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Abstract. A Rugged Pseudorandom Permutation (RPRP) is a variable-input-length tweakable ci-
pher satisfying a security notion that is intermediate between tweakable PRP and tweakable SPRP.
It was introduced at CRYPTO 2022 by Degabriele and Karadžić, who additionally showed how to
generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes satisfying
either misuse-resistance or release-of-unverified-plaintext security as well as Nonce-Set AEAD which
has applications in protocols like QUIC and DTLS. Their work shows that RPRPs are powerful
and versatile cryptographic primitives. However, the RPRP security notion itself can seem rather
contrived, and the motivation behind it is not immediately clear. Moreover, they only provided a
single RPRP construction, called UIV, which puts into question the generality of their modular
approach and whether other instantiations are even possible. In this work, we address this ques-
tion positively by presenting new RPRP constructions, thereby validating their modular approach
and providing further justification in support of the RPRP security definition. Furthermore, we
present a more refined view of their results by showing that strictly weaker RPRP variants, which
we introduce, suffice for many of their transformations. From a theoretical perspective, our results
show that the well-known three-round Feistel structure achieves stronger security as a permutation
than a mere pseudorandom permutation—as was established in the seminal result by Luby and
Rackoff. We conclude on a more practical note by showing how to extend the left domain of one
RPRP construction for applications that require larger values in order to meet the desired level of
security.
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1 Introduction

A Rugged Pseudorandom Permutation (RPRP) is a tweakable variable-input-length cipher satisfying
a security notion intermediate between a tweakable Pseudorandom Permutation (PRP) and a tweak-
able Strong Pseudorandom Permutation (SPRP). It was introduced in [13] where it was shown how to
generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes that are either
misuse-resistant [22] or secure under the release of unverified plaintext [3]. That work revisited the clas-
sical encode-then-encipher paradigm [5,23] and showed analogous constructions that can be instantiated
with a weaker primitive—a Rugged PRP instead of a tweakable Strong PRP. Although the encode-then-
encipher paradigm is more than twenty years old, it is often dismissed because variable-length tweakable
SPRPs are rather inefficient to construct. However, Rugged PRPs can be constructed more efficiently,
and their introduction extends the encode-then-encipher paradigm with a new set of tradeoffs between
security and efficiency. In addition, Degabriele and Karadžić introduced Nonce-Set AEAD as a concep-
tual building block from which a variety of order-resilient secure channels, such as QUIC and DTLS, can
be easily realised. Indeed they presented a generic way of transforming any Nonce-Set AEAD scheme
into an order-resilient channel with any desired functionality, and, in addition, it is simpler than QUIC.
Thus, another application of Rugged PRPs is that they can easily be transformed into Nonce-Set AEAD
schemes with the added benefit of yielding more compact ciphertexts than alternative constructions.
The Authenticate-with-Nonce (AwN) construction, presented in [13], does exactly this. It outperforms
other constructions by ‘overloading’ the use of the nonce to additionally provide authentication without
introducing further redundancy in the ciphertext. Another important application of Rugged PRPs is
that they suffice to construct onion encryption schemes that can be used in Tor [12].

Taking a closer look at Rugged Pseudorandom Permutations, one of their salient features is the
asymmetry in the security required from the encipher and decipher algorithms. Roughly speaking, the
security definition requires the encipher algorithm to be pseudorandom, but it only imposes a strictly
weaker requirement on the decipher algorithm. In the security game, the adversary is given three oracles:
an Encipher oracle, a Decipher oracle, and a Guess oracle. The Encipher oracle is equivalent to that in
the tweakable (S)PRP games. The Decipher oracle works analogously, but the adversary is significantly
restricted in what it can query to this oracle. Finally, the Guess oracle provides an alternative way of
interacting with the decipher algorithm. Namely, the adversary can attempt to guess part of the output of
the decipher algorithm for an input of its choice, and the oracle returns a single bit indicating success or
failure. In contrast to the Decipher oracle, there are no restrictions on the adversary besides that it does
not query an input for which it already knows the corresponding output of the decipher algorithm, which
is necessary as it would allow for trivial win conditions. This way, the two oracles offer different tradeoffs
in how the adversary can interact with the decipher algorithm. Nevertheless, the combination of these
two oracles still exposes the decipher algorithm significantly less than the tweakable SPRP game—which
is why the RPRP notion is strictly weaker.

As can be noted from the above, the RPRP definition is more involved than the better-known tweak-
able PRP and SPRP definitions, and the intuition behind it is not immediately clear. Degabriele and
Karadžić state that the RPRP definition is tailored to capture the features needed by the encode-then-
encipher paradigm and other transforms while at the same time being within reach of more efficient
constructions. However, they only present a single RPRP construction, called UIV [13], which raises
the question of whether this is a contrived security definition that revolves around this single construc-
tion. That is, is the abstract notion of a Rugged PRP really justified and is it natural enough for it to
be instantiable by other constructions? Their work exposes several applications of RPRPs where they
present several transformations for realising higher-level primitives generically from any RPRP. However,
the value of their modular approach is rather limited if there exists no other instantiation thereof. In
that case, we could just as well focus our attention on this single construction and ignore the security
definition. Another limitation of the UIV construction, and [13] more generally, is its rigid security pa-
rameterisation. The quantitative security of the UIV construction is closely tied to the block size of the
underlying tweakable blockcipher. In the AwN construction, which is used to construct order-resilient
channels like QUIC and DTLS, this block size corresponds to a security budget that has to be divided
between the overall bit-level security and the amount of reordering that the channel can tolerate. Accord-
ingly, the AES-based instantiation of UIV suggested in [13], while offering good performance on hardware
with AES-NI support, may be incapable of delivering the required tradeoff between (multi-user) security
and tolerance to reordering that is required in practice by protocols like QUIC and DTLS.

NIST has recently renewed its interest in blockcipher modes of operation with the potential goal
of standardising constructions of tweakable variable-length ciphers [19]. In this work, we take a deeper
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look into Rugged PRPs by revisiting their security definition and presenting new constructions that
address the above limitations. Our results complement the work of Degabriele and Karadžić by making
a stronger case for the general applicability of Rugged PRPs and their potential role in the upcoming
NIST standardisation effort. More specifically, we make contributions in the following directions:

Security Definitions. The asymmetry between the encipher and decipher algorithms gives rise to a
broader set of possibilities when applying the encode-then-encipher paradigm. Namely, one could natu-
rally use the encipher algorithm to encrypt and decipher to decrypt, or alternatively, use the decipher
algorithm to encrypt and encipher to decrypt. These correspond to the EtE and EtD transforms pre-
sented in [13], which have two variants each—yielding either nonce-based AEAD or nonce-hiding AEAD.
Compared to the classical encode-then-encipher paradigm (relying on an SPRP), the restrictions on the
decipher algorithm render the analysis of these transforms more challenging. A notable feature of these
transforms is that their security proofs do not require all three oracles at once. More specifically, the
EtE security proofs do not make any use of the Decipher oracle, whereas the EtD ones do not make any
use of the Guess oracle. This prompts us to consider two natural relaxations of the RPRP notion, which
were not considered in [13], but which still suffice to enable these transforms. By dropping access to the
Guess oracle, we obtain the RPRPd notion, and similarly, removing access to the Decipher oracle yields
the RPRPg notion. We study the relation between the three notions and present separations showing
that these two relaxations result in strictly weaker notions. We will show that introducing these relaxed
notions allows us to instantiate the EtE and EtD transforms with a wider class of constructions. That
said, there are other applications—such as onion encryption [12]—which still require a full-fledged RPRP,
and thus we do not consider our notions to be a replacement but rather a more refined characterisation.

New Constructions. We present three new variable-length tweakable cipher constructions that meet
on the three Rugged PRP notions. The first construction, and the one that achieves the strongest of
the three notions, namely the RPRP security, is the Hash–Encipher–Counter (HEC) construction. It
is based on the HCTR construction [24], which achieves tweakable SPRP security and can be seen as
a lightweight version of it. It improves over UIV by making do with just a blockcipher rather than a
tweakable blockcipher and requiring only a single blockcipher key rather than two, thereby reducing
the key-scheduling time. This latter aspect is beneficial, for instance, when it (or the corresponding
RPRP-based AEAD scheme) is used in a ratcheted configuration where its key is updated after every
message that is encrypted. The other two constructions are based on the classical Feistel construction.
More specifically, they consist of three rounds of an unbalanced Feistel structure, which we refer to as
Expand-Compress-Expand (ECE) and Compress-Expand-Compress (CEC), where the naming refers to
the order in which the underlying pseudorandom functions appear in the construction. Here, we supersede
the classical result of Luby and Rackoff by showing that each of these three-round Feistel constructions
achieves one of the two restricted RPRP variants (each of which is strictly stronger than tweakable PRP)
but not the other. We note that the Feistel constructions are not of mere theoretical interest as they can
be instantiated quite efficiently, even if they require three rounds. In particular, recent work has shown
efficient instantiations using permutation-based cryptography with very competitive performance [4].

Left-Domain Extension. The security definition of Rugged PRPs requires the tweakable cipher to be
defined over a split domain. In [13], the authors assume a split domain of the form {0, 1}n × {0, 1}≥m
and refer to the two strings that compose an element in this domain as the left and right components.
Indeed, their UIV construction, as well as the constructions we introduce, satisfy this syntax. In their
transforms, the security of the resulting scheme is always dependent on the size of the left part of the
domain n. In the UIV construction as well as our HEC construction the value of n is fixed by the block
size of the underlying (tweakable) blockcipher, which is typically 128 bits. As mentioned earlier, in the
Nonce-Set AEAD construction presented in [13], the value n has to be divided between the overall bit-
level security and the amount of reordering that the channel can tolerate. In a setting like QUIC and
DTLS, where an adversary may have multiple forgery attempts and a high degree of reordering should
be tolerated, the resulting quantitative security for n = 128 may not be satisfactory, especially when
considering multi-user security.

One advantage of the Feistel constructions, especially when instantiated with permutation-based
primitives, is that they allow for a high degree of freedom in tuning the value of n. In the case of UIV
and HEC, adjusting n is not as straightforward, however. Domain extension for blockciphers and tweakable
blockciphers has been studied in several prior works. In HEC, there is a single blockcipher instance used
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throughout various parts of the construction, and replacing all instances would be rather detrimental
to performance. On the other hand, in UIV, the tweakable blockcipher whose blocksize determines n is
keyed with a separate key, allowing us to replace it with other constructions. We identify two suitable
constructions and show how they can be used to extend the left domain of UIV and improve its security
when used to construct Nonce-Set AEAD and order-resilient channels like QUIC and DTLS.

1.1 Related Work

The HCTR construction, which our RPRP scheme HEC is based on, was introduced in 2005 by Wang,
Feng and Wu. A THCTR [14] is a “tweakable HCTR” construction that appeared in 2019. The authors
claimed it achieves beyond-birthday-bound security. However, that was disproven in [2]. The HCTR2
construction [9] is another recent direct “descendant” of HCTR. The HCTR2 mitigates two minor bugs
in HCTR specification by changing the hash function and introducing one more masking value in the
construction. In addition, HCTR2 construction has a smaller key size than HCTR and a tighter bound.
Minematsu and Iwata proposed a beyond-birthday-bound scheme called LargeBlock1 that is similar to
HCTR [18]. A more interesting point about this construction is the extended size of the left input,
which makes it related to the domain extender idea we deal with in Section 6. However, the LargeBlock1
construction in question is neither a tweakable cipher, nor is it VIL.

As mentioned before, the UIV construction from [13] is the only other construction proved so far to
be a RPRP. It has the same number of keys as our HEC construction, though it needs one more key-
scheduling setup step. The constructions are similar in the sense that both have a 2-round pass, but they
differ in the underlying building blocks (e.g., UIV uses a tweakable blockcipher, HEC a blockcipher).

Using Feistel schemes to build PRPs or SPRPs is an idea that dates back to the seminal work of
Luby and Rackoff [16]. Since then, there has been much work on this conceptual idea. We are interested
in more recent work, namely that of [1] and [4]. The unbalanced Feistel schemes we present in this work
closely resemble the schemes based on the three-round unbalanced Feistel that appear in those works.
First of our unbalanced three-round Feistel schemes, the ECE scheme, looks similar to Deck-JAMBO [4].
The other, CEC constructions, is similar to Deck-BOREE [4] and could be seen as an abstraction of
the RIV scheme [1]. However, there is one crucial distinction between our work and theirs. The target
cryptographic primitive and security notion they target is AE(AD). We treat the aforementioned schemes
ECE and CEC in the setting of VIL tweakable ciphers.

