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Abstract. Sponge paradigm, used in the design of SHA-3, is an alternative hash-
ing technique to the popular Merkle-Damg̊ard paradigm. We revisit the problem of
finding B-block-long collisions in sponge hash functions in the auxiliary-input ran-
dom permutation model, in which an attacker gets a piece of S-bit advice about the
random permutation and makes T (forward or inverse) oracle queries to the random
permutation.
Recently, significant progress has been made in the Merkle-Damg̊ard setting and
optimal bounds are known for a large range of parameters, including all constant
values of B. However, the sponge setting is widely open: there exist significant gaps
between known attacks and security bounds even for B = 1.
Freitag, Ghoshal and Komargodski (CRYPTO 2022) showed a novel attack for B = 1
that takes advantage of the inverse queries and achieves advantage Ω̃(min(S2T 2/22c,
(S2T/22c)2/3) + T 2/2r), where r is bit-rate and c is the capacity of the random
permutation. However, they only showed an Õ(ST/2c+T 2/2r) security bound, leaving
open an intriguing quadratic gap. For B = 2, they beat the general security bound by
Coretti, Dodis, Guo (CRYPTO 2018) for arbitrary values of B. However, their highly
non-trivial argument is quite laborious, and no better (than the general) bounds are
known for B ≥ 3.
In this work, we study the possibility of proving better security bounds in the sponge
setting. To this end,
– For B = 1, we prove an improved Õ(S2T 2/22c+S/2c+T/2c+T 2/2r) bound. Our

bound strictly improves the bound by Freitag et al., and is optimal for ST 2 ≤ 2c.
– For B = 2, we give a considerably simpler and more modular proof, recovering

the bound obtained by Freitag et al.
– We obtain our bounds by adapting the recent multi-instance technique of Ak-

shima, Guo and Liu (CRYPTO 2022) which bypasses the limitations of prior
techniques in the Merkle-Damg̊ard setting. To complement our results, we prov-
ably show that the recent multi-instance technique cannot further improve our
bounds for B = 1, 2, and the general bound by Correti et al., for B ≥ 3.

Overall, our results yield state-of-the-art security bounds for finding short collisions
and fully characterize the power of the multi-instance technique in the sponge setting.
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1 Introduction

Sponge paradigm [BDPA07, BDPA08] is a novel domain extension technique for handling
arbitrary long inputs based on a permutation F : [R] × [C] → [R] × [C] (where C := 2c,
R := 2r for bit-rate r and capacity c) with fixed input length. Specifically, a B-block message
m = (m1, · · · ,mB) with mi ∈ [R] is hashed into SPF (a,m) as follows: initialize (x0, y0) =
(0, a), and compute

(xi, yi) = F (xi−1 ⊕mi, yi−1) for 1 ≤ i ≤ B; finally output xB

where a ∈ [C] is the initialization salt5. We say m ̸= m′ is a pair of B-block collision with
respect to a salt a if they both have at most B blocks and SPF (a,m) = SPF (a,m

′).
Sponge paradigm is an important alternative hashing technique to the popular Merkle-

Damg̊ard (MD) paradigm [Mer89, Dam89]. Notably, it has been used in the most recent
hashing standard SHA-3. In this work, we are interested in the collision resistance property
of sponge hash functions against preprocessing attackers, which can have an arbitrary (but
bounded) precomputed advice about F to help.

Recently, several works have rigorously studied the algorithms for collision finding us-
ing preprocessing for Merkle-Damg̊ard hash functions [DGK17, CDGS18, ACDW20, GK22,
AGL22, FGK23], and significant progress has been made towards fully determining the op-
timal security bounds for all values of B [GK22, AGL22]. However, unlike the MD setting,
the sponge setting draws much less attention [CDG18, FGK22], and our understanding is
quite unsatisfactory. Significant gaps exist between known attacks and security bounds even
for B = 1.

All of them [CDG18, FGK22] studied this question in the auxiliary-input random per-
mutation model (AI-RPM) proposed by Coretti, Dodis and Guo [CDG18]. In this model,
F is treated as a random permutation, and an adversary A consists of a pair of algorithms
(A1,A2). In the offline stage, (computationally unbounded) A1 precomputes S bits of advice
about F . In the online stage, A2 takes this advice, and receive a random challenge salt a as
the initialization salt of F . Next, it makes T oracle queries to F or F−1 during the attack,
and finally output two messages that form the collision. We remark that inverse queries are
not allowed in the MD setting, since the hash functions used by MD are usually one-way
functions, while in sponge F is a invertible permutation.

Freitag, Ghoshal and Komargodski [FGK22] showed a novel attack for B = 1 that
takes advantage of the inverse queries and applies the function inversion algorithms by
Hellman [Hel80]. This attack achieves advantage Ω(min(S2T 2/C2, (S2T/C2)2/3) + T 2/R).

5 In some practical sponge applications like SHA-3, this salt is usually set to 0. However, when we
study the collision resistance of sponge hash functions in the auxiliary input model, such a fixed
salt will make finding collisions trivial. [CDG18] identified this need for salting the hash functions
for collision resistance in the auxiliary input model and so we are interested in the security bounds
against a random initialization salt (just like what prior works [CDG18, ACDW20, AGL22,
FGK22] did). See more details on the definition of the auxiliary input model below in section 2.4.
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This is particularly interesting because it suggests that for some range of parameters (e.g.,
ST 2 ≥ C), 1-block sponge hashing is less secure than 1-block MD hashing (for which the
trivial attack by storing S collisions is known to be optimal [DGK17]). For B ≥ 2, Freitag
et al., based on an analogous attack for MD hashing given by Akshima, Cash, Drucker
and Wee [ACDW20], showed an attack with advantage Ω̃(STB/C + T 2/min(C,R)) (the
notations Ω̃, Õ hides poly-log factors).

In terms of security upper bounds, Coretti, Dodis and Guo [CDG18] proved an Õ(ST 2/C+
T 2/R) bound for any B, showing the optimality of the attack for finding B ≈ T -length col-
lisions. For other choices of B, only sub-optimal bounds are known for B ≤ 2, and no better
bound than Õ(ST 2/C + T 2/R) is known for any B ≥ 3. Specifically, Freitag et al. showed
an Õ(ST/C + T 2/R) bound for B = 1 and Õ(ST/C + S2T 4/C2 + T 2/min(C,R)) bound
for B = 2. Therefore, there is still a quadratic gap between the attack and security upper
bound even for B = 1. On the contrast, optimal bounds are known for all constant values
of B in the MD setting [DGK17, ACDW20, GK22, AGL22].

That motivates us to study the following question in this paper:

What is the optimal bound for B = 1?
Is there a better attack or security upper bound?

From the technical level, we are particularly interested in the multi-instance technique
used to prove nearly optimal bounds for MD hashing [AGL22]. Specifically, it has recently
been observed that the sequential random multi-instance technique by [AGL22] (referred
to as multi-instance games technique in [AGL22]) subsumes the popular presampling tech-
nique [CDGS18, CDG18] and sequential distinct multi-instance technique [ACDW20] (re-
ferred to as multi-instance problem technique in [AGL22]). In the MD setting, it bypasses
provable limitations of presampling technique [CDG18] and gives more modular proofs than
sequential distinct multi-instance technique [ACDW20]. Moreover, the sequential random
multi-instance technique successfully gave optimal bounds for various primitives even in the
quantum setting [CGLQ20]. Therefore, we set out to understand the following question,

Can we prove better bounds or provide simpler proofs using multi-instance games?

In this work, we answer both questions.

1.1 Our results

Our first contribution is an improved bound for B = 1.

Theorem 1 (Informal). The advantage of the best adversary with S-bit advice and T
queries for finding 1-block collisions in sponge hash functions in the auxiliary-input random
permutation model, is

Õ

(
S2T 2

C2
+

S

C
+

T

C
+

T 2

R

)
.

Our bound strictly improves the Õ(ST/C + T 2/R) bound, and matches the best known
attacks for most ranges of parameters. Note that S/C, T/C, T 2/R terms match trivial or
standard attacks, and the S2T 2/C2 term matches the attack min(S2T 2/C2, (S2T/C2)2/3)
by [FGK22] as long as ST 2 ≤ C. Notably, our bound is optimal for ST 2 ≤ C.
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We believe that further bridging the gap between the attack by [FGK22] and our bound
is challenging. This is because their attack is obtained via connections with the function
inversion problem for which an analog gap exists. Bridging the gap for the function inversion
problem is a long standing open problem, and better security bounds would imply new
classical circuit lower bounds, as shown by Corrigan-Gibbs and Kogan [CK19].

Our second contribution is a considerably simpler proof for B = 2, recovering one of the
main results of [FGK22]. The original proof classified the collision structure into over 20
types, while we only need 8 types. This is possible because we do a careful analysis using
the MI-games technique from [AGL22].

Theorem 2 (Informal). The advantage of the best adversary with S-bit advice and T
queries for finding 2-block collisions in sponge hash functions in the auxiliary-input random
permutation model, is

Õ

(
ST

C
+

S2T 4

C2
+

T 2

min(C,R)

)
.

We note that the term ST/C+T 2/min(C,R) matches the best known attack by [FGK22].
Therefore the above bound is optimal when the S2T 4/C2 term doesn’t dominate the sum,
i.e., ST 3 ≤ C. However, this leaves an intriguing possibility of obtaining a better attack
than ST/C for ST 3 > C, which will further confirm that sponge hashing is less secure than
the MD hashing against preprocessing attackers (this message has been conveyed for B = 1
by [FGK22]).

We prove our results using the sequential distinct multi-instance technique (referred to
as multi-instance problem technique in [AGL22]), and the sequential random multi-instance
technique (referred to as the multi-instance game techniques in [AGL22]). It illustrates
the power of the multi-instance technique over prior techniques in the sponge setting. The
sequential distinct MI technique bypasses the limitation of the presampling technique (for
B = 1) and sequential random MI technique gives more modular proofs (for B = 2). A
comparison of our results with the prior works is summarized in Table 1.

The difference between sequential distinct MI technique and sequential random MI tech-
nique is in how the challenge games are defined. As the name suggests, in sequential distinct
MI technique the game picks a random set of distinct challenge problems, the adversary
is presented with one instance of the challenge problem at a time and has to solve all the
instances of the distinct challenge problems to win. Whereas in the sequential random MI
technique, the game picks a new randomly chosen instance of challenge problem each time,
and the adversary gets that challenge only after solving all the previous challenges. Pick-
ing a random instance of the challenge problem allows the sequence of challenges to be
independent of each other.

