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Abstract. As the global migration to post-quantum cryptography (PQC)
continues to progress actively, in Korea, the Post-Quantum Cryptogra-
phy Research Center has been established to acquire PQC technology,
leading the KpqC Competition. In February 2022, the KpqC Competi-
tion issued a call for proposals for PQC algorithms. By November 2022,
16 candidates were selected for the first round (7 KEMs and 9 DSAs).
Currently, Round 1 submissions are being evaluated with respect to se-
curity, efficiency, and scalability in various environments. At the cur-
rent stage, evaluating the software through an analysis to improve the
software quality of the first-round submissions is judged appropriately.
In this paper, we present analysis results regarding performance and
implementation security on based dependency-free approach of external
libraries. Namely, we configure extensive tests for an analysis with no de-
pendencies by replacing external libraries that can complicate the build
process with hard coding. From the performance perspective, we provide
analysis results of performance profiling, execution time, and memory us-
age for each of the KpqC candidates. From the implementation security
perspective, we examine bugs and errors in the actual implementations
using Valgrind software, a metamorphic testing methodology that can in-
clude wide test coverage and constant-time implementation against the
timing attack. Until the KpqC standard algorithm is announced, we ar-
gue that continuous integration of extensive tests will lead to higher-level
software quality of KpqC candidates.
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1 Introduction

With the development of quantum computer technology, the importance of post-
quantum cryptography (PQC), which can replace public key cryptography in
a quantum environment, is being stressed. In 2016, the National Institute of
Standards and Technology (NIST) announced the PQC Competition through
an open competition such as AES and SHA3. Currently, four standardization
candidates for Key Encapsulation Mechanism (KEM) and Digital Signature Al-
gorithm (DSA) have been selected, and NIST is conducting a competition for ad-
ditional standardization proposals for digital signature algorithms. Unlike AES
and SHA-3, the mathematical complexity of PQC algorithms has increased, and
they support a wide range of key lengths and signature lengths, ranging from
bytes to megabytes. In addition, the performance of each algorithm varies, and
some algorithms are too slow or faster than traditional public-key cryptogra-
phy. The various features of the PQC algorithms have made the selection of
candidates at NIST more difficult and task burdens the community, research
institutes, and industry in reviewing and evaluating candidates. In other words,
this meant that candidates had to be integrated and tested on various platforms
and situations, and the importance of software was emphasized here. In these dif-
ficulties, various community and industry projects contributed to selecting NIST
PQC Competition candidates. These include PQClean[1], which integrates ref-
erence C implementations in Intel, pqm4[2] for clean implementations on ARM
Cortex-M4 platforms; OQS OpenSSL[3], StrongSwan[4] integrating reference im-
plementations into security protocols and applications. Based on this research,
the implementation suitability of the submitted software was evaluated on vari-
ous platforms.

To enhance domestic PQC capabilities, a Korea Post-Quantum Cryptography
(KpqC) Competition was held. The KpqC Competition requested to submit a
development roadmap until February 2022 Considering domestic technology, and
based on this, 18 candidates for Round 0 candidates were selected. Through the
round 1 of public evaluation, 16 candidates have been selected, and the selection
of algorithms for standardization will be completed by September 2024. After-
ward, it is expected that the selected algorithm will be standardized for PQC and
included in the algorithms subject to KCMVP verification. The most important
thing aspect of this is the software implementation. Some candidates generate
errors and warnings when building, and it takes time and effort repeatedly to
get them to compile and run cleanly. Unlike the NIST PQC Competition, where
the suitability and security of software are evaluated by participating worldwide,
there are limitations in software evaluation for KpqC Competition candidates.
Thus, to strengthen the software quality of domestic candidates, it is necessary
to verify candidates with an extensive test framework through continuous inte-
gration such as PQClean[1] and pqm4[2].



As with NIST PQC Competition candidates, the KpqC Competition required
candidates to be developed by an ANSI C software implementation, which also
had to be accompanied by a KAT (Known Answer Test) value to verify imple-
mentation correctness. However, these candidates are limited in verifying the
correctness of the implementation of the software. First, the KAT test checks
the output value for a given input value, and it is challenging to find bugs in the
software implementation. For this reason, a new software verification method
called metamorphic testing, which can verify wide test coverage, has recently
been proposed [5,6]. In IEEE/ACM MET WorkShop’19 [5], several bugs in im-
plementation were found by applying metamorphic testing to the initial NIST
PQC Competition candidates, and in IEEE’18 [6], vulnerabilities in the hash
function that passed CAVP verification were found by applying metamorphic
testing. Thus, the application of metamorphic testing enables the implemen-
tation vulnerabilities of in a wide range of software. In addition, the second
limitation is that there is no verification of the constant-time implementation of
the candidates. The most important aspect of the NIST PQC Competition from
the second round is the countermeasure against side-channel attacks. Although
PQC may be mathematically secure in a quantum computing environment, it
is still vulnerable to side-channel attacks depending on how it is implemented.
Furthermore, there are many studies to achieve constant-time implementation
of PQC [7,8]. For this reason, constant-time implementation is important for
resisting side-channel attacks of PQC.

In this paper, we present the evaluation for KpqC round 1 candidates consid-
ering performance and implementation security on an integration basis through
extensive tests. From a performance perspective, we examine the execution time,
memory usage, and profiling results for KpqC competition candidates. From an
implementation security perspective, we validate KpqC competition candidates
extensively, from Valgrind validation to detect basic implementation errors to
metamorphic testing with wide test coverage. Furthermore, side-channel vul-
nerabilities are analyzed by checking whether they implement constant time
through Valgrind. Finally, we have removed dependencies on external libraries
that can complicate builds. We have put the extensive test of the KpqC Compe-
tition for continuous integration into the public domain and made it available at
https://github.com/kpqclib/kpqclib. The goal of this paper is to develop
a continuous integration test by collecting independent C implementations of
KpqC competition candidates in various environments, such as PQClean[1] and
pqm4[2]. We expect to contribute to improving the software quality of the KpqC
Competition.

1.1 Contributions

– Design of an extensive test to improve software quality of the
KpqC Competition candidates
Recently, four algorithms have been selected as candidates for standard-
ization in the NIST PQC Competition. Various community and industry



projects contributed to the evaluation of NIST by reviewing the software ver-
ification and applicability in various environments for submitted software. In
Korea, there is an ongoing KpqC competition led by the Post Quantum Cryp-
tography Research Center. However, verifying the software of the KpqC com-
petition candidates with the same level of rigor as the NIST PQC Competi-
tion is challenging. The key factor for migrating the public key cryptography
to PQC is the extensive verification of software. Thus, we present the continu-
ous integration test for the KpqC Competition round 1 candidate considering
performance and implementation security. The source code for our extensive
test is publicly available on https://github.com/Unlimitosu/KPQClib.
We aspire that through verification of our continuous integration test, the
quality of the software of KpqC Competition candidates will be improved.

– Providing the analyses of three performance of KpqC competition
candidates: benchmark, memory consumption, and profiling
We present the results of a detailed performance analysis of Round 1 KpqC
submissions from three perspectives: benchmark, memory consumption, and
profiling. Benchmarks submitted by round 1 candidates perform reliably.
However, it is difficult to expect fair results because the benchmarking envi-
ronment is not the same. For this reason, we provide benchmarking results for
KpqC round 1 candidates in a typical CPU environment (Intel) for fair com-
parison. In addition, we evaluate the applicability of KpqC competition can-
didates in resource-constrained devices by closely comparing memory usage.
Some algorithms may be difficult to apply in resource-constrained devices
due to excessive key and signature lengths, so their applicability in resource-
constrained devices should be carefully analyzed. Finally, we present profil-
ing results for KpqC round 1 candidates. Profiling may provide a bottleneck
point for each KpqC submission, suggesting the direction of optimization
research.

– Verifying implementation security of KpqC Competition candi-
dates through extensive tests
We evaluate the implementation security of the KpqC round 1 candidates
through extensive tests. For basically extensive test design, we have replaced
working dependencies in external libraries that can complicate builds with
hard coding. Implementation security can be categorized into implementa-
tion errors and side-channel vulnerabilities. In implementation errors, veri-
fying existing candidates was generally performed with the KAT test, but
it is limited to finding bugs and errors. Thus, we verify them through meta-
morphic testing, which can cover a wide range of basic verification through
the Valgrind tool to find bugs and errors. As a result, simple errors were
found in two candidates, and metamorphic error was found in one candi-
date. In addition, we present an implementation method to solve this error
because a metamorphic error means that the same master key value can be
generated for forged inputs. In side-channel vulnerability analysis, we iden-
tify the constant-time implementation, which is side-channel resistant, for



each KpqC candidate via the Valgrind tool. Most of the KpqC Competition
candidates achieved constant-time implementation, and only one candidate
failed to satisfy it.

1.2 Differences from the existing KPQClean project

In Cryptology ePrint Archive’23[9], a KPQClean, which integrates KpqC Com-
petition candidates and provides benchmarking results, has been proposed. They
presented benchmarking results in two general CPU environments (Intel and
Ryzen) for KpqC round 1 candidates. The -O2 and -O3 options showed de-
tailed performance comparison results. In addition, accessibility was enhanced
by removing external library elements used in many of the KpqC Competi-
tion candidates and replacing them with hard coding. In this paper, we provide
benchmarking results in only one environment (Intel) but suggest the direction of
applicability of the KpqC algorithms in resource-constrained devices by compar-
ing the memory usage. Furthermore, extending the applicability by removing the
working dependency (external library) is the same as the paper above[9]. Addi-
tionally, we verify KpqC Competition candidates by applying metamorphic test-
ing, and a wide range of software verification techniques. Finally, side-channel re-
sistance is evaluated by checking whether constant-time is implemented through
Valgrind. The detailed differences between KPQClean[9] and our test framework
are shown in Table 1.

