
Dynamic Security Aspects of Onion Routing∗

Alessandro Melloni 1, Martijn Stam 1, and Øyvind Ytrehus 1

Simula UiB, Bergen, Norway.
{alessandro,martijn,oyvindy}@simula.no

Abstract. An anonymous communication network (ACN) is designed
to protect the identities of two parties communicating through it, even if
an adversary controls or observes parts of the network. Among the ACNs,
Tor represents a practical trade-off between offering a reasonable level of
anonymity and, simultaneously, an acceptable transmission delay. Due
to its practical impact, there is abundant literature on the performance
of Tor concerning both communication and security aspects.
Recently, a static framework was suggested for evaluating and comparing,
in a quantifiable way, the effect of different scenarios (attacks, defence
mechanisms, and other protocol changes). Although a static model is
useful, many scenarios involve parameters and stochastic variables that
change or evolve over time, or that may be influenced by active and
malicious adversaries. In this paper, we propose a dynamic framework
for evaluating such scenarios. We identify several scenarios where this
framework is applicable, and illustrate our framework by considering the
guard node mechanism in Tor. We evaluate and compare variations on the
guard node concept suggested in the literature with respect to relevant
performance metrics and, using the framework, support our evaluation
with a theoretical analysis.

Keywords: Anonymity · Onion Routing · Tor · Traffic Analysis

1 Introduction

Onion routing aims to provide anonymity by obfuscating the link between a user
and their network destination [17,18,39,43]. Ideally, the link remains hidden even
against adversaries who observe or influence large swaths of the network. The
most widespread implementation of onion routing is Tor [13], which relies on
users picking multiple nodes from the network and establishing circuits to relay
traffic through the nodes. These nodes are referred to as onion routers, and their
identities are collected and distributed to the users by a central authority.

The anonymity provided by a Tor circuit strongly depends on what an ad-
versary can observe. If all routers on the circuit are adversarially controlled, no
anonymity is possible. Moreover, the first and last node on a circuit play a crucial
role as the first node can easily identify the user whereas the last node knows

∗This is the full version of the paper that appears in the proceedings of the 19th
IMA International Conference on Cryptography and Coding.

https://orcid.org/0000-0002-8851-6452
https://orcid.org/0000-0002-5319-4625
https://orcid.org/0000-0001-5223-7577

2 A. Melloni, M. Stam and Ø. Ytrehus

the destination. If an adversary can correlate the two, e.g., by traffic analysis,
anonymity is lost. Furthermore, an adversary only observing the first node can
still attempt website fingerprinting to infer the destination.

Indeed, since its inception, these and other attacks, as well as improvements
to Tor to counter them, have been proposed (see [25] for a recent overview).
Whereas some attacks, such as traffic analysis and website fingerprinting, can be
cast in a static framework [35], more advanced adversaries and countermeasures
require a more dynamic framework to evaluate and compare threat models and
protocol modifications. Let us elaborate with four illustrative scenarios.

Guard Nodes. In recognition of the importance of the entry node and its honesty
in providing anonymity, guard nodes were introduced through a series of mod-
ifications to the original Tor design [30, 33]. Based on previous research [14, 20,
37, 45], the underlying philosophy is to improve the anonymity for the majority
of users by sacrificing that of a few. Or, as Spock would say: “the needs of the
many outweigh the needs of the few” [41].

Although guard nodes are initially randomly selected by a user, they become
the choice of entry node for that user’s circuits across an extended period of time.
In this way, users who pick an honest entry node will be “guaranteed” to be safe
for an extended time frame, compared to always choosing a new entry node
for every circuit. In contrast, users picking a corrupted guard node will suffer
from a security degradation as more of their circuits will be exposed. Hence,
analysing the security trade-offs provided by guard nodes necessarily involves
the modelling of circuit re-establishment, which is a dynamic feature.

Dynamic Unlinkability. Dynamic (un)linkability relates to an adversary trying to
link together multiple subsequent sessions by the same user, without necessarily
identifying that user [27, notion (2S) L]. It is a relevant goal for privacy enhancing
technologies like Tor as it prevents the profiling of users over time, hindering
widespread attempts of targeting specific users based on their past activity [5,
8,15,29]. There is a clear tension between this privacy goal and the guard node
feature, as the use of a fixed entry node might be used to track users over
time [10].

Circuit Lifetimes in Tor. A related issue is the influence on users’ privacy due
to the lifetime of circuits in Tor [26]. Currently, after 10 minutes from the first
use, circuits are kept open only for already existing streams, and new streams
are attached to new circuits. Similarly to the guard nodes feature, an analysis of
the effects of different circuit lifetimes requires inherently a dynamic approach
that allows for evolution of the Tor network over time.

Tagging Attacks. An adversary controlling both the entry and the exit node of a
circuit, can use traffic analysis to deanonymise the circuit with high likelihood.
Certainty can be achieved using tagging attacks [16, 38], where an adversary
tampers with the cells at the entry node and then undoes the tampering at the
exit node, deterministically. If the cells were indeed on the same circuit, the

Dynamic Security Aspects of Onion Routing 3

malleability of the relay encryption in the current Tor specification [1, 9] will
result in circuit behaviour as if no tampering took place (and deanonymisation
has succeeded). However, if the adversary does not control the exit node, the
tampering will cause the honest exit node to drop the circuit, likely triggering
the user into the establishment of a new one [12, Section 5.4]. Although the
confirmation aspect of successful tagging attacks could conceivably be studied
using the static framework, the powerful consequence of triggering circuit re-
establishment for not-yet-successful ones necessitates a dynamic perspective [44].

Our Contribution. We provide an evaluation framework to evaluate the effi-
cacy of attacks by adversaries observing and possibly interacting with the Tor
network over time. The framework can be applied to a variety of aspects of the
onion routing protocol, including for instance:

1. effects of the guard nodes feature on anonymity;
2. guarantees of dynamic unlinkability;
3. severity of tagging attacks.

Our dynamic framework enables the comparison of different attacks, threat
models, and metrics in the dynamic scenario, and facilitates the discovery and
identification of gaps in the literature. Such gaps may occur, for example, in
the cases where different attacks (or defences against them) are published and
evaluated with the use of mutually incompatible metrics.

Related Work. Since its inception, several analyses of Tor’s anonymity have
been conducted [2–4, 27, 28, 34] (see also [32, Section 2] for a comprehensive ac-
count of different frameworks). A common approach, inspired by cryptographic
games and proofs of security, is to formally define a game, the adversary, and a
challenge. Main drawback of this approach is the lack of time-dependent and dy-
namic features being captured in the framework, as highlighted also by Backes et
al. [4]. They combined the formal approach with a concept of “time” within the
framework, but focused on timing as additional information available to the ad-
versary (e.g., for traffic analysis) instead of the evolution of the network itself
over time. On the other hand, simulation-based approaches [22, 23] allow for
more practical analyses, with the distinct challenge of isolating and analysing
the impact that the many parameters have on the results of the experiment.

2 Preliminaries

Notation. We use capitalised letters A,B, . . . to refer to random variables, and
we base our treatment on the relationships among them. In particular, the causal
relationship, denoted A ; B , indicates that in a real-world system random
variable A will be set before B and I(A; B) > 0; in other words, the random
process modelled by the variable A happens before the process modelled by B
and the outcome of the former influences the outcome of the latter. We use U

4 A. Melloni, M. Stam and Ø. Ytrehus

and C to indicate the sets of users and, respectively, circuits; the boldface letters
u and n refer to the numbers of users and guard nodes.

Let X,Y be discrete stochastic variables with outcomes in X and Y, respec-
tively. We remind the reader that the entropy of X is [6]

H(X) ≜ E[− logX] = −
∑
x∈X

fX (x) log fX (x), (1)

and the conditional entropy of X given Y is

H(X |Y) = −
∑
x∈X

∑
y∈Y

fXY (x, y) log fX |Y (x|y). (2)

where fX (x) is the probability mass function for X and fXY (x, y) is the joint
probability mass function for (X,Y). The mutual information between X and
Y is defined as

I(X ; Y) = H(X)−H(X |Y) = H(Y)−H(Y |X). (3)

Random variables X and Y are independent iff H(X) = H(X |Y), while if
the value of X can be determined precisely after observing the value of Y ,
I(X ; Y) = H(X).

2.1 The Static Framework

Melloni, Stam, and Ytrehus [35] introduced a novel framework for assessing the
security of low-latency ACNs in static scenarios such as traffic analysis and web-
site fingerprinting. This static framework deviates from prevailing, more rigid
approaches [21, 27] by incorporating security metrics beyond conventional ad-
versarial advantages and drawing inspiration from cryptographic games.

Central to the framework are random variables that capture different aspects
of the game. These variables describe general behaviour of ACNs, and their
purpose is to enable the identification of potential information leakages and
quantify these in terms of conditional entropy and mutual information.

At the core of the framework sits the random variable S , which models
the users connecting to their chosen destinations; S represents the secret an
adversary wants to uncover. The random variable G represents all information
in the system that could possibly be observed. For instance, in Tor it contains
the states of all proxies (users) and routers, as well as all sorts of traffic traces.

In general, the precise distribution of G is hard to pin down as it depends on
a lot of factors, e.g. the length of circuits, how nodes are chosen, protocol spec-
ification, as well as general load on the ACN and its underlying infrastructure.
However, G uniquely determines S in the sense that H(S |G) = 0.

The view of the adversary, V , captures the information (from G) that is ac-
tually available to the adversary: Once the threat model is fixed, V is completely
determined by G, so H(V |G) = 0.

Dynamic Security Aspects of Onion Routing 5

The goal of the adversary is specified by a query q, that identifies partial
information on S of particular interest. The adversary processes its view V into
an output O that is relevant for the query q at hand. For instance, it could
be the adversary’s posterior best guess for the answer to q. In any case, in the
literature this processing is usually referred to as an attack on Tor and metrics
are used to measure how well the attack actually fared.

Even though the exact probability distributions of the random variables
may be unknown, their relationship is clear and can be defined in terms of
information-theoretic notions, in particular using conditional entropy as done
above. Moreover, as O arises from data processing of V , H(O |V) = 0 holds and
the data-processing inequality [6, Theorem 2.8.1] implies that I(V ; S) ≥ I(O; S).
Note that these conditions coexist with the causality relations S ; G ; V ; O.