2 Preliminaries

Notation. For any string X we denote its length in bits by |X| and ε denotes the empty string. For any
integer 0 < a ≤ |X|, ⌊X⌋a denotes the substring consisting of the first a bits of X, and ⌈X⌉a denotes the
substring consisting of the last a bits of X. For any two integers a and b, ⟨a⟩2 denotes a’s representation
as a binary string, and if 0 < b ≤ a we denote the falling factorial a(a− 1) · · · (a− b+ 1) by (a)b. For a
real number r > 0, ⌈r⌉ denotes the first integer that is greater than or equal to r.

For any set S, s ←$ S denotes the process of uniformly sampling an element from the set S and
assigning it to s. We use IC(K,X ) to denote the set of all ciphers over the domain X and key space K.
Similarly 2-Func(T ,X ) denotes the set of all functions {+,−} × T × X → X . Sampling uniformly at
random from 2-Func(T ,X ) yields what is sometimes referred to as a two-sided random function, that
can alternatively be viewed as a pair of independent random functions T × X → X .

For an event E and process P , we denote with Pr[P : E] the probability of event E occuring after
running process P .

Tweakable Ciphers. A tweakable cipher is an algorithm

ẼE : K × T × X → X

that, for (K,T ) ∈ K × T , identifies a permutation ẼE(K,T, ·) over the domain X . We refer to K and
T as key space and tweak space, respectively. We write the inverse of ẼE as ẼE

−1
(K,T, ·). We define

ẼEK(T, ·) := ẼE(K,T, ·) and ẼE
−1
K (T, ·) := ẼE

−1
(K,T, ·). One of the two classical security definitions

for tweakable ciphers is the strong tweakable pseudorandom permutation (STPRP) security notion. In-
tuitively the notion implies that an adversary cannot distinguish between a STPRP-secure cipher keyed
with a random key and an ideal cipher with key space T . The definition of STPRP advantage is given
below.
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Definition 1 (STPRP Advantage). Let ẼE be a tweakable cipher defined over (K, T ,X ). Then for any
adversary A its STPRP advantage is defined as:

AdvSTPRP
ẼE

(A) =
∣∣∣Pr[K ←$ K : AẼEK(·,·),ẼE−1

K (·,·) ⇒ 1
]
− Pr

[
Π̃ ←$ IC(T ,X ) : AΠ̃(·,·),Π̃−1(·,·) ⇒ 1

]∣∣∣
In the weaker TPRP notion the adversary only has access to the encipher oracle, and the advantage is
then defined analogously.

If the tweak set is a singleton, then a tweakable cipher becomes just a cipher. Furthermore, if X =
{0, 1}n, we call the cipher a blockcipher. The security notion for (block)ciphers adjust accordingly, and
we denote them with PRP and SPRP.

Hash Functions. A hash function is a function

H : H× {0, 1}∗ → Y

taking as an input a hash key h ∈ H and a string X ∈ {0, 1}∗ and outputting an element from output
space Y. In this work, we will mainly use hash functions with output space {0, 1}n.

Security. There are many security notions a hash function can satisfy. We are interested in the almost-
XOR-universal (AXU) hash functions, the definition of which follows.

Definition 2. Let H be a hash function with key space H and output space Y. We call H ϵ1-AXU if for
all bit string pairs (X1, X2), with X1 ̸= X2, and Y ∈ Y it holds

Prh←$H[Hh(X1)⊕ Hh(X2) = Y ] ≤ ϵ1.

PRFs. Let FE : {0, 1}k × {0, 1}≥n × {0, 1}l → {0, 1}∗ be a variable-input-length (VIL) variable-output-
length (VOL) function with key of size k bits. The first input is X ∈ {0, 1}≥n and the second input
L ∈ {0, 1}l is the size of output the function should produce.

We expect the function FE to behave as an independent PRF for every output length L. The PRF
security definition of FE uses a VOL random function R∞. For an input (X,L), function R∞ outputs a
uniformly random string of length L bits. Formally, the security is then defined as follows.

Definition 3. For an adversary A, the PRF advantage of VOL function FE : {0, 1}k × {0, 1}≥n ×
{0, 1}l → {0, 1}∗ is defined as

AdvPRF
FE (A) =

∣∣∣Pr[K ←$ K : AFEK(·,·) ⇒ 1
]
− Pr

[
AR∞(·,·) ⇒ 1

]∣∣∣.
We also make use of VIL functions with fixed output size. Let FC : {0, 1}k × {0, 1}≥m → {0, 1}n VIL
function with output size n. The key is k bits long and m the minimum size of the function input.

Definition 4. For an adversary A, the PRF security of VIL function FC : {0, 1}k ×{0, 1}≥m → {0, 1}n
is defined as

AdvPRF
FC (A) =

∣∣∣Pr[K ←$ K : AFCK(·) ⇒ 1
]
− Pr

[
AR∞(·,n) ⇒ 1

]∣∣∣.
H-Coefficient Technique. In all of the proofs in this paper, we utilize the H-coefficient technique. The
H-coefficient technique [6,20] is a tool used for bounding the advantage of a computationally unbounded
adversary A, which is trying to distinguish whether it is interacting with the real or the ideal world.
The adversary A can make oracle queries to either the real construction (in the real world) or its
ideal equivalent (in the ideal world). The list of A’s queries and corresponding answers is contained
in a transcript τ . A transcript τ is called attainable if the probability that τ is generated during A’s
interaction with the ideal world is greater than 0.

A rough tutorial for the application of the H-coefficient technique goes as follows. We define what
the transcript looks like. Then, one defines what it means for a transcript to be bad. After that, we need
to calculate the probability that some transcript is bad. Finally, one should calculate the interpolation
probabilities of some good attainable transcript appearing in the real world and it appearing in the ideal
world. A transcript is called good if it is not bad. By applying the theorem we give below, one obtains a
bound on the adversary’s distinguishing advantage.

Letting Xr and Xi denote random variables corresponding to the transcript generated during A’s
interaction with the real and ideal world, the H-Coefficient technique is applied using the following
theorem.
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Theorem 1. Let A be a computationally unbounded adversary trying to distinguish between a real world,
represented by the game Greal, and an ideal world, represented by the game Gideal. Let T be the set of
all attainable transcripts and let Tbad be a set of transcripts deemed to be bad. Define Tgood := T \ Tbad.
If there exist ϵbad, ϵratio ≥ 0 such that for all transcripts τ ′ ∈ Tgood

Pr[Xr = τ ′]

Pr[Xi = τ ′]
≥ 1− ϵratio and Pr[Xi ∈ Tbad] ≤ ϵbad,

then it holds ∣∣Pr[AGreal ⇒ 1
]
− Pr

[
AGideal ⇒ 1

]∣∣ ≤ ϵbad + ϵratio.

3 RPRPs, its Derivatives and Relations Among Them

The RPRP security notion for VIL tweakable ciphers over a split domain was introduced by Degabriele
and Karadžić [13]. The RPRP security game they present offers the adversary access to the decipher
algorithm via two oracles. One is a “restricted” decipher oracle De, and the other is an oracle Gu they
call guess oracle. The game in question is given in Figure 1 together with games RPRPd and RPRPg,
which are our contributions. We present two subvariants of the RPRP game, namely these RPRPd and
RPRPg games. In the RPRPd game, the adversary has access to En and De oracles, while in the RPRPg
game, the adversary has access to En and Gu oracles. The restrictions imposed by the RPRP game are
also present in the subvariant games. We aim to investigate the relations between the RPRP security
notion and the security notions corresponding to the subvariants. For completeness, we reiterate the
definition of RPRP advantage in the following and present analogous advantage definitions for RPRPd
and RPRPg notions.

Definition 5 (RPRP /RPRPg Advantage). Let ẼE be a tweakable cipher over a split domain (XL ×
XR). Then for a positive integer v and an adversary A attacking the RPRP /RPRPg security of ẼE the
corresponding advantage is defined as

Adv
RPRP/RPRPg

ẼE
(A, v) =

∣∣∣2Pr[RPRPA,v

ẼE
/RPRPgA,v

ẼE
⇒ 1

]
− 1

∣∣∣.
Definition 6 (RPRPd Advantage). Let ẼE be a tweakable cipher over a split domain (XL×XR). Then
for an adversary A attacking the RPRPd security of ẼE the corresponding advantage is defined as

AdvRPRPd
ẼE

(A) =
∣∣∣2Pr[RPRPdA

ẼE
⇒ 1

]
− 1

∣∣∣.
3.1 Relations between RPRP notions

Now that we have defined the RPRP subvariants, we can continue showing the relations between RPRP,
RPRPd, and RPRPg notions. It is obvious that RPRP security implies both RPRPd and RPRPg notions
since in the games of the latter notions, the adversary has one oracle access less than in the RPRP game.
Therefore, if it cannot distinguish while having access to all three oracles, it cannot distinguish having
access to just two.

The interesting relations are those between RPRPg and RPRPd notions. As we will show next, neither
implies the other notion. We show the RPRPg ⇏ RPRPd separation in a general way. In contrast, for
the other way around, we show the separation with the help of a concrete construction. In Figure 2 we
give an overview of the established relations.

3.1.1 RPRPg ⇏ RPRPd. Let ẼE be a RPRPg-secure tweakable cipher and assume k = n. We
construct a tweakable cipher ẼE

′
that is not RPRPd secure. The cipher ẼE

′
has the same key and tweak

space, domain and range, and is defined as follows.

ẼE
′
K(T,XL, XR) =


(0n, 0n), if (T,XL, XR) = (0n,K, 0n)

ẼEK(0n,K, 0n), if (XL, XR) = ẼE
−1

K (0n, 0n, 0n) ∧ T = 0n

ẼEK(T,XL, XR), otherwise.

Now in the RPRPd game, an adversary can correctly guess the bit b by first querying De(0n, 0n, 0n)
and taking the left output XL as a key guess. It then checks if it is interacting with the real world by
making some enciphering queries and checking if the answers are equal to the outputs it could calculate
itself with the key guess.

The attack can easily be adapted to the cases where k < n or k > n.
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Game RPRPA,v

ẼE
/ RPRPdA

ẼE
/ RPRPgA,v

ẼE

K ←$ K
b←$ {0, 1}
F ,R,U ← ∅, ∅, ∅

Π̃ ←$ IC(T ,XL ×XR)

b′ ← AEn,De,Gu / AEn,De / AEn,Gu

return b = b′

De(T, YL, YR)

if YL ∈ F ∪R
return �

if b = 0

(XL, XR)← Π̃−1(T, YL, YR)

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

En(T,XL, XR)

if b = 0

(YL, YR)← Π̃(T,XL, XR)

else

(YL, YR)← ẼEK(T,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

if b = 0

return false

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 1: The games used to define RPRP, RPRPd and RPRPg security for a tweakable cipher ẼE.

RPRP

RPRPd RPRPg

Fig. 2: Relations between RPRP notions. Solid arrows indicate trivial implications. Dotted, stroke-out
arrows indicate separations.

ẼE
′
is RPRPg secure. We argue informally why this reduction holds. Our “rewired” ẼE

′
differs from ẼE

only for two values. Problematic queries are the ones where the cipher ẼE
′

would be queried on these
differing values. If the adversary does not make problematic queries, the reduction is obvious. If the
adversary makes a problematic query, it could break the security of ẼE

′
. However, the probability of the

adversary making a problematic query is small.
The probability that the adversary queries the encipher oracle with (0n,K, 0n) is equal to the prob-

ability that it guesses a secret random key. The probability that the adversary queries the encipher
oracle with (0n, XL, XR), where (XL, XR) = ẼE

−1
K (0n, 0n, 0n) is also small, since ẼEK is by assumption

indistinguishable from an ideal cipher.
As for the guess oracle, the problematic queries would be Gu(0n, 0n, 0n, {K}), and Gu(0n, YL, YR, {XL}),

where (YL, YR) = ẼEK(0n,K, 0n) and (XL, XR) = ẼE
−1
K (0n, 0n, 0n). Since it is by assumption hard to

guess the left deciphering output in ẼE, the probability of the adversary making successful guess queries
will be small.

Hence, the RPRPg security of ẼE
′
reduces to the RPRPg security of ẼE, except for the small proba-

bility of these problematic queries occurring. ⊓⊔

3.1.2 RPRPd ⇏ RPRPg. In proving the separation in the other direction we do not have the
generality we had in the previous case. Here we give a concrete construction and show it is RPRPd secure,
but not RPRPg secure. The construction in question is an unbalanced three-round Feistel construction.
We present it, together with the separation result, in the following Section 4.
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ẼEK(T,XL, XR)

(K1,K2,K3)← K

I ← XR ⊕ FEK1(XL, |XR|)
YL ← XL ⊕ FCK2(T, I)

YR ← I ⊕ FEK3(YL, |XR|)
return (YL, YR)

ẼE
−1

K (T, YL, YR)

(K1,K2,K3)← K

I ← YR ⊕ FEK3(YL, |YR|)
XL ← YL ⊕ FCK2(T, I)

XR ← I ⊕ FEK1(XL, |YR|)
return (XL, XR)

Fig. 3: Pseudocode description of 3-round Feistel construction ECE.

