
An Efficient Strong Asymmetric PAKE
Compiler Instantiable from Group Actions

Ian McQuoid and Jiayu Xu

Oregon State University, {mcquoidi,xujiay}@oregonstate.edu

Abstract. Password-authenticated key exchange (PAKE) is a class of
protocols enabling two parties to convert a shared (possibly low-entropy)
password into a high-entropy joint session key. Strong asymmetric PAKE
(saPAKE), an extension that models the client-server setting where servers
may store a client’s password for repeated authentication, was the sub-
ject of standardization efforts by the IETF in 2019–20. In this work,
we present the most computationally efficient saPAKE protocol so far:
a compiler from PAKE to saPAKE which costs only 2 messages and 7
group exponentiations in total (3 for client and 4 for server) when in-
stantiated with suitable underlying PAKE protocols. In addition to being
efficient, our saPAKE protocol is conceptually simple and achieves the
strongest notion of universally composable (UC) security.
In addition to classical assumptions and classical PAKE, we may instan-
tiate our PAKE-to-saPAKE compiler with cryptographic group actions,
such as the isogeny-based CSIDH, and post-quantum PAKE. This yields
the first saPAKE protocol from post-quantum assumptions as all pre-
vious constructions rely on cryptographic assumptions weak to Shor’s
algorithm.

1 Introduction

Password-authenticated key exchange (PAKE) [10] constitutes a class of proto-
cols allowing two parties to compute a shared cryptographic key exactly when
both parties hold the same (possibly low-entropy) input string, i.e., a “pass-
word”. Integrally, PAKE is in the “password-only” setting and does not rely on
key distribution through e.g., a PKI as trusted infrastructure may not always
be available and additionally has a history of insecurities. Traditionally, pass-
words were assumed to come from some low-entropy distribution. This modeling
represented the distribution of human-memorable inputs which have been esti-
mated to only have 30 bits of entropy [27]. Because such passwords come from
low-entropy or enumerable distributions, an adversary may always impersonate
an honest party and perform a series of online invocations of the protocol to
learn the password with non-negligible probability. A key property of PAKE is
that this inevitable method should be the only efficient attack — with multiple
guesses from a single interaction computationally infeasible. A shortcoming of
PAKE is that it only models symmetric roles and precludes inherent asymme-
tries in the client-server setting. As passwords continue to be the most common

form of client-server authentication on the internet, it is incumbent on us to
model password storage and, indeed, compromise of the server.

Asymmetric PAKE (aPAKE) [11,26] is a PAKE variant modeling the client-
server setting where the client inputs its password pw in the clear and the server
inputs a one-way function or digest of the password F (pw). The parties then ar-
rive at the same key if and only if the client supplies the preimage of the server’s
digest. Asymmetric PAKE is comparable to the model of a server storing publicly
salted hashes of the user’s password, and is vulnerable to pre-computation at-
tacks where an adversary may pre-compute possible password files (pw, F (pw))
the server could hold and, on compromise, recover the password almost imme-
diately by checking the server’s storage against the pre-computed table to test
each of its guesses.

To prevent pre-computation attacks, Jarecki, Krawczyk and Xu [31] intro-
duced the concept of strong asymmetric PAKE (saPAKE), a variant of aPAKE
where an adversary must spend time proportional to the number of password
guesses made after compromising the server in order to recover the password.
This is analogous to the server’s password salt being private, and achieves the
original intention of aPAKE — a PAKE that is resilient to (adaptive) server
compromise. Note that as the server holds enough information to verify itself to
a client, there exists an inevitable attack on the server’s storage: the adversary
may locally run the online protocol acting as both the client and as the server,
testing the equality of the two output keys. Such an attack has runtime linear in
the number of offline password guesses made. Strong asymmetric security guar-
antees that (asymptotically) this is the best possible complexity by showing a
tight lower-bound on the complexity of a post-compromise attack.

Recent years have witnessed increasing interests in (sa)PAKE including the
standardization efforts by the IETF in 2019–20. Despite this, saPAKE protocols
have proven difficult to construct, and all existing protocols suffer from issues
regarding either security or efficiency (see Section 1.2 for a detailed discussion).
Furthermore, while resilience to quantum adversaries is a major concern of the
PAKE community, all known constructions are based on classical assumptions
and are easily broken by quantum adversaries. During the IETF’s PAKE stan-
dardization process, the notion of “quantum-annoyingness” was proposed [41]
and was subsequently formalized by Eaton and Stebila [23]. Roughly, a PAKE
scheme is quantum-annoying if solving a discrete logarithm or integer factoriza-
tion problem does not subsequently break the entire session; rather, each solu-
tion only allows the adversary an additional password guess. While quantum-
annoyingness is a good stepping stone to protecting saPAKE protocols against
quantum adversaries, it remains a major open problem in the area of PAKE to
construct an saPAKE protocol under post-quantum assumptions.

1.1 Our Contributions

In this paper, we propose two compilers from PAKE to saPAKE. We prove the
security of both compilers in the Universal Composability (UC) framework; con-
cretely, both compilers realize the standard UC saPAKE functionality [31,15] if

2

the underlying PAKE protocol realizes the standard UC PAKE functionality [17].
UC-security for (sa)PAKE has superseded traditional game-based definitions due
to multiple advantages, including security under arbitrary composition, modeling
of adversarially-chosen password distribution, and therefore modeling password
reuse across different accounts.

The first of our protocols (see Section 3) works in a cryptographic group.
It is a compiler which adds only 3 exponentiations and 1 message — which
can be sent in parallel with the server’s PAKE message — on top of PAKE.
For instantiations of UC PAKE such as certain variants of encrypted key ex-
change (EKE) [24,34] this results in the most efficient saPAKE protocols to
date with only 2 messages and 7 exponentiations. In addition to being com-
putationally efficient and conceptually simple, the resulting saPAKE inherits
the underlying PAKE’s quantum-annoying property. The only other quantum-
annoying saPAKE protocol known is CRISP [21] which additionally relies on
bilinear pairings. Our protocol is proven UC-secure in the generic group model
(GGM) for offline security and the algebraic group model (AGM) plus the dis-
crete logarithm (DL) assumption for online security, in addition to the random
oracle model (ROM). We note that using the GGM for offline security but not
online security is standard for saPAKE protocols whose server storage is group-
based [15,21]; see Section 2.5 for a detailed explanation.

The second compiler (see Section 5.2) follows the same formula as the first,
but can be instantiated with cryptographic group actions [6,20,36] such as isogeny-
based assumptions like CSIDH [18]. Just as the first, the second compiler only
costs 3 group actions and 1 message from the server on top of PAKE. When
compiling from PAKE protocols based on lattices [24], we obtain the first effi-
cient saPAKE protocol from post-quantum assumptions realizing the standard
UC functionality. Additionally, even if the assumptions on the group action fail,
our protocol still provides (symmetric) PAKE security as the server’s message
is independent of the password. This allows our protocol to use newer assump-
tions like CSIDH without future breakthroughs in isogeny cryptanalysis com-
pletely invalidating security. Our protocol is UC-secure in the generic group
action model with twists (GGAM>) for offline security and the algebraic group
action model with twists (AGAM>) plus the group-action discrete logarithm
(GA-DL) assumption for online security, in addition to the ROM. One caveat
is that our protocol is proven secure under post-quantum assumptions, but not
against quantum adversaries, as that would require a security analysis in the
quantum-accessible random oracle model (QROM) [13], which we do not con-
sider. We leave constructing an saPAKE secure against quantum adversaries as
future work.1

1 Constructing a UC-secure saPAKE in the QROM seems out of reach, since there has
been very little work that considers a quantum adversary in the UC framework [42],
and we do not know of any protocol (PAKE or not) that is proven UC-secure in the
QROM.

3

1.2 Comparison with Previous Results

To date, there are five known saPAKE protocols. The first two, due to Jarecki,
Krawczyk, and Xu, come from the original saPAKE paper [31] and are con-
structed from a MitM-secure oblivious pseudorandom function (OPRF) and
compile (respectively) an aPAKE or authenticated key exchange (AKE) into
an saPAKE protocol. The second compiler, called OPAQUE, was standardized
by the IETF in 2020 [14], and when based on classical assumptions, the resultant
protocols are efficient (their costs can be found in Table 1). However, OPAQUE
only realizes a weak UC saPAKE functionality (which we call F−saPAKE), which
includes two significant and contrived relaxations of the standard saPAKE func-
tionality:

– F−saPAKE allows for delayed extraction, namely the ideal adversary’s password
guess can happen even after the session completes. The password guess in-
terface is meant to model the real-world scenario where the adversary runs
an honest party’s algorithm on a candidate password and interacts with the
other honest party in order to test if the candidate password is the correct
one. Clearly, such attacks cannot be carried out after the session already
ends.2

– In F−saPAKE, compromising one open (i.e., not completed) session automati-
cally results in compromising all other open sessions without any additional
command from the ideal adversary. This significantly weakens saPAKE se-
curity: consider a MitM adversary that attempts to attack two open sessions
in parallel, the first of which fails and the second of which succeeds (i.e.,
resulting in a compromised session). In the real world, it should not be the
case that the first session — in which the wrong password guess is already
used — can be compromised, let alone compromised without any additional
work from the adversary. However, this is exactly what F−saPAKE allows!

We stress that neither weakening above is inherent or “natural”. Few PAKE
and aPAKE protocols that were proven UC-secure need the first relaxation, and
none of them needs the second; for saPAKE, two of the other three existing
protocols (see below) need neither of the two relaxations. In fact, the two relax-
ations appear to be the result of tailoring the UC saPAKE functionality to fit
the OPAQUE protocol, as evident in [31, p.12]:

In our context, either requirement prevents proving security of the pro-
tocols obtained via our general compiler [...], including the OPAQUE
protocol [...]. For this reason we relax [FsaPAKE] to obtain our definition
of UC Strong aPAKE functionality [F−saPAKE].

By contrast, our protocol realizes the standard UC saPAKE functionality
without either of the two relaxations.3

2 This change is similar in spirit to the FrPAKE functionality (r for “relaxed”) for
symmetric PAKE in [1].

3 The other saPAKE construction in [31], presented as a warm-up, seems to require
these two relaxations as well, and is much less efficient. An accurate comparison is
difficult since the security proof of that protocol is outdated (see [31, Section 4]).

4

Finally, we note that the assumptions in OPAQUE and in our protocol are
incomparable: the security of OPAQUE relies on the very strong one-more gap
Diffie-Hellman (OMGDH) assumption, which has been proven in the GGM but
is not equivalent to DL in the AGM [9].4 By contrast, the online part of our
protocol is proven secure in the AGM+DL, without relying on any “one-more”
type assumptions.

We now compare our saPAKE protocol with the other three saPAKEs in
the literature. The third protocol called strong AuCPace, due to Haase and
Labrique [29], is very similar in spirit to the both previous compilers and runs a
modified version of OPRF before a (symmetric) PAKE protocol. Our compiler
and their protocol follow the same intuition compiling a PAKE by way of a
sub-session-specific dictionary map using an ephemeral salt. Where the strong
AuCPace protocol communicates the server’s long-term salt by way of an OPRF,
we simply blind the server’s long-term salt with a random exponent. This al-
teration allows our compiler to use fewer exponentiations. Furthermore, strong
AuCPace only realizes a weaker UC saPAKE functionality (which requires the
first relaxation of the full FsaPAKE functionality as in F−saPAKE, but not the
second).

The fourth protocol, due to Bradley, Jarecki, and Xu [15], follows the “commit-
and-SPHF” paradigm [32] of PAKE design and realizes the full FsaPAKE func-
tionality. However, their protocol requires roughly three times as many exponen-
tiations as ours; furthermore, it is unclear if their protocol can be converted to
use post-quantum assumptions. We also note that their analysis of offline secu-
rity is similar to ours, but our analysis is much more accurate; see Section 2.4
for a detailed explanation.

The final protocol is CRISP due to Cremers et al. [21] which is conceptually
similar to our protocol and compiles a PAKE protocol into a strong identity-
binding PAKE (siPAKE) — a stronger primitive than saPAKE. However, the
CRISP compiler critically relies on bilinear pairings which increases the compu-
tational and communication burden of the protocol while restricting the groups
over which we can implement the compiler. Further, this reliance on pairings
means the CRISP compiler has no post-quantum instantiation.

Regarding security assumptions, the offline security analyses of both [15]
and [21] rely on the GGM as we do ([21] additionally requires the GGM for a
bilinear group with a hash-to-group operation), but their online security is based
on standard group assumptions. By contrast, our protocol needs the stronger
online AGM (plus the DL assumption). To the best of our knowledge, this is
the first instance of applying the AGM to the UC framework since the original
work on UC-AGM [2]. The security of [29] relies on the ROM and a number of
strong and non-standard group assumptions such as strong simultaneous CDH
(sSDH) [5].

4 [9, Section 10] shows that the one-more discrete logarithm (OMDL) assumption,
which is weaker than OMGDH, cannot be proven equivalent to DL in the AGM.