Test KPQClean[9] KPQCLib(Our Work)

Benchmark
Results

Ryzen 7 4800,
Intel i5-8259U
→ 2 Environment

Intel i7-13700K

→ 1 Environment

Working
Dependencies

Eliminating
the external library
→ OpenSSL

Eliminating
the external library
→ OpenSSL

Memory Usage - Providing Stack Usage for
KpqC round 1 candidates

Algorithm Profiling - Finding performance bottleneck
of KpqC round 1 candidates

Software Engineering -
Providing testing framework
through Valgrind test and
metamorphic testing

Side Channel
Resistance -

Providing results on
whether it is a constant-
time implementation

Table 1: Difference between testing framework of KPQClean[9] and Our Work

The rest of the paper is summarized as follows. Section 2 provides a detailed
description of the KpqC Competition, metamorphic test, memory leakage, and



Constant-time implementation verification through Valgrind, and the definition
of bugs and errors found. Section 3 presents related work for software verification
and side-channel vulnerabilities in PQC. Section 4.1 presents benchmarking re-
sults, Valgrind testing results, and metamorphic testing results for KpqC round
1 candidates. Finally, Section 5 gives the conclusions of this paper and future
work.

2 Preliminaries

2.1 KpqC Competition Overview

Globally, there is active research and development of PQC to achieve security in
the era of quantum computing. In Korea, efforts are being made to secure domes-
tic PQC technologies and promote policies applicable to the domestic landscape.
To pursue this goal, the KpqC (Korea Post-Quantum Cryptography) Research
Group has been organizing the KpqC Competition since 2021. Unlike the NIST
PQC Competition, the KpqC Competition started from Round 0, considering
domestic PQC-related capabilities.

In Round 0, participants were required to submit development proposals,
including algorithm functionality, underlying issues, design approach, and de-
velopment plans. Afterward, they were granted approximately 9 months for the
development phase. The submissions were evaluated based on criteria such as
algorithm excellence and originality, soundness of security rationale, specificity,
and feasibility of development objectives, leading to the selection of Round 0 can-
didates. In total, 18 algorithms were chosen, comprising 8 KEMs and 10 DSAs.
Round 1 in KpqC Competition is currently in progress, and KpqC Competition
plans to select Round 2 candidates in December 2023. Round 2 will be conducted
from February to September 2024. The final algorithm selection is scheduled for
September 2024. KpqC Competition is considering conducting Round 3 to pre-
pare the necessary elements for implementing the algorithms selected in Round
2. The classification of Round 1 candidates is shown in Table 2 and 3.

A summary of each algorithm is following:

PKE/KEM Schemes

– IPCC IPCC (Improved Perfect Code Cryptosystem) is a graph-based PQC
that relies on the security of the Perfect Code Cryptosystem (PCC) prob-
lem, which determines the existence of Perfect Domination Sets (PDS) in a
graph. The PCC problem has been proven to be NP-Complete, and gener-
ally, PCC-based encryption schemes struggle to provide both security and
efficiency. However, IPCC is designed to operate efficiently for the same k
by utilizing multiple graphs. The key generation and decryption processes
follow the design principles of traditional PCC-based encryption schemes.
IPCC is built upon the problem of determining PDS in 3-regular graphs,
where a 3-regular graph refers to a graph in which all vertices have a degree



Based Problem Algorithm Total

Lattice
NTRU+

3SMAUG
TiGER

Code
Layered ROLLO-I

3PALOMA
REDOG

Graph IPCC 1
Table 2: PKE/KEM Algorithm Classification of KpqC Round 1 Candidates

Based Problem Algorithm Total

Lattice

GCKSign

5
HAETAE
NCCSign
Peregrine
SOLMAE

Code Enhanced pqsigRM 1
Polynomial MQSign 1

Isogeny FIBS 1
Zero-knowledge Proof AIMer 1

Table 3: DSA Algorithm Classification of KpqC Round 1 Candidates

of 3. PDS represents a subset D of the set of all vertices V , where for each
vertex, the set of connected vertices is a subset of D. The key generation
function in IPCC takes the cardinality of the sets of vertices in each graph
as input and generates the public and private keys accordingly. The private
key in IPCC is represented by the Perfect Domination Function (PDF), and
the public key consists of sets of graphs. PDF is a function that maps sets of
vertices in a graph to 0 or 1, under the condition that the sum of connected
vertices for each vertex is 1. The encryption in IPCC involves generating an
invariant polynomial fk

G corresponding to the vertex set G and the maxi-
mum degree k. This polynomial is then used for encryption. Decryption is
performed by applying the PDF function to each element of the ciphertext.
The sizes of IPCC’s public key, private key, and ciphertext are 4,800 bytes,
400 bytes, and 92,000 bytes, respectively, for a security strength of 80 bits.

– Layered ROLLO-I Layered ROLLO-I is a code-based PQC scheme based
on the Rank Syndrome Decode problem which is NP-complete. ROLLO,
which is built upon the Low-Rank Parity Check (LRPC) code, was submit-
ted to the NIST PQC Competition. However, it exhibited lower decryption
performance compared to lattice-based PQC. To alleviate these performance
limitations, it was designed based on the ideal LRPC (BII-LRPC) code with



a modified structure. By multiplying low-rank vectors into two polynomials,
Layered ROLLO-I made it challenging for attackers to exploit the cryptosys-
tem’s structural properties, thereby enhancing the security strength. Layered
ROLLO-I provides security levels of 128 (resp. 192 and 256) bits with 1,240
(resp. 1,699 and 2,571) bytes of the public key, 120 (resp. 120 and 120) bytes
of the private key, and 620 (resp. 850 and 1,286) bytes of ciphertext.

– NTRU+ NTRU+ is a scheme that shares a similar design rationale with
NTRU, which was a Round 3 candidate in the NIST PQC Competition. The
security of NTRU+ is based on the RLWE problem in the NTRU lattice.
One of the distinguishing features of NTRU+ is the proposal of the Semi-
generalized One Time Pad (SOTP), an encoding method that ensures the up-
per bound of the decryption error rate becomes negligible when an attacker
randomly selects the random values used in encryption. SOTP operates on
a message x ∈ {0, 1}n and another input value u = (u1, u2) ∈ {0, 1}2n,
where SOTP (x, u) = (x ⊕ u1) − u2. Additionally, NTRU+ uses the NTT-
friendly ring Zq[X]/(Xn − Xn/2 + 1), where n = 2i3j and q = 3457, to
perform all polynomial multiplications using NTT. The advantage of using
NTT is that it reduces the time complexity of polynomial multiplication into
O(n log n). Furthermore, unlike some other schemes, NTRU+ does not em-
ploy the Fujisaki-Okamoto transform[10] in the IND-CCA. Instead, it adopts
a method of recovering and comparing the random values used in encryption
during the decryption process. NTRU+ provides security levels of 576 (resp.
768, 864, and 1,152) bits with 864 (resp. 1,699, 1,296, and 1,728) bytes of
the public key, 1728 (resp. 2,304, 2,592, and 3,456) bytes of the private key,
and 864 (resp. 1,152, 1,296, and 1,728) bytes of ciphertext.

– PALOMA PALOMA is a PQC scheme based on Goppa codes, which are
used in classic McEliece-like cryptosystems. It relies on the NP-hard Syn-
drome Decoding Problem and involves shuffling the parity-check matrix
similar to the Niederreiter cryptosystem. However, unlike the Niederreiter
cryptosystem, PALOMA skips the process of converting the message into
a specific Hamming weight for decryption. This omission reduces the com-
putational complexity of the encryption and decryption processes, resulting
in improved performance. PALOMA used a binary separable Goppa code
C = [n, k,≥ 2t+ 1]2, defined by the support set L and the separable Goppa
polynomial g(X). The support set is derived from [α0, α1, · · · , α2m − 1] ←
SUFFLE (F2m), where L ← [α0, α1, · · · , αn−1], and g(X) ←

∏n+t−1
j=n (X −

αj). Goppa code can be generated in constant time due to the reducibil-
ity and separability of g(X) over F213 [X]. PALOMA provides different sizes
of public and private keys and ciphertexts based on the security level: 128
(resp. 192, and 256) bits. It has 319,448 (resp. 812,032, and 1,025,024) bytes
of public keys, 94,496 (resp. 355,400, and 257,064) bytes of private keys, and
136 (resp. 240, and 240) bytes of ciphertexts.



– SMAUG SMAUG is a scheme based on Module-LWE/Module-LWR and
shares a similar design rationale with RLizard and Lizard, which were sub-
mitted to the NIST PQC Competition. SMAUG employs a sparse secret key
and predefines the Hamming weight of the secret key for Module-LWE/Module-
LWR, allowing the extraction of a secret key that meets the specified con-
ditions. Additionally, SMAUG sets the values of p and q as powers of 2 to
replace rounding operations with bitwise shifts. It also avoids using NTT
during the multiplication process. SMAUG provides different sizes of public
and private keys and ciphertexts based on the security level: 1 (resp. 3, 5)
bits. For each security level, it has 672 (resp. 992, and 1,632) bytes of public
keys, 174(846) (resp. 185(1,177), and 182(1,814)) bytes of private keys, and
768 (resp. 1,024, and 1,536) bytes of ciphertexts.

– TiGER TiGER is a scheme based on the RLWE/RLWR in the spirit of
RLizard and Lizard, which were submitted to the NIST PQC Competition.
TiGER utilizes a sparse secret key and predefines the Hamming weight of
the secret key to generate a secret key that meets certain conditions. Addi-
tionally, TiGER employs Error Correcting Codes during message encoding
to recover from errors. This ensures that the decryption failure probability
becomes negligible. The Error Correcting Code options used are D2[11] or
XEf[12]. Another characteristic of TiGER is the small size of ciphertexts
and public keys, which is due to the usage of a 1-byte value for q = 256
in TiGER. In practice, TiGER has ciphertexts and public keys of size 768
bytes and 480 bytes, respectively, for security level 1. Even at the highest
security level of 5, the sizes are 1,152 bytes and 928 bytes, respectively.

