
PRIVATON
Privacy Preserving Automaton for Proof of Computations

Bala Subramanyan
Research, Credora Inc

San Rafael, California, USA
Email: bala@credora.io

Abstract

Amid the landscape of con�dential computing, where security and privacy reign supreme, PRIVATON emerges
as a pioneering and practical solution to safeguard sensitive data and computations. A veri�able proof of
computation model, with one of its variant built upon the dual sandbox strategy, PRIVATON combines
Trusted Execution Environment (TEE) technologies with WebAssembly (WASM) runtime environments to
establish an ecosystem for privacy-preserving computations. This approach involves �ne grained modeling of
computations as �nite state automatons, guided by veri�able proofs that attest to their unerring execution.

PRIVATON is guided by the profound principles of "least privilege" and "intentional use." Through
the former, each computation module's privileges are meticulously constrained, reducing vulnerability vectors.
The latter ensures that privileges are allocated explicitly, fostering comprehension and security. This rigorous
adherence minimizes privilege misuse and information leakage, bolstering the overall security posture.

At its core, PRIVATON's innovation lies in its comprehensive assurance of data privacy and security.
State machine proofs not only attest to the absence of data leakage but also prevent unauthorized data
transmission. By providing unassailable proof of computation integrity, PRIVATON shields against code
misuse within the system. This proactive stance forti�es its mission to safeguard the sanctity of data,
computations, and the privacy of all stakeholders.

Evidenced by its real-world application, PRIVATON has been validated within the cryptocurrency
trading ecosystem, where it acts as a distributed and privacy-preserving credit oracle. Its implementation within
Credora’s landscape underlines its potential to transform data-centric paradigms, empowering stakeholders with
an unshakeable con�dence in data security. In a world where data privacy is paramount, PRIVATON stands as a
guardian, epitomizing the convergence of technology, security, and trust.

Keywords: Con�dential Computing, Trusted Execution Environment (TEE), WebAssembly (Wasm), Finite
State Automata, Privacy-Preserving Computation, Veri�able Proofs, Dual Sandbox Strategy, Proof of
Computations, Trusted Third Parties, Data Privacy.

1

Introduction

In the modern landscape of data-centric computing, ensuring the privacy and security of sensitive information
has become a paramount concern. Among the three states of data security, data-in-use poses a unique challenge,
as it necessitates decryption for processing, exposing it to potential breaches. In response to this critical issue, the
concept of con�dential computing has emerged, aiming to safeguard data while it is being utilized. Con�dential
Computing Consortium has united hardware vendors, cloud providers, and software developers to advance
privacy-preserving computing, with hardware-assisted Trusted Execution Environment (TEE) as a prominent
approach.

TEE o�ers the promise of secure execution environments where users can deploy their sensitive code
and data, ensuring their protection even against malicious platform providers. However, real-world scenarios
often involve third-party TEE providers, introducing additional layers of trust. This scenario raises concerns
about whether sensitive data might be accessed illicitly, even by TEE service providers. Although existing e�orts
have explored the idea of securing applications against malicious TEE service providers, they fall short in
providing formal veri�cation and guarantees of data security.

In this backdrop, PRIVATON (PRIVacy-preserving automATON) emerges as a novel solution that
tackles these challenges head-on. At Credora Inc., PRIVATON has been harnessed to deliver a provably private
and neutral credit risk oracle for cryptocurrency trading �rms. This endeavor involves a network of TEE nodes,
establishing a decentralized system capable of performing computations on sensitive information in a completely
private and prede�ned manner. The objective is to create a secure and private environment where data owners
need not solely rely on trust.

In this paper, we present PRIVATON as a groundbreaking approach to veri�able privacy-preserving
computations, underpinned by the concept of �nite state automatons. By seamlessly integrating Trusted
Execution Environment (TEE) technologies and WebAssembly (WASM) runtime environments, PRIVATON
introduces a dual sandbox strategy. This innovative architecture has a profound impact on data privacy and
computation integrity. PRIVATON empowers developers and users to de�ne a controlled set of privileges via
veri�able policies, facilitating explicit control over computation capabilities.

Throughout this paper, we delve into the inner workings of PRIVATON, highlighting its capability to
provide a veri�able proof of computation model. By embracing dual sandbox environments and cryptographic
techniques, PRIVATON ensures that computations are executed exactly as intended, with the added assurance
of data con�dentiality. We explore the model's versatility in accommodating diverse computational paradigms,
including TEE-WASM integration. Additionally, we present a comprehensive evaluation of PRIVATON's
security and performance aspects, demonstrating its e�cacy in preserving data con�dentiality and
computational accuracy.

2

The subsequent sections delve into related research, enabling technologies, the proposed PRIVATON
solution, real-world use cases, experimental evaluations, and concluding remarks, showcasing PRIVATON's
transformative potential in securing sensitive data and computation.

Related Work

In the pursuit of preserving data privacy and ensuring computation integrity, various research and practical
endeavors have paved the way for solutions that resonate with the goals of PRIVATON. This section explores
notable related work in the realm of con�dential computing and veri�able computation.

3.1 Trusted Execution Environments (TEE): TEEs have garnered substantial attention as a hardware-based
approach to ensuring secure execution environments. Intel Software Guard Extensions (SGX) [5] and ARM
TrustZone [6] are prominent TEE technologies that facilitate the creation of isolated enclaves for computations,
shielding them from potential adversaries. However, the reliance on TEE service providers introduces challenges
concerning trust and data security.

3.2 Zero-Knowledge Proofs (ZKPs): Zero-knowledge proofs have emerged as a powerful cryptographic
technique for verifying computations without revealing sensitive input data. zk-SNARKs and zk-STARKs [8]
stand out as examples of ZKPs. While these methods ensure privacy, they often come with substantial overhead
and complexities related to setup and veri�cation.

3.3 Finite State Automatons and State Machines: Finite state automatons have been employed in various
domains to model processes and systems with distinct states and transitions. These models provide a structured
approach to computation and facilitate formal analysis. State machines and automata-based frameworks have
been used to reason about system behavior and correctness, providing a strong foundation for PRIVATON's
state-based approach.

