passes to solve the operator
incompatibility issue, and reduce parameter sizes and
bootstrapping frequencies.

• End-to-End Experiments: We thoroughly examine the
capability and performance of HEIR on a set of program
benchmarks. Specifically, we show that HEIR produces
programs that are 1.4×–11× faster on arithmetic circuit
tasks, 3.2×–4.1× faster on logic circuir tasks, and 72×–
179× faster on end-to-end tasks that contain both poly-
nomial and non-polynomial functions. Our framework is
publicly available1.

B. Related Works

In this section, we review some of the related concepts under
a broader MPC context in Section I-B1, and detail existing
FHE compiler designs in Section I-B2.

1) General MPC Compilers: The automatic generation of
multi-party protocols for a given computation task with certain
security properties is an area that is under active research. A
“compiler” under a general MPC context come in two main
flavors: those that bootstrap security [27–29], and those that
improve usability along with efficiency [30–42]. In this work,
we focus on the latter class of compilers, and further categorize
MPC compilers into application-specific and general-purpose
MPC compilers. In what follows, we briefly summarize the
above two categories of MPC compilers.

1https://github.com/heir-compiler/HEIR

Application-Specific MPC Compilers: A number of works
focus on how to improve the efficient of specific appli-
cations [11, 43–45]. For example, SEPIA [43] develops
application-specific MPC operators and protocol-generation
framework for privacy-preserving network analysis, and
ABY3 [44] optimizes privacy-preserving machine learning
by proposing efficient conversions between MPC protocols.
In general, application-specific compiler frameworks can
achieve better latency and communication performance than
general-purpose frameworks. However, programming over an
application-specific compiler is obviously not as flexible as
general-purpose compilers and it can still be highly non-trivial
to choose the most suitable framework for the target application.

General-Purpose MPC Compilers: The limitation of
application-specific compilers motivate the development of
general-purpose MPC compilers that can compile any plaintext
program into MPC protocols [30–34, 36–38]. To reduce the
overwhelming complexity of designing MPC protocols for
general computations, many works develop C-like or Java-
like surface languages to reduce the design costs for non-
experts [33, 34, 36–38, 46, 47]. Meanwhile, some compilers
do point out that, given the mix-mode nature of MPC protocols,
a designated language can provide many benefits in terms of
the programming model and security concerns [35, 48, 49].
Unfortunately, we observe two main challenges faced by
general-purpose MPC compilers. First, MPC protocols in
the general sense includes a large number of cryptographic
protocols, and generating the best-performing protocol can be
difficult due to its NP-hard nature [50, 51].

2) FHE Compilers: Recently, the design and implementation
of FHE compilers attract research attention. On one hand, FHE
is adopted as one of the primitives that constitute general MPC
compilers [45, 60]. On the other hand, as shown in Table I, we
also see a number of recent works on the designs of compilers
specifically for FHE [8, 21–23, 52–58, 61–63]. We can roughly
classify FHE compilers into three main categories: arithmetic-
circuit compilers, logic-circuit compilers, and hybrid-circuit
compilers. In what follows, we provide a brief summary on
the main properties and features of each of the FHE compiler
categories.

Arithmetic-Circuit FHE Compilers: FHE over arithmetic
circuit refers to schemes such as BFV [64] and CKKS [65],
where the fundamental algebraic operations are ciphertext
additions and multiplications. As shown in Table I, arithmetic-
circuit FHE compilers [23, 53, 56–59] achieve extremely fast
arithmetic circuit evaluation owing to the SIMD capability
supported by the underlying FHE schemes. However, arithmetic-
circuit FHE compilers generally have poor support for non-
polynomial and logic function evaluation, such as comparison
and trigonometric functions [13]. In addition, most of the
arithmetic-circuit compilers (except ELASM [59]) can only
evaluate circuits with limited multiplicative depth either due to
the lack of the bootstrapping operator in the compilers or the
incompatibility between the encryption parameters. Moreover,
as further explained in Section II-C, most (if not all) of the
existing compilers only focus on optimizing ciphertexts with
slot encodings and do not employ the coefficient encoding

2



TABLE I
SUMMARY OF EXISTING (F)HE COMPILERS

Cingulata Alchemy E3 EVA MARBLE RAMPARTS Transpiler Porcupine HECO ELASM Ours[52] [53] [54] [23] [55] [56] [21] [57] [58] [59]

Circuit Logic* Arth. Both* Arth. Both* Arth. Logic Arth. Arth. Arth. Both
Bootstrap % % % % % % ! % % n‡ !

SIMD-Slot % ! ! ! ! ! % ! ! ! !

SIMD-Coeff. % % % % % % % % % % !

Logic Gates ! % ! % ! % ! % % % !

Ctxt. Conv. % % %† % % % % % % % !

*Cingulata, E3 and Marble evaluate logic circuit through binary arithmetic circuits. ‡ ELASM can schedule bootstrapping, but the operator is not implemented in their library.
† The costs for converting ciphertexts from general arithmetic representation to binary arithmetic representation is prohibitive in E3.

technique. Consequently, most existing arithmetic-circuit FHE
compilers are rather application-specific, in that they only have
end-to-end compilation support for arithmetic circuits over
finite fields.

Logic-Circuit FHE Compilers: Based on various optimiza-
tions in bootstrapping [18, 66], FHE compilers over logic
circuits start to emerge as alternatives for general program
compilation. We see a line of works [8, 21, 22, 52] that adopt
circuit synthesis techniques to compile programs written in
Verilog [22] or C [8, 21] into equivalent homomorphic circuits
over logic gates (or instructions over logic circuits in the case
of [8]). Since programs can be easily transformed into Boolean
circuits, some logic-circuit FHE compilers, e.g. Transpiler [21],
are functionally complete and readily deployable. However,
we point out that many existing logic FHE compilers are
functionally incomplete as well. For example, as shown in
Table I, Cingulata, Marble and E3 can only support circuit with
limited multiplicative depth due to the lack of the bootstrapping
operator. Furthermore, it is commonly known that representing
general programs as Boolean circuits are inefficient [42]. Hence,
programs produced by logic-circuit FHE compilers suffer from
degraded latency performance, especially on arithmetic-heavy
tasks (e.g., homomorphic convolution).

Hybrid-Circuit FHE Compilers: Due to the usability and
performance limitations of arithmetic-only and logic-only
operators, some works explore how to efficiently combine
arithmetic and logic FHE operations to generate one FHE
program over the hybrid circuit. For example, E3 can convert
bit-level logic values to integers over finite fields and vice
versa, enabling arithmetic and logic operators to co-exist in the
generated FHE program. Unfortunately, the cost of reversing
the logic-to-arithmetic conversion is prohibitive in E3 due to
the need for a huge number of homomorphic multiplications.
As a result, E3 is still mostly an arithmetic-orient compiler
framework.

Remark on DSL: By explicitly defining domain-specific
lexica, DSL-based FHE compiler frameworks [23, 58, 62]
permit simpler compiler designs as FHE-specific operators
can be directly embedded into the target program. However,
coding over DSLs can be as challenging as that directly over
FHE primitives [53], for choosing the correct domain-specific
lexica still requires a deep understanding of fundamental FHE
mechanics.

II. PRELIMINARIES AND BACKGROUND

In this work, we use two types of lattice-based FHE schemes
categorized according to their functionalities, namely, arithmetic
FHE (Section II-C) and logic FHE (Section II-B. Both FHE
categories follow the standard FHE hardness assumptions based
on the learning with errors (LWE) and ring learning with errors
(RLWE) problems. In what follows, we describe constructions
as well as optimizations of logic and arithmetic FHE schemes
in Section II-B and Section II-C, respectively. In addition,
we also discuss some of the scheme conversion techniques
proposed recently in Section II-D.

A. Notation
For simplicity, we use the symmetric version of the CKKS

scheme [65] as an example of FHE throughout this work. Note
that the basic encryption mechanism is the same for CKKS
and TFHE [18]. We use λ to denote the security parameter, p
the plaintext modulus, q/Q the ciphertext moduli. Zq refers to
the set of integers modulo q. For some lattice dimension n/N ,
we write RN,q = Zq[X]/(XN + 1). In this paper, we use tilde
lower-case letters such as ã to depict polynomials and bold
lower-case letters such as a to represent vectors. In particular,
a[i] refers to the i-th element in a.