DSA Schemes

– AIMer AIMer is a zero-knowledge proof-based DSA that utilizes the AIM
(Arithmetic Inverse Mask) function, which is a one-way function from the
MPCinH[13] zero-knowledge proof framework. MPCinH allows for the effi-
cient design of virtual zero-knowledge proof protocols through Multi-Party
Computation (MPC). AIM function is a tweakable one-way function that
provides multi-target one-wayness. For an(l+1)-tuple (e1, e2, · · · , el, e∗) and
input and output size n, AIM function AIM : F2n × F2n → F2n is defined
as follows: AIM(iv, pt) = Mer[e∗] ◦Lin[iv] ◦Mer[e1, · · · , el](pt)⊕ pt. Here,
Mer is defined as Mer[e](x) = x2e−1 for x ∈ F2n , providing non-linearity.
Lin is a linear function composed of matrix multiplication over n × ln size
matrix Aiv = [Aiv,1| · · · |Aiv,l] ∈ (Fn×n

2 )l and vector addition with biv ∈ F2n .
AIMer uses the Fiat-Shamir Transformation[14] to convert the interactive
zero-knowledge proof system based on the BN++ proof system[15]. Using
the transformed system, digital signatures are generated based on the proof
produced, relying on the one-wayness property of the AIM function. AIMer-I
(resp. III, V) provides NIST security level 1 (resp. 3, 5) with 32 (resp. 48, 64)
byte of public key, 16 (resp. 24, 32) byte of secret key, and 5,904 (resp. 13080,
25152) byte of signature. The signature size of AIMer is flexible according



to the value of N and τ .

– Enhanced pqsigRM Enhanced pqsigRM is a code-based DSA that re-
places Goppa code used in the original CFS (Courtois, Finiasz, and Sendrier)
algorithm with a modified Reed-Muller code[16]. CFS algorithm suffers from
inflexibility in parameter extension and lacks security against Existential
Unforgeability under Chosen Message Attack (EUF-CMA). Additionally,
the signature generation time in CFS relies on the factorial of the error
correction range of the Goppa code, denoted as t!. To achieve faster sig-
nature generation, the value of t needs to be small, which, unfortunately,
compromises security and requires increasing the key size for higher se-
curity strength. To mitigate these drawbacks, Enhanced pqsigRM adopts
the modified Reed-Muller code. The Reed-Muller code offers fast compu-
tations and simple decoding, but it is susceptible to attackers leveraging
the algorithm’s structure to gain secret information. To address this is-
sue, the generator matrix G(r,m) is modified by replacing, appending, and
padding certain parts, resulting in the generation of the modified Reed-
Muller code. The recursive definition of Reed-Muller code is given as fol-
lows: RM(r,m) = {(u|u + v)|u ∈ RM(r,m−1), v ∈ RM(r−1,m−1)}, RM(0,m) =
{(0, · · · , 0), (1, · · · , 1)}. Enhanced pqsigRM provides NIST security level 1
(resp. 5). For each security level, it has 474,445 (resp. 2,000,000) bytes of
public key and 512 (resp. 1,024) bytes of signature.

– FIBS FIBS is a DSA based on isogenies, and it utilizes CGL hash function[17]
from the hash-based digital signature schemes XMSS (eXtended Merkle Sig-
nature Scheme)[18] and WOTS+ (Winternitz One-Time Signature+)[19].
CGL hash function is specifically designed based on isogenies, enabling it to
provide security even in quantum computing environments. Both XMSS and
WOTS+ heavily rely on the security of the hash function they use, and con-
sequently, FIBS also ensures security in quantum computing environments
by using CGL. In the FIBS scheme, a Pseudo-Random Number Genera-
tor (PRNG) is employed to generate random numbers, which are then used
along with the public key to produce WOTS+ signatures through the CGL
function. By repeating this process multiple times, FORS signatures are gen-
erated. One notable characteristic of FIBS is that it only offers a security
strength of 128-bit, which corresponds to NIST security level 1. In contrast,
other algorithms typically provide at least two or more security levels. FIBS
provides 32 bytes of the public key, 64 bytes of the secret key, and 17,088
bytes of signature.

– GCKSign GCKSign is a DSA that bears a resemblance to Lyubashevsky’s
lattice-based DSA scheme[20]. GCKSign has a simpler structure compared to
CRYSTALS-Dilithium, one of the final algorithms in the NIST PQC Com-
petition, which allows it to mitigate the risks of side-channel attacks and
maintain a smaller signature size. To address the existing challenge of GCK-
OW (One-Wayness), GCK-TMO (Target-Modified One-wayness) is intro-



duced and applied to enhance security. The security of GCKSign relies on
this new notion. For the signatures, s and s′ of the GCK (Generalized Com-
pact Knapsack) function to be different with high probability, the secret key
should satisfy 2128qn < (2η + 1)mn. Here, η represents the range of coeffi-
cients in the secret key and should be chosen to be large, which leads to an
increase in the size of the signature. The probability of having s ̸= s′ when
the above condition is met is 1 − 2−128. For NIST security level 2 (resp. 3,
5), GCKSign requires 1,760 (resp. 1,952 and 3,040) bytes for the public key,
288 (resp. 288 and 544) bytes for the secret key, and 1,952 (resp. 2,080 and
3,104) bytes for the signature size.

– HAETAE HAETAE is a DSA that utilizes the Fiat-Shamir with aborts
scheme. To reduce the sizes of the public key and signature, it introduces
hyperball bimodal rejection sampling. HAETAE selects a signature by sam-
pling a random variable y from a hyperball, which follows a bimodal Gaussian
distribution. A bimodal Gaussian distribution means a Gaussian distribution
with two distinct modes. Unlike the BLISS algorithm[21], which faces imple-
mentation challenges with rejection sampling, HAETAE adopts a simplified
rejection technique that offers implementation advantages. This choice of re-
jection sampling allows it to maintain a smaller signature size. HAETAE-II
(resp. III, V) provides security levels of 120 (resp. 180, 260)bits. The sizes for
HAETAE-II (resp. III, V) are as follows: a public key of 2,529 (resp. 3,836
and 4,817) bytes, a secret key of 1,056 (resp. 1,568 and 2,080) bytes, and a
signature size of 3,040 (resp. 4,064 and 5,792) bytes.

– MQSign MQSign is a multivariate quadratic-based DSA that relies on the
security of the Multivariate Quadratic Problem and the Extended Isomor-
phism of Polynomials Problem. It utilizes the Unbalanced Oil and Vine-
gar (UOV) structure[22]. The UOV structure in MQSign consists of two
maps, F and T . Among them, F is defined as F (k)(X) =

∑
i∈O,j∈V

α
(k)
i,j xixj +∑

i,j∈V,i≤j

β
(k)
i,j xixj +

∑
i∈O∪V

γ
(k)
i xi + η(k), where F (k) is a quadratic polyno-

mial composed of three components, F (k)
V , F (k)

OV , and F
(k)
LC . F (k)

V and F
(k)
OV

are quadratic polynomials consisting of products of Vinegar×Vinegar and
Vinegar×Oil variables, respectively, while F (k)

LC represents the linear and con-
stant terms. On the other hand, T is a random linear map T : Fn

q → Fn
q

chosen over the finite field Fq, and the public key in UOV is obtained by
computing F ◦ T . A notable feature of MQSign is that the secret key can
be selected based on four combinations of F

(k)
V , F (k)

OV , and F
(k)
LC . The F

(k)
LC

component remains fixed, while the choice of F (k)
V and F

(k)
OV determines the

specific combination used. MQSign provides NIST security levels 1, 3, and 5.
The key size and signature size depend on the combination of polynominals.



– NCCSign NCCSign is a DSA that applies a non-cyclotomic ring and is
similar to the selected algorithm CRYSTALS-Dilithium in the NIST PQC
Competition. Traditional lattice-based algorithms use a polynomial ring de-
noted as Rq = Zq[x]/ < xn+1 >. In this case, using a cyclotomic polynomial
allows the use of NTT, which offers advantages in computations. However,
NCCSign employs a non-cyclotomic polynomial ϕ(x) = xp − x − 1 for a
prime number p. This allows for flexible parameter selection by not requir-
ing n = 2k as in the case of cyclotomic polynomials. However, the drawback
is that NTT cannot be used, which leads to a limitation in the polynomial
multiplication process, necessitating the use of the Toom-Cook and Karat-
suba methods. Apart from the transformation of the module structure in
Dilithium to a ring structure, the algorithm of NCCSign remains the same
as in Dilithium. NCCSign provides security strengths at NIST security level
1 (resp. 3, 5). The concrete parameters for NCCSign are as follows: a public
key size of 1,564 (resp. 1,997 and 2,663) bytes, a secret key size of 2,266
(resp. 3,312 and 4,402) bytes, and a signature size of 2,458 (resp. 3,605 and
5,055) bytes.

– Peregrine Peregrine is a DSA based on the NTRU lattice, similar to the
selected algorithm FALCON in the NIST PQC Competition. While FAL-
CON requires floating-point operations and utilizes Fast Fourier Transform
(FFT), Peregrine uses NTT in Z. Peregrine employs a round-off algorithm,
which offers ease of implementation and faster speed but has the drawback
of longer signature length and relatively lower security. Furthermore, in con-
trast to FALCON, which uses precisely computed Gaussian distributions for
random variable distributions for each basis, Peregrine uses binomial dis-
tributions that do not require floating-point operations. Interestingly, Pere-
grine’s signature verification algorithm is the same as FALCON’s, which
makes Peregrine and FALCON share many similarities. The Peregrine fam-
ily consists of Peregrine-512 and Peregrine-1024, providing security strengths
at NIST security levels 1 and 5, respectively. The public key, secret key, and
signature lengths for Peregrine-512 (resp. 1,024) are 897 (resp. 1,793) bytes
for the public key, 1,281 (resp. 2,305) bytes for the secret key, and 666 (resp.
1,280) bytes for the signature.

