
Efficient Secure Storage with Version Control
and Key Rotation

Long Chen1, Hui Guo2, Ya-Nan Li3, and Qiang Tang3

1 Institute of Software Chinese Academy of Sciences, Beijing, China
chenlong@iscas.ac.cn

2 The State Key Laboratory of Cryptology, Beijing, China
guohtech@foxmail.com

3 The University of Sydney, Sydney, Australia
{yanan.li,qiang.tang}@sydney.edu.au

Abstract. Periodic key rotation is a widely used technique to enhance
key compromise resilience. Updatable encryption (UE) schemes provide
an efficient approach to key rotation, ensuring post-compromise security
for both confidentiality and integrity. However, these UE techniques can-
not be directly applied to frequently updated databases due to the risk
of a malicious server inducing the client to accept an outdated version
of a file instead of the latest one.
To address this issue, we propose a scheme called Updatable Secure Stor-
age (USS), which provides a secure and key updatable solution for dy-
namic databases. USS ensures both data confidentiality and integrity,
even in the presence of key compromises. By using efficient key rotation
and file update procedures, the communication costs of these operations
are independent of the size of the database. This makes USS particu-
larly well-suited for managing large and frequently updated databases
with secure version control. Unlike existing UE schemes, the integrity
provided by USS holds even when the server learns the current secret
key and intentionally violates the key update protocol.

Keywords: Vector commitment · Updatable encryption · Cloud stor-
age.

1 Introduction

An increasing number of companies, government bodies, and personal users are
choosing to store their data on the cloud instead of local devices. However, as a
public infrastructure, frequent data breaches from the cloud have been reported.
One potential mitigation strategy is to allow users to upload encrypted data and
keep the decryption key locally. However, even with encryption mechanisms in
place, there is still a risk that users’ decryption keys may become compromised
over time.

To address this issue, it is widely acknowledged and implemented in the
industry to periodically refresh the secret key used to protect the data and
to update the corresponding ciphertext in the cloud. For example, the Payment

2 L. Chen, H. Guo, Y. Li and Q. Tang

Card Industry Data Security Standard (PCI DSS)[6,13] requires credit card data
to be stored in encrypted form and mandates key rotation, whereby encrypted
data is regularly refreshed from an old to a newly generated key. This strategy has
also been adopted by many cloud storage providers, such as Google and Amazon
[12]. By regularly refreshing encryption keys, the risk of data compromise can
be significantly reduced. This approach ensures that even if a decryption key is
compromised, it will only affect a limited amount of data that was encrypted
with that key. Furthermore, this strategy is relatively easy to implement and
can be automated, making it an effective way to improve cloud security.

While standardized encryption tools are available, facilitating key rotation
requires careful consideration. A naive solution is to have the client download
all encrypted data, decrypt it, choose a new key, encrypt the data, and upload
the new ciphertext to the cloud server. However, this approach is inefficient,
especially for large amounts of data. To address this issue, Boneh et al. [4] pro-
posed a new primitive called updatable encryption (UE) for efficiently updating
ciphertexts with a new key. Everspaugh et al [12] gave a systematic study of
Updatable Authenticated Encryption (UAE), especially on the key rotation on
authenticated encryption, which is the standard practice for encryption. Stan-
dard UAE constructions can guarantee the confidentiality and integrity of the
plaintext. With UAE, a client only needs to retrieve at most a short piece of in-
formation (known as the header) and generate a short update token that enables
the server to re-encrypt the data from the existing ciphertext while preserving
encryption security.

UAE constructions [17,15,5,9,3] are particularly appealing due to their ability
to provide post-compromise security. This ensures that outsourced storage can
regain its security, even in the event of a temporary client hack, as long as
the system executes the update process by updating both the secret key and
ciphertext. Notably, after re-encryption, adversaries cannot determine whether
the data has been modified, even if they have seen both the old key and the
previous version of the ciphertext.

Integrity vs. frequent data update. In numerous real-world applications,
such as E-commerce websites, social media platforms, financial institutions, and
logistics companies, users require dynamic databases that can accommodate real-
time changes in data. For instance, E-commerce websites need to manage inven-
tory in real-time as products are added, sold, or restocked. Social media plat-
forms must store and update user-generated content, such as posts, comments,
and likes, in real-time. Financial institutions require the processing and storage
of large volumes of transactional data in real-time, such as stock trades or credit
card transactions. Logistics companies need to track and manage shipments in
real-time as they move through the supply chain. These databases must be capa-
ble of handling continuous updates and modifications. To handle large volumes
of data with varying attributes, such databases must be designed to facilitate
fast data retrieval and frequent data updates.

However, despite the existence of several proposed constructions for Updat-
able Encryption (UE) in the literature [12,15,5,9,3], these schemes mainly focus

Efficient Secure Storage with Version Control and Key Rotation 3

on ensuring the confidentiality and integrity of static databases and cannot be
applied directly to dynamic databases. If the client encrypts each file using tra-
ditional UE before uploading it to the server, this approach fails to ensure data
integrity if the client performs data updates on the database. The main issue
with this approach is that the client needs a mechanism to revoke the previous
UE ciphertexts associated with outdated data stored by the untrusted server.
Otherwise, the server may provide the client with an obsolete version of the file
instead of the latest one. Although the client could keep track of every change lo-
cally, this contradicts the primary objective of utilizing fewer resources compared
to storing the entire database locally.

A promising approach for tracking changes of all files in a database is to use
vector commitment (VC), a powerful primitive proposed by Catalano and Fiore
[8]. VCs enable the commitment of an ordered sequence of n values (m1, . . . ,mn)
into a concise commitment while allowing for later opening of the commitment at
specific positions with a membership proof to prove thatmi is the i-th committed
message. To ensure security, VCs must satisfy the position-binding property,
which requires that an adversary cannot open a commitment to two different
values at the same position. The size of the commitment and each opening must
be independent of the vector degree. To guarantee the integrity of a dynamic
database, each file could be treated as an element of the vector.

The vector commitment property, especially its support for element updates,
plays a crucial role in ensuring the integrity of a dynamic database. VC has two
algorithms to update the commitment and corresponding openings. The first
algorithm updates a commitment Com by changing the i-th message from mi to
m′

i, and results in a modified Com′ containing the updated message. The second
algorithm updates an opening for a message at position j with respect to Com
to a new opening with respect to the new Com′. Indeed, Catalano and Fiore [8]
have shown that the verifiable database with efficient updates (VDB) [1] can be
constructed from the VC scheme.

Key rotation for a verifiable database. Although VC can address the in-
tegrity problem of dynamic databases, its compatibility with encryption schemes
featuring key rotation is not straightforward. Specifically, applying VC to com-
mit UE ciphertexts as vector elements may result in linear communication costs
with the entire storage during each key update. This is because updating the
VC content requires linear communication with the updated ciphertext, which
constitutes the entire content of the user’s encrypted storage.

An alternative approach to reducing communication costs is to apply VC
and UE directly to the plaintext, similar to the Enc-and-Mac combination of
AE. In this approach, users store the UE ciphertext and VC membership proof
of each file on the server while keeping the commitment locally as metadata
for integrity checks. However, this construction fails to satisfy the confidentiality
requirement if using a general VC without position hiding property, as the vector
commitment and membership proofs could potentially leak information about
the plaintexts. Although this information leakage can be avoided by committing
each file first and running VC on the commitment, it is not sufficient to achieve

4 L. Chen, H. Guo, Y. Li and Q. Tang

post-compromise security. Since the membership proofs are not updated during
key rotation, an adversary may be able to learn the updated pattern of the files in
each vector element. This information leakage can further reveal whether each file
has been updated after the epoch has evolved, which is a critical concern for post-
compromise security. Therefore, it is important to hide the information of the
membership proofs, as well as the plaintext, when considering post-compromise
security.

To address the information leakage of VC proofs, one possible suggestion
is to encrypt the VC proofs using UE schemes as well. However, this means
that updating one file would require updating all other VC proofs in the UE
construction. One straightforward solution would be to retrieve all ciphertexts,
decrypt them, update their contents, re-encrypt them, and then upload them.
However, this approach incurs linear communication costs for each file update
in relation to the entire storage. To mitigate the information leakage of the
vector commitment, a desirable solution would be to have re-randomizable vector
commitment that supports periodic re-randomization.

To tackle these challenges, new encryption with key rotation and vector com-
mitment techniques are needed that can adapt to the evolving needs of dynamic
databases. In a nutshell, the following question arises:

Is there an efficient method that enables the highest levels of confidentiality and
integrity in a frequently updated database, while minimizing communication

overhead?

1.1 Our contributions

This paper introduces a novel primitive called updatable secure storage (short
for USS), which provides a secure solution for dynamic databases with version
control. The USS scheme ensures both data confidentiality and integrity, even in
the event of key compromises. By using efficient key rotation and file update pro-
cedures, the communication costs of these operations are independent of the size
of the database. This makes the USS scheme particularly well-suited for man-
aging large and frequently updated databases in a secure and efficient manner.
The USS scheme is built on the KEM + DEM paradigm, where the DEM part
can be any UE ciphertext with IND-CPA security. This allows the USS scheme
to benefit from the efficiency of existing UE schemes while also providing strong
security guarantees against attacks on data confidentiality and integrity. Overall,
the USS scheme provides an effective solution for secure database management
in dynamic environments, where frequent data updates are necessary.

Confidentiality in the event of key leakage. The USS scheme is designed to en-
sure basic content confidentiality even in the event of temporary key leakage or
storage breach, as long as the server conducts the key rotation process in an
honest manner. This process of key rotation is an essential aspect of the storage
system, serving to limit the amount of data that could be compromised in the
event of a key breach. More precisely, USS can guarantee the confidentiality of

Efficient Secure Storage with Version Control and Key Rotation 5

the data unless the attacker can learn the key and the ciphertexts in the same
epoch. In more precise terms, the USS scheme can guarantee data confidentiality,
unless the attacker can learn both the key and the ciphertexts within the same
epoch. Hence USS scheme can effectively mitigate the impact of key breaches, as
it reduces the window of opportunity for attackers to gain access to both pieces
of information simultaneously.

Integrity for dynamic databases. The USS scheme provides strong integrity guar-
antees in dynamic databases, where a malicious server may attempt to deceive
the client by providing an outdated version of data. More precisely, the strong
integrity allows the server to be fully malicious and may not follow the protocol
to behave most of the time. In contrast, existing UE schemes, such as those pro-
posed in [12,17,15,5,9,3], assume that the server will honestly proceed with the
key rotation procedure. However, this assumption is unrealistic in many scenar-
ios, and it limits the ability of UE schemes to provide comprehensive protection
against attacks on data integrity. Furthermore, while UE schemes exclude the
case where an adversary forges ciphertexts after learning the current secret key,
the USS scheme can guarantee data integrity even if the secret key is leaked. This
is a significant advantage of the USS scheme, which offers stronger protection
against a wider range of attacks.

Post-compromise security. The USS scheme offers post-compromise security for
confidentiality. Specifically, if an adversary compromises both the secret key
and storage in some epoch, they cannot gain any advantage in decrypting ci-
phertexts obtained in epochs after the compromisation. To capture the notion
of post-compromise security, we introduce a security game called key update
unlinkability. This game requires that attackers cannot distinguish whether an
updated ciphertext is key updated from a previously corrupted ciphertext. Ad-
ditionally, the USS scheme provides file update unlinkability, which guarantees
that attackers who corrupt storage before and after a file update operation learn
nothing about the update itself, such as whether the file content has changed and
what the current content is. These security notions are essential for protecting
sensitive data in scenarios where confidentiality is of utmost importance, such
as in healthcare, finance, and government applications.

1.2 Technique overview

Intuitively, USS can be regarded as a secure version of Github that provides
secure outsourced storage and version control services even when the server is
not fully trusted. USS enables users to create remote repositories on the server
while keeping a secret key and a public stub on the client side. Its primary goal
is to provide the best possible security under the key compromise. To this end,
USS employs a periodic key rotation mechanism similar to UE schemes, which
prevents an adversary from learning stored data even with a leaked key.

Unlike UE schemes, the integrity of USS relies on the public stub of the
repository rather than the secret key. As long as the stub is correctly kept by

6 L. Chen, H. Guo, Y. Li and Q. Tang

the user, the server cannot deceive the user. Keeping a public stub is much easier
than secretly keeping a key on the client side. Furthermore, the stub changes
if any file in the repository gets updated, which makes it convenient for users
to track the versions of the entire repository. Even if the server is malicious, it
cannot force the client to accept an old version of a file instead of the latest one.

One possible solution is to use a vector commitment to commit to all files
in the repository. The commitment value, which is the stub stored on the client
side, can be updated efficiently using the vector commitment whenever there
are changes to the files [8]. However, this approach raises the concern that the
commitment value itself may reveal information about the repository. Another
approach is to encrypt the files during updates and use a vector commitment to
commit to the resulting ciphertexts. However, this approach faces the challenge
that the ciphertexts may change during key updates, causing the commitment
value to update accordingly. Since the new ciphertexts are computed on the
server side, the client cannot update the stub locally.