B. Logic FHE
We consider FHE schemes such as FHEW [19, 67],

TFHE [18] as logic FHE. For logic FHE, each ciphertext
only encrypts one plaintext message, such as a single logic
value of 0 or 1. As a result, ciphertext bootstrapping over
logic FHE is extremely fast. By evaluating logic circuits over
such ciphertexts, logic FHE schemes can easily be made
functional complete. Homomorphic gates in logic FHE are
mainly evaluated on LWE ciphertexts, which are composed as
follows. Given a plaintext message m ∈ Zq and the secret key
s ∈ Zn

q , an LWE ciphertext is

LWEn,q
s (m) = (b,a) = (−aTs + ∆m+ e,a).

where a ∈ Zn
q is chosen uniformly at random, the error e is

chosen from some distribution χnoise with standard deviation
noise, and ∆ is a scaling factor to protect the least significant
bits of the message from the noises. The main drawback for
logic FHE is that arithmetic operators such as large-precision
additions and multiplications are extremely slow due to the
Boolean nature of the computation.
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Programmable bootstrapping: The main optimization tech-
nique for logic FHE is programmable bootstrapping (PBS),
also known as functional bootstrapping. PBS is one of the
most important techniques that improve the efficiency of logic
FHE schemes [66, 68]. PBS can evaluate arbitrary functions
through Look-Up Tables (LUTs) while refreshing the noise
of the ciphertext. While earlier PBS requires the MSB of the
plaintext to be set to zero, methods are proposed to utilize
the full input plaintext domain [69–71]. Meanwhile, multi-
value PBS is devised to allow for a much smaller cost when
evaluating multiple homomorphic functions with the same
inputs [72–74]. Equipped with PBS, logic FHE becomes more
capable of efficiently evaluating both logic and arithmetic
circuits [73, 74].

C. Arithmetic FHE
FHE schemes that heavily rely on the single instruction

multiple data (SIMD) technique of RLWE ciphertexts [20] are
categorized as arithmetic FHE, e.g., BFV [64, 75], BGV [76],
and CKKS [65]. Given an encoded plaintext polynomial m̃ ∈
RN,Q and a secret key polynomial s̃ ∈ RN,Q, an RLWE
ciphertext is encrypted as

RLWEN,Q
s̃ (m̃) = (b̃, ã) = (−ã · s̃+ ∆m̃+ ẽ, ã).

where ã ∈ RN,Q is chosen uniformly at random, the error ẽ
is chosen from some distribution χnoise, and ∆ is a scaling
factor. While arithmetic FHE is dominant in implementing
linear and polynomial functions [6, 77–79], due to the lim-
itation of arithmetic computations on quotient (polynomial)
rings, it is generally inefficient to evaluate non-polynomial or
logic functions over arithmetic FHE schemes. For example,
evaluating privacy-preserving sorting over CKKS can be up to
6× slower than that on TFHE [3].

Encoding Methods: For logic FHE schemes, plaintext
messages usually do not need complex encoding since each ci-
phertext can only encrypt one plaintext. However, for arithmetic
FHE schemes, a message vector is first encoded in a polynomial
before being encrypted to an RLWE ciphertext [80, 81]. Slot
encoding [20] and coefficient encoding [2, 4] are widely used
in the existing FHE algorithms. The concrete definitions are
as follows.
• Slot Encoding: The CKKS-variant slot encoding maps

input messages from m ∈ CN/2 and scaling factor ∆ ∈ R
to a polynomial m̃ ∈ RN . m̃(ζj) = ∆ · m[j] where
ζj is 2N -th root of unity that satisfies XN + 1 = 0.
Actually, slot encoding can be viewed as the number
theoretic transform (NTT) in BFV [64] or discrete Fourier
transform (DFT) in CKKS [65]. Slot encoding supports
efficient element-wise SIMD addition and multiplication
between plaintexts ciphertexts [20].

• Coefficient Encoding: In coefficient encoding, the en-
coded plaintext polynomial m̃ ∈ RN,Q of messages
m ∈ ZN

Q is given as:

m̃(X) = m̃0 + m̃1X + ...+ m̃N−1X
N−1.

where m̃i = m[i] for i = 1, 2, .., N − 1. Coefficient
encoding is commonly used in sample extraction [18] and

CKKS bootstrapping [15, 16, 82–85]. Besides, coefficient
representation is found to be more efficient than slot rep-
resentation in implementing homomorphic inner products
and convolutions [2, 4].

Residue Number System (RNS): The RLWE ciphertext
modulus Q is often set to be as large as hundreds of bits to
support deeper homomorphic circuits and accommodate larger
noises. Since large integers do not fit into the 64-bit CPU word
size, Chinese remainder theorem (CRT) is used to represent
the quotients of RN,Q as a product of elements from smaller
quotient rings. In other words, we can decompose Q into a
product of k co-prime factors Q =

∏k−1
i=0 qi. Therefore, for an

RLWE ciphertext ct = (b̃, ã) ∈ R2
N,Q, arithmetic operations

can be performed separately on each of the CRT-decomposed
(i.e. RNS [86]) vectors b,a ∈

∏
iRN,qi , eliminating the need

of large-integer arithmetic [87–89].

D. Ciphertext Conversions in FHE

Conversion between arithmetic and logic FHE. As men-
tioned above, arithmetic FHE schemes such as BFV [64, 75],
BGV [76], and CKKS [65] pack multiple messages into one
ciphertext and support efficient SIMD operations [20]. However,
due to the limitation of arithmetic on polynomial rings, it can be
difficult for RLWE-based schemes to evaluate non-polynomial
functions such as comparison and floating-point division. On
the contrary, while logic FHE schemes such as FHEW [19, 67]
and TFHE [18] can only encrypt one message in one ciphertext,
logic FHE has lightweight bootstrapping and can evaluate
multiple non-polynomials functions simultaneously via TFHE
PBS.

To support the evaluation of both logic and arithmetic
functions, a number of ciphertext conversion techniques have
been proposed to achieve the best of both worlds. Recent devel-
opments explore how to combine logic and arithmetic FHE by
developing a series of conversion algorithms between the LWE
and RLWE ciphertext formats. For instance, CHIMERA [90]
introduces the first hybrid solution for switching between TFHE
and a torus variant of BFV and CKKS. This conversion method
enables CHIMERA to perform efficient SIMD arithmetic
operations under BFV/CKKS scheme and then evaluate non-
polynomial functions with TFHE PBS after converting from
arithmetic FHE ciphertext to logic FHE ciphertext. Hence,
CHIMERA is later adopted by privacy-preserving neural
networks inference [6, 66, 68, 91] to implement non-linear
activation layers. Unfortunately, the conversion from TFHE
to BFV/CKKS in CHIMERA is extremely costly in terms
of computation and evaluation key sizes. As a solution,
PEGASUS [3] addressed the drawback of CHIMERA through
approximate decryption, and proposed a practical framework for
switching back and forth between TFHE and CKKS ciphertexts.
Subsequently, HEDA [7] proposed the parameter lift bootstrap-
ping technique to efficiently convert encryption parameters for
the accurate TFHE-CKKS conversion required by database
applications. Through the process, two key algorithms are
developed for the conversions between arithmetic and logic
circuits, namely, SAMPLEEXTRACT and REPACK.
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• SAMPLEEXTRACT: First proposed in [18], SAMPLEEX-
TRACT can extract an element of the encoded vector in
an arithmetic FHE ciphertext ct ∈ RLWEN,Q

s̃ (m̃) into a
logic FHE ciphertext:

SAMPLEEXTRACT(ct, i)→ LWEN,Q
s (m̃i), i ∈ 〈N〉.

Here, the equation extracts the i-th plaintext message m̃i

encrypted in the RLWE ciphertext ct.
• REPACK: REPACK can pack a set of logic FHE ciphertexts
{cti}i∈〈N〉, cti ∈ LWEN,Q

s (m[i]) into a single RLWE
ciphertext:

REPACK({cti}i∈〈N〉)→ RLWEN,Q
s̃ (m̃),

where the set of LWE ciphertexts encrypt each element of
the plaintext vector m, and the output RLWE ciphertext
encrypts m̃ such that m̃i = m[i].

We see two distinct methods for implementing the REPACK
operator decryption-based [3, 18, 92], and automorphism-
based [93]. Though decryption-based REPACK runs faster when
packing a large number of ciphertexts, the method suffers
from the fact that the repacked plaintexts are low in bit
precision. On the other hand, automorphism-based REPACK
achieves a high level of message precision but results in
incompatible ciphertext encodings. In this work, we improve
high-precision automorphism-based REPACK when packing
a small number of LWE ciphertexts, which will be further
discussed in Section IV-B2.

Conversion between slot encoding and coefficient en-
coding. In addition to scheme-switching conversions, we
also need the homomorphic conversion between the slot
and coefficient encoding, for different plaintext encoding
methods have different applications. For example, by using
coefficient encoding, some types of linear transformations such
as homomorphic inner products and homomorphic convolutions
are faster than that using slot encoding [2, 4]. To fully leverage
the benefits of different encoding methods, encoding-switching
techniques are proposed in [82, 94]. Lastly, we note that,
while the above conversion methods can solve the ciphertext
compatibility problem, many conversion operators incur a
significant computational burden per se. Consequently, we
believe that a compiling framework that “understands” how
and when to use different FHE schemes as well as scheduling
necessary conversion operators is crucial to both the usability
and efficiency of FHE-based secure computing systems.

III. THE HEIR COMPILER FRAMEWORK

In this section, we present HEIR, a compiler framework that
takes advantage of both arithmetic and logic FHE schemes with
different plaintext encodings. We first formulate the problems
and challenges faced by our framework in Section III-A. Then,
we summarize the overall framework and threat model in
Section III-B and Section III-C. Finally, we discuss details on
certain aspects of our design pipeline in Section III-D.

