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Abstract—Non-fungible tokens (NFTs) are unique non-interchangeable digital assets verified and stored using blockchain technology.
Quite recently, there has been a surging interest and adoption of NFTs, with sales exceeding $10 billion in the third quarter of 2021.
Given the public state of Blockchain, NFTs owners face a privacy problem. More precisely, an observer can trivially learn the whole
NFT collections owned by an address. For some categories of NFTs like arts and game collectibles, owners can sell them for a profit.
However, popular marketplaces trade NFTs using public auctions and direct offers. Hence, an observer can learn about the new owner
and the NFT purchase price. To tackle those problems, we propose Aegis, a protocol that allows users to add privacy to their NFTs
ownership. In Aegis users can swap NFTs for payment amounts in fungible tokens while hiding the details (i.e., involved parties, the
NFTs, and the payment amounts). One of the main properties of Aegis is its complete compatibility with existing NFT standards. We
design Aegis by leveraging zkSNARK proof system and smart contracts. We build an open-source prototype and perform experiments
to evaluate Aegis’s performance.
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1 INTRODUCTION

NON fungible tokens (NFTs) have gained significant
interest and adoption. Sales volumes of NFTs surged

to $10.7 billion in the third quarter of 2021 alone [1]. The
popular and largest NFT marketplace, Opensea1 hit $3.4
billion as a sales volume in August 2021 [1]. NFTs are tokens
that represent ownership of unique digital items such as
art [2], collectibles [3], essays [4], domains [5], and even
tickets to access real-world events [6]. Although anyone can
trivially copy digital assets, an NFT can have one owner
only at a time, and the Blockchain secures the ownership sta-
tus. In particular, the standard NFT smart contract [7] (ERC-
721) contains a mapping that associates each NFT identifier
with its corresponding owner’s address. The smart contract
code guarantees that only the owner or approved operators
can assign a new owner.

The design of Aegis is primarily motivated by the cur-
rent limitations of NFT standards and marketplaces design.
For instance, ERC-721 specifications [7] require compatible
smart contracts to expose the owner’s address given the
NFT identifier. Privacy-advocate users cannot tolerate this
limitation as none would like their entire NFT collections
to be accessible to the public. The lack of privacy could
also introduce the owners to life-threatening situations. For
example, suppose Bob has an address x that is the owner
of an NFT ticket for a real-world event. After scanning x
using online services such as Etherscan, it turns out that x is
also the owner of some of the most expensive and premium
NFTs in addition to significant fungible assets. Effectively,
this information could attract bandits in an attempt to find
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Bob in the event’s small proximity and find ways to extort
his private key.

Furthermore, the current design of NFTs marketplaces
also lacks privacy. For instance, the popular NFTs market-
place Opensea allows users to trade NFTs only via public
auctions and swaps. Unfortunately, in public auctions, an
observer can trivially learn the submitted bids even before
they get mined by simply inspecting the mempool. Hence,
these auctions are susceptible to front-running, an illegal
act that provides risk-free profits to front-runners. More-
over, public auctions and swaps reveal sensitive information
about the seller, buyer, NFT, and payment amount.

The contribution of this paper can be summarized as
follows: We design Aegis as a privacy-preserving protocol
that allows users to add privacy to their NFT ownership
status. Aegis enables users to maintain private balances of
funds in a non-custodial manner. More importantly, Aegis
allows users to atomically swap their NFTs for payment
amounts in a complete privacy-preserving way without
revealing any information about the involved participants,
NFTs, and payment amounts. Finally, we implemented a
basic prototype to assess name’s performance and released
its source code [8].

The rest of this paper is organized as follows. Section 2
outlines the background before giving an overview of Aegis
in Section 3. Section 4 presents a detailed construction of
Aegis. Section 5 analyzes the Aegis’s security and privacy.
Section 6 evaluates Aegis’s performance based on an open-
source prototype. Section 7 summarizes related work on
adding privacy to transactions on Ethereum. Finally, Sec-
tion 4 concludes this paper.

2 BACKGROUND AND PRELIMINARIES

Ethereum Blockchain. acts as a distributed virtual ma-
chine that supports quasi Turing-complete programs [9].
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Developers can deploy smart contracts guaranteed by the
blockchain consensus to run precisely according to their
code. There are types of accounts: externally-owned accounts
(EoA) controlled by users’ private keys, and contract accounts
owned by smart contracts . Only EoAs can send transactions
that change the blockchain state. In particular, transactions
can transfer Ethers and trigger the execution of smart con-
tract code. The costs of executing smart contracts code are
measured in gas units, and the transaction’s sender pays the
gas cost in Ether.

NFT Smart Contracts. NFT smart contracts adhere to
the standard specifications outlined by ERC-721 [7]. Ad-
ditionally, ERC-1155 [10] is a novel standard for creating
fungibility-agnostic tokens. Both standards maintain map-
pings from NFT identifiers (IDs) to their owners’ addresses.
This mapping is publicly accessible; hence, an observer
can trivially determine the NFTs collection owned by an
arbitrary user. Moreover, the observer can track how the
ownership status of an arbitrary NFT changes over time.

To transfer the ownership of an NFT, the owner sends
a transferFrom transaction [7] to the NFT smart contract
to assign an address as the new owner. Alternatively, the
owner can send approve [7] transaction to set an operator.
In practice, the operator is a smart contract that changes
ownership status based on a specific trigger. For example,
users set smart contracts of marketplaces as operators to
their NFTs, allowing the marketplace to transfer ownership
from a seller (i.e., current owner) to a buyer (i.e., new owner)
once the trade is complete.

Meta-Transactions. In Ethereum, all transactions con-
sume gas, and their senders must have enough Ether to pay
for the gas cost. Furthermore, Ethereum uses account-model
where an EoA trivially links all transactions performed by
its user. One way to break that link is by having another
EoA, not owned by the user, pay the gas cost. In particular,
the user generates a meta-transaction [11] containing some
parameters and sends it to a trustless relayer. Then, the
relayer creates a transaction with those parameters and pays
the gas cost. To compensate relayers, they often receive
shares from protocols’ fees which should cover their ex-
penses plus an extra profit.