An alternative solution is to use a classic commitment to commit to each
file and then use a vector commitment to commit to each classic commitment
value. The content of each file can then be encrypted using the updated encryp-
tion. However, this approach may raise concerns about post-compromise security.
Specifically, an attacker who gains access to the server can track the member-
ship proofs and the vector commitment value stored on the server. These values
will not change if the files remain unchanged, allowing the attacker to easily
determine whether any files have been modified.

Homomorphic vector commitment. To address this dilemma, we introduce the
concept of homomorphic vector commitment (HVC), which extends the classical
additive homomorphic commitment (e.g., Pedersen commitment [18]). Besides
the position-binding property, HVC offers a significant advantage over existing
VC constructions [8,16,2,7] by satisfying both the position hiding and homo-
morphic properties simultaneously. The position hiding property states that one
cannot distinguish whether a commitment was created to a vector (m1, . . . ,mn)
or to (m′

1, . . . ,m
′
n), even after seeing some openings. Although many existing

vector commitment constructions already satisfy the homomorphic property, we
observe that augmenting them with position hiding using the hybrid method-
ology would destroy the homomorphic property. By contrast, HVC provides a
more elegant solution that preserves both properties. Specifically, HVC allows
a user to commit to a vector of values and later reveal the value at a certain
position of the committed vector without revealing any information about other
vector elements. Moreover, HVC supports efficient homomorphic operations on
both the commitment and the openings. The detailed construction of HVC is in
Section 4.

In our proposed USS construction, each file in the repository is represented
as an entry in a vector. The commitment of this vector serves as a concise stub
that represents the entire repository. The binding property of the HVC ensures
that any changes to the files will be detected by the client, even if the stub is
public and the key is leaked. The homomorphic property of HVC allows the

Efficient Secure Storage with Version Control and Key Rotation 7

client to efficiently update the stub by computing a new commitment for the
updated vector whenever any file in the repository changes. Finally, the hiding
property of HVC ensures that an adversary cannot learn any information about
individual files from the public stub and other files’ membership proofs. At the
end of each epoch, the client can rerandomize the stub by homomorphically
adding an HVC of zero vectors. This is because an attacker cannot distinguish
between the commitment value of the zero vector or the difference vector of the
new and old files, and thus cannot track whether files have changed or not.

Homomorphic updatable encryption. However, the above approach alone is in-
sufficient to guarantee post-compromise security. If an attacker gains access to
the membership proof of the vector commitment, they could determine whether
a file has changed over two epochs. One possible way is to wrap the vector
commitment membership proofs with UE, but this approach may present ad-
ditional challenges for proof updates, particularly when updating a single file.
In VC, changes to one element require updates to membership proofs of all
elements[10]. Therefore, all UE ciphertexts of the membership proofs must be
updated with the plaintext. To ensure efficient database management, the en-
cryption scheme must enable the server to compute the opening update in a
homomorphic manner without requiring the retrieval of the ciphertexts of the
membership proofs.

Thus, homomorphic updatable encryption is a critical feature for efficient
database management, as it enables updates to be performed on the server side
on the ciphertexts of the membership proofs without decryption. This reduces
communication costs and enhances the scalability of the system. To the best of
our knowledge, only one existing updatable encryption scheme, RISE [17], has
homomorphic properties for plaintexts. RISE only supports the homomorphic
operation by multiplying a new element. Fortunately, we discovered that the
opening update of the bilinear pairing-based VC [8] also involves the multiplica-
tion of group elements. As a result, VC membership proofs could be encrypted
via RISE [17] and we can leverage RISE’s homomorphic property to update the
encryption of the VC membership proofs.

2 Preliminary

Here we describe the hardness assumption and several primitives that will be
used in our constructions.

2.1 Square-CDH Assumption

Recall the definition of bilinear groups. Let G, GT be bilinear groups of prime
order p equipped with a bilinear map e : G × G → GT . Let g ∈ G be random
generators. For an algorithm B, define its advantage as

AdvSquare-CDH
B (λ) = |Pr[B(g, ga) = ga

2

]

8 L. Chen, H. Guo, Y. Li and Q. Tang

where a ←$ Zp are randomly chosen. We say that the Square-CDH (Square
Computational Diffie-Hellman) assumption holds, if for any probabilistic poly-

nomial time (PPT) algorithm B, its advantage AdvSquare-CDH
B (λ) is negligible in

λ, where λ is the security parameter.

2.2 Vector Commitment

A vector commitment is defined with a tuple of algorithms [8]

VC = (VC.Setup,VC.Com,VC.Open,VC.Ver,VC.Update,VC.ProofUpdate)

that works as follows:

– VC.Setup(1λ,M, n)→ crsn: Given the security parameter λ, the description
of message space M, and the size of committed vector n, the probabilistic
setup algorithm outputs a common reference string crsn

– VC.Comcrsn(m1, . . . ,mn) → (C, aux): On input an ordered sequence of n
messagesm1, . . . ,mn and the common reference string crsn, the commitment
algorithm outputs a commitment string C and the auxiliary information aux.
We denote the commitment space as C.

– VC.Opencrsn(m, i, aux) → Λi: This algorithm is run by the committer to
produce a membership proof Λi that m is the i-th committed message. We
denote the commitment space as P.

– VC.Vercrsn(C,m, i, Λi) → 1/0: The verification algorithm outputs 1 only if
Λi is a valid proof that m is the i-th committed message to the C.

– VC.Updatecrsn(C,m,m′, i,)→ (C ′, U): This algorithm is run by the commit-
ter who produced C and wants to update it by changing the i-th message m
to a new message m′. It outputs a new commitment string C ′ together with
an update information U .

– VC.ProofUpdatecrsn(C, Λj ,m
′, i, U) → Λ′

j : This algorithm can be run by
any user who holds the membership proof Λj for some message on position
j w.r.t. C, and it allows the user to compute the updated proof Λ′

j valid
w.r.t. C ′ which contains m′ as the new message at position i. Basically, the
value U contains the updated information which is needed to compute such
values.

A vector commitment (VC) scheme is expected to satisfy correctness, posi-
tion binding, and conciseness [8]. However, the hiding property of VCs has not
been extensively discussed in many existing constructions. Hiding VCs can be
obtained by composing a non-hiding VC with a standard commitment scheme.

2.3 Updatable Encryption

Updatable encryption (UE) is a cryptographic technique that allows periodic
updates of the secret key of encrypted outsourced data. The syntax of UE is
defined as follows:

Efficient Secure Storage with Version Control and Key Rotation 9

Definition 1 (Updatable Encryption). The updatable encryption (UE) con-
sists of the following six algorithms

UE = (Setup,Keygen,Enc,Dec,Next,Upd).

– UE.Setup(1λ) is a randomized algorithm run by the client. It takes the secu-
rity parameter λ as input and outputs the public parameter pp which will be
shared with the server. Later all algorithms take pp as input implicitly.

– UE.Keygen(e) is a client-run randomized algorithm. It takes the epoch index
e as input and outputs a secret key ke for the epoch e.

– UE.Enc(ke,m) is a client-run randomized algorithm. It takes the secret key
ke and the message m as inputs, and outputs the ciphertext Ce.

– UE.Dec(ke, Ce) is a deterministic algorithm run by the client. It takes the
secret key ke and the ciphertext Ce as inputs, and outputs the message m or
the symbol ⊥.

– UE.Next(ke, ke+1) is a randomized algorithm run by the client. It takes the
old secret key ke of the last epoch and the new secret key ke+1 of the current
epoch as inputs and outputs a re-encrypt token ∆e or the symbol ⊥.

– UE.Upd(∆e, Ce) is a deterministic algorithm run by the server. It takes the
re-encrypt token ∆e and the ciphertext Ce as inputs, and outputs a new
ciphertext Ce+1 under the secret key ke+1 or the symbol ⊥.

The correctness condition of an updatable encryption scheme ensures that
an update of a valid ciphertext Ce from epoch e to e+ 1 leads again to a valid
ciphertext Ce+1 that can be decrypted under the new epoch key ke+1. The
security definition of UE can be found in Appendix A and [17].

RISE. In this paper, we leverage the homomorphic updatable encryption-
RISE [17]. Recall the RISE construction as follows:

– RISE.Setup(1λ): return pp as public parameter, also an implicit input of the
following algorithms.

– RISE.Keygen(e): ke ←$ Z∗
p.

– RISE.Enc(ke,m): y = gke , r ←$ Zq, return Ce ←$ (yr, grm).

– RISE.Dec(ke, Ce): parse Ce = (C1, C2), return m← C2 · C−1/ke+1

1 .
– RISE.Next(ke, ke+1):∆e+1 ←$ (ke+1/ke, g

ke+1), return ∆e+1.
– RISE.Upd(∆e+1, Ce): parse ∆e+1 = (∆, y′) and Ce = (C1, C2), r

′ ←$ Zq,

C ′
1 ← C∆

1 · y′r
′
, C ′

2 ← C2 · gr
′
, return Ce+1 ← (C ′

1, C
′
2).

The updatable RISE encryption scheme has been proven to be IND-ENC
secure under the decisional Diffie-Hellman (DDH) assumption [17]. Further-
more, it has been observed that RISE is homomorphic under its encryption
algorithm Enc and decryption algorithm Dec. Specifically, given two plaintexts
m and m′, their respective RISE ciphertexts are RISE.Enc(ke,m) = (C1, C2) and
RISE.Enc(ke,m

′) = (C ′
1, C

′
2). Then, their product is computed as RISE.Enc(ke,m)·

RISE.Enc(ke,m
′) = (C1 ·C ′

1, C2 ·C ′
2). The decryption algorithm of RISE satisfies

RISE.Dec(RISE.Enc(ke,m) · RISE.Enc(ke,m′)) = m ·m′.

10 L. Chen, H. Guo, Y. Li and Q. Tang

3 Updatable Secure Storage

As previously introduced, an updatable secure storage (USS) system can be
considered an advanced version of GitHub that offers secure outsourced storage
and version control services, even in scenarios where the trustworthiness of the
server is not fully assured. USS provides users with the capability to create
and update remote encrypted repositories on the server while maintaining a
secret key and a public stub on the client side. The stored data and its updated
version remain confidential and can only be accessed by authorized parties with
the secret key. Additionally, USS ensures that a malicious server is unable to
manipulate the client into accepting a tampered database or an outdated file,
even if it gains access to the client’s secret key or violates the protocol during
each interactive procedure including file updates, key updates, and data retrieval.

Moreover, the USS system supports key rotation, a feature that is similar to
updatable encryption schemes [12]. Key rotation is a critical security mechanism
that ensures the confidentiality of the database, even if either the key or the
storage is compromised, but not both simultaneously. By periodically rotating
the secret key, the USS system can prevent an attacker who has gained access
to an old key from knowing the current plain version of the database. This is
particularly important in scenarios where the key may have been compromised,
as it ensures that any data stored on the server remains secure.

Furthermore, we consider the possibility of external attackers gaining access
to the repository stored on the server temporarily and occasionally, mirroring
frequently reported data breaches. Despite the repository being encrypted, mon-
itoring the alterations in the encrypted repository could unveil its update his-
tory, which has the potential to expose users’ activities and preferences, thus
compromising the privacy of the individual. For instance, if the user updates a
file related to their medical records, an attacker who gains access to the update
history can infer that the user has medical issues, even if they cannot access
the actual contents of the file. To mitigate this issue, we propose a file update
unlinkability mechanism in USS during key rotation. This mechanism utilizes a
rerandomization algorithm to conceal the update history of the database if the
attacker has only intermittent access to the stored encrypted repository.

To ensure system efficiency, USS uses efficient data update techniques and
secret key refresh/rotation mechanisms. These mechanisms guarantee that com-
munication costs and client workloads remain independent of the number and
size of files stored in the system.

3.1 Syntax of USS

To ensure the security of remotely stored data, the USS creates a unique secret
key for each encrypted repository. The user will possess the secret key and a
unique stub associated with the respective repository on the client side. Each
repository can store a predetermined number of encrypted files. When a specific
file is required, the user can retrieve it from the remote repository, decrypt its
content using the secret key, and verify its integrity. If a file needs to be updated,

Efficient Secure Storage with Version Control and Key Rotation 11

the client will interactively communicate with the server to modify the file within
the repository. Additionally, the client will periodically generate new keys and
update the encrypted files in the repository to maintain security.

Accordingly, the syntax of USS should be as follows.

– USS.ParGen(1λ,M, n) → pp: Given the security parameter λ, the descrip-
tion of message space M, and the size of vector degree n, the parameter
generation algorithm generates the public parameter pp.

– USS.KeyGen(1λ, pp) → sk: Given the security parameter λ and the public
parameter pp, the key generation algorithm generates the secret key sk.

– USS.Store(db, sk, pp)→ (rep, sb): Given a database db that contains n inde-
pendent files m1, . . . ,mn, and the public parameter pp, the client executes
the data storing algorithm. The output of this algorithm is a repository
rep = (c1, . . . , cn), which will be stored on the server side, along with a stub
sb that will be accessible to both the server and the client. Each ci is the
ciphertext corresponding to the file mi.