A. Problem Formulation and Challenges

The main goal of this work can be formulated as: given
a plaintext program and its input data, we wish to generate

a homomorphic program with FHE-friendly data structures
and appropriate data encoding. In what follows, we identify
and summarize the key barriers confronting the design of a
cross-scheme FHE compiler.

Challenge 1: The first barrier is the lack of a unified
intermediate representation for the various ciphertext formats
and homomorphic operators in cross-scheme FHE. For instance,
as shown in Table I, existing compilers such as EVA [23] and
HECO [58], which mainly focus on optimizing arithmetic
FHE, only supports operations on RLWE ciphertext and do not
accommodate non-polynomial function evaluations. Similarly
compilers like Transpiler [21] decompose all input data
into Boolean representations and implement every arithmetic
operation using logic circuit, which is clearly inefficient. To
enable hybrid-circuit FHE, the compiler needs a unified IR
infrastructure to correctly identify the lowering layers and
perform key optimization passes.

Challenge 2: The second barrier lies in the fact that,
since HEIR adopts cross-scheme compilation, it becomes
much harder to schedule conversion operations and select of
encryption parameters. In particular, to select the appropriate
parameters for the input program, the first step is to determine
the level for each ciphertext. Although EVA [23] can automat-
ically maintain the ciphertext level for leveled homomorphic
encryption (LHE), to the best of our knowledge, there is
no compiler framework that can automate the scheduling
of ciphertext bootstrapping along with level management
involving arithmetic-logic conversions.

B. HEIR Compiler Overview

To better support and make full use of optimizations provided
by existing compilation toolchains, HEIR is constructed over
the MLIR framework [95]. In MLIR, custom-defined IRs are
known as dialects, which constitute the middle-end of the
compiler stack. The key advantage of installing dialects over
MLIR is the ability to maintain the desired level of semantics
while performing various types of graph-based optimizations.

We provide an overview of the processing flow of HEIR in
Figure 1. Here, the input C program is first transformed into an
MLIR module composed of high-level IRs with built-in MLIR
dialects using the Front-End module based on Polygeist [96].
Then, the Middle-End module of HEIR consists of a number
of FHE-specific transformation and optimization pass. We
group these lowering passes into two main stages: i) the
transformation stage, and ii) the optimization stage. First, in the
transformation stage, we gradually lower programs written in
high-level IR and the associated plaintext data types into a series
of FHE-friendly dialects, and produce programs written in fhe
dialect. Within the transformation stage (Section III-D5), the
core functionality is program segmentation and automated
data type as well as operator conversions. Second, in the
optimization stage, we lower the fhe dialect into the lwe
and rlwe dialects, where logic and arithmetic operators
can be concretely instantiate over the compatible ciphertext
IR types. In addition, we need to perform lower-level FHE
optimizations such as level management and parameter tuning,
which are the essential steps in instantiating the underlying FHE
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Fig. 1. Compilation flow of the HEIR framework.

schemes. For instance, we need to maintain a level management
system equipped with ciphertext bootstrapping to guarantee
security while improving efficiency. Finally, the Back-End
module lowers lwe and rlwe IRs into concrete homomorphic
operators, which we refer to as homomorphic instructions,
that are supported by the unified bottom-level FHE library.
Here, we formulate a unified set of homomorphic instructions
such that HEIR can support a large variety of cross-scheme
homomorphic operations with high efficiency and usability.

C. Threat Model

In this work, we assume a secure two-party computation
setting which is typical for homomorphic encryption. Here,
the client has some private data, and wishes that the server
could perform certain computations on the data. Meanwhile,
we assume that the server is semi-honest in that the server will
indeed carry out the prescribed computation in the protocol,
but is curious about the encrypted data.

Different from data privacy, we point out that, in most
FHE-based protocols, the program is public to the server. In
fact, for the server to execute a program on the private inputs
from the client, the server has to know exactly what kind of
computations need to be performed. Therefore, while the FHE
compiler can be held either by the server or the client, the
compiler needs to ensure that no plaintext data are exposed to
the server during compile time. As for the target program to
be compiled, we consider all of its inputs as data that are to be
encrypted. However, one of the subtle complexity here is that
constant values declared in the program are considered to be a
part of the program rather than the data, and are thus public to
the server. Lastly, we note that a minimum set of DSL lexica
can be easily integrated into our framework to permit a higher
level of flexibility in terms of public-private data declarations.

D. HEIR Framework Details

1) Design of HEIR Dialect: As illustrated in Figure 2,
once the program is processed by the Front-End module of
HEIR, the input program is transformed into the surface-layer
IR representation consisting of a variety of high-level built-
in dialects that can be further lowered to our HEIR dialect.
Owing to the multi-level nature of MLIR, we are able to define
additional dialects consisting of FHE-specific data types and

heir::fhe

mlir::polygeist

mlir::affine

Front-End Module: Plaintext IRs

mlir::emitc

Na�ve C Language Program

//  mul�-dim vector slicing

//  vector store/load opera�ons 
//  For loop statement 
//  If else statement

mlir::arith
//  +/-/* opera�ons

mlir::memref
//  vector type defini�on/alloca�on

mlir::func
//  func�on call/return

Types
   FHEFloat
   FHEVector FHEMatrix

Opera�ons
   Arithmetic Ops: Add/Sub/Mult
   Logic Ops: LUT

Unified Homomorphic Instruction Set 

heir::lwe
Types
   LWECipher
   LWECipherVec
   LWECIpherMat

Opera�ons
   LWEAdd/LWESub
   LUT
   Repack

heir::rlwe
Types
   RLWECIpher
   RLWECipherVec

Opera�ons
   RLWEAdd/RLWESub
   RLWEMul
   Extract

Section III.D (4)

Middile-End Module: HEIR IRs
Section III.D (5)

Back-End Module: Built-in IR
Section III.D (6)

Fig. 2. An overview of the HEIR dialect structure.

operations to support transformations and optimizations passes
in the Middle-End module, referred to as the heir IR. The
heir IR is also a multi-level dialect consisting of two main
dialect levels, namely, the fhe dialect and the lwe-rlwe
dialect. On the upper layer, the fhe dialect first characterizes
both the operations and the semantics of programs over FHE,
while abstracting away lower cryptographic subtleties. Next, on
the lower layer, lwe and rlwe dialects make explicit the low-
level semantics of arithmetic FHE and logic FHE schemes and
encryption parameters. Finally, the lwe and rlwe dialects are
compiled into concrete operators implemented by the bottom-

6



level FHE libraries. Besides, different from the IR defined in
EVA [23], the intermediate representations of a given input
program in HEIR are in the static single-assignment (SSA)
form, where each operator represents an operation performed
in the program and each operand represent a program argument
or a piece of data generated inside the program.

Here, we explain some notations for types and values
proposed in the heir IR. First of all, data appearing in a
program can be classified into three types: Inputs, Consts and
Variables. The value of Inputs are infeasible in compile-time
and only be initialized in run-time. On the contrary, the value
of Consts are constant values hard-coded into the program.
Variables are defined inside the program or generated from the
existing Inputs and Consts. For each defined Variable u in the
program, we write u.parm as its attributes list and u.parmi as
the i-th attribute in u.parm. To reflect the relationships between
operators and their operands, we write u.opi to denote the i-th
operations to be performed on u as a Variable can be used by
multiple operators.

2) Types in HEIR: HEIR has two main type systems,
namely, the plaintext types and the ciphertext types (details
can be found in Table A2 in the appendix). For plaintext
types, to interface with the program generated by Polygeist,
some MLIR built-in types such as Float and MemRef
are included in HEIR plaintext types for plaintext-ciphertext
transformation. Meanwhile, for the ciphertext types, attributes
like the ciphertext level and the data size is included for better
semantics abstraction. To strengthen the expressiveness, we
add unique types such as vectors and matrices composed of
LWE and RLWE ciphertexts as elements.

3) Operators in HEIR: Due to the single-scheme nature
of existing FHE compilers, the number of available FHE
operators and operations is severely restricted. In contrast,
HEIR includes both arithmetic and logic operators as well as
conversion operators for scheme- and encoding-switching. We
defer the full operator list into the appendix (i.e., Table A3),
and provide a brief summary as follows.
• RLWE Operators: include addition, subtraction, and

multiplication between RLWE ciphertexts and RLWE
encoded plaintexts.

• LWE Operators: include basic addition, subtraction, and
functional bootstrapping operations for LWE ciphertexts.

• Conversion Operator: include two types of operations.
The first type is scheme-switching operators to convert
one or more ciphertexts from LWE formats to RLWE
formats and vice versa. The second type is encoding-
switching operators that can change the encoding method
of an RLWE ciphertext homomorphically for better overall
computation efficiency.

• Maintenance Operators: which mainly include vector
data transfer operators like LOAD and STORE.