– SOLMAE SOLMAE is a DSA based on the NTRU lattice, similar to FAL-
CON. In SOLMAE, a hybrid sampler was used for sampling, which is the
same sampler employed in MITAKA[23]. By using the hybrid sampler, SOL-
MAE gains advantages such as faster speed, potential for parallel implemen-
tation, and ease of implementation. However, SOLMAE-1024 has a longer
signature length and lower security compared to FALCON-1024, which is a
drawback. One of the distinguishing features of SOLMAE is that it uses the
Gaussian distribution for the integer operations in the Z sampler and the
elliptical Gaussian distribution for operations in the Fourier domain in the N
sampler. This choice was made because the compression technique intended
to be applied to SOLMAE works well with elliptical Gaussian distributions.



The SOLMAE family consists of SOLMAE-512 and SOLMAE-1024, pro-
viding security strengths at NIST security levels 1 and 5, respectively. The
public key and signature lengths for SOLMAE-512 (resp. 1,024) are 896
(resp. 1,792) bytes for the public key and 666 (resp. 1,375) bytes for the
signature.

2.2 Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools.
Valgrind provides several tools for memory debugging, memory leaks, and pro-
gram profiling. Representative tools include Memcheck, Cachegrind, Callgrind,
Massif, and Helgrind.

Profile Memory Usage It was tested using Massif, one of Valgrind’s tools.
Massif is essentially a heap profiler and performs detailed heap profiling by taking
periodic snapshots of a program’s heap. This show which part allocates the most
memory by time and how much is used.

Suitability for Resource-constrained Implementations NIST has man-
dated the evaluation of candidates in the "microcontroller" environment as part
of the NIST PQC process. This has spurred research into optimized implemen-
tations of PQC algorithm candidates within constrained environments. Through
this, the importance of extending cryptographic algorithms to embedded envi-
ronments becomes evident. NIST has selected the ARM Cortex-M4 as the stan-
dard embedded platform. The Cortex-M4, renowned for its cost and performance
efficiency, finds widespread use in various embedded contexts.

Constant-time Implementation Test Timing attack, first proposed by Paul
C. Kocher in 1996[24], is an attack that finds secret information by analyzing
execution time. Variable timing means that the operation time of the algorithm
is different depending on the input value. A timing attack using variable timing
allows an attacker to extract secret information such as a secret key or plain text.
There are various causes of variable timing. Typically, it is caused by a differ-
ence in branching statement and memory access time. If a specific condition of a
branch statement is related to secret information, secret information can be ex-
tracted through various input values. In addition, if secret information is stored
in the cache and executed while minimizing memory access, related information
may be leaked due to the difference in access speed. To avoid such attacks, pro-
grams must be implemented in constant time. A constant-time implementation
means an implementation in which variable timing does not occur for secret
information. Modern cryptography presents various methods for constant-time
implementation. Examples include replacing branches with bitwise operations or
not accessing array indices via secret values. In this paper, we check the KpqC
submissions whether variable timing occurs in the content related to secret in-
formation.



Memcheck in Valgrind Memcheck of Valgrind is a tool that detects mem-
ory management problems mainly for C and C++ programs. Memcheck can
detect the following targets: Memory leaks, use of uninitialized values, access to
disallowed addresses, free for dynamic allocation, etc. Memcheck provides infor-
mation about the exact location in the code where these errors occurred and the
stack trace leading up to that point, as soon as such errors occur.

2.3 Metamorphic Testing

Metamorphic Testing (MT) is a proposed method for evaluating the implemen-
tation correctness of a newly developed program. MT efficiently detects bugs or
unexpected behaviors that may not have been found or are difficult to discover
within the program. Mouha et al.[25] applied MT to candidates of the SHA-3
Competition and discovered implementation defects in 41 cases, which proved
to be challenging for programmers to detect.

Follow-up 
Case

Follow-up 
Case

Follow-up 

Case
Test Case

Output’Output

Program Under Test

Validate
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Fig. 1: Overview of Metamorphic Testing

The process of MT is as follows: given a Program Under Test (PUT) P and an
input I, a follow-up case I ′ is generated. The follow-up case is created based on a
concept called Metamorphic Relation (MR), which is different for each program.
The verifier can define appropriate relations to conduct Metamorphic Testing
on PUT. Subsequently, for each generated follow-up case, the program’s original
output O = P (I) and the output of the follow-up case O′ = P (I ′) are compared
to check if they violate the Metamorphic Relation. If a follow-up case violates
the relation, it indicates the presence of a bug in the program. The schematic
overview of this MT process is depicted in Figure 1.

Mouha et al. proposed four tests of MT: Bit Contribution Test, Bit Exclu-
sion Test, Update Test, and Combinatorial Update Test. In this paper, the Bit
Contribution Test and Bit Exclusion Test are applied, along with two additional



tests: the Encrypt-Decrypt Test for KEM, and the Bit Verify Test for DSA.
Both are designed according to the characteristics of KEM and DSA schemes.
The Update Test is not used because we used the same codes for hash functions
that passed the Update Test already.

3 Related Works

As the NIST PQC Competition progresses, there has been a surge in active
research and projects focused on NIST PQC Competition candidates, includ-
ing software implementation verification and the application of various security
protocols. In EuroS&P’22 [1], an extensive testing framework (continuous inte-
gration) called PQClean was introduced to improve the software of NIST PQC
candidates. PQClean successfully integrated more than 230 implementations of
17 different parameter sets of NIST PQC candidates. The testing framework
conducted verification of NIST PQC candidates based on various implementa-
tion criteria and found a number of defects in candidates in most tests, which
significantly contributed greatly to improving the quality of NIST PQC candi-
dates. In eprint’19[2], a C reference implementation of NIST PQC candidates
for ARM-Cortex-M4 was integrated, and the results provided the feasibility and
performance of PQC solutions in embedded environments. In NDSS’22[26], real-
time results for the TLS 1.3 handshake under actual network conditions for
NIST PQC candidates were presented. The adoption of at least two types of PQ
signature algorithms was shown to be feasible without additional overheads com-
pared to existing legacy algorithms. Additionally, the proposal of PQ signature
algorithm certificate chains minimized the size of certificates, thereby reducing
TLS 1.3 handshake times. In ICISC’22[27], an in-depth performance analysis of
NIST PQC candidates applied to IPSec VPN was conducted. The evaluation
was based on StrongSwan, and the performance of IPSec VPN was measured
by applying NIST PQC KEMs to IKEv2. Some NIST PQC candidates showed
performance similar to existing legacy algorithms. Until now, the NIST PQC
Competition has garnered significant attention worldwide, and numerous verifi-
cations of the candidates have been performed in various verification techniques
and security protocols. However, in Korea, S/W verification of KpqC round 1
candidate and verification in various environments is challenging. Thus, in this
paper, we present an extensive testing framework such as PQClean and pqm4
to strengthen the S/W quality of the KpqC round 1 candidates.

4 Proposed Extensive Testing Framework Results for
KpqC Competition Round 1 Submissions

4.1 Benchmarking Results

Benchmarking Strategy and Results In this section, we describe the ap-
proach for the clean library and performance evaluation results for the candidates



Table 4: Benchmarking Result of KEM (clock cycles)
Algorithm keygen encap decap

Layered ROLLO-I-128 566,521 138,693 1,105,803
Layered ROLLO-I-192 923,064 291,653 1,607,498
Layered ROLLO-I-256 967,131 235,696 1,986,714

NTRU+-576 379,297 164,943 173,173
NTRU+-768 418,814 205,980 223,949
NTRU+-864 434,559 231,656 258,189
NTRU+-1152 961,254 305,845 342,358
PALOMA-128 811,949,376 1,045,648 80,723,208
PALOMA-192 937,006,400 922,370 160,819,184
PALOMA-256 1,107,190,400 960,079 164,153,648
SMAUG-128 132,042 84,747 53,387
SMAUG-192 197,674 74,256 105,143
SMAUG-256 288,981 166,963 140,702
TiGER-128 151,587 108,754 94,782
TiGER-192 213,487 137,515 96,453
TiGER-256 245,740 328,930 294,580

of the KpqC Competition including memory usage measurement. Firstly, we re-
moved the entire external dependencies in each algorithm such as OpenSSL. A
number of reference codes utilize AES API in OpenSSL for DRBG, which re-
quires that OpenSSL needs to be pre-installed. Also, some algorithms use a hash
function in OpenSSL. Thus, we removed all of the dependencies with OpenSSL
for clean code and easy building.

The evaluation was conducted using an Intel Core i7-13700K processor on
Ubuntu 20.04 LTS with compile option -O3. We measured the clock cycles for
each security level. However, the benchmarking for REDOG was excluded from
the results. It is because the submitted reference code for REDOG was imple-
mented in Python, making it impractical to compare its benchmarking results
with other algorithms that were implemented in C/C++. Benchmarking for RE-
DOG will be included in the future when a reference code implemented in C is
submitted. Also, the benchmarking result of IPCC is not included because the
reference code of IPCC does not work in Ubuntu. We checked that it works
well in macOS with M1, but our benchmarking environment is Ubuntu. Thus,
we omitted the result of IPCC because of the unbalanced environment: we will
benchmark IPCC with future work when the reference code runs well in Ubuntu.
All measurements were based on the average results of 100 runs. All of the bench-
marking results are shown in Table 4 and 5. Also, the graphs of the benchmarking
results are shown in Figure 10-12 in Appendix. In addition, the benchmarking
performance of FIBS was measured, but the results were not shown. The reason
was the long signing time, which made it challenging to display the graphs of
other algorithms even on a log scale.