3 Aegis OVERVIEW

We specify the system goals and threat model. Then, we
provide the structure of Aegis and protocol participants.
Finally, we briefly describe transactions in Aegis.

Aegis works in the Unspent Transaction Output (UTXO)
model where users own multiple coins controlled by differ-
ent keys in contrast to having a single state as in Account
model. Hence, transactions in Aegis privately consume old
UTXO(s) and generate new ones. Since Ethereum has a pub-
lic state, then Aegis smart contract needs to conceal users’
state in the form of commitments to NFT IDs and funds.
However, as the smart contract cannot access the committed
values, it cannot determine if they are updated correctly. To
solve this dilemma, users submit Zero-Knowledge Succinct
Non-interactive ARgument of Knowledge (zkSNARK) [12]
proofs that assert the correctness of state updates without
revealing any further information. Upon successful verifica-
tion, the smart contract accepts the updated state. Further-
more, the smart contract utilizes incremental Merkle trees

to accumulate commitments of new UTXOs. Additionally,
to prevent double-spending, Aegis leverages the notion of
serial numbers [13] to privately nullify consumed UTXOs
without linking them to the new ones.

3.1 System Goals

We design Aegis such that it achieves the following goals:

• Unlinkability: an adversary cannot link between NFTs
deposit and swap transactions. Similarly, the adversary
cannot link funds deposit to swap and withdrawal
transactions.

• Balance: an adversary cannot successfully withdraw
assets belonging to honest users.

• Atomic Swap: honest sellers and buyers can successfully
swap their assets atomically, or the swap reverts en-
tirely without causing any loss.

• Availability: users should always be able to submit
transactions without any risk of censorship.

• Compatibility: Aegis should be compatible with existing
NFT smart contracts standard [7] without requiring any
changes to the deployed contracts.

3.2 Threat Model

We assume the cryptographic primitives are secure. We fur-
ther assume the adversary A is computationally bounded
and cannot tamper with the execution of the Aegis smart
contracts. Additionally, A has the capabilities of a miner
(i.e., reorder transactions within a blockchain block, and
inject its transactions before and after certain transactions).
A can always read all transactions issued to Aegis while
propagating over the network. We assume users can always
read from and write to the blockchain state. Moreover, users
utilize trustless relayers to submit non-deposit transactions
on their behalf.

3.3 Protocol Participants

In Aegis, there are four participants: sellers, buyers, trustless
relayers, and a smart contract. Sellers privately own NFTs
in Aegis, and they can swap for payment amounts or
withdraw them by transferring the ownership from Aegis.
Similarly, buyers have private funds in Aegis, which they
can swap for NFTs or withdraw. Relayers receive meta-
transactions from sellers and buyers and submit transac-
tions to Ethereum while paying the gas cost. They are incen-
tivized by rewards from Aegis based on their contribution.
We assume sellers and buyers are implicitly using relayers.
For example, a user sends a transaction to Aegis implies that
the user sends a meta-transaction to a relayer, and the
relayer sends a transaction to Aegis.

Aegis has a Main smart contract in addition to two
internal smart contracts:

• Main: it receives transactions from users, and it is the
non-custodial owner of all deposited NFTs and funds.

• Merkle: it implements an efficient incremental Merkle
tree.

• Verifier: it verifies zkSNARK proofs.
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Figure 1. Green components are Aegis smart contracts. Users directly
send transactions in blue, while relayers send transactions in red. Black
arrows are calls between smart contracts

3.4 Aegis Transactions
Figure 1 shows a high-level overview of transactions in
Aegis. Users can directly deposit NFTs and funds to Main.
A seller and a buyer communicate off-chain to agree on
the swap detail, such as the NFT ID and payment amount.
Then, the buyer can send swap transaction to settle the
exchange. Furthermore, users can withdraw their assets
from Main to public recipient addresses. More importantly,
swap and withdrawal transactions are sent via relayers, so
an observer cannot link them to deposit transactions using
the gas payer’s address.

NFT Transactions. Aegis does not mint NFTs; therefore,
sellers have to transfer the ownership of their NFTs in a
non-custodial manner to Main. Accordingly, sellers initially
send approve transactions [7] to their NFT smart contracts
to assign Main’s address as an operator. Then, sellers can
add privacy to their NFTs ownership status by sending
DepositNFT transactions to Main. Finally, Main (i) trans-
fers ownership from the user’s address to its address, (ii)
generates an NFT commitment, (iii) and accumulates it in
the NFTs Merkle tree. Later, a seller can send WithdrawNFT
transaction containing a zkSNARK proof of NFT ownership.
Upon successful verification, Main transfers the ownership
to the recipient’s address which should be different from the
deposit address.

Fund Transactions. Aegis allows buyers to build private
funds that they can swap for NFTs in a privacy-preserving
manner. Buyers send DepositFund transactions that in-
clude amounts in Ethers to Main. Then, Main generates
a fund commitment for the deposited amount and accu-
mulates the commitment in the funds Merkle tree. Later, a
buyer can send WithdrawFund transaction containing a zk-
SNARK proof of funds. Upon successful verification, Main
transfers the requested amount to the recipient’s address.

Swap Transaction. Aegis allows users to trade NFTs
without revealing IDs, payment amounts, and identities.
The NFT trade is an atomic swap that either completes
successfully or reverts without causing any loss. To un-
derstand how atomic swap works in Aegis, consider the
following basic protocol that uses digital signatures. Alice
wants to transfer an NFT a to Bob for a payment amount
b. She deploys a smart contract and initializes it with her
and Bob’s public signature verification keys. Additionally,
the smart contract holds assets a and b as escrow. Then,
Alic signs Bob’s asset b, and Bob signs her asset a. Next,

Bob sends both signatures to the smart contract. Finally,
the smart contract settles the swap only if both signatures
are valid for the counterparty’s asset. This simple protocol
correctly performs atomic swap; however, it lacks privacy
since assets and owners are public. Aegis fixes this issue
by utilizing zkSNARK proofs as signatures of knowledge [14]
over commitments instead of digital signatures over plain-
text values.