5

client server rounds security assumption model

CKEM-saPAKE [15] 13E 8E 2 full 2-SDH, DDH
ROM+off

GGM

OPAQUE HQMV [31] 5E, 1H 4E 3 relaxed OMGDH ROM

JKX18 Compiler [31]
2E, 1H,
aPAKE

1E,
aPAKE

3C relaxed OMGDH ROM

CRISP [21]
6E, 3P,
3H,
PAKE

3E, 3P,
1H,
PAKE

3 full (siPAKE) CDH
off

GGM+

AuCPace [29] 6E, 2H 5E, 1H 3 relaxed sSDH, OMGDH ROM

Ours Figure 6
E,
PAKE

2E,
PAKE

2 full CDH

ROM +
off

GGM +
on

AGM

Ours Figure 7
A,
PAKE

2A,
PAKE

2 full GACDH

ROM +
off

GGAM>

+ on
AGAM>

Table 1. A comparison of UC-secure saPAKE schemes. (1) E denotes exponentia-
tions, H denotes hashing into the group, P denotes pairing evaluations, and A denotes
group actions; (2) although both OPAQUE and AuCPace only achieves relaxed se-
curity, AuCPace realizes a stronger functionality than OPAQUE; (3) on/off denotes
if we require the assumption in the online or offline phases respectively; (4) GGM+

denotes the extended generic group model [21] including hashing to the group, pairing
evaluation, and isomorphism evaluation.

saPAKE under post-quantum assumptions. Very few password-based pro-
tocols under post-quantum assumptions have been proposed. The only such
aPAKE protocol that we know of is the recent one by Freitas, Gu, and Jarecki [24],
which can be instantiated under lattice assumptions. However, it is not a strong
aPAKE, i.e., it is subject to pre-computation attacks.5

The recent OPRF protocol due to Basso [8] is based on isogeny assumptions,
and may provide some hope for constructing an saPAKE under post-quantum

5 Another possible way to construct an aPAKE from post-quantum assumptions is
to take a post-quantum UC oblivious transfer (OT), use the OT-to-PAKE com-
piler from [16] to obtain a UC PAKE, and then use the PAKE-to-aPAKE compiler
from [26]. This also yields an aPAKE but not an saPAKE.

6

assumptions — by compiling the OPRF with some suitable aPAKE/AKE, as in
the paradigm of the JKX compiler [31]. However, this OPRF protocol is only
claimed to realize a UC OPRF functionality that does not take into account
adaptive server compromise, which is crucial for saPAKE (and even aPAKE)
security. As such, it is unclear whether this OPRF yields an saPAKE under
post-quantum assumptions. Even if it does, the resulting saPAKE would only
achieve the weak saPAKE functionality F−saPAKE with the two aforementioned
shortcomings; furthermore, it would be less computationally efficient, take 2
additional rounds, and require significantly more bits of communication when
compared with our protocol based on group actions.

2 Preliminaries

2.1 Notation

We use κ to denote the security parameter. For an integer n, [n] denotes the set
{1, . . . , n}. For a probability distribution D over some set, we denote sampling
an element d according to the distribution by d ← D; we extend this notation
naturally to probabilistic algorithms a← A(x1, x2, . . .) where the implicit distri-
bution is defined by A’s random coins. For a set S with no obvious accompanying
distribution, we overload this notation to denote sampling from S according to
the uniform distribution s ← S. For deterministic processes f , we denote as-
signment of f(x1, x2, . . .) to y by y := f(x1, x2, . . .). Finally, we use “PPT” as a
shorthand for “probabilistic polynomial-time”.

2.2 Computational Assumptions

Throughout this work, we use a cyclic group G with generator g and of prime
order p, where 2κ ≤ p < 2κ+1. We assume (G, g, p) is public information and
is omitted from all parties’ inputs. We use the multiplicative notation for the
group operation.

Definition 1 (The Discrete Logarithm (DL) Problem). Let a ← Z∗p.
Given ga, the Discrete Logarithm Problem asks one to compute a.

Definition 2 (The Computational Diffie-Hellman (CDH) Problem). Let
(a, b) ← (Z∗p)2. Given a tuple (ga, gb), the Computational Diffie-Hellman Prob-

lem asks one to compute gab.

The advantage of an adversary A, denoted AdvDL
A (resp. AdvCDH

A), is the
probability that A solves the DL (resp. CDH) problem. The corresponding hard-
ness assumptions state that there is no PPT adversary A whose advantage is
non-negligible.6 In Section 5.1, we use the natural extensions of these problems
to group actions.

6 Note that we sample exponents from Z∗p rather than Zp, i.e., 0 is excluded. This
makes the protocol description and proof cleaner. It is obvious that our versions
of DL and CDH assumptions are equivalent to the standard versions where the
exponents are sampled from Zp.

7

2.3 UC saPAKE Security Model

We recall the UC functionalities for PAKE [17] (Figure 1) and saPAKE [31]
(Figure 2 and Figure 3). Note that both functionalities only have implicit au-
thentication, which is standard in the PAKE literature; explicit authentication
can be achieved by adding a single key confirmation flow [28].

The (symmetric) PAKE functionality FPAKE. In a PAKE protocol, two
parties run a session on their (respective) passwords in order to generate a shared
key k, modeled by the NewSession interface. If the MitM adversary does not in-
terfere with the session, the two honest parties arrive at the same key k exactly
when their passwords match. The only possible attack is the inevitable online
guessing attack, in which the MitM adversary guesses a password pw∗ and in-
teracts with an honest party by running the counterparty’s algorithm on pw∗.
This is modeled by the TestPwd interface, through which the ideal adversary can
control an honest party’s key using the NewKey interface if the password guess
is correct, i.e., pw∗ is equal to this party’s password.

Functionality FPAKE

Storage:

– two maps, sessionStatus and session

Upon receiving (NewSession, sid,P,P′, role, pw) from P:

1. Send (NewSession, sid,P,P′, role) to A∗.
2. If there is no record session[(sid, ·, ·)] or exactly one record

sessionStatus[(sid,P′,P)], set session[(sid,P,P′)] := pw and
sessionStatus[(sid,P,P′)] := fresh.

Upon receiving (TestPwd, sid,P, pw∗) from A∗:
1. If sessionStatus[(sid,P,P′)] is not fresh, ignore this query.
2. Otherwise:

1. Retrieve pw := session[(sid,P,P′)].
2. If pw = pw∗, set sessionStatus[(sid,P,P′)] := compromised and return “correct

guess” to A∗.
3. Otherwise, set sessionStatus[(sid,P,P′)] := interrupted and return “wrong

guess” to A∗.

Upon receiving (NewKey, sid,P, k∗) from A∗ where |k∗| = κ:

1. If sessionStatus[(sid,P,P′)] is defined, but is not completed:
1. If the record is compromised, set k := k∗.
2. Else, if the record is fresh, (sid, k′) was sent to P′, session[(sid,P,P′)] =

session[(sid,P′,P)], and at the time sessionStatus[(sid,P′,P)] was fresh, set
k := k′.

3. Otherwise, sample k ← {0, 1}κ.
2. Finally, set sessionStatus[(sid,P,P′)] := completed and send (sid, k) to P.

Fig. 1. Ideal functionality FPAKE

8

The saPAKE functionality FsaPAKE. As (s)aPAKE is meant to model the
extension of PAKE to the client-server setting, we follow convention by calling
one of the parties the client C, and calling corresponding counterparty the server
S. C runs an saPAKE session on a (plain) password pw′ through the ClientSession
interface, while S runs the session on a password file file[(sid,C,S)] — represent-
ing the password underlying server’s stored password digest — which is created
through the StorePwdFile interface. Similar to PAKE, if the MitM adversary
does not interfere with the session, the two honest parties arrive at the same
key k exactly when file[(sid,C,S)] = pw′. The StorePwdFile interface represents
client registration, but is traditionally non-interactive with the server presum-
ably receiving the password out-of-band e.g., over an authenticated and secure
channel and then securely erasing the password after storing the file.7

In addition to the online attack interface TestPwd, FsaPAKE also models
adaptive server compromise through the StealPwdFile interface. After send-
ing StealPwdFile, the ideal adversary gains access to two additional interfaces:
OfflineTestPwd and Impersonate which allow the adversary to perform an of-
fline dictionary attack — i.e., make a password guess without invoking an on-
line session — and authenticate with an honest client, respectively. To exclude
pre-computation attacks, the OfflineTestPwd interface ignores all messages until
StealPwdFile is sent.

2.4 Simulation Rate

As repeatedly pointed out in prior works [26,31,30,15], the (s)aPAKE function-
ality alone is not enough to model the offline security guarantees expected from
(s)aPAKE protocols. Roughly speaking, offline security is concerned with the
runtime of an offline dictionary attack after server compromise, or equivalently,
how many passwords a real adversary can test per idealized model query (in our
context, generic group operation). Although not explicit in the functionality,
(s)aPAKE security requires that the server’s storage be a tight one-way function
of the password: namely, there should be a linear relationship between the num-
ber of password tests and the number of idealized model queries an adversary
makes. For example, if the server storage is a traditional salted hash (s,H(pw, s))
where H is a random oracle and s is the salt, then each post-compromise query
to H tests at most one password.

In the saPAKE ideal functionality, the adversary’s post-compromise password
tests are modeled by the OfflineTestPwd interface. From the description of the
functionality (Figure 2), it is clear that each OfflineTestPwd command tests one
password. However, there is an important caveat: as previously observed [26,31],
the UC-modeling of (s)aPAKE requires a restriction on the simulator limiting
the simulator’s access to the OfflineTestPwd interface. Indeed, given unmediated
access to the interface,

7 In some sense this is counter to the one of the goals of saPAKE which is to prevent
the server from ever seeing the client’s password. Our informal description of the
protocol has the client generate the password file themselves and send it over a
secured channel, but formally the server will still generate the file.

9

Functionality FsaPAKE

Storage:

– Four maps: fileStatus, file, sessionStatus, session

Password Registration
Upon receiving (StorePwdFile, sid,C, pw) from S, if file[(sid,C, S)] is undefined, set
file[(sid,C,S)] := pw and set fileStatus[(sid,C, S)] := uncompromised.

Stealing Password Data
Upon receiving (StealPwdFile, sid) from A∗:
1. If file[(sid,C, S)] is undefined, return “no password file” to A∗.
2. Otherwise:

1. If fileStatus[(sid,C, S)] = uncompromised, set fileStatus[(sid,C, S)] := stolen.
2. Return “password file stolen” to A∗.

Upon receiving (OfflineTestPwd, sid,pw∗) from A∗:
1. If fileStatus[(sid,C,S)] = stolen:

1. Retrieve pw := file[(sid,C, S)].
2. If pw = pw∗, return “correct guess” to A∗.
3. Otherwise, return “wrong guess” to A∗.

Password Authentication
Upon receiving (ClientSession, sid, ssid, S, pw′) from C:
1. Send (ClientSession, sid, ssid,C,S) to A∗.
2. If sessionStatus[(sid, ssid,C, S)] is undefined, set session[(sid, ssid,C, S)] := pw′ and

set sessionStatus[(sid, ssid,C,S)] := fresh.
Upon receiving (ServerSession, sid, ssid) from S:
1. If file[(sid,C, S)] is undefined, ignore this query.
2. Otherwise, retrieve pw := file[(sid,C, S)] and send (ServerSession, sid, ssid,C,S) to
A∗.

3. If sessionStatus[(sid, ssid, S,C)] is undefined, set session[(sid, ssid,S,C)] := pw and
set sessionStatus[(sid, ssid, S,C)] := fresh.

Fig. 2. Ideal functionality FsaPAKE (part 1)

1. Protocols which realize FaPAKE also realize FsaPAKE [31,15,21]: When the
aPAKE simulator would send a pre-compromise OfflineTestPwd command,
the saPAKE simulator instead catalogues the command and upon compro-
mise of the server, it sends OfflineTestPwd for each catalogued command.

2. Assuming the password dictionary Dict has polynomial size, simply letting
the server store the plain password is “secure” (and any PAKE is also an
saPAKE) [30]: upon compromise of the server, the simulator iterates through
Dict sending OfflineTestPwd for each possible password.

To rule out such degenerate protocols and to model the tight one-wayness
of the password storage, we must restrict ourselves to simulators with limited
access to the OfflineTestPwd interface. To these ends, we make explicit the ratio
of the idealized model queries and the password guesses the adversary makes.

10

Active Session Attacks
Upon receiving (TestPwd, sid, ssid,P, pw∗) from A∗:
1. If sessionStatus[(sid, ssid,P,P′)] is undefined, ignore this query.
2. Otherwise, retrieve pw′ := session[(sid, ssid,P,P′)].
3. If sessionStatus[(sid, ssid,P,P′)] = fresh:

1. If pw′ = pw∗, return “correct guess” to A∗ and set
sessionStatus[(sid, ssid,P,P′)] := compromised.

2. Otherwise, set sessionStatus[(sid, ssid,P,P′)] := interrupted and return “wrong
guess” to A∗.

Upon receiving (Impersonate, sid, ssid) from A∗:
1. If sessionStatus[(sid, ssid,C, S)] = fresh:

1. If fileStatus[(C, S)] = stolen and file[(sid,C, S)] = session[(sid, ssid,C, S)], set
sessionStatus[(sid, ssid,C,S)] := compromised and return “correct guess” to
A∗.