4) Front-End and Program Preprocessing: Existing fully
homomorphic encryption (FHE) compilers use different DSLs
to restrict the input types and operations available, where
the main objective is to eliminate the need of complex type
conversions. However, we argue that a non-DSL front-end FHE
compiler is of great importance to enhance the usability and

expressiveness of the input plaintext programs. Therefore, in
HEIR, we allow developers to code their programs in the native
C language, and the list of supported operations is summarized
in the appendix (Table A1). In addition to the C built-in
operators such as addition and multiplication, HEIR also
supports comparison, array operations, the if statement and the
for statement. Moreover, for other complicated operations not
listed in Table A1 such as taking reciprocals and computing
absolute values, they can be re-formulated as a standalone
function call and implemented by the FHE LUT operator.

To transform the C program into SSA-style IR, we adopt
Polygeist [96] as the front-end of HEIR framework. Polygeist
can lower a C program to a variety of high-level built-in
IRs in the MLIR framework. The key advantage of directly
employing Polygeist is that generic program optimizations can
be decoupled with the subsequent FHE-specific transformations
and optimizations. Consequently, different from existing FHE
compilers like [62], we do not need to manually re-implement
generic program optimizations such as common sub-expression
elimination (CSE) and dead-code elimination and maximize
the utilization of the existing tools.

5) Transformations and Optimizations in HEIR: After going
through the Front-End module, the input program enters the
Middle-End module, and FHE-specific transformations passes
are applied to convert plaintext operations into homomorphic
operations. We elaborate on the following two main stages in
the Middle-End module.

Program Transformation: In this stage, operation conver-
sion, as well as type conversion, is necessary to map the
plain operations on plain data to the homomorphic operations
on encrypted data. The transformation stage is composed of
three phases: i) preprocessing, ii) program segmentation, and
iii) encoding optimization. In the beginning, preprocessing
converts the program expressed by the built-in plaintext IRs
into our fhe dialect. Additionally, statements such as if and
for are converted into a sequential structure as long as the
loop condition is known at compile time. Note that the number
of loop iterations can be unknown at compile time but known at
run time, e.g., if it is decided by the server. Next, In the program
segmentation stage, HEIR will segment the input program
into arithmetic or logic regions, assign different homomorphic
primitives to each region, and insert proper scheme-switching
conversions to bridge different regions. During this stage, lexica
in the fhe dialect is gradually replaced by the lwe-rlwe
dialect. Hence, encrypted data types like LWECipher and
RLWECipher are allocated to each of the Variable. Finally,
in the encoding optimization pass, the encoding method of
each of the RLWECipher in the program is determined to
minimize the overall computation latency considering all the
necessary encoding-switching conversions. More details on
program transformations is discussed in Section IV.

Cryptographic Optimization. In this stage, we concentrate
on how to initialize the underlying FHE schemes in an efficient
way. The biggest challenge here is the parameter selection
for different FHE schemes. At its current state, automatic
parameter selection strategies in existing compilers [23, 24, 62]
are designed for leveled homomorphic encryption schemes.
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In HEIR, we propose a bootstrapping-aware ciphertext level
management technique to instantiate the bottom-level FHE
schemes with the smallest possible parameters while ensuring
proper security levels and correct ciphertext decryption. One
of the most important technique in achieving the above goal is
the multi-modulus bootstrapping technique, which transforms
the input ciphertext with a small ciphertext modulus into a
ciphertext with a large modulus while retaining small ciphertext
noises. More details on the optimization stage is further
discussed in Section V.

6) Back-End and Code Generation in HEIR.: Last but not
least, in the Back-End module, HEIR translates a program
represented using the lwe-rlwe dialect into an executable.
Here, HEIR needs to lower the program from lwe-rlwe
dialect to the EmitC dialect. Then, the EmitC program will
be compiled into a final C-language program written in the
bottom-level FHE application programming interface (API),
which are essentially operators implemented by the underlying
cross-scheme FHE library. Due to the fact that no existing FHE
libraries implement both arithmetic and logic FHE schemes
with proper conversion operators, HEIR targets the emitc
program to our dedicated bottom-level FHE library, which
has sufficient support for arithmetic and logic FHE schemes.
However, note that the multi-layer property of the MLIR
representation allows HEIR to easily target additional bottom-
level FHE libraries regardless of the specific implementation
details.

IV. AUTOMATED PROGRAM TRANSFORMATION

Since program transformation is the core of our HEIR
frameowrk, in this section, we provide further details on
the exact procedures for program segmentation and operator-
operand mapping. To illustrate the optimization method used in
this section, we first use an application program composed of
both arithmetic and logic operations as a simple demonstration.

Example Application - Minimum Distance: In Figure 3(a),
we consider a simple program sketched in Figure 3(a) that,
among a number of input data points, outputs the data point
that is closest to the input center point. Here, we first need to
measure the distance based on some L2 distance calculations,
which are essentially arithmetic computations. Then, we need to
identify the minimal value from the calculated distances, which
is clearly a logic comparison. Hence, the example program
serves as an illustration of real-world applications that often
contain both arithmetic and logic operations, and cannot be
compiled using the existing arithmetic-circuit FHE compilers.
Moreover, the use of nested loops accessing a complex set of
indices creates the opportunity to leverage the SIMD batching
properties of arithmetic-circuit FHE schemes, which are not
available in logic-circuit FHE compilers.

Using the state-of-the-art FHE techniques, we manually
crafted an efficient FHE program that implements Figure 3(a)
in Figure 3(b). The key observation is that, using the coefficient
SIMD encoding, the Euclidean distance can be implemented
using a single ciphertext-ciphertext multiplication. Furthermore,
the minimal value selection of encrypted distances can be
realized by a scheme-switching to LWE ciphertext and a series

of homomorphic LUT evaluation through PBS. A detailed
summary of the distinction between arithmetic instructions and
Boolean instructions will be included in Appendix A. In what
follows, we explain how we can transform Figure 3(a) into
Figure 3(b) automatically using our framework.

A. Program Conversion from Plaintext to Ciphertext

Since the compilation output of the Front-End module
in HEIR is a program represented in a mix of high-level
built-in dialects as shown in Figure 2, the main task is to
transform such plaintext program into a unified homomorphic
representation, i.e., the fhe dialect. At this stage, HEIR does
not care if a plaintext is mapped to an RLWE or LWE ciphertext.
Instead, we define three unified encrypted data types, namely,
FHEFloat, FHEVector, FHEMatrix, in fhe dialect to
transform the plaintext variables into encrypted forms. Through
the transformation from built-in dialects to fhe dialect, HEIR
mainly address the following two problems.

First, we need to remove the incompatible statements for
homomorphic computation. For example, since the branch
structure is incompatible with the FHE computation paradigm,
every if/else statement shall be emulated by evaluating
the result of all branches and performing an multiplexed
aggregation. Similarly, the For statement with constant length
needs to be unrolled for subsequent vectorized optimizations.
Loop statements with encrypted length are currently not
supported by most FHE schemes, except [8]. The main
challenge here is that the server cannot judge if an encrypted
loop has finished without interacting with the client. Therefore,
HEIR will throw an error when dynamic-length loops are
detected.

Second, we need to check all variables if they can remain
as plaintexts or need to be encrypted as ciphertexts. As
described in Section III-C, we only consider the program inputs
as confidential data that must be protected from the server.
Therefore, all program input arguments and variables derived
from these arguments are mapped to encrypted variables, which
can be easily identified through the Def-Use chain of the
program. Meanwhile, constants defined inside a program are
mostly matrix indices or operands. If the constant is used for
computation with encrypted data, this constant is essential to
be encoded. The complete program conversion algorithm can
be found in Algorithm 3 of the appendix.

B. Program Segmentation

Here, HEIR separates the program into arithmetic and logic
regions in order to map the operators and data types into
the corresponding homomorphic representations. During this
process, HEIR will lower fhe dialect to lwe and rlwe
dialects. There are two important procedures involved in
the segmentation of a program: operator-based conversion
(Section IV-B1) and mini-repacking (Section IV-B2).

1) Operator-based Conversion: As mentioned in Section II,
arithmetic FHE is good at performing SIMD addition and
multiplication operations, while logic FHE is efficient in
evaluating non-polynomial functions. Therefore, it is actually
easy to segment the program into different regions. However,
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1 #include<stdio.h>
2 int min_dist(int data[5][4], cent[4])
3 {
4 int min;
5 int dist[5];
6 for (int i = 0; i < 5; i++) {
7 for (int j = 0; j < 4; j++)
8 dist[i]+=(data[i][j]-cent[j]) * (data[i][j]-

cent[j])
9 }

10 min = dist[0];
11 for (int i = 1; i < 5; i++) {
12 if (min > dist[i]) min = dist[i];
13 }
14 return min;
15 }

(a) The original handwriting implementation of a minimal distance program

1 LWECipher min_dist(vector<RLWECipher> data,
RLWECipher cent)

2 {
3 LWECipher min;
4 vector<LWECipher> dist;
5 for (int i=0; i<5; i++)
6 dist[i] = inner_prod(data[i], data[i])+

inner_prod(cent,cent)-2*inner_prod(data[i],
cent);

7 min = dist[0]
8 for (int i = 1; i < 5; i++) {
9 LWECipher msb = dist[i] - min;

10 msb = LUT(msb, x < 0 ? 1 : 0);
11 min = msb * dist[i] + (1 - msb) * min
12 }
13 }

(b) Optimized batched homomorphic solution of the same program

Fig. 3. Two programs calculating the minimum distance between each data point and the center point. a) the input program for HEIR, which calculates
element-wise multiplication individually. b) the output of HEIR, which transforms the original program into a homomorphic program and uses batched
multiplication for RLWE ciphertexts to simplify the computation of vector inner product.