4 AEGIS DETAILED CONSTRUCTION

4.1 Building Blocks
Hash Functions. Let H2 and H3 be collision-resistant

hash functions that map two and three elements from Fp

to an element in Fp, respectively.

H2 : Fp × Fp −→ Fp

H3 : Fp × Fp × Fp −→ Fp

Pseudorandom Functions. To utilize Aegis, a user sam-
ples a seed s

$←− Fp and keeps it private. We construct
PRFaddr and PRFsn using H3 to generate spending ad-
dresses and serial numbers as follows:

PRFaddr(s, ·) = H3(0, s, ·)
PRFsn(s, ·) = H3(1, s, ·)

Commitment Scheme. We instantiate a commitment
scheme COMM using H2 to generate NFTs and funds com-
mitments as follows:

COMM : Fp × Fp −→ Fp

COMM(v, addr) = H2(v, addr)

v denotes an NFT ID or a fund amount, and addr is a
spending address generated randomly for each commitment
(i.e., commitment randomness).

Merkle Trees. We instantiate Merkle trees as incremental
binary trees of depth d using H2 over the left and right chil-
dren. More importantly, Merkle smart contract implements
an efficient append-only Merkle tree as shown in Fig. 2. In
particular, Merkle stores the last l roots and d elements
comprising the Merkle proof for the first empty leaf. For
example, in Fig. 2, the Merkle proof for the first empty leaf in
the left tree is π = (5, 00, 13). Using π and the new element
6, Merkle can compute the new root 15 in the right tree.
Finally, Merkle sets π = (0, 11, 13) as the Merkle proof for
the next empty leaf.

It is worth mentioning that using the Merkle proof
π stored on Merkle is insufficient for users to generate
Merkle proofs for their commitments. Therefore, Main emits
NewCommitment event for every new commitment. Con-
sequently, by scanning Ethereum for these events, users
can collect every accumulated commitment for building the
entire Merkle tree off-chain. Hence, users can successfully
generate proof of membership for any commitment.

Coin Structure. We use the term coin [13] to refer to a
data object that represents NFTs and funds in Aegis. The
coins for NFTs and funds have the exact structure, yet their
commitments are accumulated in two separate instances of
Merkle smart contract. To generate a coin c for a value v, a
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Figure 2. Illustration of accumulating a new element 6. The shaded circles are Merkle proof π for the first empty leaf, which is depicted in green.
.

user with a private seed s samples ρ
$←− Fp. Then, the user

utilizes s and ρ to generate a spending address addr, a serial
number sn as follows:

addr ← PRFaddr(s, ρ)

sn← PRFsn(s, ρ)

cm← COMM(v, addr)

c← (ρ, v, addr, sn, cm)

The user keeps ρ private, which will be used as part of the
witness to generate zkSNARK proofs for spending the coin
c. For transactions in Main, the user sends cm for new coins
and sn for spent coins in swap and withdrawal transactions.
Additionally, in deposit and withdrawal transactions, Main
must validate the transferred in/out value v; therefore, the
user sends the committed values (v, addr) for new and
withdrawn coins, respectively.

4.2 Aegis Setup
Aegis protocol relies mainly on zkSNARK proofs that as-
sert the satisfiability of constraints in circuits. We design
Ownership and JoinSplit circuits for checking the valid-
ity of NFTs and funds coins, respectively. More importantly,
both circuits include a message signal for defining an extra
parameter to facilitate swaps and withdrawals (e.g., the
recipient’s Ethereum address and counterparty’s coin com-
mitment). In particular, this signal allows users to signatures
of knowledge [14] on a message m given knowledge of a valid
witness.

Ownership. It allows users to prove the correctness of
transferring NFT ownership from an input coin to an output
one. It checks (i) knowledge of the sender’s seed and ran-
domness for the input commitment, (ii) validity of Merkle
proof of membership, (iii) correctness of the serial number,
(iv) and correctness of the output coin’s commitment on the
same NFT.

JoinSplit. It allows users to prove the correctness of
joining funds from up to two input coins and splitting that
amount into two output coins (e.g., a recipient coin and
a change coin for the sender). In addition, it checks (i)
equality of the input and output balances, (ii) knowledge
of the sender’s seed and randomnesses for the input com-
mitments, (iii) correctness of serial numbers, (iv) validity of
Merkle proofs of membership, (v) correctness of the output
commitments, (vi) and the output values lie in the range
of [0, vmax] to avoid arithmetic overflow and underflow in
Fp. More importantly, it skips constraints check for a dummy
input commitment with a zero value. Therefore, a user with
one input coin can still utilize the circuit by providing a
dummy coin as the second input. Additionally, a user can

Ownership(x⃗, w⃗)
• Statement x⃗:

– root: the root of NFTs Merkle tree
– snin: serial number of input coin
– cmout: commitment of output coin
– m: message

• Witness w⃗:
– s: sender’s seed
– v: NFT ID
– ρin: the randomness of input coin
– πin: proof of membership for the commitment of

input coin
– addrout: spending address of output coin

• Compute and assert:
addrin ← PRFaddr(s, ρin)
cmin ← COMM(v, addrin)
Merkle.Verify(cmin, root, πin) = 1
snin = PRFsn(s, ρin)
cmout = COMM(v, addrout)

join the entire input funds into one output coin by using a
dummy coin for the other output.

Setup and Deployment. For Groth [12] zkSNARK con-
struction, the circuit’s signals must be fixed before running
zkSNARK Setup (i.e., circuits cannot utilize a variable num-
ber of signals).

(pkown, vkown)← zkSNARK.Setup(1λ,Ownership)

(pkjs, vkjs)← zkSNARK.Setup(1λ,JoinSplit)

Both JoinSplit and Ownership circuits verify Merkle
proofs of membership which rely on the Merkle tree depth
d. Therefore, d is one of the public parameters fixed per
circuit setup. Next, Main smart contract is deployed and
initialized with the verifying keys and Merkle tree depth.
In turn, Main initializes Verifier and Merkle smart
contracts for NFTs and funds. Additionally, it maintains two
lists for storing and tracking revealed serial numbers from
spent NFT and funds coins. Finally, it initializes a mapping
for translating an NFT globally unique identifier into an
NFT smart contract address and token ID.