Roughly speaking, the sequential MI technique reduces proving ε security in the auxiliary
input model against (S, T )-algorithms to proving (ε/2)S security in the (S, T )-multi-instance
game. There are S stages in this game, and the adversary need to win all the S stages to
win the whole game. In the ith stage, the adversary will first receive a challenge salt ai, then
make T queries to F (or F−1 for sponge), and finally output a pair of messages mA,mB

such that SPF (ai,mA) = SPF (ai,mB). The adversary is allowed to use the queries from
previous stages, but is no longer allowed to store advice bits. (See Section 2.4 for relevant
definitions.)
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Given that the sequential MI technique is used successfully to prove optimal bounds
for various problems, such as finding 2-block collision in MD hash functions [AGL22], we
wonder why we cannot prove better bounds for B = 2 in the sponge setting: is it an issue
of our proofs or the technique. Therefore, we set out to understand the limitation of this
technique.

Our third contribution is the following theorem, which implies that it is impossible to
prove better bounds for any B using the sequential multi-instance technique in the sponge
setting.

Theorem 3 (Informal). Suppose S, T,R ≥ 16. There are adversaries for finding 1-block

collisions with advantage (Ω̃(S2T 2/C2))S, and adversaries for finding 2-block collisions

with advantage (Ω̃(S2T 4/C))S, and adversaries for finding 3-block collisions with advantage

(Ω̃(ST 2/C))S when T 2 < R, in the (S, T )-multi-instance games of sponge hash functions.

These lower bounds give limitations on the bound one can prove with multi-instance
techniques. In particular, it implies that (using the multi-instance technique) the S2T 2/C2

term obtained in Theorem 1 cannot be improved. It also explains why Theorem 2 (also
[FGK22]) cannot prove better than S2T 4/C2, and why no non-trivial bounds (i.e., better
than ST 2/C) can be proved for B ≥ 3. Together with our new security upper bounds
and the general known bound6 for the multi-instance games (summarized in Table 2), we
fully characterize the power of the multi-instance technique in the sponge setting. As the
bounds in Theorem 1, Theorem 2 and the general O(ST 2/C+T 2/R) bound are the best one
can prove using the multi-instance technique, other novel techniques are required to obtain
optimal bounds for collision resistance of sponge in the AI setting. In Section 1.3, we point
out potential techniques for future directions.

Best known attacks Previous Security bounds Our Security bounds

B = 1 min(S
2T2

C2 , (S
2T
C2 )2/3) + T2

R
ST
C

+ T2

R
[FGK22] S2T2

C2 + S
C
+ T

C
+ T2

R
[Thm 1]

+ S
C
+ T

C

B = 2 ST
C

+ T2

min(C,R)
ST
C

+ S2T4

C2 + T2

min(C,R)
[FGK22] ST

C
+ S2T4

C2 + T2

min(C,R)
[Thm 2]

3 ≤ B ≤ T STB
C

+ T2

min(R,C)
ST2

C
+ T2

R
[CDG18] -

Table 1: Asymptotic security bounds on the security of finding B-block-long collisions in sponge
hash functions constructed from a random permutation F : [R] × [C] 7→ [R] × [C] against (S, T )-
algorithms. For simplicity, logarithmic terms and constant factors are omitted and S, T ≥ 1.

6 [CDG18] proved an Õ(ST2

C
+ T2

R
) bound using presampling which implies an (Õ(ST2

C
+ T2

R
))S

multi-instance security.
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Our attacks Security bounds

B = 1
(
Ω̃

(
S2T2

C2

))S

[Thm 10]
(
Õ
(

S2T2

C2 + S
C
+ T

C
+ T2

R

))S

[Thm 8]

B = 2
(
Ω̃

(
S2T4

C2

))S

[Thm 11]
(
Õ
(

ST
C

+ S2T4

C2 + T
min(C,R)

))S

[Lemma 2]

3 ≤ B ≤ T
(
Ω̃

(
ST2

C

))S

[Thm 12]
(
Õ
(

ST2

C
+ T2

R

))S

Table 2: Asymptotic bounds on the security finding B-block-long collisions in sponge hash functions
constructed from a random permutation F : [R] × [C] 7→ [R] × [C] in the (S, T )-multi-instance
games. We note that naive attacks can achieve (Ω̃(S/C))S , (Ω̃(T/C))S and (Ω̃(T 2/R))S advantage
in (S, T )-MI games model.

1.2 Technical Overview

In this section, we present an overview of our proofs using reduction to the the multi-instance
game model to analyze security bounds of B-block collision finding for B = 1 and B = 2,
followed by our attacks for B = 1, B = 2 and B ≥ 3 in the multi-instance game model.

The high level idea is: the multi-instance approach [AGL22, CGLQ20, IK10, ACDW20,
GK22, FGK22] reduces proving the security of a problem with S-bit advice to proving the
security of S random instances of the problem. If the instances are given at once, then
we call it “parallel” multiple instance problem, and if the instances are presented one at
a time, we call it“sequential” multi-instance game. [AGL22] showed that if any adversary
(with no advice) can solve S random instances of the problem “sequentially” with success
probability at most δS , then any adversary with S-bit advice can solve one instance of the
problem with success probability at most 2δ. We note that security bounds for “parallel”
multiple instance problem implies security bounds for corresponding “sequential” multiple
instance games. Henceforth, we always mean sequential multi-instance games when we refer
to multi-instance games in this paper.

Our proof for B = 1. We use the compression technique from [DTT10] to analyze our multi-
instance games. The compression technique (refer to Theorem 5 for the precise statement)
states that for a pair of encoding and decoding algorithms that can compress a random
function by at least log 1/ε bits, succeeds with probability at most ε. Here, we will design
a pair of encoding and decoding algorithm, such that whenever an adversary A wins the
multi-instance game, the encoder can use this adversary A to compress F . The challenge
is to show that the encoder can compress ‘enough’ bits using this A to obtain the desired
(upper) bound on the success probability of the adversary A.

To get an idea, we first look at the simplest case. Say there is only 1 stage in the game
(i.e., S = 1), and the adversary makes two forward queries that collide for the challenge salt
a. In other words the adversary queries F (m1, a) and F (m2, a) such that their outputs are
in (m, ∗). This means the first part of the outputs for both the queries is the same (which is
m in this case). Here we can use 2 pointers, each log T bits long, to store the positions of the
two colliding forward queries among the adversary’s forward queries, and remove m from
F ’s mapping table corresponding to the second query (Since we know it equals to the first
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part of output of the first query). This saves logR bits. Therefore, we can get an O(T 2/R)
upper bound as per theorem 5.

However, for S > 1, pointing to the forward colliding queries trivially requires log(ST )-
sized pointers (as the adversary makes a total of ST queries). This gives the bound ε ≤
S2T 2/C which is not good enough. We can do better by storing the colliding queries for
all the challenge salts together in an unordered set. The same idea works when the first
occurring of the colliding queries is an inverse query and second one is a forward query.
Refer to section 3.1.2 for more details about compressing in these cases.

Another possibility is that the adversary always outputs two inverse queries, say F−1(mi, ai1) =
(mi1 , ai) and F−1(mi, ai2) = (mi2 , ai), as the collision. Then we can compress using that
the second part of the output for all these queries will be in a1, . . . , aS .

The trickiest case is when the adversary first makes a forward query, say F (mi1 , ai) =
(mi, ai1), then an inverse query, say F−1(mi, ai2) = (mi2 , ai) as the collision. The trivial
thing to do is to compress only the inverse query as above. However, it will only achieve an
O(ST/C)S bound, which is not enough for our results. We use the idea that the output salt
of the inverse query is not just in a1, . . . , aS but in fact it is one of the salts that is input to a
forward query with output of the form (mi, ∗). The issue is the number of salts in a1, . . . , aS
meeting this requirement could still be ‘large’. When that happens we have to compress the
output of the forward queries as well to get enough compression. Refer to section 3.1.2 for
more details about this case and how to deal with an adversary that finds different types of
collisions for different challenge salts.

Our proof for B = 2. For B = 2, we will use the proof strategy of Akshima et al. [AGL22] for
dealing with B = 2 in the MD setting. The main difference is that we have to additionally
deal with inverse queries in our analysis. We provide a high level overview of their proof,
and describe where our proof differs due to inverse queries.

Recall that, to prove the sequential multi-instance security, it is sufficient to bound the
advantage of any adversary that finds a 2-block collision for a fresh salt a, conditioned on it
finds 2-block collisions for all the previous random challenge salts a1, · · · , aS .

Following the terminology of Akshima et al. [AGL22], we call these ST queries made
during the first S rounds as offline queries, and among the T queries made for a, we call the
queries that were not made during the first S rounds as online queries. Moreover, we focus
on the case that the new salt a has never been queried among the offline queries (because
the other case happens with probability at most ST/N). As a result, all queries starting
with the challenge salt a have to be online queries.

Akshima et al. [AGL22] studied how can the previous ST queries be helpful for this round
of game? The main observation of Akshima et al. [AGL22] is that although the adversary
learns about the function from the offline queries, and in the worst case, the offline queries
could be very helpful. However, the helpful worst offline queries are not typical and can
be tolerated by refining the technique. To do this, they define a bunch of helpful “high
knowledge gaining” events among previous ST queries including, 1) there are more than
S distinct salts with 1-block collision, 2) there are more than S2 pairs of queries forming
collisions, 3) there are more than S distinct salts with self-loops. They show that these
events happen with sufficiently small probability, and conditioned on none of them happens,
no online algorithms can find 2-block collisions with advantage better than the desired
bound.
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Now the question is what changes when inverse queries are allowed? The high knowledge
gaining events are essentially the same, however some of these events can easily happen when
inverse queries are allowed. In particular, for event 2), it was hard to form collisions (under
the first part of output) among ST forward queries F (x1, y1), . . . , F (xST , yST ). However, if
we make ST inverse queries with form F−1(0, y1), . . . , F

−1(0, yST ), then we have Ω((ST )2)
pairs of input pairs such that their evaluations in the forward direction form collision (under
the first part of output). Given such a set of offline queries, one can find 2-block collisions
for a new salt with probability at least Ω(S2T 4/C2). Fortunately, this is the worst we can
get, and we can prove the advantage is at most O(S2T 4/C2) with adjusted high knowledge
gaining events.

Our attacks for B = 1, 2, 3 in the MI model. We present three simple attacks for finding
collisions in the multi-instance model and show their analysis. The main high level idea for
all of these attacks is to accumulate relevant high knowledge events in each round to help
with the next round.