XL XRT

FEK1

FCK2

FEK3

YL YR

Fig. 4: Graphical representation of 3-round Feistel construction ECE, realized from expanding PRF FE
and compressing PRF FC.

4 3-Round Feistel Construction

For an unbalanced 3-round Feistel construction, it is natural to consider two variants. The first one is
Expand-Compress-Expand (ECE) variant, where in the first and third round, the left part is expanded
and added to the right part, and in the second round, the right part is compressed and added to the left
part.

The expanding and compressing are realised using a VOL PRF FE : {0, 1}k × {0, 1}n × {0, 1}l →
{0, 1}≥m and VIL PRF FC : {0, 1}k × {0, 1}≥m → {0, 1}n, respectively. We sometimes call FE an
expanding PRF, and FC a compressing PRF. The graphical representation of the ECE encipher algorithm
is given in Figure 4 and pseudocode description of its encipher and decipher algorithms in Figure 3.
The second variant of an unbalanced 3-round Feistel we consider is Compress-Expand-Compress (CEC)
construction, where the first and third rounds are compressing, and the second one is expanding. The
graphical representation of the CEC encipher algorithm is given in Figure 6 and pseudocode description
of its encipher and decipher algorithms in Figure 5 . The expanding PRF admits, in this case, three
inputs, where the first two are the values the PRF should be evaluated on, and the third one is the
output length3.

One may wonder why only the second rounds in the constructions admit the tweak T . The reason is
that in both ECE and CEC constructions, tweaking just the second round is enough to make them RPRPd
and RPRPg secure, respectively. Going further, we show, as a negative result, that a three-round Feistel
cipher is not a RPRP. Specifically, in the following, we present an attack against RPRPg security of the
ECE variant. The same attack works in the RPRP game, where one does not use the deciphering oracle.
This attack makes the first step of showing the RPRPd ⇏ RPRPg separation.

ECE is not RPRPg Secure. To break the RPRPg security of ECE, the adversary A executes the
following steps.

1. Query (Y 1
L , Y

1
R)← En(T,XL, XR), with XL ̸= XR.

2. Query (Y 2
L , Y

2
R)← En(T,XL, Y

1
R)

3 One can equivalently write FEK2(T, I, |XR|) as FEK2(T∥I, |XR|)
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ẼEK(T,XL, XR)

(K1,K2,K3)← K

I ← XR ⊕ FCK1(XR)

YR ← XR ⊕ FEK2(T, I, |XR|)
YL ← I ⊕ FCK3(YL)

return (YL, YR)

ẼE
−1

K (T, YL, YR)

(K1,K2,K3)← K

I ← YL ⊕ FCK3(YR)

XR ← YR ⊕ FEK2(T, I, |YR|)
XL ← I ⊕ FCK1(XR)

return (XL, XR)

Fig. 5: Pseudocode description of 3-round Feistel construction CEC.

3. Query o← Gu(T, Y 1
L , XR,

{
Y 1
L ⊕ Y 2

L ⊕XL

}
)

4. output 1 if o = true, otherwise output 0.

In the following calculation we omit second inputs to the expanding PRFs, |XR| or |YR|, for the sake of
readability. The result of its first query is

Y 1
L = XL ⊕ FCK2(T,XR ⊕ FEK1(XL))

and

Y 1
R = XR ⊕ FEK1

(XL)⊕ FEK3
(XL ⊕ FCK2

(T,XR ⊕ FEK1
(XL)))

Similarly, the output of its second query is

Y 2
L = XL ⊕ FCK2(T, Y

1
R ⊕ FEK1(XL))

and

Y 2
R = Y 1

R ⊕ FEK1
(XL)⊕ FEK3

(Y 2
L )

The last query A makes is a guess oracle query, and A outputs that result as its final guess (real
or ideal world). Suppose the adversary has access to the real cipher, and let us look at the guess oracle
query. Left part of the deciphered input inside the Gu oracle would be

X3
L = Y 1

L ⊕ FCK2
(T,XR ⊕ FEK3

(Y 1
L )).

On the other hand, the guessed value is equal to

XL ⊕ FCK2
(T,XR ⊕ FEK1

(XL))︸ ︷︷ ︸
Y 1
L

⊕XL ⊕ FCK2
(T, Y 1

R ⊕ FEK1
(XL))︸ ︷︷ ︸

Y 2
L

⊕XL

= Y 1
L ⊕ FCK2

(T, Y 1
R ⊕ FEK1

(XL)) = Y 1
L ⊕ FCK2

(T,XR ⊕ FEK3
(Y 1

L )),

which is exactly equal to X3
L. Therefore, the adversary A always outputs 1 if the bit b in the RPRP

game is 1. On the other hand, in the ideal world (b = 0), the guess oracle returns true with very small
probability. Overall, A wins the RPRPg game with high probability.

ECE is RPRPd Secure. The other part of the separation comes next. In Theorem 2, we give the result
for RPRPd security of ECE. The proof utilizes the H-coefficient technique, focusing on finding collisions
in the input of inner PRFs. There already exist proofs for 3-round Feistel being a secure PRP. However,
our proof required a different analysis since we are trying to prove a stronger notion (and a tweakable
one at that). There is no reference proof for the 3-round Feistel that considers decipher queries, and that
is what we needed to take care of in our analysis. We give the full, detailed proof in Appendix B.

Theorem 2. Let ECE be the construction defined in Figure 3 over the domain {0, 1}n × {0, 1}≥m. For
an adversary A making qen encipher and qde decipher queries, there exist adversaries B and C such that

AdvRPRPd
ECE (A) ≤ 2AdvPRF

FE (B) +AdvPRF
FC (C) + q2

2n+m
+

q2

2m+1
+

q2en
2n

+
qenqde

2n−1
,

under the assumption that qen + qde ≤ 1
2n+m−1 , and where q = qen + qde. The resulting PRF adversary B

makes at most qen+qgu queries, whereas the resulting PRF adversary C makes at most qen+qgu queries.
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XL XRT

FCK1

FEK2

FCK3

YL YR

Fig. 6: Graphical representation of 3-round Feistel construction CEC, realized from compressing PRF FC
and expanding PRF FE.

As it can be seen from the bound, in order for ECE to have meaningful security, the minimal size of the
right input m needs to be large enough (i.e., m ≥ n).

We can now continue with analyzing the security of the CEC construction. The results for the CEC

construction are the opposite of those for ECE. As we will show, CEC is not RPRPd secure but satisfies
RPRPg security.

CEC is not RPRPd Secure. To break the RPRPd security of CEC, the adversary A executes the
following steps.

1. Query (Y 1
L , Y

1
R)← En(T,XL, XR), with XL ̸= XR.

2. Query (Y 2
L , Y

2
R)← En(T, Y 1

L , XR)

3. Query (X3
L, X

3
R)← De(T,XL, Y

1
R)

4. output 1 if X3
R = XR ⊕ Y 1

R ⊕ Y 2
R, otherwise output 0.

In the following calculation we omit third inputs to the expanding PRF, |XR| or |YR|, denoting the
needed output length, for the sake of readability. The result of its first query is

Y 1
L = XL ⊕ FCK1

(XR)⊕ FCK3
(XR ⊕ FEK2

(T,XL ⊕ FCK1
(XR)))

and

Y 1
R = XR ⊕ FEK2(T,XL ⊕ FCK1(XR))

Similarly, the output of its second query is

Y 2
L = Y 1

L ⊕ FCK1(XR)⊕ FCK3(Y
2
R)

and

Y 2
R = XR ⊕ FEK2

(T, Y 1
L ⊕ FCK1

(XR))

The last query A makes leads to the right value X3
R of

X3
R = Y 1

R ⊕ FEK2(T,XL ⊕ FCK3(Y
1
R)).

The question now if X3
R is equal to XR ⊕ Y 1

R ⊕ Y 2
R.

Y 1
R ⊕ FEK2(T,XL ⊕ FCK3(Y

1
R))

?
= XR ⊕ Y 1

R ⊕ Y 2
R

⇐⇒ FEK2
(T,XL ⊕ FCK3

(Y 1
R))

?
= XR ⊕ Y 2

R

⇐⇒ FEK2
(T,XL ⊕ FCK3

(Y 1
R))

?
= FEK2

(T, Y 1
L ⊕ FCK1

(XR))

⇐⇒ XL ⊕ FCK3
(Y 1

R)
?
= Y 1

L ⊕ FCK1
(XR).

The equality above holds in the real world, that is, if b = 1. Our adversary also outputs 1 in this case, and
thus correctly guesses. On the other hand, in the ideal world (b = 0), the probability that the equality
above holds is very small. In total, A wins the RPRPd game with high probability.
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ẼEK,h(T,XL, XR)

LL← XL ⊕ Hh(T,XR)

Y ′
L ← EK(LL)

IV ← LL⊕ Y ′
L ; k ← ⌈|XR|/n⌉

S ← ⌊EK(IV ⊕ 1)∥ · · · ∥EK(IV ⊕ k)⌋|XR|

YR ← XR ⊕ S

YL ← Y ′
L ⊕KC

return (YL, YR)

ẼE
−1

K,h(T, YL, YR)

Y ′
L ← YL ⊕KC

LL← E−1
K (Y ′

L)

IV ← LL⊕ Y ′
L ; k ← ⌈|YR|/n⌉

S ← ⌊EK(IV ⊕ 1)∥ · · · ∥EK(IV ⊕ k)⌋|YR|

XR ← YR ⊕ S

XL ← LL⊕ Hh(T,XR)

return (XL, XR)

Fig. 7: Pseudocode description of HEC[H,E].

CEC is RPRPg Secure. We present the result for RPRPg security of CEC in Theorem 3. The proof
utilizes the H-coefficient technique, and it was challenging to incorporate the analysis of guess oracle
queries. The peculiarities of the guess oracle, namely the fact that the only thing leaked to the adversary
is whether XL ∈ V , contrast the conventional approach in the H-coefficient technique where the whole
output of the enciphering or deciphering needs to be included in a query transcript. In the case of a guess
query, that would mean the internally deciphered (XL, XR) needs to be a part of the query transcript.
We “circumvent” this challenge by defining a more complex sampling procedure that builds the transcript
in the ideal world of the H-coefficient technique. The full, detailed proof is given in Appendix C.

Theorem 3. Let CEC be the construction defined in Figure 6 over the domain {0, 1}n × {0, 1}≥m. For
an adversary A making qen encipher and qgu guess queries, there exist adversaries B and C such that

AdvRPRPg
CEC (A, v) ≤ 2AdvPRF

FC (B) +AdvPRF
FE (C) + q2en

2n+m+1
+

+
q2en + q2gu
2n+1

+
qenqgu + qguv

2n
+

q2en + q2gu
2m+1

+
3qenqgu
2m

.

The resulting PRF adversary B makes at most qen + qgu queries, whereas the resulting PRF adversary
C makes at most qen + qgu queries.

As the security bound shows, in order for CEC to have meaningful security, the minimal size of the right
input m needs to be large enough (i.e., m ≥ n).

4.1 Instantiating ECE and CEC

Instantiating the constructions ECE and CEC reduces to how one instantiates the expanding and com-
pressing round functions. For the compressing PRF FC, one could use the Hash-then-PRF paradigm and
instantiate the function with an efficient almost-universal hash function together with a fixed-input-size
PRF that could be AES or the ChaCha20 block function. The FE could be instantiated using AES in
Counter mode or the stream cipher ChaCha20.

Another option would be to instantiate FC with Xoofff [10], a so-called deck function. A deck function
is a variable-input and variable-output length PRF, so it is also an excellent candidate for instantiating
the expanding FE. Using Xoofff for both FE and FC enables us to instantiate our 3-round Feistel schemes
with a single permutation-based primitive, which would also offer very competitive performance [4,10].

5 HEC

We now present one of our main contributions, a construction called HEC (Hash–Encipher–Counter),
which we base on a tweakable VIL cipher HCTR [24], originally proven to be STPRP secure. Our goal is
to construct a cipher satisfying the weaker notion of RPRP security and a natural step in achieving that
is to try and reduce the complexity of HCTR. The original HCTR construction consists of three layers,
the first and the third one being an AXU hash function “compressing” layers that process the right part
of the plaintext. The middle “expanding” layer is a simple counter mode. We modify HCTR in two ways
to arrive at our construction HEC.
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XL

Hh

T XR

EK

KC

YL YR

CTRK

Fig. 8: Graphical representation of the HEC enciphering algorithm.

The first step is removing the lower hash layer. The second step is introducing a n-bit key KC that is
used for masking the left output value YL. The pseudocode of the HEC construction encipher and decipher
algorithm is presented in Figure 7. A graphical representation of it is given in Figure 8.