4.3 Deposit Transactions

To trade on Aegis, a user initially deposit an NFT or funds.
These deposits are non-custodial because a user can with-
draw them at any time. Furthermore, due to the inherent
public state of the Blockchain, a deposit transaction reveals
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JoinSplit(x⃗, w⃗)
• Statement x⃗:

– root: the root of funds Merkle tree
– {snin

i }: serial numbers of input coins
– {cmout

i }: commitments of output coins
– m: message

• Witness w⃗:
– s: sender’s seed
– {ρini }: randomnesses of input coins
– {vini }: values of input coins
– {πin

i }: proofs of membership for commitments
of input coins

– {addrouti }: spending addresses of output coins
• Compute and assert:∑2

i=1 v
in
i =

∑2
i=1 v

out
i

For i ∈ {1, 2}
cmout

i = COMM(vouti , addrouti )
0 ≤ vouti ≤ vmax

If vini ̸= 0
addrini ← PRFaddr(s, ρini )
cmin

i ← COMM(vini , addrini )
Merkle.Verify(cmin

i , root, πin
i ) = 1

snin
i = PRFsn(s, ρini )

Initialize(λ, vkjs, vkown, d)
fundVerifier := Verifier(vkjs)
nftVerifier := Verifier(vkown)
nftMerkle := Merkle(d)
fundMerkle := Merkle(d)
nftSerials := {}
fundSerials := {}
nftMap := mapping(v− > (address, id))

the initial NFT ownership, funds, and the sender’s identity.
However, we argue that these initial facts can change behind
the scenes due to the unlinkability between deposits and
other transactions (see Section 5).

Depositing NFTs. To deposit an NFT, a user sends an
approve transaction to the NFT smart contract as shown
in Fig. 1. Let address denote the NFT smart contract’s
address on Ethereum, and id denote to NFT token identi-
fier. The user samples ρ and generates an NFT coin c =
(ρ, v, addr, sn, cm) and sends the spending address addr
along with address and id as parameters to DepositNFT
transaction.

Main checks whether the transaction sender tx.sender
is the owner of the NFT with an identifier id. Upon success,
it transfers the ownership to its address. Note that this call
will fail if the user has not approved Main.address previ-
ously. Next, it generates a global unique identifier v based
on the NFT contract address address and token’s identifier
id, and stores the association between them in the mapping
nftMap for easier lookup in WithdrawTransaction. Sub-
sequently, it generates a commitment cm and accumulates it
in the NFT Merkle tree. Finally, it emits an event containing

DepositNFT(address, id, addr)
erc721 := ERC721(address)
require(tx.sender = erc721.OwnerOf(id))
erc721.transferFrom(tx.sender,

Main.address, id)
v := H2(address, id)
nftMap[v] := (address, id)
cm := COMM(uid, addr)
nftMerkle.Accumulate(cm)
emit NewCommitment(NFT, cm)

DepositFund(addr)
v := tx.value
cm := COMM(v, addr)
fundMerkle.Accumulate(cm)
emit NewCommitment(Fund, cm)

cm so users can rebuild the Merkle tree off-chain.
Depositing Funds. To deposit funds, a user samples ρ

and generates a fund coin c = (ρ, v, addr, sn, cm). Then,
the user sends addr in DepositFund transaction with a
value of v. Main generates a commitment cm to the amount
tx.value. Subsequently, it accumulates cm in the funds
Merkle tree, and emits NewCommitment event.

4.4 Withdrawal Transactions

Users can withdraw their NFTs and funds from Main public
Ethereum addresses of recipients given valid zkSNARK
proofs to Ownership and JoinSplit statements, respec-
tively. One of the witness parameters in both circuits is
proof of membership for the commitments of input coins. To
generate these proofs, users rebuild Merkle trees off-chain
by scanning NewCommitment events from Main. In prac-
tice, relayers can maintain synchronized off-chain Merkle
trees and expose them as a service to users. Furthermore,
users utilize the message m signal to specify the recipient’s
Ethereum address. Additionally, users open one of the out-
put commitments so that Main can determine which NFT
and how much funds to transfer out.

Withdrawing NFTs. To withdraw an NFT, a user gener-
ates a zkSNARK proof π that asserts knowledge of a valid
witness w⃗ satisfying Ownership circuit for a statement x⃗.
Then, the user sends π, x⃗, and the opening values v and
addrout) of the output commitment cmout as parameters to
WithdrawNFT transaction.

Initially, Main checks the output commitment is com-
puted based on v and addrout. Then, it checks that the serial
number snin has not been seen before, and root is one of
the recent l roots in the NFT Merkle tree. Subsequently, it
verifies the proof π with respect to the statement x⃗ using
nftVerifier. Upon success, it appends snin to the list
of NFT serial numbers. Next, it retrieves the NFT address
and identifier corresponding to the value v using nftMap.
Finally, it sets m as the recipient address that receives the
NFT ownership.
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WithdrawNFT(x⃗, π, v, addrout)
Parse x⃗ as (root, snin, cmout,m)
require(cmout = COMM(v, addrout))
require(nftSerials.NotIn(snin))
require(nftMerkle.ContainsRoot(root))
require(nftVerifier.Verify(x⃗, π))
nftSerials.Append(snin)
(address, id) := nftMap[v]
erc721 := ERC721(address)
recipient := address(m)
erc721.transferFrom(Main.address,

recipient, id)

Withdrawing Funds. To withdraw a fund, a user gener-
ates a zkSNARK proof π that asserts knowledge of a valid
witness w⃗ satisfying JoinSplit circuit for a statement x⃗.
Then, the user sends π, x⃗, and the opening values vout1 and
addrout1 of the output commitment cmout

1 as parameters to
WithdrawFund transaction.