The benchmarking graph for keygen, encap, and decap of KEM is presented
in Table 4. In keygen, PALOMA showed the highest computational overheads,
while SMAUG and TiGER showed relatively lower clock cycles overall. In ad-
dition, Layered ROLLO-I and NTRU+ showed similar performance at security
levels 1 and 3, but at security level 5, NTRU+ required more clock cycles. In
encap, PALOMA exhibited the highest number of clock cycles, and TiGER
showed better performance than NTRU+ except at security level 5, where they
performed similarly. Layered ROLLO-I and SMAUG achieved the lowest perfor-
mance, with similar results at security levels 1 and 3, but SMAUG outperformed
Layered ROLLO I at security level 5. In decap, similar to keygen and encap,
PALOMA exhibited the highest number of clock cycles. It was followed by Lay-
ered ROLLO-I and NTRU+, while SMAUG and TiGER showed lower clock
cycles in decap. Overall, the benchmarking results showed that PALOMA had

Table 5: Benchmarking Result of DSA (clock cycles)
Algorithm keygen sign verify
AIMer-I 343,199 6,826,911 6,181,673

AIMer-III 710,477 12,677,123 11,858,871
AIMer-V 1,786,713 27,092,783 25,736,881

Enhanced pqsigRM-612 929,021,499 878,157 229,538
Enhanced pqsigRM-613 234,120,808 3,912,608 1,636,105

FIBS 311,493,411,686 7,228,086,586,377 423,968,581,653
GCKSign-II 226,499 1,007,346 176,441
GCKSign-III 235,363 895,923 235,314
GCKSign-V 305,983 1,081,682 299,714
HAETAE-II 1,210,536 3,946,594 1,818,119
HAETAE-III 2,731,698 9,666,993 3,544,363
HAETAE-V 4,200,368 17,259,545 5,399,993

MQSign-72/46 43,538,176 429,170 606,638
MQSign-112/72 160,988,541 695,351 1,546,297
MQSign-148/96 412,059,415 1,526,165 3,267,239

NCCSign-II 1,654,211 23,575,814 2,850,279
NCCSign-II aes 1,618,854 23,330,995 2,846,476
NCCSign-III 2,974,413 43,124,795 5,671,150

NCCSign-III aes 2,921,031 40,787,350 5,506,699
NCCSign-V 5,576,377 82,360,508 10,617,240

NCCSign-V aes 5,534,544 80,069,836 10,623,338
Peregrine-512 10,716,809 353,576 10,245
Peregrine-1024 36,850,723 614,001 85,073
SOLMAE-512 24,933,588 313,957 33,225
SOLMAE-1024 63,966,071 601,942 142,281



Table 6: Benchmarking of Stack Size of KEM(bytes)
Algorithm Heap/Stack Usage (B)

Layered ROLLO-I-128 17,144 / 7,832
Layered ROLLO-I-192 19,752 / 9,520
Layered ROLLO-I-256 24,232 / 13,176

NTRU+-576 2,000 / 17,808
NTRU+-768 2,000 / 22,928
NTRU+-864 2,000 / 25,488
NTRU+-1152 2,000 / 33,136
PALOMA-128 0 / 16,641,680
PALOMA-192 0 / 16,641,792
PALOMA-256 0 / 16,641,792
SMAUG-128 2,320 / 9,584
SMAUG-192 3,920 / 14,560
SMAUG-256 9,040 / 27,472
TiGER-128 1,248 / 11,944
TiGER-192 1,248 / 18,000
TiGER-256 1,248 / 31,208

the slowest performance, and SMAUG had the fastest performance among the
KEM algorithms.

The benchmarking result for keygen, sign, and verify of DSA is presented
in Table 5. In keygen, similar to KEM, it shows an increasing trend in required
clock cycles as the security level rises. However, Enhanced pqsigRM exhibited a
decrease in clock cycles even with increasing security levels. Overall, Enhanced
pqsigRM and MQSign required the highest clock cycles, while GCKSign and
AIMer needed relatively lower clock cycles. In sign, MQSign took the longest
to generate signatures, followed by AIMer and HAETAE. Peregrine and SOL-
MAE showed similar performance and at the same time generated the fastest
signatures. In particular, GCKSign showed intermediate performance in security
level 1 but showed the third fastest performance in level 5, the highest security
level. In verify, all algorithms tended to increase clock cycles as the security
level increased, and AIMer showed the slowest verification speed. Peregrine and
SOLMAE showed the fastest verification speed in sign, but Peregrine was slightly
faster in sign but showed a significant performance gap with SOLMAE in verify.
GCKSign was measured with a small gap in clock cycles required even though
the security level increased.

To gain insights into the memory usage patterns of the algorithms at different
security levels, we harnessed Massif. This tool enabled us to determine the peak
memory consumption of each algorithm. To utilize Massif when running Val-
grind, it is necessary to specify it as the tool to be used by adding –-tool=massif
as an option. Memory usage during execution can be measured using the Massif



Table 7: Benchmarking of Stack Size of DSA(bytes)
Algorithm Max Memory Usage(Heap/Stack)
AIMer-I 215,656 / 6,432

AIMer-III 461,000 / 6,624
AIMer-V 913,432 / 5,264

Enhanced pqsigRM-612 4,848,448 / 1,620,416
Enhanced pqsigRM-613 25,179,560 / 4,248,240

GCKSign-II 14,896 / 51,560
GCKSign-III 15,152 / 48,808
GCKSign-V 17,200 / 80,136
HAETAE-II 17,072 / 106,080
HAETAE-III 20,080 / 156,152
HAETAE-V 22,576 / 196,264

MQSign-72/46 345,320 / 904,488
MQSign-112/72 1,277,976 / 3,400,664
MQSign-148/96 2,960,968 / 7,949,128

NCCSign-I 15,888 / 187,688
NCCSign-III 18,192 / 261,736
NCCSign-V 21,104 / 347,272

Peregrine-512 119,104 / 7,120
Peregrine-1024 230,208 / 5,376
SOLMAE-512 19,264 / 120,144
SOLMAE-1024 27,408 / 237,904

tool with –-stacks=yes option. The results are stored in massif.out, and we
can view them using ms_print command.

We have presented the memory usage of KEM algorithms for Round 1 candi-
dates in Table 6. The maximum usage for both heap and stack is indicated
in bytes. The algorithm that exhibited the highest memory consumption is
PALOMA, showing the highest memory usage across all security levels. It is
noteworthy that PALOMA did not use heap memory, attributed to its implemen-
tation avoiding memory allocation. Furthermore, among all algorithms, SMAUG
and TiGER demonstrated the least memory usage overall. Except for PALOMA,
the remaining algorithms utilized both stack and heap memory according to their
respective reference codes.

We have presented the memory usage of DSA algorithms for Round 1 candi-
dates in Table 7. The algorithm that consumed the most memory was Enhanced
pqsigRM, particularly Enhanced pqsigRM-613, which exhibited significant heap
usage. Additionally, the algorithms with the least memory usage were Peregrine,
HAETAE, and SOLMAE. It was observed that all reference codes utilized both
stack and heap memory. While Table 6 and 7 represent the maximum usage of
heap and stack memory individually, these values may vary depending on the im-
plementation approach. For instance, implementations that avoid dynamic allo-



cation, like PALOMA, may reduce heap usage, whereas heavy dynamic memory
allocation could increase heap consumption while reducing stack usage. There-
fore, the provided tables aim to divide the total memory usage into stack and
heap components, highlighting that it is challenging to definitively determine
whether the given implementations will use precisely the specified sizes of heap
or stack. In summary, it should be emphasized that the tables are intended to
illustrate the total memory usage, divided into stack and heap while acknowl-
edging that the exact heap or stack sizes used by these implementations may
not be conclusively determined.

Suitability Assessment for Resource-constrained Implementation We
explore the feasibility of implementing KpqC algorithm candidates in resource-
constrained environments, taking into consideration the results of Massif’s mem-
ory profiling. In line with the findings in [2], we specifically target the STM32F4
Discovery board, which features an ARM Cortex-M4 CPU clocked at 168MHz,
1MB of flash memory, and 192KB of RAM. By evaluating the memory usage
of KpqC algorithm candidates and comparing it to the available RAM on the
board, we assess both implementation feasibility and scalability.

According to [2], the 192KiB memory of the STM32F4DISCOVERY board
is segmented into multiple memory regions. However, this paper evaluated al-
gorithm candidates based on the 192KiB threshold. For KEM, the PALOMA
algorithm, and for DSA, the AIMer, Enhanced pqsigRM, MQsign, and NCC-
sign algorithms were determined to be unsuitable for implementation in con-
strained environments. The total memory usage of PALOMA varied with secu-
rity strength but was measured at 16,251KiB, representing the highest among
KEM. Additionally, the memory usage of Enhanced pqsigRM recorded approxi-
mately 28,738KiB, marking the highest among DSA. Apart from the mentioned
algorithms, HAETAE, Peregrine, and SOLMAE also exhibited cases where mem-
ory usage exceeded 192KiB depending on the parameter set. While using higher-
tier boards could increase RAM capacity, it demands a proportional increase in
cost, making it unsuitable. Thus, research on memory optimization techniques
is necessary for the embedded implementation of these algorithms.

Profiling Result In this section, we provide profiling results for certain compo-
nents of the Round 1 DSA candidates. The profiling results present the top three
most frequently called functions in each algorithm’s keygen, sign, and verify.
The profiling was conducted using Visual Studio 2019. To enable execution in
MSVC for functions and GCC extensions that are specific to Ubuntu, minor
code modifications were made to ensure minimal impact on overall performance.
Profiling results for KEM and FIBS are not included in this section and are left
as future work. The profiling outcomes are presented in Table 12 and 13 in the
Appendix.

