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Abstract

The notion of functional re-encryption security (funcCPA) for public-key encryption schemes was
recently introduced by Akavia et al. (TCC’22), in the context of homomorphic encryption. This notion lies
in between CPA security and CCA security: we give the attacker a functional re-encryption oracle instead
of the decryption oracle of CCA security. This oracle takes a ciphertext ct and a function f , and returns
fresh encryption of the output of f applied to the decryption of ct; in symbols, ct′ = Enc(f(Dec(ct))).
More generally, we even allow for a multi-input version, where the oracle takes an arbitrary number of
ciphetexts ct1, . . . ctℓ and outputs ct′ = Enc(f(Dec(ct1), . . . ,Dec(ctℓ))).

In this work we observe that funcCPA security may have applications beyond homomorphic en-
cryption, and set out to study its properties. As our main contribution, we prove that funcCPA is
“closer to CPA than to CCA”; that is, funcCPA secure encryption can be constructed in a black-box
manner from CPA-secure encryption. We stress that, prior to our work, this was not known even for
basic re-encryption queries corresponding to the identity function f .

At the core of our result is a new technique, showing how to handle adaptive functional re-
encryption queries using tools previously developed in the context of non-malleable encryption, which
roughly corresponds to a single non-adaptive parallel decryption query.

1 Introduction

The notion of functional re-encryption FuncCPA security for encryption schemes was recently introduced
by Akavia et al. [AGHV22], and shown to be useful in the context of homomorphic encryption schemes.
This notion is similar to CCA security, except that the attacker is given a re-encryption oracle rather
than a decryption oracle. Roughly, the oracle replies to a query ciphertext ct with another ciphertext
ct′ = Enc(Dec(ct)), corresponding to a fresh encryption of the message contained in ct. More generally,
the definition even permits “functional” re-encryption queries: the attacker also specifies a function f , and
the oracle returns ct′ = Enc(f(Dec(ct))). Or even more generally, we can consider “multi-input functional”
re-encryption queries, where the oracle takes an arbitrary number of ciphetexts ct1, . . . ctℓ and outputs
ct′ = Enc(f(Dec(ct1), . . . ,Dec(ctℓ))). Below, when we say FuncCPA, we refer to the strongest notion with
multi-input functional queries by default, unless we explicitly restrict to single-input functional re-encryption
or non-functional re-encryption.

At first glance, the FuncCPA-oracle may seem quite useless to the attacker, as it only returns properly
encrypted ciphertexts. One may even be tempted to assume that every CPA-secure scheme is also FuncCPA-
secure. Surprisingly, this is not the case: Akavia et al. described in [AGHV22] a CPA-secure scheme where
a single (non-functional) re-encryption query allows the adversary to recover the secret key. This example
makes FuncCPA an interesting notion to study, as it lies “somewhere in between” CPA and CCA security.

∗Research Supported by NSF grant CNS-2055578, and gifts from JP Morgan, Protocol Labs and Algorand Foundation.
†Research supported by NSF grant CNS-1750795, CNS-2055510 and the JP Morgan faculty research award.
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FuncCPA for Non-Homomorphic Schemes. Although Akavia et al. only considered FuncCPA in the
context of homomorphic encryption, we note that it makes sense also for schemes that are not homomorphic.
For example, consider using a “secure enclave” (such as a secure hardware or trusted execution environment)
to address the same client-server delegation scenario. In this setting there could be an “analyst” that wants
to perform various studies on sensitive data, multiple clients who are willing to donate their data to those
studies (as long as their privacy is respected), and a worker server on which the studies are computed,
endowed by a secure enclave. The analyst will have a secret-public key pair, they will send the secret key
over a secure channel to the enclave, and publish the corresponding public key. Clients who want to donate
their data to the studies will encrypt it under the analyst’s public key, and send the ciphertext to the server.
The server will collect the data (possibly more and over over time), and occasionally will ask the enclave to
compute something on the the encrypted data. The enclave will decrypt the given pieces of data, compute
the required function, encrypt the result, and return to the server.1 When each study is over, the server will
send the end-result back to the analyst, to be decrypted and used.

In that setting, we note that the queries made by the server to its secure enclave are exactly the type of
re-encryption queries that we consider: The server sends encrypted data and some function, and the enclave
decrypts, computes the function, re-encrypts, and return to the server.

Our Main Question. In this work we set out to study the properties of FuncCPA security. For starters,
we give a simple proof that every CCA-secure scheme is also FuncCPA -secure.2 Having established that
FuncCPA security is implied by CCA security and implies CPA security, the main question that we address
in this work is whether FuncCPA is “more like” CPA or CCA. Specifically we ask:

Can one construct a FuncCPA-secure encryption scheme from any CPA-secure one?

We stress that the answer to this question is unknown even if we restrict to basic (“non-functional”) re-
encryption queries Enc(Dec(ct)), corresponding to a single ciphertext with the identity function f .

The relation between CPA-secure schemes and CCA-secure ones was studied extensively in the literature,
and many construction of the latter are known. However, all these constructions either require making
extra assumptions beyond just the existence of CPA-secure schemes [NY90, Sah99, MSS13, HKW20], or are
carried out in idealized models (e.g., [FO99]). In particular, whether one can construct a CCA secure scheme
generically from any CPA secure one, is considered a major open problem in cryptography.

As for standard model constructions from CPA encryption without extra assumptions, it is known that
the existence of CPA-secure encryption can generically be upgraded to weaker variants of CCA security,
such as non-malleability [PSV06, CDMW18a, CDMW18b], bounded CCA security [CHH+07], or security
against self-destruct attacks [CDM+20]. Of particular interest to us, non-malleable encryption corresponds
to a “non-adaptive” variant of CCA-security, where the adversary can only issue one set of non-adaptive
decryption queries in parallel. Pass et al. [PSV06] showed how to generically transform CPA-security to
non-malleability, and Choi et al. [CDMW18a, CDMW18b] showed that this can even be done while using
the underlying CPA-secure scheme as a black box.

1.1 Our Main Result

We show that FuncCPA is “more like CPA than CCA”, specifically we prove:

Theorem 1. If CPA-secure encryption schemes exist, then so do FuncCPA-secure encryption schemes.
Moreover, the transformation can be made black-box in the underlying CPA-secure scheme.

1Notice, this application requires FuncCPA security for queries consisting of multiple ciphertexts, which is why this will be
our default notion of FuncCPA security.

2In fact, we show (see Lemma 8) that FuncCPA security is implied by CCA security against “lunchtime attacks”, known
as CCA1.
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Perhaps surprisingly, the transformation that we describe here is identical to the CPA-to-non-malleable
transformation of Choi et al. from [CDMW18a], except that we need to start with a scheme which is al-
ready non-malleable. Therefore, one way to get FuncCPA from CPA in a black-box way is to apply the
transformation from [CDMW18a] once to get non-malleability, then apply it again to get FuncCPA -security.3

Our Technique. For simplicity of notation, we describe our technique for the case of single-input functional
re-encryption queries, but everything trivially generalizes to multi-input functional re-encryption queries as
well. The main difficulty of a reduction from CPA to FuncCPA security is that we need to simulate
adaptive queries to a functional re-encryption oracle, which involves decryption. How do we do this without
a decryption oracle? We use the transformation from [CDMW18a], which was designed to allow a simulation
of a batch of non-adaptive queries to a decryption oracle, and show that the same approach also allows us
to simulate adaptive queries to a functional re-encryption oracle.

The high-level structure of the transformation from [CDMW18a] is to encode the message with an
appropriate error-correcting code, then encrypt the resulting codeword symbols multiple times under different
keys, and check on decryption that the decrypted words are close enough to each other. Thinking of
the encrypted symbols as a matrix, with the rows corresponding to multiple encryptions and the columns
corresponding to positions in the codeword, Choi et al. observed that checking closeness can be done just
by verifying that the codewords agree on some small randomly chosen subset of the columns. Hence the
decryptor only needs to know the secret keys for one row to do the actual decryption, and for that small
subset of columns to do the checks. Security is then proven by reduction to the security of the keys for which
the decryptor does not know the secret keys.

For our purposes, we consider a “bad event” in which the attacker submits a query ciphertext for which
not all the rows are close to each other, but this “is not caught” by the checks on decryption. As long as this
bad event does not happen, we can show that the decryption procedure will always give the same answer,
no matter which row or columns are used in it. Hence, as long as this bad event does not happen, one can
simulate the attacker’s view without knowing too many keys. Moreover, we also show that as long as the
bad event did not happen so far, the adversary does not have enough information to cause it to happen in
the next query. This allows us to describe a reduction using “almost-functional” keys, where the reduction
can decrypt all the attacker’s queries except the one that it will use for its challenge ciphertext. This, in
turn, lets us switch from Enc(f(Dec(ct))) to Enc(0), one query at a time.