WithdrawFund(x⃗, π, vout1 , addrout1 )
Parse x⃗ as (root, snin

1 , snin
2 , cmout

1 , cmout
2 ,m)

require(cmout
1 = COMM(vout1 , addrout1 ))

require(fundSerials.NotIn(snin
1 , snin

2 ))
require(fundMerkle.ContainsRoot(root))
require(fundVerifier.Verify(x⃗, π))
fundSerials.Append(snin

1 , snin
2 )

fundMerkle.Accumulate(cmout
2 )

emit NewCommitment(Fund, cmout
2 )

recipient := address(m)
recipient.transfer(vout1 )

The logic for WithdrawFund has some similarities to
WithdrawNFT. Initially, Main checks the output commit-
ment cmout

1 is correctly computed based on vout1 and
addrout1 . Then, it checks the serial numbers snin

1 and snin
2

have not been seen before in fundSerials. Additionally,
it asserts that root is one of the recent l roots in the Merkle
tree of fund coins. Subsequently, it verifies the proof π for
the statement x⃗ using fundVerifier. Upon success, it
appends the input serial numbers to fundSerials. Next,
it accumulates the unspent output commitment cmout

2 in
the funds Merkle tree, and emit the NewCommitment event.
Finally, it sets m as the recipient address that receives an
amount v from Main.

4.5 Atomic Swap
Aegis allows two users to swap an NFT for a payment
amount in an atomic transaction. The atomic swap relies
mainly on designing contingent transfer of coins. Initially,
each user generates a zkSNARK proof for a statement
transferring its coin to the counterparty. More importantly,
Main accepts proofs if and only if (i) they are valid, (ii) and
the statement’s message is equal to the output commitment
of the counterparty’s statement. Informally speaking, each
statement is interpreted as “I’m transferring my coin to

the counterparty if and only if the counterparty transfers a
coin with a specific commitment”. The atomic swap process
consists of an off-chain interaction protocol and an on-chain
settlement by Main.

Off-chain Interaction Protocol. Suppose Alice owns an
NFT coin cina with a value vina and she wants to swap it
for a payment amount voutb,1 with Bob who owns fund coins
cinb,1 and cinb,2. Initially, Alice generates a spending address
addrouta that Bob uses to generate an output fund coin’s
commitment cmout

b,1 with the value voutb,1 for her. Similarly,
Bob generates two spending addresses: addroutb,1 for receiv-
ing an output NFT coin’s commitment cmout

a with the value
vina from Alice, and addroutb,2 for receiving an output fund
coin’s commitment cmout

b,2 with the change value voutb,2 from
himself.

More importantly, Alice and Bob set their messages
ma and mb to the output coin’s commitment cmout

b,1 and
cmout

a expected from the counterparty, respectively. Next,
Alice and Bob query off-chain Merkle trees MerkleNFT and
MerkleFund to generate proofs of membership πin

a and
(πin

b,1, π
in
b,2) for their input coins’ commitments cmin

a and
(cmin

b,1, cm
in
b,2), respectively. Afterwards, Alice and Bob gen-

erate zkSNARK proofs πa and πb for Ownership statement
x⃗a and JoinSplit statement x⃗b, respectively. Finally, Alice
sends x⃗a and πa to Bob, who asserts that messages are valid
to the counterparty’s output commitment.

On-chain Settlement. To settle the atomic swap, Bob
sends x⃗a, x⃗b, πa and πb as parameters to Swap transaction.
Initially, Main checks that the message of each statement
is equal to the output commitment of the other statement,
which ensures that both parties have a mutual agreement
on the swapped coins. Then, for each statement, Main
checks (i) the freshness of serial numbers, the validity of
Merkle root, (iii) and the validity of zkSNARK proof. Upon
success, Main settles the atomic swap by storing the serial
numbers, which nullify the input coins and accumulate
the new output commitments in the corresponding Merkle
trees, thereby enforcing the transfer of coins. Finally, Main
emits NewCommitment events for each accumulated com-
mitment.

Swap(x⃗a, x⃗b, πa, πb)

Parse x⃗a as (roota, sn
in
a , cmout

a ,ma)
Parse x⃗b as (rootb, sn

in
b,1, sn

in
b,2, cm

out
b,1 , cm

out
b,2 ,mb)

require(ma = cmout
b,1 )

require(mb = cmout
a )

require(nftSerials.NotIn(snin
a ))

require(nftMerkle.ContainsRoot(roota))
require(nftVerifier.Verify(x⃗a, πa))
require(fundSerials.NotIn(snin

b,1, sn
in
b,2))

require(fundMerkle.ContainsRoot(rootb))
require(fundVerifier.Verify(x⃗b, πb))
nftSerials.Append(snin

a )
nftMerkle.Accumulate(cmout

a )
fundSerials.Append(snin

b,1, sn
in
b,2)

fundMerkle.Accumulate(cmout
b,1 , cm

out
b,2 )

emit NewCommitment(’NFT’, cmout
a )

emit NewCommitment(’Fund’, cmout
b,1 , cm

out
b,2 )
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4.6 Proving Ownership of an NFT

One of the main functionalities of public NFTs implemented
by standard ERC721 is the verification of ownership. Typ-
ically by querying the owner’s address associated with a
given NFT identifier. With Aegis, users can prove the own-
ership of their NFTs in a privacy-preserving manner without
leaking their addresses. Suppose that Bob wants to verify
whether Alice is the owner of an NFT with an identifier
id and ERC721 address. First, Bob sends Alice a random
challenge ch to prevent her from replaying others’ proofs
successfully. With the knowledge of a valid witness w⃗, Alice
generates a zkSNARK proof π satisfying the Ownership
circuit for a statement x⃗ where the message m signal is set
to the challenge ch. Subsequently, Alice sends π and x⃗ to
Bob. Finally, Bob calls VerifyOwnership on Main.

VerifyOwnership(x⃗, π, id, address, ch)

Parse x⃗ as (root, snin, cmout,m)
require(m = ch)
v := H2(address, id)
require(cmout = COMM(v, 0))
require(nftSerials.NotIn(snin))
require(nftMerkle.ContainsRoot(root))
require(nftVerifier.Verify(x⃗, π))

Main checks that the message m is set to the challenge
ch. Then, Main computes the image v of the NFT id and
ERC721 address, and checks that (v, addr = 0) are the
opening values to the output commitment cmout. Finally,
Main checks that the serial number snin has not been seen
before, and root is one of the recent l roots in the NFT
Merkle tree. Subsequently, it verifies the proof π with respect
to the statement x⃗ using nftVerifier. If the call returns
successfully, then Bob has verified Alice’s ownership.