In most algorithms, bottlenecks primarily occurred in polynomial multiplica-
tion, division, reduction, matrix multiplication, and Keccack. Particularly, cases



like HAETAE employing schoolbook algorithms and using the C language’s mod-
ulo operation for remainder calculations resulted in this operation accounting for
approximately 90% of the total computations, causing significant performance
degradation. Furthermore, algorithms based on NTRU problems like Peregrine
experienced bottlenecks due to operations related to NTRU problems. Algo-
rithms utilizing finite field operations, such as AIMer, MQSign, and NCCSign,
also faced bottlenecks related to finite field computations. In AIMer, Keccak
operations emerged as a significant bottleneck across the entire algorithm.

Consequently, optimizing the parts responsible for bottlenecks in each al-
gorithm could lead to substantial performance improvements in their optimal
implementations. For example, the naive implementation of polynomial multi-
plication in HAETAE has a time complexity of O(n2). Replacing such an imple-
mentation with a multiplication algorithm like Toom-Cook or Karatsuba, which
has a lower time complexity, is expected to directly impact the implementation’s
performance. In cases like SOLMAE, which uses FFT with a time complexity of
O(n log n), it might be challenging to replace it with a lower-complexity multipli-
cation algorithm. Thus, utilizing the optimized code for the respective algorithm
can be expected to enhance performance. In order to achieve post-quantum se-
curity in resource-constrained environments, there is a need for optimal imple-
mentation research on the candidates of the KpqC Competition. We hope that
the profiling results presented in this paper will help identify bottlenecks in each
algorithm, stimulating active research toward optimal implementations tailored
to each algorithm’s characteristics.

4.2 Security Analysis Strategy and Results

In this section, we provide security analysis results for 1 Round KpqC submis-
sions by classifying them into basic S/W verification and Constant-time verifica-
tion using the Valgrind tool, and metamorphic testing. Before providing security
analysis, we first define the risk level of found bugs and errors. Afterwards, we
provide detail results of security analysis for 1 Round KpqC submissions through
the basic S/W verification, cost-time implementation verification, and metamor-
phic testing.

Defining bugs and errors In this section, we define the bugs and errors found
in our test framework, including a design rationale for proposed Metamorphic
Testings. We designed our test framework with basic compile warning, memory
error, and constant-time implementation verification through the Valgrind tool,
and verification through metamorphic testing. Errors generated in this verifica-
tion can be largely classified into four categories, and the meanings of each error
are as follows.

– Compile Warnings Warnings generated during compilation are intended
to alert the developer to potential problems with code and do not have a fa-
tal effect when the developer runs the compiled file. As the compiler analyzes



the source code, it points out non-errors but potential bugs or informs the
developer of areas where the quality of the code can be improved. By process-
ing these warnings without ignoring them, the quality of the program can be
increased. Common compiler warnings include: There are Unused Variable,
Uninitialized Variable, Type Mismatch, and Type Redefinition, etc.
Unused Variable and v are warnings that occur when an unused variable
exists and when a variable is used without initialization. Type Mismatch and
Type Redefinition occur when the data type of a variable is different from
what was expected and when multiple variables with the same name are
defined. In addition to these warnings, various warnings can occur depend-
ing on the compiler version and compilation options used. These warnings
should be handled carefully to improve code quality and prevent bugs.

– Memory Error There are various causes of memory errors in algorithm
behavior. First, we have the issue of Memory Leak. This occurs when a
program dynamically allocates memory space but fails to deallocate it. In
C/C++ language, where there is no garbage collector, it’s the programmer’s
responsibility to release memory. While memory is automatically reclaimed
when the process terminates, it is essential to free unused memory during
runtime to avoid memory waste. Next, we encounter Invalid Read errors,
which involve reading from or writing to memory locations that have not
been initialized or allocated. This can lead to unintended data access, po-
tentially resulting in incorrect encryption/decryption outcomes. Errors may
also arise from referencing invalid memory addresses. For instance, if a func-
tion uses a memory address declared as a local variable, the validity of that
memory address may differ depending on the function’s termination status.
While Memory Leak may be considered minor errors, Invalid Read, which
involve using invalid data, can lead to critical issues that affect the behavior
or results of the program.

– Metamorphic Testing Error Errors in metamorphic testing mean that
forged inputs produce results for original inputs. In other words, forgery
attacks are possible due to errors in the implementation, which can have
a significant impact on authentication services. Metamorphic testing per-
forms wide-coverage verification of implementations by designing metamor-
phic relations based on algorithmic relationships. Representative metamor-
phic testing includes Bit Contribution, Bit Exclusion, Encrypt-Decrypt, and
Bit Verify verification. These verifications are performed by comparing the
result with the original value and the result with the forgery value. Thus,
the metamorphic testing error is a very fatal error because a forgery attack
is possible.

– Non-Constant-time Implementation Code that handles sensitive infor-
mation, such as private keys, must adhere to the principle of being "constant-
time" to prevent the leakage of secret values through side channels, including
timing attacks. This entails avoiding any conditional branches that depend
on secret values and refraining from memory accesses that are determined
by secret information. Algorithms that fail to meet these constant-time con-
ditions are classified as Constant-test Fail. This vulnerability to side-



channel attacks, particularly timing attacks, presents a critical issue, as it
can lead to severe security risks. In 2.2, a detailed explanation of constant-
time implementation is provided.

Design of Valgrind Tests We provide an overview of the Valgrind tests con-
ducted on the candidates for the KpqC Competition. The focus of these tests was
on Constant-time Tests and Memory Error checks for the submitted algorithms.
To facilitate these tests, a dedicated test code which is named const_test was
developed, specifically designed for evaluating KEM (Key Encapsulation Mech-
anism) and DSA (Digital Signature Algorithm) operations. Notably, this test
code excluded file I/O functionalities inherited from the NIST_PQCgenKAT
code. We use Memcheck to test the constant-time implementation and detect
Memory Errors of the algorithms proposed in the KpqC competition. The tests
we conducted are described in detail below.

– Constant-time Implementation Test In this paper, a test tool was gener-
ated using Memcheck’s built-in functions VALGRIND_MAKE_MEM_UNDEFINED(),
VALGRIND_MAKE_MEM_DEFINED(), and VALGRIND_CHECK_MEM_IS_DEFINED().
Referring to [28], poison(), we defined unpoison(), and is_poisoned() in
the poison.h file. In Valgrind, there is a function to trace undefined data.
This function reports when data derived from undefined data is used for
branching or memory access. We can track the possible occurrence of vari-
able timing by identifying the flag as undefined data using a secret. At this
time, we can set the flag using poison(). The input value is the address and
size of the data to set the flag. The flag can be released with unpoison().
In addition, a warning about an uninitialized variable occurs, and to dis-
tinguish it from the data we want, we can check which value the flag is for
through is_poisoned(). we incorporated flags into the const_test code,
with a specific focus on crucial points such as the Crypto_Encryption func-
tion for KEM algorithms and the Crypto_sign function for DSA algorithms.
These flags were strategically placed to highlight secret information being
processed. During the Valgrind Memcheck tests, our analysis revolved around
interpreting warnings. This process involved careful scrutiny to distinguish
between uninitialized variables, which triggered warnings, and the actual
flagged data that was a subject of interest. Each algorithm was tested with
the lowest security level standard. When executing Valgrind, the movement
path of the flag was tracked using the –-track-origins=yes option. Since
Memcheck is already included in the file when Valgrind is executed, it is not
necessary to specify it separately.

– Memory Error Test Memcheck is capable of inspecting Memory Errors. By
using –leak-check=full and –show-leak-kinds=all options, it becomes
possible to check for memory leaks and other issues within the code. We
identified the precise error occurrence locations by using the -g compile
option.



Design Rationale of Metamorphic Testing In the case of Metamorphic
Testing, we applied a total of 4 tests: Bit Contribution Test, Bit Exclusion Test,
Encrypt-Decrypt Test, and Bit Verify Test. Each test is designed considering the
characteristics of the algorithms, or basic properties of cryptographic algorithms.
We designed the Metamorphic Relations and implementation approach of each
test. The encrypt-Decrypt Test is designed for KEM/PKE, and the Bit Verify
Test is designed for DSA. The tests applied for each algorithm are presented in
Table. The overall design rationale is similar to Mouha et al.[25], but it has some
differences. Also, we did not apply the Update Test, which verifies Update() of
a hash function, providing the reasons in the following subsections.

– Bit Contribution Test
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Fig. 2: Overview of Bit Contribution Test for KEM/DSA

The Bit Contribution Test is designed based on the fundamental character-
istic of cryptographic algorithms where different plaintexts result in different
ciphertexts. In this scenario, a fixed-size message m of length n is chosen, and
its ciphertext c is computed. Then, a follow-up case is created by changing
one bit of m, resulting in a new message m′, and its corresponding cipher-
text c′ is computed. This process is repeated for all bits of m, and it checks
whether two different ciphertext pairs exist with the same plaintexts. The
Bit Contribution Test succeeds if no identical ciphertext pair is found.
This scenario relies on the ’avalanche effect’ of cryptographic hash functions.
The avalanche effect is the property of a hash function where a small change
in the input value should cause a completely different hash value. Similarly,
cryptographic algorithms must produce completely different ciphertexts for
different inputs. Therefore, the same design can be applied to cryptographic
algorithms. In the Bit Contribution Test, the MR states that "if the keys
are the same, different plaintexts must result in different ciphertexts." The
overview of the Bit Contribution Test is shown in Figure 2.