Importantly, to turn the advantage of the FuncCPA attacker into an advantage in attacking the under-
lying scheme, the reduction algorithms that we describe must know if the bad event occurred on any of the
re-encrypted ciphertexts cti. The key novelty here is the observation that the reduction does not need to
know this at the time of each (functional) re-encryption query. Instead, it can run the attacker until the
end, and check if the bad event had occurred on any of the ciphertexts (ct1, . . . , ctq) only then. This check
requires access to the decryption oracle, which is where we use the non-malleability of the underlying encryp-
tion scheme (rather than mere CPA security). Namely, non-malleability allows us to make one such parallel
decryption query to know precisely when any bad event happened.4 Hence, the reduction to non-malleability
will use a single, non-adaptive parallel decryption query to check whether or not the bad event occurred in
any of the attacker’s queries, despite the attacker making many adaptive functional re-encryption queries.
See more details in section 3.

We note that Choi et al. later described a more efficient CPA-to-non-malleability transformation [CDMW18b],
and that the same line of reasoning probably works for that transformation as well. But since we do not
focus on efficiency in this work, we use the (arguably simpler) transformation from [CDMW18a].

Do we Really Need Two Transformations? Seeing how we need to apply the same transformation
twice, once to move from CPA to non-malleability and a second time to get FuncCPA, it is natural to ask
if we can spare one of them – can’t we just apply this transformation once?

3Our transformation in Theorem 1 is not only FuncCPA-secure, but also non-malleable. See Remark 1.
4This aspect was not needed in the analysis of [CDMW18a], as they did not have any re-encryption queries.
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While we don’t know the answer, our proof technique completely breaks down without the assumption
that the underlying scheme is already non-malleable. In fact, our intuition is that CPA security of the
underlying scheme is not enough to ensure FuncCPA of the result, and one should be able to exhibit a
counter-example using strong enough homomorphic properties of it. We note, however, that such counter-
example “cannot be too simple”, since the transformation encrypts different codeword positions with different
keys, meaning that any such example will be at least as hard as showing that bit-encryption does not imply
FuncCPA. Still, we conjecture that non-malleability is really needed for our proof.

Variations of FuncCPA. As we mentioned above, there are different variants of FuncCPA -security, with
one or more ciphertexts, and with or without functional queries. Akavia et al. have shown in [AGHV22] that
these notion are all equivalent for homomorphic encryption schemes,5 but generally they may differ.

In fact, for our purposes it is convenient to use a possibly-stronger formal definition than the one from
[AGHV22]. (This stronger definition was also considered by Akavia and Vald [AV22].) Roughly, instead
of only requiring that functional re-encryption queries cannot help the attacker break semantic security, we
require that these queries are indistinguishable from fresh encryptions of some fixed message (e.g. 0). This
clearly implies that such queries cannot help break semantic security, but the converse may not hold. We
denote this potentially stronger notion by FuncCPA+.

We note that, prior to the current work, constructing FuncCPA from CPA-secure encryption is challeng-
ing even for the weakest of these notions (non-functional re-encryption queries not helping break semantic
security), while our positive result applies even to the strongest of them (functional re-encryption queries
with multiple ciphertexts look like encryptions of 0). We discuss implications and separations between many
of these variants in section 2.1 and in appendix A.

Organization

In section 2 we recall the basic definitions and prove some simple properties of FuncCPA-security. Our main
result theorem 1 is proved in section 3, and we state a few open problems in section 4. Finally, in appendix A
we prove some relations between various security notions.

2 Definitions

Signatures. A signature scheme S = (Gen,Sig,Ver) consists of randomized key generation (sk, vk) ←
Gen(1λ), signing σ ← Sig(sk,m), and verification, 0/1← Ver(vk, σ,m). The (error-free) correctness condition
asserts that for all λ and all messages m, we have

Pr
[
(sk, vk)← Gen(1λ), σ ← Sig(sk,m) : Ver(vk, σ,m) = 1

]
= 1.

Definition 1 (Secure one-time Signatures). A scheme S = (Gen,Sig,Ver) is strongly existentially unforge-
able under one-time attack if any PPT adversary A = (A1, A2) has at most a negligible probability negl(λ)
of winning the following game:

1. (sk, vk)← Gen(1k);
2. (m, state)← A1(vk);
3. σ ← Sig(sk,m);
4. (m′, σ′)← A2(state, σ).

A wins the game if (m′, σ′) ̸= (m,σ) but Ver(vk, σ′,m′) = 1.

5Intuitively, multiple-ciphertext functional re-encryption oracle can be simulated by a single-ciphertext non-functional re-
encryption oracle, by first homomorphically applying the function f “inside the encryption”, and then calling the simpler oracle
to ensure the resulting encryption is “fresh”.
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Encryption schemes. We recall below different notions of security for public-key encryption schemes.
Such a scheme E = (Gen,Enc,Dec) (over message space M which could depend on the security parameter)
consists of:

• Key Generation algorithm (dk, ek)← Gen(1λ). Here dk is the secret key and ek is the public key.

• Encryption algorithm ct← Enc(ek, pt) converting message pt ∈M into ciphertext ct; and

• Decryption algorithm pt ← Dec(dk, ct) recovering the plaintext pt ∈ M ∪ {⊥} from the ciphertext ct,
where ⊥ denotes a decryption failure.

The (error-free6) correction condition asserts that for all λ and all pt ∈M , we have

Pr
[
(dk, ek)← Gen(1λ), ct← Enc(ek, pt) : Dec(dk, ct) = pt

]
= 1.

Definition 2 ((nm)CPA/CCA1/CCA2/(multi)FuncCPA Security). An encryption scheme E = (Gen,Enc,Dec)
is X-secure for security notion

X ∈ {CPA, CCA1, CCA2, FuncCPA, 1-FuncCPA, ReEncCPA, nmCPA},

if any PPT adversary A = (A1, A2) with access to oracles (O1,O2) below has at most a negligible advantage
negl(λ) in the following game:

1. b← {0, 1}; (dk, ek)← Gen(1λ); 2. (pt0, pt1, state)← AO1
1 (ek);

3. ct← Enc(ek, ptb); 4. b′ ← AO2
2 (state, ct).

The advantage is defined as |Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]|, where the oracles (O1,O2) are instantiated
as follows for each notion X:

CPA: O1,O2 always return ⊥.

CCA1: O1(ct
′) = Dec(dk, ct′) is decryption oracle, and O2 always returns ⊥.

CCA2: O1(ct
′) = Dec(dk, ct′) is decryption oracle, and O2 is the same as O1, except it returns ⊥ on the

challenge ct from Step 3 above.

FuncCPA: O1(ct
′
1, . . . , ct

′
ℓ, f) = O2(ct

′
1, . . . , ct

′
ℓ, f) =

Enc(ek, f(Dec(dk, ct′1), . . . ,Dec(dk, ct′ℓ)))
are multi-input functional re-encryption oracles, where ℓ ∈ Z can be arbitrary and f : (M ∪{⊥})ℓ →M
is any function (specified as a circuit).

1-FuncCPA: Same as FuncCPA, but all functions f are single input (ℓ = 1); O1(ct
′, f) = O2(ct

′, f) =
Enc(ek, f(Dec(dk, ct′))).

ReEncCPA: Same as FuncCPA, but all functions f are the identity f(pt) = pt; O1(ct
′) = O2(ct

′) =
Enc(ek,Dec(dk, ct′))

nmCPA: O1 always returns ⊥, while O2 accepts a single “parallel” query {(ct′i)}, and returns {pt′i}, after
which it returns ⊥ for all subsequent queries. As with CCA2 notion, pt′i =⊥, if ct′i = ct from Step 3;
and otherwise it is the regular decryption oracle pt′i = Dec(dk, ct′i).

6All the results in this work apply out-of-the-box also to schemes with decryption errors, as long as they only occur
with negligible probability. Otherwise one can amplify correctness of the underlying CPA-secure scheme before applying
our transformation.
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Multiple-Keys Tag-Based Non-Malleability. For our transformation, it will be slightly more conve-
nient to use a slight extension of nmCPA security notion, which is easily seen equivalent to the traditional
nmCPA security given in Definition 2.

First, we will use a tagged nmCPA encryption, where the encryption and decryption routines are also
given a tag tg, and correctness in only ensured when the same tag is used in both.

Pr
[
(dk, ek)← Gen(1λ), ct← Enc(ek, tg, pt) : Dec(dk, tg, ct) = pt

]
= 1.

Furthermore, the non-malleability security game is modified so that the adversary submits a set of tag/ciphertext
pairs {(tg′i, ct′i)} in parallel, such that each pair (tg′i, ct

′
i) ̸= (tg, ct) differs from the challenge tag/ciphertext

pai from Step 3, and the oracle responds with pt′i = Dec(dk, tg′i, ct
′
i). Notice, a tagged scheme can always

be converted into a non-tagged scheme by just omitting the tag. Conversely, non-tagged scheme for large
message space can be made to support tags, by viewing the tag as part of the message, and then checking
that the decrypted tag matches the declared one.