– USS.Revclient(i, sk, sb, pp) ⇆ USS.Revserver(rep, sb, pp) → ⟨mi/⊥; ·⟩: The
data retrieval algorithm is an interactive procedure that enables the client
to retrieve file i from the server. The client provides the index i, secret key
sk, stub sb, and public parameter pp. The server holds the repository rep
and public parameter pp. If the data retrieval procedure succeeds, the client
will output mi; otherwise, it will output ⊥.

– USS.FileUpclient(i,m
′
i, sk, sb, pp) ⇆ USS.FileUpserver(rep, sb, pp)→ ⟨sb′; sb′, rep′⟩:

The file update is an interactive procedure that allows the client to update
the ith file to m′

i. Specifically, the client holds the index i, the new ith file
m′

i, the secret key sk, the stub sb and the public parameter pp, and the
server has the storing repository rep together with the public parameter pp.
After the interaction, the client will have a new stub sb′, and the server will
store a new repository rep′.

– USS.KeyUpclient(sk, sk
′, sb, pp) ⇆ USS.KeyUpserver(sb, rep, pp)→ ⟨sb′; rep′⟩:

The key update is an interactive procedure that makes the server to update
the storing file to a new key sk′. After the interaction, the client will have a
new stub sb′, and the server will store a new repository rep′.

Basically, the USS scheme should satisfy the following properties for correct-
ness and efficiency.

Correctness. The correctness guarantees that when the client invokes the data
retrieval procedure to fetch the ith file if the server is honest, the client
always successfully gets mi no matter how many times the key has been
updated and mi is the latest updated version of the ith file deposited by the
client.

Client storage efficiency. The client storage efficiency requires that the size
of the information stored on the client side, including the secret key sk and
the stub sb, should be independent of the size of database db and even the
number of the files n.4

4 The size of public parameter stored on both client and server should be independent
of the size of database db, although it may be related to the number of files n.

12 L. Chen, H. Guo, Y. Li and Q. Tang

Retrieve efficiency. To ensure efficient retrieval, the communication cost for
the interactive procedure data retrieval should be independent of the size
of other plaintext files mj for j ̸= i and the number of files n in the entire
repository when retrieving the i-th file. However, it may depend on the size
of the retrieved file mi.

File update efficiency. For efficient file updates, the communication cost for
the file update procedure should be independent of the size of other plain-
text files mj for j ̸= i and the number of files n in the entire repository when
updating the i-th file. However, it may depend on the size of the updating
file mi.

Key update efficiency. In order to ensure efficient key updates, it is desir-
able that the communication cost associated with the key update procedure
remains independent of the size of all files mi for i = 1, . . . , n. If the com-
munication cost is also independent of the number of files n in the reposi-
tory, we classify these schemes as ciphertext-independent. Conversely, if the
communication cost depends on the number of files, we refer to them as
ciphertext-dependent schemes.5

3.2 Security Models

The security threats associated with USS arise from three main sources. Firstly,
the system must safeguard the confidentiality of the stored database against
the honest but curious server and external attackers who have temporary and
intermittent access to server storage and user secrets with no time overlap. Sec-
ondly, the system must retain the integrity of the stored database against the
malicious server. Thirdly, given the possibility of the encrypted repository being
compromised by external attackers multiple times, and potentially exposing the
update history of the repository, the system must offer security guarantees that
prevent update history leakage, even if the user’s secret is ever revealed once
simultaneously.

We present three models aimed at addressing confidentiality security chal-
lenges: IND-DD-UP (indistinguishability of dynamic databases under chosen
plaintext attacks), IND-REENC-CPA (indistinguishability of re-encryption ci-
phertext under chosen plaintext attacks), and ciphertext indistinguishability for
file update (IND-FileUp-CPA for short). The IND-DD-UP and IND-FileUp-
CPA models ensure the fundamental confidentiality of the original database and
updated files respectively, while the IND-REENC-CPA model provides post-
compromise security and the ability to conceal the update history of the repos-
itory. Intuitively, the IND-DD-UP model stipulates that an adversary cannot
distinguish between two vectors of messages once they are encrypted. This holds
even if the adversary has the ability to corrupt keys, trigger file updates, or initi-
ate key rotations. The IND-FileUp-CPA model ensures that an adversary cannot
distinguish between two files used to replace the current file in the repository,

5 This notion is directly borrowed from the updatable encryption framework, which
distinguishes between ciphertext-dependent and ciphertext-independent versions.

Efficient Secure Storage with Version Control and Key Rotation 13

even if the attacker knows the previously stored data. On the other hand, the
IND-REENC-CPA model ensures that an adversary cannot distinguish whether
the ciphertexts have been updated after a key rotation. This is also true even
if the adversary has the ability to corrupt keys, trigger file updates, or initiate
key rotations. Our proposed models are similar to the IND-ENC and IND-UPD
models presented in [17], respectively.

To address the security challenges related to message integrity, we propose a
model called ordered full plaintext integrity (OF-PTXT for short). Intuitively,
OF-PTXT imposes stricter requirements than the INT-PTXT game for the up-
datable encryption proposed in [15], as it guarantees message integrity even in
the presence of a leaked secret key and non-compliant servers that do not rotate
keys as required by the protocol.

Confidentiality. Our confidentiality-related models consider three critical secu-
rity properties: message confidentiality (IND-DD-UP), file update unlinkability
(IND-FileUp-CPA), and re-encryption indistinguishability (IND-REENC-CPA).
In these models, the adversary may attempt to compromise the confidentiality
of any files in a target repository. The encryption of the target file is referred
to as challenge ciphertext. Furthermore, the repository that contains the tar-
get files is called the challenge repository. However, since the key is rotated
when the epoch evolves, the key-updated version of the challenge ciphertext is
referred to as challenge-equal ciphertext. For simplicity, we also use the term
“challenge-equal ciphertext” to represent both original and key-updated ver-
sions of the challenge ciphertext. Consequently, the repository containing the
challenge-equal ciphertexts is called the challenge-equal repository.

More precisely, the challenger maintains the following internal states.

e: The current epoch number. It is initialized as 1.
e∗: The epoch number from which the challenge begins. It is initialized as ⊥.
sb∗: The current stub of a repository including challenge-equal ciphertexts, which

is initialized as ⊥.
K: The set of epochs in which the adversary has corrupted the epoch key by

querying the key corruption oracle.
C: The set of epochs in which the adversary corrupts a challenge-equal ciphertext

by querying the challenge-equal ciphertext corruption oracle.
I: The set of indices of challenge-equal ciphertexts in the repository. Before the

adversary submits the challenge, the set is empty I = ∅.
L: The collection consists of tuples (t, sb, rep, db) which will be used to track all

the repositories on the server, where t represents the epoch number, sb rep-
resents the corresponding stub, and rep and db represent the corresponding
encrypted repository and plaintext database, respectively.

S: The collection contains tuples (t,Trans), where t represents the epoch number
and Trans represents all the corresponding key update transcripts from epoch
t− 1 to epoch t.

F : The collection of challenge-equal ciphertexts’ file update transcripts contains
tuples (sb, t, i, fti), where fti represents the file update transcript generated

14 L. Chen, H. Guo, Y. Li and Q. Tang

in the file update query O.FileUp(sb,m′
i, i) at epoch t, and the index i is the

index of a challenge-equal ciphertext.

T : The set of epochs in which the adversary queries the key update transcript
oracle. If the transcript of the key update procedure from skt to skt+1 is
corrupted, it is represented as t ∈ T . The set T is initially empty, indicating
that the adversary has not yet queried the key update transcript oracle.

The adversary is given the following oracles.

– O.Store(db): The purpose of this oracle is to enable the adversary to deposit
a database on the server. To this end, the challenge invokes the storing
algorithm Store(sk, db, pp) to generate the stored file rep and the stub sb,
which are then given to the adversary. Furthermore, the challenger adds the
tuple (e, sb, rep, db) to the set L.

– O.Next: The adversary uses this oracle to initiate the update of all repos-
itories on the server. The adversary will automatically gain access to their
updated versions, except for the challenge-equal ciphertexts.

Specifically, the challenger retrieves all entries (e, sb, rep, db) from the database
L having the current epoch number e. Subsequently, the challenger generates
a new epoch key sk′ and executes the key update procedure to produce new
stubs sb′ and new repository rep′ for each retrieved entry. The transcripts of
the generated key updates are denoted as Trans. The current epoch number
is then incremented to e + 1, and new entries (e, sb′, rep′, db) are appended
to the database L. Additionally, a new entry (e,Trans) is added to the list
S. Furthermore, if there exists an entry (e, sb, ∗, ∗) ∈ L with sb = sb∗, then
sb∗ is also updated accordingly. The challenger provides the adversary with
the stub and ciphertext elements having non-challenge indices {j}j /∈I for the
current epoch. For all other entries (e, sb, ∗, ∗) ∈ L such that sb ̸= sb∗, the
adversary is furnished with the updated versions of (sb, rep).

– O.KeyCorr(t): The purpose of this oracle is to facilitate the adversary in
retrieving the secret key. If the epoch number t is not greater than the current
epoch number e, the oracle will provide the adversary with the secret key
skt corresponding to epoch t. Additionally, epoch t will be included in the
set of key corruptions K.

– O.KeyUpTrans(t): The purpose of this oracle is to facilitate the adversary
in retrieving the key update transcript. If epoch number t is no more than
the current epoch number e, retrieve the entry (t,Trans), and return the key
update transcript Trans of all ciphertexts from epoch t− 1 to epoch t to the
adversary. Add epoch t to the set of key corruptions T .

– O.FileUp(sb,m′
i, i): This oracle enables the adversary to modify the i-th file of

the current epoch to be the encryption of m′
i. The input includes the stub sb,

the new file m′
i, and its index i, where i ∈ [1, n]. The challenger first retrieves

the entry (t, sb, rep, db) in L with the current epoch number t = e and the
same stub sb. If the entry is empty, the oracle outputs ⊥. Otherwise, the
challenger executes FileUpclient(i,m

′
i, ske, sb, pp) ⇆ FileUpserver(rep, sb, pp)

and updates the entry with (e, sb′, rep′, db).

Efficient Secure Storage with Version Control and Key Rotation 15

If sb ̸= sb∗, then the challenger returns (sb′, rep′) and the file update tran-
script fti to the adversary. If sb = sb∗, which means that the queried stub
sb is the stub of a challenge-equal ciphertext in the current epoch, then
the challenger updates sb∗ ← sb′ and checks whether index i belongs to a
challenge-equal ciphertext. If i ∈ I, remove i from I, add a tuple (sb, e, i, fti)
to collection F . The challenger returns the updated stub sb′ and each up-
dated ciphertext f ′

j with index j /∈ I to the adversary. If i /∈ I, the challenger
returns the updated stub sb′, the file update transcript fti, and each updated
ciphertext f ′

j with index j /∈ I to the adversary.
– O.ChaCTCorr(j): This oracle helps the adversary to learn the jth ciphertext

of the challenge-equal ciphertext vector in the current epoch. If j ∈ I, the
jth element is a challenge-equal ciphertext for the current epoch. Then the
challenger finds the entry (t, sb, rep, db) of L with the current epoch number
t = e and the stub sb is equal to sb∗ ̸= ⊥, and add the current epoch e to
the challenge-equal ciphertext corruption set C and give the adversary the
jth ciphertext fj where rep = (f1, . . . , fn). If j /∈ I, return ⊥.

– O.ChaFTCorr(sb, t, i): This oracle helps the adversary to learn the file update
transcripts of challenge-equal ciphertexts. The challenger finds the entry
(sb, t, i, fti) of F with the same stub sb, epoch t, and index i, and returns
the transcript fti to the adversary

Trivial win condition. Adversaries could trivially win the confidentiality game
if they corrupt both the epoch key and the challenge ciphertext or the updated
version at that epoch. Since adversaries are given access to multiple oracles,
where key update transcripts could help to update ciphertexts to the new key
due to USS’s function and even downgrade ciphertexts to the previous key if
USS’s update function is bi-directional. To exclude the trivial win conditions,
we define an extended ciphertext corruption set C̃ to record the epochs at which
adversaries corrupt the challenge ciphertext via directly querying the challenge
ciphertext oracle O.ChaCTCorr or indirectly referring to the challenge ciphertext
based on queries of O.KeyUpTrans and O.ChaCTCorr. Here we assume the key
update transcripts could update/downgrade ciphertexts in bi-direction since the
scheme we use to construct USS supports it. Then we have i ∈ C̃ if i ∈ C, or
i − 1 ∈ C & i ∈ T , or i + 1 ∈ C and i + 1 ∈ T . The trivial win condition is
K ∩ C̃ ̸= ∅.

Message Confidentiality. Here we defined IND-DD-UP security which aims to
capture CPA style message confidentiality in the key updatable and file up-
datable setting. Concretely, the adversary can query O.Store oracle for repos-
itory encryption in the storage. The adversary is allowed to engage the key
rotation and get the update of non-challenge-equal files via the O.Next oracle.
The adversary can also corrupt some epoch key and challenge-equal file via the
O.KeyCorr,O.ChaCTCorr oracles. Furthermore, the adversary is allowed to query
file update of each repository viaO.FileUp oracle. To exclude the trivial win of the
security game, the adversary is not allowed to see the key and the challenge-equal
file encryption simultaneously. Such requirements are similar to the restrictions

16 L. Chen, H. Guo, Y. Li and Q. Tang

in the security models of the updatable encryptions [14]. Formally, we have the
IND-DD-UP game as Figure 1.