3.4 WebAssembly (WASM) Runtimes: WebAssembly has gained prominence as a versatile
platform-independent runtime environment. It allows for the execution of programs written in multiple
programming languages, enhancing portability and security. The integration of WASM runtimes within
PRIVATON highlights its adaptability to various computational paradigms.

3.5 Con�dential Computing Consortium (CCC): The CCC has brought together industry leaders to
address challenges related to con�dential computing. While the consortium focuses on TEE-based solutions,
PRIVATON extends the conversation by incorporating the dual sandbox strategy and �nite state automatons
for veri�able computation.

3.6 Dual Sandbox Strategy and Veri�able Proofs: Prior research has explored the idea of securing
applications against malicious TEE service providers by employing a dual sandbox strategy. PRIVATON extends
this approach by introducing the concept of veri�able proofs of computation. These proofs guarantee the
accuracy and integrity of computations and eliminate the need for blind trust in TEE service providers.

3

3.7 Decentralized Computation and Privacy-Preserving Oracles: The blockchain domain has witnessed
the emergence of decentralized computation platforms and privacy-preserving oracles. These platforms aim to
enable secure and private execution of smart contracts and computations within a decentralized ecosystem.
PRIVATON aligns with these objectives by o�ering a similar vision of secure computation in a decentralized
setting.

In summary, the related work showcases a rich landscape of e�orts dedicated to preserving data privacy,
enhancing computation integrity, and securing sensitive information. PRIVATON distinguishes itself by
introducing a novel approach that combines dual sandbox strategies, �nite state automatons, veri�able proofs of
computation, and the �exibility of WebAssembly runtimes, o�ering a comprehensive solution for
privacy-preserving computations across diverse contexts.

Background

In the rapidly evolving landscape of modern computing, where the triumvirate of security, privacy, and data
integrity stands as the cornerstone, new paradigms have emerged to address the complex challenges posed by
remote processing and data utilization. This section delves into the multifaceted background that has
culminated in the conception of PRIVATON—an innovative solution aimed at ushering in a new era of
privacy-preserving computations.

4.1 Finite State Automata and State Machines: Establishing Computational Rigor

Finite State Automata (FSA) and state machines, foundational constructs within theoretical computer science,
provide a formal framework to model sequential processes and transitions. A �nite state machine is de�ned as a
tuple (Q, Σ, δ, q₀, F), where:

● Q represents a �nite set of states.
● Σ denotes a �nite input alphabet.
● δ signi�es the transition function, mapping (state, input) pairs to the next state: δ: Q × Σ → Q.
● q₀ is the initial state.
● F constitutes the set of accepting states.

Mathematically, a �nite state machine is represented as:

M=(Q,Σ,δ,q0,F)

The transition function δ encapsulates the behavior of the state machine, dictating how it moves from one state
to another upon receiving speci�c inputs. The behavior of a state machine can be summarized through its state
transition diagram or a transition table.
In a state transition diagram, states are represented as nodes, while transitions are depicted as directed edges
labeled with corresponding input symbols. This graphical representation provides an intuitive visualization of
the state machine's behavior.

4

Theorem 1: Determinism of Finite State Machines
A �nite state machine is deterministic if, for every state q and input symbol a, there exists exactly one transition
δ(q, a) leading to another state. In other words:

∣δ(q,a)∣ = 1 for all q∈Q, a∈Σ

Theorem 2: Equivalence of Finite State Machines
Two �nite state machines M₁ = (Q₁, Σ, δ₁, q₀₁, F₁) and M₂ = (Q₂, Σ, δ₂, q₀₂, F₂) are equivalent if their languages
L(M₁) and L(M₂) are the same, i.e.,

L(M1) =L(M2)

Where the language of a �nite state machine M, denoted as L(M), comprises all strings that lead M from the
initial state to an accepting state.

Theorem 3: Closure Properties of Finite State Machines
Finite state machines exhibit various closure properties, enabling operations like union, concatenation, and
Kleene closure. Given two �nite state machines M₁ and M₂:

1. Union: The union of M₁ and M₂, denoted as M₁ ∪ M₂, recognizes the language union of L(M₁) and
L(M₂).

2. Concatenation: The concatenation of M₁ and M₂, denoted as M₁M₂, recognizes the language
concatenation of L(M₁) and L(M₂).

3. Kleene Closure: The Kleene closure of M₁, denoted as M₁*, recognizes the language containing all
possible concatenations of strings from L(M₁).

These theorems underpin the rigorous mathematical foundation of �nite state machines, enabling their formal
analysis, composition, and manipulation. By integrating these mathematical constructs and principles,
PRIVATON leverages the versatility of �nite state automatons and state machine proofs to engender a robust
platform for privacy-preserving computations, ensuring the integrity and security of the executed processes.

4.2 Trusted Execution Environments (TEE): Fortifying Security

Within this backdrop, the concept of Trusted Execution Environments (TEE) has emerged as a pivotal solution
for enhancing computational security. TEEs o�er isolated execution environments within a processor,
commonly isolated from the host operating system. This isolation assures that the execution remains
tamper-resistant and con�dential, impervious even to privileged attackers. In essence, TEEs provide a bastion of
security for computations, insulating them from external threats and vulnerabilities.

5

4.3 WebAssembly (WASM): Bridging Computational Boundaries

In parallel, the rise of WebAssembly (WASM) has transformed the way software is executed across di�erent
platforms. WASM is a binary instruction format that enables e�cient and secure execution of code on various
environments, fostering compatibility across diverse systems. Its sandboxed execution model guarantees
isolation, preventing unauthorized access and enabling cross-platform deployment without compromising
security.