2. Otherwise set sessionStatus[(sid, ssid,C, S)] := interrupted and return “wrong
guess” to A∗.

Key Generation
Upon receiving (NewKey, sid, ssid,P, k∗) from A∗ where |k∗| = κ:
1. If sessionStatus[(sid, ssid,P,P′)] is defined, but is not completed:

1. If the record is compromised, set k := k∗.
2. Else, if the record is fresh, (sid, ssid, k′) was sent to P′,

session[(sid, ssid,P,P′)] = session[(sid, ssid,P′,P)], and at the time
sessionStatus[(sid, ssid,P′,P)] was fresh, set k := k′.

3. Otherwise, sample k ← {0, 1}κ.
2. Finally, set sessionStatus[(sid, ssid,P,P′)] := completed and send (sid, ssid, k) to P.

Fig. 3. Ideal functionality FsaPAKE (part 2)

We define the simulation rate

r =
OfflineTestPwd commands sent by the simulator

ideal model queries made by the adversary

of a protocol as the number of passwords that can be tested per a real adver-
sary’s ideal model query, and the “tight one-wayness” property can be expressed
by requiring the simulation rate to be constant.8 In the example above, the sim-
ulation rate of server storage (s,H(pw, s)) is 1. We then restrict the saPAKE
simulator to only send at most r OfflineTestPwd commands when the real ad-
versary makes an idealized model query, and disallow OfflineTestPwd from the
simulator otherwise.

Hesse [30] proposes a way to formalize this intuitive change by restricting
the simulator so that it may access OfflineTestPwd as long as its runtime re-
mains locally T -bounded [30, Definition 3]. In other words, given any real-world
adversary which runs in time T (n), this change restricts the simulator to run
in time T (n) as well, where n is the number of input bits provided by the en-

8 The term “simulation rate” is borrowed from [35].

11

vironment and functionality minus the adversary’s output bits.9 For the sake
of simplicity, in this work we instead use the equivalent intuition of a “ticket-
ing” mechanism as is common for limiting a simulator’s actions. Our simulators
will (conceptually) receive r “test tickets” whenever the real world adversary
would make a specific oracle query and consume one of these tickets when the
simulator sends OfflineTestPwd to FsaPAKE. We then restrict our proofs to only
consider simulators which do not send OfflineTestPwd when they have no tickets
to consume.

Bradley, Jarecki, and Xu [15] prove the offline security of their saPAKE
protocol in the GGM as we do; using our terminology, [15, Theorem 4] states
that the simulation rate of their protocol is O(1). While the offline security proof
of our protocol is similar to theirs, we present a concrete analysis and show that
our protocol has simulation rate 2. To the best of our knowledge, this is the first
concrete offline security analysis of saPAKE in the GGM. We additionally show
that our protocol achieves a simulation rate of 1 in the generic group action
(with twists) model.

2.5 Idealized Models

The random oracle and generic group models. Our UC random oracle and
generic group functionalities can be found in Figure 4 and Figure 5, respectively.
For simplicity, we use a variant of the GGM where the adversary is allowed to
compute AcBd for group elements A,B and integers c, d of its choice in a single
query ; such a step corresponds to at least log max{c, d} steps in the standard
GGM where the adversary can only perform one multiplication or division per
query.10

The algebraic group model. The algebraic group model, proposed by Fuchs-
bauer, Kiltz, and Loss [25], is an idealized model between the GGM and the
standard model intended to analyze the security of group-based protocols.11

Roughly speaking, the AGM requires the adversary to be algebraic, namely when
it outputs a group element X, it must also output its algebraic representation
[X]x = (λ1, . . . , λn) ∈ Znp such that

X = Xλ1
1 · · ·Xλn

n ,

where X1, . . . , Xn are group elements in the adversary’s view so far.
The following lemma was proven in [25]:

9 [15] uses a simpler formalization that is problematic; see [30, Appendix D] for a
discussion.

10 When we say in Section 2.4 that the simulation rate of our protocol is 2 in the GGM,
we refer to this GGM variant. It is likely that the simulation rate is smaller than 1
in the standard GGM, although we do not perform a detailed analysis in this case.

11 While the GGM is widely used to prove lower bounds for cryptographic assump-
tions, it is considered problematic to use it on the protocol level; see, e.g., [40] for a
discussion.

12

Functionality FRO

Parameters:

– range H

Storage:

– map H : {0, 1}∗ → H.

Upon receiving (Eval, sid, x) from P:
1. If H[x] is undefined, sample H[x]← H.
2. Send (Eval, sid,H[x]) to P.

Fig. 4. Ideal functionality FRO

Functionality FGG

Parameters:

– handle set G ⊆ {0, 1}κ
– prime p

Storage:

– map DL : G → Zp.

Upon receiving (Multi, sid, A,B, c, d) from P:
1. Retrieve a := DL[A] and b := DL[B]; if either are undefined, sample them and set

DL accordingly.
2. If there does not exist a g′ ∈ G such that DL[g′] := ca + db, sample g′ ← G, and

set DL[g′] := ca+ db.
3. In all cases, send (Multi, sid, g′) to P.

Fig. 5. Ideal functionality FGG

Lemma 3. The DL and CDH assumptions are equivalent in the AGM. Con-
cretely, for any CDH solver A, there is a DL solver B whose runtime is approx-
imately equal to that of A such that AdvDL

B = AdvCDH
A .

Given this lemma, we can claim that a protocol is secure in the AGM+DL while
constructing a reduction to CDH, with no additional security loss. This is the
approach we take in the security proof of our protocol.

Abdalla et al. [2] considered algebraic adversaries in the UC framework; in
particular, they showed that the composition theorem still holds if we restrict
the adversary (and the environment) to be algebraic, and as in the standard UC
framework, we can still assume w.l.o.g. that the adversary is “dummy”.

Offline security in the GGM and online security in the AGM. As in
prior works [15,21], the offline security analysis of our saPAKE protocol is done
in the GGM. This seems necessary as the offline security — the server’s storage is

13

a tight one-way function of the password — is essentially a lower-bound result.
However, as mentioned above, using the GGM on the protocol level (online
security) might be viewed as problematic. Cremers et al. [21] state that their
entire security result is in the GGM (see [21, Theorem 2]), while noting that
the GGM is only used in the offline security analysis. Bradley et al. [15] state
“we do not rely on GGM in the security analysis of the saPAKE protocol that
uses [a tight one-way function] as the password file” (see [15, p.14]), and the
authors take a more modular (yet less intuitive) approach: they abstract out
the server storage as a separate primitive called salted tight one-way function
(STOWF), prove that the server storage in their protocol is a UC STOWF in the
GGM, and then show their protocol is a UC saPAKE without the GGM given
a UC STOWF (plus some additional game-based properties). For readability,
we follow the approach of Cremers et al. [21] and assume that the adversary
must perform group operations via generic group queries only while doing an
offline attack, while in online attacks the only constraint is that it must behave
algebraically. However, we note that a more formal separation is straightforward
by modeling the server storage as a STOWF similar to Bradley et al. [15].

3 Our saPAKE Protocol

Overview. Our starting point is the following näıve Diffie-Hellman-like protocol:
The server S stores gh where h = H(pw), picks a random integer r and sends
R = gr to the client C, and the two parties output ghr as the session key (Rh for
C and (gh)r for S). The problem with this protocol is that ghr has low entropy
in the view of an eavesdropper that sees R = gr. But since the two parties agree
upon a low-entropy value, we can boost it into a high-entropy value by running
a PAKE on top of it with ghr as the input.

This yields an aPAKE but not a strong aPAKE: since the server storage
is gH(pw), an attacker can pre-compute the table of (x, gH(x)) for all candidate
passwords x before compromising the server. To make it an saPAKE, we simply
replace the fixed group base g with a variable base S = gs for a random integer
s; that is, the server stores (S, sw = SH(pw)) instead of gH(pw) (sw for “salted
password”). This prevents the aforementioned attack as the adversary does not
know S pre-compromise.

We note that using (S, sw = SH(pw)) as server storage in saPAKE was origi-
nally suggested in [15, Section 3]. However, [15] dismisses this idea because the
server storage is malleable: an adversary that compromises the server (but with-
out performing an offline dictionary attack) can impersonate the server using an
alternative server storage (Sr

∗
, swr

∗
) for a random integer r∗, and the UC simu-

lator cannot tell this is an impersonation attack if DDH is hard in the group. One
of our critical observations is that such an impersonation attack can be detected
by the UC simulator in the AGM, since the adversary must output r∗ as part of
the algebraic representation — so the simulator can tell that (S, sw, Sr

∗
, swr

∗
)

forms a DH tuple. See the proof overview in Section 4 for more details.

14

Public parameters:
Random Oracle H : {0, 1}∗ → Z∗p
Generic Group (G, g, p)

client server

registration phase

on input pw:

s← Z∗p, S := gs

h := H(pw), sw := Sh

(S, sw)

store (S, sw)

login phase

on input pw′:

r ← Z∗p
R := Sr, rw := swr

R

h′ := H(pw′)
If R = 1G , rw

′ ← G
Else, rw′ := Rh

′

PAKE
rw′ rw

sk′ sk

Fig. 6. Graphical representation of our protocol. See text for omitted details.

Below we formally present our saPAKE protocol, together with a graphic
illustration.

Registration Phase

On input (StorePwdFile, sid,C,pw), S

1. Samples s← Z∗p.
2. Sends (Eval, sid,pw) to FRO receiving (Eval, sid, h).
3. Sends (Multi, sid, g, s) and (Multi, sid, g, sh) to FGG receiving (Multi, sid, S)

and (Multi, sid, sw).
4. Stores file[sid] := (S, sw).

Server Compromise

Upon receiving (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.
If there is no such record, S responds with “no password file”.

15

Login Phase

1. On input (ServerSession, sid, ssid), S
1. Retrieves (S, sw) := file[sid].
2. Samples r ← Z∗p.
3. Sends (Multi, sid, S, r) and (Multi, sid, sw, r) to FGG receiving

(Multi, sid, R) and (Multi, sid, rw).
4. Sends (sid, ssid, R) to C and (NewSession, sid||ssid||R,S,C,S, rw) to
FPAKE.

2. On input (ClientSession, sid, ssid,S,pw′) and upon receiving (sid, ssid, R)
from S, C
1. Sends (Eval, sid,pw′) to FRO receiving (Eval, sid, h′).
2. If R = 1G , samples rw′ ← G. Else, sends (Multi, sid, R, h′) to FGG receiv-

ing (Multi, sid, rw′).
3. Sends (NewSession, sid||ssid||R,C,S,C, rw′) to FPAKE.

3. Either party, upon receiving (sid||ssid||R, k) from FPAKE, outputs
(sid, ssid, k).

See Figure 6 for a graphic illustration of our protocol. Note that in Figure 6
the registration phase is done interactively, where the client computes the pass-
word file and sends it to the server via a secure channel; whereas in the formal
description the server computes the password file on its own using the password
(and then erases the password). Figure 6 is more likely to match real-world appli-
cations, whereas the formal description matches the UC saPAKE functionality.
An additional difference is the addition of R to the sid for the PAKE session.
This is needed so A can’t test password ratios in the honest-honest case.

Correctness. As pointed out in [37], correctness of (sa)PAKE — the two parties
output the same key if their passwords match and there is no active attack — is
not implied by UC-security and needs to be checked separately. It is trivial to see
that our saPAKE protocol is correct assuming the underlying PAKE protocol
is correct: if pw′ = pw, then h′ = h and thus rw = swr = (Sh)r = Shr and
rw′ = Rh

′
= Rh = (Sr)h = Shr, so the two parties’ inputs to the PAKE protocol

are equal. By the correctness of PAKE, their output keys are also equal.

4 Security Proof

Theorem 4. The protocol in Section 3 UC-realizes FsaPAKE (Figure 2, Fig-
ure 3) with simulation rate r = 2 in the (FPAKE,FRO,FGG)-hybrid model using
the AGM for online analysis and the GGM for offline analysis, in the setting
where both the client and the server can be statically corrupted and assuming the
DL problem is hard in group (G, g, p).

Proof overview. We provide a brief overview of the simulation strategy.
Offline security : At a high level, offline security requires that given (S, sw =

Sh) for h randomly chosen from a polynomial-size set H, it takes time linear in

16

|H| to find h. This “discrete logarithm over a sparse set” problem has been stud-
ied (in the GGM) by Schnorr [38, Lemma 3], of which our argument is essentially
a rewrite. The simulator creates a formal variable P representing logS sw, and
since each generic group query by the adversary computes a linear function (in
the exponent), the simulator records the corresponding linear function ui + viP,
and tries to solve equations

ui + viP = uj + vjP,

where the solutions are candidate DL values (which are then tested via
OfflineTestPwd queries). The reason we solve equations of this form is because
the adversary can only learn information about the discrete logarithms of group
elements by string comparison (equality checking) of their handles. The difficulty
here is to show a lower bound of the number of solutions when the set H has
polynomial size, which is the main technical contribution of [38] and which we
repeat here.