Our description of the static framework so far contained one small simplifi-
cation. Melloni et al. additionally introduce a random variable Z representing
auxiliary information gathered by an adversary during an initial training phase
that can subsequently be used to refine the actual attack, that is the processing
of V into O. For instance, V typically includes traffic traces and their shaping
may be heavily affected by the destination or network topology, irrespective of
the identity or even behaviour of the user. The variable Z captures what an ad-
versary learns about the random behaviour of the ACN independent of the secret
S . Thus I(S ; Z) = 0, yet the information might be useful for the processing, in
the sense that H(S |V , Z) ≤ H(S |V) or, equivalently, I(S ; V , Z) ≥ I(S ; V).

Melloni et al. suggest Z might also contain an estimate of how S is dis-
tributed, for instance an adversary might try to determine the rough popularity
of websites prior to any attack. To capture such a scenario formally, one could
take a Bayesian approach where S is distributed according to a fixed model with
unknown parameters (themselves following an uninformative prior); in that case
Z can contain an estimation of the parameters according to which S is dis-
tributed. As we are primarily interested in evaluation scenarios, as opposed to
real-life attacks, we can always assume the distribution of S is fixed and known.

Perspectives. The static framework is especially useful to specify an experi-
mental setup used to evaluate security. In that case, a simplified scenario may be
studied in lieu of a more complicated, realistic model and identifying the simpli-
fications and their justifications (and limitations) can be useful. Often different
metrics are required depending on the perspective that is taken, for instance a
user might be primarily concerned about the likelihood of being deanonymised
(a worst case), whereas a designer might be more interested in the expected
number of compromises (an average case). Some simplifications will be suitable
for one perspective, but perhaps less so for another.

3 A Dynamic Framework

Although the static framework can model attacks that involve time, such as
traffic analysis, it is ill-equipped to deal with situations where parties actively

6 A. Melloni, M. Stam and Ø. Ytrehus

𝑂

𝑍

Query processing𝑉

query 𝑞

Adversary’s domain

Adversary’s
goal

Randomness

𝑆

𝐺

Protocol
specification

Other useful
information

Evaluator
computes 𝜇𝑞(𝑆, 𝑂)

Threat model determines adversary’s view of 𝐺

𝐴 𝐵 means «𝐴 determines 𝐵».

Fig. 1. Relations among the random variables in the static framework. Reproduced
from Melloni et al. [35].

change their behaviour over time, or where the system design introduces de-
pendencies over time. To address such scenarios, in this section we introduce a
general framework for an analysis of ACNs involving dynamic behaviour. Similar
to the static framework, the dynamic one is described in terms of general ran-
dom variables and the relations between them, where we focus on those relations
that best capture dynamic aspects of the game. When applying the framework
to a concrete scenario, the random variables and their relations should be spec-
ified in sufficient detail to answer any relevant research question, for instance
what spaces the various random variables are defined over and how they are
distributed. Irrelevant details, not pertinent to the research question can be ab-
stracted away or left un(der)specified.

Introducing Epochs. To enable research into the effects of active adversaries
tampering with the network as well as dynamic features of the onion protocol,
we allow evolution of the environment by introducing the concept of epochs. An
epoch is a period of time during which we assume behaviour by the parties to
be fixed, so within an epoch the static framework applies. A dynamic picture
emerges by considering a sequence of epochs, effectively discretising real time.
Indeed, for each epoch t ∈ N we will consider the random variables St , Gt , Vt ,
Ot , and Zt . Additionally, we will for a given random variable Xt , let Xt denote
the collection of all the previous Xi up to and including t.

In the dynamic setting, the focus of an adversary’s goal with respect to the
epoch t can be made explicit by writing qt for the adversarial query and µq(t)
for a corresponding evaluation metric. The notation µq(t) emphasizes the metric

Dynamic Security Aspects of Onion Routing 7

as a function over time; in Sections 4 and 5 we will consider different metrics µi,
subscripted simply by an index i, as they all relate to the same query q.

Cross-epoch Variable Dependencies. Within a given epoch t, the way the
variables St , Gt , Vt , Ot , and Zt relate to each other is directly inherited from
the static framework. For the dynamic framework, we are interested in plausible
relationships between variables from different epochs. Here we make a further
distinction between intra-variable dependencies (e.g. between St and St−1) and
inter-variable dependencies (e.g. between St and Gt−1).

We identify several possible scenarios, mainly depending on whether and how
the dependency manifests for the different random variables. Here we concentrate
on the core of the dependency, for instance when considering how Gt depends
on Gt−1, we are less interested in the logical consequences in any dependency
that can be (fully) explained by St depending on St−1.

Intra-variable Dependencies. Consider how users select their destinations, as
captured by St . As the boundary between two epochs is somewhat arbitrary
when considering real-life Tor, some users are likely to stick to a destination,
whereas others might change (or connect for the first time). Thus, a user’s future
behaviour might depend on the present, but arguably not on the past, so St sat-
isfies the (first order) Markov property, namely that I

(
St+1; S

t
)
= I
(
St+1; St

)
.

For evaluation purposes, it can be useful to restrict to one of the two extreme
cases: either the outcome is drawn once and then fixed, so St+1 = St which im-
plies that I

(
St+1; St

)
is maximal; or the different epochs are independent of

each other, so I
(
St+1; St

)
= 0 and minimal. The former, fixed case is useful

to analyse active attacks exploiting adversarially triggered circuit tear-downs
(including tagging attacks), whereas the latter case can be used to analyse link-
ability over longer time domains. In a real-life setting, the mutual information
lies somewhere between these extremes.

When considering Gt , we recall that according to Tor protocol specifications,
each user and router participating in the network is stateful and maintains all
relevant information about its circuits and connections in the current state [12].
Thus, for circuits that remain active from one epoch to the next, Gt+1 will
depend on Gt , without any further dependency on past epochs. Similarly, for
guard nodes, any state maintained by a user regarding the identity (and usage)
of guard nodes will be part of Gt . Consequently, without significant loss of ap-
plicability, we can assume that also Gt exhibits a first order Markov property,
i.e. I

(
Gt+1; G

t
)
= I
(
Gt+1; Gt

)
.

As the adversary’s view Vt is a function of Gt , it might inherit its Markov
property. In the static model, the threat model ruling how V is a function of G
can be deemed fixed; in the dynamic model, an adversary might corrupt different
routers in different epochs, thus changing which part of Gt is visible in Vt .

For an adversary’s output Ot the question of how it relates to its predecessors
Ot−1 is, to a large extent, moot. What matters is that, on the one hand, Ot may
well depend on the adversary’s view on all epochs so far, i.e. on V t and not just

8 A. Melloni, M. Stam and Ø. Ytrehus

Protocol
spec.

𝑆1
Threat
model

𝐺1
Query

processing
𝑉1 𝑂1

𝑡1

Protocol
spec.

𝑆2
Threat
model

𝐺2
Query

processing
𝑉2 𝑂2

𝑡2

Fig. 2. Relations among the random variables from epoch t1 to epoch t2.

Vt . For instance, when trying to link users’ information over multiple epochs, an
adversary will necessarily have to combine its view across epochs. On the other
hand, we might be interested in how an adversary’s success evolves as a function
of time t. However, in that case the appropriate tool is a metric µq(t) rather
than a direct statement on Ot itself.

Finally, for the auxiliary random variable Zt , we assume the adversary to
accumulate all the collected information, so H

(
Zt

∣∣Zt+1

)
= 0 for t ∈ N.

Inter-variable Dependencies. We already identified one inter-variable depen-
dency above, namely in situations where an adversary’s output Ot may depend
on the view V t across all epochs so far in case the goal is epoch-spanning. Yet,
even if the goal is specific to the current epoch, if St is partially dependent on
St−1, then information collected in the previous epoch might still serve an ad-
versary well, for instance to rule out some destinations from the pool of possible
ones (improving the confidence level in the output Ot).

Another inter-variable dependency arises when an adversary uses the view
in Vt to disrupt the network, which will subsequently be reflected in Gt+1. For
instance, an adversary might block access to some routers, thereby influencing
how users pick the routers for their circuits.

Summary. We considered possible relations among the different random vari-
ables across epochs, often expressed using information-theoretic notions. In Fig. 2
we provide an overview of these relations, with the arrows highlighting possible
influences. Here the influence of the adversary is denoted using the orange colour:
for example, based on the view V1 and the threat model [35, Section 5], the ad-
versary may choose to disrupt some circuits in G2.

The absence of direct arrows between two random variables does not mean
that they are independent, i.e. their mutual information can be non-zero: rather,
it highlights that their dependency is already captured by the relation between
other random variables at a higher level in the chain. For example, there is no

Dynamic Security Aspects of Onion Routing 9

arrow from S1 to G2 because we assume that all information from S1 influencing
G2 is also contained in S2, i.e. I(G2; S2) = I(G2; S1, S2).

4 Application of the Framework to Guard Nodes

In this section we discuss how to apply the dynamic framework to the study of
the performance of guard node scenarios.

Context. Guard nodes were introduced in 2013 [33], recognizing that “some
circuits are going to be compromised, but it’s better to increase your probability
of having no compromised circuits at the expense of also increasing the proportion
of your circuits that will be compromised if any of them are.” The underlying
technical assumption is that a single party controlling both the first and last
nodes of a circuit can link source and destination of the traffic, and a single
compromised circuit may suffice to ruin a user’s anonymity. A further, more
philosophical assumption is that, once one circuit is compromised, the additional
damage of further compromised circuits to a user’s anonymity is limited.

Fixing the first node over a period of time increases the probability of having
no compromised circuits over that period of time when compared to randomly
picking a new entry node every new circuit setup. This fixed entry node is known
as a guard node. In practice, users will still need to change guard nodes from time
to time, for instance when their guard node is overloaded or unavailable, the last
referred to as the natural churn of the network. To balance these unpredictable
events, the guard node feature employed by Tor shortlists several nodes and then
selects the guard node from this list; after a while, the list is refreshed [31].

As a result of this mechanism, the guard node policy actually consists of two
distinct selection parts. First, a guard list maintenance policy describes how to
construct the list of potential guard nodes, how many to pick, and when to pick
new ones: this refresh process is referred to as guard rotation. Second, a guard
selection policy dictates which node to pick from the short list whenever the
proxy builds a new circuit. It is noteworthy to remark that literature on the
subject tends to disregard the distinction between guard list maintenance policy
and guard selection policy, focusing almost exclusively on the first.