4.4 Remote Attestation (RA): Trust in Untrusted Environments

Nevertheless, the utilization of TEEs also brings forth challenges, particularly in the context of verifying the
integrity and authenticity of the executed code within these trusted enclaves. Remote Attestation (RA) emerged
as a solution to this predicament, enabling a remote party to verify the integrity of the TEE's state and code
execution. RA assures that the TEE operates within its expected parameters, safeguarding against potentially
malicious or compromised environments.

4.5 The Quest for Privacy-Preserving Computations

Within this intricate milieu of concepts and technologies, PRIVATON crystallized as a visionary solution to the
perennial dilemma of executing computations while ensuring utmost privacy and security. PRIVATON
leverages a dual sandbox strategy, seamlessly combining the power of TEE technologies with WebAssembly
(WASM) runtime environments. This strategic amalgamation establishes an unparalleled stronghold, where the
sanctity of computations is guaranteed through meticulous modeling, veri�able proofs, and controlled
execution.
The subsequent sections of this paper delve into the details of PRIVATON's architecture, its integration of
�nite state automatons and state machine proofs, the dual sandbox approach, and the comprehensive evaluation
that underscores its e�cacy. Through this exploration, PRIVATON emerges as a formidable contender in the
realm of con�dential computing, bridging theoretical foundations with cutting-edge technologies to pave the
way for secure, private, and trustworthy computations in an ever-connected world.

Current Limitations

Within the landscape of con�dential computing, the prevailing approaches, including those leveraging Intel
SGX and WebAssembly sandboxing techniques, exhibit a range of limitations that underscore the need for more
robust solutions. These limitations encompass various aspects of security, privacy, and operational integrity. In
this section, we shed light on the critical limitations inherent in the current models and elucidate the challenges
that the PRIVATON framework is designed to overcome.

● Enclave Malleability: Current con�dential computing frameworks, such as those relying on Intel SGX,
su�er from enclave malleability. Enclaves can be exited through di�erent paths, including ECALLs,
OCALLs, and AEX. This variability in exit paths can enable attackers to manipulate the internal state
of the enclave, compromising its integrity and raising concerns about the security guarantees o�ered.

6

● Knowledge Extraction Vulnerability: Zero-Knowledge Proof-of-Knowledge (ZKPK) protocols, while
promising for ensuring data privacy, introduce a potential knowledge extraction vulnerability. Within
SGX enclaves, AEX can interrupt execution, potentially allowing adversaries to force enclave execution
paths that inadvertently reveal secret keys. This vulnerability poses a challenge to maintaining the
con�dentiality of sensitive information.

● Remote Attestation Security Vulnerabilities: The process of remote attestation, vital for verifying the
integrity of enclave execution, faces security vulnerabilities such as Man-In-The-Middle (MITM)
attacks. These attacks encompass replay attacks, where malicious entities replay old measurement values
and TPM Quotes to impersonate a valid platform, tampering with measurements and TPM Quotes,
and masquerading, where attackers present measurement and TPM Quote data from another
legitimate system.

● Type Confusion and Module Integrity in WebAssembly: WebAssembly's utilization of
SharedArrayBu�er introduces vulnerabilities, including type confusion, in multi-threaded
environments. This can result in classic type-confusion exploit chains that potentially compromise
security. Additionally, WebAssembly implementations have faced issues related to module integrity,
including vulnerabilities like use-after-free, double-free, and bu�er over�ows, leading to data leakage
and potential exploitation.

● Limitations of zkVM: Zero-knowledge virtual machines (zkVM) o�er a paradigm shift in preserving
data privacy and integrity; however, they are not immune to certain limitations and challenges:

● Trusted Setup Complexity: zkVM implementations often require a trusted setup phase, where
initial parameters are generated to ensure the system's security. This setup phase can be
complex and time-consuming, potentially raising concerns about the security of the initial
parameters and the overall reliability of the system.

● Performance Overhead: While zkVMs provide strong privacy guarantees, they can introduce
computational overhead due to the complex zero-knowledge proof generation and veri�cation
processes. This overhead can impact the system's responsiveness and e�ciency, especially in
real-time or high-throughput scenarios.

● Proof Size and Veri�cation Complexity: Zero-knowledge proofs generated by zkVMs can be
substantial in size, leading to increased communication and storage requirements. The
veri�cation of these proofs can also be computationally intensive, posing challenges in
scenarios where rapid veri�cation is essential.

● Trade-o� between Proof E�ciency and Veri�cation Complexity: Striking a balance between
e�cient proof generation and manageable veri�cation complexity is a challenging endeavor.
While optimizing proof size and generation time can improve performance, it may also increase
the complexity of verifying these proofs, potentially hampering scalability.

● Application Integration Challenges: Integrating zkVMs into existing applications or systems
can be intricate. Developers need to adapt their code to work within the constraints and
requirements of zkVMs, potentially leading to code modi�cations and challenges in
maintaining compatibility.

● Dynamic State Changes: zkVMs may face challenges in handling dynamic state changes
e�ciently. Ensuring that proofs remain valid and accurate when state transitions occur

7

dynamically within a computation can be complex, particularly in scenarios with frequent
updates or modi�cations.

● Trust in Setup Parameters: The initial trusted setup parameters used in zkVM implementations
are critical for the security of the entire system. Ensuring the trustworthiness of these
parameters is paramount, as any compromise or manipulation could compromise the privacy
guarantees of the zkVM.

The limitations highlighted above underscore the pressing need for an innovative solution that addresses the
gaps and vulnerabilities within the current models. PRIVATON, with its veri�able proof of computation
paradigm, stands as a promising approach to overcome these challenges. In the subsequent sections, we delve
into the construction, principles, and capabilities of PRIVATON, presenting a comprehensive solution that
aspires to rede�ne the landscape of con�dential computing.

PRIVATON - The Proposed solution

In this section, we introduce PRIVATON, a cutting-edge solution designed to address the critical challenges of
privacy-preserving computations in the realm of con�dential computing. PRIVATON is a veri�able proof of
computation model that leverages state-of-the-art technologies, including Trusted Execution Environments
(TEEs) and WebAssembly (WASM) runtime environments, to establish a secure and trustworthy platform for
executing computations while safeguarding sensitive data.