Online security : The simulator must detect online saPAKE password tests;
in particular, when the adversary sends a TestPwd message on a certain rw∗

to FPAKE, the simulator must extract the corresponding password guess pw∗

on the saPAKE level. Since the PAKE-level password rw is supposed to be
SH(pw)·r = RH(pw) (where R is the server’s message), pw∗ can be easily extracted
via looking at all H queries and checking which one satisfies RH(pw∗) = rw∗.12

The simulator also needs to detect impersonation attacks, i.e., the adver-
sary executes the server’s algorithm after compromising it without knowing the
saPAKE password. Since the server’s storage is (S, sw = SH(pw)), the adversary
can choose an integer r∗, send R∗ := Sr

∗
to client, and then send a TestPwd mes-

sage for C on swr
∗

— which will result in “correct guess” if C’s password is pw.
While this seems not simulatable without the AGM, in the AGM the simulator
can extract r∗ from R∗, so when the adversary uses rw∗ in a TestPwd message,
the simulator can check if rw∗ = swr

∗
(and send Impersonate to FsaPAKE if this

is the case).
Note that in the two attacking scenarios above, only the second (the imper-

sonation attack) needs the AGM.

The rest of the section is dedicated to the formal proof of Theorem 4. The
simulator is described in Section 4.1, and we argue that this simulator gener-
ates an ideal-world view that is indistinguishable from the real-world view in
Section 4.2.

4.1 Simulator

We construct the following simulator Sim for any PPT environment Z. As stan-
dard in UC, we assume that the real adversary A is “dummy”, i.e., it merely

12 Note that if R = 1G, the adversary can make a valid password guess without making
any H query by setting rw∗ = 1G. While this happens with negligible probability,
simply excluding this case makes the proof cleaner.

17

passes messages to and from Z. Without loss of generality, we also assume that
all FRO and FGG queries are made via A, i.e., Z does not make these queries on
its own. In the following, the session id is always included as part of a random
oracle input and is omitted (i.e., H(sid, x) is simplified to H(x)).

Stealing the Password File and Offline Queries

1. Upon receiving (StealPwdFile, sid) from A sent to S, send (StealPwdFile, sid)
to FsaPAKE.
A. If FsaPAKE returns “password file stolen”

I. Mark S compromised.
II. If file[sid] is undefined

1. Sample a pair of group handles (S, sw)← G2 and return (S, sw)
to A from S.

2. Create a formal variable P representing the discrete logarithm of
sw relative to base S and sample s← Z∗p.

3. Store DL[S] := s and DL[sw] := sP.
B. Otherwise, return “no password file” to A.

2. Upon receiving (Eval, sid, x) from A sent to FRO:
A. If H(x) is undefined, sample y ← Zp and record H(x) := y.
B. If there exists x′ 6= x such that H(x′) = H(x), output Collision and

abort.
C. If S is marked compromised, send (OfflineTestPwd, sid, x) to FsaPAKE.

I. If FsaPAKE returns “correct guess”, replace formal variable P with
H(x) in all future responses and store serverPW[sid] := x.

D. Return (Eval, sid, H(x)) to A.
3. Upon receiving (Multi, sid, A,B, c, d) from A to FGG:

A. If DL[g], for generator g associated with sid, is undefined, set DL[g] = 1.
B. If either DL[A] or DL[B] is undefined, sample the missing logarithm(s)

from Zp.
C. Interpret a := DL[A] and b := DL[B] as linear combinations over Zp of
{1,P}, and record linear function ca+ db denoted γ:

a = α1 + α2P
b = β1 + β2P
γ = (cα1 + dβ1) + (cα2 + dβ2)P

D. If S is marked compromised:
I. Suppose this is the t-th query A made to FGG post-compromise.

Then let u1s + v1sP, . . . , ut+2s + vt+2sP be the t + 2 linear equa-
tions, recorded in chronological order, after compromise such that
(u1, v1) = (1, 0), (u2, v2) = (0, 1), and ut+2s + vt+2sP is the linear
function recorded during the current query.

II. Compute all solutions to the t+ 1 equations

(vi − vt+2)Xt+2,i = ut+2 − ui,

where i ∈ [t+ 1]. Let the solutions be ht+2,i.

18

III. For any ht+2,i = H(xt+2,i), send (OfflineTestPwd, sid, xt+2,i) to
FsaPAKE. If more than 2t OfflineTestPwd commands would be sent
in total (i.e., there is no “ticket” from Z to send an OfflineTestPwd
command), output OfflineFailure and abort.

IV. Whenever FsaPAKE returns “correct guess”, replace formal variable P
with ht+2,i in this and all future responses and store serverPW[sid] :=
xt+2,i.

E. If γ is a fresh discrete logarithm, that is, for all previously generated
handles Ci, DL[Ci] 6= γ, then sample a new handle C from the set of
handles G and set DL[C] := γ. Otherwise there is an existing handle Ci
such that DL[Ci] = γ; in this case output Collision and abort.

F. Return (Multi, sid, C) to A.

Password Authentication

4. Upon receiving (ServerSession, sid, ssid,C,S) from FsaPAKE:

A. If file[sid] is undefined

I. Sample a pair of group handles (S, sw) ← G2 and store file[sid] :=
(S, sw).

II. Create a formal variable P representing the discrete logarithm of sw
relative to base S and sample s← Z∗p.

III. Store DL[S] := s and DL[sw] := sP.

B. If serverSession[sid, ssid] is undefined, then set serverSession[sid, ssid] :=
(C,S,⊥).

C. Sample r ← Z∗p, compute R := gr, and send (sid, ssid, R) to C from S.
D. Send (NewSession, sid||ssid||R,S,C,S) to A from FPAKE, set

serverSession[sid, ssid] := (C,S, R), and mark serverSession[sid, ssid]
as “PAKE active”.

5. Upon receiving (ClientSession, sid, ssid,C,S) from FsaPAKE:

A. If clientSession[sid, ssid] is undefined, then set clientSession[sid, ssid] :=
(C,S,⊥).

B. Wait to receive (sid, ssid, [R∗]x) from S sent to C.13

C. Send (NewSession, sid||ssid||R∗,C,S,C) to A from FPAKE, set
clientSession[sid, ssid] := (C,S, R∗), and mark clientSession[sid, ssid]
as “PAKE active”.

Active Session Attacks

6. Upon receiving (TestPwd, sid||ssid||R,S, [rw∗]x) from A sent to FPAKE, if
there is a record serverSession[sid, ssid] = (C,S, R) marked “PAKE active”:

A. Check if there exists an x such that rw∗ = RH(x). If so, x is uniquely de-
fined (if there were two such x, the simulator would have output Collision
and aborted). Otherwise set x := ⊥.

13 Formally A only sends (sid, ssid, R∗) to C, and additionally outputs [R∗]x as the
algebraic representation of R∗. We use this compact form for brevity.

19

B. Send (TestPwd, sid, ssid,S, x) to FsaPAKE and relay the response (“cor-
rect guess” or “wrong guess”) to A from FPAKE.

C. If FsaPAKE returns “correct guess”, replace formal variable P with H(x)
in all future responses and store serverPW[sid] := x.

7. Upon receiving (TestPwd, sid||ssid||R∗,C, [rw∗]x) from A sent to FPAKE, if
there is a record clientSession[sid, ssid] = (C,S, R∗) marked “PAKE active”:
A. If (1) S is marked compromised and (S, sw) was previously given to A

upon server compromise, and (2) [1]x 6= [R∗]x = r∗[S]x and [rw∗]x =
r∗[sw]x, then send (Impersonate, sid, ssid) to FsaPAKE and relay the re-
sponse (“correct guess” or “wrong guess”) to A from FPAKE.

B. Otherwise (i.e., no Impersonate command was sent):
I. Check if there exists an x such that rw∗ = (R∗)H(x). If so, x is

uniquely defined. Otherwise set x := ⊥.
II. Send (TestPwd, sid, ssid,C, x) to FsaPAKE and relay the response

(“correct guess” or “wrong guess”) to A from FPAKE.
III. If FsaPAKE returns “correct guess”, replace formal variable P with

H(x) in all future responses.

Key Generation

8. Upon receiving (NewKey, sid||ssid||R,C, k∗) from A to FPAKE such that there
is a record (C,S, R) := clientSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the server (i.e.,

serverSession[sid, ssid] = (C,S, R∗)) and R∗ 6= R (i.e., A modifies the
message before PAKE), send (TestPwd, sid, ssid,C,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,C, k∗) to FsaPAKE and mark
clientSession[sid, ssid] as “PAKE completed”.

9. Upon receiving (NewKey, sid||ssid||R,S, k∗) from A to FPAKE such that there
is a record (C,S, R) := serverSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the client (i.e.,

clientSession[sid, ssid] = (C,S, R∗)) and R∗ 6= R (i.e., A modifies the
message before PAKE), send (TestPwd, sid, ssid,S,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,S, k∗) to FsaPAKE and mark
serverSession[sid, ssid] as “PAKE completed”.

4.2 Proof of Indistinguishability

We now show that the simulator in Section 4.1 generates a view indistinguishable
from the real world for any PPT environment Z. We will proceed by a series of
hybrids starting in the real world and ending in the ideal world. We use Disti,i+1

Z
to denote Z’s distinguishing advantage between Hybrids i and i+ 1.

Hybrid 0: Real world
In this hybrid, the environment instructs the “dummy” adversary to play the
role of a man-in-the-middle attacker between C and S. Recall that C’s and S’s
passwords are denoted pw′ and pw, respectively.

Hybrid 1: Ruling out random oracle and generic group collisions
In this hybrid, the challenger outputs Collision and aborts if there exist x 6= x′

20

such that H(x) = H(x′), or A 6= A′ ∈ G such that their handles are equal.
Assuming A makes qRO Eval queries to FRO and qGG Multi queries to FGG, we
have that

Dist0,1Z ≤ Pr[Collision] ≤ q2RO + q2GG

2p
,

which is a negligible function of κ since 2κ ≤ p < 2κ+1.

Hybrid 2: Modifying R
In this hybrid, if R∗ 6= R (i.e., A modifies the message from S to C be-
fore PAKE) and A does not send (TestPwd, sid||ssid||R,S, ·) to FPAKE (resp.
(TestPwd, sid||ssid||R∗,C, ·)), then when A sends (NewKey, sid||ssid||R,S, ·) to
FPAKE (resp. (NewKey, sid||ssid||R∗,C, ·)), S (resp. C) outputs a random key in
{0, 1}κ (independent of everything else).

In Hybrid 1, C’s session id in FPAKE is sid||ssid||R∗, and S’s session id is
sid||ssid||R. Therefore, if R∗ 6= R and there is no active attack on PAKE, FPAKE

will output independent random keys to C and S — exactly what Hybrid 2 does.
We have that

Dist1,2Z = 0.

Hybrid 3: Testing server’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R,S, [rw∗]x) to FPAKE and the
server PAKE sub-session is active, FPAKE returns “correct guess” and marks the
sub-session compromised if A has queried H(pw) = z and rw∗ = Rz. Otherwise
FPAKE returns “wrong guess” and marks the sub-session interrupted.

In Hybrid 2, FPAKE returns “correct guess” (and marks the sub-session
compromised) if and only if rw∗ = RH(pw). Therefore, Hybrid 3 and Hybrid 2 are
identical unless A includes rw∗ = RH(pw) in a TestPwd message without query-
ing z = H(pw). Call this event GuessServerrw. Note that A only learns R = Sr,
and potentially S and sw = SH(pw) (if S is compromised); (S, sw, R, rw∗) forms a
DH tuple. Therefore, an environment Z that causes GuessServerrw can be turned
into a reduction B1 that solves the CDH problem in (G, g, p): Suppose there are
at most ` sub-sessions. B1(A,B) samples i ← [`] as a guess that GuessServerrw
happens in the i-th sub-session, runs the code of the Hybrid 3 challenger with
S := gs, sw := As, and R := Bs where R is the S-to-C message in the i-th sub-
session (note that S and sw remain the same across all sub-sessions), and upon
receiving rw∗, B1 outputs (rw∗)1/s.14 Clearly B1 wins if and only if GuessServerrw
happens in the i-th sub-session. We have that

Dist2,3Z ≤ Pr[GuessServerrw] ≤ ` ·AdvCDH
B1

,

14 Note that A never queries H(pw) if GuessServerrw happens, so B1 can set S as gs

and sw = SH(pw) as As.

21

which is a negligible function of κ since the DL problem is hard in (G, g, p),
and the CDH problem and the DL problem are equivalent in the AGM (see
Lemma 3).

Hybrid 4: Impersonation attacks
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and
the client PAKE sub-session is active, do the following if (1) S is compromised
and (S, sw) was given to A upon server compromise, and (2) there exists r ∈ Zp
such that [1]x 6= [R∗]x = r[S]x and [rw∗]x = r[sw]x:

– If pw′ = pw, then FPAKE returns “correct guess” and marks the sub-session
compromised;

– Otherwise FPAKE returns “wrong guess” and marks the sub-session
interrupted.

Note that the change from Hybrid 3 to Hybrid 4 is made only if both (1) and
(2) hold; in other words, if either (1) or (2) does not hold, there is no change
from Hybrid 3 to Hybrid 4. Now assume (1) and (2) hold. Then we have:

– R∗ = Sr and rw∗ = swr, so (S,R∗, sw, rw∗) forms a DH tuple;
– sw = SH(pw) and rw′ = (R∗)H(pw′), so (S,R∗, sw, rw′) forms a DH tuple if

and only if pw′ = pw (note that collisions in H have been ruled out).