The guard list maintenance policy is influenced by two factors: the churn of
the nodes happening in the network and the guard rotation defined in the policy
itself. Guard rotation also allows for recovery after compromise, as unlucky users
picking corrupted guard nodes will refresh them after their lifetime expires.

Several changes [10, 14, 19, 20, 30, 42] to the original guard list maintenance
algorithm have been proposed and analysed. These proposals mainly investigate
the effects of changing the lifetime and quantity of guard nodes, both on perfor-
mance and security. The fact that fixing a single guard node maximises security
has already been recognised [10], but with some caveats when considering that
nodes might be unreachable [14].

10 A. Melloni, M. Stam and Ø. Ytrehus

Security Evaluation. When the guard node feature was announced [33], the
goal stated by the Tor team was to decrease the number of deanonymised users,
conceding a higher number of uncovered destinations for the users that have
been deanonymised. The first two security metrics we will consider are focused
at estimating these quantities.

Later, Johnson et al. [24] employed the probability distribution of the time
until first compromise as a security metric. In this paper, for ease of presentation
we will instead use the average time until first compromise as our third metric.
Lastly, we will consider a fourth metric to describe the situation for a user who
is among the unlucky ones. We will describe these metrics in more detail in
the Metrics subsection, after we have discussed the dynamic framework in the
context of this specific application.

Security evaluation depends also greatly on the specific definition of com-
promise: different authors employ different approaches, possibly affecting a fair
comparison. For example, Hayes and Danezis [20] consider a user to be compro-
mised the moment they choose a malicious guard node (even before using it),
while for Johnson et al. [24] a user needs to actually build a circuit through a
malicious node to be compromised. We discuss this further in Section 5.1.

Our evaluation framework allows us to reveal hidden assumptions and sim-
plifications (Section 5.1), facilitating both an exploration of possible alternatives
and a combinatorial analysis and comparison of various guard node policies
across scenarios (Section 5.2). It also enables a unified comparison of approaches
discussed in the literature. We illustrate this with Example 1.

Remark 1. When considering the security offered by guard nodes, the emphasis
is usually on circuit compromise. In our analysis, we will follow this lead, however
there are other security ramifications tied to the use of guard nodes. For instance,
it might be possible to identify a user based on their chosen guards (guard
node fingerprinting [10]), which could violate the privacy goal of unlinkability of
sessions over an extended period of time. The above holds even if each circuit
is selected with an a honest exit node. In addition to guard node fingerprinting,
ingress traffic fingerprinting allows linking user across epochs.

Dynamic Modelling. To model guard nodes in our framework, we start by
specifying a minimal setup of the random variables that suffices to capture the
various guard node policies and their intended effect on security.

System Setup. We will consider u users that each connect to a single destination
du,t per epoch t, where we furthermore assume that users select their destinations
independently of each other and different users may select their destination with
different probability distributions. These choices specify the secrets St , where
additionally we assume St to be independent across epochs. From the users’
perspective, each epoch is marked by the setup of their respective circuits.

The variable Gt contains the state of the system and possible observables
for an adversary. We assume that during each epoch, every user establishes
a new circuit to its destination, resulting in the set of circuits C. Sticking to

Dynamic Security Aspects of Onion Routing 11

the default Tor circuit length of 3, each circuit can be represented as ci =
(cID, uID, gID,mID, eID, dID), consisting of ID for the circuit itself, the user, guard,
middle, exit nodes and destination. Here the circuit identity cID is simply a global
identifier used in the framework.

Given the circuit belonging to user u in epoch t, the destination dID will match
that in St , so equal du,t . The middle router mID and exit router eID are assumed
to be chosen independently and uniformly at random, whereas, crucially, the
guard node gID is selected according to the guard node policy.

Remark 2. The “uniform i.i.d.” assumption on mID and eID is a simplification
of the real-life scenario where bandwidth considerations—and for exit nodes
possibly port support—come into play (deviating from uniformity); moreover,
certain combinations of routers, for instance those all belonging to the same
autonomous system, are avoided (introducing some dependency) [11, Section
2.2].

The guard node policy itself is modelled by maintaining (in Gt) on the one
hand all information that proxies require to select their guard nodes (such as
bandwidth and availability) and on the other, for each proxy, that proxy’s state
pertaining to its guard nodes, as prescribed by the specific policy (for instance,
the priority of the guard nodes, how long they have been in use by that proxy,
etc.). Different guard selection proposals may require additional information,
such as the mapping of guard nodes to their set in the guard sets proposal [20].

The guard node feature advantage starts from the second circuit setup and
involves information from the previous epoch that is maintained into the current
one, consistent with Gt being a Markov process. In case there is no guard node
feature, Gt is memoryless and users select new entry nodes every circuit setup.

For the possible observables and for each node, operational information is
maintained in Gt for all the circuits routed by that node. Here we use the model
common for traffic analysis and website fingerprinting, and let guard and exit
nodes observe (uID,mID, ingress trace) and (mID, dID, egress trace), respectively.

The Adversary. The view of the adversary Vt consists of a selection of the last
two types of tuples. Which tuples an adversary can observe depends on the threat
model, more specifically on which nodes are corrupted; we indicate the ratio of
malicious entry and exit nodes with γ and ε respectively. Here one could make a
distinction, as Melloni et al. [35] do, between full control where the adversary has
completely corrupted the node and can see its state (including the identity of the
middle router mID for every circuit through that node); and partial control where
an adversary can observe the link traffic between the node and the outside world
(so uID and ingress trace, respectively dID and egress trace, but not mID). The
difference between these two types of adversarial views relates to the amount of
information acquired by the adversary per time unit, so that an adversary with
the weaker level of node compromise may have to observe more traffic to obtain
the same results. Pragmatically, the difference between these two cases can be
modelled by different ε values (where ε is changed to mean “the probability of
full circuit deanonymisation given a guard compromise”.)

12 A. Melloni, M. Stam and Ø. Ytrehus

In these minimal settings, the adversary aims to uncover as many user–
destination pairs as possible, based on Vt .|†
Since each user only has one destination per epoch, the adversary can simply
output Ot =

{
d̂uj ,t

}
, indicating the guessed destination for users u1, . . . , ui in

epoch t.

Metrics. To formalize the security metrics mentioned earlier, we introduce two
auxiliary random variables: X≤t(u) represents the number of correct guesses by
the adversary up to epoch t for user u, defined as X≤t(u) =

∑t
i=1

[
d̂u,i

?
= du,i

]
;

and Y≤t denotes the number of users that have never been deanonymised (up to
epoch t), i.e. Y≤t = |{u|X≤t(u) = 0}|.

The goal of the guard nodes feature is to minimize the deanonymised users:

µ1(t) = E
[
Y≤t

]
, or equivalently with µ1(t) =

∑
u

Pr[X≤t(u) = 0]. (4)

The “price” is an increase in deanonymised destinations for compromised users:

µ2(t) =
1

u

∑
u

E[X≤t(u) |X≤t(u) > 0]. (5)

We also simplify the metrics of by Johnson et al. [24], considering the average
instead of the full distribution:

µ3 =
1

u

∑
u

E[min {t|X≤t(u) > 0}]. (6)

Recalling that the guard node construction gains anonymity for the majority
by sacrificing a few, it is also useful to have a metric that quantifies how much
the few will suffer. We will use the following metric:

µ4(t) =
1

u

∑
u

Pr[X≤t+1(u) > X≤t(u) |X≤t(u) > X≤t−1(u)]. (7)

4.1 Guard Nodes Policies

The framework allows us to compare several variations of guard node policies
through computation of the metrics, but we first need to identify the parameters
needed to describe a guard node policy. The number of nodes picked by each
proxy, according to a defined probability distribution ∆, is n. We also need an
ordering ⪯ to specify the relative preference of guard nodes to use each time the
user wants to setup a new circuit, and the maximum lifetime of T epochs for
guard nodes before being refreshed.

†Alternatively, the goal can be to create, for each user, a list of possible desti-
nations with associated probabilities, (thus allowing an approximation of the mutual
information I(S ; V ,Z).

Dynamic Security Aspects of Onion Routing 13

Table 1. Description of the identified metrics.

Metric Description

µ1(t) Expected number of users that, up to epoch t, have never been
deanonymised (4).

µ2(t) Expected number of uncovered destinations for any user that has been
already deanonymised (5).

µ3 Average time until first deanonymisation (6).

µ4(t) Average of Pr[compromise at time t + 1 | compromise at time t] (7).

No Guard Nodes. The base case is having no guard nodes feature at all: the
proxy chooses a new entry node for every circuit setup, i.e. T = 1; we refer to
this as no-guards policy.

Single Guard. The simplest guard based policy is the one with a single guard
node, using only that for circuit setups until it expires or if it is unreachable.
Formally, n = 1 and T > 1.

3-guards. A more practical policy is represented by the 3-guards policy, where
the proxy selects 3 entry nodes and uses them as guard nodes until they expire
or become unreachable. This guard policy is a simplified version of the current
Tor Guard Specification (see below). The introduction of multiple guard nodes
prompts the need to specify the guard selection policy, ruling which guard node
to select for each circuit creation.

Tor Guard Specification. The current Tor guard node specification [31] is
based on a series of subsequent samplings performed by the proxies, starting from
the set of all the current guard nodes according to some probability distribution
and some further processing (see Appendix A). The proxy picks, at run-time, 3
nodes to use as guards from a persistent short list, with nodes being removed
from it when they are either unreachable for some epochs or their lifetime as
guards expired.

Example 1 (COGS). Elahi et al. [14] analysed several parameters influencing the
guard selection algorithm, such as adversarial bandwidth, natural churn of entry
nodes, guard rotation and number of chosen nodes. They introduce a malicious
node with fixed bandwidth, and estimate the ratio of circuits choosing it as guard
node using historical data on the Tor network while varying the aforementioned
parameters.

Modelling these setting into our framework requires specifying the random
variables and the threat model. The outcome of the secret St is fixed and it
consists of u = 80, 000 users, all of whom create a single circuit per epoch,

14 A. Melloni, M. Stam and Ø. Ytrehus

Table 2. Different models of guard node policies.