FHE− LWE
u ∈ {Inputs, V ariables} u.type ∈ {FHEVector, FHEMatrix}

u.type← {LWECipherVec, LWECipherMat}

LWE− RLWE
u ∈ {Inputs, V ariables} u.type ∈ {LWECipherVec, LWECipherMat} u.op ∈ {MULTIPLY,SLICE}

u.type← {RLWECipher, RLWECipherVec} u← REPACK(u)

RLWE− LWE
u ∈ {Inputs, V ariables} u.type ∈ {RLWECipher, RLWECipherVec} u.op ∈ {LUT, LOAD, STORE}

u.type← {LWECipherVec, LWECipherMat} u← SAMPLEEXTRACT(u)

Fig. 4. Graph rewriting rules for program segmentation in HEIR.

it is not always the case that arithmetic regions should be
implemented by arithmetic FHE. For example, if we need
to perform the addition between a small amount (e.g., 2 to
4) of low-precision (e.g., 2 to 4 bits) ciphertexts, we do not
need to execute a scheme conversion to convert from logic
FHE to SIMD-compatible arithmetic FHE. The addition can
simply be carried out over logic FHE ciphertexts. Therefore,
we argue that both scheme and encoding conversions need
to be carefully scheduled by the compiler for each and every
homomorphic operator in the program. To enable operator-
based operand conversion, we take a simple yet effective
approach: we first initialize all variables to be non-vectorized
(i.e., LWE) ciphertext, and then scan the entire program to see
if there exists regions we can schedule a scheme-switching
conversion to leverage the SIMD capability of arithmetic FHE
using an RLWE ciphertext.

For programs without vectorized inputs and variables, we can
directly transform the plaintext operations to the corresponding
homomorphic operations since there is no chance to leverage
the SIMD capability. As demonstrated in FHE-LWE rule
of Figure 4, HEIR transformed all encrypted data types
and operators into the corresponding formats in lwe dialect.
Afterwards, variables with LWECipher type used as operands
of a MULTIPLY operator will be converted to a RLWE
ciphertext for further arithmetic operations. To achieve this
goal, SAMPLEEXTRACT and REPACK operators are essential
to be inserted in the conversion process as demonstrated in
LWE-RLWE and RLWE-LWE rules.

On the other hand, for programs with vectorized inputs
or intermediate variables, we integrated the batching pass
(Algorithm 2 in HECO [58]) to transform individual element-
wise operations into a batched computation paradigm. To
improve the generality, we extended the algorithm also for two-
dimensional matrices. In the case of two-dimensional batching
pass, we first parse the matrix into a set of row vectors, and
each row is seen as a potential RLWE ciphertext to be batched.
Then, the batching pass is performed on each of the row
vectors. If a scheme-switching conversion can be scheduled
as judged by the compiler, an RLWECipher-type (can also
be RLWECipherVec and RLWECipherMat depending on
the exact computations) variable will be generated, and the
subsequent computations can be batched on the associated
ciphertexts.

2) Mini-Repack Algorithm: As demonstrate in Figure 4,
REPACK operator is essential for performing LWE-RLWE
conversion. We observe that a lightweight REPACK algorithm
for packing a small number of ciphertexts is valuable, as
further discussed in Appendix C. To meet the above needs,
we proposed a Mini-Repack algorithm which is tailored for
packing a small number of LWE ciphertexts as demonstrated
in Algorithm 1. To start with, on Line 3-4, a single LWE
ciphertext is packed into the 0-th coefficient of an RLWE
ciphertext using the EvalTr algorithm introduced in [93]. Next,
on Line 5, the ciphertext is first multiplied with a monomial
to rotate the encrypted plaintext into the i-th coefficient, and
then accumulated into the ACC ciphertext. As mentioned,
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Algorithm 1: Mini-Repack
Input : t LWE ciphertexts (ct0, ct1, ..., ctt−1) where

cti = LWEn,Q
s (mi) = (bi,ai).

Input : Automorphism Keys KsK
Output : Packed RLWE Cipher RLWEn,Q

s̃ (m̃), where m̃i = mi,
for i ∈ Zt

1 ACC ← (0, 0) ∈ R2
Q

2 for i = 0 to t− 1 do
3 c̃ti ← (b̃(i), ã(i)) ∈ R2

Q, where b̃(i)0 = bi, ã
(i)
j = a[j].

4 c̃ti ← EVALTRn/1(c̃ti,KsK)

5 ACC ← ACC + c̃ti ·Xi

Return :ACC

while Mini-Repack can be slower than both [3] and [93] when
packing a large number of ciphertexts, we find the technique
practical when dealing with real-world programs that often do
not have large-scale parallelism.

C. Encoding Optimization

Most existing arithmetic-circuit FHE compilers only support
RLWE ciphertexts with slot encoding. In spite the fact that all
linear transformations can be implemented on slot encoding [97,
98], it is shown that coefficient encoding can be much faster
in certain cases [2, 4]. To further complicate the situation, we
note that the SAMPLEEXTRACT algorithm [3] and the REPACK
algorithm [93] used for scheme-switching conversion can only
be applied to coefficient-encoding ciphertexts. Therefore, any
slot-encoding RLWE ciphertexts that need to be extracted
to LWE ciphertexts must first go through an extra slot-to-
coefficient encoding-switching conversion, which is in fact
computationally expensive.

To correctly capture the encoding characteristics in general
programs, we proposed a novel encoding pass such that RLWE
ciphertexts can be set in the most efficient encoding methods
throughout the program. Similar to that of scheme-switching
scheduling, in the encoding pass, we first set all RLWE
ciphertexts to be in the slot representation, and then execute
Algorithm 4 in Appendix D to identify program fragments that
are more suitable to be in the coefficient encoding formats.

One cryptographic subtlety here is that, due to the nature
of polynomial multiplication (i.e., convolution), to produce a
correct inner product between two RLWE ciphertexts in the
coefficient encoding, one of the ciphertexts needs to have its
plaintext coefficients be in the reverse order. Homomorphically
reversing the order of the plaintext coefficients in a ciphertext
can be achieved by first converting the RLWE ciphertext into
a set of LWE ciphertext and then pack the LWE ciphertexts
in the reverse order. One slight optimization here is that, if
we wish to take the inner product between two input RLWE
ciphertexts, we can let the client encrypt one of the input
RLWE ciphertext directly in the reversed order to avoid the
above two encoding-switching conversions.

V. CIPHERTEXT LEVEL MANAGEMENT

Once transformed, the program is compiled into the rlwe-
lwe dialects with proper ciphertext types and the associated
homomorphic operators. However, this representation is still
too abstract to be directly mapped to low-level FHE library

Algorithm 2: Level Management Algorithm
Input : DAG of the program (V, E) ∈ G
Input : Maximum ciphertext level γ
Output : Transformed DAG of the program (V, E) ∈ G
. Initial Level Allocation

1 for u ∈ V do
2 u.level = LEVELITERATOR(u)
. Bootstrap Scheduling

3 for u ∈ V do
4 if u.level == i · (γ + 1) for i ∈ N+ then
5 u.level← 1

. Insert Extra Bootstrap
6 Insert u← MULTMODULUSBOOTSTRAP(u, γ)
7 else if u.level > γ + 1 then
8 u.level← u.level mod γ

Procedure : LEVELITERATOR(u)
9 Initialize nextLvl← 0.

10 Initialize a list of level subList.
11 for op ∈ u.Uses do
12 switch op do
13 case RLWEMul do nextLvl← 1;
14 case S2C do nextLvl← 2;
15 case C2S do nextLvl← 2;
16 case LUT do nextLvl← 0;
17 if op! = LUT then
18 res← op.Result
19 res.level← LEVELITERATOR(res)
20 subList.append(res.level + nextLvl)
21 u.level← max(subList)

Return :u.level

API, since there is no hint for the selections of encryption
parameters and generations of evaluation keys. In what follows,
we introduce our general level management procedure that
allows HEIR to compile unbounded-depth FHE programs.

In the HEIR framework, we use the leveled [76] property of
FHE ciphertexts to carry out arithmetic operations. The main
drawback of leveled homomorphic encryption scheme is that,
after performing heavy computations such as a homomorphic
multiplication between two ciphertexts, the output ciphertext
needs to receive a rescaling operator that drops a modulus in
the residual number system (RNS) modulus chain to maintain
a low ciphertext noise size. The total number of moduli in
the RNS modulus chain is referred to as levels, and if only
one modulus is left in the RNS modulus chain, we say that
all levels are consumed. At this stage, no more ciphertext-to-
ciphertext multiplications can be further performed. Hence, a
severe limitation to the compilation over leveled homomorphic
encryption schemes is that the compiler needs to know the
depth of the circuit a priori, or the levels cannot be properly
determined at compile time. To solve such level problem,
we propose to schedule the ciphertext bootstrapping operator
during the compilation FHE programs, such that the HEIR
framework can compile unbounded-depth programs.