Thus, rw∗ = rw′ if and only if (S,R∗, sw, rw′) forms a DH tuple, which in turn
happens if and only if pw′ = pw. In Hybrid 3, FPAKE returns “correct guess” if
and only if rw∗ = rw′, whereas in Hybrid 4, FPAKE returns “correct guess” if
and only if pw′ = pw. This means that the conditions on which FPAKE returns
“correct guess” in Hybrid 3 and in Hybrid 4 are equivalent. Thus, Hybrid 3 and
Hybrid 4 are identical in Z’s view, and

Dist3,4Z = 0.

Hybrid 5: Testing client’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the
client PAKE sub-session is active, if either (1) or (2) defined in Hybrid 4 does not
hold, do the following: FPAKE returns “correct guess” and marks the sub-session
compromised if A has queried H(pw′) = z and rw∗ = (R∗)

z
. Otherwise FPAKE

returns “wrong guess” and marks the sub-session interrupted.
In Hybrid 4, FPAKE returns “correct guess” (and marks the sub-session

compromised) if and only if rw∗ = (R∗)
H(pw′)

. Therefore, Hybrid 5 and Hy-

brid 4 are identical unless A includes rw∗ = (R∗)
H(pw′)

in a TestPwd message
without querying z = H(pw′). Call this event GuessClientrw. If pw′ 6= pw, then
H(pw′) is independent of the rest of the experiment, so GuessClientrw happens
with probability 1/p over the choice of random oracle outputs.

If instead pw′ = pw, an environment Z that causes GuessClientrw can be
turned into a reduction B2 that solves the DL problem in (G, g, p). B2(Q) sam-
ples i ← [`] as before, and runs the code of the Hybrid 5 challenger with

22

S := gs and sw := Qs in the i-th sub-session (so q = logQ is embedded as
H(pw)). When B2 receives R∗ and rw∗ along with their algebraic representations
(a, b, c, t1, . . . , ti) and (α, β, γ, τ1, . . . , τi) based on g, S, sw, R1, . . . , Ri (where Rj
is the S-to-C message in the j-th sub-session), B2 can obtain the expressions

R∗ = gdQe by condensing gaSb
∏
j R

tj
i = ga+sb+

∑
j srjtj and swc = Qsc;

similarly it can obtain rw∗ = gδQε. Combining these two equations with

rw∗ = (R∗)
H(pw′)

= (R∗)
H(pw)

= (R∗)
q

we have

q2e+ (d− ε)q − δ = 0,

from which B2 may solve for q when either e 6= 0 or d− ε 6= 0. (Such equations
are not generally solvable, but assuming GuessClientrw happens, there exists a
solution. If there are two solutions, B2 may verify which one is correct by checking
if gq = Q for each candidate solution.) If both are 0, we have e = δ = 0 and
d = ε, so R∗ = gd and rw∗ = Qd which we covered in Hybrid 4.

We conclude that

Dist4,5Z ≤ Pr[GuessClientrw] ≤ max

{
` ·AdvDL

B2
,

1

p

}
,

which is a negligible function of κ since the DL problem is hard in (G, g, p).

Hybrid 6: Offline attacks
In this hybrid, S defines its password file file[sid] as (S, sw) ← G2, rather than
S ← G and sw := SH(pw). Furthermore, when A computes SH(pw) via generic
group queries, program the result as sw.

The difference between Hybrid 6 and Hybrid 5 is that in Hybrid 5 sw is
defined as SH(pw), while in Hybrid 6 it is chosen at random from G and when A
computes SH(pw), the result is programmed to be SH(pw). We can see that Z’s
views in these two hybrids are identical, so

Dist5,6Z = 0.

Combining all results above, we get

Dist0,6Z ≤
q2RO + q2GG + 4

2p
+ `(AdvCDH

B1
+ AdvCDH

B2
),

which is a negligible function of κ.

Comparison between Hybrid 6 and the ideal world. We now compare
Z’s views in Hybrid 6 and in the ideal world. Hybrid 6 is a modified real world
whose challenger, among other things, includes FPAKE with modified behavior
(in particular, the rules on when sessions are marked compromised or interrupted
are changed); we argue that in Z’s view this challenger is identical to the com-
bination of FsaPAKE and the simulator Sim in the ideal world. First note that
both games output Collision and abort if there is a collision in either H or the
generic group. Below we assume that Collision does not happen.

We first analyze FPAKE’s response to A (“correct guess” or “wrong guess”)
upon a TestPwd command. In both Hybrid 6 and the ideal world, we have:

23

– When A sends (TestPwd, sid||ssid||R,S, [rw∗]x) to FPAKE and the server
PAKE sub-session is active:
• If A has queried H(pw) = z and rw∗ = Rz, then FPAKE returns “correct

guess”;
• Otherwise FPAKE returns “wrong guess”.

This can be seen from Hybrid 3 above and steps 6A and 6B of the simula-
tor.15

– When A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the client
PAKE sub-session is active, if (1) S is compromised and (S, sw) was given to
A upon server compromise, and (2) A has computed (R∗, rw∗) as (Sr, swr)
for some r ∈ Zp:
• If pw′ = pw, then FPAKE returns “correct guess”;
• Otherwise FPAKE returns “wrong guess”.

This can be seen from Hybrid 4 above and step 7A of the simulator.
– When A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the client

PAKE sub-session is active, if either (1) or (2) above does not hold:
• If A has queried H(pw′) = z and rw∗ = (R∗)z, then FPAKE returns

“correct guess”;
• Otherwise FPAKE returns “wrong guess”.

This can be seen from Hybrid 5 above and steps 7B(I) and 7B(II) of the
simulator.

Next, we analyze C and S’s output keys when A sends NewKey to FPAKE.
We first consider Hybrid 6. From Hybrids 3–5, we can see that whenever A sends
a TestPwd command to FPAKE resulting in “correct guess”, FPAKE marks the
corresponding sub-session compromised. Then when A sends NewKey, FPAKE

lets the corresponding party output the key that A specifies. On the other hand,
if the TestPwd command results in “wrong guess”, the sub-session is marked
interrupted, and when NewKey is sent, the corresponding party outputs an inde-
pendent random key.

In the ideal world, when A sends a TestPwd command aimed at FPAKE,
Sim always sends its own TestPwd command to FsaPAKE and relays FsaPAKE’s
answer to A. This means that if A receives “correct guess”, FsaPAKE marks the
corresponding session compromised; after that, when A sends NewKey, FsaPAKE

lets the corresponding party output the key that A specifies. Similarly, if A
receives “wrong guess”, FsaPAKE marks the corresponding session interrupted,
and when A sends NewKey, FsaPAKE lets the corresponding party output an
independent random key.

In other words, in both Hybrid 6 and the ideal world, C or S outputs
the key that A specifies if A has sent a TestPwd command aimed at FPAKE

15 In the ideal world, Sim checks if there exists pw∗ such that A has queried
H(pw∗) = z and rw∗ = Rz; if not, Sim defines pw∗ := ⊥. Then Sim sends
(TestPwd, sid||ssid||R, S, pw∗) to FsaPAKE. FsaPAKE sends “correct guess” to Sim if
and only if pw∗ = pw′, and Sim relays the answer to A. Since we have ruled out
collisions in H, A receives “correct guess” if and only if A has queried H(pw) = z
and rw∗ = Rz. The cases below can be seen similarly.

24

resulting in “correct guess”, and outputs an independent random key if the
TestPwd command results in “wrong guess”. The remaining case is that A
does not send a TestPwd command. We argue that in this case, when A sends
(NewKey, sid||ssid||R,S, k∗) and (NewKey, sid||ssid||R∗,C, k∗) aimed at FPAKE,
in both Hybrid 6 and the ideal world,

– If R∗ = R (i.e., A does not modify the message before PAKE), C and S
output the same random key;

– Otherwise C and S output independent random keys.

In Hybrid 6, if R∗ = R, FPAKE ensures that C and S output the same random
key; otherwise they output independent random keys due to Hybrid 2. In the
ideal world, if R∗ = R, Sim does not send any TestPwd command to FsaPAKE,
so FsaPAKE ensures that C and S output the same random key; otherwise Sim
sends (TestPwd, ssid,C,⊥) and (TestPwd, ssid,S,⊥) to FsaPAKE (steps 8A and
9A), and FsaPAKE marks both C sub-session and S sub-session interrupted, so
C and S output independent random keys — which is exactly what happens in
Hybrid 6.

We finally consider offline attacks. In Hybrid 6, S’s password file is (S, sw)←
G2, and when A computes SH(pw) via random oracle and generic group queries,
the result is programmed as sw. In the ideal world, this is exactly what Sim does
in steps 1–3: whenever A makes a post-compromise generic group query, Sim
solves for all x such that A tests if sw = SH(x), sends (OfflineTestPwd, sid, x)
to FsaPAKE, and if FsaPAKE returns “correct guess” (i.e., x = pw), then Sim
programs sw := SH(x). The only difference is that in the ideal world, if at any
point A makes t generic group queries but Sim needs to send more than 2t
OfflineTestPwd commands (i.e., Sim runs out of “tickets”), then Sim outputs
OfflineFailure and aborts.

In sum, we have proven that Z’s views in Hybrid 6 and in the ideal world
are identical, unless OfflineFailure happens. Since we have also proven that Z’s
views in the real world and in Hybrid 6 are indistinguishable, this means that
Z’s views in the real world and in the ideal world are indistinguishable as long
as OfflineFailure happens with negligible probability.

Lemma 5. Pr[OfflineFailure] is a negligible function of κ.

As mentioned in the proof overview, this is essentially rendering the proof of
[38, Lemma 3] in the UC setting; for completeness, we include the proof of the
lemma above in Appendix A.

5 An saPAKE from Group Actions

In this section we extend the analysis of the compiler in Section 3 to the generic
group action model (GGAM).

25

5.1 Group Actions

Until this point, our compiler has relied on classical assumptions in crypto-
graphic groups, specifically the hardness of the DL problem. However, Shor has
shown [39] that discrete logarithms can be computed in polynomial time using
a sufficiently large quantum computer. Our compiled protocols are not alone
in this insecurity; indeed, previous UC-secure saPAKE protocols are built from
Diffie-Hellman assumptions in groups [31,15,21] and thus are vulnerable to an
adversary who can compute discrete logarithms.

As a competitor to the DL assumption, Couveignes [20] proposed replacing
the group operations in traditional Diffie-Hellman with cryptographic group ac-
tions (therein referred to as hard homogenous spaces). For a group G and a set
X , a group action ? is a map from G× X to X — analogous to exponentiation
in classical groups — which respects group operations in G; integrally, there
is no group law on X which makes group actions resilient to Shor’s algorithm.
Following Couveignes’ work, group actions have been used to construct various
cryptographic schemes including symmetric PAKE [4].

We recall the definition of group actions:

Definition 6 (Group Action). A group action of a group (G, e, ·) on a set X
is a mapping ? : G×X → X , usually written using infix notation as g ?x, which
satisfies the following two properties:

1. Identity: e ? x = x for all x ∈ X .
2. Compatibility: g ? g′ ? x = (g · g′) ? x for all g, g′ ∈ G and x ∈ X .

We additionally consider three properties of group actions:

1. Freeness: A group action (G,X , ?) is said to be free when g?x = x =⇒ g = e
for any x ∈ X .

2. Transitivity : A group action (G,X , ?) is said to be transitive when X is the
only orbit under G. In other words, ∀x, y ∈ X , ∃g ∈ G | x = g ? y.

3. Regularity : A group action (G,X , ?) is said to be regular when the action is
both free and transitive.

For the rest of the paper, we will only consider actions which are regular and for
which G is abelian. In the context of our protocol in Section 3, we can view the
action of Z∗p on G \ {e} in the natural way a ? g = ga. Indeed, the only operation
our protocol requires is exponentiation, so an honest party and simulator will
only interact with G through this action. However, the additional structure G
imposes disallows us from analyzing it as a generic group action.

As we wish to relate the security of our protocol to computational assump-
tions, we will further restrict our group actions to those with polynomial-time
algorithms:

Definition 7 (Effective Group Action). A group action (G,X , ?) is said to
be effective with respect to a computation security parameter κ if the following
properties are satisfied:

26

1. G is finite and there exist polynomial-time algorithms (in κ) for the following:
(a) Membership Testing: Decide if a given bitstring represents an element in

G.
(b) Equality Testing: Decide if two given bitstrings represent the same ele-

ment in G.
(c) Sampling: Sample an element g from G according to some distribution
DG. For the purpose of our protocol, we assume that DG is statistically
close to the uniform distribution UG on G.

(d) Operation: Compute g · g′ for any two elements g, g′ ∈ G.
(e) Inversion: Compute g−1 for any element g ∈ G.

2. X is finite (note that |G| = |X | for regular actions) and there exist
polynomial-time algorithms (in κ) for the following:
(a) Membership Testing: Decide if a given bitstring represents an element in
X .

(b) Unique Representation: Compute a unique bitstring x! canonically rep-
resenting a given element x ∈ X .