Expind-dd-upUSS,A (1λ,M, n, b)

pp← ParGen(1λ,M, n), Initialize e = 1, e∗ = ⊥, sb∗ = ⊥, Set K, C, I,L,S, T ,F as ∅
sk1 ← KeyGen(pp)

(db0, db1, state)← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans
1 (pp)

Parse db0 = (m0,1, . . . ,m0,n), db1 = (m1,1, . . . ,m1,n)

(sb∗, rep∗)← Store(dbb, ske, pp)

e∗ = e, L = L ∪ (e, sb∗, rep∗, dbb)

for i = 0 to n

if m0,i ̸= m1,i, then I = I ∪ {i}

b′ ← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans,O.ChaFTCorr,O.ChaCTCorr
2 (state, rep∗)

return b′ if K ∩ C̃ = ∅

Fig. 1. The game of IND-DD-UP.

Definition 2 (IND-DD-UP). An updatable secure storage scheme USS is called
IND-DD-UP secure if for any PPT adversary A the following advantage is neg-
ligible in the security parameter λ:

Advind-dd-upUSS,A (1λ,M, n) :=
∣∣∣Pr[Expind-dd-upUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-dd-upUSS,A (1λ,M, n, 1) = 1]

∣∣∣
File update unlinkability. To capture the security that the file update operation
does not leak the confidentiality of the updated file, we define the file update un-
linkability via the following experiment with the adversary. Intuitively, it ensures
that attackers corrupting the storage before and after a file update operation
learn nothing about file updates, such as whether the file content has changed,
and what the current file content is.

We describe the file update security experiment Expind-fileup-cpaUSS,A for the key up-

datable dynamic secure storage scheme USS and adversary A. In Expind-fileup-cpaUSS,A
experiment, A submits two possible file (m1,0,m1,1) for challenge. The chal-
lenger updates the first file of the stored storage with one of the two submissions
selected randomly and gives the updated ciphertext to the adversary as the chal-
lenge ciphertext. A’s goal is to give a correct guess on which file is chosen to
update. The trivial win situation is that the adversary corrupts both the epoch
key and the challenge-equal ciphertext at the same epoch, i.e., K ∩ C ≠ ∅.

Definition 3 (IND-FileUp-CPA). An updatable secure storage scheme USS
is called IND-FileUp-CPA secure if for any PPT adversary A the following ad-

Efficient Secure Storage with Version Control and Key Rotation 17

Expind-fileup-cpa
USS,A (1λ,M, n, b)

pp← ParGen(1λ,M, n), Initialize e = 1, e∗ = ⊥, sb∗ = ⊥, Set K, C, I,L,S, T ,F as ∅
sk1 ← KeyGen(pp)

(sb, i,m0,i,m1,i, state1)← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans
1 (pp)

if (e, sb, ∗, ∗) /∈ L, or i /∈ [1, n], or |m0,i| ̸= |m1,i|, then return ⊥
Retrieve (e, sb, rep, db = (m1, . . . ,mn)), Set e∗ = e, I = I ∪ {i}, C = C ∪ {e}
Run FileUptoken(ske, sb,mb,i, i, pp) ⇆ FileUpserver(sb, rep, pp)→ ⟨sb

∗; rep∗⟩
L = L ∪ (e, sb∗, rep∗, dbb = (m1, . . . ,mb,i, . . . ,mn))

Record the file update transcript as fpt

b′ ← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans,O.ChaFTCorr,O.ChaCTCorr
2 (state1, sb

∗, rep∗, fpt)

return b′ if K ∩ C̃ = ∅

Fig. 2. The game of IND-FileUp-CPA

vantage is negligible in the security parameter λ:

Advind-fileup-cpaUSS,A (1λ,M, n) :=∣∣∣Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 1) = 1]
∣∣∣

Key update unlinkablity. Intuitively, key update unlinkability is aimed to capture
the security for key updates after both corruptions. More concretely, attackers
may corrupt both the client and the server at the same epoch. After the key
rotation, attackers corrupt the server and obtain the updated ciphertext. Key
update unlinkability ensures that attackers cannot detect whether the updated
ciphertext contains the same plaintext as the previous corrupted ciphertext.
The security is similar to the IND-UPD security of UE [17] since we provide the
adversary with all the oracles IND-UPD security provides. In addition, our key
update unlinkability allows the adversary to have additional access to the file
update oracle.

We define the following security experiment Expind-reenc-cpaUSS,A for updatable se-
cure cloud storage scheme USS and adversary A, who has access to the oracle tu-
ple (O.Store,O.Next,O.KeyCorr,O.FileUp,O.KeyUpTrans,O.ChaCTCorr) like in
the above confidentiality games. So, the trivial win condition is triggered in the
same case.

Definition 4 (IND-REENC-CPA). An updatable secure storage scheme USS
is called IND-REENC-CPA secure if for any PPT adversary A the following
advantage is negligible in the security parameter λ:

Advind-reenc-cpaUSS,A (1λ,M, n) :=∣∣∣Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 1) = 1]
∣∣∣

18 L. Chen, H. Guo, Y. Li and Q. Tang

Expind-reenc-cpaUSS,A (1λ,M, n, b)

pp← ParGen(1λ,M, n), Initialize e, e∗, sb∗, Set K, C, I,L,S, T ,F as ∅
sk1 ← KeyGen(pp)

(sb0, sb1, state1)← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans
1 (pp)

Retrieve (e, sb0, rep0 = (c0,1 . . . , c0,n), db0), (e, sb1, rep1 = (c1,1, . . . , c1,n), db1) from L
Set I = {i}i∈{1,...,n},c0,i ̸=c1,i , e = e+ 1, e∗ = e, C = C ∪ {e}
ske ← KeyGen(pp)

Run KeyUpclient(ske−1, ske, sbb, pp) ⇆ KeyUpserver(repb, pp) to output ⟨sb∗; rep∗⟩
for each (e− 1, sb, rep, db) ∈ L, where sb /∈ {sb0, sb1}

Run KeyUpclient(ske−1, ske, sb, pp) ⇆ KeyUpserver(rep, pp) to output ⟨sb′; rep′⟩
Set L = L ∪ (e, sb′, rep′, db)

b′ ← AO.Store,O.Next,O.FileUp,O.KeyCorr,O.KeyUpTrans,O.ChaCTCorr
2 (state1, sb

∗, rep∗, all (sb′, rep′))

return b′ if K ∩ C̃ = ∅

Fig. 3. The game of IND-REENC-CPA

Integrity. We define a kind of strong plaintext integrity notion called ordered
full plaintext integrity (OF-PTXT for short). For the classic authenticated en-
cryption schemes, plaintext integrity ensures that attackers cannot make any
forgery for new plaintext except the queried ones, which work for static storage
with appending function. But for dynamic storage, where some storage may be
changed or even deleted, the old or deleted messages could be leveraged by dis-
honest storage providers to cheat users, which is not covered by classic integrity.
Here OF-PTXT provides stronger integrity in the dynamic storage setting, where
data could be updated dynamically. OF-PTXT ensures attackers cannot forge
for a plaintext that does not belong to the current storage. To be formal, we
show a security experiment between the adversary who acts as the malicious
storage server, and the challenger who acts as the honest user. More precisely,
the challenger will maintain the following list to record the latest version of
databases.

R: The list recording the latest stub and the message vector pair (sb, db) gener-
ated during the integrity game. R is initialized as empty and will be updated
for each file update and key update. R has only entries for the latest epoch.

We use the stub to track the target stored database. For a certain pair (sb, db)
of R and a certain index i, the adversary aims to make the client accept m′

i as
the ith element of the database but m′

i ̸= db[i].
Moreover, we allow the adversary to launch active attacks in the integrity

game. The server which may be corrupted by the adversary may manipulate
the storage and even to not follow the protocol during the file update or key
update procedures. To capture adversary’s above capability, three special oracles,

Efficient Secure Storage with Version Control and Key Rotation 19

including the database storing oracle O.StoreINT, the next oracle O.NextINT
and the file update token oracle O.FileUpINT are provided for the adversary in
integrity game. Besides, the adversary in the integrity game can also learn the
security key via the key corruption oracle O.KeyCorr, which means USS can
guarantee the integrity even when the key is leaked.

We will elaborate the special oracles for the integrity game in the following.
For brevity, please refer to our previous descriptions about the similar oracles in
the confidentiality section 3.2.

– O.StoreINT(db): This oracle is to let the adversary learn the stored file gener-
ated by the storing algorithm. The challenge will invoke the storing algorithm
Store(ske, db, pp) to generate the stored file rep and the stub sb, and give rep
and sb to the adversary. And add the pair (sb, db) to R.

– O.NextINT: This oracle is to let the adversary to invoke the client to launch
the key update procedure. The challenger updates the epoch number e =
e+ 1, runs the KeyGen algorithm to generate the new epoch key ske = sk′,
and runs the key update client-side algorithm to update all stubs sbs into
the corresponding sb′s and to generate client-side key update transcripts
Transc for the server. Then the challenger returns all the new stubs sb′s and
transcripts Transc to the adversary, and updates each entry (sb, db) in R
with the corresponding (sb′, db).

– O.FileUpINT(m′
i, i, sb): The adversary uses this oracle to invoke the client to

launch the file update procedure and replace the ith element of the database
to m′

i. More precisely, the input of this oracle contains the new file m′
i,

its index i, and the corresponding stub sb. The challenger will first check
whether the stub is contained in the listR. During this interaction, the client
will communicate with the corrupted server according to the specification of
the designed scheme, while the adversary could respond to the client with
an arbitrary message and violate the protocol design. If the client finally
accepts the update results, the challenger will update the entry (sb, db) of R
with (sb′, db′).

We describe the integrity experiment Expof-ptxtUSS,A for key updatable dynamic
secure storage scheme USS and adversary A, who has access to the oracle tuple
(O.StoreINT,O.NextINT,O.FileUpINT, O.KeyCorr).

Definition 5 (OF-PTXT). An updatable secure storage scheme USS is called
OF-PTXT secure if for any PPT adversary A the following advantage is negli-
gible in the security parameter λ:

Advof-ptxtUSS,A(1
λ,M, n) := Pr[Expof-ptxtUSS,A(1

λ,M, n) = 1]

4 Homomorphic Vector Commitment

This section presents an introduction to Homomorphic Vector Commitment
(HVC) and explores the difficulties involved in constructing an HVC that can
simultaneously satisfy both the position hiding and homomorphic properties.

20 L. Chen, H. Guo, Y. Li and Q. Tang

Expof-ptxtUSS,A(1λ,M, n)

pp← ParGen(1λ,M, n), Initialize R, e
ske ← KeyGen(pp)

(sb, i, state1)← AO.StoreINT,O.NextINT,O.FileUpINT,O.KeyCorr
1 (pp)

if (sb, ∗) /∈ R or i /∈ [1, n] return 0

else Run Revclient(i, ske, sb, pp) ⇆ A to output ⟨m∗
i ; ·⟩

for ∀m s.t. (sb,m) ∈ R
if m∗

i ̸= m[i] return 1

endfor

return 0

Fig. 4. The game of OF-PTXT

4.1 Syntax and Notions

HVC is defined with the following algorithms:

HVC = (HVC.Setup,HVC.Com,HVC.Open,HVC.Ver,HVC.ComHom,HVC.OpenHom)

that works as following:

– HVC.Setup(1λ,M, n) → crsn: Given the security parameter λ, the descrip-
tion of committed message space M, and the size of committed vector n,
the probabilistic setup algorithm outputs a common reference string crsn.

– HVC.Comcrsn(m) → (C, aux): On input an ordered sequence of n messages
m = (m1, . . . ,mn) and the common reference string crsn, the commitment
algorithm outputs a commitment string C and the auxiliary information
aux. We denote the commitment space as C. The auxiliary information aux
is succinct, say independent of the vector degree n.

– HVC.Opencrsn(i,m, aux) → Λi: This algorithm is run by the committer to
produce a proof (also known as opening) Λi that the i-th element m[i] is the
committed message. We denote the proof space as P.

– HVC.Vercrsn(C,m, i, Λi)→ 1/0: The verification algorithm outputs 1 only if
Λi is a valid proof that m is the i-th committed message to the C.

– HVC.ComHomcrsn(C,C
′ ∈ C)→ C ′′: This algorithm can be run by any user

who holds two commitment belonging to the commitment space C, and it
allows the user to compute another commitment C ′′ = C ⊕C ′ ∈ C, where ⊕
denotes the homomorphic operation for the commitment.

– HVC.OpenHomcrsn(Λj , Λ
′
j ∈ P) → Λ′′

j : This algorithm can be run by any
user who holds two membership proofs Λj and Λ′

j for some message on
position j w.r.t. to some C and C ′′ (which contains m and m′ as the message
at position j), and it allows the user to compute another proof Λ′′

j = Λj⊗Λ′
j ∈

P (w.r.t. some C ′′ which contains m′′ as the new message at position j),
where ⊗ denotes the homomorphic operation for the proof.