Note that calling VerifyOwnership does not change
any state, and hence it does not incur any gas cost. More
importantly, Bob can maliciously abuse the code logic simi-
larities between WithdrawNFT and VerifyOwnership to
steal her NFT. In this attack, Bob sets ch to his address;
then, he follows the same procedure with Alice to verify her
ownership. Finally, he sends (x⃗, π, v, 0) to WithdrawNFT
where m, which is set to ch, is used as the recipient address.
To prevent this attack, Alice must check that ch is not a valid
address (i.e., an address is 160-bits).

5 SECURITY ANALYSIS

We informally discussed how Aegis achieves the secu-
rity goals mentioned in Section 3.1. Aegis has separate
anonymity sets for NFTs and funds, and their settings are
similar regarding data structures and protocols. Hence for
the sake of a clearer exposition of the security analysis, we
will discuss the security properties from the viewpoint of
NFTs. In particular, an adversary may try to guess the pair-
wise link between deposit and swap transactions. Addi-
tionally, we analyze whether an adversary can successfully
withdraw an NFT that belongs to an honest user.

NFT  owner
0x123..

transfer NFT  owner
0xabc..

NFT  owner
0x123..

transfer NFT  owner  
Aegis

NFT  owner
0x456..

transfer

NFT  owner
0xdef..

transfer NFT  owner
0x456..transfer

Figure 3. Transactions graph with and without Aegis

5.1 Unlinkability
This property captures the requirement that an adversary
cannot link deposited NFTs to swap transactions. Note that,
it is trivial to link DepositNFT to WithdrawNFT since the
NFT identifier revealed in the latter will uniquely determine
the former transaction. However, the adversary will not be
able to tell how the NFT changed hands in between via swap
transactions, as shown in Fig. 3.

We describe a game UNLINK between a challenger C
and an adversary A where A wins if C outputs 1 at the
end. Initially, C submits two DepositNFT transactions tx0

and tx1 to Aegis for two unique NFTs id0 and id1. Then, C
samples b ∈ 0, 1 at random, and submits a Swap transaction
tx2 to swap NFT idb. Next, A gets access to Aegis’s state
where A can find the public parameters of tx0 and tx1.
Finally, A guesses b′ and sends it to C, who outputs 1 if
b = b′, else outputs 0. Let tx = tx0, tx1, tx2. The adversarial
advantage is defined as:

AdvUNLINK
A (λ)←

∣∣∣∣∣∣Pr
b′ = b

∣∣∣∣ pp← Setup(λ)
(b, tx)← C(pp)
b′ ← A(pp, tx)

− 1

2

∣∣∣∣∣∣
Definition 1. (Unlinkability) Aegis maintains the unlinkabil-

ity property if the adversarial advantage to win UNLINK
is negligible.

AdvUNLINK
A (λ) < negl(λ)

Claim 1. Aegis satisfies the unlinkability property.

Proof 1. Typically, if A wins the game with a non-negligible
probability, then A must have found a way to break
the pre-image resistance property of H2 and H3 used
in the computation of txb.cm = H2(id,H3(0, s, ρ)) and
tx2.sn = H3(1, s, ρ) such that he could determine the
same pre-image to compute them: seed s and random-
ness ρ. However, this contradicts the main assumptions
of secure cryptographic hash functions.

5.2 Balance
This property requires that an adversary cannot withdraw
an NFT that an honest user owns. We analyze this property
by describing a game BAL between a challenger C and an
adversaryAwhereAwins if C outputs 1 at the end. Initially,
C submits a DepositNFT transaction txd to deposit an NFT
with an identifier id. Next, A sends a WithdrawNFT trans-
action txw which reveals the identifier id′ of the withdrawn
NFT. Finally, C outputs 1 if id′ = id, else outputs 0. The
adversary advantage is defined as:

AdvBAL
A (λ)← Pr

id′ = id

∣∣∣∣ pp← Setup(λ)
(txd)← C(pp)
(txw)← A(pp, txd)
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Definition 2. (Balance) Aegis maintains the balance property
if the adversarial advantage to win BAL is negligible.

AdvBAL
A (λ) < negl(λ)

Claim 2. Aegis satisfies the balance property.

Proof 2. There are two ways the adversary A can suc-
cessfully withdraw an NFT that belongs to an honest
user. Firstly, A controls more than 51% of the blockchain
mining/validation nodes, then A can tamper with the
execution of Main to bypass the zkSNARK verifica-
tion check. Finally, A breaks the soundness property
of zkSNARK construction and generates a bogus proof
accepted by Main. In the former, the Blockchain is no
longer secure, and the assets hold no actual value. In the
latter, the ability to break the soundness contradicts the
main assumption of secure zkSNARK construction.

Atomic Swap. The security of swap transactions relies
on name’s guarantees of securing the balance property. In
other words, the adversaryA cannot swap coins that belong
to honest users without breaking the balance property. Fur-
thermore, Main executes swap transactions atomically such
that either the swap completes or reverts to a previous state.
More importantly, users follow the off-chain interaction
protocol without any trust assumptions. If someone aborts
the protocol, the counterparty does not lose assets. For
example, assume Alice executed the protocol with Bob, who
disappeared at the end. Then, Alice can run the protocol
with Charlie, who completes the protocol and submits the
Swap transaction. If Bob tries to resume the protocol and
submit a Swap transaction, then Main will revert due to a
duplicate serial number in Alice’s statement.

Compatibility. A key design goal of Aegis is to be
compatible with existing NFT smart contracts. The moti-
vation is to develop a practical system without modifying
current NFT smart contracts that might hold millions of
dollars in value. Hence, we develop Aegis such that it
can interact with any NFT smart contract as long as it
supports the standard interface ERC-721 [7]. More precisely,
in DepositNFT and WithdrawNFT transactions, Aegis calls
ERC-721 ownerOf and transferFrom functions to man-
age the ownership in a non-custodial way.