Second, we will use a multiple-keys/multiple-message nmCPA which will be slightly more convenient for
our proof. This is known to be equivalent to the notion from definition 2, e.g., [PSV06, Thm 4]. The full
definition is given below.

Definition 3 (tag-nmCPA Security). A tagged scheme E = (Gen,Enc,Dec) is tag-non-malleable secure if
for any polynomial p(·), a conforming PPT adversary A = (A1, A2, A3) has at most a negligible advantage
negl(λ) in the following game:

1. b← {0, 1}; (dki, eki)← Gen(1λ) for i = 1, 2, . . . , p(λ);
2.

(
(i1, pt

0
1, pt

1
1, tg1), . . . , (im, pt0m, pt1m, tgm), state)← A1({eki});

3. ctj ← Enc(ekij , tgj , pt
b
j) for j = 1, . . . ,m;

4.
(
(k1, ct

′
1, tg

′
1), . . . , (kn, ct

′
n, tg

′
n), state

′);← A2(state, ct1, . . . , ctm
)
;

5. pt′ℓ ← Dec(dkkℓ
, tg′ℓ, ct

′
ℓ) for ℓ = 1, . . . , n;

6. b′ ← A3(state
′, pt′1, . . . , pt

′
n).

A is conforming if the pairs {(kℓ, tg′ℓ, ct′ℓ) : ℓ = 1, . . . , n} are disjoint from {(ij , tgj , ctj) : j = 1, . . . ,m}. The
advantage is defined as

|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

2.1 An Alternative Definition of FuncCPA

When proving the FuncCPA security of our construction, it is convenient to use a possibly-stronger notion
than definition 2, that we call FuncCPA+. Rather than requiring that the functional re-encryption oracle
does not help in breaking semantic security, this definition states that functional re-encryption oracle does
not help because it cannot by distinguished from fresh encryptions of 0 (which the attacker can do itself).7

Definition 4 (FuncCPA+ Security). A (non-tagged) scheme E = (Gen,Enc,Dec) is FuncCPA+-secure if
any PPT adversary A with access to a re-encryption oracle has at most a negligible advantage negl(λ) in the
following game:

1. b← {0, 1}; (dk, ek)← Gen(1λ); 2. b′ ← AreEncb(dk,ek,·,·)(ek).

where the re-encryption oracle takes an arbitrary ℓ and f : (M ∪ {⊥})ℓ →M (given as a circuit):

reEncb(dk, ek, ct1, . . . , ctℓ, f) =

{
E(ek, f(Dec(dk, ct1), . . . ,Dec(dk, ctℓ))) if b = 1

E(ek, 0) if b = 0

7Having two such flavors is reminiscent of definitions of circular security: Over there one notion asserts that an encryption of
the secret key does not help the attacker violate semantic security, and the other requires that the attacker cannot distinguish
such encryption from an encryption of zero.
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The advantage is defined as |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|. We can also define restricted notions
1-FuncCPA+ and ReEncCPA+, corresponding to single input f (ℓ = 1) and the identity function f , respec-
tively.

First, we show that this notion indeed implies FuncCPA security.

Lemma 1. Any scheme which is FuncCPA+-secure, is also FuncCPA-secure. (Analogously, the same holds
for restricted notions 1-FuncCPA and ReEncCPA.)

Proof. We first recall that the “left-or-right” notion from definition 2 where the attacker chooses pt0, pt1 and
gets an encryption of one of them, is known to be equivalent to a “real-or-zero” notion of security where
the attacker only chooses pt1, and gets either an encryption of pt1 or an encryption of zero. (These are
equivalent upto a factor of 2 in the advantage.) It is therefore sufficient to show that definition 4 implies
this real-or-zero notion.

Let E be a scheme satisfying definition 4, and we want to show that it also satisfy the (real-or-zero variant
of) definition 2. Let A be an adversary with access to a functional re-encryption oracle, and we want to show
that that it only has a negligible advantage in the real-or-zero game against E . Consider the probability of
A outputting 1 in the following four experiments:

1. A’s oracle is implemented by a true functional re-encryption oracle, and its challenge-ciphertext query
is answered by an encryption of pt1.

2. A’s oracle is implemented by a zero-encrypting oracle, and its challenge-ciphertext query is answered
by an encryption of pt1.

3. A’s oracle is implemented by a zero-encrypting oracle, and its challenge-ciphertext query is answered
by an encryption of 0.

4. A’s oracle is implemented by a true functional re-encryption oracle, and its challenge-ciphertext query
is answered by an encryption of 0.

The probabilities in Experiments 1 vs. 2 are close (upto a negligible difference) by the FuncCPA+-security of
E , and the same holds for the probabilities in Experiments 3 vs. 4. Moreover, the probabilities in Experiments
2 vs. 3 are close (upto a negligible difference) by the CPA-security of E , which is implied by FuncCPA+-
security. Hence the probability of A outputting 1 in experiments 1 vs. 4 are close upto a negligible difference,
as needed.

The proof for restricted variants follows identically.

2.1.1 Are These Definitions Equivalent?

Lemma 1 says that FuncCPA+ implies FuncCPA, but we do not know if there is also an implication in the
other direction. One piece of evidence that points toward FuncCPA+ being strictly stronger than FuncCPA,
is that we can show a separation for the analogous notions with a non-functional re-encryption oracle;
namely, ReEncCPA notion. In this notion, a re-encryption query consists of only a ciphertexts ct (without
the function f) and it is answered by ct′ = Enc(Dec(ct)). See Lemma 10.

2.1.2 Other (non-)Relations.

In Appendix A we also have several other observations of interest. In Lemma 8, we also show that a CCA1-
secure scheme is always FuncCPA+-secure. In Lemma 11 we also show that a (single-input) 1-FuncCPA+-
secure scheme is not always (multi-input) FuncCPA-secure, while in Lemma 9 we show that nmCPA-security
of a given scheme is incomparable with any of the FuncCPA/1-FuncCPA/ReEncCPA-securities (enhanced
or not) of that scheme.
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3 From CPA to FuncCPA

This section is devoted to proving our main Theorem 1. As mentioned, we will actually prove (potentially)
stronger FuncCPA+ security; namely:

Theorem 2. If CPA-secure encryption schemes exist, then so do FuncCPA+-secure encryption schemes.
Moreover, the transformation can be made black-box in the underlying CPA-secure scheme.

As described in the introduction, we show that applying the CPA-to-nmCPA black-box transformation
of Choi et al. [CDMW18a], to a scheme which is already nmCPA-secure, results in a FuncCPA+ scheme.
As the existence of CPA-secure schemes implies the existence of nmCPA-secure ones [PSV06], even with a
black-box transformation [CDMW18a], the theorem follows.

For simplicity of notation (e.g., to avoid double indices), we first describe our proof for single-input
re-encryption queries (i.e., 1-FuncCPA notion, corresponding to single-input function f with arity ℓ =
1). However, there is basically no difference in extending the proof to support multiple ciphertext queries
(e.g., general ℓ ≥ 1), and we sketch the extension from 1-FuncCPA+ to full FuncCPA+ security of our
transformation in Section 3.5.

3.1 Technical Overview

Before describing the CDMW construction itself, we highlight the abstract properties that it satisfies, and
how they are used to prove FuncCPA security. We rely on the following properties:

1. We have a notion of valid/invalid ciphertexts, and all ciphertexts output by encryption are valid.

2. For any challenge ciphertext ct∗, the reduction is able to find an alternate “somewhat defective” secret
key, which decrypts all valid ciphertexts except the challenge ciphertext ct∗ identically to the original
key, but is incapable of breaking the semantic security of ct∗.

3. An adversary who only sees the public key, cannot produce an invalid ciphertext that decrypts to
anything but 0, via either the original key or any defective key.

Non-Malleability. Let us briefly outline how the above properties are used in CDMW to show non-
malleability: First, they switch to using an alternate “somewhat defective” decryption key from (2) to
answer decryption queries. They argue that all decrpytion queries are answered identically with this change.
As per (2), this is true for decryption queries with a valid ciphertext, and as per (3), queries with invalid
ciphertext are always answered by 0 in both cases. We note that this step crucially relies on the adversary
making only one (parallel) decryption query rather than many adaptive queries; i.e. it only provides non-
malleability rather than CCA security. Indeed, an adversary making multiple adaptive decryption queries
(with valid ciphertexts) can learn information about the secret key from answers to previous decryption
queries, so can no longer rely on (3).8 Second, after switching to using a “somewhat defective” decryption
key, they can switch the challenge ciphertext ct∗ from an encryption of pt0 to an encryption of pt1 by relying
on property (2) that semantic security of ct∗ is preserved even given the alternate decryption key.