Just removing the lower layer in HCTR is not enough to achieve RPRP security, the masking key
needs to be present. We show in Appendix D an attack against RPRPd security of the variant that does
not have the masking key KC , therefore showing such construction would not satisfy RPRP security as
well. The attack exploits the fact that one can make such a query to the construction’s De oracle so
that the decipher algorithm of the underlying blockcipher is queried with a value that has already been
output by its encipher algorithm.

Note that the alteration we made to the HCTR construction to arrive at the HEC construction makes
HEC insecure against an STPRP adversary. Querying (T, YL, YR) and (T, YL, Y

′
R) to the decipher oracle,

for YR ̸= Y ′R, leads to the respective outputs (XL, XR) and (X ′L, X
′
R). It will hold XR ⊕ YR = X ′R ⊕ Y ′R,

which would be true in the ideal world with a very small probability.

HEC Security. Continuing, we prove HEC is a secure RPRP. We use the H-coefficient technique in our
proof, and the proof takes care of inputs of all valid lengths, i.e., inputs with a length that is not a
multiple of blocksize n. Other relevant works on tweakable cipher constructions prove the security for
inputs that end on a full block. Compared to the proof of other known RPRP scheme, namely that of
the UIV scheme, the proof we give is much more involved since HEC construction is concrete, as opposed
to the more abstract UIV. The HEC security theorem and the corresponding proof follow.

Theorem 4. Let HEC be the construction defined in Figure 7 over the domain {0, 1}n × {0, 1}≥m, with
H being an ϵ1-AXU hash function. For any positive integer v and an adversary A making qen encipher
queries, qde decipher queries and qgu guess queries, such that every query input is at most ln bits long,
there exists an adversary B such that

AdvRPRP
HEC (A, v) ≤ AdvSPRP

E (B) + q2

2n+m
+ q1qϵ1 +

q1ql
2

2n−2
+

q1ql

2n−1

+
q21
2n

+ 2qguvmax{ 1

2n−1
, ϵ1},

where q = qen + qde + qgu, q1 = qen + qde and under the assumption q ≤ 2n+m−1. The resulting SPRP
adversary B makes at most ql oracle queries in total to its own encipher and decipher oracle.

Proof. Without loss of generality, we assume that the adversary does not make redundant queries. That
is, the adversary does not repeat queries to either of the oracles or make queries that the game will
restrict.
Our starting game is the real world (b = 1) of the RPRP game. Using the standard argument, we
first replace the blockcipher E in the construction with a random permutation Π. This adds a SPRP
advantage term of E to the bound. We have

AdvRPRP
HEC (A, v) ≤ AdvSPRP

E (B) +AdvRPRP
HEC∗ (A, v), (1)
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En(T,XL, XR)

if Π̃(T,XL, XR) ̸= ⊥ then

(YL, YR)← Π̃(T,XL, XR)

else

S ← rng(Π̃(T, ·, ·))

(YL, YR)←$ {0, 1}n+|XR| \ S

Π̃(T,XL, XR)← (YL, YR)

Π̃−1(T, YL, YR)← (XL,XR)

return (YL, YR)

De(T, YL, YR)

if Π̃−1(T, YL, YR) ̸= ⊥ then

(XL, XR)← Π̃−1(T, YL, YR)

else

S ← dom(Π̃(T, ·, ·))

(XL, XR)←$ {0, 1}n+|YR| \ S

Π̃(T,XL, XR)← (YL, YR)

Π̃−1(T, YL, YR)← (XL,XR)

return (XL, XR)

Gu(T, YL, YR,V )

return false

Fig. 9: The ideal world for H-coefficient technique application in Theorem 4 (HEC is RPRP).

where HEC∗ is the HEC construction having a random permutation Π instead of a blockcipher. We now
aim to apply the H-coefficient technique and Theorem 1 in order to bound A’s distinguishing advantage
between HEC∗ and the ideal world (b = 0) of HEC’s RPRP game.
The first step in doing that is defining the real and ideal worlds in the H-coefficient technique. In the real
world, the adversary interacts with HEC∗ via oracles En,De and Gu. In the ideal world, the adversary
has access to En,De and Gu oracles given in Figure 9. In words, for each tweak T and input length
n + |XR| (or n + |YR|), a separate random permutation is lazily sampled with the help of the table Π̃.
Note that the ideal world corresponds to the ideal world of the RPRP game.
The transcript τ is structured as follows

τ = (τ ′, h,KC) ,

where τ ′ contains the queries adversary made during the interaction with the real or ideal world. The
h and KC in the real world correspond to the real hash and masking key appearing in HEC∗. On the
other hand, in the ideal world, the two keys are sampled at the end, the exact sampling procedure being
explained later.
As for τ ′, two types of queries are stored there:

1. Queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, R

i), corresponding to the queries to En and De oracles. If the input
(or output) length is a multiple of blockcipher size, then Ri = ε. Otherwise, for Xi

R that has k full
blocks and r more bits, where r < n, Ri in the real world contains the last n − r bits of the last
blockcipher (permutation) output in counter mode. That is,

Ri := ⌈Π(IV ⊕ ⟨k + 1⟩2)⌉n−r

In the ideal world Ri is sampled by the simulator S at the end. We define S shortly.
2. Queries (T i, Y i

L, Y
i
R,V

i, oi, Xi
L, X

i
R, R

i), corresponding to the queries to Gu oracle. The variable oi

corresponds to the answer of the guess oracle, and for a query from an attainable transcript, its value
will always be false. In the real world, (Xi

L, X
i
R) corresponds to (XL, XR) that would internally be

deciphered on input (T i, Y i
L, Y

i
R). The value Ri is defined analogously as in the case of encipher and

decipher query. As for the ideal world, the simulator defined below samples these values.

The simulator S runs in the ideal world after the adversary has finished its interaction with the oracles,
and executes the following steps (in the given order).

i. It uniformly samples the hash key h and the masking key KC .
ii. It iterates through all En and De queries and for each query (T i, Xi

L, X
i
R, Y

i
L, Y

i
R), it sets Ri := ϵ if

Xi
R has k full blocks. Otherwise, Xi

R does not end on a full block, but it has k full blocks and r more
bits, where r < n. The simulator S in that case sets Ri ←$ {0, 1}n−r.

iii. It iterates through all Gu queries and for each query (T i, Y i
L, Y

i
R,V

i) it first determines if the triple
(T i, Y i

L, Y
i
R) is fresh.
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• (T i, Y i
L, Y

i
R) appears for the first time in a guess query : The simulator checks if Y i

L is new . We call
Y i
L new if there is no En or De query (occurring either before or after this i-th guess query) or an

earlier Gu query in τ ′ that contains Y i
L.

If Y i
L is new, then (Xi

L, X
i
R) is sampled according to the permutation Π̃−1(T i, ·, ·). The variable

Ri := ϵ if r = 0, otherwise Ri ←$ {0, 1}n−r.
If Y i

L is not new, let j-th query be the first En, De query (T j , Xj
L, X

j
R, Y

j
L , Y

j
R, R

j) or the first Gu
query4 (T j , Y j

L , Y
j
R,V

j , false, Xj
L, X

j
R, R

j) such that Y i
L = Y j

L . Then set Xi
R := Xj

R ⊕ Y j
R ⊕ Y i

R,
Xi

L := Xj
L ⊕ Hh(T

j , Xj
R)⊕ Hh(T

i, Xi
R) and Ri := Rj . Note that the term Xj

R ⊕ Y j
R would be the

key stream produced by the counter mode if we were in the real world.
• (T i, Y i

L, Y
i
R) does not appear for the first time in a guess query : The simulator takes the values

(Xj
L, X

j
R, R

j) from some previous j-th guess query with the same (T i, Y i
L, Y

i
R) and sets

(Xi
L, X

i
R, R

i) := (Xj
L, X

j
R, R

j).

In the rest of the proof, we assume that li denotes the length of the input of the i-th query. We will
sometimes write the right value Xi

R of length kn+ r as

xi
1∥xi

2∥ · · · ∥xi
k∥xi

k+1,

where 0 ≤ r < n. For 1 ≤ j ≤ k, xi
j ∈ {0, 1}n. If r ̸= 0, then xi

k+1 ∈ {0, 1}r, otherwise xi
k+1 = ε. We do

the same for right value Y i
R and write it as

yi1∥yi2∥ · · · ∥yik∥yik+1.

Defining and bounding the bad transcripts. We now define what it means for an attainable tran-
script to be bad. The intuition for the following bad transcript conditions is as follows. The [B1.*]
conditions ensure that for two En/De queries, there will be no collisions in the input or the output of
the underlying blockcipher, that is, permutation. The [B2.*] conditions are similar to [B1.*] conditions.
They ensure that for one En/De and one Gu query that has new YL, there will be no collisions in the
input or the output of the underlying blockcipher, that is, permutation. The condition [B3] excludes
guess oracle queries that would be deemed successful in the real world.

Definition 7. A transcript τ = (τ ′, h,KC) is called bad, if in τ ′ there exist:

[B1] Two En / De queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, R

i) and (T j , Xj
L, X

j
R, Y

j
L , Y

j
R, R

j), with
∣∣Xi

R

∣∣ = kin+ri,∣∣∣Xj
R

∣∣∣ = kjn+ rj and 0 ≤ ri, rj < n, such that one of the following conditions hold:

[B1.1] Xi
L ⊕ Hh(T

i, Xi
R) = Xj

L ⊕ Hh(T
j , Xj

R), with i ̸= j.

[B1.2] IV i ⊕ ⟨ctri⟩2 = IV j ⊕ ⟨ctrj⟩2 with ctri ∈ {1, . . . , ki + 1}, ctrj ∈ {1, . . . , kj + 1} and i ̸= j.

[B1.3] Xi
L ⊕ Hh(T

i, Xi
R) = IV j ⊕ ⟨ctrj⟩2 with ctrj ∈ {1, . . . , kj + 1}.

[B1.4] Y i
L ⊕KC = Y j

L ⊕KC , with i ̸= j.

[B1.5] Y i
L ⊕KC = xj

ctrj ⊕ yjctrj with ctrj ∈ {1, . . . , kj},
or, if rj > 0, Y i

L ⊕KC = (xj
kj+1 ⊕ yjkj+1)∥Rj

[B1.6] xi
ctri ⊕ yictri = xj

ctrj ⊕ yjctrj with ctri ∈ {1, . . . , ki} and ctrj ∈ {1, . . . kj},
or, if rj > 0, xi

ctri ⊕ yictri = (xj
kj+1 ⊕ yjkj+1)∥Rj with ctri ∈ {1, . . . , ki},

or, if i ̸= j, ri > 0 and rj > 0, (xi
ki+1 ⊕ yiki+1)∥Ri = (xj

kj+1 ⊕ yjkj+1)∥Rj.

[B2] One En / De query and one Gu query with new YL, such that one of the following conditions
hold:

[B2.1] Xi
L ⊕ Hh(T

i, Xi
R) = Xj

L ⊕ Hh(T
j , Xj

R), with i being En/De query and j being Gu query or
vice versa.

[B2.2] IV i ⊕ ⟨ctri⟩2 = IV j ⊕ ⟨ctrj⟩2 with ctri ∈ {1, . . . , ki + 1} and ctrj ∈ {1, . . . , kj + 1}, and with
i being En/De query and j being Gu query or vice versa.

4 In case of a Gu query, it will hold j < i.
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[B2.3] Xi
L ⊕ Hh(T

i, Xi
R) = IV j ⊕ ⟨ctrj⟩2 with ctrj ∈ {1, . . . , kj + 1}, and with i being En/De query

and j being Gu query or vice versa.

[B2.4] i being En/De query and j being Gu query, or vice versa, and:
Y i
L ⊕KC = xj

ctrj ⊕ yjctrj with ctrj ∈ {1, . . . , kj},
or, if rj > 0, Y i

L ⊕KC = (xj
kj+1 ⊕ yjkj+1)∥Rj.

[B2.5] i being En/De query and j being Gu query, or vice versa, and:
xi

ctri ⊕ yictri = xj
ctrj ⊕ yjctrj with ctri ∈ {1, . . . , ki} and ctrj ∈ {1, . . . kj},

or, if rj > 0, xi
ctri ⊕ yictri = (xj

kj+1 ⊕ yjkj+1)∥Rj with ctri ∈ {1, . . . , ki},
or, if i ̸= j, ri > 0 and rj > 0, (xi

ki+1 ⊕ yiki+1)∥Ri = (xj
kj+1 ⊕ yjkj+1)∥Rj.

[B3] One Gu query (T i, Y i
L, Y

i
R,V

i, oi, Xi
L, X

i
R, R

i) such that Xi
L ∈ V i.

Now, let τ be some attainable transcript in the ideal world. We bound the probabilities of above defined
conditions holding true in the ideal world.