We briefly illustrate the core idea of our attacks, starting with the attack for B = 1. In the
ith round, the adversary makes T queries F−1(0, iT +j) for j = 0, . . . , T −1. The intuition is
that via these inverse queries, the expected number of salts for which a collision is found (i.e.
For a salt a, there exist two inverse queries F−1(0, x) = (m1, a) and F−1(0, y) = (m2, a))
is Ω((iT )2/C2) in previous i-rounds. Therefore, once the random challenge salt in the ith
round is one of these ‘solved’ salt, then we are already done. Overall, the probability of
finding collisions in each of the S rounds in this manner is at least (Ω(S2T 2/C2))S . We note
that this is just the intuition, and we have to carefully deal with the correlations between
winning in previous rounds and the expected events happening in previous rounds.

For B = 2, the most helpful event is to accumulate a lot of pairs of queries whose first
part of output forms a collision. The best way of doing so is to spend an half of the queries
in each round to make inverse queries of queries of form F−1(0, ∗), and spend the other half
of the queries trying to hit two of these queries from the current challenge salt ai. With
high probability there will be Ω(i2T 2/C2) such pairs, and one can win the ith stage with
probability at least Ω(i2T 4/C2).

For B = 3, the most helpful event is to have at least Ω(iT ) salts such that there are
2-block collisions starting from these salts. Specifically, we first try to find 1-block collision
collisions starting from a salt y, and then make queries of form F−1(∗, y) to generate these
Ω(iT ) salts. Then, with Ω(iT 2/C) probability one can hit one of these salts from the chal-
lenge salt and form a 3-block collision. We refer to Figure 7 and Section 5 for the details
and analysis of these attacks.

1.3 Discussions and open problems

Is STB-conjecture true for sponge hashing? Akshima et al. [ACDW20] conjectured that
the best attack with time T and space S for finding collisions of length B ≥ 2 in salted
MD hash functions built using compression functions with n-bit output achieves advantage
Θ((STB + T 2)/2n). It is natural to consider a similar STB-conjecture for sponge hash
functions, conjecturing the Θ(STB/C + T 2/min(R,C)) attack by Freitag et al. [FGK22] is
optimal for B ≥ 2. However, this conjecture is only proved for very large B ≈ T [CDG18],
and sponge hash is provably less secure than MD hash [FGK22] for B = 1. It will be
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extremely interesting to either prove or refute the sponge STB-conjecture. To start with, is
the STB-conjecture true for B = 2 in sponge?

Better attacks for B = 2? The current security upper bound for B = 2 suggests that there
may exist an attack with advantage Ω(S2T 4/C2) in the auxiliary-input random permutation
model. And we show an attack in the multi-instance model with advantage (Ω(S2T 4/C2))S .
Can we utilize similar ideas to show a corresponding attack in the auxiliary-input random
permutation model?

Better bounds via stateless multi-instance games? Our results characterize the power of the
multi-instance technique in the sponge setting by presenting attacks in the model of Akshima
et al. [AGL22]. We observe that, a variant of the reduction of Akshima et al. [AGL22] allows
one to consider more restricted multiple-instance games, where the adversary is stateless and
doesn’t remember information from previous rounds. Because our attacks require knowing
queries from previous rounds, our attacks don’t apply to stateless multi-instance games. We
remark that analyzing stateless adversary for multi-instance games is non-trivial because,
although the challenges are independent, the same random permutation is reused in multiple
rounds. We hope that the study of stateless multi-instance games will shed light on how to
obtain optimal bounds for finding collisions in sponge and potentially close the gap for MD
other major open problem (such as function inversion) in this area.

Other related works. In a recent work [GGPS23], Golovnev et al. presented an algorithm for
function inversion which works for any S, T such that TS2 ·max{S, T} = Θ̃(C3) (where C
is the size of the range of function) and improves over the Fiat and Noar algorithm when
S < T . We mention that the time-space tradeoffs of many other cryptographic primitives,
such as one-way functions, pseudorandom random generators, discrete discrete logarithm
have been studied in various idealized models [DTT10, CHM20, CGK18, CGK19, GGKL21,
DGK17, CDG18, CDGS18]. Recently, Ghoshal and Tessaro studied the pre-image resistance
and collision-resistance security of preprocessing attacks with bounded offline and online
queries for Merkle-Damg̊ard construction in [GT23].
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2 Preliminaries

2.1 Notations

For any positive integer N , we write [N ] to denote the set {1, . . . , N}. For any non-negative

integers N, k,
(
[N ]
k

)
is used to denote the collection of all k-sized subsets of [N ]. For any finite

set X, x ←$ X indicates x is a uniform random variable in X. We write X+ to indicate a
tuple of one or more elements from X.

2.2 Random Permutation Model

Random Permutation model is an idealized model where a function is modelled as a random
permutation sampled uniformly from all possible permutations.

Lazy Sampling One useful property of modelling a function, say F , as a random permutation
is that sampling F uniformly at random is equivalent to initializing F with ⊥ for every input
and sampling the responses uniformly at random without replacement as and when the input
is queried.

2.3 Sponge Hash Functions

A cryptographic hash function is a function that takes input of arbitrary length and outputs a
fixed length string. They are widely used in security applications such as digital signatures,
message authentication codes and password hashing. In practice, several hash functions,
including SHA-3, are based on the popular Sponge Construction.

A sponge based hash function internally uses a permutation function of fixed length
domain. We will treat this permutation as a random permutation for the purpose of analyzing
it’s security.

We will parameterize our sponge function SP as a function in [R]+ × [C] → [R] such
that it uses a random permutation, denoted by F , on [R] × [C] where [R] corresponds to
the set of messages and [C] corresponds to the set of salts. Note that as F is a permutation,
its inverse, denoted F−1, is an efficiently computable function. Hence, any entity that can
query F can also query F−1.

Say F (m, a) = (m′, a′) for somem,m′ ∈ [R] and a, a′ ∈ [C], then will use F (m, a)[1], F (m, a)[2]
to denote the first and second element from the output tuple. In other words, F (m, a)[1] = m′

and F (m, a)[2] = a′.
A message m is called a B-block message if it can be written as m = m1|| . . . ||mB where

each mi ∈ [R]. Then for a B-block message m = m1||m2|| . . . ||mB and some a ∈ [C], we
define the function SPF (m, a) as follows:

1. Initialize (x0, y0) = (0, a).
2. For the ith block, compute (xi, yi) = F (xi−1 ⊕mi, yi−1).
3. Return xB .

Collisions For a given a ∈ [C], two distinct messages m,m′ ∈ [R]+ are said to form a
collision, if

SPF (m, a) = SPF (m
′, a)
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2.4 Definitions

We establish some definitions in this subsection which will be used throughtout the paper.

Definition 1. We refer to two queries (m1, a1) and (m2, a2) as same or not distinct if one
of the following holds true:

1. when both queries are made to F (or F−1), a1 = a2 and m1 = m2

2. (m1, a1) is made to F (or F−1), (m2, a2) is made to F−1 (or F ) and F (m1, a1) =
(m2, a2) (or F−1(m1, a1) = (m2, a2))

If two queries are not same, then they are referred to as distinct.

Next, we define an AI-adversary against collision resistance in Sponge functions.

Definition 2. A pair of algorithms A = (A1,A2) is an (S, T )-AI adversary for SPF if

– A1 has unbounded access to F (and F−1), and outputs S bits of advice, denoted σ
– A2 takes σ and a challenge salt a ∈ [C] as input, makes T queries to F or F−1, and

outputs m,m′.

Next, we define the security game for B-block collision-resistance against the (S, T )-AI
adversary.

Definition 3. For any fixed random permutation F : [R]× [C] → [R]× [C], a salt a ∈ [C]
and B which is a function of R,C, we define the game B-AICR in fig. 1.

Game B-AICRF,a(A)
σ ← AF

1

m,m′ ← AF/F−1

2 (σ, a)
If m or m′ consists of more than B blocks

Then Return 0
If m ̸= m′ and SPF (m,a) = SPF (m

′, a)
Then Return 1

Else Return 0

Fig. 1: Security game B-AICRF,a(A)

For any (S, T )-AI adversary A, its advantage is denoted by AdvAICRB-SP(A) and defined as
the probability that for a uniformly random permutation F and a random salt a ∈ [C],
the game B-AICRF,a(A) returns 1. For any functions S, T,B, we define (S, T,B)-auxiliary
input collision resistance of Sponge functions, denoted by AdvAICRB-SP(S,T), as the maximum
advantage taken over all (S, T )-AI adversaries.

It is known from several prior works that security in the AI model is closely related to
the security in the multi-instance model. In this work, we will analyze the security in the
MI model and use this relation to obtain security bounds in the AI model. To this end, we
formally define the multi-instance (MI) adversary and two versions of the security game for
collision resistance against the MI adversary next.
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Definition 4. A stateful algorithm A is an (S, T )-MI adversary against collision resistance
in SPF if for every i ∈ [S]:

– A takes a salt ai ∈ [C] as input
– A makes T queries to F or F−1

– A outputs mi,m
′
i.

We define the security games next.

Definition 5. For any fixed random permutation F : [R]× [C]→ [R]× [C], fixed B and S
that are functions of R,C, we define the game B-MICRS in fig. 2.

Game B-MICRS
F(A)

For i ∈ [S]:
Sample ai ← [C] at uniformly random without replacement

mi,m
′
i ← AF/F−1

(ai)
If mi or m

′
i consists of more than B blocks

Then Return 0
If mi = m′

i or SPF (mi, ai) ̸= SPF (m
′
i, ai)

Then Return 0
Return 1

Fig. 2: Security game B-MICRS
F(A)

For any (S, T )-MI adversary A, its advantage is denoted by AdvMICR
B-SP (A) and defined as

the probability that for a uniformly random permutation F , the game B-MICRS
F(A) returns 1.

For any functions S, T,B, we define (S, T,B)-multi-instance collision resistance of Sponge
functions, denoted by AdvMICR

B-SP (S,T), as the maximum advantage taken over all (S, T )-MI
adversaries.

Next, we define another game for the MI adversary and it is differs from the one above
only in the way it samples salts uniformly at random with replacement.

Definition 6. For any fixed random permutation F : [R]× [C]→ [R]× [C], fixed B and S
that are functions of R,C, we define the game B-rand-MICRS in fig. 3.

Advrand-MICR
B-SP (A) and Advrand-MICR

B-SP (S,T) are analogously defined for (S, T )-MI adversaries
as in def. 5.