FuncCPA+ Security. Now we show how to use the above properties to prove FuncCPA+ security. We
define a bad event that the adversary submits an invalid ciphertext that does not decrypt to 0 (either by
the original or any alternate decryption key) during the course of the game. As long as the bad event does
not happen, we can replace the output of each functional re-encryption query (one by one) by an encryption
of 0 via the same argument as above. On the other hand, we argue that the probability of the bad event
occurring is negligible: To cause the bad event to happen for the first time on functional re-encryption query
i, the adversary would have needed to learn something about the secret key from the first i − 1 functional
re-encryption queries. But because the bad event did not occur during those queries yet, we can replace

8Valid ciphertexts are not necessarily correctly generated and may decrypt differently depending on the secret key.
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their outputs by encryptions of 0 (by the same argument as above) and argue that this cannot change the
probability of the bad event occurring for the first time in the i’th query. Once the first i−1 queries return 0
and do not induce the bad event, we know that they do not reveal anything about the secret key, which
ensures that probability of the bad event happening on the ith query is negligible.

Formalizing this argument, however, requires handling the following subtle point: when changing a
ciphertext to an encryption of 0 in each step, we must show this change is not only imperceptible to the
adversary, but it also does not affect the probability of the bad event. In particular, the reduction must
check if the bad event occurred at the very end of the game, which requires checking if various ciphertexts
submitted by the adversary during the game were valid or invalid. Therefore, we need a stronger version of
property (2) to hold: the semantic security of ct∗ holds even given the alternate decryption key and a single
parallel query to a valid/invalid ciphertext check. To achieve this stronger property, we need the underlying
component scheme used by this transformation to already be non-malleable.

3.2 Building Blocks

Non-malleability. Recall from Definition 2 that (tagged) non-malleable encryption is a weaker variant of
(tagged) CCA-secure encryption, where the adversary only gets to make a single non-adaptive query to the
decryption oracle (but that query can ask to decrypt many ciphertexts). Below it will be convenient to use
the multi-key/multi-message variant of this notion (cf. Definition 3). As mentioned earlier, this is known to
be equivalent to the single-key variant from Definition 2 (e.g., [PSV06, Thm 1]).9

One-time Signatures. Our main construction also uses (one-time) signatures, which are strongly exis-
tentially unforgeable, as per Definition 1.

Secret Sharing Encoding Schemes. We will also use the notion of secret-sharing encoding scheme
C = (E,D), similar to the notion of linear error-correcting secret-sharing [CDM+20]. Such a scheme comes
with efficient randomized encoding E and decoding D, and is parameterized by underlying symbol space Σ,
as well as integers k (dimension), n (length), d (decoding radius), and t (privacy parameter). We sometimes
abuse notations, denoting by C the resulting code itself (i.e., the image of the encoding routine).

Let
[(

n
t

)]
denote the collection of all the subsets S ⊂ [n] of cardinality t, the code C has the following

features:

• The encoding is E : Σk ×R → Σn, where R is the randomness space.

The decoding is D : Σn → ((Σk ×R) ∪ {⊥}), such that ∀x ∈ Σk, r ∈ R, we have D(E(x, r)) = (x, r).

Below when we say “decoding to a codeword”, we mean a procedure D′ : Σn → (Σ ∪ {⊥})n which is
defined as

D′(z ∈ Σn) =

{
⊥n if D(z) =⊥
E(D(z)) otherwise.

• The decoding radius of C is at least some large enough d (see below). Namely, for any x ∈ Σk, r ∈ R
and any word z ∈ Σn of Hamming distance at most d from E(x, r), it holds that D(z) = (x, r).

• There is an efficient extension procedure Extend : Σk×Σt×
[(

n
t

)]
→ Σn that take as input x ∈ Σk, y ∈

Σt, and a size-t subset S ⊂ [n], |S| = t, and outputs a codeword z ∈ C such that D(z) = (x, r) for
some r, and z|S = y (i.e., the symbols of z in positions from S are exactly y).

Moreover, for any x ∈ Σk and any S ∈
[(

n
t

)]
, the following two distributions are equal:

{r ← R : output E(x, r)} and {y ← Σt : output Extend(x, y, S)}.
9The theorem in [PSV06, Thm 4] is stated for a non-tagged scheme, but it holds equally for the tagged version.
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The parameters of C are set to ensure that (1− d
n )

t ≤ 2−λ. 10

Some examples of such codes: using Shamir secret-sharing we can get a construction over a large enough
field Σ = F2ℓ with (say) k = 1, t = 2λ, n = 3t and d = t. Or we can encode the Shamir-based constructions
in binary, using Σ = {0, 1}, k ≥ 3 + log λ, t = 2λk, n = 3t and d = t. A more general use of Reed-Solomon
codes (still with large enough Σ = F2ℓ) could be an arbitrary k, t = 2λ and n = 3(t+k−1), and d = t+k−1.
One can also get better efficiency using Algebraic-Geometric codes as described in [CDM+20].

3.3 The CDMW Transformation

We start by describing the CDMW transformation, using an abstraction similar to Coretti et al. [CDM+20].
Denote the security parameter by λ, and we want to construct an encryption scheme with message space
Σk. Below we assume that 0 ∈ Σ, and we sometimes think of Σ as a large enough field. The construction
uses the following components

• An underlying encryption scheme E = (GenE ,Enc,Dec) with message space Σ, satisfying tag-nmCPA
security (Definition 3). Below we sometimes call it the component encryption scheme.

• A one-time signature scheme S = (GenS ,Sig,Ver), satisfying strong existential unforgeability (Defini-
tion 1). We denote by κ = κ(λ) the size of the verification key.

• A secret-sharing encoding scheme C = (E,D), with underlying symbol space Σ, dimension k, length n,
decoding radius d, and privacy parameter t.

The CDMW construction is an encryption scheme for messages pt ∈ Σk, E ′ = (Gen′,Enc′,Dec′) as
follows:

Key generation Gen′(1λ).

1. Generate 2κn key pairs (eki,j,b, dki,j,b)← GenE(1
λ) with i ∈ [κ], j ∈ [n], and b ∈ {0, 1};

2. Choose at random a size-t subset S∗ ∈
[(

n
t

)]
, and a random row i∗ ← [κ];

The public key consists of all the 2κn component public keys, and the secret key consists of the 2(n+(κ−1)t)
component secret keys for the designated row i∗ and columns j ∈ S∗,

ek′ =
{
eki,j,b : b ∈ {0, 1}, i ∈ [κ], j ∈ [n],

}
dk′ =

(
i∗, S∗,

{
dki,j,b : b ∈ {0, 1}, i = i∗ or j ∈ S∗}) .

Encryption Enc′(ek′, pt), pt ∈ Σk.

1. Choose a signature key pair (sk, vk)← GenS(1
λ), with |vk| = κ. Denote the i’th bit in vk by vi.

2. Choose encoding randomness r ← R and compute the codeword c := E(pt, r) ∈ C.

3. For all i ∈ [κ], j ∈ [n] encrypt cj ∈ Σ under eki,j,vi
with tag vk: cti,j ← Enc(eki,j,vi

, vk, cj).

Denote the concatenation of all these κn component ciphertexts by c⃗t = (cti,j : i ∈ [κ], j ∈ [n]).

4. Compute the signature σ ← Sig(sk, c⃗t).

The compound ciphertext is ct′ =
(
c⃗t, vk, σ

)
.

10We note that the requirements from Extend imply that t cannot be too close to n, at the very least we need n ≥ t+ k so
that any t-symbol string can be extended to an encoding of any k-symbol information word.
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Decryption Dec′(dk′, ct′). Parse ct′ =
(
c⃗t, vk, σ

)
.

1. Check the signature, if Ver(vk, c⃗t, σ) = 0 then output 0k and halt.

2. Decrypt all the component ciphertexts for which you have keys, γ′
i,j ← Dec(dki,j,vi , vk, cti,j) for i = i∗

or j ∈ S∗.

3. Let c′ = (γ′
i∗,j : j ∈ [n]) be the word encoded in row i∗, and correct c′ to a codeword, setting c̄ = D′(c′).

4. Check that all the columns in S∗ agree with c̄: For all i ∈ [κ], j ∈ S∗, γ′
i,j = c̄j . If any of these checks

fails then output 0k and halt.

5. Decode (x, r) := D(c̄) and output x.

Connection to Technical Overview. Before giving a formal proof of security, we briefly discuss how
this construction satisfies the abstract properties (1)-(3) from the technical overview in Section 3.1.

For (1), we define valid ciphertexts as ones where there is a single codeword c̄ ∈ C such that the component
ciphertexts in each row i decrypt to a value sufficiently close (within distance d) to c̄. Otherwise ciphertexts
are invalid.