6.1 Finite State Automaton Modeling

PRIVATON introduces a novel approach to modeling computations using �nite state automatons. Each
computation is broken down into a series of states, each with speci�c privileges, permissions, and capabilities.
This approach adheres to the "principle of least privilege" and the "principle of intentional use," minimizing the
privileges accessible to each computation module and explicitly allocating privileges to prevent arbitrary
allocations.

6.2 Veri�able Proof of Computation

One of the most groundbreaking features of PRIVATON is its ability to generate veri�able proofs of
computation. Each computation's execution is accompanied by a veri�able proof that attests to the fact that it
was executed exactly as speci�ed within the given execution runtime. This proof ensures that no unauthorized
data leakage or transmission occurs during the computation process, thus preserving the privacy and security of
sensitive information.

8

6.3 State Capability Model

PRIVATON implements a robust state capability model that de�nes the boundaries, permissions, and
capabilities associated with each computation state. This model is crucial for enforcing security constraints and
maintaining controlled access to computational resources. The state capability model encompasses attributes
such as module IPFS hash, entry point signature, input providers, recipients, bounds, permissions, layers, sentry
values, and lock attributes.

6.4 Veri�able Policy

Veri�able Policies (VPs) are integral components of the PRIVATON solution, designed to ensure secure and
controlled execution of computations within the system. These capabilities, infused with the principles of
�ne-grained control and explicit permissions, form a robust foundation for secure and veri�able computations.

A Veri�able Policy (VP) is a structured representation that outlines the permissible behaviors of a computation
module within a given computational environment. It de�nes the set of allowable actions and interactions that
the module can perform, along with the conditions under which these actions are permitted. The primary
purpose of a VP is to ensure that the execution of a computation adheres to a prede�ned set of rules, thereby
enabling veri�cation that the computation has been carried out as intended. This section delves into each
capability, elucidating their signi�cance and role within the VP state model.

Capability Model Attributes
● Module IPFS Hash (Parent): A cryptographic hash of the parent module's IPFS (InterPlanetary File

System) address establishes a secure linkage between the module and its origin.

9

● Entry Point Signature: The unique cryptographic signature of the entry point function enhances
identi�cation and access control.

● Input Providers: A comprehensive list of functions that serve as data input providers ensures that only
trusted sources feed information into computations.

● Recipients: Trusted recipients are explicitly de�ned to receive the output of computations, preventing
unintended data leakage.

● Bounds: Specify the maximum permissible size of the code and memory, preventing potential exploits
and resource abuse.

● Fine-Grained Permissions: Permissions are tailored to each function's state requirements, o�ering
distinct capabilities like loading data from IPFS, storing to IPFS, accessing SGX memory, executing, and
other system calls granularly for each state.

● Layer: The layer attribute encapsulates the speci�c execution phase, encompassing ENTRY, EXIT,
SEALED_SINGLE, and SEALED_MULT stages. This attribute governs the contextual access rights
for each function.

● Sentry: The sentry attribute ensures secure invocation by including the previous state's entry point
signature. This safeguard guarantees that only authorized invocations are accepted.

● Lock: Lock attributes categorize execution states as Single or Parallel, dictating whether the
computation is con�ned to a single-threaded or multithreaded execution environment.

These policies are constructed based on the information partially extracted from the WebAssembly (WASM)
debug dump using the Debugging with Attributed Record Formats (DWARF) conventions. These attributes
collectively represent the sequence of operations and steps that a computation module can perform.

The DWARF conventions serve as a standardized format for encoding debugging information, including the
structure of stack frames in the source code. When a computation module is compiled into WASM code, the
associated DWARF debug dump contains metadata that describes the composition of the module's stack
frames. The script provided utilizes DWARF conventions to accurately extract this stack frame information.

At a high level, the process of constructing VPs using DWARF conventions involves the following steps:

● Detection of Tagged Entities: The script scans through the debug dump to detect tagged entities that
signify the beginning of stack frame information.

● Attribute Extraction: Relevant attributes within the tagged entities are extracted. These attributes
include information about origin, linkage name, and program counter.

● Information Sequencing: Extracted attributes are processed in a sequence that adheres to DWARF
conventions. This sequence captures essential details about each stack frame.

These policies serve as blueprints for controlling the behavior of computations, ensuring security, privacy, and
compliance within the PRIVATON framework. The integration of these attributes within the VP state model
facilitates �ne-tuned control, safeguarding against data leaks, unauthorized access, and resource exploitation.
The inclusion of cryptographic hashes, cryptographic signatures, and explicit recipient de�nitions bolsters data

10

integrity and privacy. The allocation of precise permissions and their associated weights ensures responsible
resource utilization. The layer, sentry, and lock attributes enhance contextual security and control, enabling
computations to be securely orchestrated.

6.5 Support for TEE-WASM Variants

PRIVATON's innovative approach leverages the power of Trusted Execution Environment (TEE) technologies
with the versatility of WebAssembly (WASM) runtime environments in a uni�ed dual sandbox strategy. This
integration also caters to both TEE-backed and standalone WASM environments, ensuring robust
privacy-preserving computations in various execution scenarios.

6.5.1 TEE-WASM Synergy

In the TEE-WASM variant, PRIVATON capitalizes on the secure execution environment provided by TEEs,
such as Intel Software Guard Extensions (SGX). TEEs establish isolated enclaves where computations can be
executed with utmost con�dentiality and integrity. Within this TEE-backed environment, PRIVATON enforces
its dual sandbox strategy, compartmentalizing computations and their associated resources to prevent
unauthorized access and data leakage.

6.5.2 WASM Sandbox Adaptation

In the standalone WASM variant, PRIVATON adapts its dual sandbox strategy to the native features of WASM
runtime environments. WASM sandboxes enable secure execution of code, but they lack the inherent isolation
of TEEs. PRIVATON's approach introduces additional layers of isolation by de�ning boundaries for
computations, managing permissions, and enforcing veri�able policy state capabilities within the WASM
context. This ensures that even in a non-TEE environment, computations are shielded against external threats
and unauthorized data exposure.