2.5 Relevant Results

We will use the following theorems in our proofs:

Theorem 4 (Chernoff bounds). Suppose x1, . . . ,xt are independent random variables.
Let x =

∑t
i=1 xi and µ = E[x]. For any δ ≥ 0, it holds that

Pr[x ≥ (1 + δ)µ] ≤ exp

(
−δ2µ
2 + δ

)
.



Time-Space Bounds for Collisions in Sponge 13

Game B-rand-MICRS
F(A)

For i ∈ [S]:
Sample ai ←$ [C]

mi,m
′
i ← AF/F−1

(ai)
If mi or m

′
i consists of more than B blocks

Then Return 0
If mi = m′

i or SPF (mi, ai) ̸= SPF (m
′
i, ai)

Then Return 0
Return 1

Fig. 3: Security game B-rand-MICRS
F(A)

Theorem 5 ([DTT10]). For any pair of encoding and decoding algorithms (Enc,Dec),
where Enc : {0, 1}x → {0, 1}y and Dec : {0, 1}y → {0, 1}x, such that Dec(Enc(z)) = z with
probability at least ϵ where z ← {0, 1}x, then y ≥ x− log 1

ϵ .

This is the compression theorem we mentioned earlier, and we will use it frequently in
our proofs.

Theorem 6. For any S, T,B and δ ∈ [0, 1], if Advrand-MICR
B-SP (S,T) ≤ δS, then AdvAICRB-SP ≤ 2δ.

Such a theorem relating AI-security to MI-security has been used in several prior works.
Refer to theorem 3 in [AGL22] for more details and proof.

Theorem 7. For any S, T,B,C, if AdvMICR
B-SP (u,T) ≤ δu for all u ∈ [S], then Advrand-MICR

B-SP (S,T) ≤
(δ + S

C )
S.

Proof. Fix an arbitrary (S, T )-MI adversary A. Let Xi be an indicator that A wins on the
ith instance, i.e., finds B-block collision on ai (i

th challenge salt). Then

Advrand-MICR
B-SP (A) = Pr[X1 ∧ · · · ∧XS ] =

S∏
i=1

Pr[Xi|X<i]

≤
S∏

i=1

(Pr[ai = aj for some j < i] + Pr[Xi|X<i ∧ ai ̸= aj for all j < i])

=

S∏
i=1

(
i− 1

C
+ δ

)
≤
(
S

C
+ δ

)S

where the third equality follows from the fact that AdvMICR
B-SP (u,T) ≤ δu for every u ∈ [S].

This theorem relates the advantage of an MI-adversary that receives random challenge
salts (which can possibly repeat) to an MI-adversary that always receives distinct challenge
salts.
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3 Improved Bound for B = 1 (Optimal when ST 2 ≤ C)

Theorem 8. For any S, T,R,C such that S ≥ 212,max{ST
C , T 2

R } <
1

8e9 , then

AdvAICR1-SP(S,T) = Õ

(
T2

R
+

S

C
+

T

C
+

(
ST

C

)2
)

To prove this theorem, we first reduce AI-security to MI-security via Theorem 6 and
Theorem 7. Now we only need to look at the advantage bound for any MI-adversary A in
game B-MICRS

F(A). In this game, all the challenge salts a1, . . . , aS are different, and unlike
the AI model, here the adversary doesn’t have any advice (except the information from
previous stages).

In fact, we have the following lemma, which we will prove in the next section:

Lemma 1. For any S, T,R,C such that S ≥ 212,max{ST
C , T 2

R } <
1

8e9 , then

AdvMICR
1-SP =

(
Õ

(
T2

R
+

T

C
+

(
ST

C

)2
))S

Now we can prove the main theorem.

Proof of Theorem 8. The Theorem is immediate from Theorem 6, Theorem 7 and Lemma
1.

3.1 Proof of Lemma 1

We will prove the lemma via compression. In section 3.1.1 and 3.1.2, we will design a set
of encoding and decoding algorithms, such that given any MI-adversary A, if A wins on
‘too many’ S-sized subsets of [C], we can use fewer bits to describe the function F (i.e.
compress it). However, this contradicts with Theorem 5 and thus bounds the number of
S-sized subsets of [C] any adversary can succeed on. In section 3.1.3, we will first analyze
the number of bits our algorithm can save, and then finally prove Lemma 1 via compression
argument. To this end, we first identify the types of 1-block collisions.

3.1.1 Type of Collisions
Due to the existence of F−1, there are 3 possible types of collisions when B = 1. A pair of
collision (m1,m2) on salt a, such that F (m1, a) = (m, a1) and F (m2, a) = (m, a2), can be
classified into cases according to the type and relative position of the corresponding “fresh”
queries as made by the adversary.

Here a query F (m1, a) = (m, a1) is “fresh” means that neither F (m1, a) nor F
−1(m, a1)

has been queried previously. A query to F is referred to as a forward query and a query to
F−1 is referred to as an inverse query.

WLOG we assume F (m1, a) or F
−1(m, a1) is queried for the first time before F (m2, a)

or F−1(m, a2) is queried for the first time. Then the 3 types of collisions are as follows:
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– Type 1: The second fresh query is of the form F (m2, a), i.e. the first fresh query from
the collision can be either a forward query or an inverse query but the second one is a
forward query.

– Type 2: The fresh queries are of the form F−1(m, a1) and F−1(m, a2), i.e. both fresh
queries are inverse queries (that queries F−1).

– Type 3: The fresh queries are of the form F (m1, a) and F−1(m, a2) (i.e. the first fresh
query is a forward query, and the second fresh query is an inverse query).

See figure 4 for details.

✮

✮

(a) Type 1

✮

(b) Type 2

✮

(c) Type 3

Fig. 4: All 3 types of collisions. Line directed→ represents query to F and line directed← represents
query to F−1. ● represents that (output/input of) the two queries share the salt. ✮ represents that
(output/input of) the two queries share the message. The dotted line means this query occurs first,
and the solid line means this query occurs later than the dotted line query.

3.1.2 Encoding and Decoding Algorithms
Now we state our encoding and decoding algorithms for the random permutation function
F : [R]× [C]→ [R]× [C]. Let A be an (S, T )-MI adversary that wins the game, i.e. succeeds
on S different challenge salts a1, . . . , aS . Generally, in the encoding algorithm, we will store
a partial mapping table of F that contains answers to all the queries made by A in order,
except the entries (corresponding to the mappings) we delete from the table, followed by the
remaining of the function table (not queried by A) in the lexicographic order. Note that we
will store some extra bits apart from the function table that will help recover the deleted
entries from the table. In the decoding algorithm, we will restore the removed entries using
these extra bits, and thus restore the entire function table.

The encoding algorithm is as follows:

1. Simulate A on F and a1, . . . , aS , and maintain a table that contains the response to each
query made by A in order (e.g. If the first query made by the adversary is F (m′, a′) =
(m, a), then the first entry will be (m, a)).

2. As A succeeds on a1, . . . , aS , it is guaranteed to output S pairs of messages that form
collision with each of a1, . . . , aS under SPF in the simulation. According to the collision
types in section 3.1.1, divide the salts into 3 sets S1,S2,S3, respectively. Denote Si = |Si|
for i = 1, 2, 3, i.e. Si is the size for set Si.

3. For salts in set S1:
(a) Use logS bits to store S1 (i.e. the number of salts in S1).
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(b) Use 2 log
(
ST
S1

)
bits to store in an unordered fashion the set containing indices of

fresh queries that form collisions for each salt in S1. (Since for each salt there are
exactly 2 queries that form the collision, and there are ST possible locations for each
such query, we need 2 log

(
ST
S1

)
to store this set.)

(c) For each pair of collision F (mi1 , ai) = (mi, a
′) (or F−1(mi, a

′) = (mi1 , ai)) and
F (mi2 , ai) = (mi, a

′′) in the order of occurrence, remove mi in the output of the
second query (i.e. the first part of output), but keep the second part. Namely, we
remove the the response to F (mi2 , ai) in the function table, but use extra logC bits
to store the second part, i.e. a′′. So after this step, we remove S1 entries from the
function table, and stored the size of S1 in logS bits, the set in 2 log

(
ST
S1

)
bits and

second part of the S1 entries in S1 logC bits.
4. For salts in set S2:

(a) Use logS bits to store S2.
(b) Use 2 log

(
ST
S2

)
bits to store the set of indices of fresh queries that form collision for

each salt in S2.
(c) For each stored query F−1(m, a′) = (m′, ai), use logS bits to store the salt index i

(since ai is among a1, . . . , aS), and remove ai from the response of the query. (Still,
it means that we remove the corresponding entry in the function table, and use logR
extra bits to store m′.)

5. For salts in set S3, depending on the parameters S, T,R, there are two corresponding
strategies of compression:
(a) When ST > R:

i. Use logS bits to store S3.
ii. Use 2 log

(
ST
S3

)
bits to store the positions of fresh queries which form the collision

for each salt ai ∈ S3. (There will be S3 inverse queries and S3 forward queries.)
iii. For each stored inverse query F−1(mi, a

′) = (mi2 , ai), count the number of
stored forward query F (mj1 , aj) = (mj , a

′′) in previous step, such that j < i and
mj = mi. Denote this number by qmi

. Then we use extra log qmi
bits to indicate

which forward query is exactly the matching query for the current inverse query
(Since the matching query must be within these qmi stored queries). Finally,
remove the second part of output of these S3 inverse queries (i.e. remove ai).

iv. For m ∈ [R], let Q(m) be the set of stored forward queries F (mi1 , ai) = (mi, a
′)

in step 5(a)ii where mi = m. Denote Qm = |Q(m)|, i.e. the size of Q(m). Notice
all the values qm defined in step 5(a)iii also satisfy qm ≤ Qm (since qm only
counts the previous queries).
Now, if there exists m such that Qm > logSTR, we will use extra bits to save
information about these forward queries (since their first part of output are all
m):
A. Use logS bits to indicate the number of m such that Qm > logSTR.
B. For each such m:

– Use logR bits to store m.
– Use logS3 bits to store Qm. (Since all the elements in Q(m) are from

stored forward queries, the size is at most S3.)
– Use log

(
S3

Qm

)
bits to store the positions of queries in Q(m) (among stored

forward queries in step 5(a)ii), i.e. the queries with first part of output
being m.
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– Remove the first part of output of all these Qm queries (i.e. remove m in
the output).

For convenience, we denote Qtot =
∑

m∈[R]:Qm>logSTR Qm.