Type Policy Description

Guard
maintenance

No-guards No guard nodes.

1-guard Single guard node.

3-guards 3 guard nodes, simplified Tor current speci-
fication.

Tor Guard Specification The current Tor guard node specifica-
tion [31].

Guard
selection

Ideal uniform-use See “Simplified policies” in Section 5.1.

Greedy See “Simplified policies” in Section 5.1.

from t = 1 until the end of the experiment. The threat model is represented
by a single node (entry-only) having fixed bandwidth, and is introduced in the
second epoch only, to simulate the real-world scenario of already-running Tor
network being infiltrated by malicious actors. As a consequence, all circuits in
the first epoch are safe and, from t = 2 onwards, users will choose the entry
node based on the guard node policy applied for that scenario, such as sampling
n = 10 guard nodes instead of the standard n = 3, allowing to compare the
effect of the examined parameter. The adversarial output Ot lists the circuits
passing through the malicious guard node, and the metric is simply the number
of observed circuits by the adversary, i.e.

∣∣Ot

∣∣. Note that the metric does not
depend on the variable St : this is due to a further simplification, as discussed in
Section 5.1.

5 Analysis

In Section 5.1, we first explain the simplifications and assumptions we apply in
order to design an analytical model for evaluation purposes. Subsequently, in
Section 5.2, we derive quantitative values for the metrics in Table 1 based on
the parameters already introduced (see also Table 3. As an alternative to the
analytical results, we also created a simple simulation program that is described
in Section 5.3. Finally, in Section 5.4 discusses suitable parameter ranges, and
in Section 5.5 we provide numerical results.

5.1 Simplifications & Assumptions

Research on ACNs is seldom performed on real-world data and systems, for
both practical and ethical reasons, e.g. the lack of available information, the
intractable complexity of the live Tor network, the need to create reproducible
results from controllable network states and parameter values, or the privacy in-
trusion of observing actual Tor communication. To overcome these limitations,

Dynamic Security Aspects of Onion Routing 15

Table 3. Parameters for evaluation of anonymity. The parameters n, T, and φ can
be thought of as part of Zt , and influence St and its random expression into Gt . The
parameters γ and ε are convenient to express the adversaries’ capabilities and their
success rates in terms of the metrics µ1, . . . , µ4.

Sym. Description

n Number of guard nodes in the guard list.

T Maximum lifetime of guard list in epochs.

φ Probability that a guard node is unreachable at circuit setup time, due to
churn in the network.

γ Probability of guard compromise.

ε Probability of selecting an exit node compromised by an adversary that com-
promises the guard node.

researchers introduce simplifications and assumptions when analysing some as-
pects of Tor. Here we summarize the simplifications we subsequently apply in
Section 5.2.

St : Simple and uniform user behaviour. In each epoch, each user selects a
destination independently of the others and connects to it. Although St , in our
framework and in general, may be described by a bipartite graph connecting,
on one side, a large set of (potential) users and an even larger set of (potential)
servers or websites, from an evaluation point of view it makes sense to restrict
this to a standardised and simpler graph. For instance, to consider all users to act
simultaneously in each epoch connecting to a single destination is a modelling
simplification, that (almost certainly) does not hold true in the real world, but
which may still shed light on specific aspects of the behaviour of Tor. Also,
there is a diversity of users, but in the perspective of a specific user, the most
important performance criterion is the anonymity of that user, as a function of
the user’s behavioural parameters. It seems like a realistic assumption that users
act independently, in which case the number of users is not very important in
the context of our four security metrics. Concerning the restriction of one circuit
per epoch: in practice most users will have zero circuits in most epochs, if the
epochs are counted as fixed duration consecutive time slots.

Uniform node corruption and the relevant range of parameter values.
Each guard node is corrupted with a fixed probability γ, and each exit node
is corrupted with a fixed probability ε. The Tor nodes available for selection
as entry and exit nodes may operate in different environments. Moreover, it is
plausible that node parameters that influence the probability of selection (e.g.,
available bandwidth) may be correlated with the probability of compromise.
However, this information is typically not available to the user. Hence it makes

16 A. Melloni, M. Stam and Ø. Ytrehus

sense to model the selection of entry (guard) and exit nodes as independent
random processes.

However, the interpretation of γ should be “the proportion of all potential
guard nodes which are compromised”, whereas the interpretation of ε should
be “the proportion of all exit guard nodes which are compromised by the same
adversary that compromises the entry node”. Hence it makes sense to consider
practical only the cases where 1 ≫ γ ≫ ε > 0.

Note that the expected amount of compromised circuits across the entire Tor
network does not change, i.e. E[X≤t(u)] = γ · ε · t, even when considering the
guard node feature.

Uniform guard node churn. Each guard node experiences churn with a fixed
probability φ.

What constitutes a “breach of anonymity”? The adversary will try to
exploit all the data contained in Vt to breach a user’s anonymity. The guard
node, in particular, learns the IP address of the user(’s proxy), but a compro-
mised guard node can also collect traffic traces for each circuit. These traffic
traces can be used for e.g., website fingerprinting. However, the computational
work of distinguishing a website only by observing traffic that passes through an
entry/guard node can be challenging, especially when the destination is not a
common one [36]. On the other hand, an adversary that controls both the entry
and the exit node can (1) easily filter traffic that passes through a shared middle
node, and align traffic traces to identify a circuit, and then (2) establish a user-
destination pair. In the rest of the paper we will apply two simplified definitions
for “breach of anonymity”, described in the following.

“Breach of anonymity” ≡ guard and exit node compromise. In Section 5.2 we
develop numerical results for a model where “breach of anonymity” is defined
as a simultaneous compromise of guard node and exit node, as done in pre-
vious works [24]. Note, however, that since node compromise is modelled as a
stochastic variable, the (probability of) event of exit node compromise may also
include all events that allows deanonymisation of the circuit, including exit node
compromise but also the event of a traffic trace that reveals the destination.

A more conservative view: “Breach of anonymity” ≡ guard node compromise.
In other works [10,14], a different assumption is employed: users are considered
deanonymised as soon as they choose a malicious guard node, instead of requiring
the circuit to be compromised. This view may be relevant when the mere action
of connection through Tor can create a problem for the user, or if the traffic
trace can be assumed to reveal the destination with very high confidence. Note
that all of the results in Section 5.2 can be adapted to this more conservative
view by setting ε = 1.

Remark 3. These two stronger assumptions remove the dependency on St from
the evaluation metrics, as they equate circuit, resp. guard node, compromise to

Dynamic Security Aspects of Onion Routing 17

destination uncovering. Even though the rationale for the guard node feature is
worded in terms of probability of circuit compromise, thanks to the assumption
that circuit compromise is equivalent to deanonymisation, we can use the latter
to estimate the former. ⊓⊔

Abstraction by ignoring parameters irrelevant to the computation of
metrics values. The first step in the analysis is identifying the parameters of
the models, balancing the needs for relevance and simplicity; we aim to determine
and explicitly split parameters for the model from the parameters of the guard
node policies themselves. In the first category, we identify:

– the total number of guard nodes n;
– for each epoch, the churn, or the probability φ of a node to be offline;
– the probability γ of a guard node to be compromised, and the probability ε

of an exit node to be compromised.

The first parameter can be set to a specific value, or obtained from the current
Tor consensus. Main approaches to compute the other parameters include getting
estimates from some of the recent Tor consensuses or other recent literature.

Simplified policies.

Guard list selection. Each time a guards list is renewed, guards are selected uni-
formly at random. The no-guards and the 1-guard scenarios are easy to analyse:
the 1-guard case still requires a policy for selecting guard nodes, but the quality
of the guard node selection can still be summarized in the single probability γ.
In contrast, as described in Section 4.1, multi-guard-node scenarios also require
a policy for selecting a guard node (from a guard node set) to use at each new
circuit setup, and another policy for dealing with the unavailability situation:
when none of the guard nodes are reachable at the time of circuit setup.

Selection of guard for each circuit. The Tor guard specification (Appendix A)
is designed for achieving multiple goals. Prevention of deanonymisation is one
of the goals, but a guard for a new circuit is selected from the guard set based
on priorities which in turn also uses other criteria, including throughput (nodes
are weighted by their bandwidth). In order to focus on the security metrics as
discussed here, we abstract from Tor’s priority-based policy and instead focus on
two simplified models, the best-case greedy policy and the opposite and worst-
case ideal uniform use policy. These will serve as upper and lower bounds for
the Tor performance, based on Lemma 5 and Lemma 6. In the greedy policy,
the user will always try to use guard nodes that have been most used in the
past, to maximize (Equation (10)). In the ideal uniform use policy, the user will
always try to use guard nodes that have been least used in the past, approaching
a round-robin type of behaviour when there is no churn. In our context, these
theoretical policies serve to obtain bounds on Tor’s anonymisation performance.

18 A. Melloni, M. Stam and Ø. Ytrehus

Unavailability and reset policies. In an n-guard policy, if all n guard nodes are
simultaneously unavailable in an epoch, service is interrupted unless the policy
includes a strategy for resolving the problem immediately. Assuming the simple
strategy of immediately resetting the entire guard set when this event occurs,
we note that this may reduce the effective lifetime of guard sets to a value less
than the parameter T. For this reason, T should not be set to a value higher
than the expected number of epochs between events of loss of all guard nodes.

Simplification: Guard lists disjoint over time. This may not be true,
considering Tor rules for selecting guard lists, although the number of potential
guard nodes runs in the thousands. However, this assumption simplifies the
discussion. Also, the guard node state of being compromised can change with
time. If not, and if a guard node is indeed reused over several periods, the results
in Section 5.2 will overestimate the success rate of the attacker.

5.2 Quantitative Formulas for Metrics

In this section, we provide formulas for the metrics introduced in Section 4 (see Ta-
ble 1) for the guard node policies identified in Table 2 (except the Tor Guard
policy, the performance of which is bounded by that of other policies).

We assume a secret St consisting of u users, each of them connecting to
a single destination in each epoch (possibly with different probability distribu-
tions), and such that I

(
St+1; St

)
= 0. Since all users behave in the same way

with respect to circuit creation, we simplify the random variable X≤t(u) to the
shorter form X≤t .

Three general and basic lemmas. In Lemmas 1 to 3 we give general ex-
pressions for metrics µ1, . . . , µ3 that are valid for all guard node policies and
the user behaviour that we will discuss. These expressions still rely on further
calculations, specific to each policy, that will be derived further later on for some
policies.