11

6.5.3 Uni�ed Privacy-Preserving Execution

The integration of TEE and WASM technologies in PRIVATON's dual sandbox strategy o�ers a uni�ed
platform for executing privacy-preserving computations. Regardless of the chosen variant, the underlying
principles remain consistent: computations are isolated, privacy is preserved, and veri�able proofs of
computation are generated. This adaptability empowers developers to choose the execution environment that
best aligns with their requirements, while maintaining the same high standards of security and privacy.

6.6 Enabling Decentralized Computational Platforms

PRIVATON revolutionizes decentralized computational platforms by providing an unprecedented level of
security and con�dentiality. The integration of �nite state automatons, veri�able proofs of computation, and
state capability models empowers PRIVATON to drive next-generation computing paradigms, safeguarding
sensitive data and enabling trustless and secure interactions.

Our Construction

PRIVATON's operational mechanisms intricately weave together its state model, veri�able policy state
capabilities, and the generation of veri�able proofs of computation. This section elucidates the core concepts
behind PRIVATON's operational mechanisms, providing an in-depth understanding of how it achieves secure
and privacy-preserving computations.

In this section, we present the PRIVATON model of computation. We models a computation X into a
deterministic �nite state automaton (DFSA),
mathematically as a six-tuple (K,Σ,δ,s,A,𝚹) where:

● K is a �nite set of computation states of the dual sandbox strategy
● Σ is the computation’s inputs provisioned by the participating principals de�ned in the associated

veri�able public policy.
● s ⊂ K is the start state, in most cases representing the host with an uninitialised dual sandbox
● A ⊆ K, is the set of accepting states of the computation
● δ is the state transition function such the K x Σ → K
● 𝚹 is the computational output

A batch (𝛃) is a �nite sequence, possibly empty, of principals Σ, part of X-Margin’s pool of providers for a given
computation. Given any pool, the smallest batch that can be formed from is an empty batch, which we will write
as ε. A con�guration of a computation X is an element of K x 𝛃, that essentially captures the current state and
the input that is left to be received.

Henceforth, we refer to this model of computation within the dual sandbox environment as the PRIVATON
(XP).

12

De�nition 1: (The PRIVATON Computation)
As the transition function δ, de�nes the operations of PRIVATON (XP) one step at a time along with the
Veri�able public policy (VP) to de�ne the sequence of con�gurations that the given computation (XP) will enter.
We start by de�ning the relation “yields-in-one-step” (|-X), wherein it relates con�guration1 to con�guration2

when XP can move from the former to the latter in a single step. Mathematically,

(q1, c) |-X (q2, 𝚹) if ((q1, c), q2) ⊂ δ

where c is any element of Σ

So now the relation “yields” (|-X*) can be de�ned as re�exive, transitive closure of |-X i.e. a con�guration C1 yields
con�guration C2 if XP can go from C1 to C2 in zero or more steps. This can be written as:

C1 |-X* C2

The PRIVATON (XP) computation can now be de�ned as a �nite sequence of con�gurations C0, C1 … Cn for n
≥ 0 such that:

● C0 is the initial con�guration
● Cn is of the form of (q,ε), for some state q ⊂ K,
● C0 |-X C1 |-X C2 |-X … |-X Cn

Given 𝛃 a batch of Σ for a given computation, we de�ne the following:
● XP accepts 𝛃 if (s,𝛃) |-X* (q,𝚹) for some q ⊂ A. Any con�guration (q,𝚹), for some q ⊂ A, is called an

accepting con�guration of XP.
● XP rejects 𝛃 if (s, w) |-X* (q, 𝚹), for some q ⊄ A. Any con�guration (q, 𝚹), for some q ⊄ A, is called an

rejecting con�guration of XP.

De�nition 2: (PRIVATON Halt)
Every PRIVATON (XP) on input 𝛃, halts after |𝛃|+4 steps.
On input 𝛃 PRIVATON (XP) executes computations C0 |-X C1 |-X C2 |-X … |-X Cn where C0 is the initial
con�guration, and Cn is of the form (q,𝚹) for some state q ⊂ K. Cn is either an accepting or a rejecting
con�guration, so XP will halt when it reaches Cn. Each step in the XP computation comprises of

● A empty dual sandbox initialisation on the host as a �xed initial con�guration C1

C0 |-X C1

● A relevant veri�able public policy import into the freshly initialized sandbox con�guration state
C1 |-X C2

● Next |𝛃| steps in the computation that consumes one input from each of the principals
C2 |-X C3 |-X … |-X C|𝛃|+2

● A ready to execute (r) state after all the |𝛃| inputs to the computations have been provisioned
C|𝛃|+2 |-X Cr where r ⊆ A

● A �nal teardown state (Cn ⊆ A) that clears the sandbox environment.
In most of the scenarios Cn == C0 i.e. will revert back to its original state prior to the computation

13

So n = |𝛃|+4. Thus XP will halt after |𝛃|+4 steps.

7.1.1 Veri�able Policy State Capabilities
PRIVATON's operational mechanisms are forti�ed by the Veri�able Policy State Capabilities. These capabilities
de�ne the rules, permissions, and bounds within which computations operate. The veri�able public policy
associated with each computation encapsulates attributes such as metadata, permissions, and layers. It ensures
computations are con�ned to designated states, limiting access to speci�ed operations and data.