[B1.1] We rewrite the condition as

Hh(T
i, Xi

R)⊕ Hh(T
j , Xj

R) = Xi
L ⊕Xj

L.

The equation above holds, by the AXU property of H, with probability at most ϵ1. Summing over all
i and j, with i ̸= j, we get the term (

q1
2

)
ϵ1 ≤

q21ϵ1
2

. (2)

[B1.2] Without loss of generality, assume i < j. By expanding IV i and IV j , the condition becomes

Xi
L ⊕ Hh(T

i, Xi
R)⊕ Y i

L ⊕ ⟨ctri⟩2 = Xj
L ⊕ Hh(T

j , Xj
R)⊕ Y j

L ⊕ ⟨ctrj⟩2

We fix some ctri and ctrj . If j-th query was an encipher query, we bound the equation above over
the distribution of Y j

L . Otherwise j-th query was a decipher query and then we bound the equation
over the distribution of Xj

L. Assuming q1 ≤ 2n+m−1 ≤ 2lj−1, the upper bound for the equation above
holding true is

2lj−n

2lj − (j − 1)
≤ 2lj−n

2lj − q1
≤ 2lj−n

2lj−1
=

1

2n−1
.

Summing up over all i and j, with i ̸= j, we arrive at the term(
q1
2

)
l2

2n−1
≤ q21l

2

2n
. (3)

[B1.3] There are two possibilities here. The first one is, i ̸= j. The equation, when IV j is expanded,
becomes

Xi
L ⊕ Hh(T

i, Xi
R) = Xj

L ⊕ Hh(T
j , Xj

R)⊕ Y j
L ⊕KC ⊕ ⟨ctrj⟩2.

For a fixed ctrj , the probability of the equation being true is 1
2n , taken over the randomness of KC .

Summing up over all i, j and ctrj , with i ̸= j, the total probability for condition [B1.3] in this case is
at most q1(q1−1)l

2n .
The other option is that i = j. The condition equation is then reduced to Y i

L ⊕ ⟨ctri⟩2 = KC . The
probability of the equation being true is 1

2n in this case as well, taken over the randomness of KC .
There are q possibilities for i, therefore summing over i and ctrj , the bound becomes q1l

2n .
Adding up the bounds of both cases, the total term for bounding the probability of this condition
holding true is

q21l

2n
. (4)

[B1.4] Without loss of generality, assume i < j. The condition of [B1.4] is equivalent to Y i
L = Y j

L . We
differentiate 4 subcases here.

• Both queries are encipher queries. The probability of the condition being true is 1
2n−1 , taken over

the draw of Y j
L and assuming q1 ≤ 2n+m−1.
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• Both queries are decipher queries. The probability of the condition being true is 0, since the
adversary would not make j-th query with Y j

L repeating.

• i-th query is encipher query, j-th query is decipher query. The probability of the condition being
true is 0, since the adversary would not make j-th query with Y j

L repeating.

• i-th query is decipher query, j-th query is encipher query. The probability of the condition being
true is 1

2n−1 , taken over the draw of Y j
L and assuming q1 ≤ 2n+m−1.

Summing up over all i and j, the total bound for condition [B1.4] becomes(
q1
2

)
1

2n−1
≤ q21

2n
. (5)

[B1.5] We differentiate here two subcases.

• lj = kjn. For a fixed ctrj , the probability of the equation being true is 1
2n , taken over the randomness

of KC .

• lj = kjn+ rj, for rj > 0. The probability of bad condition occurring can be rewritten as

Pr
[
⌊Y i

L ⊕KC⌋rj = (xj
kj+1 ⊕ yjkj+1) ∧ ⌈Y

i
L ⊕KC⌉n−rj = Rj

]
.

The probability of the first equation holding true can be bounded by 1
2rj

, taken over randomness
of KC , and the probability of second equation being true is 1

2n−rj
, since Rj is sampled uniformly

at random. In total, the probability is bounded by

1

2n
.

Summing up over all i, j and ctrj , the total bound for condition [B1.5] holding true is

q21l

2n
. (6)

[B1.6] We differentiate three subcases here.

• ri = rj = 0. Assume first that i = j. In that case the, probability of a condition being true for
some fixed ctri1 ̸= ctri2 is at most 1

2n−1 , taken over the sampling of yi’s in case the query was an
encipher query, or xi’s in case the query was a decipher query.
In case of i ̸= j, the probability is calculated analogously and one gets the same bound 1

2n−1 .

• rj > 0. We fix some ctri. The probability of bad condition occurring can be rewritten as

Pr
[
⌊xi

ctri ⊕ yictri⌋rj = (xj
kj+1 ⊕ yjkj+1) ∧ ⌈x

i
ctri ⊕ yictri⌉n−rj = Rj

]
.

The equation above is bounded by 1
2rj−1

1
2n−rj

= 1
2n−1 , taken over the distribution of Rj and

xi
ctri/y

i
ctri or xj

kj+1/y
j
kj+1.

• Both ri > 0 and rj > 0. Without loss of generality assume ri ≤ rj . The probability of bad condition
occurring can be rewritten as

Pr
[
⌊xi

ki+1 ⊕ yiki+1⌋ri = ⌊x
j
kj+1 ⊕ yjkj+1⌋ri ∧Ri = ⌈xj

kj+1 ⊕ yjkj+1⌉n−ri

]
.

This is bounded by 1
2ri−1

1
2n−ri

= 1
2n−1 , where the calculation is analogous to the calculation from

the previous subcase.

Summing up over all i, j, ctri and ctrj , the final bound for condition [B1.6] occurring is

q21l
2

2n−1
. (7)

[B2.1] This condition holds true with probability at most

q1qguϵ1, (8)

where the probability is calculated similarly as in condition [B1.1].
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[B2.2] This condition holds true with probability at most

q1qgul
2

2n−1
, (9)

where the probability is calculated similarly as in condition [B1.2] and assuming q ≤ 2n+m−1.

[B2.3] This condition holds true with probability at most

q1qgul

2n
, (10)

where the probability is calculated similarly as in condition [B1.3].

[B2.4] This condition holds true with probability at most

q1qgul

2n
, (11)

where the probability is calculated similarly as in condition [B1.5].

[B2.5] This condition holds true with probability at most

q1qgul
2

2n−1
, (12)

where the probability is calculated similarly as in condition [B1.6] and assuming q ≤ 2n+m−1.

[B3] Let us fix some X∗L ∈ V i. We immediately differentiate two cases. The first one is when Y i
L is new.

In that case, (Xi
L, X

i
R) is sampled according to Π̃ and it holds

Pr
[
Xi

L = X∗L
]
≤ 2li−n

2li − (q1 + qgu)
≤ 1

2n−1
,

assuming q ≤ 2n+m−1 ≤ 2li−1. The second case is when Y i
L is not new. Then it holds Xi

L = Xj
L ⊕

Hh(T
j , Xj

R) ⊕ Hh(T
i, Xi

R), where the j-th query is the one in which Y i
L appears in for the first time.

If (T i, Xi
R) ̸= (T j , Xj

R), we can reduce the probability of the equation X∗L = Xi
L holding true to ϵ1.

Otherwise (T i, Xi
R) = (T j , Xj

R) and the equation reduces to X∗L = Xj
L, which can again be bounded

by 1
2n−1 . The bound, for the case when Y i

L is not new, is then max{ 1
2n−1 , ϵ1}. Summing up over all X∗L

in V i and then over all guess oracle queries, we have that the probability of the condition [B3] being
true is at most

2qguvmax{ 1

2n−1
, ϵ1}. (13)

Adding up the bounds in (2) – (13) we have that the probability of an attainable transcript τ in the
ideal world being bad is bounded by

ϵbad ≤ q1qϵ1 +
q1ql

2

2n−2
+

q1ql

2n−1
+

q21
2n

+ 2qguvmax{ 1

2n−1
, ϵ1}.

Bounding the ratio of good transcripts. Fix some good and an attainable transcript (τ ′, h,KC). We
split the encipher, decipher and guess queries that have new YL in τ ′ into two disjoint sets τ ′1 and τ ′2. The
set τ ′1 contains queries whose length is a multiple of n and τ ′2 contains all other En,De and Gu queries
(with new YL). We note here that we defined the term of “new YL” in the ideal world, but the “new YL”
has the same meaning in the real world. Furthermore, each of τ ′1 and τ ′2 is further “decomposed” into
smaller disjoint subsets that only contain queries of the same length. That is, for l1,1, l1,2, ..., l1,c1 , where
every l1,i is a multiple of n, we have disjoint sets τ1,1, . . . , τ1,c1 , with τ1,i containing queries of length l1,i.
Therefore, it holds

τ ′1 = τ1,1 ∪ · · · ∪ τ1,c1 .

Similarly, for l2,1, . . . , l2,c2 , where every l2,i is not a multiple of n, we have disjoint sets τ2,1, . . . , τ2,c2 ,
with τ2,i containing queries of length l2,i. It holds

τ ′2 = τ2,1 ∪ · · · ∪ τ2,c2 .
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In addition, for queries in τ ′1 we let k′1,i denote the number of blocks in the whole input5, i.e. l1,i = k′1,in.
With k′2,i we denote the number of full blocks for a query in τ ′2 with length l2,i, i.e. l2,i = k′2,in + r2,i.
We denote the cardinality of set τb,i with tb,i. We also introduce an equivalence relation ∼T , where two
queries from set τb,i are related if and only if they have the same tweak T . This equivalence relation
partitions the set τb,i into equivalence classes by the tweak T , and there will be w[b, i] classes with j-th
equivalence class having tb,i,j number of queries in it. It then holds tb,i = tb,i,1 + · · ·+ tb,i,w[b,i], for w[b, i]
being the number of queried tweaks for queries in τb,i. Finally, with uyl we denote the number of guess
oracle queries that contain new YL and we let H denote the key space of the HEC’s AXU hash function
H.

Ideal world. The interpolation probability for the hash key h and the masking key KC is 1
|H|

1
2n . The

interpolation probabilities of queries in τ ′1 and τ ′2 are

c1∏
i=1

1

(2l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i]

and
c2∏
i=1

1

(2l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]

1

2(n−r2,i)t2,i
,

respectively. As for the interpolation probability of guess oracle queries that do not contain a new YL,
we fix some such query (T i, Y i

L, Y
i
R,V

i, false, Xi
L, X

i
R, R

i). Since YL is not new, there exists some En,
De or Gu query with the same YL. The variables Xi

L, Xi
R and Ri then have the following value

Xi
R = Xj

R ⊕ Y j
R ⊕ Y i

R, Xi
L = Xj

L ⊕ Hh(T
j , Xj

R)⊕ Hh(T
i, Xi

R), Ri = Rj .

The values in the right-hand side of the three equations above are already fixed, so the interpolation
probability for the triple (Xi

R, X
i
L, R

i) is equal to 1.
In total, the interpolation probability for a transcript τ in the ideal world Pr[Xi = τ ] is

1

|H|
1

2n
×

c1∏
i=1

1

(2l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i]

×
c2∏
i=1

1

(2l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]

1

2(n−r2,i)t2,i
× 1qgu−uyl.

Real world. The interpolation probability for the hash key h and the masking key KC is 1
|H|

1
2n in the

real world as well. For queries in τ ′1 and τ ′2 we know there are no input and output collisions to the
underlying blockcipher (permutation). Then, for example for some j-th query in τ ′1 that has k′1,i blocks,
the interpolation probability that its input maps to its output is

1

(2n − σ)(2n − σ − 1) · · · (2n − σ − (k′1,i − 1))
,

where σ represents the number of blocks processed in all the queries preceding the i-th query. By the
above, the interpolation probability in total for queries in τ ′1 and τ ′2 is

1

(2n)t1,1k′
1,1+···+t1,c1k

′
1,c1

+t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
.

As for the guess oracle queries that do not have a new YL, considering we have already “fixed” the values
related to this YL (e.g., the IV = Π−1(YL ⊕KC)⊕ YL ⊕KC and with that the keystream produced by
the counter mode), the interpolation probability for Xi

R appearing in that guess query transcript will be
1. Similarly for Xi

L = Π−1(YL⊕KC)⊕Hh(X
i
R), everything on the right-hand side has already been fixed

and therefore the Xi
L appears in that transcript with probability 1. In total, the interpolation probability

for a transcript τ in the real world Pr[Xr = τ ] is

1

|H|
1

2n
× 1

(2n)t1,1k′
1,1+···+t1,c1k

′
1,c1

+t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
× 1qgu−uyl.

5 Following the previous notation, it holds k′
1,i = k1,i + 1, where k1,i is the number of full blocks in the right

part of the input.
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Interpolation ratio. Finally, the interpolation ratio Pr[Xr=τ ]
Pr[Xi=τ ] for a good transcript τ is∏c1

i=1(2
l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i]

×
∏c2

i=1(2
l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]

2(n−r2,i)t2,i

(2n)t1,1k′
1,1+···+t1,c1k

′
1,c1

+t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
.