Availability. Aegis operates entirely as smart contracts
running on layer-1. In other words, it does not rely on layer-
2 services, which might censor users’ transactions. There-
fore, Aegis has the availability guarantees of the underlying
Blockchain. Users can always read from or write to Aegis
smart contracts. Recall that we mentioned that non-deposit
transactions are sent via trustless relayers. There could be
a chance where the entire relayers network is colluding
to censor an arbitrary transaction. In this unlikely case,
the transaction sender can utilize its wallet to submit the
transaction, which links the origin deposit transaction. It is
acceptable in such circumstances to sacrifice privacy rather
than deny users the ability to withdraw their assets.

Blockchain Client Services. In Ethereum, a popular user
wallet MetaMask outsources all its transactions to central-
ized services Infura. Those centralized services know the
users’ blockchain address(es), IP address, and the transac-
tions sent to Aegis. Therefore, they can weaken users’ pri-
vacy, as they may link different transactions from the same

Table 1
Comparison between hash functions measurements

Poseidon MiMC SHA-256

#Constraints 240 2640 59793
Gas cost 49858 59840 23179

wallet and IP address. Consequently, users can operate full
nodes or utilize network-level anonymity services such as
Tor or VPNs to have better privacy before using MetaMask.

6 EVALUATION

We implemented a prototype of Aegis [8] to assess its
performance and feasibility. More importantly, we measure
the key performance metrics for proof generation and ver-
ification. These measurements depend on the number of
constraints in each circuit and the depth of Merkle trees.

6.1 Cryptographic Primitives
In Aegis, we use Groth [12] zkSNARK protocol due to its
high efficiency in terms of proof size and verification cost
compared to other state-of-art zkSNARK protocols [15]–[18].
More specifically, Groth [12] protocol generates the smallest
proof (i.e., two elements in G1 and one element in G2, where
G1 and G2 are asymmetric bilinear groups). The verifier
checks three pairing operations before accepting or rejecting
the proof. More importantly, there is a pre-processing phase
for the verifier, where it performs ECADD and ECMUL for
each public input before verifying the proof.

For cryptographic hash functions, we evaluate
MiMC [19] and Poseidon [20] which are arithmetic
circuit friendly hash function. Both hash functions yield a
much lower number of constraints when compared to other
standard hash functions such as SHA-256 and Keccak [21].
However, they consume more gas when executed in
Ethereum smart contract. Table 1 shows a comparison
between Poseidon, MiMC, and SHA-256 hash functions. We
choose Poseidon for computing commitments and Merkle
proof verification due to its low number of constraints and
lower gas cost than MiMC.

Cryptographic Libraries. We utilize Circom (v2.0) li-
brary [22] to compile the arithmetic circuits JoinSplit
and Ownership. For the proof system, we utilize snarkjs
(v0.4.10) library [23] to (i) run an MPC-based setup cere-
mony for generating the proving and verifying keys and
(ii) generate the zkSNARK proofs. We leverage the pre-
compiled Ethereum contracts: EIP-196 [24] and EIP-197 [25]
to perform point addition and multiplication and pairing
operations on the elliptic curve bn256 where the size of
elements in Fp and curve points in G1 and G2 are 32, 64,
128 bytes, respectively.

Hardware, Operating System, and Environment. We
run our experiments on commodity hardware, which runs
Ubuntu (v21.04) on a laptop equipped with an Intel i7-
10700K CPU with clock frequency up to 5.1 GHz and eight
cores, and 32GB RAM. Additionally, we install Rust (v1.57)
and Nodejs (v16.3) libraries, which are required to compile
and run Aegis prototype. We develop the smart contracts
in Solidty (v0.8.0). We utilize Hardhat framework to deploy
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and test the smart contracts in a local in-memory Ethereum
blockchain and a block gas limit set to a maximum of 30
million gas.

6.2 Performance Measurement
We conduct several experiments to assess the performance
and feasibility of Aegis prototype. More precisely, we mea-
sure the performance of JoinSplit and Ownership cir-
cuits in terms of (i) number of circuit constraints, (ii) time
to complete the MPC ceremony for generating the CRS
(i.e., proving and verifying keys), (iii) time to generate the
proofs and (iv) the size of generated CRS. Furthermore, we
measure the gas cost for deploying the smart contracts and
running Aegis transactions.

Merkle Tree Depth. Essentially, for Groth [12] proto-
col, the circuit’s wires are fixed before running zkSNARK
Setup to generate the proving and verifying keys. Both
JoinSplit and Ownership circuits verify Merkle proofs
of membership which rely on the Merkle tree depth d. More
importantly, in the prototype implementation, Aegis creates
an additional Merkle tree whenever the current one becomes
full. Therefore, the maximum number of accumulated com-
mitments is no longer limited by d. Consequently, we can
further reduce the proof generation and verification cost by
using smaller d. Figure 4 shows the gas cost for transactions
with Merkle tree depth d ∈ [8, 16].

Circuit Measurements. The performance measurement
for the circuits scales linearly with d. In Table 2, we re-
port the equations to compute the number of constraints
and Fp elements for statements and witnesses. Note that
only the statement size is constant since Merkle proofs of
membership are part of the witness only. Furthermore, one
may notice that the measurements for JoinSplit are two
times those for Ownership mainly because both circuits
are implemented similarly. Yet, the number of inputs and
outputs in JoinSplit is twice those in Ownership.

Table 2
Performance metric for JoinSplit and Ownership circuits

JoinSplit Ownership

Constraints 1876 + 484d 938 + 242d
Statement size 6 4
Witness size 10 + 2d 5 + d

Smart Contracts Measurement. We deploy the smart
contracts on a local in-memory Ethereum blockchain to
measure the gas cost and assess the feasibility of Aegis
transactions with variable d. The cost of WithdrawNFT is
constant regardless of d since there is no accumulation of
the output commitment. On the other hand, the remaining
transactions incur a cost that scales linearly with d. Fur-
thermore, swap incurs the highest cost as it involves two
zkSNARKs verification and two Merkle tree updates.