The PRIVATON proof is composed of the following �elds:

{
computation seed : bigint,
proof : HASH,
state proofs :
{

state commitments : HASH,
data commitments : HASH,
meta commitments : HASH

}
}

● computation seed: to introduce a randomness to the given proof computation
● proof: unique �ngerprint of the given computation derived from the state proofs
● state proofs: granular proofs of the states transitioned for the given computation each comprising the

below commitments.
○ state commitments: hash of the current state’s [function signatures, incoming state inputs,

(optional) auxiliary data structures referenced or computed within that are not part of state
outputs]

○ data commitments: hash of current state’s output(s) which would serve as the input for the
next state or as the �nal computation output

○ meta commitments: hash[state commitments (state(i)), meta commitments (state (i-1))] that
tracks the chained state transition sequence

7.1.2 Generation of Proofs of Computation
A cornerstone of PRIVATON's operational mechanisms is the generation of veri�able proofs of computation.
As a computation unfolds within the dual sandbox strategy, PRIVATON meticulously records each step. These
steps culminate in a cryptographic proof that validates the computation's precise execution as per the de�ned
state model and veri�able public policy. These veri�able proofs enhance trust and accountability in the
computation's outcome.

14

7.1.3 Integration of Dual Sandbox Strategy
PRIVATON's operational mechanisms are seamlessly integrated with the dual sandbox strategy. Whether within
a TEE-WASM enclave or a standalone WASM runtime, computations are executed within con�ned
environments. In TEE-backed enclaves, the TEE enforces isolation and attestation, while in standalone
runtimes, virtual sandboxes ensure strict access controls. This integration guarantees secure execution and
privacy preservation, regardless of the execution context.

By unifying the state model, veri�able policy capabilities, proof generation, and the dual sandbox
strategy, PRIVATON's operational mechanisms provide a comprehensive framework for secure and private
computations. This holistic approach confronts the challenges of con�dential computing, safeguarding sensitive
data and computations against a backdrop of varying execution contexts.

PRIVATON Computation Execution Framework (CEF)

The PRIVATON Computation Execution Framework (CEF) encapsulates the operational intricacies of the
PRIVATON model, orchestrating the execution of privacy-preserving computations through a systematic
approach. These computations, modeled as �nite-state units, are subject to the veri�cation and consensus
among multiple PRIVATONS, ensuring the correctness and agreement on their execution.

8.1 The Essence of PRIVATON Consensus
In the context of decentralized systems, consensus forms the cornerstone for fault-tolerant operations. For
PRIVATONS, consensus involves harmonizing the execution sequence, intermediate values, and �nal outputs
of a given computation. To illustrate this concept, consider the following notations:

- f(x): The unit of computation to be performed.
- P: A PRIVATON capable of executing f(x).
- N: The number of PRIVATONS performing the same computation f(x), where N>1
- S0 ..K: Represents the states of a PRIVATON P.

15

- K: Denotes the number of states required for the successful execution of f(x) by a PRIVATON P.
The essence of PRIVATON consensus can be captured through the following mathematical formulation:

P(f(x))=∑i=0 K (Φ(Si, Λi)+δ(Si , Si+1))

Here:
● Λi : Signi�es the input dependencies of state Si concerning computation f(x).
● δ: Represents the state transition function from Si to Si+1
● Φ: Stands for the computational output of state Si
● SK+1 = S0, ensuring cyclic transition from the last state back to the initial state.

8.2 Veri�able Consensus

A core tenet of PRIVATON consensus is the veri�able nature of computations across PRIVATONS. To
ascertain the validity of computations and to achieve consensus, the following conditions must hold:

● Identical State Commitments: The cryptographic commitments Ci of states Si across PRIVATONS
should be identical for a given computation f(x). This ensures uniformity and prevents tampering.

● Threshold-Based Execution Time: The computation execution times ti for state Si across PRIVATONS
should not deviate signi�cantly from the average threshold time across all PRIVATONS. This guards
against potential deviations and irregularities.

8.3 De�ning Fault Tolerance

In the context of PRIMATON consensus, fault tolerance refers to the system's resilience in the face of colluding
or malfunctioning PRIMATONS. Speci�cally, we denote T as the maximum number of faulty PRIVATONS
that the system can withstand without compromising the consensus process.

De�nition 3: Non-Faulty PRIVATON Computation

For a given computation f(x) and a PRIVATON Pn, the computation is deemed non-faulty if the following
criteria are met:

1. The cryptographic commitments Ck of each state Sk are identical across all PRIVATONS, n=1,...,N
and k=0,...,K.

2. The execution time ti of state Si for PRIVATON Pn does not deviate unusually from the average
threshold time across all PRIVATONS, n=1,...,N and i=0,...,K.

8.4 Ensuring PRIMATON Halt and State Transitions

PRIVATON consensus encompasses the mechanism to ensure that non-faulty PRIVATONS halt in a
synchronized manner and that state transitions occur securely. In mathematical terms:

16

Pn ∣Sk (commitment)=Ck ∀(k=0,...,K) and (n=1,...,N)
For state transitions, the following condition is established:

{
δ(Si , Si+1), ifT≤t

Halt, ifT>t

Where T represents the maximum permissible number of faulty PRIVATONS, n=1,...,N, and i=0,...,K.

In summary, PRIVATON consensus ensures the veri�able agreement among PRIVATONS regarding
the execution sequence, intermediate outputs, and �nal results of a computation. Through the establishment of
fault tolerance, identical state commitments, and synchronized state transitions, the PRIVATON Computation
Execu{tion Framework guarantees the integrity and correctness of computations in a privacy-enhanced and
decentralized environment.

Implementation Details

9.1 Data Structures

● json proof_document: This JSON object serves as the central repository for storing proof-related
information. This data structure enables the framework to maintain a record of executed computations
and their associated commitments.

● policies_cache and stack_frames_cache: These maps are used to cache state capabilities. policies_cache
holds a map of computation modules to their respective state capabilities, while stack_frames_cache
stores state capabilities for individual stack frames. These caches provide e�cient access to state
capabilities, aiding in validation and proof generation.

9.2 Core Functions

● privaton_init: This function initializes the framework, generating a computation salt. The salt is used
to introduce randomness and security to commitment calculations. It generates a random seed and
computes a commitment of the seed. The commitment and seed are then stored in the
proof_document.

● privaton_bounds_validate: This function validates execution bounds and permissions for a given
computation state. It checks if the current state's capabilities match the function's metadata and
execution bounds. If skip_bounds is enabled, only the checkpoint disabling is veri�ed.