For (2), we can consider different decryption secret keys depending on the row i∗ they decrypt. The
original key picks one fixed row i∗ in which it knows all the component secret keys for both bits b ∈ {0, 1}.
The alternate “somewhat defective” decryption keys will only know all the secret keys for either b = 0 or
b = 1 (but not both) in each row i. In particular, for a challenge cipherext ct∗ with verification vk∗ we will
pick a somewhat defective decryption key such that, for each row i, it only knows the secret keys with bit
b = 1− v∗i where v∗i is the i’th bit of vk∗. It will decrypt each ciphertext with verification key vk ̸= vk∗ using
the first row i in which the verification key bits differ vi ̸= v∗i . In both cases, we also keep all the component
secret keys in the special columns S∗ and perform the same checks as the original decryption procedure.
This ensures that: (a) the somewhat defective decryption key is incapable of breaking the semantic security
of ct∗ since it is only capable of decrypting the component ciphertexts of ct∗ is the columns S∗, but these
don’t reveal anything about the message by the hiding of the secret sharing encoding, (b) the somewhat
defective decryption key decrypts every valid ciphertext ct ̸= ct∗ (having vk ̸= vk∗) identically to the original
key, since the row i it decrypts will decode to the same codeword c̄ as in the original decryption and the
checks performed are identical.

For (3), in order for the adversary to produce an invalid ciphertext that decrypts to anything but 0, (via
either the original key or any defective key), there must be some row i that decrypts to a value c that decodes
to some codeword c̄, and some row i′ (possibly i′ = i) that decrypts to a value c′ such that c′ is too far
(more than d distance) from c̄. But in that case, the decryption procedure will output 0 with overwhelming
probability over the choice of S∗; it only fails to do so if none of the columns of S∗ overlap with any of the
positions in which c′ differs from c̄, but this only happens with probability ≤ (1− d

n )
t ≤ 2−λ.

3.4 Proof of Security

Recall, we first give our main proof for 1-FuncCPA+ security (i.e., a single-input functional re-encryption
oracle). However, as we then discuss in Section 3.5, the proof extends directly to general FuncCPA+ security
(with a multi-input functional re-encryption oracle), with only minimal changes.

Lemma 2. If the component encryption scheme E satisfies tag-nmCPA security (Definition 3) and the
signature S satisfies strong existential unforgeability (Definition 1), then the compound scheme E ′ above is
1-FuncCPA+ secure.

Namely we show that under the stated assumptions, the view of a FuncCPA+ attacker A in the “real
world” is indistinguishable from its view in an “ideal world”, in which all the functional re-encryption queries
are answered by encrypting the all-zero plaintext word 0k.
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Simplifying assumptions. Consider some 1-FuncCPA+ adversary A. We sometimes refer to ciphertexts
that A submits to the functional re-encryption oracle as input ciphertexts, and the ones returned from the
oracle are called output ciphertexts.

Firstly, without loss of generality, we can assume that A never submits an input ciphertext which is equal
to a prior output ciphertext. Indeed, if a previous functional re-encryption query (ct, f) returned some ct′,
then a new query (ct′, f ′) could just as well be replaced by (ct, f ′ ◦ f): By definition these two queries have
identical answers.

Secondly, we will assume that A never queries the oracle on an input ciphertext ct′ =
(
c⃗t, vk, σ

)
in which

the signature fails to verify Ver(vk, c⃗t, σ) = 0. This is because we can test this property efficiently given only
ct′ and can replace any such query (ct′, f) with (ct′′, f) where ct′′ is a fresh (correctly generated) encryption
of 0k.

Thirdly, given the above assumptions, we can also assume (by reduction to the signature security) that
the sets of verification keys in the input ciphertexts is disjoint from that in the output ciphertexts: To use
the same verification key vk as in previous output ciphertext, the adversary will need to forge a signatures
on the new c⃗t relative to that previous vk (or a new signature σ on the same c⃗t), which can only happen
with negligible probability.

We call an adversary for which the above three assumptions hold a conforming adversary. The arguments
above imply that conforming adversaries have as much of an advantage as general ones in distinguishing the
real game from the “ideal” one (upto negligible difference due to forgery of the signatures). Below we
therefore fix one conforming adversary A and analyze its advantage. Important concepts in our analysis are
valid/invalid ciphertexts and bad events, which are defined next.

Valid ciphertext. A compound ciphertext ct′ =
(
c⃗t, vk, σ

)
is valid — relative to all the component pub-

lic/secret key pairs, {(eki,j,b, dki,j,b) : b ∈ {0, 1}, i ∈ [κ], j ∈ [n]} — if the following condition holds:

• There exists a unique codeword c̄ ∈ C such that for all i ∈ [κ], using the i’th row for decryption yields
a word which is at most d away from c̄. Namely, setting γi,j := Dec(dki,j,vi

, vk, cti,j) and denoting
ci = (γi,1, . . . , γi,n) for all i, all the ci’s are of Hamming distance at most d from c̄.

A ciphertext is invalid if it is not valid.

Bad events. A big part of the analysis below is devoted to bounding the probability of the bad event in
which A submits an invalid ciphertext to the functional re-encryption oracle, but this invalid ciphertext “is
not caught”.

Consider the set S∗ and all the component public/secret key pairs {(eki,j,b, dki,j,b) : b ∈ {0, 1}, i ∈
[κ], j ∈ [n]}. We denote by Bad the event in which A makes a functional re-encryption query with an invalid
ciphertext ct′ =

(
c⃗t, vk, σ

)
, but the check in step (4) of the decryption procedure does not trigger. Namely,

for all i ∈ [κ], denote by ci = (γi,1, . . . , γi,n) the decryption of the i’th row (as in the definition of valid
ciphertexts above). Then the event Bad occurs if there is a codeword c̄ = (γ̄1, . . . , γ̄n) ∈ C such that:

• There are indices i1, i2 ∈ [κ], such that D′(ci1) = c̄, but ci2 is at Hamming distance more than d from
c̄.

• All the ci’s agree with c̄ on all the symbols in the columns j ∈ S∗: ∀i ∈ [κ],∀j ∈ S∗ : γi,j = γ̄j .

Let q be a polynomial upper bound on the number of functional re-encryption queries made by A. For
all u ∈ [q] denote by Badu the event in which the u’th functional re-encryption query causes the above bad
event to occur. Also, for any v ∈ [q], denote by 1stBadv the event where the first query to cause the bad
event to occur is the v’th query i.e.,:

1stBadv = Bad1 & . . . & Badv−1 & Badv.
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Hybrids. With the same bound q on the number of decryption queries, we consider a set of q + 1 hybrid
experiments, H0, H1, . . . ,Hq. In the hybrid Hu the first u functional re-encryption queries are answered
by encrypting the all-zero plaintext, and all the queries from u + 1 and on are answered as in the real
1-FuncCPA+ game. (Note that the notions of valid/invalid input ciphertexts and bad events apply to all
these hybrids.) The real 1-FuncCPA+ game is therefore H0, the ideal game is Hq, and proving Lemma 2
boils down to showing that ∣∣∣∣PrHq

[A→ 1]− Pr
H0

[A→ 1]

∣∣∣∣ ≤ negl(λ), (1)

for some negligible function negl(·), where A → 1 is the event of A halting after outputting 1. To establish
Equation (1), we first note that∣∣∣∣PrHq

[A→ 1]− Pr
H0

[A→ 1]

∣∣∣∣ ≤ ∣∣∣∣ Pr
Hq

[A→ 1 & Bad]− Pr
H0

[A→ 1 & Bad]

∣∣∣∣
+ Pr

H0

[Bad] + Pr
Hq

[Bad].

The heart of proof below consists of the following three lemmas, whose proofs are provided later in this
section:

Lemma 3. For all u, v ∈ [q] there is a negligible function negl(·) such that∣∣∣∣ Pr
Hu−1

[1stBadv]− Pr
Hu

[1stBadv]

∣∣∣∣ < negl(λ).

Lemma 4. For all v ∈ [q] there is a negligible function negl(·) such that PrHq [Badv] < negl(λ).

Lemma 5. For all u ∈ [q] there is a negligible function negl(·) such that∣∣∣∣PrHu

[A→ 1 & Bad]− Pr
Hu−1

[A→ 1 & Bad]

∣∣∣∣ ≤ negl(λ).

Given these three lemmas, we complete the proof as follows:∣∣∣∣PrHq

[A→ 1]− Pr
H0

[A→ 1]

∣∣∣∣ ≤ ∣∣∣∣ Pr
Hq

[A→ 1 & Bad]− Pr
H0

[A→ 1 & Bad]

∣∣∣∣
+ Pr

H0

[Bad] + Pr
Hq

[Bad]

≤
q∑

u=1

∣∣∣∣ Pr
Hu

[A→ 1 & Bad]− Pr
Hu−1

[A→ 1 & Bad]

∣∣∣∣
+

q∑
v=1

Pr
H0

[1stBadv] +

q∑
v=1

Pr
Hq

[Badv]

≤ 2q · negl(λ) +
q∑

v=1

Pr
H0

[1stBadv], (2)

where in the first inquelity we rely on Bad =
∨

u∈[q] Badu =
∨

u∈[q] 1stBadu and the last inequality is due to

Lemmas 4 and 5. Moreover, for any v ∈ [q] we have

Pr
H0

[1stBadv] = Pr
Hq

[1stBadv] +

q∑
u=1

(
Pr

Hu−1

[1stBadv]− Pr
Hu

[1stBadv]
)

≤ Pr
Hq

[Badv] +

q∑
u=1

∣∣ Pr
Hu−1

[1stBadv]− Pr
Hu

[1stBadv]
∣∣

≤ (q + 1) · negl(λ), (3)
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with the last inequality due to Lemmas 3 and 4. Plugging the expression from Eq. (3) into Eq. (2), we get∣∣∣∣PrHq

[A→ 1]− Pr
H0

[A→ 1]

∣∣∣∣ ≤ 2q · negl(λ) + q · ((q + 1) · negl(λ)) = (q2 + 3q) · negl(λ).