Going further, by applying the Lemma 2 that can be found in Appendix D both in the enumerator and
the denominator, it follows that the term above is greater or equal than∏c1

i=1(2
l1,i)t1,i

(2n)t1,1k′
1,1+···+t1,c1k

′
1,c1

×
∏c2

i=1(2
l2,i)t2,i2

(n−r2,i)t2,i

(2n)t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
.

Applying Lemma 3 to the left term and then Lemma 2 again to the right term tells us the expression
above is greater or equal than

c2∏
i=1

(2k2,in+r2,i)t2,i2
(n−r2,i)t2,i

(2n)t2,i(k2,i+1)
.

Finally, with some more calculation and applying the Weierstrass inequality we get

Pr[Xr = τ ]

Pr[Xi = τ ]
≥

c2∏
i=1

(2k2,in+r2,i − q)t2,i2(n−r2,i)t2,i

2nt2,i(k2,i+1)
=

c2∏
i=1

(
(2k2,in+r2,i − q)2n−r2,i

2n(k2,i+1)

)t2,i

=

c2∏
i=1

(
1− q

2k2,in+r2,i

)t2,i
≥ 1− q

c2∑
i=1

t2,i
2k2,in+r2,i

≥ 1− q

c2∑
i=1

t2,i
2n+m

≥ 1− q2

2n+m
,

therefore ϵratio = q2

2n+m .

Summing up (1), ϵbad and ϵratio one achieves the bound from the theorem statement. ⊓⊔

6 RPRP Domain Extension

In the case of UIV and HEC, the size of the left domain XL is inherently equal to the size of the underlying
(tweakable) blockcipher. Typical (tweakable) blockciphers have a block size of at most 128 bits, as is the
case for AES, for instance. This can be a limiting factor in some RPRP applications, namely, in using
RPRPs as a building block to arrive at the order-resilient secure channel. Namely, if one considers the
order-resilient secure channel construction from [13, Section 6], instantiated with the nonce-set AEAD
scheme AwN, the overall security of the channel reduces to the security of the underlying RPRP scheme.
The RPRP advantage term of the UIV scheme is bounded by

AdvSTPRP
Ẽ∗ (B) +AdvPRF

F (C) + qguv

2n−1
+

q(q − 1)

2n+1
+

qen(qen − 1)

2n+1
+

q1(q1 − 1)

2n+m+1
,

where Ẽ∗ and F are the underlying tweakable blockcipher and PRF, respectively.
The term qguv

2n−1 in that bound corresponds to the integrity term of the order-resilient secure channel,
where the qgu would be the number of forgery attempts the channel adversary makes. The product qguv
can grow quickly in specific use cases. Firstly, certain application will “embed” information in the nonce,
consequently making the v large (i.e. up to 264). Secondly, some applications with long-lived channels
that cannot be rekeyed easily could need to withstand unlimited adversarial forgery attempts. Because
of the two reasons above, the integrity term qguv

2n−1 can quickly become large, leading to a need to extend
the left domain of the underlying RPRP. If one doubles the size of XL from {0, 1}n to {0, 1}2n, the term
above becomes qguv

22n−1 .
In addition, we also get an interesting “side effect” of the domain extension. Namely, the other three

independent terms in the bound improve as well, e.g. the term qen(qen−1)
2n+1 becomes qen(qen−1)

22n+1 . Assuming
that the STPRP security of Ẽ∗ and PRF security of F can also be strengthened, the overall security of
the UIV construction (and thus the order-resilient secure channel it builds) would improve. However, we
do not investigate this “side effect” further in this work.

In the following subsections, we present two possible black-box solutions for extending the left domain
of the UIV construction [13]. The graphical representations of the UIV enciphering algorithm and these
extender constructions are given in Fig. 10. We will call the UIV using one of these extender constructions
an extended UIV.
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Fig. 10: Top left: Extended UIV construction with a black-box tweakable blockcipher Ẽ; Bottom left:
CDMS extender; Right: LRW2 + LDT extender.

We do not consider domain extenders for HEC in this work since the blockcipher used in the left part
is also used throughout the whole construction. Therefore, replacing all appearances of it in a black-box
manner would damage the performance. However, we leave finding specific domain extender options for
HEC as an avenue for future work.

6.1 CDMS Extender

For our first extender, we use the construction of Coron et al. [8] that transforms a n-bit tweakable
blockcipher into a 2n-bit tweakable cipher using a 3-round Feistel scheme. We denote this construction
with CDMS. The idea of using CDMS for domain extension inside a VIL cipher is not new. Shrimpton
and Terashima utilized the same approach to instantiate their PIV construction [23].

The CDMS construction assumes the tweakable blockcipher admits tweaks of size ω. The size of the
“outer” tweak, which is here (T,XR), is then ω−n. Denoting the underlying tweakable blockcipher with
Ẽ, we can express the security of the UIV construction extended with CDMS using the following theorem,
which is an adaptation of the original theorem for RPRP security of UIV [13, Theorem 1], using the
result of Coron et al. [8] transform.

Theorem 5. Let extended UIV be the scheme over the domain {0, 1}2n × {0, 1}≥m using the CDMS
extender. For any positive integer v and an adversary A making qen encipher queries, qde decipher queries
and qgu guess queries under the constraint that qguv ≤ 22n−1, there exist adversaries B and C such that

AdvRPRP
UIV[CDMS](A, v) ≤ 3AdvSTPRP

Ẽ
(B) + q2

22n
+AdvPRF

F (C)

+
qguv

22n−1
+

q2

22n+1
+

q2en
22n+1

+
q21

22n+m+1
,
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where q = qen + qde + qgu and q1 = qen + qde. The resulting STPRP adversary B makes at most qen
encipher queries and qde + qgu decipher queries, whereas the resulting PRF adversary C makes at most
qen + qde + qgu queries.

6.2 LRW2 + LDT Extender

For our second extender we use the LRW2 [15] instantiation of Ẽ∗ with the 3-round length doubler
construction LDT [7] by Chen, Mennink and Nandi serving as the underlying blockcipher. In contrast
to the previous extender, the LDT extends the UIV domain to {0, 1}n+s × {0, 1}≥m, for a fixed s ∈
[n+ 1, 2n− 1]. The advantage this extender offers is the variable length extension since the doubling of
the left domain could be overabundant in some cases.

The LDT construction can “encipher” and “decipher” a [n+1, 2n−1]-bit string, using a n-bit tweakable
blockcipher and a swapping function swap(X,Y ) := (Y,X) that takes two inputs X,Y of size 1 ≤ s ≤
n− 1. In our case, LDT has fixed input size, i.e. fixed s, so the security for LDT we need is plain SPRP
security, in contrast to the VSPRP (variable-input SPRP) notion used in [7].

We can express the security of the UIV construction extended with LRW2+LDT using the following
theorem, which is an adaptation of the original theorem for RPRP security of UIV as well, using the
result of the LRW2 transform [15].

Theorem 6. Let extended UIV be the scheme over the domain {0, 1}n+s×{0, 1}≥m using the LRW2+LDT
extender and let H be a ϵ1-AXU hash function with output space {0, 1}n+s. For any positive integer v
and an adversary A making qen encipher queries, qde decipher queries and qgu guess queries under the
constraint that qguv ≤ 2n+s−1, there exist adversaries B and C such that

AdvRPRP
UIV[LRW2+LDT](A, v) ≤ AdvSPRP

LDT (B) + 3ϵ1q
2 +AdvPRF

F (C)

+
qguv

2n+s−1 +
q2

2n+s+1
+

q2en
2n+s+1

+
q21

2n+s+m+1
,

where q = qen + qde + qgu and q1 = qen + qde. The resulting STPRP adversary B makes at most qen
encipher queries and qde + qgu decipher queries, whereas the resulting PRF adversary C makes at most
qen + qde + qgu queries.

Interpreting Corollary 2 from [7], the SPRP advantage of the LDT construction in the bound above gives
at least 2n

3 bits of security.
One should take care when instantiating the LRW2 AXU hash function H since it needs to have

a non-standard output size. One natural approach is concatenating and truncating two independently
keyed AXU hash functions. Start with a n-bit AXU H′ and construct a 2n-bit AXU by concatenating two
instances of H′ keyed with two independent keys. After that, truncate the output to the desired output
size n′ ∈ [n+1, 2n− 1], which would incur a security loss of 2n−n′ bits. Examples of concatenating and
truncating AXU hash functions can be found in these works [11,17,21].

7 Conclusion

In this work, we gave multiple new results on rugged pseudorandom permutations. The first group of
results introduced the RPRPd and RPRPd variations of the main RPRP definition. Then, we showed
two interesting results about the 3-round unbalanced Feistel scheme. First, that the ECE scheme satisfies
the RPRPd but not the RPRPg security, and second, that the CEC scheme satisfies the RPRPg but not
the RPRPd security.

After that, we presented the HEC scheme and proved it RPRP secure, making it, together with the
UIV scheme, the only other construction proven to be RPRP secure so far. In the end, we showed that
the left domain of the UIV construction could be extended using the 3-round CDMS and LDT schemes in
a black-box manner, providing better security than the “plain” UIV, which furthermore can be beneficial
for order-resilient channels that are instantiated with UIV as presented in [13, Section 6].

Collectively, these findings contribute to a deeper understanding of the RPRP notion and show that
it is more natural than it may seem.
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Appendix

A RRND Security

In [13], the authors also present the RRND notion, a security notion accompanying the RPRP notion. In
the RRND game, the adversary must distinguish between ẼE and a tweakable two-sided random function
R̃R. Compared to the RPRP game, the RRND game has one more set tracking values that need to be
restricted by the game. The set in question is P, which prohibits the adversary from forwarding queries
from De to En oracle. In Fig. 11, we give the RRND game definition and in addition present one of its
subvariants that we use, the RRNDg game. The RRNDg game is a RRND “equivalent” of the RPRPg
game given in Section 3. For completeness, we reiterate the RRND advantage definition and present the

Game RRNDA,v

ẼE
/ RRNDgA,v

ẼE

K ←$ K
b←$ {0, 1}
F ,R,U ,P ← ∅, ∅, ∅, ∅

R̃R←$ 2-Func(T ,XL ×XR)

b′ ← AEn,De,Gu / AEn,Gu

return b = b′

De(T, YL, YR)

if YL ∈ F ∪R
return �

if b = 0

(XL, XR)← R̃R(−, T, YL, YR)

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
P ∪← {(T,XL, XR)}
return (XL, XR)

En(T,XL, XR)

if (T,XL, XR) ∈ P
return �

if b = 0

(YL, YR)← R̃R(+, T,XL, XR)

else

(YL, YR)← ẼEK(T,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

if b = 0

return false

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 11: The games used to define RRND and RRNDg security for a tweakable cipher ẼE.
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RRNDg advantage definition.

Definition 8 (RRND /RRNDg Advantage). Let ẼE be a tweakable cipher over a split domain (XL ×
XR). Then for a positive integer v and an adversary A attacking the RRND /RRNDg security of ẼE the
corresponding advantage is defined as

Adv
RRND/RRNDg

ẼE
(A, v) =

∣∣∣2Pr[RRNDA,v

ẼE
/RRNDgA,v

ẼE
⇒ 1

]
− 1

∣∣∣.
We give an analogous statement of the “RPRP to RRND” switching lemma given in [13] for the RPRPg
and RPRPd notions. The proof would go along the lines of the proof of the original lemma and therefore
we omit it.

Lemma 1. Let ẼE be a tweakable cipher over a split domain (XL × XR) where XL ⊆ {0, 1}≥n and
XR ⊆ {0, 1}≥m. Then for a positive integer v and an adversary A making qen encipher oracle queries
and qgu guess oracle queries, it holds that

AdvRPRPg

ẼE
(A, v) ≤ AdvRRNDg

ẼE
(A, v) + qen(qen − 1)

2n+m+1
.

B Proof of Theorem 2 (ECE Construction)

Proof. Without loss of generality, we assume that the adversary does not make redundant queries. That
is, the adversary does not repeat queries to either of the oracles or make queries that the game will
restrict.
We immediately replace the expanding PRFs FEK1

and FEK3
with two random expanding functions fe1

and fe3 via the standard argument. Additionally, we replace the compressing PRF FCK2 with a random
compression function fc2, also via the standard argument. These two switches induce the following term
in the bound.

2AdvPRF
FE (B) +AdvPRF

FC (C). (14)

Next, we apply the H-coefficient technique and Theorem 1. The real world is the ECE construction with
ideal primitives fe1, fc2 and fe3. In the ideal world, the encipher and decipher oracle evaluate the input
on an ideal cipher Π̃ sampled uniformly at random from IC(T ,XL ×XR).
The transcript τ contains a list of tuples that correspond to all queries made by the adversary.