(b) When ST ≤ R:
i. Use logS bits to store S3.
ii. Use log

(
ST
S3

)
bits to store the positions of fresh inverse queries which find the

collision for each salt ai ∈ S3. (There will be S3 inverse queries.) Notice we no
longer store forward queries.

iii. For each stored inverse query F−1(mi, a
′) = (mi2 , ai), count the number of all

forward queries F (mj1 , aj) = (mj , a
′′) such that j < i and mj = mi. Denote this

number be qmi
. Then we use extra log qmi

bits to indicate which forward query
is exactly the matching query for the current inverse query. (Notice qmi can be
as large as ST .) Finally, remove the second part of output of these S3 inverse
queries (i.e. remove ai).

iv. For m ∈ [R], denote Q(m) be the set of all queries F (mi1 , ai) = (mi, a
′) (or

F−1(mi, a
′) = (mi1 , ai)) such thatmi = m, andQm be the size ofQ(m). Further,

denote Km be the number of stored inverse queries F−1(mi, a
′′) = (mi2 , ai) in

step 5(b)ii such that mi = m. Obviously Km ≤ Qm. Further, all the values qm
occurred in step 5(b)iii also satisfy qm ≤ Qm (since qm only counts the previous
queries).
Now, if there exists m such that Qm > logSTR and Km ≥ 1, we will use extra
bits to save information about these forward queries (since their first part of
output are all m):
A. Use logS bits to indicate the number of m such that Qm > logSTR.
B. For each such m:

– Use logR bits to store m.
– Use logST bits to store Qm. (Notice now Qm can be as large as ST .)
– Use log

(
ST
Qm

)
bits to store the indices of the queries whose first part of

response is m. (Notice since we don’t store the forward queries in step
5(b)ii, here we need log

(
ST
Qm

)
instead of log

(
S3

Qm

)
.)

– Remove the first part of the response to all these Qm queries (i.e. remove
m in the output).

For convenience, we denote Qtot =
∑

m∈[R]:Qm>logSTR,Km≥1 Qm, and

Ktot =
∑

m∈[R]:Qm>logSTR,Km≥1 Km. Since Km ≤ Qm for any m, we have
Ktot ≤ Qtot.

6. The final output of the encoding algorithm will be the extra bits generated in steps
3-5 (except step 5(a)iii and 5(b)iii), followed by the function table (with some entries
deleted) that contains responses of the queries, followed by the remaining function table
of F that remains unqueried by the adversary, followed by the extra bits in step 5(a)iii
and 5(b)iii in the order that the corresponding query is made by the adversary.

Next, we state our decoding algorithm which can fully recover the random permutation
function F (for a succeeding adversary).

1. Read out the first part of generated extra bits according to encoding step 3-5. For
example, for step 3, we first read S1, then according to S1 we know the value of 2 log

(
ST
S1

)
,
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so we can continue reading out the indices of the stored queries, etc. After this step we
will know the total number of removed queries in the table, and thus we know the
starting point of the second part of extra bits.

2. Now simulate the adversary A on the given salts a1, . . . , aS . During the process, A will
make several oracle queries to either F or F−1, and we know from the extra bits whether
we have removed the corresponding entry in the (partial) function table or not.

– If the query is not removed from the function table, we simply read the next entry
from the table and answer it directly.

– Otherwise, it must have been deleted in one of the encoding steps 3-5. Formally, we
must have stored information about this query in either step 3b, 4b, 5(a)ii, 5(a)ivB,
5(b)ii or 5(b)ivB.

• It is stored in encoding step 3b. Thus it must be a forward query with form
F (m0, a) = (?, a′) (we know a′ since we have stored it when encoding, but
we don’t know the first part). Then we look at the whole stored query set in
step 3b. Since all challenge salts are different, we can uniquely determine its
corresponding first occurring query F (m1, a) = (m, a′) or F−1(m, a′) = (m1, a)
according to a . Hence, we know F (m0, a) = (m, a′).

• It is stored in encoding step 4b. Thus it must be an inverse query of the form
F−1(m, a) = (m′, ?). From the stored index i we immediately know F−1(m, a) =
(m′, ai).

• It is stored in encoding step 5(a)ii or 5(b)ii. Thus it must be an inverse query
of the form F−1(m, a0) = (m′, ?). Further, we also know a log qm pointer to
its corresponding forward query F (m1, a) = (m, a1) or F−1(m, a1) = (m1, a).
(Since we already know all the previous queries, we can easily recover the set
Q(m) and know the value qm, and then we can read the next log qm bits from
the second part of extra bits, and determine the specific query.) Then we know
F−1(m, a0) = (m′, a).

• It is stored in encoding step 5(a)ivB or 5(b)ivB. Then it must be a forward query
of the form F (m′, a′) = (?, a′′). Since we have stored the corresponding m for
this query, we know F (m′, a′) = (m, a′′).

3. Continue reading out the function table of F that are not queried by the adversary.

Therefore, as long as the adversary A can successfully find all the S collisions, we can
correctly restore the the function F .

3.1.3 Number of Bits Saved
In this section, we will analyze the number of bits we can compress using our encoding
algorithm, and then prove Lemma 1.

In our algorithm, the compression comes from deleting several entries of the function
table of F and storing some extra (lesser number of) bits for learning those deleted entries.
The following claim shows the compression from removing these entries:

Claim 1. Suppose in the encoding algorithm we removed y entries from the function table,
and stored x extra bits for information. Then we can save at least y(logRC − 1)−x bits via
the compression.
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Proof. In order to count the saving, we first need to know how many bits are needed to store
these rows originally. Note that the adversary A only queries at most ST values of F , and
touches at most 2ST (message,salt) pairs (either in the input of the query, or from output
of the query), so there will be at least RC−2ST ≥ RC

2 untouched pairs. Therefore, for each

query, there are at least RC
2 different possible outputs (since the output can be any of the

untouched pairs), and we need at least logRC − 1 bits to store these entries. Since it’s true
for any query, we originally need at least y(logRC − 1) to store all these removed entries,
so we can save at least y(logRC − 1)− x bits.

Next, we analyze the savings according to the types of collisions:

– In step 3, we stored logS+2 log
(
ST
S1

)
+S1 logC extra bits. Besides, we deleted S1 entries

from the function table. Therefore, according to the above claim, we can save at least

L1 :=S1(logRC − 1)− logS − 2 log

(
ST

S1

)
− S1 logC

= S1(logR− 1)− logS − 2 log

(
ST

S1

)
bits.

– In step 4, we stored logS+2 log
(
ST
S2

)
+2S2 logS+2S2 logR bits, and deleted 2S2 entries

from the function table. Then we can save at least

L2 := 2S2(logC − 1)− logS − 2S2 logS − 2 log

(
ST

S2

)
bits.

– In step 5:
• When ST > R, we first stored logS + 2 log

(
ST
S3

)
+ logS bits, and for each query we

stored an log qmi
bit pointer. Further, for each large Qi, we stored logR + logS3 +

log
(
S3

Qi

)
bits. What we saved is the second part of output of S3 inverse queries, which

is at least S3(logC − 1) bits, and the first part of the response to the queries in Qi,
which is at least Qi(logR− 1) bits. Therefore, we can save at least

L3 :=S3(logC − 1) +
∑

i:Qi>logSTR

Qi(logR− 1)− 2 logS

− 2 log

(
ST

S3

)
−

∑
i:Qi>logSTR

(
logS3 + log

(
S3

Qi

)
+ logR

)
−
∑
i

Qi logQi

bits.
• When ST ≤ R, similarly we can save at least

L3 :=S3(logC − 1) +
∑

i:Qi>logSTR,Ki≥1

Qi(logR− 1)− 2 logS

− log

(
ST

S3

)
−

∑
i:Qi>logSTR,Ki≥1

(
logST + log

(
ST

Qi

)
+ logR

)
−
∑
i

Ki logQi

bits.
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Based on the above analysis, we have the following claims:

Claim 2. Suppose S ≥ 212,max{ST
C , T 2

R } <
1

8e9 . When ST > R:

2L1+L2+L3 =

(
Õ

(
T 2

R
+

(
ST

C

)2
))S

Claim 3. Suppose S ≥ 212,max{ST
C , T 2

R } <
1

8e9 . When ST ≤ R:

2L1+L2+L3 =

(
Õ

(
T 2

R
+

(
ST

C

)2

+
T

C

))S

The proof for these claims have been deferred to the appendix A.

Proof of Lemma 1. For any adversary A, denote ϵ = AdvMICR
1-SP (A). According to Theorem 5

, Claim 2 and Claim 3:

log ϵ ≤ L1 + L2 + L3

ϵ ≤ 2L1+L2+L3

≤

(
Õ

(
T 2

R
+

(
ST

C

)2

+
T

C

))S

Since it holds for any A, according to definition of AdvMICR
1-SP , this completes the proof.

4 A simpler proof for B = 2

In this section we analyze the lower bound for 2-block collisions in Sponge hash functions in
the AI model via reduction to MI model. Our bound in the MI model matches the attack
in the MI model (refer to section 5.2).

Theorem 9. For any S, T, C and R,

AdvAICR2-SP(S,T) = Õ

((
ST2

C

)2

+
ST

C
+

T2

C
+

T2

R

)
.

From theorems 6 and 7, we know it suffices to prove the following lemma in order to
prove theorem 9.

Lemma 2. For any S, T, C and R,

AdvMICR
2-SP (S,T) =

(
Õ

((
ST2

C

)2

+
ST

C
+

T2

C
+

T2

R

))S

.
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Proof of Lemma 2. We assume F is a random permutation from [R]× [C]→ [R]× [C] which
is lazily sampled. Fix an arbitrary (S, T )-MI adversary A.

Let Xi be the indicator that A wins on the ith instance, i.e., finds 2-block collision on
ai. Then we make the following claim:

Claim 4.

Pr[X1 ∧ · · · ∧XS ] ≤
S∏

i=1

(
Pr[Xi|X<i ∧ Ei] +

Pr[Ei]

Pr[X<i]

)
for any event Ei.

Proof of Claim 4.

Pr[X1 ∧ · · · ∧XS ] =

S∏
i=1

Pr[Xi|X<i] =

S∏
i=1

Pr[X≤i]

Pr[X<i]

=

S∏
i=1

(
Pr[X≤i ∧ Ei]

Pr[X<i]
+

Pr[X≤i ∧ Ei]

Pr[X<i]

)

=

S∏
i=1

(
Pr[Xi|X<i ∧ Ei] · Pr[X<i ∧ Ei]

Pr[X<i]
+

Pr[X≤i ∧ Ei]

Pr[X<i]

)

≤
S∏

i=1

(
Pr[Xi|X<i ∧ Ei] +

Pr[Ei]

Pr[X<i]

)

Say we want to bound Pr[X1 ∧ · · · ∧XS ] by δS , then it is sufficient to bound Pr[Xi|X<i]
by δ for an arbitrary i ∈ [S]. As in [AGL22], when analyzing Pr[Xi|X<i], we will refer to
the stage before receiving the ith challenge salt ai as the offline stage and the stage after
receiving ai as online stage.