Since negl(·) is negligible and q is polynomial, then also (q2 + 3q) · negl(·) is negligible, completing the proof
of Lemma 2.

3.4.1 Proving Lemmas 3 through 5

The proofs make use of the following two easy observations:

Fact 6. For any u ≥ v, the v’th oracle query in hybrid Hu is answered in a way that does not depend of the
index i∗ or the set S∗ in the secret key.

Proof. By definition of Hu, the v’th output ciphertext consists of just encryption of the all-zero plaintext,
regardless of anything else.

Fact 7. For any u, v ∈ [q], if the event Badv does not occur in the hybrid Hu, then the v’th oracle query is
answered in a way that does not pendent of the index i∗ in the secret key.

Proof. Follows by definition of the bad event Badv. If Badv does not occur, the v’th input ciphertext is either
a valid ciphertext (does not satisfy the first condition of the bad event), or an invalid ciphertext that triggers
one of the checks on decryption (does not satisfy the second condition of the bad event). In the first case,
all the rows i are decrypted to a word ci within the decoding radius d of the code from the same codeword
c̄, so the recovered value c̄ in step (3) of decryption will be the same no matter which row i is used, and the
rest of the decryption procedure does not depend on i. On the other hand, in the second case, the checks
in step (4) of decryption will be triggered and cause the decrypted value to be 0k no matter which row i is
used.

Truncated Hybrids. When analyzing the events Badv or 1stBadv, it is convenient to consider truncated
hybrids, where the game is aborted as soon as A makes the v’th query, indeed whether or not Badv or 1stBadv
happen is fully determined as soon as A made that query, so there is no reason to continue the game. Below
we denote by Hu|v the hybrid Hu, truncated immediately after A’s v’th functional re-encryption query.

3.4.2 Proof of Lemma 3

Lemma 3. For all u, v ∈ [q] there is a negligible function negl(·) such that∣∣∣∣ Pr
Hu−1

[1stBadv]− Pr
Hu

[1stBadv]

∣∣∣∣ < negl(λ).

Proof. By definition of the truncated hybrids, for any u, v ∈ [q] we have that PrHu|v [1stBadv] = PrHu
[1stBadv].

Moreover, we note that when u ≥ v, all the functional re-encryption queries in Hu|v are answered with en-
cryption of the all-zero plaintext. It follows that when u > v then the hybrids Hu−1|v and Hu|v are identical,
and therefore

Pr
Hu−1

[1stBadv] = Pr
Hu−1|v

[1stBadv] = Pr
Hu|v

[1stBadv] = Pr
Hu

[1stBadv].

It remains to prove Lemma 3 for u ≤ v, which we do by reduction to the tag-nmCPA security of the
component encryption scheme E . Before giving a detailed reduction, let us start with a high level description.
We need to switch the u’th output ciphertext from real to an encryption of 0k. First, let us switch how the u’th
output ciphertext is generated, by always choosing the codeword symbols cj in positions j ∈ S∗ uniformly
at random and then choosing the remaining codeword symbols via the Extend procedure to ensure that
the codeword encodes the intended plaintext – by definition, this yields an identically distributed codeword.
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Second, let vk∗ be the verification key in the u’th output ciphertext. We switch how all the oracle queries
are answered: instead of decrypting with the real secret key, we will decrypt each input ciphertext that has
verification key vk′ using some row i in which the i’th bit of vk∗ and vk′ differ. By Fact 7, if the bad event
does not occur before the v’th query, then all the oracle queries are answered identically independent of
which row i is used, and therefore this change cannot affect the probability of the event 1stBadv occurring.
With the above changes, the oracle queries are answered without any knowledge the component secret keys
dki,j,vk∗i for i ∈ [κ], j ̸∈ S∗. Intuitively this lets us replace the encrypted value in the u’th output ciphertext

from real to an encryption of 0k, since the only component ciphertexts that depend on the plaintext are those
encrypted under component public keys eki,j,vk∗i for i ∈ [κ], j ̸∈ S∗, for which the secret keys are no longer
used by the oracle. However, although these secret keys are not used by the oracle, they are needed to check
if the event 1stBadv occurred, since this depends on all the components of all input ciphertexts in oracle
queries 1, . . . , v. The key insight is that we can rely on non-malleability security of the component scheme
to check if the event 1stBadv occurred by making one parallel decryption query on all these ciphertexts at
the very end of the game.

To make the above formal, fix some u ≤ v ∈ [q], and we describe a tag-nmCPA attacker against the compo-
nent encryption E , whose advantage is equal to

∣∣PrHu−1|v [1stBadv]− PrHu|v [1stBadv]
∣∣ = ∣∣PrHu−1 [1stBadv]− PrHu [1stBadv]

∣∣.
The reduction. The tag-nmCPA attacker, denoted B, begins by choosing at random a signature key-pair
(sk∗, vk∗) ← GenS(1

λ) and a size-t subset S∗ ⊂ [n]. It also chooses at random κ(n + t) key-pairs for the

component encryption scheme, setting (dki,j,b, eki,j,b)← GenE(1
λ) for every i ∈ [κ], j ∈ [n] and b = vk∗i , and

also for every i ∈ [κ], j ∈ S∗ and b = vk∗i . In words, B chooses one of every pair of keys (i, j, b) for j /∈ S∗

(corresponding to the bit b = vk∗i ), and both keys (i, j, 0), (i, j, 1) for j ∈ S∗.
B then receives κ(n− t) public keys from its challenger, and assigns them to the missing positions (i, j, b)

for j /∈ S∗ and b = vk∗i . This completes the public key for the compound scheme, ek′ =
{
eki,j,b : b ∈

{0, 1}, i ∈ [κ], j ∈ [n],
}
, which B sends to the 1-FuncCPA+ attacker A.

We note that component secret keys that B knows allow it to decrypt all input ciphertext queries, except
those with verification key vk∗. Indeed for every other verification key vk ̸= vk∗ there is at least one index i∗

with vki∗ ̸= vk∗i∗ , and therefore B has a full functioning compound secret key

dk′ =
(
i∗, S∗,

{
dki,j,b : b ∈ {0, 1}, i = i∗ or j ∈ S∗}) ,

that it can use to decrypt. (Moreover, by Fact 7, if Badv doesn’t happen then A will not be able to tell
which row was used to answer that query.)

Next, B needs to answer the functional re-encryption queries that A makes. Let (ct′k, fk) be the k’th
functional re-encryption query of A. We can assume that the verification keys in all the input ciphertexts
ct′k are different from vk∗ since (a) for k ≤ u A has no information yet on vk∗ and therefore vku ̸= vk∗ except
with a negligible probability, and (b) for k > u we get vkk ̸= vk∗ since A is a conforming adversary. Hence,
by the observation above B can decrypt all these queries. Let ptk be the plaintext that B decrypts for the
k’th query. B replies to the functional re-encryption queries as follows:

• For k = 1, 2, . . . , u− 1, B answer these queries simply by encrypting the all-zero plaintext.

• For k = u+ 1, . . . , v, B replies to the k’th query by encrypting fk(ptk).

• For k = u, B uses its challenge-ciphertext oracle for the component scheme: B first chooses at random
some y ← Σt and extends it to get separate encodings of both the all-zero plaintext as well as the
plaintext fk(ptk). Namely it sets ck,0 := Extend(0k, y, S∗) and ck,1 := Extend(fk(ptk), y, S

∗). (Note
again that ck,0, ck,1 agree on all the columns in S∗, c0,k|S∗ = c1,k|S∗ = y.)

B makes a call to its challenge-ciphertext oracle, relative to all the κ(n − t) component public keys

that it received from its challenger, specifying the words (c0,kj : j /∈ S∗) and (c0,kj : j /∈ S∗) for each
“row” i of public keys. It receives back the ciphertexts {cti,j,b : i ∈ [κ], j /∈ S∗, b = vk∗i }, encrypting
one of these two words in all the rows. B extends them to a full compound ciphertext by encrypting
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the symbols in y for the columns in S∗ (which are the same between ck,0 and ck,1), relative to the
appropriate public keys eki,j,b for all i ∈ [κ], j ∈ S∗ and b = vk∗i .