3. There exists a distinguished element x̃ ∈ X with known representation. We
will refer to x̃ as the origin.

4. There exists a polynomial-time algorithm (in κ) to evaluate the group action
for any g ∈ G and x ∈ X .

An important category of post-quantum assumptions are those of isogeny-based
cryptographic group actions, the formost of which is CSIDH [18]. Briefly, given
a prime p = 4 · `1 · · · `n − 1 for `i small distinct odd primes, and elliptic curve
E0 = y2 = x3 + x over Fp with Fp-rational endomorphism ring O, then

? : cl(O)× E``p(O)→ E``p(O)

? : ([a], E) 7→ E/a

is a regular group action where cl(O) is the ideal-class group of O and E``p(O) is
the set of all elliptic curves over Fp with Fp-rational endomorphism ring O [18].

To capture actions like CSIDH, we follow Duman et al. ’s framework [22] and
extend our definitions to include an additional operation called a twist

τ : X → X
τ : (g ? x) 7→ g−1 ? x

which has a polynomial-time algorithm. As our results concern abelian groups,
we will instead use additive notation and write τ : (g ? x) 7→ (−g) ? x. It is
important to note that there is no corresponding operation for classical crypto-
graphic groups assuming the inverse CDH Problem is hard (which is equivalent
to the DL problem in the GGM [7]). Our protocol and simulator do not make use
of the twist operation, and our proofs can readily be adapted to group actions
without twists. However, to capture assumptions such as CSIDH, we provide the
operation to the environment.

Finally, we assume that the structure of G is known including a minimal set
of generators {g1, . . . , gn}. Indeed, effective group actions over abelian groups are

27

quantum-equivalent to effective group actions over known-order groups through
a generalization of Shor’s algorithm [19] which computes an isomorphism G '
Zm1 ×Zm2 × · · · ×Zmn along with a minimal set of generators. CSIDH-512, for
example, is known to have a cyclic group of order

N =3 · 37 · 1407181 · 51593604295295867744293584889

· 31599414504681995853008278745587832204909

with generator 〈3, π − 1〉 i.e., G ' ZN [12].

5.2 The Protocol

Our compiler in Figure 7 is the natural extension of our compiler in Figure 6
replacing the group operations with group actions. As the compiler runs inde-
pendently of the PAKE protocol, we may instantiate the PAKE from classical as-
sumptions [3,34], group actions (using the generic transform [16] from OT [33] to
UC PAKE), or lattice assumptions [24] with instantiations using post-quantum
assumptions resulting in the first UC-secure saPAKE protocols (realizing the
full functionality) from post-quantum assumptions. Note that the recent group
action PAKE protocol due to Abdalla et al. [4] is not known to be comptible
with our compiler as their protocol has not been proven UC-secure.

5.3 Security Analysis

Theorem 8. The protocol in Section 5.2 UC-realizes FsaPAKE (Figure 2, Fig-
ure 3) with simulation rate r = 1 in the (FPAKE,FRO,FGA>)-hybrid model
using the AGAM> for online analysis and the GGAM> for offline analysis, in
the setting where both the client and the server can be statically corrupted and
assuming the GA-DL problem is hard for known-order, abelian, effective group
action (Zm1

× · · · × Zmn
,X , x̃, ?), where `2, `3, the number of mi divisible by 2

and 3, are O(log (κ)). (See Appendix B for a formal description of the GGAM
functionality FGA> .)

The proof of this theorem is substantially similar to that of Section 4, so we
only provide a sketch here and defer the full proof to Appendix C. The main
change is that when the environment would produce server-to-client messages
R∗ = gaswb and PAKE inputs rw∗ = gcswd in the online phase, it instead
produces elements of the form a ? x̃, b ? sw, or c ? −sw. The non-trivial change
we must make is in Hybrid 5, when A produces R∗ and rw∗, A does not query
z = H(pw′), and pw = pw′. We now consider the case where R∗ is of the
form (a + b(s + q)) ? x̃ where b ∈ {−1, 0, 1} and similarly rw∗ is of the form
(c+ d(s+ q)) ? x̃ (for d ∈ {−1, 0, 1}) which combined with rw∗ = H(pw′) ?R∗ =
H(pw) ? R∗ = q ? R∗ arrives at

q(d− 1− b) = a+ bs− c− ds.

28

Public parameters:
Random Oracle H : {0, 1}∗ → G
Generic Group Action (G,X , x̃, ?)

client server

registration phase

on input pw:

s← G, S := s ? x̃
h := H(pw), sw := h ? S

(S, sw)

store (S, sw)

login phase

on input pw′:

r ← G
R := r ? S, rw := r ? sw

R

h′ := H(pw′), rw′ := h′ ? R

PAKE
rw′ rw

sk′ sk

Fig. 7. Strong Asymmetric PAKE from Group Actions

Here, we have that (d − b) ∈ {−2,−1, 0, 1, 2} which means (d − 1 − b) ∈
{−3,−2,−1, 0, 1}. Just as before, this equivalence actually hides a system of
modulo-equivalences. The i-th equivalence in the system has a single solution
when gcd ((d− 1− b),mi) = 1 and at most |d − 1 − b| solutions otherwise. As

our reduction may verify possible solutions for q by computing (q ? x̃)
?
= Q, we

must show that the total number of solutions to this system is polynomial in κ.
The total number of solutions is

|[q]| =
∏
i∈[N]

gcd ((d− 1− b),mi)

≤ 2`2 · 2`3

where `2 is the number of mi such that gcd (2,mi) 6= 1 and `3 is the number of
mi such that gcd (3,mi) 6= 1. If both 2`2 and 2`3 are polynomial in κ then there
are a polynomial number of possible solutions and the reduction may extract
the correct q.

CSIDH-512, for instance, has `2 = 0, `3 = 1 and we can achieve the same
bound as Lemma 9 since |H| < qRO is excluded when we remove collisions.
We note that our proof does not consider adversaries who can make queries in
superposition. In addition to constructing more efficient PAKE building blocks,

29

constructing a proof for UC-secure saPAKE in the QROM and QGGAM is left
as an interesting open problem.

References

1. M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally
composable relaxed password authenticated key exchange. In CRYPTO 2020,
Part I, Aug. 2020.

2. M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. Algebraic adversaries in the
universal composability framework. In ASIACRYPT 2021, Part III, Dec. 2021.

3. M. Abdalla, M. Barbosa, P. B. Rønne, P. Y. Ryan, and P. Šala. Security character-
ization of J-PAKE and its variants. Cryptology ePrint Archive, Report 2021/824,
2021. https://eprint.iacr.org/2021/824.

4. M. Abdalla, T. Eisenhofer, E. Kiltz, S. Kunzweiler, and D. Riepel. Password-
authenticated key exchange from group actions. In CRYPTO 2022, Part II, Aug.
2022.

5. M. Abdalla, B. Haase, and J. Hesse. Security analysis of CPace. In ASI-
ACRYPT 2021, Part IV, Dec. 2021.

6. N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. Cryptographic group
actions and applications. In ASIACRYPT 2020, Part II, Dec. 2020.

7. F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In ICICS
03, Oct. 2003.

8. A. Basso. A post-quantum round-optimal oblivious prf from isogenies. Cryptology
ePrint Archive, Paper 2023/225, 2023. https://eprint.iacr.org/2023/225.

9. B. Bauer, G. Fuchsbauer, and J. Loss. A classification of computational assump-
tions in the algebraic group model. In CRYPTO 2020, Part II, Aug. 2020.

10. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, May 1992.

11. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise. In
ACM CCS 93, Nov. 1993.

12. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. In ASIACRYPT 2019, Part I, Dec.
2019.

13. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In ASIACRYPT 2011, Dec. 2011.

14. D. Bourdrez, H. Krawczyk, K. Lewi, and C. Wood. The opaque asymmet-
ric pake protocol, 2023. https://cfrg.github.io/draft-irtf-cfrg-opaque/

draft-irtf-cfrg-opaque.html.
15. T. Bradley, S. Jarecki, and J. Xu. Strong asymmetric PAKE based on trapdoor

CKEM. In CRYPTO 2019, Part III, Aug. 2019.
16. R. Canetti, D. Dachman-Soled, V. Vaikuntanathan, and H. Wee. Efficient password

authenticated key exchange via oblivious transfer. In PKC 2012, May 2012.
17. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally

composable password-based key exchange. In EUROCRYPT 2005, May 2005.
18. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An efficient

post-quantum commutative group action. In ASIACRYPT 2018, Part III, Dec.
2018.

30

https://eprint.iacr.org/2021/824
https://eprint.iacr.org/2023/225
https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html
https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html

19. K. K. Cheung and M. Mosca. Decomposing finite abelian groups. Quantum Infor-
mation & Computation, 1(3):26–32, 2001.

20. J.-M. Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. https://eprint.iacr.org/2006/291.

21. C. Cremers, M. Naor, S. Paz, and E. Ronen. CHIP and CRISP: Compromise
resilient identity-based symmetric PAKEs. In CRYPTO 2022, Part II, Aug. 2022.

22. J. Duman, D. Hartmann, E. Kiltz, S. Kunzweiler, J. Lehmann, and D. Riepel.
Generic models for group actions. In PKC 2023, Part I, May 2023.

23. E. Eaton and D. Stebila. The “quantum annoying” property of password-
authenticated key exchange protocols. In Post-Quantum Cryptography - 12th In-
ternational Workshop, PQCrypto 2021, 2021.

24. B. Freitas Dos Santos, Y. Gu, and S. Jarecki. Randomized half-ideal cipher on
groups with applications to UC (a)PAKE. In EUROCRYPT 2023, Part V, Apr.
2023.

25. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In CRYPTO 2018, Part II, Aug. 2018.

26. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In CRYPTO 2006, Aug. 2006.

27. P. Grassi, M. Garcia, J. Fenton, et al. NIST digital identity guidelines. 2020.
https://csrc.nist.gov/publications/detail/sp/800-63/3/final.

28. A. Groce and J. Katz. A new framework for efficient password-based authenticated
key exchange. In ACM CCS 2010, Oct. 2010.

29. B. Hasse and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol tai-
lored for the IIoT. In CHES 2019, Aug. 2019.

30. J. Hesse. Separating symmetric and asymmetric password-authenticated key ex-
change. In SCN 20, Sept. 2020.

31. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol se-
cure against pre-computation attacks. In EUROCRYPT 2018, Part III, Apr. / May
2018.

32. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001, May 2001.

33. Y.-F. Lai, S. D. Galbraith, and C. de Saint Guilhem. Compact, efficient and UC-
secure isogeny-based oblivious transfer. In EUROCRYPT 2021, Part I, Oct. 2021.

34. I. McQuoid, M. Rosulek, and L. Roy. Minimal symmetric PAKE and 1-out-of-N
OT from programmable-once public functions. In ACM CCS 2020, Nov. 2020.

35. I. McQuoid, M. Rosulek, and J. Xu. How to obfuscate MPC inputs. In TCC 2022,
Nov. 2022.

36. A. Rostovtsev and A. Stolbunov. Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.org/

2006/145.
37. L. Roy and J. Xu. A universally composable PAKE with zero communication cost

(And why it shouldn’t be considered uc-secure). In PKC 2023, Part I, May 2023.
38. C. Schnorr. Small generic hardcore subsets for the discrete logarithm: Short secret

DL-keys. Information Processing Letters, 79(2):93–98, 2001.
39. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM review, 41(2):303–332, 1999.
40. J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart. Flaws in applying proof

methodologies to signature schemes. In CRYPTO 2002, Aug. 2002.
41. S. Thomas. Re: [cfrg] proposed pake selection process. CFRG

Mailing list, 2019. https://mailarchive.ietf.org/arch/msg/cfrg/

dtf91cmavpzT47U3AVxrVGNB5UM.

31

https://eprint.iacr.org/2006/291
https://csrc.nist.gov/publications/detail/sp/800-63/3/final
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM

42. D. Unruh. Universally composable quantum multi-party computation. In EURO-
CRYPT 2010, May / June 2010.

A Proof of Lemma 9

Lemma 9. Pr[OfflineFailure] is a negligible function of κ.

Proof. Since the server’s storage is (S, sw) = (gs, gsh) (where h = H(pw)), every
Multi query that A makes to FGG computes gus+vsh for some u, v ∈ Zp; below
we will often use (u, v) to denote the corresponding query or the group element
gus+vsh. Before compromise of the server, Z’s view only consists of g = (1/s, 0),
so any query must be of form (u, 0). After compromise of the server, A receives
f1 := gs = (1, 0) and f2 := gsh = (0, 1) from Sim, which allows A to make
queries (u, v) for v 6= 0; thus, we denote the i-th Multi query A makes to FGG

after server compromise as fi+2 := gui+2s+vi+2sh = (ui+2, vi+2). (As we have
just seen, (u1, v1) = (1, 0) and (u2, v2) = (0, 1).) Without loss of generality, we
assume that A never repeats a query.

Suppose A’s FRO queries result in a set of distinct integers H =
{h1, . . . , hqRO

} ⊆ Zp.16 Consider A’s first t FGG queries after compromis-
ing the server ; Sim sends an OfflineTestPwd command to FsaPAKE only for
1 ≤ i < j ≤ t+ 2 such that the solution to fi = fj

hi,j := (uj − ui)(vi − vj)−1 ∈ H

(note that we assume (ui, vi) 6= (uj , vj), which implies vi 6= vj ,
17 so (vi − vj)−1

is well-defined — here we use the fact that p is prime). Therefore, for u =
(u1, . . . , ut+2) and v = (v1, . . . , vt+2) defined by A’s queries to FGG, Sim makes
|Hu,v| OfflineTestPwd queries that correspond to A’s FGG queries, where

Hu,v = {hi,j}1≤i<j≤t+2 ∩H = {hi,j ∈ H | 1 ≤ i < j ≤ t+ 2}.