● privaton_decode_veri�able_policy: This function decodes a veri�able policy JSON. It parses the
JSON and extracts state capabilities, committing the policy for veri�cation purposes. It also populates
stack_frames_cache with state capabilities.

17

● privaton_syscall_write_access and privaton_syscall_read_access: These functions check permissions
for syscall access, speci�cally write and read operations. They verify whether the current state has the
required permissions based on its capabilities.

● privaton_syscall_access: This function checks general syscall access, combining the checks for read
and write access. It uses the aforementioned functions to verify the permissions for the current state.

● privaton_fetch_address: This function fetches an address location based on permissions and a given
key. It veri�es the permissions and uses the key to retrieve the address from the capability's �le address
map.

● privaton_digest: This function generates and records digests for veri�cation purposes. It calculates
digests based on provided inputs, such as computation salt, function data, and other arguments. The
function computes hash digests and constructs proof entries in the proof_document.

18

● privaton_get_next_state and privaton_get_nth_previous_state: These functions retrieve the
next or nth previous computation states based on the current state. They utilize the state capabilities
and sequencing information stored in policies_cache.

● proof_builder: This function constructs and appends proof information to the proof_document. It
calculates hash digests for various parameters and commitments and updates the proof_document with
relevant information. It includes function commitments, data commitments, state commitments, and
more.

● privaton_print_proof: This function prints the proof information stored in the proof_document. It
displays the JSON structure containing computation proofs, including function commitments, data
commitments, and state commitments.

● privaton_proof_matrix: This function generates a QR code containing the proof information. It
encodes the proof document using QR code generation libraries and displays a visual representation of
the proof.

The PRIVATON framework's implementation covers a range of functionalities, from commitment
calculations and state validation to access control and proof generation. The modular design and e�cient data
structures enable the framework to facilitate privacy-preserving computations while maintaining a clear record
of executed computations for veri�cation.

Transient Speculative Execution Attacks and PRIVATON

In the intricate landscape of modern computing, the emergence of transient speculative execution attacks poses
a signi�cant threat. These attacks exploit the inherent optimizations in hardware or compiler/runtime systems,
executing predicted branches or states before they are conclusively resolved. Within the realm of PRIVATON,
such scenarios could lead to the execution of unintended states, creating vulnerabilities that malicious actors
could exploit.

Transient speculative execution attacks encompass two distinct categories: speculative execution attacks
and transient execution attacks. Speculative execution attacks involve injecting false predicted states to
manipulate module behavior. This could entail revealing sensitive information or altering execution timing.
Transient execution attacks, exempli�ed by the infamous Spectre vulnerabilities, enable attackers to manipulate
speculations to access cached data or a�ect execution timings, potentially undermining system security.

To counter these evolving threats, PRIVATON employs a multi-faceted defense strategy. First, at the
software level, PRIVATON enforces strict sequencing of state code execution. It ensures that a given state's
metadata validation must be completed before its execution, and subsequent states are executed only after the
current state's execution and validation. This sequencing minimizes the window for transient code execution
exploits, reducing the chances of speculation-driven attacks. Furthermore, the deterministic execution �ow,
guided by veri�able policy de�nitions, prevents out-of-order state executions and curtails speculation-driven
deviations.

19

However, it is important to note that PRIVATON's approach does not eliminate speculative execution
itself, as it's a hardware-level property. Instead, it focuses on controlling the timing and sequencing of states to
mitigate the risks. The prede�ned state execution sequence and mandatory metadata validations signal
speculative mispredictions and enforce policy adherence. While this strategy addresses transient execution attack
windows, it doesn't entirely handle speculative execution attacks at the hardware level.

Additionally, to enhance mitigation strategies, PRIVATON explores the concept of introducing noise
in the form of random and non-relevant states within its �nite state execution. This concept, inspired by
Google's retpoline, disrupts hardware's ability to learn patterns and preemptively counters speculative attacks by
introducing randomness into the execution patterns.

In conclusion, PRIVATON's approach to tackling transient speculative execution attacks rests on
meticulously orchestrating state sequencing, deterministic execution �ows, and the introduction of noise. By
synergizing these tactics, PRIVATON forti�es its defense against these intricate attacks, thereby reinforcing the
resilience, security, and integrity of its computational ecosystem.

Conclusion

In the rapidly evolving landscape of con�dential computing, the PRIVATON Proof of Computation
framework emerges as a groundbreaking solution that addresses critical challenges surrounding security, privacy,
and integrity. With its veri�able proof generation, state capability model, and dual sandbox strategy,
PRIVATON sets a new standard for executing privacy-preserving computations.

PRIVATON's strength lies in its ability to construct a meticulous blueprint for computations through
�nite state automatons, encapsulating privileges, permissions, and capabilities. This approach adheres to
principles of least privilege and intentional use, safeguarding against arbitrary allocations and unauthorized data
exposure. The state capability model enforces security constraints, granting controlled access to resources and
preventing data leaks.

At the heart of PRIVATON's innovation is its veri�able policy concept. By outlining permissible
behaviors and interactions, these policies ensure computations adhere to prede�ned rules, veri�ed through
cryptographic commitments and validation mechanisms. The generation of veri�able proofs of computation
enhances accountability and trust, providing a transparent record of each step executed within the framework.

PRIVATON's dual sandbox strategy further forti�es its operational mechanisms. Whether leveraged
within a TEE-backed enclave or a standalone WASM runtime, PRIVATON maintains the same standards of
security, privacy, and correctness. This adaptability empowers developers to choose the execution environment
that aligns with their needs, without compromising on the core principles of the framework.

Incorporating fault tolerance, consensus mechanisms, and synchronization across PRIVATONS, the
PRIVATON Computation Execution Framework ensures the veri�able agreement on execution sequences,

20

intermediate values, and �nal outcomes. It establishes a foundation for trustless and secure interactions within
decentralized computational platforms. As with any advanced technology, PRIVATON is not without
limitations. Addressing challenges such as complex policy management, performance overhead, and trust in
setup parameters requires ongoing research and development. However, these limitations underscore the need
for continuous innovation and improvement in the �eld of con�dential computing.