The real challenge for properly bootstrapping FHE cipher-
texts is how to schedule the bootstrapping operator. On one
hand, scheduling bootstrapping too frequently may severely
degrade the performance of the FHE program. On the other
hand, the program cannot be correctly evaluated with an
insufficient amount of bootstrapping operators.

In HEIR, we propose a level management procedure sketched
in Algorithm 2 to properly assign levels to the FHE ciphertexts
and insert bootstrapping operators when necessary. In the
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TABLE II
THE ENCRYPTION PARAMETERS

Ciphertext Parameters

LWE n 4096
log2(q) 48

RLWE
N 8192

log2(qi) 48
Max(log2(Q)) 192

beginning, we need to decide a maximum ciphertext level
γ which can be seen as a hyperparameter to the compiler
framework. To determine γ, we characterized the average
gate bootstrapping frequency in a set of benchmark FHE
applications that include sorting, image processing algorithms
and K-Means clustering. We discover that a γ of 4 is sufficient
in compiling most of the benchmarks without incurring extra
bootstrapping. Since γ can be program-dependent in practice,
we set the value of γ to be user-defined in HEIR. Then, since
the number of each type of homomorphic operators has mostly
been fixed at compile time through the transformation passes,
we can simply go through the entire program and calculate the
necessary levels for each of the ciphertext operators. According
to Algorithm 2, on Line 1-3, we start a traversal for all
variables in this program based on Def-Use chain by calling
LEVELITERATOR function. On Line 9-23, we first initialize
the nextLevel with 0 and update nextLvl based on the
next operators. For example, the C2S (i.e., the coefficient-
to-slot encoding-switching [94]) and the S2C (i.e., the slot-to-
coefficient encoding-switching) operators always consume two
RNS levels [3] and the RLWEMUL operator (i.e., ciphertext-
ciphertext multiplication) consumes one level. Each time some
operator uses a variable (e.g., u) as its operand, we capture the
result of the operator and call the LEVELITERATOR function
over the variable u. We increment the levels of u until u has no
more uses or is only used by the LUT operator (since LUT is
essentially a PBS). Note that there may be multiple independent
uses of u. Hence, on Line 24, the level of u is determined
by the maximum level amongst all of its independent uses.
Finally, after the levels of all variables are determined, we insert
the LUT operator based on our multi-modulus bootstrapping
technique described in the appendix (Appendix E) to reset the
levels of the ciphertext variables. As depicted on Line 7, if the
level of a variable presents to be too large (i.e., ≥ γ), we will
schedule another LUT to ensure that all levels in the program
is less than the pre-determined threshold.

VI. EVALUATION

Throughout the evaluation, we mainly focus on comparing
the effectiveness and performance of the proposed HEIR
architecture. We mainly compare our HEIR framework with
the state-of-the-art arithmetic-circuit and logic-circuit FHE
compilers, i.e., EVA [23, 62], HECO [58] and Transpiler [21].
A. Evaluation Setup

The entire HEIR compiler framework is implemented using
C++17 and compiled with clang 14.0.0 based on MLIR
framework. Our bottom-level FHE library is an in-house

TABLE III
COMPARISON OF HOMOMORPHIC K-MEANS ALGORITHM AMONG HEIR,

TRANSPILER AND A HAND-TUNED IMPLEMENTATION, WHERE N DENOTES
THE NUMBER OF DATA POINTS, K DENOTES THE NUMBER OF CENTROIDS

AND d DENOTES DIMENSIONS OF THE DATA POINT

N K d Implementaions Latency (s)

5 2 3
Transpiler [21] 24321.191 179×

HEIR 135.634 1×
Hand-Tuned 59.338 0.44×

10 2 3
Transpiler [21] Compilation fails –

HEIR 248.823 1×
Hand-Tuned 105.621 0.42×

TABLE IV
RUNNING TIME OF HOMOMORPHIC K-MEANS ALGORITHM

Number of Data Number of Centroids Running Time (min)

128 2 49.89
3 92.85

512 2 198.28
3 369.98

1024 2 399.53
3 798.21

TABLE V
COMPARISON OF COMPILE TIME AND MEMORY CONSUMPTION BETWEEN

HEIR AND OTHER FHE COMPILERS

Benchmarks Compilers Compilation Time Memory Usage

Inner Product
EVA [23] 0.007 s 135 MB

HECO [58] 0.078 s 74 MB
HEIR 0.15 s 53 MB

Boxblur
EVA [23] 0.008 s 272 MB

HECO [58] 0.078 s 98 MB
HEIR 0.15 s 116 MB

Fibonacci Transpiler [21] 39.28 s 308 MB
HEIR 0.16 s 6.1 GB

K-Means Transpiler [21] 974.98 s 718 MB
HEIR 0.18 s 12.2 GB

implementation of the CKKS and TFHE schemes written
in C++17 and compiled using clang 14.0.0. We conducted
experiments for microbenchmarks and end-to-end applications
on a single core of an Intel Xeon Gold 5318Y processor with
512GB of RAM.

The parameters used in HEIR for these evaluations are
summarized in Table II, which achieves 128-bit security
estimated by lwe-estimator [99]. To allow efficient CPU
execution, we set the upper bound of the modulus Q =

∏k−1
i=0 qi

used in RLWE ciphertexts to be 192 bits.
B. Microbenchmarks

Here, we first test HEIR on a set of selected microbench-
marks over both arithmetic and logic circuits. The results for
arithmetic circuits are summarized in Section VI-B1 and that
for logic circuit in Section VI-B2.

1) Arithmetic Circuit Evaluation: We demonstrate the
speedup achieved by HEIR on three applications that are
commonly used as building blocks in many practical ap-
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Fig. 5. Microbenchmark results for arithmetic-circuit programs with different vector/matrix/image size.
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Fig. 7. Runtime of data analysis program for an encrypted database.

plications: inner product, Euclidean distance, matrix-vector
multiplication, Boxblur filtering and Roberts Cross filtering.
Note that EVA does not support the automatic vector batching.
Therefore, the programmer has to manually implement the basic
rotate-and-add approach (i.e., Appendix B) for most arithmetic
benchmarks.

Although Transpiler [21] also supports the compilation of all
three benchmarks, we note that logic FHE circuits are not good
at handling arithmetic applications involving a large number
of multiplication operations. In our experiments, we find that
the program generated by Transpiler required approximately
6000 seconds to evaluate an inner product between two 32-

element 16-bit vectors, which is unacceptable for practical uses.
Therefore, we omit Transpiler in the benchmark comparisons
over arithmetic circuit evaluations.

Runtime Latency: As shown in Figure 5 and Appendix Fig-
ure A2, using the coefficient encoding technique, the runtime
latency of HEIR on inner product and euclidean distance
is independent of the number of vector elements (up to
the lattice dimension n). In comparison, the computation
latency growths for EVA programs are linear to the number of
vector elements. Overall, HEIR achieves a speedup of 3.4×–
11× over the advanced compilation result for vector inner
product, 1.4×–4.5× for vector Euclidean distance and 2×–
5× for matrix-vector multiplication. In applications such as
Boxblur and Roberts Cross, HEIR cannot use the coefficient
encoding technique to optimize the programs. Nonetheless,
HEIR achieves comparable latency with HECO through the
implementation of SIMD batching optimizations, resulting in
a speedup of 21-36× over EVA.

2) Logic Circuit Evaluation: We evaluated the efficiency
of different compilers in evaluating non-polynomial functions
in the logic circuit benchmarks. As existing arithmetic FHE
compilers can only generate programs consisting of polynomial
addition and multiplication operators, they cannot be used
in evaluating logic circuits. Hence, the performance compar-
ison is conducted between HEIR and Transpiler [21]. We
demonstrate the speedup achieved by HEIR on three logic
circuit benchmarks including vector min value, vector min
index and Fibonacci sequence. Note that the application of the
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Fibonacci sequence also exemplifies the capability of HEIR
to incur extra TFHE multi-modulus bootstrapping for level
management. When evaluating a Fibonacci sequence with a
maximum iteration of 64, HEIR invokes the bootstrapping
operator 44 times to increase the level of the ciphertexts, which
is reduced by the repeated evaluation of the if statements.

Runtime Latency. As demonstrated in Figure 6, we show
the runtime latency of the above three logic-circuit programs.
Though the latency of the programs generated by both
Transpiler and HEIR has linear complexity, the bit-level FHE
computation paradigm used in Transpiler is still slower than
the cross-scheme paradigm used in HEIR for evaluating the
microbenchmarks. In summary, compared to Transpiler, HEIR
achieves a speedup of 3.2× over the min-value evaluation, 4.1×
over the min-index evaluation, and 3.6× over the Fibonacci
sequence program.