Recall that OfflineFailure happens if for some t, Sim makes more than 2t
queries that correspond to A’s FGG queries. We now upper bound Pr[|Hu,v| >
2t], or equivalently, the probability that there exist more than 2t hi,j ∈ H. Any
u,v uniquely define all hi,j ; fixing hi,j , consider the following linear equations
of variables U3, . . . , Ut+2, V3, . . . , Vt+2

(u1 − u2) + h1,2(v1 − v2) = 0

(u1 − Uj) + h1,j(v1 − Vj) = 0 for 3 ≤ j ≤ t+ 2

(u2 − Uj) + h2,j(v2 − Vj) = 0 for 3 ≤ j ≤ t+ 2

(Ui − Uj) + hi,j(Vi − Vj) = 0 for 3 ≤ i < j ≤ t+ 2

16 If the password dictionary Dict is a priori fixed and has polynomial size, qRO can be
replaced by min{qRO, |Dict|}.

17 If vi = vj , then fi = fj implies ui = uj , but then (ui, vi) = (uj , vj) — which has
already been excluded.

32

(we stress that here hi,j is a fixed coefficient, (u1, v1) and (u2, v2) are fixed to
be (1, 0) and (0, 1) respectively, and U3, . . . , Ut+2, V3, . . . , Vt+2 are variables over
Zp). There are

(
t+2
2

)
such linear equations but only 2t variables, so the dimension

of the linear system is at most 2t. Let I denote the largest subset of these
(
t+2
2

)
linear equations such that all equations in I are linearly independent (if there are
multiple, break ties arbitrarily), and HI denote the hi,j values that appear in I;
then |HI | = |I| ≤ 2t. Now all hi,j are partitioned into two subsets: those in HI

(there are |I| ≤ 2t of them) and those in H \HI (there are
(
t+2
2

)
− |I| <

(
t+2
2

)
of

them). The crucial observation is that the solution space is fully determined by I,
so those hi,j ∈ H\HI are independent of u,v. Furthermore, these hi,j ∈ H\HI

are also independent of each other and all hi,j ∈ HI . In other words, for each
hi,j ∈ H \HI , it is independent of everything else, so we have

Pr[hi,j ∈ H \HI] ≤
qRO

p
,

so

Pr[OfflineFailure] = Pr[there exist more than 2t hi,j ∈ H]

≤ Pr[there exists at least one hi,j ∈ H \HI]

< 1−
(

1− qRO

p

)(t+2
2)

≈ 1−
(

1

e

) (t+2
2)qRO

p

,

which is a negligible function of κ.

B Generic Group Action Functionality

See Figure 8 for the generic group action functionality FGA> we use in Section 5.

C Full Proof of Theorem 8

C.1 Simulator

Stealing the Password File and Offline Queries

1. Upon receiving (StealPwdFile, sid) from A sent to S, send (StealPwdFile, sid)
to FsaPAKE.
A. If FsaPAKE returns “password file stolen”

I. Mark S compromised.
II. If file[sid] is undefined

1. Sample a pair of set handles (S, sw)← G2 and return (S, sw) to
A from S.

33

Functionality FGA>

Parameters:

– group (G,+) and handle set X ⊆ {0, 1}κ.

Storage:

– map DL : G→ X .

Upon receiving (op, sid, g′, x) from P:

1. Retrieve g := DL[x] and if there does not exist an x′ ∈ X such that DL[x′] := g′+g,
sample x′ ← X , and set DL[x′] := g′ + g.

2. In both cases, send (op, sid, x′) to P.

Upon receiving (tw, sid, x) from P:

1. Retrieve g := DL[x] and if there does not exist an x′ ∈ X such that DL[x′] := −g,
sample x′ ← X , and set DL[x′] := −g.

2. In both cases, send (op, sid, x′) to P.

Fig. 8. Ideal functionality FGA>

2. Create a formal variable P representing the “discrete logarithm”
of sw relative to base S and sample s← G.

3. Store DL[S] := s and DL[sw] := s+ P.
B. Otherwise, return “no password file” to A.

2. Upon receiving (Eval, sid, z) from A sent to FRO:
A. If H(z) is undefined, sample y ← G and record H(z) := y.
B. If there exists z′ 6= z such that H(z′) = H(z), output Collision and abort.
C. If S is marked compromised, send (OfflineTestPwd, sid, z) to FsaPAKE.

I. If FsaPAKE returns “correct guess”, replace formal variable P with
H(z) in all future responses and store serverPW[sid] := z.

D. Return (Eval, sid, H(z)) to A.
3. Upon receiving (op, sid, g, x) or (tw, sid, x) from A to FGA> :

A. If DL[x̃], for origin x̃ associated with sid, is undefined, set DL[x̃] = 0.
B. If DL[x] is undefined, sample DL[x]← G.
C. Interpret DL[x] as an equation of the form a+ bP = (a1 + bP1, . . . , an +

bPn) where b ∈ {−1, 0, 1}, and record γ:

γ :=

{
(a1 + g1 + bP1, . . . , an + gn + bPn) if query was op

−a− bP if query was tw

D. If S is marked compromised:
I. Suppose this is the t-th query A made to FGA> after the server’s

compromise. Then let a1 +b1P, . . . ,at+2 +bt+2P be the t+2 discrete
logarithms of the queries that A has made to FGA> , recorded in
chronological order, after compromise such that (a1, b1) = (s, 0),
(a2, b2) = (s, 1), and at+2 + bt+2P is the “discrete logarithm” (γ)
recorded during the current query.

34

II. Compute all solutions to the t+ 1 equations

ai + biht+2,i = at+2 + bt+2ht+2,i

(bi − bt+2)ht+2,i = at+2 − ai

where i ∈ [t+ 1].
III. For any ht+2,i such that there was a previous query (Eval, sid, gt+2,i)

with H(gt+2,i) = ht+2,i, send (OfflineTestPwd, sid, gt+2,i) to
FsaPAKE unless an identical query has already been made. If this
would cause the t + 1th OfflineTestPwd command to be sent (i.e.,
there is no “ticket” from Z to send an OfflineTestPwd command),
output OfflineFailure and abort.

IV. Whenever FsaPAKE returns “correct guess”, replace formal variable P
with ht+2,i in this and all future responses and store serverPW[sid] :=
gt+2,i.

E. If γ is a fresh “discrete logarithm”, that is, for all previously generated
handles Xi, DL[Xi] 6= γ, then sample a new handle X from the set of
handles G and set DL[X] := γ. If our new handle X happens to already
appear as the handle of a previously computed set element (e.g., there is
already a “discrete logarithm” assigned to this handle which is different
from the currently computed “discrete logarithm” γ), output Collision and
abort.

F. Return (op, sid, X), respectively (tw, sid, X), to A.

Password Authentication

4. Upon receiving (ServerSession, sid, ssid,C,S) from FsaPAKE:
A. If file[sid] is undefined

I. Sample a pair of set handles (S, sw) ← G2 and store file[sid] :=
(S, sw).

II. Create a formal variable P representing the discrete logarithm of sw
relative to base S and sample s← G.

III. Store DL[S] := s and DL[sw] := s+ P.
B. If serverSession[sid, ssid] is undefined, then set serverSession[sid, ssid] :=

(C,S,⊥).
C. Sample group element r ← G, compute set element R := r ? x̃, and send

(sid, ssid, R) to C from S.
D. Send (NewSession, sid||ssid||R,S) to A from FPAKE, set

serverSession[sid, ssid] := (C,S, R), and mark serverSession[sid, ssid]
as “PAKE active”.

5. Upon receiving (ClientSession, sid, ssid,C,S) from FsaPAKE:
A. If clientSession[sid, ssid] is undefined, then set clientSession[sid, ssid] :=

(C,S,⊥).
B. Wait to receive (sid, ssid, [R∗]x) from S sent to C.
C. Send (NewSession, sid||ssid||R∗,C) to A from FPAKE, set

clientSession[sid, ssid] := (C,S, R∗), and mark clientSession[sid, ssid]
as “PAKE active”.

35

Active Session Attacks

6. Upon receiving (TestPwd, sid||ssid||R,S, [rw∗]x) from A sent to FPAKE, if
there is a record serverSession[sid, ssid] = (C,S, R) marked “PAKE active”:
A. Check if there exists an z such that rw∗ = H(z) ? R. If so, z is uniquely

defined. Otherwise set z := ⊥.
B. Send (TestPwd, sid, ssid,S, z) to FsaPAKE and relay the response (“correct

guess” or “wrong guess”) to A from FPAKE.
C. If FsaPAKE returns “correct guess”, replace formal variable P with H(z)

in all future responses and store serverPW[sid] := z.
7. Upon receiving (TestPwd, sid||ssid||R∗,C, [rw∗]x) from A sent to FPAKE, if

there is a record clientSession[sid, ssid] = (C,S, R∗) marked “PAKE active”:
A. If (1) S is marked compromised and (S, sw) was previously given to
A upon server compromise, and (2a) [R∗]x = r∗ + [S]x and [rw∗]x =
r∗ + [sw]x or (2b) [R∗]x = r∗ + [−sw]x and [rw∗]x = r∗ + [−S]x, then
send (Impersonate, sid, ssid) to FsaPAKE and relay the response (“correct
guess” or “wrong guess”) to A from FPAKE.

B. Otherwise (i.e., no Impersonate command was sent):
I. Check if there exists an z such that rw∗ = H(z) ? R∗. If so, z is

uniquely defined. Otherwise set z := ⊥.
II. Send (TestPwd, sid, ssid,C, z) to FsaPAKE and relay the response

(“correct guess” or “wrong guess”) to A from FPAKE.
III. If FsaPAKE returns “correct guess”, replace formal variable P with

H(z) in all future responses.

Key Generation

8. Upon receiving (NewKey, sid||ssid||R,C, k∗) from A to FPAKE such that there
is a record (C,S, R) := clientSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the server (i.e.,

serverSession[sid, ssid] = (C,S, R∗)) and R∗ 6= R (i.e., A modifies the
message before PAKE), send (TestPwd, sid, ssid,C,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,C, k∗) to FsaPAKE and mark
clientSession[sid, ssid] as “PAKE completed”.

9. Upon receiving (NewKey, sid||ssid||R,S, k∗) from A to FPAKE such that there
is a record (C,S, R) := serverSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the client (i.e.,

clientSession[sid, ssid] = (C,S, R∗)) and R∗ 6= R (i.e., A modifies the
message before PAKE), send (TestPwd, sid, ssid,S,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,S, k∗) to FsaPAKE and mark
serverSession[sid, ssid] as “PAKE completed”.

C.2 Proof of Indistinguishability

We now show that the simulator in Appendix C.1 generates a view indistin-
guishable from the real world for any PPT environment Z. We will proceed by a

36

series of hybrids starting in the real world and ending in the ideal world. We use
Disti,i+1

Z to denote Z’s distinguishing advantage between Hybrids i and i+ 1.

Hybrid 0: Real world
In this hybrid, the environment instructs the “dummy” adversary to play the
role of a man-in-the-middle attacker between C and S. Recall that C’s and S’s
passwords are denoted pw′ and pw, respectively.

Hybrid 1: Ruling out random oracle and generic group collisions
In this hybrid, Sim outputs Collision and aborts if there exist z 6= z′ such that
H(z) = H(z′), or A 6= A′ ∈ X such that their handles are equal.

Assuming A makes qRO Eval queries to FRO and qGA op and tw queries
(jointly summed) to FGA> , we have that

Dist0,1Z ≤ Pr[Collision] ≤ q2RO + q2GA

2|G|
,

which is a negligible in κ since 2κ ≤ |G| < 2κ+1.

Hybrid 2: Modifying R
In this hybrid, if R∗ 6= R (i.e., A modifies the message from S to C before the
PAKE session) and A does not send (TestPwd, sid||ssid||R,S, ·) to FPAKE (resp.
(TestPwd, sid||ssid||R∗,C, ·)), then when A sends (NewKey, sid||ssid||R,S, ·) to
FPAKE (resp. (NewKey, sid||ssid||R∗,C, ·)), Sim provides a uniform and indepen-
dent key in {0, 1}κ to S (resp. C) from FPAKE.

In Hybrid 1, C’s session id in FPAKE is sid||ssid||R∗, and S’s session id is
sid||ssid||R. Therefore, if R∗ 6= R and there is no active attack on the PAKE
session, FPAKE will output independent random keys to C and S — exactly what
Hybrid 2 does. We have that

Dist1,2Z = 0.

Hybrid 3: Testing server’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R,S, [rw∗]x) to FPAKE and
the server PAKE sub-session is active, Sim has FPAKE return “correct guess”
and mark the sub-session compromised if A has queried H(pw) = h and rw∗ =
h?R. Otherwise, Sim has FPAKE return “wrong guess” and mark the sub-session
interrupted.