Concatenating all these component ciphertexts to a vector c⃗t, B uses the signing key vk∗ to generate
a signature σ∗, and replies to A with the output ciphertext ct′u = (c⃗t, vk∗, σ∗).

Depending on the answer from the challenge-ciphertext oracle of B, this is indeed a valid encryption
of either the all-zero plaintext or the plaintext fk(ptk). Moreover, since Extend(· · · ) yields the same
distribution on codewords as E(· · · ), then we also get the right distribution for this output ciphertext.

Finally, after A makes its v’th functional re-encryption query, B uses its parallel decryption query to deter-
mine if the event 1stBadv happened. This decryption query includes all the component ciphertexts in all the
functional re-encryption queries k = 1, 2, . . . . , v, for which B is missing the component secret key.

Importantly, the tags in all these queries are different than the tag vk∗ that B used for the query to its
challenge-ciphertext oracle, hence this is a valid decryption query that B is allowed to make. Also, we note
that a single decryption query at the end is sufficient, B does not need to make adaptive queries. Given
these decryptions, B can determine if the event 1stBadv occurred or not, outputting 1 if it occurred and 0
if not.

Analysis of the reduction. Denote by H ′
u−1 the reduction experimenter where B’s challenge-ciphertext

oracle encrypts the encoded all-zero plaintext, and byH ′
u the reduction where the oracle encrypts the encoded

fu(ptu). Note that the only difference between H ′
u−1 and the hybrid Hu−1 is that in Hu−1 the same row is

used to decrypt all the queries, whereas B uses different rows for different queries in H ′
u−1 (and the same

holds for H ′
u vs. Hu).

11

However, due to Fact 7, as long as none of the bad events Bad1, . . . ,Badv−1 happen, the view of A is
independent of the row that was used to decrypt. And as soon as any of these events happen, we are ensured
that 1stBadv does not happen (in any of H ′

u−1, Hu−1, H
′
u, and Hu). It follows that PrH′

u−1
[1stBadv] =

PrHu−1
[1stBadv] and PrH′

u
[1stBadv] = PrHu

[1stBadv]. Hence the advantage of B in the tag-nmCPA game
is exactly ∣∣∣∣∣ Pr

H′
u−1

[1stBadv]− Pr
H′

u

[1stBadv]

∣∣∣∣∣ =
∣∣∣∣ Pr
Hu−1

[1stBadv]− Pr
Hu

[1stBadv]

∣∣∣∣ ,
as needed. This completes the proof of Lemma 3.

3.4.3 Proof of Lemma 4

Lemma 4. For all v ∈ [q] there is a negligible function negl(·) such that PrHq [Badv] < negl(λ).

Proof. Recall that in the hybrid Hq, all functional re-encryption queries are answered with a fresh encryption
of the all-zero plaintext, regardless of the input ciphertext. Hence, the view of A in that hybrid is independent
of the set S∗ of columns that is used to check the ciphertext during decryption. We can therefore analyze
the probability of the event Badv in a modified game, in which the set S∗ is chosen at random after the v’th
decryption query.

Let ct′ = (c⃗t, vk, σ) be the input ciphertext in the v’th query, and denote by ci ∈ {0, 1,⊥}n the word
obtained by decrypting the i’th ciphertext row. To trigger the bad event Badv, the first conditions says that
ct′ must be an invalid ciphertext, so there are indices i1, i2 ∈ [κ], such that D′(ci1) = c̄ = (γ̄1, . . . , γ̄n), but
ci2 = (γi2,1, . . . , γi2,n) is at Hamming distance more than d from c̄. But in that case the probability (over S∗

chosen as a random size-t subset of [n]) of the second condition holding, γi2,j = γ̄j for all j ∈ S∗, is bounded
by (1− d

n )
t ≤ 2−λ.

11An “invisible” difference is that u’th output ciphertext is computed using Extend rather than applying the encoding E(· · · ),
but this produces the same distribution over the codewords.
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3.4.4 Proof of Lemma 5

Lemma 5. For all u ∈ [q] there is a negligible function negl(·) such that∣∣∣∣PrHu

[A→ 1 & Bad]− Pr
Hu−1

[A→ 1 & Bad]

∣∣∣∣ ≤ negl(λ).

Proof. The proof is nearly identical to Lemma 3, by reduction to the tag-nmCPA-security of the component
encryption scheme E . The only differences are (a) the reduction continues all the way to the end of the game
(rather than aborting it after the v’th functional re-encryption query), and (b) the reduction algorithm’s
output at the end is calculated differently.

Specifically, the tag-nmCPA attacker B begins exactly the same as in the proof of Lemma 3, and answers
functional re-encryption queries of A in exactly the same way. Once A halts with some output bit b, the
attacker B uses its parallel decryption query to determine if the event Bad happened. This decryption query
includes all the component ciphertexts in all the functional re-encryption queries k = 1, 2, . . . , q, for which
B is missing the component secret key. (As before, the tags in all these queries are different than the tag
vk∗ that B used for the query to its challenge-ciphertext oracle, hence this is a valid decryption query that
B is allowed to make.) Given these decryptions, B can determine if the event Bad occurred or not. B then
outputs 1 if A returned 1 and Bad did not occur, and 0 otherwise.

As in the proof of Lemma 3, the view of A in the reduction is identical to its view in the hybrids Hu−1

orHu as long as the event Bad did not occur, and therefore the advantage of B is equal to |PrHu [A→ 1 & Bad]
− PrHu−1

[A→ 1 & Bad]|.

Remark 1. We note that since we applied the CDMW transformation to a non-malleable scheme (which
is in particular CPA secure), then the resulting E ′ is also non-malleable, not just 1-FuncCPA+ secure. In
fact, it can simultaneously withstand any number of adaptive functional re-encryption queries and a single
parallel decryption query at the end of the game.

On the other hand, it is easy to see that this scheme is not CCA-secure (not even CCA1-secure). This is
true for the same reason that the original CDMW transformation fails to produce a CCA-secure scheme: An
attacker with adaptive access to a decryption oracle can use that oracle to detect the columns in the special
subset S∗, then figure out the special row i∗, and then completely break the scheme.

3.5 Extension to General FuncCPA-Security

The proof of Lemma 2 extends easily to show multi-input FuncCPA+ security, and not just 1-FuncCPA+

security. In fact, the proof is essentially identical with minor syntactical modifications:

• The simplifying assumptions on the adversary remain the same, but now there are multiple input
ciphertexts for each query. In partcicular, without loss of generality, we can assume that (a) none of
the input ciphertexts in any query are equal to any previous output ciphertext, (b) the signatures of
all of the input ciphertexts verify correctly, (c) the sets of verification keys in the input ciphertexts is
disjoint from that in the output ciphertexts.

• We define the Bad event for a multi-input query is triggered if any of the ciphertexts in that query
satisfy the original definition of the Bad event.

• The rest of the proof proceeds identically. In the proof of Lemma 4, we need to take an additional
union bound over all ℓ input ciphertexts in the v’th query.

4 Conclusions and Open Problems

In this work we proved that FuncCPA secure encryption can be constructed from any CPA scheme, essentially
by applying twice the CPA-to-mnCPA transformation of Choi et al. [CDMW18a]. A remaining open problem

17



is to come up with simpler constructions, and in particular to resolve the question of whether a single
application of this transformation suffices.

A similar question can be asked about non-functional re-encryption oracles, if it is easier to construct a
secure scheme against non-functional re-encryption oracles from CPA than one secure against functional re-
encryption? We remark that sometimes it is easier to withstand non-functional re-encryption. For example,
ElGamal encryption is easily seen to be secure against non-functional re-encryption. However, we do not know
if it can be proven secure against functional re-encryption under a reasonable assumption (or, conversely, if
there is some surprising attack). More generally, it might be interesting to build natural number-theoretic
FuncCPA+-secure scheme which are not CCA1-secure.

Another open problem is the relation between FuncCPA and FuncCPA+: we have shown implication in
one direction (and separation for non-functional re-encryption oracles), but the other direction for functional
re-encryption oracles remains open. If the general separation is found, it would be interesting to see if there
are any real-world applications which require the stronger form of FuncCPA+ security, and could be insecure
with FuncCPA security.

More generally, it would be good to find more applications of FuncCPA and FuncCPA+ encryption
schemes.
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A Direct Implications and Separations

It follows directly from the definitions above that every CCA2-secure scheme is also nmCPA-secure, which
is in turn also CPA secure. Additionally, in Lemma 1 we prove that every FuncCPA+-secure scheme is also
FuncCPA-secure, which is in turn CPA secure by definition. Here we study the other (non-)implications.