Lemma 1 (Formulas for µ1(t) for any guard node policy). Assume that
in each epoch, each user, independent from the others, selects a destination and
establishes a new Tor circuit to it. Then

µ1(t) = E
[
Y≤t

]
= u · Pr[X≤t(u) = 0]. (8)

Proof. Since each of the u users is independent of the others, we obtain a bi-
nomial distribution for Y≤t , where not being deanonymised corresponds to the
success case:

Pr
[
Y≤t = k

]
=

(
u

k

)
(1− Pr[X≤t = 0])

u−k · (Pr[X≤t = 0])
k
.

The expectation of this binomial distribution is given by Equation (8). ⊓⊔

Dynamic Security Aspects of Onion Routing 19

Lemma 2 (Formulas for µ2(t) for any guard node policy). Let St be as
described in Section 4, and assume that for each circuit setup, the exit node is
selected independently of the guard node. Then, for any guard node policy,

µ2(t) =
tγε

1− Pr[X≤t = 0]
. (9)

Proof. Consider a set of j circuits, all using the same guard node. The expected
number of compromised circuits is

j
(
(1− γ) · 0 + γ · ε

)
= jγε.

Thus, the number of times a guard node is used is irrelevant to the average
probability of circuit compromise, and Equation (9) follows. ⊓⊔

Lemma 3 (Formulas for µ3 for any guard node policy). Let St be as
described in Section 4. Then, for any guard node policy,

µ3 =

t∑
t̃=1

(
t̃ · Pr

[
X≤t̃ = 1

∣∣X≤t̃−1 = 0
]
· Pr
[
X≤t̃−1 = 0

])
. (10)

Proof. Let C be the set epochs where a given user is deanonymised, so that
C = {t|X≤t > 0}. Then

E[minC] =

t∑
t̃=1

(
t̃ · Pr

[
minC = t̃

])
=

t∑
t̃=1

(
t̃ · Pr

[
X≤t̃−1 = 0 ∧X≤t̃ = 1

])
=

t∑
t̃=1

(
t̃ · Pr

[
X≤t̃ = 1

∣∣X≤t̃−1 = 0
]
· Pr
[
X≤t̃−1 = 0

])
.

⊓⊔

The no-guards and 1-guard policies, reachable guard nodes. In this
subsection we derive results for the simple cases of the no-guards policy and the
1-guard policy, when Tor nodes are always reachable (i.e., there is no churn, so
φ = 0). From Lemmas 1 to 3, we see that we need to calculate Pr[X≤t = 0] for
each specific scenario. The next lemma gives the probability of no compromise
when a guard node is reused for several circuits.

Lemma 4. Consider a sequence of ℓ circuits, created with a single guard node
and with random exit nodes. Then the probability of no compromise in any of
the ℓ circuits is Fγ,ε(ℓ) = F (ℓ) (dropping the subscripts for convenience), where

Pr[X≤ℓ = 0] = F (ℓ) ≜ 1− γ + γ (1− ε)
ℓ
. (11)

20 A. Melloni, M. Stam and Ø. Ytrehus

Proof.

Pr[X≤ℓ = 0] = Pr[X≤ℓ = 0 | honest g.n.] · Pr[honest g.n.]
+ Pr[X≤ℓ = 0 |malicious g.n.] · Pr[malicious g.n.]

= 1 · (1− γ) + (1− ε)ℓ · γ = 1− γ + γ(1− ε)ℓ

⊓⊔

Proposition 1 (Formulas for Pr[X≤t = 0] for no guards, single guards).
Let St be as described. Then for the no guards policy,

Pr[X≤t = 0] = (1− γε)
t

while for a single guard policy,

Pr[X≤t = 0] = (F (T))⌊t/T⌋ F (t mod T) . (12)

Proof. In a standard scenario without guard nodes, every circuit setup is inde-
pendent from the others and, for each user u ∈ U :

Pr[X≤t(u) = 0] = (Pr[X≤1(u) = 0])
t
= (1− γε)

t

because Pr[X≤1(u) = 0] is the probability, for a single circuit, to have at least
one honest end node. Then within one period of T, the guard node is fixed, so
for 1 ≤ t ≤ T, by Lemma 4, Pr[X≤t(u) = 0] = F (t). Finally, if t = aT+ b with
a, b ∈ N, b < T, we obtain

Pr[X≤t(u) = 0] = (Pr[X≤T(u) = 0])
a · F (b)

= F (T)a · F (b) .

⊓⊔

Proposition 2 (Formulas for µ3 for φ = 0). Let St be as described in
Section 4, and let µ3 = E[min {t|X≤t > 0}] = E[max {t|X≤t = 0}] + 1. Then,
without guard nodes,

µ3 =
1

εγ
. (13)

With a single guard node,

µ3 =
γ

ε

(
Tε(1− (1− ε)T)F (T) + (1− (Tε+ 1)(1− ε)T)(1− F (T))

(1− F (T))2

)
. (14)

With more than one guard node and the greedy guard selection policy, φ = 0
implies that only a single guard node is ever used, so that (14) is valid also for
this case. Also, for T = 1, (14) reduces to (13).

Dynamic Security Aspects of Onion Routing 21

Proof. So without guard nodes, (10) becomes

µ3 =

∞∑
t=1

t · (1− γε)
t−1 · γε

=
γε

(1− (1− γε))2
=

1

γε
.

With a single guard node and t = aT+ b,

Pr[X≤t = 1 |X≤t−1 = 0] = 0 · (1− γ) + ε
γ(1− ε)b−1

F (b− 1)
= ε

γ(1− ε)b−1

F (b− 1)
,

and (10) becomes

µ3 =

∞∑
a=0

 F (T)a︸ ︷︷ ︸
no compromise, aT epochs

T∑
b=1

(aT+ b)︸ ︷︷ ︸
t

εγ(1− ε)b−1

F (b− 1)︸ ︷︷ ︸
compromised new circuit

· F (b− 1)︸ ︷︷ ︸
no compromise, b − 1 epochs

= εγ

∞∑
a=0

((
1− γ + γ(1− ε)T

)a T∑
b=1

(aT+ b)(1− ε)b−1

)

= εγ

∞∑
a=0

((
1− γ + γ(1− ε)T

)a
(
aT(1− (1− ε)T)

ε
+

(1− (T(ε+ 1)(1− ε)T)

ε2

)

= εγ

∞∑
a=0

((
1− γ + γ(1− ε)T

)a
(
aT(1− (1− ε)T)

ε
+

(1− (T(ε+ 1)(1− ε)T)

ε2

)
= εγ

(
Tε(1− (1− ε)T)F (T) + (1− (Tε+ 1)(1− ε)T)(1− F (T))

((1− F (T))ε)2

)
,

which is equivalent to (14). ⊓⊔

Proposition 3 (Formulas for µ4(t) for φ = 0). In the no-churn case, i.e.
φ = 0,

µ4(t) =

γε if t ≡ 0 mod T,

ε otherwise.
(15)

The general case: φ ≥ 0, n ≥ 1,T ≥ 1. The previous subsection gives an
insight into the performance when the churn probability φ is very small. The
results for φ = 0 imply that choosing a single guard policy with T as large as
possible is the best thing to do, but for practical reasons, the Tor protocol uses
guard lists with more than one guard node. Hence we proceed with the case of
φ > 0, with a reset policy as discussed in Section 5.1. In this case, over t epochs,

22 A. Melloni, M. Stam and Ø. Ytrehus

Fig. 3. Paths through Markov chain and their associated probabilities with n = 1 as
in Example 2, for the special case of T = 3.

a user will go through a random number m of consecutive guard lists. Since, due
to churn, a guard list may be prematurely reset, the ith guard list will actually
last for a random number Ti of epochs, where the last guard list may still be
active at time t and

1 ≤ Ti ≤ T, 1 ≤ i ≤ m (16)

and
m∑
i=1

Ti = t. (17)

Thus to calculate the performance of a scenario with a given set of parameters
and a given policy, it is necessary to determine the probability distribution of m
and the sequence Ti, i = 1, . . . ,m for each t. We will return to how to calculate
µ1(t) in Proposition 4, but it is convenient to state a couple of supporting results
first. In order to approach the problem of determining our metrics in the φ > 0
scenario, we start with the simple example of a single guard node.

Example 2. Consider a single guard policy, where the guard node is used for at
most T epochs but where the reset policy is to select a new guard (for up to T
epochs) if the guard node is unavailable (which occurs with probability φ). The
lifetime of the guard node is described by the Markov process shown in Fig. 3,
for the case T = 3.

For this example,

Pr[X≤t = 0] =
∑

L=(T1,...,Tm(L))∈P(t)

Pr[X≤t = 0 |L] Pr[L]

=
∑

L=(T1,...,Tm(L))∈P(t)

m(L)∏
i=1

F (Ti)

Pr[L]. (18)

Here, each Ti represents the number of times the ith guard node has been used
since the last renewal of the guard list, and the summation parameter L is a
vector (T1,T2, . . . ,Tm) that represents a sequence of run lengths. This L runs
through the set P(t) of all ordered integer partitions of t satisfying (16) and
(17). A convenient way to compute the sum in (18) is by use of generating
functions [7].

Dynamic Security Aspects of Onion Routing 23

Consider the functions G0(Z) =
∑T

b=1 PbZ
b and G(Z) =

∑T
b=1 QbZ

b, where

Pb = F (b) (1− φ)b−1 for b = 1, . . . ,T

and
Qb = F (b) (1− φ)b−1φ for b = 1, . . . ,T− 1

while QT = PT = F (T) (1− φ)T−1. Here Pb and Qb represent, respectively,
the joint probability in the summand of (18) for a path starting in state 1 in
the Markov chain (Fig. 3) that has reached state b and then has (resp. has not)
returned to the starting state. Then the probability Pr[X≤t = 0] is the coefficient
of Zt in the polynomial

G0(Z)

t′∑
ℓ=0

G(Z)ℓ, (19)

where t′ ≥ t − 1. For the case of T = 3 as in Fig. 3, we have

G0(3) = F (1)Z + F (2) (1− φ)Z2 + F (3) (1− φ)2Z3

and
G(3) = F (1)φZ + F (2)φ(1− φ)Z2 + F (3) (1− φ)2Z3.