Efficient Secure Storage with Version Control and Key Rotation 21

Basically, a HVC scheme should satisfy correctness, conciseness and homo-
morphic property.

Correctness. A vector commitment is correct if for all honestly generated
crsn ← HVC.Setup(1λ,M, n), ∀i ∈ [n], if C is a commitment on a vector
(m1, · · · ,mn) ∈ Mn, Λi is a proof for position i generated by HVC.Opencrsn ,
then HVC.Vercrsn(C,mi, i, Λi) outputs 1 with overwhelming probability.

Conciseness. A vector commitment is concise if the size of the commitment C
and the outputs of HVC.Open are both independent of the size n of the vector.

Homomorphic property. Formally, ∀i ∈ [n], for all honestly generated crsn ←
HVC.Setup(1λ,M, n), for all honestly generated

(C, aux)← HVC.ComHomcrsn(m), (C ′, aux′)← HVC.ComHomcrsn(m
′),

Λi ← HVC.Opencrsn(i,m, aux), Λ′
i ← HVC.Opencrsn(i,m

′, aux′),

where m = (m1, . . . ,mn),m
′ = (m′

1, . . . ,m
′
n), if

C ′′ ← HVC.ComHomcrsn(C,C
′), Λ′′

i ← HVC.OpenHomcrsn(Λi, Λ
′
i)

then we have HVC.Vercrsn(C
′′,mi +m′

i, i, Λ
′′
i) = 1.

4.2 Security Models

In this section, we formally define the security models for binding and hiding on
the situation that the corresponding membership proofs are leaked.

Position-Binding : It requires that for any well-formed commitment, the PPT
adversary cannot find two different messages on the same position that the
verification algorithm accepts both. Formally, we have the HVC Position-Binding
game as Figure 5.

Expposition-bindingHVC,A (1λ,M, n)

crsn ← HVC.Setup(1λ,M, n)

(C, i,mi,m
′
i, Λi, Λ

′
i)← A1(crsn)

if mi ̸= m′
i ∧ HVC.Vercrsn(C,m, i, Λi) = 1 ∧ HVC.Vercrsn(C,m

′, i, Λ′
i) = 1

return 1, else return 0

Fig. 5. The game of HVC Position-Binding

The advantage of A is defined as

Advposition-bindingHVC,A (1λ,M, n) = Pr[Expposition-bindingHVC,A (1λ,M, n) = 1].

22 L. Chen, H. Guo, Y. Li and Q. Tang

Definition 6. A HVC scheme satisfies HVC Position-Binding if for every PPT
adversary A the advantage function Advposition-bindingHVC,A (1λ,M, n) is negligible in λ.

Position-Hiding : The position hiding property not only requires that the ad-
versary cannot distinguish whether a commitment is for a vector (m1, . . . ,mn)
or (m′

1, . . . ,m
′
n), but also guarantees that the adversary cannot learn any infor-

mation about mi from the opening of mj where i ̸= j. Formally, we have the
HVC Position-Hiding game as Figure 6.

Expposition-hidingHVC,A (1λ,M, n, b)

crsn ← HVC.Setup(1λ,M, n)

(i,m1, · · · ,mi−1,mi,0,mi,1,mi+1, · · ·mn, state)← A1(crsn)

mb = (m1, . . . ,mi−1,mi,b,mi+1, . . . ,mn)

(C, aux)← HVC.com(mb)

Λj ← HVC.open(j,mb, aux),∀j ∈ [n]/{i}
∀j ∈ [n]/{i}, Λi ← V C.open(i,mi,b, aux)

b′ ← A2(crsn, C, {Λj}j∈[n]\{i}, state),

return b′

Fig. 6. The game of HVC Position-Hiding

The advantage of A is defined as

Advposition-hidingHVC,A (1λ,M, n) =∣∣∣Pr[Expposition-hidingHVC,A (1λ,M, n, 0) = 1]− Pr[Expposition-hidingHVC,A (1λ,M, n, 1) = 1]
∣∣∣

Definition 7. A HVC scheme satisfies HVC Position-Hiding if for every PPT
adversary A the advantage function Advposition-hidingHVC,A (1λ,M, n) is negligible in λ.

4.3 Construction

Although there are several vector commitment (VC) constructions [8,16,2,7] that
satisfy the homomorphic property, none of them can directly satisfy both the
position hiding and homomorphic properties simultaneously. Furthermore, they
cannot be made position hiding through the composition approach. For example,
if one first commits to each message using a standard commitment scheme and
then applies a VC to the resulting sequence of commitments, the resulting hybrid
scheme will not satisfy the homomorphic property.

Even if one first commits to each message separately using a homomorphic
commitment scheme (such as Peterson commitment) and then applies a VC

Efficient Secure Storage with Version Control and Key Rotation 23

construction to the obtained sequence of commitments, the compatibility of the
algebraic structures of these two underlying primitives is still unclear.6 Some ex-
isting VC schemes are based on bilinear maps [8,16], or RSA groups [8,16,2,7], or
lattice assumptions [19]. However, for pairing-based or RSA-based VC construc-
tions, the messages (commitment values themselves in the above composition
construction) are encoded into the exponents of group elements, which restricts
the operation on messages to addition. This means that we require a homomor-
phic commitment scheme where the committed values lie in an additive group.
Unfortunately, the existence of such a commitment scheme is elusive as most of
the well-known computational assumptions do not hold, making it unclear how
to construct such a scheme. For example, the homomorphic operation for Pe-
terson commitment is multiplication, making it incompatible with pairing-based
or RSA-based VC constructions for obtaining an HVC. Similarly, the message
space of lattice-based VC consists of short vectors, while the standard lattice
commitment consists of pseudorandom ring elements. It is also challenging to
directly combine a lattice-based VC with a lattice-based commitment scheme to
obtain an HVC.

Our proposed HVC construction is based on the pairing-based VC scheme
introduced by Catalano et al. [8], which already possesses homomorphic prop-
erties and position binding. To achieve position hiding without compromising
the homomorphic property, we add a dummy position at the end of the vector,
which is used to store a random value. The random value is then used to mask
the information about the membership proof, thus achieving position hiding.
Since the dummy position is not used for any actual file, it does not affect the
integrity of the VC scheme. With this approach, we can achieve both homomor-
phic properties and position hiding in our HVC scheme, which is essential for
our proposed construction in an USS system.

Let G, GT be bilinear groups of prime order p equipped with a bilinear map
e : G×G→ GT . Let g ∈ G be random generators.

– HVC.Setup(1λ,M, n) → crsn: Randomly choose z1, . . . , zn, zn+1 ←$ Zp. For
all i = 1, . . . , n + 1, set hi = gzi , For all i, j = 1, . . . , n + 1, i ̸= j set
hi,j = gzizj . Output crsn =

(
g, {hi}i∈[n+1], {hi,j}i,j∈[n+1],i̸=j

)
.

– HVC.Comcrsn (m = (m1, . . . ,mn)) → (C, aux): Randomly select r ←$ Zp,
Compute C = hm1

1 hm2
2 · · ·hmn

n ·hr
n+1 and output C and the auxiliary infor-

mation aux = r
– HVC.Opencrsn(m, i, aux)→ Λi: Compute

Λi =

n∏
j=1,j ̸=i

h
mj

i,j ·h
r
i,n+1 =

 n∏
j=1,j ̸=i

h
mj

j ·h
r
n+1

zi

– HVC.Vercrsn(C,m, i, Λi)→ 1/0: Check e(C/hm
i , hi) = e(Λi, g).

6 Some recently proposed functional commitment schemes [20,11] may also satisfy
similar security requirements of HVC. However, it is unclear how to make these
schemes compatible with UE schemes and thus integrate them into our proposed
USS construction.

24 L. Chen, H. Guo, Y. Li and Q. Tang

– HVC.ComHomcrsn(C,C
′ ∈ C)→ C ′′: Compute C ′′ = C · C ′.

– HVC.OpenHomcrsn(Λj , Λ
′
j ∈ P)→ Λ′′

j :Compute Λ′′
j = Λj · Λ′

j .

The correctness and homomorpihc property of the scheme can be easily ver-
ified by inspection. We prove its security via the following theorem.

Theorem 1. If the Square-CDH Assumption holds, then the scheme defined
above satisfies the Position-Binding property.

Proof. We prove the theorem by showing that the scheme satisfies the Position-
Binding property. For sake of contradiction assume that there exists an efficient
adversary A who produces two valid openings to two different messages at the
same position, then we show how to build an efficient algorithm B that uses A
to break the Square-CDH Assumption.

To break the Square-CDH Assumption, B takes as input g, ga ∈ G and its
goal is to compute ga

2

.
First, B selects a random i ←$ [n] as a guess for the index i on which A

will break the position binding. And set hi = ga Next, B chooses zj ←$ Zp,
∀j ∈ [n+ 1]\{i} and it computes:

∀j ∈ [n+ 1]\{i} : hj = gzj , hi,j = h
zj
i = gazj

∀k, j ∈ [n+ 1]\{i}, k ̸= j : hk,j = gzkzj

and outputs crsn = (g, {hj}j∈[n+1], {hj,k}j,k∈[n+1],j ̸=k). Notice that the public
parameters are perfectly distributed as the real ones. The adversary is supposed
to output a tuple (C,m,m′, Λ, Λ′) such that: m ̸= m′ and both Λ and Λ′ cor-
rectly verify at position i. If the position is not i, then B aborts the simulation.
Otherwise, it computes ga

2

= (Λ/Λ′)(m
′−m)−1

.
To see that the output is correct, observe that since the two openings verify

correctly, then it holds: e(C, hi) = e(hm′

i , hi)e(Λ
′, g) = e(hm

i , hi)e(Λ, g). Notice
that if A succeeds with probability ϵ, then B has probability ϵ/n of breaking the
Square-CDH assumption. ⊓⊔

Theorem 2. The scheme defined above is perfectly position hiding.

Proof. We prove the theorem by showing that for two given vectors of messages
m0 = {m1, . . . ,mi−1,mi,0,mi+1, . . . ,mn} and m1 = {m1, . . . ,mi−1,mi,1,mi+1,
. . . ,mn}, we can find two random values r0 and r1 such that (m0, r0) and
(m1, r1) map to the same commitment value C and same proofs {Λj}j∈[n]\{i}
except Λib. Since r0, r1 are chosen with equal probabilities according to the
commitment algorithm HVC.Com, any adversary A has a success to win the
Position-Hiding game with a probability of exactly 1/2.

Concretely, the challenger C sets the public parameters as the real environ-
ment: randomly choose z1, . . . , zn, zn+1 ←$ Zp. For all i = 1, . . . , n + 1, set
hi = gzi . For all i, j = 1, . . . , n+ 1, i ̸= j set hi,j = gzizj .

Upon receiving {m1, . . . ,mi−1,mi,0,mi,1,mi+1, . . . ,mn} from A, C randomly
chooses r0, computes commitment C = hm1

1 ·h
mi−1

i−1 ·h
mi,0

i ·hmi+1

i+1 · · ·hmn
n · · ·hr0

n+1,

Efficient Secure Storage with Version Control and Key Rotation 25

and proofs Λj = (C/hj
mj)zj , j ∈ [n]\{i}. Obviously, (C, {Λj}j∈[n]\{i}) is the cor-

responding commitment and opennings to (m0, r0). C outputs (C, {Λj}j∈[n]\{i}).
Note that if we set r1 = r0+(mi,0−mi,1)zi/zn+1, then the tuple (C, {Λj}j∈[n]\{i})
mentioned above can also serve as a commitment and openings for (m1, r1).

Since r0 is randomly chosen, both r0 and r1 occur with equal probability.
Therefore, the probability for A to win the Hiding game is exactly 1/2. ⊓⊔

5 Construction of USS

In this section, we present our construction for achieving both confidentiality
and integrity in an USS system. Our approach combines UE for confidentiality
and VC for integrity. Specifically, we follow the VC-then-UE paradigm, where
each file is treated as an element of VC, and its membership proof is appended
at the end of the file. The file and its membership proof are then encrypted using
UE schemes.

The main challenge in this approach is that updating one file changes all
other membership proofs, which are encrypted together with the files using UE.
However, general UE does not support file updates, which means that all storage
must be retrieved, decrypted, and re-encrypted after each update. To reduce
communication and user computation costs, we require a UE with homomorphic
properties. To our knowledge, only the scheme RISE [17] satisfies this requirement
and is compatible with the update operation of the membership proofs of our
HVC scheme in Section 4.

More precisely, let UE be any IND-ENC and IND-UPD secure updatable
encryption scheme. RISE [17] is an IND-ENC and IND-UPD secure updatable
encryption with homomorphic property described in Subsection 2.3. Let COM be
a standard commitment scheme with the hiding and binding property, and HVC
be a homomorphic vector commitment with the position hiding and position
binding property.

– USS.ParGen(1λ,M, n): λ is the security parameter.M denotes the message
space. n specifies the vector degree and the total number of stored files.
• Run the setup of UE and RISE to generate public parameter ue.pp, rise.pp.
• Let hvc.crsn be the public parameter of HVC.
• Let com.pp be the public parameter of COM.

Then the public parameter pp = (hvc.crsn, ue.pp, rise.pp, com.pp) will be
taken as the implicit input of the following algorithm.