Definition 7. Database is defined as the set of sampled distinct queries on F/F−1 and
their responses.
The set of distinct queries made in the offline stage (i.e., before receiving the challenge salt
as input) are referred to as offline queries. The set of distinct queries made in the online
stage (i.e., after receiving the challenge salt as input) that had not been made in the offline
phase are referred to as the online queries.

Following the claim 4, our high-level strategy would be to define the ‘good’ events and
then bound the two terms separately to obtain our results. It is worth noting that we can
assume Pr[X<i] ≥ δi. Otherwise Pr[X<i+1] ≤ δi holds trivially.

To this end we first define the ‘good’ events. For j ∈ [4], let’s define Ei
j to be the event

that there exists at least 10i logR of Type j structures (shown in fig. 5) from distinct a in
the offline queries of ith instance. Let’s define the event Ei := Ei

1 ∨ Ei
2 ∨ Ei

3 ∨ Ei
4.

Next, we analyze the probability of the events Ei
j for all j ∈ [4].

Claim 5. For any i ∈ [S] and T 2 ≤ R/2, Pr[Ei
1] ≤ R−10i.



22 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

a ✮

(a) Type 1

a ✮

(b) Type 2

a ✮

(c) Type 3

a ✮

(d) Type 4

Fig. 5: The top line represents the query that occurs first, and the bottom line represents the
query that occurs later. → represents a query to F and ← represents a query to F−1. ● represents
that (output/input of) the two queries share the salt. ✮ represents that (output/input of) the two
queries share the message.

Proof. For simplicity, we prove the claim via compression. Before we present the encoding
algorithm, recall that for event Ei

1 to happen, there should exist at least 10i logR pair of
offline queries where queries in each pair have the same output message and the same input
salt. Also no two pairs share the same input salt. So, if the encoder stores the indices of the
20i logR queries as an unordered pair, it is possible for the decoder to identify the pairs via
the shared input salt which is unique to the pair. Our encoding can compress the output
message of the second query in every pair.

We give a formal description of the encoding algorithm next.

– Store the 20i logR offline queries that form the 10i logR Type 1 structures as
an unordered set, say W . This would require log

(
iT

20i logR

)
bits.

– Delete the output message of the second occurring queries from each pair, each
at least (logR−1) bits long, in the unordered set W from the table of sampled
queries on F/F−1.

Then

Pr[Ei
1] = Pr[∃ ≥ 10i logR of Type 1 structures from distinct a]

≤ Pr[∃ exactly 10i logR of Type 1 structures from distinct a]

≤
(

iT
20i logR

)
(R/2)10i logR

≤
(

2e2i2T 2

400i2 log2 R ·R

)10i logR

≤ 2−10i logR

where the last inequality holds from the assumption that T 2 ≤ R/2.

Claim 6. For any i ∈ [S] and T 2 ≤ R/2, Pr[Ei
2] ≤ R−10i.

Proof for Claim 6 can be obtained in a similar fashion to that of Claim 5.

Claim 7. For any i ∈ [S] and ST 2 ≤ C/2, Pr[Ei
3] ≤ R−10i.
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Proof. Again we will prove the claim via compression. Before we present the encoding algo-
rithm, we note that each pair of queries forming a Type 3 structure share the input message
and the output salt. Even though the output salt is unique for every pair, the input message
could be same for two pairs. Thus, the decoder may no longer be able to identify the pairs
from an unordered set. Thus, our encoder stores the first occurring query from each pair
in an unordered set and the later query from each pair in an ordered set (ordered by the
corresponding query in the first set).

We give a formal description of the encoding algorithm next.

– Store the first occurring offline query from each of the 10i logR pairs that
form the Type 3 structure as an unordered set, say U . This would require
log
(

iT
10i logR

)
bits.

– Store the later occurring offline query from each of the 10i logR pairs that form
the Type 3 structure as an ordered set (ordered by the corresponding query
from the pair in U), say V . This would require at most 10i logR · log(iT ) bits.

– Delete the output salt, each at least (logC − 1) bits long, from each query in
the ordered set V from the table of sampled queries on F/F−1.

Then

Pr[Ei
3] ≤

(
iT

10i logR

)
(C/2)10i logR

· (iT )10i logR ≤
(

2ei2T 2

10i logR · C

)10i logR

≤ 2−10i logR

where the last inequality holds from the assumption that ST 2 ≤ C/2 which implies iT 2 ≤
C/2 as i ≤ S.

Claim 8. For any i ∈ [S] and ST 2 ≤ C/2, Pr[Ei
4] ≤ R−10i.

Proof for Claim 8 can be obtained in a similar fashion to that of Claim 7.

Claims 5-8 are sufficient to show that Pr[Ei]
Pr[X<i]

≤
∑4

j=1

Pr[Ei
j ]

Pr[X<i]
is small enough. Now we

need to bound the term Pr[Xi|X<i ∧Ei]. To this end, we will have to analyze all the types
of two block collisions that can be found in Sponge hash functions. First, we give some
definitions and then identify all the types of 2-block collisions in the next claim.

Claim 9. To find a 2-block collision on ai for any i ∈ [S], the queries in the database should
satisfy at least one of the following conditions:

1. There exists an offline query that takes (∗, ai) as input or outputs (∗, ai).
2. There exists an online query such that it’s output is (∗, ai).
3. There exist two online queries with corresponding outputs (m′, a′) and (m′′, a′′) such that

either m′ = m′′ or a′ = a′′.
4. There exist an online query, say it’s output is denoted by (m, a), and an offline query, say

it’s input is denoted by (m′, a′) and output is denoted by (m′′, a′′), such that a ∈ {a′, a′′}
and m ∈ {m′,m′′}.

5. There exist two offline queries and one online query where:
– input and output of the first (occurring) offline query is denoted by (m′, a′) and

(m′′, a′′) respectively
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– the second offline query is to F and it’s input and output is denoted by (ℓ′, b′) and
(ℓ′′, b′′) respectively

– the output of the online query is denoted by (m, a)
Then either a = b′ = a′ and ℓ′′ = m′′ or a = b′ = a′′ and ℓ′′ = m′. In other words, the
offline queries form either Type 1 or Type 2 structure and the output salt of the online
is the same as the input salt of the second offline query.

6. There exist two offline queries and one online query where:
– input and output of the first (occurring) offline query is denoted by (m′, a′) and

(m′′, a′′) respectively
– the second offline query is to F−1 and it’s input and output is denoted by (ℓ′, b′) and

(ℓ′′, b′′) respectively
– the output of the online query is denoted by (m, a)

Then either a = b′′ = a′ and ℓ′ = m′′ or a = b′′ = a′′ and ℓ′ = m′. In other words, the
offline queries form either Type 3 or Type 4 structure and the output salt of the online
is the same as the output salt of the second offline query.

7. There exist an offline query and two online queries where:
– input and output of the offline query us denoted by (m′, a′) and (m′′, a′′) respectively
– output of the two online queries is denoted by (m, a) and (ℓ, b)

Then a ∈ {a′, a′′} and either ℓ ∈ {m′,m′′} or b ∈ {a′, a′′}.
8. There exist two offline queries and two online queries where:

– input and output of one offline query is denoted by (∗, a′) and (∗, a′′) respectively
– input and output of the other offline query is denoted by (∗, b′) and (∗, b′′) respectively
– output of the two online queries is denoted by (∗, a) and (∗, b)

Then a ∈ {a′, a′′} and b ∈ {b′, b′′}.

ai

(a) 1 Query collision

ai

✮
ai

ai ✮

(b) 2 Query collisions

ai

✮
ai

✮

(c) 3 Query collisions

ai

✮

(d) 4 Query collision

Fig. 6: Line represents query to F/F−1. Each line could be directed → for query to F or ← for
query to F−1. ● represents that (output/input of) the two queries share the salt. ✮ represents that
(output/input of) the two queries share the message.
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Proof. First, we identify all the types of 2-block collisions for Sponge hash functions in fig.
6. Note that each line shown in the figure could be depicting an offline/online query and a
query to F/F−1. We next show that all the possible types of collisions satisfy at least one
of the cases in the claim.

First let’s consider when none of the colliding queries (i.e., queries involved in collision)
is an offline query. Then for the type of collision depicted in fig. 6a will satisfy case 2 in the
claim. And all the other types of collisions (depicted in fig. 6b,6c,6d) will satisfy case 3 in
the claim when all the colliding queries are online queries.

Next, let’s consider when exactly one of the colliding queries is an offline query. For
the collision types depicted in fig. 6a and the first two in fig. 6b, this one offline query
will necessary have the node ai at one end (in other words, the offline query will have
input/output of the form (∗, ai)) and will satisfy case 1 in the claim. Similarly for the
remaining collision types, if the offline query is the one with node ai at one end, the colliding
queries will satisfy case 1 in the claim. For the third collision type in fig. 6b, when the
offline query is the one depicted by the curved line, it will satisfy case 4 in the claim. All
the remaining collision types will satisfy case 7 in the claim when the one offline query is
depicted by a line that does not have the node ai at one of its ends.

Next, we consider when two or more of the colliding queries are offline queries. Again
if even one of these offline queries is depicted by a line that has the node ai at one end,
they will satisfy case 1 in the claim. Otherwise, the first collision type depicted in fig. 6c will
satisfy one of case 5 or 6 in the claim. The collision type depicted in fig. 6d will satisfy case
8 in the claim.

Finally, we analyze each case in Claim 9 and show that it’s advantage is bounded by
Õ((ST 2/C)2 + ST/C + T 2/C + T 2/R) for any i ∈ [S] when X<i ∧ Ei.

Case 1: As F/F−1 are lazily sampled and there are at most iT offline queries, the probability is
bounded by 2iT/C.

Case 2: For each of the T online queries, the probability it’s output is (∗, a) is 1/C. Therefore,
the probability is bounded by T/C.

Case 3: By birthday bound, T online queries implies the probability of finding collision is bounded
by T 2/C + T 2/R.

Case 4: Fix an offline query and the probability that output of at least one of the T online
queries can be completely determined by the input and output of the fixed offline query
is 4/RC. Thus, the probability is bounded by 4ST 2/RC.