– Bit Exclusion Test
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Fig. 3: Overview of Bit Exclusion Test for KEM/DSA

The Bit Exclusion Test is not designed based on the characteristics of the
algorithm itself but rather on the features of the implementation environ-
ment. In the C language, it allows programmers to read beyond the allocated
size of an array. As a result, it can lead to unintended consequences, such
as mistakenly reading the last bit of a message or reading beyond the mes-
sage’s length. If the implementation reads beyond the message’s length and
uses that value in the encryption, the final ciphertext may differ from the
expected result. The Bit Exclusion Test is designed to detect such implemen-
tation ’mistakes’ or bugs. In this scenario, a fixed-length message m of size
n is taken, and follow-up cases m′ are generated by changing bits beyond
the message’s length, i.e., bits n + 1, n + 2, and so on. Then, the original
message’s ciphertext c and the follow-up case’s ciphertext c′ are compared. If
they are different, it indicates that the encryption used data beyond the allo-
cated memory, resulting in a failure of the Bit Exclusion Test. For example,
let’s consider a scenario where the message length is 128 bits, and the length
information is passed to the encryption function. The message is stored in
an array of 16 elements of each byte since the message is stored as a byte
array. If we set the array size to 20 and change the 128-th bit of the message
(assuming 0-indexing), the message length remains 128 bits when passed to
the encryption. Therefore, the encryption should not use the 128-th bit. If
the ciphertext changes after modifying the 128-th bit, it indicates that data
beyond the given message length was read, which may indicate a bug in the
implementation. In the Bit Exclusion Test, the MR states that "if the length
information is the same, changing data beyond the length does not affect the
ciphertext." The overview of the Bit Exclusion Test is shown in Figure 3.
The blue area means the extended array of the original message.



– Update Test
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Fig. 4: Overview of Update Test

The Update Test is designed based on the characteristics of the Update()
process in a hash function. According to the SHA-3 Competition API Specifi-
cation [29], an implementation must provide four different functions: Init(),
Update(), Final(), and Hash(). Among these, Update() is called after
Init() to process the message and compute the digest. Finally, calling
Final() results in obtaining the hash value y. Assume that a message m
is divided into multiple message blocks m1,m2, ... on a block-by-block ba-
sis (where the length of each mi is assumed to be a multiple of 8 bits). In
this case, after calling Init(), the implementation performs Update (m1),
Update (m2), and so on, and finally executes Final() to obtain the hash
value y′. The generated y and y′ must be the same, which is a requirement
specified in the API’s incremental processing requirement. This requirement
is important when hashing very long messages since waiting for the entire
message to be received in situations like packet transmission over a network
can result in delays. Therefore, the Update Test compares the hash value of
the original message m with the hash values of its partitions m1,m2, ... in
consecutive order. If the two hash values differ, the implementation fails the
Update Test as it does not meet the API’s requirements. In this paper, the
Update Test was not applied because the hash function used in the paper is
based on the code from PQClean[30], and this code has been verified to pass
the Update Test. Since the Update Test is entirely dependent on the imple-
mentation of the hash function in algorithms that include a hash function,
if the used hash function implementation passes the Update Test, then the
algorithm implementation will also pass the Update Test. The overview of
the Update Test is shown in Figure 4.



– Encrypt-Decrypt Test
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Fig. 5: Overview of Encrypt-Decrypt Test for KEM

The Encrypt-Decrypt Test is a test similar to the Bit Contribution Test and
is designed based on the characteristics of the KEM scheme where different
keys result in different ciphertexts. In this scenario, a fixed key k and a fixed
message m are chosen, and the ciphertext c is computed. Then, follow-up
cases are generated by changing one bit of the key k, resulting in new keys
k′, and their corresponding ciphertexts c′ are computed. This process is re-
peated for all bits of k, and if no two identical ciphertexts are found among
these ciphertexts, the Encrypt-Decrypt Test is successful. The MR in the
Encrypt-Decrypt Test states that "if the message is the same, different keys
must result in different ciphertexts." This test ensures that the encryption
process produces different ciphertexts when different keys are used, thereby
confirming the security property of the algorithm that ciphertexts are de-
pendent on the choice of keys. The overview of the Encrypt-Decrypt Test is
shown in Figure 5.

– Bit Verify Test
The Bit Verify Test is a test similar to the Bit Contribution Test and is
designed based on the signature property of the DSA. DSA signatures are
dependent on the message being signed. Therefore, if a signature is tampered
with for a certain message, the signature would be recognized as invalid by
the Verify() function in DSA. Inspired by this idea, the following scenario is
conducted: First, a signature s (or sm where m is the message) is generated
for a given message m. Then, a follow-up case is created by changing one
bit of the signature s (or sm), resulting in s′ (or sm′). Next, the altered
signature is verified. If the modified signature is validated, the Bit Verify
Test fails.
The MR in the Bit Verify Test states that "for the same message, the sig-
nature remains the same." This test ensures that any modifications to the
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Fig. 6: Overview of Bit Verify Test for DSA

signature or the signature concatenated with the message result in an invalid
signature, as expected by the security property of DSA. The overview of the
Bit Verify Test is shown in Figure 6. Also, the original signature should be
verified.

When performing verification for the aforementioned tests, all random values
are fixed during the execution. All algorithms submitted to KpqC Competition
generate random numbers using the randombytes() function as a Deterministic
Random Bit Generator (DRBG). Due to this, even for the same input message,
there exists a probabilistic possibility that the ciphertext and signature may
differ. If random values are not fixed, it can lead to incorrect test results. For
instance, consider the scenario of the Bit Exclusion Test.

In reality, if the implementation does not read beyond the array boundary and
successfully passes the Bit Exclusion Test, it is still possible that the ciphertext
might probabilistically differ due to random variations. Consequently, it may fail
the Bit Exclusion Test. Thus, in order to obtain accurate Metamorphic Testing
results, it is essential to fix all random variables to constant values.

Valgrind Test Results By conducting Valgrind tests, we were able to com-
prehensively evaluate the candidates’ performance in terms of memory usage,
constant-time behavior, and memory management. This thorough analysis as-
sisted in selecting algorithms that are not only robust and secure but also feasible
for deployment in embedded environments. The test results were categorized for
KEM and DSA algorithms and are presented in Table 8 and 9, respectively. We
were unable to perform Valgrind tests for some algorithms due to the following
reasons.

– IPCC The IPCC algorithm builds successfully in the Ubuntu environment;
however, it fails to generate the correct keys during decapsulation, making
valid testing impossible. On macOS, it runs correctly, but Valgrind, being



Table 8: Results of Valgrind Testing on KEM
Algorithm Const-time Test Memory Error

Layered ROLLO-I-128
Layered ROLLO-I-192
Layered ROLLO-I-256

PASS Leak

NTRU+-576
NTRU+-768
NTRU+-864
NTRU+-1152

PASS None

PALOMA-128
PALOMA-192
PALOMA-256

PASS None

SMAUG-128
SMAUG-192
SMAUG-256

PASS None

TiGER-128
TiGER-192
TiGER-256

PASS None

a tool designed for Linux environments, prevents us from conducting tests
on that platform. However, we plan to conduct the tests in the future if the
algorithm can be executed correctly on Linux.

– REDOG The REDOG algorithm’s implementation package was written in
Python. Since Valgrind is effective for programs written in C/C++, we did
not perform the test for REDOG. However, if submissions in other languages
are presented in the competition, we plan to conduct tests accordingly.

Below is a comprehensive overview of the Valgrind test results. The identified
errors have been classified in accordance with the definitions outlined in Section
4.2. The Layered ROLLO-I and Enhanced pqsigRM algorithms have been found
to exhibit Memory Errors such as Memory Leak, Invalid Read. In this section,
we also explain the feasibility of implementing the proposed algorithm candidates
within constrained environments.

Memory Error

– Layered ROLLO-I In the Layered ROLLO-I, Memory Leak have been de-
tected. Testing was conducted on the biix algorithm. The majority of memory
leaks occurred in the init function, where memory for data used in compu-
tations was allocated. A notable example is within the biix_sk_generate()
function, where memory allocated for invX1 was not released until the algo-
rithm’s termination. Additionally, memory allocation for pkTmp1 occurred
twice. To address this, appropriate memory free functions were introduced,
and memory allocation was modified to occur only once. Another instance



Table 9: Results of Valgrind Testing on DSA
Algorithm Const-time Test Memory Error
AIMer-I

AIMer-III
AIMer-V

PASS None

Enhanced pqsigRM-612
Enhanced pqsigRM-613 PASS Leak/Invalid Read

GCKSign-II
GCKSign-III
GCKSign-V

PASS None

HAETAE-II
HAETAE-III
HAETAE-V

PASS None

MQSign-72/46
MQSign-112/72
MQSign-148/96

PASS None

NCCSign-I
NCCSign-III
NCCSign-V

PASS None

Peregrine-512
Peregrine-1024 PASS None

SOLMAE-512
SOLMAE-1024 PASS None

involved allocating memory for a specific structure’s size during initialization
and releasing memory using a function that only freed some members of the
structure, leading to memory leaks. Similar errors stemming from similar
causes were also identified. In the case of biix_128, approximately 4,852
bytes of unreleased memory were detected. The pseudo-code for modifying
Memory Leak error example is shown in Algorithm 1.