– USS.KeyGen(pp): take the public parameter pp as input, run the key genera-
tion algorithm of UE and RISE to generate the secret key ue.sk, rise.sk, and
output the secret key sk = (ue.sk, rise.sk).

– USS.Store(m, sk, pp): m= {m1, . . . ,mn}, where each mi denotes one file.
The algorithm proceeds as follows:
1. For each i ∈ [n], randomly sample ri ←$ {0, 1}λ, run COM(mi; ri)→ hi.
2. For each i ∈ [n], run UE.Enc(ue.sk, i∥mi∥hi∥ri) → f̄i, where ∥ denotes

concatenation in this paper. Run HVC.Com(h) to get the vector com-
mitment C and the auxiliary input aux, where the message vector is
h = (h1, . . . , hn).

26 L. Chen, H. Guo, Y. Li and Q. Tang

3. For each i ∈ [n], compute the proof Λi via running HVC.Open(i,h, aux).

4. For each i ∈ [n], run RISE.Enc(rise.sk, Λi)→ f̂i.

5. Let fi = (f̄i, f̂i). Upload the total ciphertexts f = (f1, . . . , fn) to the
cloud storage service. Client stores the stub sb = C and the secret key
sk for the current epoch in the local storage.

– USS.Revclient(i, sk, sb, pp) ⇆ USS.Revserver(f, sb, pp): The client interacts
with the server to retrieve the i-th file through the following procedure.

• Revrequest(i, sk, sb, pp) → (qrev, strev): The client sends qrev = i to the
server, where i ∈ [n] and keeps a state strev = (“retrieve”, i).

• The server holds the public parameter pp, and the storing file f. When
given the retrieve request qrev, the server returns the qrev-th file fqrev as
the response rrev.

• Revdecrypt(sk, sb, pp, strev, rrev) → mi/⊥: When given the server’s re-

sponse rrev, the client parses the sk = (ue.sk, hue.uk) and fi = (f̄i, f̂i).
Run UEdecryption algorithm UE.Dec

(
ue.sk, f̄i

)
→ i∥mi∥hi∥ri. Run RISE

decryption algorithm RISE.Dec
(
rise.sk, f̂i

)
→ Λi.

• If the commitment verification Com.Open(comi,mi, ri)→ 1 and the ho-
momorphic vector commitment verification HVC.Ver(C, hi, i, Λi) → 1,
then the client will output mi, otherwise output ⊥.

– USS.FileUpclient(m
′
i, i, sk, sb, pp) ⇆ USS.FileUpserver(f, pp): is an interactive

procedure that allows the client to update the i-th file mi to m′
i with the

collaboration of the server. More precisely, the interaction procedure is as
follows.

1. FileUprequest (m
′
i, i, sk, sb, pp)→ qfup, stfup: The client sends the file up-

date request qfup = (“FileUpdate”, i) = stfup to the server to request
the i-th encrypted file and keep a state stfup.

2. FileUpresponse (f, pp, qfup) → (fi, srfup): The server returns the i-th en-
crypted file fi to the client as the response rfup and keep the internal
state srfup = (“FileUpdate”, i).

3. FileUptoken(sk, sb, pp,m
′
i, fi, stfup)→ (sb′, tkfup): The client first parses

sk = (ue.sk, hue.sk) and fi = (f̄i, f̂i). Then run UE decryption algo-
rithm UE.Dec(ue.sk, f̄i) → i∥mi∥hi∥ri/⊥, and RISE decryption algo-

rithm RISE.Dec
(
rise.sk, f̂i

)
= Λi/⊥. If both decryptions are not ⊥,

then run the following verification algorithms. If the commitment opens
to the different file COM.open(hi; ri) ̸= mi, or the homomorphic vec-
tor commitment verification HVC.Ver(sb, hi, i, Λi) ̸= 1, then output ⊥,
otherwise compute the following procedures.
The client replaces the plaintext file with m′

i, samples a randomness
r′i ←$ {0, 1}λ, and commits it by running COM(m′

i; r
′
i) → h′

i. Encrypt
the new file with UE.Enc(ue.sk, i∥m′

i∥h′
i∥r′i) → f̄ ′

i . Set the change of
message vector mδ = (0, . . . , δi = h′

i − hi, . . . , 0), and get homomorphic
vector commitment Cmδ

via running HVC.Com(mδ) = (Cmδ
, aux). Then

update the stub sb by running the vector commitment homomorphic
algorithm HVC.ComHom(sb, Cmδ

) = sb′.

Efficient Secure Storage with Version Control and Key Rotation 27

The client keeps the new stub sb′ and sends the file update token tkfup =
(f̄ ′

i ,mδ, aux, y = grise.sk) to the server. Please note that the change of
message vector mδ could be compressed to a constant size independent
of the vector degree since it contains redundant 0 with n− 1 degrees.

4. FileUpupdate (f, pp, srfup, tkfup)→ f ′: On receiving tkfup = (f̄ ′
i ,mδ, aux, y)

from the client, parse f =
(
(f̄1, f̂1), . . . , (f̄n, f̂n)

)
. For all j ∈ [n], the

server will run HVC.Open(j,mδ, aux) = Λδj , get RISE ciphertext rise.Cδj =
(yr, gr · Λδj), and get updated proof encryption

f̂ ′
j = f̂j ·rise.Cδj = RISE.Enc(rise.sk, Λj)·rise.Cδj = RISE.Enc(rise.sk, Λj ·Λδj)

(The last equation is because of the homomorphic property of RISE).

Then the updated ciphertexts are f ′ = (f ′
1, . . . , f

′
n), where f ′

j = (f̄j , f̂
′
j)

for j ∈ [n] \ i and f ′
i = (f̄ ′

i , f̂
′
i).

– USS.KeyUpclient(sk, sk
′, sb, pp) ⇆ USS.KeyUpserver(f, pp): The interactive

procedure between the client and the server updates the stored files to a
new key sk′. The details are as follows.

1. KeyUptoken(sk, sk
′, sb, pp)→ (tk, sb′): The client first parses sk = (ue.sk,

rise.sk), sk′ = (ue.sk′, rise.sk′). Then get a homomorphic commitment
on 0 via HVC.Com(0) = (C0, aux), and re-randomize the stub via run-
ning HVC.ComHom(sb, C0) → sb′. Run UE token generation algorithm
UE.Next(ue.sk, ue.sk′)→ ∆ to generate the UE key update token∆. Run
RISE token generation algorithm RISE.Next(rise.sk, rise.sk′) → rise.∆
to generate the RISE key update token rise.∆ = (rise.∆1, y). Send
tk = (∆, rise.∆,0, aux) as the key update token for the repository. The
stub is updated as sb′. Please note that 0 could be compressed into
constant size, so tk is still succinct.

2. KeyUpupdate(f, pp, tk) → (f ′): Server parses tk = (∆, rise.∆,0, aux),

rise.∆ = (rise.∆1, y), and f = (f1, . . . , fn), where fi = (f̄i, f̂i) for i ∈
[n]. For each i ∈ [n], run UE re-encryption algorithm UE.Upd(∆, f̄i)→ f̄ ′

i

to update the data part. For each i ∈ [n], run RISE re-encryption algo-

rithm RISE.Upd(rise.∆1, f̂i) → f̂ ′
i to re-encrypt the proof part. Then

for i ∈ [n], the server runs HVC.Open(i,0, aux) = Λ0i
, get RISE its en-

cryption rise.Ci = (yr, gr · Λ0i) and to re-randomize the updated proof
encryption

f̂ ′′
i = f̂ ′

i · rise.Ci = RISE.Enc(rise.sk′, Λi · Λ0i
).

(The last equation is because of the homomorphic property of RISE)

Finally, the updated ciphertexts are f ′ = (f ′′
1 , . . . , f

′′
n−1), where f ′′

i =(
f̄ ′
i , f̂

′′
i

)
for i ∈ [n].

28 L. Chen, H. Guo, Y. Li and Q. Tang

Instantiation. In the USS construction, the HVC is instantiated in section 4,
the COM scheme could be instantiated with any secure commitment scheme
with hiding and binding property, and the UE could be instantiated with any
IND-ENC and IND-UPD secure UE schemes [17]. We know that in USS, the
membership proof of HVC is encrypted by the RISE encryption algorithm. We
require that the homomorphism of HVC and RISE is compatible.

5.1 Security Proofs

We formally state the security properties of the construction USS in the following
theorems and prove our theorems.

Theorem 3. If UE is an IND-ENC secure updatable encryption scheme, COM
is a secure commitment scheme with hiding property, then our USS is IND-DD-
UP secure.

Proof. As IND-DD-UP security is defined in Definition 2, we need to prove that∣∣∣Pr[Expind-dd-upUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-dd-upUSS,A (1λ,M, n, 1) = 1]
∣∣∣ = neg(λ).

We prove our claim via a game sequence.

Game0. This game is same as the experiment Expind-dd-upUSS,A (1λ,M, n, 0). We define
G0 to be the event that A outputs 1 in Game0. So,

Pr[G0] = Pr[Expind-dd-upUSS,A (1λ,M, n, 0) = 1].

Game1. In this game, the challenger C modifies the behavior of Store(db0, ske, pp)
in response to the challenge, compared to Game0. Specifically, for each
i ∈ {1, . . . , n}∧m0,i ̸= m1,i, C randomly selects (mr,i, rr,i, hr,i) from the cor-
responding message, randomness, and commitment spaces and replaces the
invocation of UE.Enc(i∥m0,i∥h0,i∥r0,i)→ f̄i with UE.Enc(i∥mr,i∥hr,i∥rr,i)→
f̄r,i. Correspondingly, in rep∗, f̄i is replaced with f̄r,i. Additionally, C records
h0,i for file update queries. All other operations, including answering the
challenge and post-processing, remain the same as Game 0.
Specifically, C still uses the same h0,i to run the HVC algorithm to generate
the stub and openings when answering the challenge. If the file update query
O.FileUp(sb,m′

i, i) is related to file m0,i, i.e., sb = sb∗∧ i ∈ I, C skips the UE
decryption and COM verification steps. Instead, C retrieves the record h0,i as
the decrypted commitment to perform the HVC verification and calculates
the change of commitment δi = h′

i−h0,i as a part of the file update transcript
fti, which will be added to set I. All other operations are identical to those
in Game0.
Let G1 be the event that A outputs 1 in Game1. We claim that

|Pr[G1]− Pr[G0]| = ϵind−enc,

Efficient Secure Storage with Version Control and Key Rotation 29

where ϵind−enc is the IND-ENC advantage of the UE scheme (which is negli-
gible if UE is IND-ENC secure). This claim can be proven by observing that
in Game 0, f̄i is a UE encryption of message i∥m0,i∥h0,i∥r0,i, while in Game

1, it is a UE encryption of message i∥mr,i∥hr,i∥rr,i. Since UE is IND-ENC
secure, the adversary A cannot distinguish between the two games.

Game2. In this game, the challenger C introduces a small modification when
running Store to answer the challenge. Specifically, for each i ∈ {1, . . . , n} ∧
m0,i ̸= m1,i, instead of using COM(m0,i; r0,i) to generate h0,i, C replaces h0,i

with a commitment h1,i ← COM(m1,i; r1,i) to message m1,i. Then, C uses
h1,i to run the HVC algorithm to obtain sb∗, rep∗, and update the set L.
Finally, the record for h0,i is replaced with h1,i.
LetG2 be the event thatA outputs 1 in Game 2 . We claim that |Pr[G2]− Pr[G1]| ≤
ϵhiding, where ϵhiding is the hiding-advantage of the COM scheme (which is
negligible if COM is a secure commitment scheme with hiding property).
This claim can be proven by observing that in Game 1, A obtains the com-
mitment h0,i to message m0,i, while in Game 2, A obtains the commitment
h1,i to message m1,i. However, due to the hiding property of COM, A cannot
distinguish between the two games.

Game3. In this game, challenger C replaces the UE encryption on the ran-
dom message to the encryption on a tuple of i∥m1,i, ∥h1,i∥r1,i where h1,i is
generated from COM(m1,i; r1,i) as in Game2. Then Game3 is the same as

experiment Expind-dd-upUSS,A (1λ,M, n, 1).
We define G3 to be the event that A outputs 1 in Game3. Then we claim

|Pr[G3]− Pr[G2]| =
∣∣∣Pr[Expind-dd-upUSS,A (1λ,M, n, 1) = 1]− Pr[G2]

∣∣∣ ≤ ϵind−enc

where ϵind−enc is the IND-ENC-advantage of UE scheme (which is negligible
if UE is IND-ENC secure).
The proof of this claim is identical to the claim |Pr[G1]− Pr[G0]| = ϵind−enc.
Thus, noticing the difference between Game3 and Game2 is in negligible
probability due to the IND-ENC security of UE.

Then we get∣∣∣Pr[Expind-dd-upUSS,A (1λ,M, n, 1) = 1]− Expind-dd-upUSS,A (1λ,M, n, 0) = 1]
∣∣∣ ≤ 2ϵind−enc+ϵhiding

⊓⊔

Theorem 4. If UE is an IND-ENC secure updatable encryption scheme, COM
is a secure commitment scheme with hiding property, then our USS is IND-
FileUp-CPA secure.