In conclusion, PRIVATON sets a new trajectory for con�dential computing by introducing a veri�able
proof of computation paradigm. Its holistic approach, encompassing state modeling, policy enforcement, and
secure execution, reshapes the way we approach secure computations. PRIVATON's integration of advanced
cryptographic techniques, decentralized consensus, and e�cient data structures opens doors to a future where
privacy and security are paramount in the digital realm.

PRIVATON 2.0 - Advancing PRIVATON

A central thrust of PRIVATON 2.0 is the introduction of Hierarchical Policy Management. The concept of a
Policy of Policies envisions a hierarchical structure where individual computations are governed by their own
speci�c policies, while higher-level policies de�ne how these computations are orchestrated within a broader
execution pipeline. This allows for a modular and �exible approach to policy management, enabling developers
to de�ne complex work�ows while maintaining �ne-grained control over each computation's behavior.

The architecture of a Merkle tree being leveraged to achieve this goal. Each leaf node of the tree
represents an individual computation, carrying its own policy attributes. These policies can include permissions,
access controls, bounds, and more. The internal nodes of the tree represent higher-level policies that de�ne how
computations are combined and executed.

The root of the Merkle tree contains the hash of the entire execution pipeline's policy, ensuring that the
entire process remains secure and tamper-proof. By specifying a path through the tree, one can load and execute
a speci�c computation along with its associated policies, ensuring that the execution adheres to the prede�ned
rules and constraints.

This ongoing improvement not only enhances the PRIVATON framework's versatility but also
simpli�es policy management for complex scenarios. This can compose computations into larger work�ows
with ease, and the Merkle tree structure guarantees the integrity of policies and computations throughout the
execution process.This approach provides the groundwork for a more comprehensive, adaptable, and secure
framework that caters to the diverse needs of modern computational environments.

12.1 IPFS Integration: Transforming Computation Dynamics
In PRIVATON 2.0, dynamic computation takes center stage with the strategic integration of the InterPlanetary
File System (IPFS). This integration is a symphony of responsiveness and adaptability, where wasm modules are
referenced by Content Identi�ers (CIDs) hosted on IPFS nodes. These CIDs become gateways to authorized
modules, allowing PRIVATON's runtime environment to seamlessly load modules in real-time during

21

execution. The e�cacy of this dynamic loading is forti�ed by stringent hierarchical policies, acting as sentinels to
validate module authenticity. These policies prevent unauthorized loading of modules lacking permissions and
meticulously track changes in the path. The result is a computational landscape that is no longer static but
perpetually dynamic, adaptable, and e�cient.

12.2 Hierarchical Policy Impacts and Work�ow Adaptation
A profound enhancement in PRIVATON 2.0 is the ability to track the cascading e�ects of policy changes.
Imagine a scenario where altering a leaf node policy reverberates through the hierarchy, reshaping the entire
work�ow. PRIVATON 2.0's hierarchical structure not only tracks these changes but also triggers a ripple
e�ect— modules to load, shifts in proof production, adjustments in backdated entries, and more.

This adaptive capability is a cornerstone of PRIVATON 2.0's evolution. As the policy tree adapts, the
framework not only ensures modules are dynamically loaded based on new policies but also recalibrates proofs,
traces historical changes, and navigates seamlessly between past and present states. The result is an ecosystem
that not only reacts to policy changes but orchestrates an entire symphony of computational adaptability.

12.3 Guardrails with eBPF-Based Explicit Syscall Permissions
The ongoing development of PRIVATON includes a signi�cant enhancement: the integration of eBPF-�lters &
explicit syscall permissions. Leveraging extended Berkeley Packet Filters (eBPF), PRIVATON's runtime gains the
capability to intercept and scrutinize system calls in real-time. This ensures that only authorized interactions
occur between computations and the underlying system, reinforcing PRIVATON's security framework. The
incorporation of eBPF-based explicit syscall permissions not only minimizes potential attack vectors but also
adds a resilient layer of protection against security vulnerabilities. Notably, the detailed traces of these system call
interactions are included in the generated proofs, enhancing transparency and accountability in the
computation process.

Furthermore, the comprehensive proof generation process of PRIVATON doesn't merely validate the execution
of computations but also meticulously re�ects the eBPF traces of system call interactions. This level of
transparency not only enhances the system's accountability but also ensures that any suspicious or unauthorized
activities are promptly identi�ed and addressed.

REFERENCES

1. C. C. Consortium, https://con�dentialcomputing.io/ (2022).
2. D. Goltzsche, M. Nieke, T. Knauth, R. Kapitza, Acctee: A webassembly-based two-way sandbox for

trusted resource accounting, in: Proceedings of the 20th International Middleware Conference,
Middleware ’19, Association for Computing Machinery, New York, NY, USA, 2019, p. 123–135.
doi:10.1145/3361525.3361541. URL https://doi.org/10.1145/3361525.3361541

22

3. J. Me ́ne ́trey, M. Pasin, P. Felber, V. Schiavoni, Twine: An embedded trusted runtime for webassembly,
in: 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021, pp. 205–216.
doi:10.1109/ICDE51399.2021.00025.

4. M. Nieke, L. Almstedt, R. Kapitza, Edgedancer: Secure mobile webassembly services on the edge, in:
Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, EdgeSys
’21, Association for Computing Machinery, New York, NY, USA, 2021, p. 13–18.
doi:10.1145/3434770.3459731. URL https://doi.org/10.1145/3434770.3459731

5. Y. Ma, Q. Zhang, S. Zhao, G. Wang, X. Li, Z. Shi, Formal veri�cation of memory isolation for the
trustzone-based tee, in: 2020 27th Asia-Paci�c Software Engineering Conference (APSEC), 2020, pp.
149–158. doi:10.1109/APSEC51365.2020.00023.

23