Case 5: Conditioned on Ei
1 ∧ Ei

2, there exists at most 10i logR pair of offline queries each that
form Type 1 and Type 2 structure. Thus, the probability that the output salt of each of
the T online queries hitting either Type 1 or Type 2 structure is 20i logR/C. Thus, the
probability is bounded by 20iT logR/C.

Case 6: Conditioned on Ei
3 ∧ Ei

4, there exists at most 10i logR pair of offline queries each that
form Type 3 and Type 4 structure. Thus, the probability that the output salt of each of
the T online queries hitting either Type 3 or Type 4 structure is 20i logR/C. Thus, the
probability is bounded by 20iT logR/C.

Case 7: Fix an offline query. Then the probability that output salt of one online query is in-
put/output salt of the fixed offline query and output salt or message of one online query
is input/output salt or message respectively of the fixed offline query is 2/C ·(2/R+2/C).
Thus, the probability is bounded by 4ST · T 2/C · (1/R+ 1/C).
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Case 8: Fix two offline queries. Then the probability that output of two online queries is in-
put/output salt of one fixed offline query each is 2/C · 2/C. Then the probability is
bounded by 4ST 2/C · ST 2/C.

5 Limitations for the Multi-Instance model

In this section, we will show that finding collisions is easy in the multi-instance model. For
sponge, we will present 3 different attacks, one for each of parameter range B = 1, B = 2
and B ≥ 3. It’s worth noticing that the advantage of our attack matches the security bound
given by Theorem 8 and [FGK22] in all cases. Therefore, we can not hope to prove better
bounds unless we find a better model.

...

...

ai

✮

(a) 1-Block collision at-
tack

ai

...
✮

(b) 2-Block collision
attack

ai

...

...

...

...

✮
...

✮

✮

(c) 3-Block collision attack

Fig. 7: Attacks for sponge in multi-instance model. Dashed line represent online query. Solid line
represents offline/online query. Line directed→ represents query to F and line directed← represents
query to F−1. ● represents that (output/input of) the two queries share the salt. ✮ represents that
(output/input of) the two queries share the message.

5.1 Attacks for Sponge in Multi-Instance Model When B = 1

Theorem 10. Suppose S, T ≥ 8 and ST
C ≤

1
2 . There exists an (S, T )-MI adversary A such

that:

AdvMICR
1-SP (A) =

(
Ω̃

(
S2T2

C2

))S

.

Proof. For the ith stage of an MI game, let the challenge salt be denoted by ai. In this stage,
we will use the following strategy:
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– We make T queries F−1(0, (i− 1) · T + j) where j ∈ [T ].
– Among all the (online and offline) queries, if there are two different queries

F−1(0, j1) = (m1, aj1) and F−1(0, j2) = (m2, aj2), such that

aj1 = aj2 = ai

Then we output the message pair (m1), (m2) as the collision.

See figure 7a for reference. The correctness of the attack is immediate.

Next we analyze the lower bound on the success probability of the attack stated above.
Define event Ei: There are exactly 2 queries (among the iT queries in the first i stages)
hitting ai. If Ei happens, then we will definitely win the ith stage. Consider the event
E1 ∧ E2 ∧ . . . ∧ ES :

Pr[E1 ∧ E2 ∧ . . . ∧ ES ] =

(
S∏

i=1

(
iT − 2(i− 1)

2

)
1

C2

)(
1− S

C

)ST−2S

≥
S∏

i=1

(
iT

2
· iT
4
· 1

2C2

(
1− S

C

)T−2
)

≥
S∏

i=1

(
i2T 2

16C2

(
1− S(T − 2)

C

))

≥
(

T 2

16C2
· 1
2

)S S∏
i=1

i2

≥
(

S2T 2

16C2 log2 S

)S

where the first inequality holds using i(T − 2) ≥ iT
2 (as T ≥ 8), second to last inequality

holds using ST
C ≤

1
2 , and the last inequality holds using the fact S! ≥

(
S
e

)S
and e < logS.

This event gives a lower bound of success probability of our attack, which is already(
Ω̃
(

S2T 2

C2

))S
.

5.2 Attacks for Sponge in Multi-Instance Model When B = 2

Theorem 11. Suppose S, T ≥ 8 and ST 2

C ≤ 1
2 . There exists an (S, T )-MI adversary A such

that:

AdvMICR
2-SP (A) =

(
Ω̃

(
S2T4

C2

))S

.

Proof. Again we denote the challenge salt for the ith stage of the MI game by ai. We maintain
a counter x (initially set to 0) through the whole game. The strategy in the ith stage of
the game for any i ∈ [S] will be as follows:
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1. First, we make T
2 queries in the following way:

(a) If the query F−1(0, x) is fresh, we make this query. (Recall that a query
F−1(m, a) = (m′, a′) is fresh if neither F−1(m, a) nor F (m′, a′) is queried
before.)

(b) Set x← x+ 1.
We will repeat until T

2 fresh queries have been made in step (a).

2. Next, we make T
2 queries F (j, ai) where j ∈ [T2 ].

3. If there are at least 2 queries in step 2 that are not fresh, they must have the
form F (m1, ai) = (0, j1) and F (m2, ai) = (0, j2) (Since all the challenge salts
ai are different, their first occurrence must be in step 1 of some previous stages,
which must have form F−1(0, ∗) = (∗, ai)). Then we output the message pair
(m1), (m2) as the collision.

4. Otherwise, if there exist two different online queries F (j1, ai) =
(m1, ai1), F (j2, ai) = (m2, ai2) from step 2, and two different (online or of-
fline) queries F−1(0, j3) = (m3, ai3), F

−1(0, j4) = (m4, ai4) from step 1 such
that

ai1 = ai3

ai2 = ai4

Then we output the message pair (j1,m1 ⊕m3), (j2,m2 ⊕m4) as the collision.

See figure 7b for reference. One may wonder that the adversary may not find enough queries
in step 1(a). However, if it happens, since all the C queries F−1(0, i) (where i ∈ [0, C)) are
different, it means at least C − iT

2 > 3ST queries are not fresh (since ST < C
2 ), which is

impossible since there are at most iT different queries till now. Hence, as long as we can
find such queries in step 3 or 4, we will succeed in this stage.

Next, we analyze the success probability of this attack. Suppose we are in stage i. Let Qi

be the indicator variable whether the adversary can find such queries in step 3 or 4. Similarly,
let Q<i be the indicator variable that the adversary succeeds in finding such queries in each
of the stages 1, . . . , i− 1.

We define another indicator variable Ei for the event: number of new salts a′ appeared
in the output of queries F (j′, ai) = (j′′, a′) in step 1 for stage i is no less than T

4 (here “new
salt” means that this salt has not been the output of any queries in step 1, including the
previous stages). Analogous to Q<i, we define E<i to be the indicator variable that Ej = 1
for all j < i. We will show that despite the extra requirement of these events happening,
our attack still achieves the desired advantage.

To solve the problem, we analyze the conditional probability Pr[Qi = 1 ∧ Ei = 1|Q<i =
1 ∧ E<i = 1] for each stage i. To begin with, given that E<i = 1 ∧Q<i = 1, we know that

at least (i−1)T
4 distinct salts appeared in step 1 from previous stages. Therefore, for Ei = 0

to happen T
2 queries in step 1 will generate less than T

4 new salts (i.e. more than T
4 queries

generate old salts). However, there are at most iT
2 salts visited in step 1 so far. Hence, we
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have

Pr[Ei = 0|Q<i = 1 ∧ E<i = 1] ≤
(T

2
T
4

)(
iT

2C

)T
4

≤ (2e)
T
4

(
iT

2C

)T
4

=

(
eiT

C

)T
4

Therefore,

Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] ≥ 1−
(
eiT

C

)T
4

≥ 1−
(
eiT 2

4C

)
≥ 1

2

Since ST 2

C < 1
2 .

Next, given Ei = 1, we compute a lower bound of the probability for Qi = 1. Since
Ei = 1 and E<i = 1, we know there are at least iT

4 salts visited in step 1. Besides, if the

adversary fails in step 3, then there are at least T
2 − 1 ≥ T

4 fresh queries in step 2. Now we
only consider a special case that the adversary can succeed (which gives a lower bound on
probability of event Qi = 1): The adversary fails in step 3, and among the first T

4 fresh

online queries in step 2, exactly 2 of them hits two of the first iT
4 new salts in step 1:

Pr[Qi = 1|Ei = 1 ∧Q<i = 1 ∧ E<i = 1] ≥
(T

4

2

)(
iT

4C

)2(
1− iT

4C

)T
4 −2

≥ T 2

64

(
iT

4C

)2(
1− iT 2

16C

)
≥ i2T 4

211C

Since ST 2

C ≤ 1
2 .

Hence,

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

= Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] · Pr[Qi = 1|Ei = 1 ∧Q<i = 1 ∧ E<i = 1]

≥ 1

2
· i

2T 4

211C
=

i2T 4

212C2

Finally, the advantage of our attack is at least:

Pr[Q1 = 1 ∧Q2 = 1 . . . ∧QS = 1]

≥ Pr[Q1 = 1 ∧Q2 = 1 . . . ∧QS = 1 ∧ E1 = 1 ∧ E2 = 1 . . . ∧ ES = 1]

=

S∏
i=1

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

≥
S∏

i=1

(
i2T 4

212C2

)

≥
(

S2T 4

212C2 log2 S

)S

which proves the theorem.
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5.3 Attacks for Sponge in Multi-Instance Model When B ≥ 3

Theorem 12. Suppose R,S, T ≥ 16, ST 2

C ≤ 1
2 and T 2

R ≤ 1. For any B ≥ 3, there exists an
(S, T )-MI adversary A such that:

AdvMICR
B-SP (A) =

(
Ω̃

(
ST2

C

))S

.

The assumption T 2

R ≤ 1 is required, otherwise the trivial birthday attack will already
have Ω(1) advantage even in the Auxiliary-Input setting.

Proof. We will propose an attack that only uses 3-block messages, which is valid for any
B ≥ 3. Our attack is as follows:

– Initially set x← 0, y ← 0.
– For stage i of the MI game (let the challenge salt in this stage be ai):

1. First, we make T
2 queries in the following fashion:

(a) If F−1(x, y) is fresh, we make this query.
(b) Set x← x+ 1.
(c) If x ≥ R, we set y ← y + 1 and x← 0.
We repeat until T/2 new fresh queries are made in (a).