Expanding (19) in terms of powers of Z gives

1 + F (1)Z + (F (1)
2
φ+ F (2) (1− φ))Z2+

(F (3) (1− φ)2 + F (1) (F (2)φ(1− φ) + F (1)
2
φ2) + F (2) (1− φ)F (1)φ)Z3+

(F (1)φF (3) (1− φ)2 + F (2) (1− φ)(F (2)φ(1− φ) + F (1)
2
φ2)+

F (1) (F (3) (1− φ)2 + 2F (1)φ2F (2) (1− φ) + F (1)
3
φ3))Z4 + · · ·

and the coefficient of each term Zt is the probability Pr[X≤t = 0], so that

Pr[X≤0 = 0] = 1,

Pr[X≤1 = 0] = F (1) = 1− γ + γ(1− ε),

Pr[X≤2 = 0] = F (1)
2
φ+ F (2) (1− φ)

= (1− γ + γ (1− ε))
2
φ+

(
1− γ + γ (1− ε)

2
)
(1− φ)

=
(
γ2 − γ

)
ε2φ− (2− ε) γε+ 1,

and so on. ⊓⊔

Next, we proceed to expand the discussion to include the case where the
number of guards in the guard list is n > 1. As noted in Proposition 2, in the
case of no churn a greedy policy with n > 1 will behave and perform identically
to the single guard case, hence we study the n > 1 scenario only for φ > 0.

For a guard list of n guards, and for each i = 1, . . . ,n, let ℓi be the number
of times guard i is used during t epochs, so that

∑
i ℓi = t. By Lemma 5, γ, ε,

and the distribution χ = (ℓ1, . . . , ℓn) completely determine Pr[X≤t = 0].

24 A. Melloni, M. Stam and Ø. Ytrehus

Lemma 5. Assume that, at time t = ℓ1 + · · · + ℓn ≤ T, the n different guard
nodes from the guard list have been used (in any order) respectively ℓ1, . . . , ℓn
times since the last guard list renewal. Then

Pr[X≤t = 0] =

n∏
i=1

F (ℓi) (20)

Proof. Proof is by induction over n, where the base case n = 1 holds by defini-
tion. For the induction step:

n+1∏
i=1

F (ℓi) =

(
n∏

i=1

F (ℓi)

)
· F (ℓn+1) = Pr

[
X≤t−ℓn+1

= 0
]
· F (ℓn+1) = Pr[X≤t = 0].

⊓⊔

Lemma 6 (Monotonicity of F (ℓ)). Assume, without loss of generality, that
ℓi ≥ ℓi+1, for 1 ≤ i < n. For positive integers ℓ1 ≥ ℓ2,

F (ℓ1 + 1)F (ℓ2 − 1) ≥ F (ℓ1)F (ℓ2) (21)

and for positive integers ℓ1, ℓ2,

F (ℓ1 + ℓ2) ≥ F (ℓ1)F (ℓ2) . (22)

Proof.

F (ℓ1 + ℓ2)− F (ℓ1)F (ℓ2) = 1 + γ + γ (1− ε)
ℓ1+ℓ2 −

(
1 + γ + γ (1− ε)

ℓ1
)

·
(
1 + γ + γ (1− ε)

ℓ2
)

= γ(1− γ)(1− (1− ε)ℓ1 − (1− ε)ℓ2 + (1− ε)ℓ1+ℓ2)

= γ(1− γ)(1− (1− ε)ℓ1)(1− (1− ε)ℓ2) ≥ 0,

and, for ℓ1 ≥ ℓ2,

F (ℓ1 + 1)F (ℓ2 − 1)− F (ℓ1)F (ℓ2) =
(1− γ)γε((1− ε)ℓ2 − (1− ε)ℓ1+1)

1− ε
≥ 0.

⊓⊔

It follows from Lemmas 5 and 6 that a greedy policy is optimum with respect
to maximizing Pr[X≤ℓ = 0], and that an ideally uniform use algorithm is the
worst possible. Hence the performance of any policy (for selecting a guard from
the guard list for use for the next circuit) will lie between these two extremes.

Assume that the user has created t circuits (one circuit per epoch), and
that the n guard nodes have been used respectively χ1, χ2, . . . , χn times, where
χ1 + χ2 + · · · + χn = t and, without loss of generality, χ1 ≥ χ2 ≥ · · · ≥ χn.
Then let the guard node distribution be χ(t) = (χ1, χ2, . . . , χn). The ordering

Dynamic Security Aspects of Onion Routing 25

Fig. 4. Paths through Markov chain and their associated probabilities for the greedy
policy.

of the actual guard nodes may change over time to maintain the constraint
χ1 ≥ χ2 ≥ · · · ≥ χn. Finally, let χ (t) be the set of all guard distributions at
epoch t. At time t > 0, the current guard set has been used for a random time of
b epochs, and the Markov process describing the guard use will be in a random
state χ(b).

Let Pχ(b) be the probability of guard distribution χ = (χ1, χ2, . . . , χn) at
epoch b, where b = χ1 + χ2 + · · · + χn and 1 ≤ b ≤ T. Guard distributions
develop over epochs through a random walk if φ > 0. Let Pχ′(t−1)→χ(t) denote
the probability that a guard distribution χ′(t − 1) at epoch t − 1 develops into
χ(t) at epoch t. The probability Pχ′(t−1)→χ(t) depends (only) on φ and the guard
selection policy.

For χ′ = (1, 0, . . . , 0︸ ︷︷ ︸
n−1

), define Pχ′(1) = 1, and for 1 < b ≤ T and χ ∈ χ (b),

Pχ(b) =
∑

χ′∈χ(b−1)

Pχ′(b− 1)Pχ′(b−1)→χ(b).

Proposition 4 (Formula for Pr[X≤t = 0] for n-guards scenarios). Let
G0(P,Z) =

∑T
b=1 PbZ

b and G(Q,Z) =
∑T

b=1 QbZ
b, where Pb = F (b)Pχ(b) for

b = 1, . . . ,T and Qb = F (b)Pχ(b)φ
n for b = 1, . . . ,T−1 while QT = F (T)Pχ(T).

Then for ∀t > 1, ∀t′ ≥ t − 1, the probability Pr[X≤t = 0] is the coefficient of Zt

in the polynomial

G0(P,Z)

t′∑
ℓ=0

G(Q,Z)ℓ. (23)

Proof. The generating polynomials G(Q,Z) and G0(P,Z) represent, respec-
tively, accountancies of completed and uncompleted (current) guard lists, re-

26 A. Melloni, M. Stam and Ø. Ytrehus

Table 4. Summary of transition probabilities for the greedy policy. The table gives the
transition probabilities Pχ′→χ for each type of guard node distribution at epoch t − 1
(column headers) to each corresponding distribution at epoch t in the greedy policy.

(χ1, χ2, χ3) → χ1 > χ2 > χ3 χ1 = χ2 > χ3 χ1 > χ2 = χ3 χ1 = χ2 = χ3

at epoch t − 1
To state: at epoch t

(χ1 + 1, χ2, χ3) 1− φ 1− φ2 1− φ 1− φ3

(χ1, χ2 + 1, χ3) φ(1− φ) φ(1− φ2)

(χ1, χ2, χ3 + 1) φ2(1− φ) φ2(1− φ)

RESET φ3 φ3 φ3 φ3

Table 5. The table gives the transition probabilities Pχ′→χ for each type of guard
node distribution at epoch t − 1 (column headers) to each corresponding distribution
at epoch t in the IU policy.

(χ1, χ2, χ3) → χ1 > χ2 > χ3 χ1 = χ2 > χ3 χ1 > χ2 = χ3 χ1 = χ2 = χ3

at epoch t− 1
To state: at epoch t

(χ1 + 1, χ2, χ3) φ2(1− φ) φ(1− φ)2 φ2(1− φ) 1− φ3

(χ1, χ2 + 1, χ3) φ(1− φ) 1− φ2

(χ1, χ2, χ3 + 1) 1− φ 1− φ

RESET φ3 φ3 φ3 φ3

spectively. Hence (23) provides a convenient way to add up, for each t, and over
all guard node distributions χ of t epochs (and circuits) the probability of χ
times the associated Pr[X≤t = 0|χ] for that χ . Hence, (23) effectively computes
an expectation, namely Pr[X≤t = 0]. ⊓⊔

Example 3. Fig. 4 shows the Markov chain for a 3-guards greedy policy, with
complete reset of guard list if all nodes are unavailable at time of circuit cre-
ation. The transition probabilities Pχ′→χ for this scenario are summarised in
Table 4. Each column in the table represents a type of guard node distribution,
the possible next-epoch distribution, and the probability of the transition as a
function of the probability φ of guard unavailability.

Example 4. Fig. 5 shows the Markov chain for a 3-guards IU policy, with com-
plete reset of guard list if all nodes are unavailable at time of circuit creation.
The transition probabilities Pχ′→χ for this scenario are summarised in Table 5.
The model is the same as in Example 3 except that the transition probabilities
are different.

Dynamic Security Aspects of Onion Routing 27

5.3 Simulation Program

The analytical approach in Section 5.2 offers expressions that, at least for some
metrics, gives “exact” numerical results. However, some expressions are compli-
cated and offer little in terms of intuitive understanding. A simulation process
may be easier to apply to most of the metrics we consider, and gives sufficiently
precise results. Since tornettools does not support the guard node feature, we
wrote a program to simulate a Tor scenario simplified as discussed in Section 5.1.
To check the correctness of the simulation program, we have verified that the
results coincide exactly with our theoretical results where applicable.

For each simulation sample, a set of parameter values is applied to a random
process in which guard lists are selected, guards and exit nodes are compromised
according to probabilities γ and ε, guard nodes are selected according to a given
policy and based on availability according to the churn parameter φ, and a guard
list is completely renewed when it has been used for T epochs or all guards are
simultaneously unavailable. Each sample is run for a preselectable number of
epochs, and data for the metrics are collected for each sample. For each set of
parameters, the simulation is run for as many (106 − 107) samples as needed.

Lemma 7 (Formulas for µ4 for φ > 0). For the case of φ > 0, the
asymptotic value of µ4 = limt→∞ µ4(t) is given by

µ4 = (πchange(γ − 1) + 1)ε, (24)

where πchange is the probability that the guard node used at time t+1 is different
from the one used at time t.