C. Evaluation on End-to-End Applications
Lastly, we evaluate two end-to-end programs that are

frequently used in real-world applications.
1) Data Analysis in Homomorphic Database: Filter-

aggregation is a common program for data analysis [7, 100,
101] which includes both arithmetic and logic operations. Here,
we consider an encrypted database storing personal information
in a company. Our goal is to calculate the overall salary of
employees earning more than 4000 dollars per month. To
achieve this, we need first to filter the employees whose
salaries are more than 4000 dollars from the database, and then
accumulate the filtered values to generate the sum. Figure 7
demonstrates the running latency of the compiled programs
mentioned above. For a database recording information of 32
employees, Transpiler requires 2.85 hours to compute the result
while HEIR achieves a speedup of 72× with 2.3 minutes.

2) End-to-end Homomorphic K-Means Evaluation: K-
Means clustering [102] is a popular unsupervised machine-
learning algorithm that also require both arithmetic and logic
operations. The overall process can be characterized into
two main steps. First, for each input data point, we need
to homomorphically calculate the closest centroid associated
with the point, i.e., the minimum distance function depicted in
Figure 3(a). We need an arithmetic-logic conversion here be-
cause distances can be better calculated using arithmetic circuit,
while determining the minimum distance is a logic operation.
Second, we need to convert the logical comparison result into
an arithmetic representation, as updating the centroids requires
calculating the mean values of a certain number of points. A toy
example of single-round K-Means evaluation is demonstrated
in Table III. As observed in Table III, HEIR is 179× faster than
Transpiler on the setting with 5 data points and 2 centroids.
Furthermore, Transpiler cannot compile the K-Means algorithm
on 10 data points with 2 centroids, for the overall circuit is
too complicated for Transpiler to synthesize and optimize. In
contrast, as demonstrated in Table IV, HEIR has the ability to
compile K-Means on large datasets and achieve competitive
latency to group 1024 data into 3 clusters within 14 hours.
Under the setting of Table IV, HEIR invokes the conversion
operators 390–3078 times per K-Means iteration under input
data sizes of 128–1024 and 3 centroids.

In addition to Transpiler, we also compare HEIR with
an in-house version of K-Means developed based on Open-
PEGASUS [3]. Here, we hand-tuned the K-Means program
and manually integrated various advanced FHE optimization
techniques, such as flexible encoding methods and the identity
key switching method [18], to accelerate program execution.
We observe that HEIR still achieves comparable runtime latency
against this hand-tuned version of the K-Means program.

Compilation Time and Memory Usage: As shown in
Table V, we compare the compilation time of different FHE
compilers and the memory usage of the generated programs
on various benchmarks. The result demonstrates that HEIR
achieves comparable efficiency with EVA and HECO to compile
the input program in less than one second. On the contrary, due
to the complicated Boolean circuit synthesis process, Transpiler
takes tens to hundreds of seconds to compile a program. As
for memory usage, HECO and HEIR achieve better memory
overhead than EVA due to batch-related optimizations on
arithmetic circuits. For logic and hybrid circuit evaluation,
HEIR consumes more memory than Transpiler, for HEIR
utilizes much more utility keys to speedup program evaluation
(e.g., the Galois keys and relinearization keys). In other words,
comparing to Transpiler, HEIR trades memory efficiency for
better runtime latency.

Remark: While HEIR makes a significant step in hybrid
circuit compilation, the challenge in homomorphic bit extraction
for plaintext encrypted using Zp for p > 2 remains to
be addressed. For example, if two integers a and b are
encrypted just as integers in ciphertexts, homomorphic bit-
wise operations like a & b cannot be compiled by HEIR. At
the current stage, a and b need to be encrypted bit-by-bit
to carry out homomorphic bit-wise operations, which adds
significant communication and computation burdens. In the
future, advanced digit decomposition techniques such as [103]
will be integrated to extend the compilation capability of HEIR
for bit-level operations.

VII. CONCLUSION

In this work, we proposed HEIR, a compiler framework
that can translate unbounded-depth FHE programs containing
both arithmetic and logic operations. By introducing the HEIR
IR consisting of a set of FHE-specific dialects, we develop
multiple lowering passes to directly convert high-level programs
into bottom-level FHE operators without the assistance of
DSLs. In the experiment, we show that, by properly scheduling
conversion and bootstrapping operators, HEIR can compile
programs that run up to 72–179× faster than that generated
by existing compilers on end-to-end real-world applications.
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Appendix Table A1
NATIVE C INSTRUCTIONS SUPPORTED IN HEIR

Instructions Description

+ += Addition
- -= Substraction
∗/∗ = Multiplication
= Assignment
== Equality comparison
>≥ Greater than operator
<≤ Less than operator
a[i] Index for single/two-dimensional array
if else If... Else statement
for For Loop statement
Function Other instructions can be supported by function call

Algorithm 3: Plaintext to Ciphertext Transformation
Pass

Input : DAG of the program (V, E) ∈ G
Output : transformed DAG of the program (V, E) ∈ G

1 for arg ∈ Inputs do
2 arg.type← TYPETRANSFORM(arg)
3 OPITERATOR(arg)

PROCEDURE : OPITERATOR(u)
4 for op ∈ u.Uses do
5 if op.getResult /∈ ∅ then
6 res← op.getResult
7 res← TYPETRANSFORM(res)

. Encode Constants
8 for u′ ∈ op.Operands do
9 if u′.type == Float then

10 u′.type← PlainInt
11 Insert fhe.Encode for u′

12 else if u′.type == MemRef then
13 u′.type← PlainPoly
14 Insert fhe.Encode for u′

15 if res.Uses /∈ ∅ then
16 res← OPITERATOR(res)

. Transform to FHE Types
PROCEDURE : TYPETRANSFORM(u)

17 if u.type == Float then
18 u.type← FHEFloat
19 else if u.type == MemRef then
20 if u.dim == 1 then u.type← FHEVector;
21 else if u.dim == 2 then u.type← FHEMatrix;

APPENDIX

A. Type and Operator Definition in HEIR framework

This section summarizes the types and operators supported
and defined in HEIR framework. Table A1 lists the available
native C instructions for the input programs for HEIR. In
general, in an input program, only additions, subtractions and
multiplications are considered arithmetic instructions which
will be transformed further SIMD optimizations. Meanwhile,
other instructions such as comparisons and if statements are
considered as logic instructions that will be compiled and
implemented using TFHE PBS. For operators not listed in
Table A1, developers can define an external function call to
implement the particular operator, and HEIR will translate this
function call into a LUT implemented by TFHE PBS. Table A2
and Table A3 lists the types and operators defined in HEIR.
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(1) Inner product in slot-encoding ciphertext

(2) Inner product in coefficient-encoding ciphertext

Appendix Figure A1. Toy example of how inner product of two ciphertexts
is performed in slot and coefficient encoding formats.

B. Illustration of the Rotate-and-Add Pattern
we illustrated that the use of coefficient encoding ciphertexts

can significantly accelerate the efficiency of the program,
especially in a mix-scheme paradigm.

Rotate-and-Sum vs Coeff-Convolution: Figure A1
presents different evaluation methods for inner product eval-
uation in slot and coefficient encoding ciphertexts. For slot-
encoding ciphertext, slot-wise multiplication can be performed
between RLWE ciphertexts. Afterwards, using the rotation tech-
nique of AFHE, the result is evaluated through an accumulation
procedure. For a developer familiar with FHE, the number of
rotations in this program can be optimized [58, 97] from O(N)
to O(logN) as demonstrated. Conversely, the efficiency of
inner product can be further optimized through coefficient
encoding methods [2, 4]. Based on the convolution property of
polynomial multiplication, the result of two l-element vectors is
encoded in the l-th coefficient of the product polynomial, which
can be easily extracted. Note that the plaintext order must be
preserved in one of the vectors through the SAMPLEEXTRACT
and REPACK algorithm to ensure correctness.

C. Motivation for Mini-Repack Algorithm
As demonstrated in Figure 4, operators including SAMPLE-

EXTRACT (transform an RLWE ciphertext to a set of LWE
ciphertexts) and REPACK (convert a set of LWE ciphertexts
back to an RLWE ciphertext) are essential to be inserted into
the program when performing scheme-switching conversions
between the LWE and RLWE ciphertexts. Although the
SAMPLEEXTRACT operator is relatively lightweight, REPACK
can be much heavier in terms of computational costs, depending
on the exact parameters and implementation. More specifically,
most (if not all) existing REPACK algorithms become fast
only when the number of items to be packed is large [93].
However, what we observe is that many practical application
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Appendix Table A2
TYPES OF VALUES DEFINED IN HEIR

Dialect Type Attributes Description

FHE

Float — A floating point value to interface with high-level Arith IR.
MemRef Size/ElementType Type for multi-dimensional vector to interface with high-level MemRef IR.
PlainInt Level An encoded plaintext for scalar value.
PlainPoly Level An encoded plaintext vector.
FHEFloat — An encrypted floating point value.
FHEVector Size An encrypted one-dimensional vector.
FHEMatrix Shape An encrypted two-dimensional matrix.