2. Next, we make T/2− 2 queries of the form F (j, ai) where j ∈ [T2 ].
3. If any query in step 2 is not fresh, it must have form F (m1, ai) = (j1, y

′)
where 0 ≤ y′ ≤ y (Similarly, this is since that the first occurrence of this
query must be in step 1(a), which has form F−1(∗, y′) = (∗, ai)). Then we
make two extra queries F (0, y′) and F (1, y′). If F (0, y′)[1] = F (1, y′)[1], we
output the message pair (m1, j1), (m1, j1 ⊕ 1) as the collision.

4. Otherwise, if there exists one online query F (j1, ai) = (m1, ai1) and one
(online or offline) query F−1(j2, y

′) = (m2, ai2) such that ai1 = ai2 , then
we make two extra queries F (0, y′) and F (1, y′). If F (0, y′)[1] = F (1, y′)[1],
we output the message pair (j1,m1 ⊕m2, j2), (j1,m1 ⊕m2, j2 ⊕ 1) as the
collision.

See figure 7c for reference. Recall that F (0, y′)[1] means the first part of output (i.e. message)
of query F (0, y′). Our attack will need to form y + 1 of the structures shown in the figure.
Notice that since we introduced y, the adversary may eventually check all possible F−1(x, y),
and thus will always find enough queries in step 1(a) (since ST

RC < 1
2 ).

First, we claim that y ≤ ST
R after all S stages of execution. This is because if any query in

step 1(a) is not fresh, then it has occurred before in step 2-4 (of a previous stage). However,
there are at most ST

2 such queries in total. Therefore, the number of queries that are fresh

in step 1(a) is at least yR− ST
2 (There can be more fresh queries if any of F−1(i, y) is fresh

for some 0 ≤ i < x). Further, we know that there are exactly ST
2 fresh queries in step 1(a)

after S stages, so we have yR− ST
2 ≤

ST
2 , which means y ≤ ST

R .
Let us define an indicator variable Wi as whether F (0, i)[1] = F (1, i)[1], and variable

W = W0 ∧W1 ∧ . . . ∧Wy. If W = 1 and that we find such queries in step 3 or 4, it’s not
hard to check that our output forms a valid collision and we win this stage.
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First, we claim that the event W = 1 will happen with large enough probability via
lazy-sampling. For i ∈ [y], F (0, i) and F (1, i) are sampled in order without replacement.
For any i ∈ [y] and for some m, the probability F (1, i)[1] = m depends on the number of
previous samples that had output (m, ∗). Note that there can be at most 2i+1 such samples.
Therefore,

Pr[W = 1] =

y∏
i=0

Pr[Wi = 1|W<i = 1] =

y∏
i=0

Pr[F (1, i)[1] = F (0, i)[1]|W<i = 1]

≥
y∏

i=0

C − (2i+ 1)

RC − (2i+ 1)
≥
(
C − (2y + 1)

RC

)y+1

≥
(
C/2

RC

)y+1

=

(
1

2R

)y+1

where the last inequality uses that 2y + 1 ≤ 4ST/R ≤ C/2.

Next, we focus on the probability of finding such queries. We define Qi, Q<i, Ei, E<i the
same way as in section 5.2. With the same analysis, we have

Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] ≥ 1

2

Now, given Ei = 1, we need to lower bound the probability for Qi = 1 again. Here, we
consider the case that the adversary fails in step 3, and that there is exactly 1 online query
(Since the adversary fails in step 3, this query must be fresh) that hits the first iT

4 new salts
(from step 1):

Pr[Qi = 1|Ei = 1 ∧Q<i = 1 ∧ E<i = 1] ≥
(
T

2
− 2

)
· iT
4C

(
1− iT

4C

)T
2 −3

≥ iT 2

16C

(
1− iT 2

8C

)
≥ iT 2

32C

Hence

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

= Pr[Ei = 1|Q<i = 1 ∧ E<i = 1] · Pr[Qi = 1|Ei = 1 ∧Q<i = 1 ∧ E<i = 1]

≥ iT 2

64C
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Finally, the success probability of our attack will be at least

Pr[W = 1 ∧Q1 = 1 ∧Q2 = 1 . . . ∧QS = 1]

≥ Pr[W ∧Q1 = 1 ∧Q2 = 1 . . . ∧QS = 1 ∧ E1 = 1 ∧ E2 = 1 . . . ∧ ES = 1]

= Pr[W = 1] ·
S∏

i=1

Pr[Qi = 1 ∧ Ei = 1|Q<i = 1 ∧ E<i = 1]

≥
(
1

R

)y+1 S∏
i=1

(
iT 2

64C

)

≥

(
T 2

64C

(
1

R

) 2T
R

)S S∏
i=1

i

≥

(
T 2

64C

(
1

2

) 2T log R
R

)S (
S

logS

)S

≥
(

ST 2

256C logS

)S

where third to last inequality holds as y + 1 ≤ 2ST
R (as explained above), while the last

inequality holds since T√
R
≤ 1 and logR√

R
≤ 1.

References

ACDW20. Akshima, David Cash, Andrew Drucker, and Hoeteck Wee. Time-space tradeoffs and
short collisions in merkle-damg̊ard hash functions. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer Science, pages
157–186. Springer, 2020.

AGL22. Akshima, Siyao Guo, and Qipeng Liu. Time-space lower bounds for finding collisions
in merkle-damg̊ard hash functions. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Con-
ference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings,
Part III, volume 13509 of Lecture Notes in Computer Science, pages 192–221. Springer,
2022.
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A Proof Details of Lemma 1

A.1 Proof of Claim 2

In this case, as ST < C, we must have R < C. Now, according to our analysis in section
3.1.3, we have

L1 + L2 + L3 ≤ 4 logS + S1(2 log eST − 2 logS1 − logR+ 1)

+ S2(2 log eST − 2 logS2 + 2 logS + 2− 2 logC)

+
∑
i∈[R]:

Qi>logSTR

(logS3 +Qi log eS3 − (Qi − 1)(logR− 1))

+
∑
i∈[R]:

Qi≤logSTR

(Qi log logSTR)

+ S3(2 log eST − 2 logS3 − logC + 1) (1)

Therefore, we have

2L1+L2+L3
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≤ S4

(
2e2S2T 2

S2
1R

)S1
(
4e2S4T 2

S2
2C

2

)S2
(
2e2S2T 2

S2
3C

)S3 ∏
i∈[R]:

Qi>logSTR

(
S3(2eS3)

Qi

RQi−1

) ∏
i∈[R]:

Qi≤logSTR

(logSTR)Qi

≤
(

S

S1

)2S1
(
2e2T 2

R

)S1
(

S

S2

)2S2
(
4e2S2T 2

C2

)S2
(

S

S3

)2S3
(
2e2T 2

C

)S3

·
∏

i∈[R]:
Qi>logSTR

{(
4eS3

R

)Qi

· (logSTR)S3−Qtot

}
(2)

≤ e6S
(
2e2T 2

R

)S1
(
4e2S2T 2

C2

)S2
(
2e2T 2 logSTR

C

)S3−Qtot
(
2e2T 2

C

)Qtot

·
∏

i∈[R]:
Qi>logSTR

(
4eS3

R

)Qi

(3)

≤
(
2e8T 2

R

)S1
(
4e8S2T 2

C2

)S2
(
2e8T 2 logSTR

C

)S3−Qtot
(
2e8T 2

C

)Qtot

·
∏

i∈[R]:
Qi>logSTR

(
4eS3

R

)Qi

≤
(
2e8
(
T 2

R
+

2S2T 2

C2

))S1+S2
(
2e8T 2 logSTR

C

)S3−Qtot
(
8e9S3T

2

RC

)Qtot

≤
(
8e9
(
T 2

R
+

S2T 2

C2
+

T 2 logSTR

C
+

S3

C
· T

2

R

))S1+S2+S3

= Õ

(
T 2

R
+

(
ST

C

)2

+
T 2

C

)S

(4)

= Õ

(
T 2

R
+

(
ST

C

)2
)S

(5)

where (1) holds using log
(
n
m

)
≤ m log en −m logm, (2) holds as 2S > S4 (since S > 32),

STR ≤ 2Qi and S1 + S2 + S3 = S, (3) holds as
(
S
x

)x ≤ eS , (4) holds since S3

C ≤
ST
C ≤

1
8e9 ,

and (5) is using R < C.

A.2 Proof of Claim 3

The analysis is very similar, except for type 3. For completeness, we still write down the
whole calculation:

L1 + L2 + L3 ≤ 4 logS + S1(2 log eST − 2 logS1 − logR+ 1)

+ S2(2 log eST − 2 logS2 + 2 logS + 2− 2 logC)
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+
∑
i∈[R]:

Qi>logSTR
Ki≥1

(logST +Qi log eST − (Qi − 1)(logR− 1)− (Qi −Ki) logQi)

+
∑
i∈[R]:

Qi≤logSTR
Ki≥1

(Ki log logC) + S3(log eST − logS3 − logC + 1) (6)

Therefore, we have

2L1+L2+L3

≤ S4

(
2e2S2T 2

S2
1R

)S1
(
4e2S4T 2

S2
2C

2

)S2
(
2eST

S3C

)S3

·
∏

i∈[R]:
Qi>logSTR

Ki≥1

(
ST · (2eST )Qi

RQi−1QQi−Ki

i

)
·
∏

i∈[R]:
Qi≤logSTR

Ki≥1

(logSTR)Ki

≤
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S

S1

)2S1
(
2e2T 2

R

)S1
(

S

S2

)2S2
(
4e2S2T 2

C2

)S2
(

S

S3

)S3
(
2eT

C

)S3

·
∏

i∈[R]:
Qi>logSTR

Ki≥1

((
4eST

R

)Qi

· 1

QQi−Ki

i

)
· (logSTR)S3−Ktot (7)

≤ e5S
(
2e2T 2

R

)S1
(
4e2S2T 2

C2

)S2
(
2eT logSTR

C

)S3−Ktot
(
2eT

C

)Ktot

·
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i∈[R]:
Qi>logSTR

Ki≥1
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4eST

R logSTR

)Qi−Ki

·
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4eST

R
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2e6T logSTR
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8e7ST 2
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8e7
(
T 2

R
+

S2T 2
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(10)
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T 2

R
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C
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where (6) holds because log
(
n
m

)
≤ m log en−m logm, (7) holds as 2S > S4 (since S > 32),

STR ≤ 2Qi and S1 + S2 + S3 = S, (8) holds using
(
S
x

)x ≤ eS and Qi > logSTR, (9) holds

because
∑

i Ki = S3 and Ki ≤ Qi, and (10) holds since ST ≤ R, logS > 4e, T
C < 1

8e7 and
S
C < 1

8e7 .
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