Proof (Sketch). Using (7), we condition the probability µ4 on whether the
guard list at time t needs to be renewed due to having reached the full lifetime,
or not. ⊓⊔

Remark 4 (Regarding Lemma 7). It can be seen that (with equality for n = 1),

πchange ≥
1∑T

i=1(1− φn)i
.

For n > 1, πchange is a lower bound on πchange, since guard changes can
occur also due to other reasons. For n > 1, πchange can be estimated by simula-
tion. A direct estimator for µ4(t) can naïvely be obtained by counting pairs of
compromised circuits in a simulation and dividing this number by γε, but using
(24) gives a more precise way of estimating µ4(t).

5.4 Discussion: Relevant Parameter Ranges

To provide further insight into the practical ramifications of our work, we next
discuss suitable parameter ranges, followed by an interpretation of the results
from our analytical model for these parameters.

28 A. Melloni, M. Stam and Ø. Ytrehus

Fig. 5. Paths through Markov chain and their associated probabilities for the even-use
policy.

Network characteristics n and φ. Natural churn rate φ in the Tor network
can be computed by collecting and comparing subsequent consensus files. We
observe from previous research [40, Section 5.2] that φ is typically in the range
[0.001, 0.003]. For an n-guard policy, the probability that all n guard nodes are
simultaneously unavailable in an epoch is φn. This observation is an argument
for using lists with at least three guard nodes. Conversely, it suggests robustness
and small downtime as criteria for selecting guard nodes.

Epoch granularity T. In our experiments, we have used both small (to shed
light on the mechanisms) and large values of T. Our model is simplified with
respect to real users, who will not be continuously connected. However, it seems
reasonable that a real user can create some hundred circuits, one epoch per
circuit, during a normal Tor guard list lifetime.

Compromise levels γ and ε. We can model different scenarios through careful
choice of γ and ε:

– ε = 1: The case when guard compromise is considered equivalent to circuit
compromise.

– 0 < ε < 1: guard compromise combined with a probability ε of the union of
events {website fingerprinting is successful, exit node is compromised}.

– 0 < ε = γ < 1: The case where both ends need to be compromised for a
circuit to be compromised; we are concerned with one single adversary that
controls the fraction ε = γ of Tor node bandwidth.

– 0 < ε ≪ γ < 1: The case where both ends need to be compromised for
a circuit to be compromised; we are concerned by compromise by any of

Dynamic Security Aspects of Onion Routing 29

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t

µ
1

µ
2 t

A
B
C
D
E
F
G
H
I
J
K
L
M
M
N
O
P

Fig. 6. Simulation results for 500 epochs and parameter sets (n, T, φ, γ, ε). The pa-
rameter sets as listed in the figure legend are A: (1, 1000, 0, 0.2, 0.05), B: (100, 1000,
0.1, 0.2, 0.05), C: (3, 10, 0.1, 0.2, 0.05), D: (3, 10, 0.1, 0.2, 0.05, IU), E: (1, 1, 0, 0.2,
0.05), F: (3, 100, 0), G: (3, 100, 0.003, 0.2, 0.05), H: (3, 100, 0.1, 0.2, 0.05), I: (3, 100,
0.1, 0.2, 0.01), J: (3, 100, 0.1, 0.1, 0.01), K: (3, 100, 0.1, 0.2, 0.1), L: (3, 100, 0.2, 0.2,
0.05), M: (3, 100, 0.3, 0.2, 0.05), N: (100, 1000, 0.1, 0.2, 0.05), O: (3, 10, 0.1, 0.2, 0.05),
P: (1, 1, 0, 0.2, 0.05). Unless explicitly stated as IU (ideally uniform), the policy is the
greedy one. Black, blue, green, and orange curves show µ1(t). The “waves” of the blue
and green curves show the effect of changing stable guard sets. The red curves passing
through the lower left corner show µ2(t) /t.

these. Each adversary controls a fraction ε of Tor node bandwidth. Thus,
the effective guard node compromise ratio γ is ε× (number of adversaries).

5.5 Results

Figure 6 shows results for µ1(t) and µ2(t) for selected sets of parameters. From
the results, different patterns emerge:

– The value of µ1(t) for the greedy policy quickly converges to its expected
value of (1− γ), until the guard list is renewed.

– The value of µ1(t) for the IU policy is sometimes close to the greedy policy
(curves C and D), and always lower bounded by the no-guard policy (curve
E). For the parameter set corresponding to curve B, the IU policy curve (not

30 A. Melloni, M. Stam and Ø. Ytrehus

explicitly shown) coincides almost exactly with curve E. In general, for large
n and T and small φ, the guard selection policy influences µ1(t) heavily.

– The value of µ2(t) for the greedy policy quickly converges to (9).
– For the realistic φ ∈ [0, 0.003] there is no significant impact of φ on any of

our metrics. Thus our results for all four metrics conditioned on φ = 0 are
good approximations.

– In general, the two other metrics (not shown due to lack of space) seem to
vary less dramatically.

6 Conclusion

We have presented a general evaluation framework to evaluate the security per-
formance of Tor network protocol policies and the efficacy of attacks carried
out by adversaries observing and possibly interacting with the Tor network over
time. As an example, we have used the framework to develop an analysis of the
guard node feature, shedding new insights on the guard node selection as distinct
from the guard list maintenance and the effects that various parameters have on
the examined metrics.

References

1. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: Zdancewic, S., Cortier, V. (eds.) CSF 2012 Computer Secu-
rity Foundations Symposium. pp. 369–385. IEEE Computer Society Press (2012).
https://doi.org/10.1109/CSF.2012.32

2. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA: A frame-
work for analyzing anonymous communication protocols. In: Cortier, V., Datta, A.
(eds.) CSF 2013 Computer Security Foundations Symposium. pp. 163–178. IEEE
Computer Society Press (2013). https://doi.org/10.1109/CSF.2013.18

3. Backes, M., Kate, A., Meiser, S., Mohammadi, E.: (Nothing else) MATor(s): Mon-
itoring the anonymity of tor’s path selection. In: Ahn, G.J., Yung, M., Li, N. (eds.)
ACM CCS 2014. pp. 513–524. ACM Press (Nov 2014). https://doi.org/10.1145/
2660267.2660371

4. Backes, M., Manoharan, P., Mohammadi, E.: TUC: Time-sensitive and modular
analysis of anonymous communication. In: Datta, A., Fournet, C. (eds.) CSF 2014
Computer Security Foundations Symposium. pp. 383–397. IEEE Computer Society
Press (2014). https://doi.org/10.1109/CSF.2014.34

5. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Laud, P. (ed.) Information Security Technology
for Applications. Lecture Notes in Computer Science, vol. 7161, pp. 31–46. LNCS,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-4_4

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Ltd, USA (2006). https://doi.org/10.1002/047174882X

7. Cox, D., Miller, H.: The Theory of Stochastic Processes. Chapman & Hall (1965).
https://doi.org/10.1201/9780203719152

https://doi.org/10.1109/CSF.2012.32
https://doi.org/10.1109/CSF.2012.32
https://doi.org/10.1109/CSF.2013.18
https://doi.org/10.1109/CSF.2013.18
https://doi.org/10.1145/2660267.2660371
https://doi.org/10.1145/2660267.2660371
https://doi.org/10.1145/2660267.2660371
https://doi.org/10.1145/2660267.2660371
https://doi.org/10.1109/CSF.2014.34
https://doi.org/10.1109/CSF.2014.34
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1002/047174882X
https://doi.org/10.1002/047174882X
https://doi.org/10.1201/9780203719152
https://doi.org/10.1201/9780203719152

Dynamic Security Aspects of Onion Routing 31

8. Das, A., Acar, G., Borisov, N., Pradeep, A.: The web’s sixth sense: A study of
scripts accessing smartphone sensors. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) ACM CCS 2018. pp. 1515–1532. ACM Press (Oct 2018). https://doi.
org/10.1145/3243734.3243860

9. Degabriele, J.P., Stam, M.: Untagging Tor: A formal treatment of onion encryption.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 259–293. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78372-7_9

10. Dingledine, R., Hopper, N., Kadianakis, G., Mathewson, N.: One fast guard for
life (or 9 months) (2014)

11. Dingledine, R., Mathewson, N.: Tor path specification (Dec 2021), https://
github.com/torproject/torspec/blob/main/path-spec.txt, commit 0911bbd

12. Dingledine, R., Mathewson, N.: Tor protocol specification (Nov 2021), https://
github.com/torproject/torspec/blob/main/tor-spec.txt, commit 48ab890

13. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Blaze, M. (ed.) USENIX Security 2004. pp. 303–320. USENIX Associ-
ation (Aug 2004)

14. Elahi, T., Bauer, K.S., AlSabah, M., Dingledine, R., Goldberg, I.: Changing of
the guards: A framework for understanding and improving entry guard selection
in Tor. In: Yu, T., Borisov, N. (eds.) WPES 2012. pp. 43–54. ACM (Oct 2012).
https://doi.org/10.1145/2381966.2381973

15. Englehardt, S., Narayanan, A.: Online tracking: A 1-million-site measurement and
analysis. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 1388–1401. ACM Press (Oct 2016). https://doi.org/
10.1145/2976749.2978313

16. Fu, X., Ling, Z.: One cell is enough to break Tor’s anonymity (2009)
17. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In: An-

derson, R.J. (ed.) IWIH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg,
Berlin, Heidelberg (Jun 1996). https://doi.org/10.1007/3-540-61996-8_37

18. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing. Communications
of the Association for Computing Machinery 42(2), 39–41 (Feb 1999). https:
//doi.org/10.1145/293411.293443

19. Hanley, H., Sun, Y., Wagh, S., Mittal, P.: DPSelect: A differential privacy based
guard relay selection algorithm for tor. PoPETs 2019(2), 166–186 (Apr 2019).
https://doi.org/10.2478/popets-2019-0025

20. Hayes, J., Danezis, G.: Guard sets for onion routing. PoPETs 2015(2), 65–80 (Apr
2015). https://doi.org/10.1515/popets-2015-0017

21. Hevia, A., Micciancio, D.: An indistinguishability-based characterization of
anonymous channels. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS,
vol. 5134, pp. 24–43. Springer, Heidelberg (Jul 2008). https://doi.org/10.1007/
978-3-540-70630-4_3