LWE
LWECipher Level A LWE ciphertext which encrypts a single plaintext.
LWECipherVec Size A one-dimensional vector, each element is composed of LWECipher .
LWECipherMat Shape A two-dimensional matrix, each element is composed of LWECipher .

RLWE
RLWECipher Level/Size/Encoding A RLWE ciphertext which encrypts a plaintext vector.
RLWECipherVec Size A two-dimensional matrix, each row comprises RLWECipher .

Appendix Table A3
OPERATORS DEFINED IN HEIR

Dialect Operator Signature

fhe

Encode PlainInt→ FHEFloat
Add FHEFloat→ FHEFloat
Sub FHEFloat→ FHEFloat
Mul FHEFloat→ FHEFloat

FunCall (FHEFloat, ...,FHEFloat)→ FHEFloat
Load FHEVector ,index→ FHEFloat
Store FHEFloat,FHEVector ,index→ FHEVector

lwe

LWEEncode Float→ PlainInt
LWEAdd LWECipher,LWECipher→ LWECipher

LWEAddPlain LWECipher,PlainInt→ LWECipher
LWESub LWECipher,LWECipher→ LWECipher

LWESubPlain LWECipher,PlainInt→ LWECipher
LUT LWECipher→ LWECipher
Load LWECipherMat,index→ LWECipher
Store LWECipher,LWECipherVec,index→ LWECipherVec

Repack LWECipherVec→ RLWECipher

rlwe

RLWEEncode Float→ PlainPoly
RLWEAdd RLWECipher,RLWECipher→ RLWECipher

RLWEAddPlain RLWECipher,RLWECipher← RLWECipher
RLWESub RLWECipher,RLWECipher→ RLWECipher

RLWESUbPlain RLWECipher,RLWECipher← RLWECipher
RLWEMul RLWECipher,RLWECipher,→ RLWECipher

RLWEMulPlain RLWECipher,PlainPoly→ RLWECipher
S2C RLWECipher→ RLWECipher
C2S RLWECipher→ RLWECipher

Reverse RLWECipher→ RLWECipher
Load RLWECipherVec,index→ RLWECipher
Store RLWECipher,RLWECipherVec,index→ RLWECipherVec

Extract RLWECipher→ LWECipherVec

programs are not massively parallel, and cannot fully leverage
the SIMD properties of the underlying RLWE ciphertext (tens
of thousands). Therefore, in the process of designing HEIR, we
see a need of small-number REPACK algorithm, i.e., an LWE
to RLWE switching algorithm that is efficient when packing a
small number of ciphertexts.

D. The Algorithm of Encoding Pass

The algorithm is fairly easy: as shown on Line 1–4 in
Algorithm 4, we focus on matching patterns of accumulations
and inner products in the target programs. We point out that,
when the RLWE ciphertext is in the slot encoding, both
accumulations and inner products need to be implemented

through the standard rotate-and-add algorithm [94, 104]. Hence,
once we detect the pattern of rotate-and-add (e.g., on Line
5 and 12 in Algorithm 4), we can replace the entire code
block by a simple multiplication between RLWE ciphertexts
in the coefficient encoding, and schedule encoding-switching
conversion operators if needed. Here, recall that accumulating
the encrypted elements in the given RLWE ciphertext is
equivalent to taking the inner product between the given RLWE
ciphertext all-1 vector.

E. The Multi-Modulus Bootstrapping Algorithm
Here, we describe out multi-modulus bootstrapping algo-

rithm. In multi-modulus bootstrapping, the input LWE cipher-
text with large noise in a smaller modulus q is transformed to a
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Appendix Figure A2. Complete experiment results for arithmetic-circuit benchmarks with different vector/matrix/image size.

Algorithm 4: Encoding Pass
Input : DAG of the program (V, E) ∈ G
Output : transformed DAG of the program (V, E) ∈ G

1 for u ∈ V ∧ u.type = RLWECipher do
2 ACCUMULATIONPATTERN(u)
3 INNERPRODUCTPATTERN(u)

Procedure : ACCUMULATIONPATTERN(u)
4 if EXISTROTADDSUQUENCE(u) then
5 Set Encoding Method of u to coefficient
6 pt← CoeffEncode([1, 1, 1, ..., 1])
7 Insert res← RLWEMulPlain(u, pt)
8 Delete Rotate-Add sequence

Procedure : INNERPRODUCTPATTERN(u)
9 op← u.DefiningOp

10 if op == RLWEMul then
11 if EXISTROTADDSUQUENCE(u) then
12 ct1, ct2← op.Operands
13 Set Encoding Method of ct1, ct2 to coefficient
14 res← Extract(n.V ecsize)
15 Delete Rotate-Add sequence

ciphertext with smaller noise in larger modulus Q =
∏k−1

i=0 qi.
The concrete algorithm is demonstrated in Algorithm 5. On
Line 2-3, as the original FHEW/TFHE bootstrapping, we
generate a look-up table polynomial f̃ based on a given function
T (x). Specifically on Line 4-5, the test vector tv is initialized
modulus Q =

∏k−1
i=0 qi based on a given level k rather than

the original q. Subsequently, on Line 6-8, blind rotation is
performed on this multi-modulus accumulator and eventually
output a high level ciphertext.

F. Conversion methods in E3

Conversion between modular and bit-level arithmetic.
An alternative method to support both arithmetic and logic

Algorithm 5: Multi-Modulus Bootstrapping
Input : A LWE Ciphertext (b,a) = LWEn,q

s (∆m), where
|b∆me| < q/4 and s ∈ {0, 1}n.

Input : A look-up table function T (x) = R→ R.
Input : Pre-determined output ciphertext level k.
Output : A LWE Cipher ct = LWEn,Q

s {T (b∆me)}.
1 Key Generation Stage: Generate bootstrapping keys BKi, for

i ∈ Zn, where BKi = RGSWn,Q
s̃ (s[i]), where Q =

∏k−1
i=0 qi.

. FHE Computation Stage
2 Define ηj = jq

2n∆
and a look-up table polynomial f̃ ∈ Rn,q where

fj =

 b∆T (0)e j = 0
b∆T (ηj)e 1 ≤ j ≤ n

2
b∆− T (ηj−n)e n

2
< j < n


3 Define b← b 2n

q
be and a← b 2n

q
ae.

4 Initialize tv ∈ Rn,Q and RNS representation of tv is
(tv(0), tv(1), ..., tvk−1), where tv(i) =

∑n−1
j=0 f̂jX

j and
f̂j = fj mod qi.

5 Initialize ACC ← (tv ·Xb mod n, 0) ∈ RLWEN,Q

S̃
(.).

6 for i = 0 to n− 1 do
7 ACC ← ACC + (X−a[i] − 1) · (ACC �BKi)

Return : SAMPLEEXTRACT(ACC, 0)

operations on FHE is through modular and bit-level conversion.
To evaluate non-polynomial functions using arithmetic FHE,
E3 [54] introduced a bridging algorithm based on Fermat’s little
theorem. Roughly speaking, the method extracts individual bits
from an encrypted plaintext in Zp for p > 2. This enables the
conversion of non-polynomial operations into Boolean circuits,
allowing them to be operated on bit-value ciphertexts. However,
due to its high computational cost, this bridging algorithm can
be impractical in real-world applications. For instance, when
using a plaintext modulus p = 24+1, E3 takes about 20 minutes
to convert the plaintext encrypted in Zp to the equivalent bit-
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level ciphertexts. In contrast, using the arithmetic-to-logic FHE
conversion paradigm adopted by HEIR, the overall conversion
latency from arithmetic FHE ciphertexts to logic FHE is under
1 ms (essentially a single application of SAMPLEEXTRACT).

20


	Introduction
	Our Contributions
	Related Works
	General MPC Compilers
	FHE Compilers


	Preliminaries and Background
	Notation
	Logic FHE
	Arithmetic FHE
	[id=BLUE]Ciphertext Conversions [id=BLUE]in FHE

	The HEIR Compiler Framework
	Problem Formulation and Challenges
	HEIR Compiler Overview
	Threat Model
	HEIR Framework Details
	Design of HEIR Dialect
	Types in HEIR
	Operators in HEIR
	Front-End and Program Preprocessing
	Transformations and Optimizations in HEIR
	Back-End and Code Generation in HEIR.


	Automated Program Transformation
	Program Conversion from Plaintext to Ciphertext
	Program Segmentation
	Operator-based Conversion
	Mini-Repack[id=RED]ing Algorithm

	Encoding Optimization

	Ciphertext Level Management
	Evaluation
	Evaluation Setup
	Microbenchmarks
	Arithmetic Circuit Evaluation
	Logic Circuit Evaluation

	Evaluation on End-to-End Applications
	Data Analysis in Homomorphic Database
	[id=RED]E2E[id=BLUE]End-to-end Homomorphic K-Means Evaluation


	Conclusion
	Appendix
	Type and Operator Definition in HEIR framework
	Illustration of the Rotate-and-Add Pattern
	[id=BLUE]Motivation for Mini-Repack Algorithm
	[id=BLUE]The Algorithm of Encoding Pass
	The Multi-Modulus Bootstrapping Algorithm
	[id=BLUE]Conversion methods in E3