Proof. As IND-FileUp-CPA security is defined in Definition 3, we need to prove

that
∣∣∣Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 1) = 1]

∣∣∣ =
neg(λ). We prove the IND-FileUp-CPA security via a sequence of games.

30 L. Chen, H. Guo, Y. Li and Q. Tang

Game0. This game is same as the experiment Expind-fileup-cpaUSS,A (1λ,M, n, 0). We
define G0 to be the event that A outputs 1 in Game0. So,

Pr[G0] = Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 0) = 1].

Game1. In this game, challenger C changes a bit from Game0 in running the
FileUptoken(ske, sb,m0,i, i, pp) ⇆ FileUpserver(sb, rep, pp) → ⟨sb∗; rep∗⟩ to
answer the challenge. Concretely, for challenge index i ∈ I, C randomly
chooses (mr,i, rr,i, hr,i) from the corresponding message, randomness, and
commitment spaces and replaces running UE.Enc(i∥m0,i∥h0,i∥r0,i) → f̄∗

i

with running UE.Enc(i∥mr,i∥hr,i∥rr,i) → f̄∗
r,i. Correspondingly, in rep∗, re-

place the value of f̄∗
i with f̄∗

r,i. C still use h0,i to continue the FileUp procedure
and the i-th element of mδ is still h0,i− hi in the file update transcript fpt.
Besides, C record h0,i for file update query. Other operations including an-
swering the challenge and the post-processing remain the same as Game0.
Specifically, C still uses the same h0,i to run the HVC algorithm to generate
the stub and openings in answering the challenge. If the file update query
O.FileUp(sb,m′

i, i) is related to file m0,i, i.e., sb = sb∗ ∧ i ∈ I, C retrieves
e, sb, rep, db from L, changes as follows in running FileUp procedure. C gets
rid of UE decryption and verification check on f̄i, retrieves the record h0,i

to calculate the change of commitment δi = h′
i−h0,i as a part of file update

transcript fti which will be added to set I. Then follow the same operations
to continue as in Game0.
We define G1 to be the event that A outputs 1 in Game1. We claim that

|Pr[G1]− Pr[G0]| = ϵind−enc

where ϵind−enc is the IND-ENC-advantage of UE scheme (which is negligible
if UE is IND-ENC secure).
The proof of this claim is essentially the observation that in Game0 f̄∗

i is
a UE encryption on message i∥m0,i∥h0,i∥r0,i, while in Game1, it is a UE
encryption on the message i∥mr,i∥hr,i∥rr,i. So the adversary A should not
notice the difference since UE is IND-ENC secure.

Game2. In this game, challenger C makes one small change to the above game.
Specifically, during running FileUp procedure to answer the challenge. For
the challenge index i ∈ I, instead of running COM(m0,i; r0,i) to generate
h0,i, C replaces h0,i with a commitment h1,i ← COM(m1,i; r1,i) to message
m1,i to run the HVC algorithm to get sb∗, rep∗ and update the set L. Then
the record on h0,i is changed to h1,i.
We define G2 to be the event that A outputs 1 in Game2. We claim that

|Pr[G2]− Pr[G1]| = ϵhiding

where ϵhiding is the hiding-advantage of COM scheme (which is negligible if
COM is a secure commitment scheme with hiding property).
The proof of this claim is essentially the observation that in Game1, A could
get the commitment h0,i to message m0,i, while in Game2, A could get the
commitment h1,i to message m1,i. So A cannot notice the difference due to
the hiding property of COM.

Efficient Secure Storage with Version Control and Key Rotation 31

Game3. In this game, challenger C replaces the UE encryption on the ran-
dom message to the encryption on a tuple of i∥m1,i, ∥h1,i∥r1,i where h1,i is
generated from COM(m1,i; r1,i) as in Game2. Then Game3 is the same as

experiment Expind-dd-upUSS,A (1λ,M, n, 1).
We define G3 to be the event that A outputs 1 in Game3. Then we claim

|Pr[G3]− Pr[G2]| =
∣∣∣Pr[Expind-dd-upUSS,A (1λ,M, n, 1) = 1]− Pr[G2]

∣∣∣ ≤ ϵind−enc

where ϵind−enc is the IND-ENC-advantage of UE scheme (which is negligible
if UE is IND-ENC secure).
The proof of this claim is identical to the claim |Pr[G1]− Pr[G0]| = ϵind−enc.
Thus, noticing the difference between Game3 and Game2 is in negligible
probability due to the IND-ENC security of UE.

Then we get∣∣∣Pr[Expind-fileup-cpaUSS,A (1λ,M, n, 1) = 1]− Expind-fileup-cpaUSS,A (1λ,M, n, 0) = 1]
∣∣∣ ≤ 2ϵind−enc+ϵhiding

⊓⊔

Theorem 5. If UE is an IND-UPD secure updatable encryption scheme, RISE
is an IND-ENC and IND-UPD secure updatable encryption scheme with homo-
morphic property, and HVC is a secure vector commitment with homomorphic
property and position hiding, then our USS is IND-REENC-CPA secure.

Proof. We prove the IND-REENC-CPA security via a sequence of games. As
IND-REENC-CPA security is defined in Definition 4, we need to prove that∣∣∣Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 0) = 1]− Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 1) = 1]

∣∣∣ = neg(λ).

On the high level, we start from Expind-reenc-cpaUSS,A (1λ,M, n, 0) as the original game,
and make one small change in each of a sequence of games, and end up at
Expind-reenc-cpaUSS,A (1λ,M, n, 1) as the final game. We reduce the advantage of distin-
guishing between every two adjacent games to the advantage of breaking the
security of one of the building blocks including IND-UPD security of UE, IND-
UPD security of RISE, IND-ENC security of RISE, and the hiding property of
HVC. Since the building blocks satisfy the security requirements, the advantage
of distinguishing every two adjacent games is negligible. There are a constant
number of games, and the summed advantage is still negligible, so the first game
and last game are indistinguishable, which means the probability difference that
the adversary outputs the same is negligible.

Game0. This game is same as Expind-reenc-cpaUSS,A (1λ,M, n, 0). We define G0 to be
the event that A outputs 1. Then we get

Pr[G0] = Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 0) = 1].

Game1. In this game, challenger C changes a bit from Game0 in running
KeyUpclient(ske−1, ske, sb, pp) ⇆ KeyUpserver(rep, pp) to output ⟨sb∗; rep∗⟩.

32 L. Chen, H. Guo, Y. Li and Q. Tang

Concretely, for each i ∈ I, which means c0,i ̸= c1,i, challenger C randomly
chooses mr,i, hr,i, rr,i from the message space, commitment space and ran-
domness space, respectively, where |mr,i| = |m0,i|. Then run

UE.Enc(ske−1, i∥mr,i∥hr,i∥rr,i) → f̄r,i and replaces c0,i = (f̄0,i, f̂0,i) in rep0
with cr,i = (f̄r,i, f̂0,i) as input to run the KeyUp procedure. Since the key
update version of f̄r,i will be used in answering the O.FileUp(sb,m′

i, i) query
when sb = sb∗ ∧ i ∈ I, challenger C will change the behavior as follows to
reply such query. In the FileUp procedure, C gets rid of the decryption and
integrity check of retrieved ciphertext, directly commits and encrypts on the
new message m′

i and uses h0,i, calculates the change of i-th commitment
δi = h′

i − h0,i where h′
i → COM(m′

i; r
′
i) to get the file update token and

continue. Since the stub sb is generated using h0,i and binds with its vector
commitment proof in the second part of i-th ciphertext, the same h0,i is
used to update file to ensure the file updated version is a valid ciphertext,
consistent with Game0. A cannot notice the difference via corrupting both
the epoch key and ciphertext of the file’s updated version.

We define G1 to be the event that A outputs 1 in Game1. We claim that

|Pr[G1]− Pr[G0]| ≤ ϵind−upd

where ϵind−upd is the IND-UPD-advantage of UE scheme (which is negligible
if UE is IND-UPD secure).

The claim can be proven by observing that in Game 0, rep
∗ = {c∗0,1, . . . , c∗0,n},

where c∗0,i = (f̄∗
0,i, f̂

∗
0,i), includes a UE re-encryption of ciphertext f̄0,i that

encrypts message i∥m0,i∥h0,i∥r0,i, while in Game 1, c
∗
0,i includes a UE re-

encryption of ciphertext f̄r,i that encrypts message i∥mr,i∥hr,i∥rr,i. Since
UE is IND-UPD secure, the adversary A should not be able to distinguish
between the two games.

Game2 This game, makes one small change from Game1 to answer the chal-
lenge. Concretely, in KeyUpclient(ske−1, ske, sb, pp) ⇆ KeyUpserver(rep, pp)
to output ⟨sb∗; rep∗⟩, for each i ∈ I, which means c0,i ̸= c1,i, challenger C
randomly chooses Λr,i from the vector commitment proof space to replace

Λ0,i ← RISE.Dec(ske−1, f̂0,i), encrypts it RISE.Enc(ske−1, λr,i) → f̂r,i, re-

places f̂0,i with f̂r,i as input to run the KeyUp procedure. Since the key

update version of f̂r,i will be used in answering the O.FileUp(sb,m′
i, i) query

when sb = sb∗ ∧ i ∈ I, challenger C will change the behavior as follows to
reply such query. In the FileUp procedure, when updating f̂r,i, C addtion-

ally run RISE.Enc(ske, Λ0,i/Λr,i) ← rise.C∆, and replace f̂∗
r,i with f̂ ′∗

r,i =

f̂∗
r,i · rise.C∆ to answer the query. Since the stub sb is generated using h0,i

and binds with its vector commitment proof Λ0,i, while the second part of
i-th ciphertext in set L is related to Λr,i due to this game’s change, C recover
the i-th ciphertext to base on Λ0,i by running f̂ ′∗

r,i = f̂∗
r,i · rise.C∆, which is

consistent with Game1. A cannot notice the difference via corrupting both
the epoch key and ciphertext of the file’s updated version.

Efficient Secure Storage with Version Control and Key Rotation 33

We define G2 to be the event that A outputs 1 in Game2. We claim that

|Pr[G2]− Pr[G1]| ≤ ϵ′ind−upd

where ϵ′ind−upd is the IND-UPD-advantage of RISE scheme (which is negli-
gible if RISE is IND-UPD secure).
The proof of this claim is essentially the observation that in Game1 rep∗ =
{c∗0,1, . . . , c∗0,n} where c∗0,i = (f̄∗

0,i, f̂
∗
0,i) includes a RISE re-encryption of ci-

phertext f̂0,i which encrypts proof Λ0,i, while in Game2, c
∗
0,1 include a RISE

re-encryption of ciphertext f̂r,i which encrypts the proof Λr,i. So the adver-
sary A should not notice the difference since RISE is IND-UPD secure.

Game3. This game, makes one small change from Game2 to answer the chal-
lenge. Specifically, in KeyUpclient(ske−1, ske, sb, pp) ⇆ KeyUpserver(rep, pp)
to output ⟨sb∗; rep∗⟩, for each i ∈ I, which means c0,i ̸= c1,i, challenger C
randomly chooses Λδr,i from the vector commitment proof space to replace
Λ0i

to continue the KeyUp procedure. Since the challenge ciphertext with
one change in this game can be updated to a non-challenge ciphertext if A
queries O.FileUp(sb,m′

i, i) where sb = sb∗ ∧ i ∈ I. The non-challenge cipher-
text could be decrypted if A corrupts the epoch key, which is allowed. To
make A’s view the same as in Game2, challenger C will change the behavior
as follows to reply to such query. In the FileUp procedure, when updating

f̂r,i, C addtionally run RISE.Enc(ske, Λ0i
/Λδr,i)← rise.C ′

∆, and replace f̂ ′∗
r,i

with f̂ ′′∗
r,i = f̂ ′∗

r,i · rise.C ′
∆ to answer the query. Since the stub sb binds with

its vector commitment proof Λ0i , while the second part of i-th ciphertext in
set L is related to Λδr,i due to this game’s change, C recover the i-th cipher-

text to base on Λ0i
by running f̂ ′′∗

r,i = f̂ ′∗
r,i · rise.C ′

∆, which is consistent
with Game2. A cannot notice the difference via corrupting both the epoch
key and ciphertext of the file’s updated version.
We define G3 to be the event that A outputs 1 in Game3. We claim that

|Pr[G3]− Pr[G2]| ≤ ϵind−enc

where ϵind−enc is the IND-ENC-advantage of RISE scheme (which is negli-
gible if RISE is IND-ENC secure).
The proof of this claim is essentially the observation that in Game2 rep∗ =
{c∗0,1, . . . , c∗0,n} where c∗0,i = (f̄∗

0,i, f̂
∗
0,i) includes a RISE encryption of proof

Λ0i
, while in Game3, c

∗
0,1 include a RISE encryption of the proof Λδr,i. So the

adversary A should not notice the difference since RISE is IND-ENC secure.
Game4. This game makes one small change of the stub of challenge cipher-

text from Game3 to answer the challenge. Specifically, in running KeyUp
procedure to output ⟨sb∗; rep∗⟩, for each i ∈ {1, . . . , n}, challenger C runs
UE.Dec(ske−1, f̄0,i)→ (i∥m0,i∥h0,i∥r0,i) and UE.Dec(ske−1, f̄1,i)→ (i∥m1,i∥h1,i∥r1,i)
and gets mδ0−1 = (h1,1−h0,1, . . . , h1,n−h0,n). Replace 0 with mδ0−1 to run
HVC.Com(mδ0−1) → (Cmδ0−1

, auxδ), updates stub sb′∗ = sb∗ · Cmδ0−1
, and

generates key update token tk∗ = (∆∗, rise.∆∗,mδ0−1, auxδ) to continue
the KeyUp procedure. In this game each value of h0,i, Λ0,i are changed to

34 L. Chen, H. Guo, Y. Li and Q. Tang

h1,i, Λ1,i. If i /∈ I, which means c0,i = c1,i, also means h0,i = h1,i, the i-th
ciphertext is a valid ciphertext that could be decrypted correctly with the
corrupted epoch key and does not leak information about h1,j with other
index j.
We define G4 to be the event that A outputs 1 in Game4. We claim that

|Pr[G4]− Pr[G3]| = ϵposition−hiding

where ϵposition−hiding is the position-hiding-advantage of HVC scheme (which
is negligible if HVC is a secure vector commitment scheme with position
hiding and homomorphic property).
The proof of this claim is essentially the observation that in Game3 sb∗ is
vector commitment corresponding to rep0 = {c0,1, . . . , c0,n}, while in Game4,
sb∗ is a vector commitment corresponding to rep1 = {c1,1, . . . , c1,n}. For
those indices i satisfying c0,i ̸= c1,i, the vector commitment and other indices’
message do not leak information about the i-th element. So the adversary A
should not notice the difference since HVC is position hiding.