First, while our intuition tells us that every CCA2-secure scheme should also be FuncCPA+ secure, we
note that this implication is not completely straightforward, because the FuncCPA attacker is allowed to
copy the challenge ciphertext for its re-encryption queries, while the CCA2-attacker is not allowed to do so.
Nonetheless, we show that our intuition is still correct. In fact, we show that already (weaker) CCA1-security
implies FuncCPA+ security.

Lemma 8. Every CCA1-secure encryption scheme is also FuncCPA+-secure. (In particular, CCA2-security
implies the original FuncCPA-security.)

Proof. Let q be the overall number of re-encryption queries made by the FuncCPA+-attacker A. For 0 < i ≤
q, we define hybrid Hi where the first i re-encryption queries (c⃗t, f) by A return E(ek, f(Dec(dk, c⃗t))), and the
remaining (q−i) queries return E(ek, 0). By hybrid argument it is enough to prove thatHi is indistinguishable
from Hi+1, for every 0 < i ≤ q, as H0 and Hq corresponding to b = 0 and b = 1 experiments, respectively.

For the latter, we have the following almost immediate reduction to CCA1-security from Definition 2. To
simulate the j-th query (ctj , fj) of an attacker A claiming to distinguish Hi from Hi+1, the CCA1 attacker
B does the following:

• For j < i, query its decryption oracle O1 on the ciphertexts in c⃗tj , obtaining plaintexts p⃗tj .

Compute pt′j = fj(p⃗tj), and return to A an honestly generated ct′j = Enc(ek, pt′j).

• For j = i, query its decryption oracle O1 on the ciphertexts in c⃗ti, obtaining plaintexts p⃗ti.
Compute pt∗ = fi(p⃗ti), and submit the tuple (pt∗, 0) as its challenge.
Finally, return to A the resulting challenge ciphertext ct∗ to the attacker.

• For j > i, ignore (c⃗tj , fj), and return E(ek, 0) to A.
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For b = 0, this run of B is a perfect simulation of Hi, while for b = 1 it is a perfect simulation of Hi+1,
completing the proof.

In the opposite direction, Akavia et al. demonstrated in [AGHV22] that (somewhat surprisingly) CPA
security of a scheme does not imply even the most basic ReEncCPA security of the same scheme. Below we
extend their example to show that non-malleability (i.e., nmCPA-security) of a scheme also does not imply
even ReEncCPA security. We also demonstrate that even FuncCPA+ security does not imply nmCPA-
security.

Lemma 9. If nmCPA-secure encryption schemes exist, then there exists a nmCPA-secure encryption scheme
which is not ReEncCPA-secure. Conversely, if FuncCPA+-secure encryption schemes exist, then there exists
a FuncCPA+-secure encryption scheme which is not nmCPA-secure.

Proof. Starting from the easy separation, we can append 0 to all honestly produced ciphertexts in a
FuncCPA+-secure encryption scheme, and have the decryption oracle simply ignore this appended bit. This
clearly does not change FuncCPA+-security, as all honestly re-encrypted ciphertexts will still end with 0.
However, the scheme is obviously malleable, by flipping the last bit of the challenge ciphertext from 0 to 1,
and calling the decryption oracle of the resulting (formally “distinct”) ciphertext.

For the other separation, let E = (Gen,Enc,Dec) be a scheme which is nmCPA-secure according to
definition 2, and we modify it into a scheme E ′ = (Gen′,Enc′,Dec′) as follows:

• Gen′ just runs Gen twice, outputting the two pairs ((dk, dk′), (ek, ek′)). Roughly, dk, ek are the “real
keys” for decryption and encryption, whereas dk′, ek′ are used for signalling various events.

• The new encryption Enc′((ek, ek′), pt) checks if pt is the secret key corresponding to either ek or ek′:

– If pt is the secret key corresponding to ek or ek′ then output 1|pt,
– Otherwise output 0|Enc(ek, pt).

• The new decryption Dec((dk, dk′), ct′) parses ct′ = b|ct with b ∈ {0, 1}, then proceeds as follows:

– If b = 1 and ct = dk′ then output dk,

– If b = 1 and ct ̸= dk′ then output dk′,

– Otherwise output Dec(dk, ct).

It is easy to see that the modified E ′ is still nmCPA-secure: An nmCPA attack on E ′ can be turned into
nmCPA attack on the underlying E by having the reduction generate (dk′, ek′) itself, then simulate the sole
decryption query to E ′ using its decryption oracle to E : Unless the E ′ attacker guesses dk′ (on which it has
no information other than seeing ek′), then it cannot trigger the 1st bullet on decryption above.

On the other hand, it is easy to see that a ReEncCPA attacker can break this scheme completely, first
making a query with ct = 11 . . . 1 to get 1|dk′, then making a second query with 1|dk′ to get “the real
key” dk.

Next, we show separation between ReEncCPA and ReEncCPA+ notions (and conjecture that similar
separations hold for FuncCPA and 1-FuncCPA notions).

Lemma 10. If ReEncCPA-secure encryption schemes exist, then there exists a ReEncCPA-secure encryption
scheme which is not ReEncCPA+-secure.

Proof. Let E = (Gen,Enc,Dec) be a scheme which is ReEncCPA-secure according to definition 2, and
we modify it into a scheme E ′ = (Gen′,Enc′,Dec′) as follows: The key generation remains unchanged,
Gen′ = Gen. Encryption is modified by setting

Enc′(ek, pt) =

{
11 . . . 1 if pt is a decryption key corresponding to ek

0|Enc(ek, pt) otherwise.
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(Note that it is possible to check efficiently whether the condition above holds.) Decryption is also modified,
as follows:

Dec′(dk, ct′) =

{
dk if ct′ begins with a 1

Dec(dk, ct) if ct′ = 0|ct.

It is easy to see that E ′ is still ReEncCPA-secure according to definition 2 (with a non-functional de-
cryption oracle), since access to the oracle for E ′ can be perfectly simulated using access to the oracle for E .
(Indeed ciphertext beginning with 1 are answered with 11 . . . 1 and ciphertexts beginning with 0 are answered
as in E , with a zero prepended to the reply.) On the other hand, it is easy to distinguish a true re-encryption
oracle from a zero-encrypting one, just by querying it on any ciphertext that begins with a 1.

Finally, we show that a 1-FuncCPA+-secure scheme is not necessarily FuncCPA-secure (and, thus, not
necessarily FuncCPA+-secure), assuming the existence of CCA-secure schemes.

Lemma 11. If CCA-secure encryption schemes exist, then there exists a 1-FuncCPA+-secure encryption
scheme which is not FuncCPA-secure.

Proof. Let E = (Gen,Enc,Dec) be a CCA-secure scheme, and let OWF (·) be a one-way function. (Recall
that CCA-secure encryption implies the existence of one-way functions.) Consider the modified scheme
E ′ = (Gen′,Enc′,Dec′), defined as follows:

• Gen′(1λ) runs the underlying key-generation (dk, ek)← Gen(1λ), and in addition chooses two uniformly
random and independent strings r, s← {0, 1}λ and sets y = OWF (r⊕s). The public key is ek′ = (ek, y)
and the secret key is dk′ = (dk, r, s).

• Enc′(ek′, pt): If y = OWF (pt) then output pt, else output (0,Enc(ek, pt)).

• Dec′(dk′, (b, ct)): If b = 0 then output Dec(dk, ct). If b = 1 then output r, if b = 2 then output s.

We show that E ′ is 1-FuncCPA+-secure, but not FuncCPA-secure. To see that E ′ is 1-FuncCPA+-secure, let
us again consider only adversaries that never use the answers from previous re-encryption queries as inputs
to future queries. (As we argued before, we can make this assumption without loss of generality.) Fixing
one such adversary, we consider a sequence of hybrids, where in the i’th hybrid the first i − 1 queries are
answered by encryption of 0, and the i’th query and later are answered by the single-ciphertext re-encryption
oracle. Arguing that hybrid i is indistinguishable from hybrid i+ 1 is done in two steps:

• We first argue that the i’th query will not decrypt to r ⊕ s (except with a negligible probability), by
reduction to the one-wayness of OWF (·). Here, the reduction algorithm is given the secret key dk of
the underlying encryption scheme Enc.

• Then we replace the i’th query answer by an encryption of zero, and argue indistinguishability by
reduction to the CCA-security of the underlying scheme E . Here the reduction algorithm is given
access to the decryption oracle of E , that allows it to simulate the answers to all future queries.

On the other hand, it is clear that E ′ is not FuncCPA-secure. The multi-ciphertext re-encryption oracle
is easily distinguishable from a zero-encrypting oracle, because it enables easy extraction of a pre-image of y
under OWF (·): The multi-ciphertext query (ct1 = (1, 0λ), ct2 = (2, 0λ), f = ⊕) will decrypt ct1 to r and ct2
to s, then compute x = f(r, s) = r ⊕ s, and applying the modified encryption procedure it will return the
pre-image x. (As above, obtaining a pre-image of y is is hard given a zero-encrypting oracle, by reduction
to the one-wayness of OWF (·).)
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