In Hybrid 2, FPAKE returns “correct guess” (and marks the sub-session
compromised) if and only if rw∗ = H(pw) ? R. Therefore, Hybrid 3 and Hy-
brid 2 are identical unless A includes rw∗ = H(pw) ? R in a TestPwd message
without querying z = H(pw). Call this event GuessServerrw. Note that A only
learns R = r?S, and potentially S and sw = H(pw)?S (if S is compromised) and
(S, sw, R, rw∗) forms a GADH tuple. Therefore, an environment Z that causes
GuessServerrw can be turned into a reduction B1 that solves the GACDH prob-
lem in (G,X , ?, x̃): Suppose there are at most l sub-sessions. B1(A,B) samples
i ← [l] as a guess that GuessServerrw happens in the i-th sub-session, runs the
code of the Hybrid 3 adversary with S := s?x̃, sw := s?A, and R := s?B where
R is the S-to-C message in the i-th sub-session (note that S and sw remain the

37

same across all sub-sessions), and upon receiving rw∗, B1 outputs −s ? rw∗.18
Clearly B1 wins if and only if GuessServerrw happens in the i-th sub-session.

We have that

Dist2,3Z ≤ Pr[GuessServerrw] ≤ l ·DistGACDH
B1

,

which is negligible in κ since we assume the GADL problem is hard in (G,X , ?, x̃),
and the GACDH problem and the GADL problem are equivalent in the AGAM.

Hybrid 4: Impersonation attacks
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and
the client PAKE sub-session is active, then if (1) S is compromised and (S, sw)
was given to A upon server compromise, and (2a) there exists r∗ ∈ G such that
[R∗]x = r∗ + [S]x and [rw∗]x = r∗ + [sw]x or (2b) there exists r∗ ∈ G such that
[R∗]x = r∗ + [−sw]x and [rw∗]x = r∗ + [−S]x:

– If pw′ = pw, Sim has FPAKE return “correct guess” and mark the sub-session
compromised;

– Otherwise, Sim has FPAKE return “wrong guess” and mark the sub-session
interrupted.

Note that the change from Hybrid 3 to Hybrid 4 is made only if both (1)
and ((2a) or (2b)) hold; in other words, if either (1) or ((2a) and (2b)) does not
hold, there is no change from Hybrid 3 to Hybrid 4. Now assume (1) and (2a)
hold. Then we have:

– R∗ = r∗ ? S and rw∗ = r∗ ? sw, so (S,R∗, sw, rw∗) forms a GADH tuple;
– sw = H(pw) ? S and rw′ = H(pw′) ? R∗, so (S,R∗, sw, rw′) forms a GADH

tuple if and only if pw′ = pw.

or assume that (1) and (2b) hold. Then we have:

– R∗ = r∗ ? −sw and rw∗ = r∗ ? −S, so (−S, rw∗,−sw, R∗) forms a GADH
tuple;

– −sw = −H(pw)?−S and rw′ = H(pw′)?R∗ = (H(pw′)+r∗−H(pw))?−S,
so (−S, rw′,−sw, R∗) forms a GADH tuple if and only if pw′ = pw.

Thus, in both cases, rw∗ = rw′ if and only if (S,R∗, sw, rw′) (respectively
(−S, rw∗,−sw, R∗)) forms a GADH tuple, which in turn happens if and only if
pw′ = pw. In Hybrid 3, FPAKE returns “correct guess” if and only if rw∗ = rw′,
whereas in Hybrid 4, FPAKE returns “correct guess” if and only if pw′ = pw. This
means that the conditions on which FPAKE returns “correct guess” in Hybrid 3
and in Hybrid 4 are equivalent. Thus, Hybrid 3 and Hybrid 4 are identical in
Z’s view, and

Dist3,4Z = 0.

18 Note that A never queries H(pw) if GuessServerrw happens, so B1 can set S as s ? x̃
and sw = H(pw) ? S as s ? A.

38

Hybrid 5: Testing client’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and
the client PAKE sub-session is active, if either (1) or ((2a) and (2b)) defined in
Hybrid 4 does not hold: Sim has FPAKE return “correct guess” and mark the sub-
session compromised if A has queried H(pw′) = h and rw∗ = h ? R∗. Otherwise
Sim has FPAKE return “wrong guess” and mark the sub-session interrupted.

In Hybrid 4, FPAKE returns “correct guess” (and marks the sub-session
compromised) if and only if rw∗ = H(pw′) ? R∗. Therefore, Hybrid 5 and Hy-
brid 4 are identical unless A includes rw∗ = H(pw′) ? R∗ in a TestPwd message
without querying z = H(pw′). Call this event GuessClientrw. If pw′ 6= pw, then
H(pw′) is independent of the rest of the experiment, so GuessClientrw happens
with probability 1/|G| over the choice of random oracle outputs.

If instead pw′ = pw, an environment Z that causes GuessClientrw can be
turned into a reduction B2 that solves the GADL problem in (G,X , ?, x̃). B2(Q)
samples i ← [l] as before, and runs the code of the Hybrid 5 adversary with
S := s ? x̃ and sw := s ? Q in the i-th sub-session (so q = log(Q) is embedded
as H(pw)). When B2 receives R∗ and rw∗ along with their algebraic represen-
tations (±α,±β,±γ,±τ1, . . . ,±τi) and (±α′,±β′,±γ′,±τ ′1, . . . ,±τ ′i) based on
±x̃,±S,±sw,±R1, . . . ,±Ri (where Rj is the S-to-C message in the j-th sub-
session), B2 can obtain the expressions g?±x̃ or g?±Q from these representations
as sw = s?Q and Rj = rj ?S = rj ?s?x̃. We can now consider R∗ taking the form
(a+b ·q)?x̃ where b ∈ {−1, 0, 1} and similarly rw∗ is of the form (c+d ·q)?x̃ (for
d ∈ {−1, 0, 1}). Combining this with rw∗ = H(pw′) ? R∗ = H(pw) ? R∗ = q ? R∗

we have

rw∗ = q ? R∗

c+ d · q = q + a+ b · q
d · q − q − b · q = a− c
q(d− 1− b) = a− c,

from which B2 may solve for q when d − 1 − b 6= 0. However, d − b 6= 1 with
overwhelming probability as

1. If d = 1, b = 0: R∗ = a ? x̃, rw∗ = (c + q) ? x̃, and a = c, which we covered
in Hybrid 4 (2a).

2. If d = 0, b = −1: R∗ = (a− q) ? x̃, rw∗ = c ? x̃, and a = c, which we covered
in Hybrid 4 (2b).

Note that since G may not be cyclic, the above equation is actually a system
of equivalences

(d− 1− b)q1 ≡m1
a1 + (b− d)s1 − c1

(d− 1− b)q2 ≡m2
a2 + (b− d)s2 − c2
...

(d− 1− b)qn ≡mn
an + (b− d)sn − cn

39

where we have that (d − b) ∈ {−2,−1, 0, 2}, and (d − 1 − b) ∈ {−3,−2,−1, 1}.
The j-th equivalence in the system has has a single solution (solving for qj)
when gcd ((d− 1− b),mj) = 1 and at most |d − 1 − b| solutions otherwise. As

our reduction may verify possible solutions for q by computing (q ? x̃)
?
= Q, we

must show that the total number of solutions to this system is polynomial in κ.
The total number of solutions is

|[q]| =
∏
i∈[N]

gcd ((d− 1− b),mi)

= 2`2 · 3`3

where `2 is the number of mi such that gcd (2,mi) 6= 1 and `3 is the number of
mi such that gcd (3,mi) 6= 1. If both 2`2 and 3`3 are polynomial in κ then there
are a polynomial number of possible solutions and the reduction may extract
the correct q.

We conclude that

Dist4,5Z ≤ Pr[GuessClientrw] ≤ max

(
l ·DistGADL

B2
,

1

p

)
,

which is negligible in κ since we assume the DL problem is hard in (G,X , ?, x̃).

Hybrid 6: Offline attacks
In this hybrid, Sim defines S’s password file file[sid] as (S, sw)← G2, rather than
S ← G and sw ← H(pw) ? S. Furthermore, when A computes H(pw) ? S via
generic group queries, Sim programs the result as sw.

The difference between Hybrid 6 and Hybrid 5 is that in Hybrid 5 sw is
defined as H(pw)?S, while in Hybrid 6 it is chosen at random from G and when
A computes H(pw) ?S, the result is programmed to be sw. We can see that Z’s
views in these two hybrids are identical, so

Dist5,6Z = 0.

Combining all results above, we get

Dist0,6Z ≤
q2RO + q2GA + 4

2p
+ l(DistDL

B1
+ DistDL

B2
),

which is negligible in κ.

By inspection, we can see that Z’s views in Hybrid 6 and the ideal world
are identical unless OfflineFailure happens. The argument is almost identical to
that in Section 4.2 (the only difference is that group operations need to be
replaced by group action operations) and is thus omitted. We now upper-bound
Pr[OfflineFailure].

Lemma 10. Pr[OfflineFailure] is a negligible function of κ.

40

Proof. Since the server’s storage is (S, sw) = (s ? x̃, (s + h) ? x̃) (where h =
H(pw)), every op and tw query that A makes to FGA> computes (u+ b · h) ? x̃
for some u ∈ G, b ∈ {−1, 0, 1}; below we will often use (u, b) to denote the
corresponding query or the group element (u + b · h) ? x̃. Before compromise
of the server, Z’s view only consists of x̃ = (0, 0), so any query must be of
form (u, 0). After compromise of the server, A receives f1 := s ? x̃ = (s, 0) and
f2 := (s+ b · h) ? x̃ = (s, 1) from Sim, which allows A to make queries (u, b) for
b 6= 0; thus, we denote the i-th op or tw query A makes to FGA> after server
compromise as fi+2 := (ui+2 + bi+2 ·h) ? x̃ = (ui+2, bi+2). (As we have just seen,
(u1, v1) = (s, 0) and (u2, v2) = (s, 1).) Without loss of generality, we assume that
A never repeats a query.

Suppose A’s FRO queries result in a set of distinct integers H =
{h1, . . . , hqRO

} ⊆ G. Consider A’s first t FGA> queries after compromising the
server ; Sim sends an OfflineTestPwd command to FsaPAKE only for 1 ≤ i < j ≤
t+ 2 such that the solution to fi = fj

hi,j = (uj − ui)/(bi − bj) ∈ H.

But as we are working over a possibly non-cyclic group, we must treat these
equations as a system of equations

(bi − bj)h(i,j),1 ≡m1
uj,1 − ui,1

(bi − bj)h(i,j),2 ≡m2 uj,2 − ui,2
...

(bi − bj)h(i,j),n ≡mn uj,n − ui,n

which then are satisfied when each of the internal equations hold. We will then
consider the equivalence classes [h] defined by the system in the natural way.
As bi, bj ∈ {−1, 0, 1}, we have that (bi − bj) ∈ {−2,−1, 0, 1, 2}; however, we
exclude the case where (bi − bj) = 0 just as we did in the proof of Lemma ??.
As equivalences of the form ±h ≡m u have a single solution (in variable h) and
equivalences of the form ±2h ≡m u have a single solution when gcd (2,m) = 1
and at most two solutions otherwise, we can see that |[h]| ≤ 2`2 where `2 is the
number of mk such that gcd (2,mk) 6= 1.

Recall that OfflineFailure happens if for some t, Sim makes more than t queries
that correspond to A’s FGA> queries. We now upper bound Pr[|Hu,b| > t], or
equivalently, the probability that there exist more than t hi,j ∈ H. Any u, b
uniquely define all hi,j ; fixing hi,j , consider the following linear equations of
variables U3, . . . , Ut+2, B3, . . . , Bt+2

(b1 − b2)h1,2 + u1 − u2 = 0

(b1 −Bj)h1,j + u1 −U j = 0 for 3 ≤ j ≤ t+ 2

(b2 −Bj)h2,j + u2 −U j = 0 for 3 ≤ j ≤ t+ 2

(Bi −Bj)hi,j +U i −U j = 0 for 3 ≤ i < j ≤ t+ 2.

There are
(
t+2
2

)
such linear equations but only t variables, so the dimension of

the linear system is at most t. Denoting the set of equivalence classes for random

41

oracle queries H := {[H(x1)], . . . , [H(xqRO
)]}, OfflineFailure occurs exactly when

either |H| < qRO (a single equivalence class holds two password guesses) or
|H ∩ {[hi,j]}| > t.

Pr[OfflineFailure] ≤ Pr
H

[|H| < qRO] + Pr
H

[|H ∩ {[hi,j]}| > t]

≤ 22`2q2RO

N
+ 1−

(N−2`2 |{[hi,j]}|
2`2qRO

)(
N

2`2qRO

)
=

22`2q2RO

N
+ 1− (N − 2`2 |{[hi,j]}|)!

N !
· (N − 2`2qRO)!

(N − 2`2qRO − 2`2 |{[hi,j]}|)!

=
22`2q2RO

N
+ 1−

2`2 |{[hi,j]}|∏
i=1

N − 2`2qRO − (i− 1)

N − (i− 1)

≤ 22`2q2RO

N
+ 1−

(
1− 2`2qRO

N

)2`2(t+2
2)
,

which is negligible for 2`2 polynomial in κ.

42

	An Efficient Strong Asymmetric PAKE Compiler Instantiable from Group Actions