22. Jansen, R., Hopper, N.: Shadow: Running Tor in a box for accurate and efficient
experimentation. In: NDSS 2012. The Internet Society (Feb 2012)

23. Jansen, R., Tracey, J., Goldberg, I.: Once is never enough: Foundations for sound
statistical inference in tor network experimentation. In: Bailey, M., Greenstadt, R.
(eds.) USENIX Security 2021. pp. 3415–3432. USENIX Association (Aug 2021)

24. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.F.: Users get routed:
traffic correlation on Tor by realistic adversaries. In: Sadeghi, A.R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013. pp. 337–348. ACM Press (Nov 2013). https:
//doi.org/10.1145/2508859.2516651

https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/978-3-319-78372-7_9
https://github.com/torproject/torspec/blob/main/path-spec.txt
https://github.com/torproject/torspec/blob/main/path-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://doi.org/10.1145/2381966.2381973
https://doi.org/10.1145/2381966.2381973
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1145/293411.293443
https://doi.org/10.1145/293411.293443
https://doi.org/10.1145/293411.293443
https://doi.org/10.1145/293411.293443
https://doi.org/10.2478/popets-2019-0025
https://doi.org/10.2478/popets-2019-0025
https://doi.org/10.1515/popets-2015-0017
https://doi.org/10.1515/popets-2015-0017
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651

32 A. Melloni, M. Stam and Ø. Ytrehus

25. Karunanayake, I., Ahmed, N., Malaney, R., Islam, R., Jha, S.K.: De-anonymisation
attacks on Tor: A survey. IEEE Communications Surveys and Tutorials 23(4),
2324–2350 (Jul 2021). https://doi.org/10.1109/COMST.2021.3093615

26. Köster, K., Marx, M., Kunstmann, A., Federrath, H.: Evaluation of circuit lifetimes
in Tor. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds.) SEC. IFIP Advances
in Information and Communication Technology, vol. 648, pp. 142–157. Springer,
Heidelberg, Cham (2022)

27. Kuhn, C., Beck, M., Schiffner, S., Jorswieck, E.A., Strufe, T.: On privacy notions
in anonymous communication. PoPETs 2019(2), 105–125 (Apr 2019). https://
doi.org/10.2478/popets-2019-0022

28. Kuhn, C., Beck, M., Strufe, T.: Breaking and (partially) fixing provably secure
onion routing. In: 2020 IEEE Symposium on Security and Privacy. pp. 168–185.
IEEE Computer Society Press (May 2020). https://doi.org/10.1109/SP40000.
2020.00039

29. Libert, T.: Exposing the hidden web: An analysis of third-party HTTP requests
on 1 million websites (2015), https://arxiv.org/abs/1511.00619

30. Lovecruft, I., Kadianakis, G., Bini, O., Mathewson, N.: Another algorithm for
guard selection (Aug 2017), https://github.com/torproject/torspec/blob/
main/proposals/271-another-guard-selection.txt, commit db17344

31. Lovecruft, I., Kadianakis, G., Bini, O., Mathewson, N.: Tor guard specification
(Oct 2021), https://github.com/torproject/torspec/blob/main/guard-spec.
txt, commit 29245fd

32. Lu, T., Du, Z., Wang, Z.J.: A survey on measuring anonymity in anonymous com-
munication systems. IEEE Access 7, 70584–70609 (May 2019). https://doi.org/
10.1109/ACCESS.2019.2919322

33. Mathewson, N., Murdoch, S.: Top changes in Tor since the 2004
design paper (part 2) (Oct 2012), https://blog.torproject.org/
top-changes-tor-2004-design-paper-part-2/

34. Mauw, S., Verschuren, J., de Vink, E.P.: A formalization of anonymity and onion
routing. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ES-
ORICS 2004. LNCS, vol. 3193, pp. 109–124. Springer, Heidelberg (Sep 2004).
https://doi.org/10.1007/978-3-540-30108-0_7

35. Melloni, A., Stam, M., Ytrehus, Ø.: On evaluating anonymity of onion routing. In:
AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 3–24. Springer,
Heidelberg (Sep 2021). https://doi.org/10.1007/978-3-030-99277-4_1

36. Mohd Aminuddin, M.A.I., Zaaba, Z.F., Samsudin, A., Zaki, F., Anuar, N.B.:
The rise of website fingerprinting on Tor: Analysis on techniques and assump-
tions. Journal of Network and Computer Applications 212(C), 103582 (Mar 2023).
https://doi.org/10.1016/j.jnca.2023.103582

37. Øverlier, L., Syverson, P.: Locating hidden servers. In: 2006 IEEE Symposium on
Security and Privacy. pp. 100–114. IEEE Computer Society Press (May 2006).
https://doi.org/10.1109/SP.2006.24

38. Pries, R., Yu, W., Fu, X., Zhao, W.: A new replay attack against anonymous
communication networks. In: ICC 2008. pp. 1578–1582. IEEE (May 2008). https:
//doi.org/10.1109/ICC.2008.305

39. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for anonymous routing. In:
ACSAC 1996. pp. 95–104. IEEE Computer Society (1996). https://doi.org/10.
1109/CSAC.1996.569678

40. Sharma, P.K., Chaudhary, S., Hassija, N., Maity, M., Chakravarty, S.: The road
not taken: Re-thinking the feasibility of voice calling over tor. PoPETs 2020(4),
69–88 (Oct 2020). https://doi.org/10.2478/popets-2020-0063

https://doi.org/10.1109/COMST.2021.3093615
https://doi.org/10.1109/COMST.2021.3093615
https://doi.org/10.2478/popets-2019-0022
https://doi.org/10.2478/popets-2019-0022
https://doi.org/10.2478/popets-2019-0022
https://doi.org/10.2478/popets-2019-0022
https://doi.org/10.1109/SP40000.2020.00039
https://doi.org/10.1109/SP40000.2020.00039
https://doi.org/10.1109/SP40000.2020.00039
https://doi.org/10.1109/SP40000.2020.00039
https://arxiv.org/abs/1511.00619
https://github.com/torproject/torspec/blob/main/proposals/271-another-guard-selection.txt
https://github.com/torproject/torspec/blob/main/proposals/271-another-guard-selection.txt
https://github.com/torproject/torspec/blob/main/guard-spec.txt
https://github.com/torproject/torspec/blob/main/guard-spec.txt
https://doi.org/10.1109/ACCESS.2019.2919322
https://doi.org/10.1109/ACCESS.2019.2919322
https://doi.org/10.1109/ACCESS.2019.2919322
https://doi.org/10.1109/ACCESS.2019.2919322
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2/
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2/
https://doi.org/10.1007/978-3-540-30108-0_7
https://doi.org/10.1007/978-3-540-30108-0_7
https://doi.org/10.1007/978-3-030-99277-4_1
https://doi.org/10.1007/978-3-030-99277-4_1
https://doi.org/10.1016/j.jnca.2023.103582
https://doi.org/10.1016/j.jnca.2023.103582
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.1109/ICC.2008.305
https://doi.org/10.1109/ICC.2008.305
https://doi.org/10.1109/ICC.2008.305
https://doi.org/10.1109/ICC.2008.305
https://doi.org/10.1109/CSAC.1996.569678
https://doi.org/10.1109/CSAC.1996.569678
https://doi.org/10.1109/CSAC.1996.569678
https://doi.org/10.1109/CSAC.1996.569678
https://doi.org/10.2478/popets-2020-0063
https://doi.org/10.2478/popets-2020-0063

Dynamic Security Aspects of Onion Routing 33

41. Star Trek II: The Wrath of Khan (1982), Paramount Pictures, directed by Nicholas
Meyer

42. Sun, Y., Edmundson, A., Feamster, N., Chiang, M., Mittal, P.: Counter-RAPTOR:
Safeguarding tor against active routing attacks. In: 2017 IEEE Symposium on
Security and Privacy. pp. 977–992. IEEE Computer Society Press (May 2017).
https://doi.org/10.1109/SP.2017.34

43. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: 1997 IEEE Symposium on Security and Privacy. pp. 44–54. IEEE
Computer Society Press (1997). https://doi.org/10.1109/SECPRI.1997.601314

44. The23rd Raccoon: Analysis of the relative severity of tagging attacks (2012),
https://lists.torproject.org/pipermail/tor-dev/2012-March/003347.html

45. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: Defending anonymous com-
munications against passive logging attack. In: 2003 IEEE Symposium on Secu-
rity and Privacy. pp. 28–43. IEEE Computer Society Press (May 2003). https:
//doi.org/10.1109/SECPRI.2003.1199325

A Tor Guard Specification

The current Tor guard node specification [31] is based on a series of subsequent
sampling performed by the proxies, starting from the set of all the current guard
nodes according to some probability distribution and some further processing.
The specification contains a scheme of the process leading to guard node selec-
tion:

relays listed in consensus
|

sampled
| |

confirmed filtered
| | |
primary usable_filtered

We simplify some of the technicalities of the process, while maintaining
enough details for a meaningful representation:

1. the guard nodes information is collected from the consensus.
2. 60 guard nodes are sampled. This list is persistent across runs of the proxy

and ordered by priority. Nodes are removed from this list when they are
either out of the consensus long enough or too “old” (expired lifetime).

3. 20 guards are selected each run (not persistent) to be filtered according to
path selection bias and other settings (operational configuration). Reachable
nodes are set usable_filtered.

4. confirmed guards are the ones the proxy used in the past, as persistent
ordered list. Nodes removed from the sampled list are removed from this list
as well.

5. The top 3 nodes in the intersection of confirmed and filtered are the
primary guards. Since filtered is not persistent, neither is this list. When
building a circuit, the proxy picks the reachable one with highest priority.

https://doi.org/10.1109/SP.2017.34
https://doi.org/10.1109/SP.2017.34
https://doi.org/10.1109/SECPRI.1997.601314
https://doi.org/10.1109/SECPRI.1997.601314
https://lists.torproject.org/pipermail/tor-dev/2012-March/003347.html
https://doi.org/10.1109/SECPRI.2003.1199325
https://doi.org/10.1109/SECPRI.2003.1199325
https://doi.org/10.1109/SECPRI.2003.1199325
https://doi.org/10.1109/SECPRI.2003.1199325

	 Dynamic Security Aspects of Onion Routing