– Enhanced pqsigRM The Enhanced pqsigRM algorithm encountered Memory
Leak and Invalid Read errors during the test. Memory Leaks were identi-
fied within the crypto_sign and crypto_sign_keypair(). For example, the
sign variable in crypto_sign was allocated memory using the newmatrix()
function but was not freed. Therefore, the memory pointed to by sign must be
deallocated before the termination of the function. The same type of mem-
ory error was also found in the crypto_sign_keypair() function. In another
instance, a pointer pointing to the memory allocated in init_decoding re-
mained until the algorithm’s termination. Similarly, it is necessary to in-
clude a section for deallocating the memory. For the Enhanced pqsigRM-
612, 332,558 bytes of unreleased memory and 16,384 bytes pointed by the
remaining pointer were recorded. The Invalid Read occurred within the
export_sk() function. During the process of copying the contents of the



Algorithm 1 Code Snippet of Modified L-ROLLO sk_gen Function

1: biix_secretKey skTmp1
2: biix_publicKey pkTmp1

· · ·
// deleted code

3: // rbc_qre_init(&(pkTmp1.h))
· · ·

4: rbc_qre_init(&(pkTmp1.h))
5: rbc_qre_mul(pkTmp1.h, invX1, skTmp1.y)

· · ·
// added code

6: rbc_qre_clear(invX1)
7: rbc_qre_clear_modulus()
8: return

Algorithm 2 Code Snippet of Modified Enh. pqsigRM crypto_sign Function

1: uint16_t *Q, *part_perm1, *part_perm2, *s_lead;
· · ·
// deleted code

2: matrix *sign = newMatrix(1, CODE_N)
· · ·
// added code

3: deleteMatrix(sign)
· · ·

4: return

Algorithm 3 Code Snippet of Modified Enh. pqsigRM export_sk Function

1: exportMatrix(sk, Sinv)
2: memcpy(sk + Sinv->alloc_size, Q, sizeof(uint16_t) * CODE_N)
3: memcpy(sk + Sinv->alloc_size + sizeof(uint16_t) * CODE_N,

part_perm1, sizeof(uint16_t) * CODE_N / 4)
// added code

4: memcpy(sk + Sinv->alloc_size + sizeof(uint16_t) * CODE_N + sizeof(uint16_t)
* CODE_N/4,
part_perm2, sizeof(uint16_t) * CODE_N / 4)

part_perm2 variable using the memcpy() function, an incorrect range size
was passed. Modification of the parameter indicating the size to be read is
necessary. For the correction of Memory Leak and Invalid Read errors, we
have the following sections of pseudo-code for each Algorithm 2, 3.

Metamorphic Testing Results In this section, we present the results of the
Metamorphic Tests conducted on the candidates of the KpqC Competition. For
KEMs, we conducted the Bit Contribution Test and the Bit Exclusion Test. For



Table 10: Results of Metamorphic Testing on KEM
Algorithm Bit Contribution Test Bit Exclusion Test En-Decrypt Test

Layered ROLLO-I Pass Pass Pass
PALOMA-128 Pass Pass Pass
PALOMA-192 Pass Pass Pass
PALOMA-256 Pass Pass Pass
SMAUG-128 Pass Pass Pass
SMAUG-192 Pass Pass Pass
SMAUG-256 Pass Pass Pass
TiGER-128 Pass Pass Pass
TiGER-192 Pass Pass Pass
TiGER-256 Pass Pass Pass
NTRU+-576 Pass Pass Pass
NTRU+-768 Pass Pass Pass
NTRU+-864 Pass Pass Pass
NTRU+-1152 Pass Pass Pass

DSAs, we performed the Bit Contribution Test, the Bit Exclusion Test, and the
Bit Verify Test. All tests were conducted based on the reference code provided
on the KpqC website. However, we were unable to provide the Metamorphic
Testing results for all algorithms, and the reasons are as follows:

– IPCC IPCC implementation is built successfully in the Ubuntu environ-
ment; however, during the decapsulation process, it fails to generate the
correct keys.The author of IPCC confirmed that it builds correctly in the
macOS environment, but in our development environment, Ubuntu, the same
code does not produce the expected test vectors, making it difficult to expect
the entire code to function correctly.

– Peregrine Peregrine runs successfully; however, in the reference code, the
keypair(), sign, and verify functions are not separated. All the steps are
implemented within a single main function, which makes it challenging to
conduct Metamorphic Testing. For future research, we plan to refactor the
code and separate each step into its own function to facilitate Metamorphic
Testing.



Table 11: Results of Metamorphic Testing on DSA
Algorithm Bit Contribution Test Bit Exclusion Test Bit Verify Test
AIMer-I Pass Pass Pass

AIMer-III Pass Pass Pass
AIMer-V Pass Pass Pass

GCKSign-II Pass Pass Pass
GCKSign-III Pass Pass Pass
GCKSign-V Pass Pass Pass
HAETAE-II Pass Pass Pass
HAETAE-III Pass Pass Pass
HAETAE-V Pass Pass Pass

MQSign-72/46 Pass Pass Pass
MQSign-112/72 Pass Pass Pass
MQSign-148/96 Pass Pass Pass

NCCSign-I Pass Pass Pass
NCCSign-III Pass Pass Pass
NCCSign-V Pass Pass Pass

Peregrine-512 Pass Pass Pass
Peregrine-1024 Pass Pass Pass
SOLMAE-512 Pass Pass Pass
SOLMAE-1024 Pass Pass Pass

The results of the Metamorphic Testing conducted in this paper are shown in
Table 10 and 11. All algorithms passed the Bit Exclusion Test, Bit Verify Test,
and Encrypt-Decrypt Test for all security levels.

5 Concluding Remarks

In this paper, we conducted extensive tests to verify the round 1 candidates of
the KpqC Competition considering the performance and implementation secu-
rity. From a performance point of view, we presented benchmarking results in
a general CPU environment for fair comparison and evaluated applicability in
resource-constrained devices with respect to memory usage. Lattice-based algo-
rithms such as SMAUG, TIGER, and NTRU+ in KEM and HAETAE, GCK-
Sign, and SOLMAE, etc. in DSA were the most competitive. Furthermore, we
presented bottlenecks through the profiling of some round 1 candidates and
suggested optimization points. Most of the bottlenecks have been Keccak and
polynomial multiplication. From implementation security, we performed Val-
grind tests to find errors and bugs, Metamorphic Testing with extensive test
coverage, and evaluation of the side channel resistance. We found memory errors
in the Layered ROLLO-I and Enhanced pqsigRM through Valgrind tests. This
was because the allocated memory was not freed or an overflow accessing an
area other than the allocated memory. Through our extensive test, we expect



to improve the software quality of the KpqC first-round candidates. We plan to
integrate and verify the round 1 candidates of the KpqC Competition in various
environments such as ARM Cortex-M4, ARMv8, and GPU in the future.
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Appendix A Benchmarking Result of KEM
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Fig. 7: Benchmarking Results on keygen() of KEM
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Fig. 8: Benchmarking Results on encap() of KEM
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Fig. 9: Benchmarking Results on decap() of KEM



Appendix B Benchmarking Result of DSA
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Fig. 10: Benchmarking Results on keygen() of DSA
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Fig. 11: Benchmarking Results on sign() of DSA
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Fig. 12: Benchmarking Results on verify() of DSA



Appendix C Profiling Result of DSA

Table 12: Profiling Result of DSA Schemes(1)
Algorithm Function Bottlenecks

AIMer-I

keygen()
keccack 21.46%

transpose_upper_to_lower 21.05%
transpose_lower_to_upper 18.62%

sign()
keccack 56.11%

aim128_mpc 28.51%
poly_mul 6.90%

verify()
keccack 38.16%

aim128_mpc 30.21%
GF2_128_matmul_vec 10.53%

Enhanced pqsigRM-612

keygen()
isNonsingular 4.98%

rref 4.84%
inverse 3.74%

sign()
vector_mtx_product 48.58%

recursive_decoding_mod 40.94%
randombytes 4.73%

verify()
vector_mtx_prodt 88.03%

free 8.01%
hashMsg 1.85%

GCKSign-II

keygen()
KeccackF1600_StatePermute 70.96%

randombytes 11.77%
rej_uniform 7.80%

sign()
KeccackF1600_StatePermute 72.08%

randombytes 5.52%
rej_uniform 4.91%

verify()
KeccackF1600_StatePermute 81.01%

rej_uniform 5.86%
ntt 2.78%



Table 13: Profiling Result of DSA Schemes(2)
Algorithm Function Bottlenecks

HAETAE-II

keygen()
_allrem 89.96%

poly_naivemul 7.37%
keccack_squeezeblocks 1.40%

sign()
_allrem 90.35%

poly_naivemul 6.87%
KeccakF1600_StatePermute 1.08%

verify()
_allrem 90.74%

poly_naivemul 6.77%
KeccakF1600_StatePermute 1.15%

MQSign-72/46

keygen()
gf4v_mul_2_u32 24.45%
gf4v_mul_3_u32 5.06%

memcpy 4.72%

sign()
gf4v_mul_2_u32 16.46%
gf256v_mul_u32 9.07%

_gf256v_conditional_add_u32 5.96%

verify()
gf4v_mul_u32 26.64%

gf4v_mul_2_u32 24.76%
gf4v_mul_3_u32 4.69%

NCCSign-I

keygen()
mod_add 45.39%

montgomery_reduce 6.44%
randombytes 5.20%

sign()
mod_add 49.37%

montgomery_reduce 7.12%
mod_sub 2.95%

verify()
mod_add 48.17%

montgomery_reduce 6.99%
mod_sub 3.09%

Peregrine-512

keygen()
solve_NTRU_intermediate 69.33%

zint_bezout 8.34%
make_fg 5.69%

sign()
mq_NTT 33.30%
mq_iNTT 18.18%

modp_NTT2_ext 13.88%

verify()
mq_NTT 27.13%
mq_iNTT 28.11%

mq_poly_tomontymul_ntt 2.86%

SOLMAE-512

keygen()
falcon_inner_FFT 24.28%
falcon_inner_iFFT 24.81%

solve_NTRU_intermediate 15.98%

sign()
falcon_inner_FFT 30.47%
falcon_inner_iFFT 32.78%

samplerZ 12.56%

verify()
falcon_inner_FFT 43.41%
falcon_inner_iFFT 47.00%

falcon_inner_poly_mul_fft 6.01%