7 RELATED WORK

To the best of our knowledge, Aegis is the first academic
work that presents privacy-preserving ownership of NFTs
and funds in addition to atomic swap. Other protocols in
literature [26]–[31] tackle funds privacy only.

8 10 12 14 16

105.6

105.8

106

Merkle Tree Depth d

G
as

co
st

DepositFund
DepositNFT

swap
WithdrawFund
WithdrawNFT

Figure 4. Transactions gas cost with respect to Merkle tree depth d

Zether [26] is a protocol for making private payments
in Ethereum. It utilizes Elgamal encryption to hide users’
balance in addition to Bulletproofs [32] to prove the correct-
ness of transferred amounts. The key disadvantage of Zether
is that it only hides the transferred amounts leaving the
sender and recipient identities public. Furthermore, a single
Zether transaction costs roughly 7.8m of gas. In Aegis, users’
identities are hidden using SoK and relayers. Moreover, the
gas cost for transactions in Aegis is very cheap compared to
Zether.

Zeth [27] is a protocol that implements ZeroCash on
top of Ethereum. In the Zeth, the identities of sender and
recipients are not fully hidden since an observer can track
identities by checking the gas payer. Furthermore, Zeth uti-
lizes a complicated JoinSplit circuit, which also involves
verification of ciphertext. Additionally, it uses SHA-256 as
a hash function for generating commitments and building
Merkle trees which is heavy in terms of circuit constraints.
Aegis solves the relayers trust problem using SoK, besides
using Poseidon hash function for computing commitments
and verifying Merkle proofs.

Möbius [28] is a mixer protocol on top of Ethereum. It
utilizes linkable ring signature and stealth address primi-
tives [33] to hide the address of the true sender and the
recipient. However, the anonymity set is limited to the
ring size, and the gas cost of the withdrawing transaction
increases linearly with the size of the ring. Thus, in terms
of privacy, Aegis balance pool offers a bigger anonymity
set that scales exponentially with Merkle tree depth while
incurring a fixed verification cost.

AMR [34] is a censorship-resilient mixer, which incen-
tives users in a privacy-preserving manner for participating
in the system. The paid-out rewards can take the form of
governance tokens to decentralize the voting on system
parameters, similar to how popular ”Decentralized Finance
(Defi) farming” protocols operate. Moreover, by leveraging
existing Defi lending platforms, AMR allows participating
clients to earn financial interest on their deposited funds.
While AMR and Aegis share the objective of adding privacy
to users’ transactions, they have different goals and prop-
erties. Furthermore, Aegis provides a complete system for
trading NFTs in a privacy-preserving manner, while AMR
provides a mixing service already inherent in Aegis, yet
without an added incentive.
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8 CONCLUSION

We presented Aegis protocol for trading NFTs and proving
ownership in a privacy-preserving manner. Furthermore,
we analyzed its security and proved that it satisfies unlinka-
bility and balance properties in addition to other qualitative
properties such as compatibility and availability. Finally, we
implemented a prototype to assess the feasibility and per-
formance of AegisȦccording to the experimental results, we
believe that Aegis is feasible and practical to deploy and use.
For future work, we will investigate improving Aegis so that
it also handles sealed-bid auctions for NFTs to prevent front-
running while preserving users’ privacy. Additionally, we
will investigate adding support for fractional and composite
NFTs.
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transaction privacy,” Proceedings on Privacy Enhancing Technologies,
pp. 105–121, 2018.

[29] M. Baza, N. Lasla, M. M. E. A. Mahmoud, G. Srivastava, and
M. Abdallah, “B-ride: Ride sharing with privacy-preservation,
trust and fair payment atop public blockchain,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 2, pp. 1214–1229,
2021.

[30] W. Lv, S. Wu, C. Jiang, Y. Cui, X. Qiu, and Y. Zhang, “Towards
large-scale and privacy-preserving contact tracing in covid-19 pan-
demic: A blockchain perspective,” IEEE Transactions on Network
Science and Engineering, pp. 1–1, 2020.

[31] Z. Guan, Z. Wan, Y. Yang, Y. Zhou, and B. Huang, “Blockmaze: An
efficient privacy-preserving account-model blockchain based on
zk-snarks,” IEEE Transactions on Dependable and Secure Computing,
pp. 1–1, 2020.

[32] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and
more,” in 2018 IEEE Symposium on Security and Privacy. IEEE,
2018, pp. 315–334.

[33] S. Noether, “Ring signature confidential transactions for monero.”
IACR Cryptol. ePrint Arch., vol. 2015, p. 1098, 2015.

[34] D. V. Le and A. Gervais, “Amr: Autonomous coin mixer with
privacy preserving reward distribution,” in Proceedings of the 3rd
ACM Conference on Advances in Financial Technologies. ACM, 2021,
pp. 142–155.

Hisham S. Galal received the B.Sc and M.Sc
degrees in Computer Science from Assiut Uni-
versity, Egypt, in 2008 and 2016, respectively,
and the Ph.D. degree from Concordia Uni-
versity, Montreal, QC., Canada, in 2022. His
main research interests are applied cryptogra-
phy, privacy-preserving protocols, and malware
security analysis.

Amr M. Youssef received the B.Sc. and M.Sc.
degrees from Cairo University, Cairo, Egypt, in
1990 and 1993 respectively, and the Ph.D. de-
gree from Queens University, Kingston, ON.,
Canada, in 1997. Dr. Youssef is currently a pro-
fessor at the Concordia Institute for Information
Systems Engineering (CIISE) at Concordia Uni-
versity, Montreal, Canada. His research interests
include cryptology, malware analysis, and cyber-
physical systems security. He has more than 230
referred journal and conference publications in

areas related to his research interests. He also served on more than
60 technical program committees of cryptography and data security
conferences. He was the co/chair for Africacrypt 2013 and Africacrypt
2020, the conference Selected Areas in Cryptography (SAC 2014, SAC
2006 and SAC 2001).