τ := ((T 1, X1
L, X

1
R, Y

1
L , Y

1
R, O

1
1), . . . , (T

q, Xq
L, X

q
R, Y

q
L , Y

q
R, O

q
1)),

where q = qen + qde. We will use li to denote the length of i-th query (i.e., li =
∣∣Xi

L

∣∣+ ∣∣Xi
R

∣∣) throughout
the proof.
In the real world, variable Oi

1 gets the value fe1(X
i
L), where the function fe1 is the real expanding random

function appearing in the first round of the ECE construction. On the other hand, in the ideal world,
the function fe1 is an expanding random function that is sampled by a simulator after the adversary’s
interaction, after all the values Xi

L’s have been fixed.
We note here that with values (Xi

L, X
i
R, Y

i
L, Y

i
R, O

i
1), one can calculate all the other intermediate values

that appear during the enciphering or deciphering (e.g., an input to fc2).

Defining and bounding the bad transcripts. Next, we define what it means for a transcript to be
bad.

Definition 9. A transcript τ is called bad, if any one of the following conditions hold:

[B1] There exist two queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1) with T i = T j and

li = lj, such that Oi
1 ⊕Xi

R = Oj
1 ⊕Xj

R.

[B2] There exist two encipher queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1) with li =

lj, such that Y i
L = Y j

L .

[B3] There exist a decipher query (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and an encipher query (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1)

with li = lj and i < j, such that Y i
L = Y j

L .
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Informally, the conditions [B1]-[B3] serve the purpose of ensuring the outputs of ECE in the real world
will always be uniformly random.
Now, let τ be some attainable transcript in the ideal world. We bound the probabilities of above-defined
conditions holding true in the ideal world.

[B1] Assuming without loss of generality that i < j, we differentiate three possible subcases occurring.
[B1.1] Both queries are encipher queries. If Xi

L = Xj
L, it must hold that Xi

R ̸= Xj
R (otherwise queries

would be the same), hence the collision Oi
1 ⊕Xi

R = Oj
1 ⊕Xj

R cannot happen. If Xi
L ̸= Xj

L, we have
that

Pr
[
Oi

1 ⊕Xi
R = Oj

1 ⊕Xj
R

]
≤ 1

2m
,

where the probability is taken over random coins of Oj
1.

[B1.2] Both queries are decipher queries. If Xi
L = Xj

L, then the probability of the equation Oi
1⊕Xi

R =

Oj
1⊕Xj

R holding true reduces to the probability of Xi
R being equal to Xj

R. That probability is 0 since
(Xi

L, X
i
R) and (Xj

L, X
j
R) are sampled according to a permutation and hence they cannot be equal. If

Xi
L ̸= Xj

L, we have that

Pr
[
Oi

1 ⊕Xi
R = Oj

1 ⊕Xj
R

]
≤ 1

2m
,

where the probability is taken over random coins of Oj
1.

[B1.3] One query is encipher query, other one is decipher query. We furthermore now have 4 possi-
bilities here.
• i-th query was encipher and j-th decipher query, and Xi

L = Xj
L. Probability of a collision reduces

to the probability that Xi
R = Xj

R, which is 0 since otherwise the j-th query would be a forbidden
forwarded query from En to De.

• i-th query was encipher and j-th decipher query, and Xi
L ̸= Xj

L. Probability of a collision reduces
to the probability that Oj

1 = Xi
R ⊕Xj

R ⊕Oi
1, which is bounded by 1

2m .

• i-th query was decipher and j-th encipher query, and Xi
L = Xj

L. Probability of a collision reduces
to the probability that Xi

R = Xj
R, which is 0 since otherwise j-th query would be a forbidden

forwarded query from De to En.

• i-th query was decipher and j-th encipher query, and Xi
L ̸= Xj

L. Probability of a collision reduces
to the probability that Oj

1 = Xi
R ⊕Xj

R ⊕Oi
1, which is bounded by 1

2m .
In all cases, the probability that the equality holds is at most 1

2m .

Summing up the probabilities of [B1.1], [B1.2] and [B1.3] over all i, j, such that i ̸= j, we have that
the probability of [B1] being true is bounded by(

q

2

)
1

2m
≤ q2

2m+1
. (15)

[B2] A collision in inputs to fe3 happens if Y i
L = Y j

L . Assume without loss of generality that i < j.
Since both queries are encipher queries, it holds

Pr
[
Y i
L = Y j

L

]
≤ 2lj−n − (j − 1)

2lj − (j − 1)
≤ 2lj−n

2lj − (qen + qde)
≤ 2lj−n

2lj−1
=

1

2n−1
,

assuming qen + qde ≤ 2n+m−1 ≤ 2lj−1. Summing up over all i, j, we have that the probability of [B2]
being true is bounded by (

qen
2

)
1

2n−1
≤ q2en

2n
. (16)

[B3] A collision in fe3 happens if Y i
L = Y j

L . Since j-th query is an encipher query and i < j, through a
calculation similar to one in [B2], it holds that

Pr
[
Y i
L = Y j

L

]
≤ 1

2n−1
.

Summing up over all i < j, we have that the probability of [B3] being true is bounded by
qenqde

2n−1
. (17)
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Adding up the bounds in (15), (16) and (17), we have that the probability of an attainable transcript τ
in the ideal world being bad is bounded by

ϵbad =
q2

2m+1
+

q2en
2n

+
qenqde

2n−1
.

Bounding the ratio of good transcripts. Fix some good, attainable, transcript τ . Let the transcript
contain queries of length l1, . . . , lc. We split the transcript into disjoint subsets τ1, . . . , τc, where the set
τi contains all queries of length li. We also introduce an equivalence relation ∼T across sets τi, where
two queries from set τi are related if and only if they have the same tweak. This equivalence relation
partitions the set τi into equivalence classes by the tweak T . We denote the number of queries in some
j-th equivalence class with ti,j . We consequently denote with ti the number of queries in the set τi. It
will hold ti = ti,1 + · · · + ti,cnti , where cnti is the number of distinct tweaks that appear in the queries
in set τi. Also, q = t1 + · · ·+ tc.

Ideal world. The interpolation in the ideal world then is

Pr[Xi = τ ] =

c∏
i=1

cnti∏
j=1

(2li)ti,j × PO1 ,

where PO1
is the interpolation for Oi

1 variables appearing in the query transcripts. Since the values for
Oi

1 are sampled in exactly the same way in both worlds, there is no need to calculate what PO1
is equal

to. The values will cancel themselves out when calculating the ratio of interpolations.

Real world. Because the transcript is good, the input values to fc2 do not collide (condition [B1]), making
the left outputs (Y i

L if the query was an encipher query, Xi
L if the query was a decipher query) always

uniformly random. As for the right output in case of an encipher query, the input to fe3 will never repeat
since conditions [B2] and [B3] exclude that possibility. Therefore, Y i

R will always be uniformly random. If
the query is a decipher query, the left input Y i

L is guaranteed to be fresh by the RPRPd game restriction.
Thus, the output of fe3(Y

i
L) will make the right output Xi

R uniformly random. From the above and
the fact that the adversary does not make redundant queries, we see that the encipher and decipher
algorithms always give uniformly random output in the real world. Therefore, given a transcript query
(T i, Xi

L, X
i
R, Y

i
L, Y

i
R, O

i
1), its input will map to its output, or vice-versa, with probability 1

2li
. As for the

Oi
1 variables interpolation, its value is the same as in the ideal world, PO1 .

Taking all queries from the transcript into account, the interpolation probability in the real world is

Pr[Xr = τ ] =

c∏
i=1

(
1

2li

)ti

× PO1 .

Interpolation ratio. Finally, let us calculate the interpolation ratio for a good transcript τ .

Pr[Xr = τ ]

Pr[Xi = τ ]
=

∏c
i=1

∏cnti
j=1(2

li)ti,j × PO1∏c
i=1 2

liti × PO1

≥
c∏

i=1

∏cnti
j=1 (2

li − q)ti,j

2liti

=

c∏
i=1

(
2li − q

2li

)ti

≥
(
1− q

2l1

)t1
· · ·

(
1− q

2lc

)tc
.

Applying the Weierstrass inequality we obtain that the expression above is greater or equal than

1− q

(
t1
2l1

+ · · ·+ tc
2lc

)
≥ 1− q

t1 + · · ·+ tc
2n+m

= 1− q2

2n+m
,

hence ϵratio =
q2

2n+m
.

Summing up (14), ϵbad and ϵratio one arrives at the bound from the theorem statement. ⊓⊔
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C Proof of Theorem 3 (CEC Construction)

Proof. Without loss of generality, we assume that the adversary does not make redundant queries. That
is, the adversary does not repeat queries to either of the oracles or make queries that the game will
restrict.
We make use of the RRNDg game and Lemma 1, both of which are given in Appendix A. Applying
Lemma 1 and making the switch from the RPRPg game to the RRNDg game induces the term

qen(qen − 1)

2n+m+1
≤ q2en

2n+m+1
(18)

in the bound. The adversary now is playing the RRNDg game and let the starting point be the real world
of the RRNDg game (b = 1).
We replace the compressing PRF FCK1 and FCK3 with two random compressing functions fc1 and fc3
via the standard argument. Additionally, we replace the expanding PRF FEK2

with a random expanding
function fe2, also via the standard argument. These two switches yield the following term in the bound.

2AdvPRF
FC (B) +AdvPRF

FE (C). (19)

Next, we apply the H-coefficient technique and Theorem 1. The real world is the CEC construction with
ideal primitives fc1, fe2 and fc3. In the ideal world, the adversary has access to the oracles given in
Figure 12. Note that the ideal world corresponds to the ideal world of the RRNDg game. The transcript

En(T,XL, XR)

if R̃R(+, T,XL, XR) ̸= ⊥ then

(YL, YR)← R̃R(+, T,XL, XR)

else

(YL, YR)←$ {0, 1}n+|XR|

R̃R(+, T,XL, XR)← (YL, YR)

return (YL, YR)

Gu(T, YL, YR,V )

return false

Fig. 12: The ideal world for H-coefficient technique application in Theorem 3 (CEC is RPRPg).

τ contains a list of tuples that correspond to all queries made by the adversary. There are two types of
queries stored in τ :

1. Queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1), corresponding to the queries to En oracle. The variable Oi

1 takes
in the real world the following value

Oi
1 := fc1(X

i
R),

where the function fc1 is the compressing random function present in the first round of the construc-
tion. In the ideal world, Oi

1 is set by the simulator that we define later.
2. Queries (T i, Y i

L, Y
i
R,V

i, oi, Xi
L, X

i
R, O

i
1), corresponding to the queries to Gu oracle. The variable oi

corresponds to the answer of the guess oracle, and for a query from an attainable transcript, its value
will always be false. In the real world, the pair (Xi

L, X
i
R) corresponds to the real output that would

be evaluated using fc1, fe2 and fc3 on the input (T i, Y i
L, Y

i
R). In the ideal world, the pair (Xi

L, X
i
R) is

sampled by the simulator that we define shortly.

The simulator S runs in the ideal world after the adversary has finished its interaction with the oracles,
and executes the following steps (in the given order).

i. It iterates through all En queries and for each query (T i, Xi
L, X

i
R, Y

i
L, Y

i
R) it sets Oi

1 := fc1(X
i
R),

where the function fc1 is a random compressing function it samples.
ii. It iterates through all Gu oracle queries and for each query (T i, Y i

L, Y
i
R,V

i) first determines if the
triple (T i, Y i

L, Y
i
R) is fresh.
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• (T i, Y i
L, Y

i
R) is fresh. Set (Xi

L, X
i
R)←$ {0, 1}n+|YR|. For defining Oi

1 we first need to know if Y i
R is

new . We call Y i
R new if there is no earlier En or Gu query in τ that contains Y i

R.
If Y i

R is new, then Oi
1 := fc1(X

i
R).

Otherwise Y i
R is not new, and we can fix j-th En or Gu query, with j < i, such that Y j

R = Y i
R.

Then Oi
1 := Oj

1 ⊕ Y j
L ⊕ Xj

L ⊕ Xi
L ⊕ Y i

L. Note that the term Oj
1 ⊕ Y j

L ⊕ Xj
L would be an implicit

output of the function fc3(Y
i
R) if we were in the real world.

• (T i, Y i
L, Y

i
R) is not fresh. The simulator takes the values (Xj

L, X
j
R, O

j
1) from some previous j-th

guess query with the same (T i, Y i
L, Y

i
R) and sets

(Xi
L, X

i
R, O

i
1) := (Xj

L, X
j
R, O

j
1).

We will use li to denote the length of i-th query (i.e., li =
∣∣Xi

L

∣∣+ ∣∣Xi
R

∣∣) throughout the proof.

Defining and bounding the bad transcripts. We now define what it means for an attainable tran-
script to be bad. The intuition for the following bad transcript conditions is as follows. The [B1], [B2],
[B4] and [B5] conditions ensure output of CEC encipher algorithm in the real world will always be uni-
formly random. The [B2], [B3], [B6] and [B7] conditions ensure the (XL, XR) from the guess oracle query
transcript in the real world will always be indistinguishable from their counterparts in the ideal world.
The condition [B8] excludes guess oracle queries that would be deemed successful in the real world.

Definition 10. A transcript τ is called bad, if any one of the following conditions hold:

[B1] There exist two encipher queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1) with T i =

T j and li = lj, such that Oi
1 ⊕Xi

L = Oj
1 ⊕Xj

L.

[B2] There exist an encipher query (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and a guess query (T j , Y j

L , Y
j
R,V

j , false, Xj
L, X

j
R, O

j
1)

with li = lj, such that Xi
L ⊕Oi

1 = Xj
L ⊕Oj

1.

[B3] There exist two guess queries (T i, Y i
L, Y

i
R,V

i, false, Xi
L, X

i
R, O

i
1) and (T i, Y i

L, Y
i
R,V

i, false, Xj
L, X

j
R, O

j
1)

with T i = T j and (Y i
L, Y

i
R) ̸= (Y j

L , Y
j
R) with li = lj, such that Oi

1 ⊕Xi
L = Oj

1 ⊕Xj
L.

[B4] There exist two encipher queries (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1) with li =

lj, such that Y i
R = Y j

R.

[B5] There exist a guess query (T i, Y i
L, Y

i
R,V

i, oi, Xi
L, X

i
R, O

i
1) and an encipher query (T j , Xj

L, X
j
R, Y

j
L , Y

j
R, O

j
1)

with li = lj , i < j and T i = T j, such that Y i
R = Y j

R.

[B6] There exist an encipher query (T i, Xi
L, X

i
R, Y

i
L, Y

i
R, O

i
1) and a guess query (T j , Y j

L , Y
j
R,V

j , false, Xj
L, X

j
R, O

j
1)

with li = lj, such that Xi
R = Xj

R.

[B7] There exist two guess queries (T i, Y i
L, Y

i
R,V

i, false, Xi
L, X

i
R, O

i
1) and (T i, Y i

L, Y
i
R,V

i, false, Xj
L, X

j
R, O

j
1)

with li = lj and (T i, Y i
L, Y

i
R) ̸= (T j , Y j

L , Y
j
R), such that Xi

R = Xj
R.

[B8] There exists a guess query (T i, Y i
L, Y

i
R,V

i, false, Xi
L, X

i
R, O

i
1) such that Xi

L ∈ V i.

Now, let τ be some attainable transcript in the ideal world. We bound the probabilities of above-defined
conditions holding true in the ideal world.

[B1] Assume without loss of generality that i < j. If Xi
R = Xj

R, then we know it holds Xi
L ̸= Xj

L since
otherwise j-th query would be a repeated query. In case of Xi

R ̸= Xj
R it holds

Pr
[
Oi

1 ⊕Xi
L = Oj

1 ⊕Xj
L

]
=

1

2n
,

where the probability is taken over Oj
1. Summing over all qen encipher queries, the probability of [B1]

being true is at most (
qen
2

)
1

2m
≤ q2en

2n+1
. (20)

[B2] We denote the equation Oi
1 ⊕Xi

L = Oj
1 ⊕Xj

L with E and expand the bad condition using the law
of total probability as

Pr[E] = Pr
[
E

∣∣∣Xi
R=Xj

R

]
Pr

[
Xi

R=Xj
R

]
+Pr

[
E

∣∣∣Xi
R ̸= Xj

R

]
Pr

[
Xi

R ̸= Xj
R

]
≤ Pr

[
Xi

R = Xj
R

]
+ Pr

[
E

∣∣∣Xi
R ̸= Xj

R

]
≤ 1

2m
+

1

2n
,
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where the final inequality follows from the fact (Xj
L, X

j
R) is uniformly sampled after (Xi

L, X
i
R) have

been fixed. Summing over all i, j, the probability of [B2] being true is at most
qenqgu
2m

+
qenqgu
2n

. (21)

[B3] It holds

Pr
[
Oi

1 ⊕Xi
L = Oj

1 ⊕Xj
L

]
=

1

2n

since Xi
L and Xj

L are uniformly sampled (or were uniformly sampled, in case the guess queries i and j
are repeated ones). Summing over all qgu guess queries, the probability of [B3] being true is at most(

qgu
2

)
1

2n
≤

q2gu
2n+1

. (22)

[B4] Assume without loss of generality that i < j. It holds

Pr
[
Y i
L = Y i

R

]
≤ 1

2m
,

where the probability is taken over Y i
R. Summing over all qen encipher queries, the probability of [B4]

being true is bounded by (
qen
2

)
1

2m
≤ q2en

2m+1
. (23)

[B5] Calculated over the probability of Y j
R, it holds

Pr
[
Y i
L = Y i

R

]
≤ 1

2m
.

Summing over all i < j, the probability of [B5] being true is bounded by
qenqgu
2m

. (24)

[B6] It holds that

Pr
[
Xi

R = Xj
R

]
≤ 1

2m
,

where the inequality follows from the fact Xj
R is uniformly sampled after Xi

R has been fixed. Summing
over all i, j, the probability of [B6] being true is at most

qenqgu
2m

. (25)

[B7] It holds that

Pr
[
Xi

R = Xj
R

]
≤ 1

2m

since Xi
R and Xj

R are uniformly sampled (or were uniformly sampled, in case the guess queries i and
j are repeated ones). Summing over all i, j, the probability of [B7] being true is at most(

qgu
2

)
1

2m
≤

q2gu
2m+1

. (26)

[B8] For a triple (T i, Y i
L, Y

i
R), the variable Xi

L is sampled after all guessed sets have been fixed. For a
concrete guess set V i, it then holds

Pr
[
Xi

L ∈ V i
]
≤ v

2n
,

v being the maximum cardinality of V i the adversary is allowed to query. Summing over all qgu guess
queries, the probability of [B8] being true is bounded by

qguv

2n
. (27)

Adding up the bounds in (20) – (27) we have that the probability of an attainable transcript τ in the
ideal world being bad is bounded by

ϵbad ≤
q2en + q2gu
2n+1

+
qenqgu + qguv

2n
+

q2en + q2gu
2m+1

+
3qenqgu
2m

.
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Bounding the ratio of good transcripts. Fix some good, attainable, transcript τ . We split the
transcript into two disjoint subsets τen and τgu that contain encipher and guess oracle query transcripts,
respectively. The set τen contains queries of length l1, . . . , lc, and let ti denote the number of encipher
queries of length li. It holds qen = t1+ · · ·+ tc. The set τgu contains guess queries with ugu unique triples
(T i, Y i

L, Y
i
R) being queried throughout the interaction. Finally, we denote with uyr the number of fresh

guess triples (T i, Y i
L, Y

i
R) where Y i

R is new.

Ideal world. We first take a look at encipher queries transcripts. For some fixed query i, the input
(T i, Xi

L, X
i
R) will map to the output (Y i

L, Y
i
R) with probability 1

2li
, since the encipher oracle in the ideal

world returns uniformly random bits of the same length as the input (Xi
L, X

i
R). With PO1,en we denote

the interpolation probability for Oi
1 variables appearing in the encipher oracle queries transcripts. Since

these variables are sampled in exactly the same way in both worlds, there is no need to calculate what
PO1,en is equal to.
For guess oracle queries, let us fix some i-th query (T i, Y i

L, Y
i
R,V

i, false, Xi
L, X

i
R, O

i
1), where the triple

(T i, Y i
L, Y

i
R) is being queried for the first time. The interpolation probability for Xi

R is clearly 1
2li−n .

Similarly, for Xi
L it is 1

2n . Then for the interpolation probability of Oi
1 we differentiate two cases. The

first one is where Y i
R is new. In this case, Oi

1 is sampled and Xi
R, which is always unique by conditions

[B6] and [B7], “maps” to Oi
1 with probability 1

2n . The other case is where Y i
R is not new. Now Oi

1 is fixed
and it appears in the transcript with probability 1. The interpolation in the ideal world then is

Pr[Xi = τ ] =

c∏
i=1

1

2liti
× PO1,en ×

1

2(li−n)·ugu ×
1

2n·ugu ×
1

2n·uyr .

Real world. We again first look at encipher queries transcripts. Because the transcript is good, the input
values to fe2 do not collide (conditions [B1] and [B2]), making the right output Y i

R always uniformly
random. As for the left output Y i

L, the input to fe3 will never repeat since conditions [B4] and [B5]
exclude that possibility. Therefore, Y i

L will always be uniformly random. From the above and the fact
that the adversary does not make redundant queries, we see that the encipher algorithm always gives
uniformly random outputs in the real world. Therefore, given a transcript query (T i, Xi

L, X
i
R, Y

i
L, Y

i
R, O

i
1),

its input will map to its output with probability 1
2li

. As for the Oi
1 variables interpolation in the encipher

queries, its value is the same as in the ideal world, PO1,en.
As for the guess oracle queries, let us analyze a query (T i, Y i

L, Y
i
R,V

i, false, Xi
L, X

i
R, O

i
1), where the

triple (T i, Y i
L, Y

i
R) is being queried for the first time. Again it holds the input values to fe2 do not

collide (conditions [B2] and [B3]), making the right output Xi
R uniformly random. For the interpolation

probability of Oi
1 we know its 1

2n since the conditions [B6] and [B7] ensure the Xi
R that “maps” to it never

repeats. As for the left output Xi
L, we know it is calculated as Xi

L := Y i
L ⊕ fc3(Y

i
R)⊕ Oi

1. At this point
we also know Oi

1 has already been sampled, that is, it is fixed. Finally, we now differentiate two cases.
The first one is where Y i

R is new, making the interpolation probability for Xi
L be 1

2n , by the implicit
sampling of fc3. In the other case, where Y i

R is not new, everything that determines Xi
L is already fixed,

so its interpolation probability is 1. Taking all queries from the transcript into account, the interpolation
probability in the real world is

Pr[Xr = τ ] =

c∏
i=1

1

2liti
× PO1,en ×

1

2(li−n)·ugu ×
1

2n·uyr ×
1

2n·ugu

Interpolation ratio. At last, the interpolation ratio for a good transcript τ is

Pr[Xr = τ ]

Pr[Xi = τ ]
=

2n·ugu × 2n·uyr

2n·uyr × 2n·ugu = 1,

hence ϵratio = 0.

Summing up (18), (19), ϵbad and ϵratio one arrives at the bound from the theorem statement. ⊓⊔

D Supplementary Material Section 5

Attack Against Insecure Variant of HEC. The adversary A, playing the RPRPd game, works as
follows:
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1. Query (YL, YR)← En(XL, XR), for some XL, XR and with XR being one block long.
Initial value for the CTRK is IV = XL ⊕ Hh(T,XR)⊕ YL.

2. Query (X ′L, X
′
R)← De(XR ⊕ YR, YR)

We first note that this query will be valid, meaning XR ⊕ YR ̸= YL with high probability. The
deciphering E−1K (XR ⊕ YR) gives IV ⊕ 1 as an output, thus it holds, X ′L = IV ⊕ 1⊕ Hh(T,X

′
R).

3. Calculate the mask of Hh(T,XR)⊕Hh(T,X
′
R) = XL⊕YL⊕ IV ⊕X ′L⊕ IV ⊕ 1 = XL⊕YL⊕X ′L⊕ 1.

The adversary is now left with one equation with one unknown, namely the hash function key h, so
it can then extract the hash key h.

Useful Lemmas. We present in the following two lemmas that we use for interpolation ratio calculation
in the proof of Theorem 4.

Lemma 2. For positive integers a, b1, . . . , bn, such that a ≥ b1 + · · ·+ bn, it holds that

(a)b1 · · · (a)bn ≥ (a)b1+···+bn .

Proof. Let us prove the lemma by induction on n. Obviously, for n = 1, (a)b1 ≥ (a)b1 . Next, suppose the
inequality holds for n and let us show the inequality then holds true for n+ 1 as well. By assumption it
follows

(a)b1 · · · (a)bn(a)bn+1 ≥ (a)b1+···+bn(a)bn+1 ,

which is furthermore greater or equal than (a)b1+···+bn+1 . ⊓⊔

The next lemma also appears in [14]. We reiterate it here for completeness.

Lemma 3. For positive integers n, k1, . . . , kc, t1, . . . , tc, such that
∑c

i=1 tiki ≤ 2n, it holds that

c∏
i=1

(2kin)ti ≥ (2n)t1k1+···+tckc
.
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