Game5 This game makes one small change on Game4, which is a reverse change
of Game3 or getting rid of the change in Game3. Specifically, for each i ∈
I, which means c0,i ̸= c1,i, challenger C changes Λδr,i back to the proof
generated from HVC.Open to continue the KeyUp procedure. We omit the
details for simplicity. Please refer to Game3 for details.
We define G5 to be the event that A outputs 1 in Game5. We claim that

|Pr[G5]− Pr[G4]| ≤ ϵind−enc

where ϵind−enc is the IND-ENC-advantage of RISE scheme (which is negli-
gible if RISE is IND-ENC secure).
The proof of this claim is identical to the observation of Game3 that in
Game5 f̂∗

1,i) includes a RISE encryption of proof Λ1i
, while in Game4, f̂

∗
r,i)

include a RISE encryption of the proof Λδr,i. So the adversary A should not
notice the difference since RISE is IND-ENC secure.

Game6 This game makes one small change on Game5, which is a reverse change
of Game2 or getting rid of the change in Game2. Specifically, in running
KeyUpclient(ske−1, ske, sb, pp) ⇆ KeyUpserver(rep, pp) to output ⟨sb∗; rep∗⟩,
for each i ∈ I, which means c0,i ̸= c1,i, challenger C replace Λr,i with Λ1,i ←
RISE.Dec(ske−1, f̂1,i), encrypts it RISE.Enc(ske−1, λ1,i) → f̂1,i, replaces f̂r,i
with f̂1,i as input to run the KeyUp procedure. We omit the details for
simplicity. Please refer to Game2 for details.
We define G6 to be the event that A outputs 1 in Game6. We claim that

|Pr[G6]− Pr[G5]| ≤ ϵ′ind−upd

where ϵ′ind−upd is the IND-UPD-advantage of RISE scheme (which is negli-
gible if RISE is IND-UPD secure).
The proof of this claim is identical to the observation of Game2. That is in
Game6 rep∗ = {c∗0,1, . . . , c∗0,n} where c∗0,i = (f̄∗

0,i, f̂
∗
1,i) includes a RISE re-

encryption of ciphertext f̂1,i which encrypts proof Λ1,i, while in Game5, c
∗
0,1

Efficient Secure Storage with Version Control and Key Rotation 35

include a RISE re-encryption of ciphertext f̂r,i which encrypts the proof Λr,i.
So the adversary A should not notice the difference since RISE is IND-UPD
secure.

Game7 This game makes one small change on Game6, which is a reverse change
of Game1 or getting rid of the change in Game1. Concretely, for each i ∈ I,
which means c0,i ̸= c1,i, challenger C replaces f̄r,i with f̄1,i where c1,i =

(f̄1,i, f̂1,i) in rep1, as input to run the Keyup procedure. We omit the details
for simplicity. Please refer to Game1 for details.
We define G7 to be the event that A outputs 1 in Game7. Game7 is the same
as Expind-reenc-cpaUSS,A (1λ,M, n, 1). So Pr[G7] = Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 1) =
1]. We claim that

|Pr[G7]− Pr[G6]| ≤ ϵind−upd

where ϵind−upd is the IND-UPD-advantage of UE scheme (which is negligible
if UE is IND-UPD secure).
The proof of this claim is identical to the observation of Game1. That is,
in Game7 rep∗ = {c∗1,1, . . . , c∗1,n} where c∗1,i = (f̄∗

1,i, f̂
∗
1,i) includes a UE re-

encryption of ciphertext f̄1,i which encrypts message i∥m1,i∥h1,i∥r1,i, while
in Game6, c

∗
0,1 include a UE re-encryption of ciphertext f̄r,i which encryptps

the message i∥mr,i∥hr,i∥rr,i. So the adversary A should not notice the dif-
ference since UE is IND-UPD secure.

Then we get∣∣∣Pr[Expind-reenc-cpaUSS,A (1λ,M, n, 1) = 1]− Expind-reenc-cpaUSS,A (1λ,M, n, 0) = 1]
∣∣∣

≤2ϵind−upd + 2ϵ′ind−upd + 2ϵind−enc + ϵposition−hiding

⊓⊔
Theorem 6. Let USS denote an updatable secure storage scheme. COM is secure
commitment with binding property, and HVC is a secure vector commitment with
position binding, then USS is OF-PTXT secure.

Proof. Intuitively, we first assume that USS is not OF-PTXT secure, and then
construct contradictions with the existing properties of building blocks to prove
the theorem. In the Expof-ptxtUSS,A(1

λ,M, n) experiment, given the stub sbe and the
epoch key ske, to win the game, A needs to provide a ciphertext fi and interact
with challenger running USS.Rev procedure and enable the challenger to retrieve
a file m′

i which is different from the i-th element mi of the latest message vector
m corresponding to the stub sbe.

Since we assume the USS is not OF-PTXT secure, then there existsA winning
the experiment Expof-ptxtUSS,A(1

λ,M, n) by enabling the file m′
i ̸= mi retrieval. That

means the commitment of m′
i passes the verification algorithm of HVC. So A

could win in two cases: one case is A finds a collision for the commitment hi,
i.e., COM(m′

i; r
′
i) = COM(mi; ri) = hi, which is contradictory with the binding

property of COM; the other case is that A finds the collision for the HVC, i.e.,
two different elements hi ̸= h′

i pass the i-th vector commitment verification for

36 L. Chen, H. Guo, Y. Li and Q. Tang

the same stub sbe, which is contradictory with HVC’s position-binding property.
So we can reduce USS’s OF-PTXT property to COM’s binding property and
HVC’s position binding.

⊓⊔

6 Future works

Although Updatable Encryption (UE) is a promising approach for secure storage
of data, it cannot be directly applied to frequently updated databases due to
the risk of a malicious server inducing the client to accept an outdated version
of a file instead of the latest one. To address this issue, we propose a scheme
called Updatable Secure Storage (USS) that provides a secure and key-rotatable
solution for dynamic databases. However, we acknowledge that the USS scheme
presented in this paper is still far from practical due to its high computational
and communication overheads. Therefore, we suggest several directions for future
work to improve the efficiency and usability of the USS scheme.

General construction for general UE. In this paper, we show a construc-
tion built on ciphertext-independent UE (CIUE) schemes as the UE syntax we
present in the paper describes. This construction can be extended to more gen-
eral ones, for ciphertext-dependent UE (CDUE). From the construction point
of view, the extension could be easy. While there is some subtlety in the secu-
rity model to be compatible with both CIUE and CDUE, CDUE models are
more fine-grained to give the adversary more flexibility to corrupt tokens. It
takes more care to formally model and analyze that existing CDUE schemes are
secure under some security models that are applicable to CDUE and could be
black-box used for USS security proof, which should be true but has never been
formalized and proved before.

Towards Full-fledged version control. In this paper, we achieve the first step
of version control: ensuring the integrity of the latest version of the database,
but do not support a fall-back function. The fall-back function enables users to
fall back on the database to any prior version. This requires the database to
store all the history versions or the history changes. One simple idea to enable
the fall-back function to a limited number of history versions is to pre-config a
bunch of versions for one file with empty or meaningless data and to update the
corresponding version when the user updates. The stub contains the information
of all the versions so that malicious servers cannot manipulate any version to
deceive users. During each key update, all versions of ciphertext get key rotation
so that the update history is hidden from external attackers.

Acknowlegements. We thank anonymous reviewers from ASIACRYPT’23 for
their valuable comments. Long Chen was supported by the National Key R&D
Program of China 2022YFB3102500 and the CAS Project for Young Scientists in
Basic Research Grant YSBR-035. Hui Guo was supported by the National Nat-
ural Science Foundation of China (Grant Nos. 61802021, 62022018, 61932019).

Efficient Secure Storage with Version Control and Key Rotation 37

References

1. Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Advances in Cryptology–CRYPTO 2011: 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings 31, pages 111–131. Springer, 2011.

2. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumula-
tors with applications to iops and stateless blockchains. In Annual International
Cryptology Conference, pages 561–586. Springer, 2019.

3. Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving speed
and security in updatable encryption schemes. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 559–589.
Springer, 2020.

4. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

5. Colin Boyd, Gareth T Davies, Kristian Gjøsteen, and Yao Jiang. Fast and secure
updatable encryption. In Annual International Cryptology Conference, pages 464–
493. Springer, 2020.

6. Martin Bradley and Alexander Dent. Payment card industry data security stan-
dard.

7. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Niz-
zardo. Vector commitment techniques and applications to verifiable decentralized
storage. IACR Cryptol. ePrint Arch., 2020:149, 2020.

8. Dario Catalano and Dario Fiore. Vector commitments and their applications. In
International Workshop on Public Key Cryptography, pages 55–72. Springer, 2013.

9. Long Chen, Yanan Li, and Qiang Tang. Cca updatable encryption against mali-
cious re-encryption attacks. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 590–620. Springer, 2020.

10. Miranda Christ and Joseph Bonneau. Limits on revocable proof systems, with
applications to stateless blockchains. IACR Cryptol. ePrint Arch., page 1478,
2022.

11. Leo de Castro and Chris Peikert. Functional commitments for all functions, with
transparent setup and from sis. In Advances in Cryptology–EUROCRYPT 2023:
42nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III, pages
287–320. Springer, 2023.

12. Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott.
Key rotation for authenticated encryption. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part III, pages 98–129, 2017.

13. Payment Card Industry. Data Security Standard. Requirements and Security As-
sessment Procedures. Version 3.2 PCI Security Standards Council (2016).

14. Michael Klooß, Anja Lehmann, and Andy Rupp. (r) cca secure updatable encryp-
tion with integrity protection. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 68–99. Springer, 2019.

15. Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable en-
cryption with integrity protection. In Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of

38 L. Chen, H. Guo, Y. Li and Q. Tang

Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, pages 68–99, 2019.

16. Russell WF Lai and Giulio Malavolta. Subvector commitments with application
to succinct arguments. In Annual International Cryptology Conference, pages 530–
560. Springer, 2019.

17. Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise
security. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 685–716, 2018.

18. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129–140.
Springer, 1991.

19. Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional commitments
from lattices. In Theory of Cryptography Conference, pages 480–511. Springer,
2021.

20. Hoeteck Wee and David J Wu. Succinct vector, polynomial, and functional com-
mitments from lattices. In Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III, pages 385–416.
Springer, 2023.

A Security Models for UE

Here, we present a revisit of the security models IND-ENC and IND-UPD for
ciphertext-independent updatable encryption as proposed in [17]. In these mod-
els, the encryption key evolves with the epochs. In addition to the challenge
ciphertext and the encryption oracle, the adversary is permitted to obtain keys
from certain epochs. This is done to reflect the scenario where the client’s keys
are leaked. Furthermore, the adversary is capable of obtaining some previous
versions of the challenge ciphertexts and update tokens, which captures the sit-
uation where previous storage on the server may not have been securely erased
in time.

The challenger initializes a UE scheme with global state (ke, ∆e, S, e) where
k0 ← UE.Setup(1λ), δ0 ← ⊥, and e ← 0, and S consists of initially empty sets
L, L̃, C,K and T . Furthermore, let ẽ denote the challenge epoch, and eend denote
the final epoch in the game.

– L: List of non-challenge ciphertexts (Ce, e) produced by calls to the Oenc or
Oupd oracle. Oupd only updates ciphertexts contained in L.

– L̃: List of updated versions of the challenge ciphertext. L̃ gets initialized
with the challenge ciphertext (C̃, ẽ). Any call to the oracle Onext oracle auto-
matically updates the challenge ciphertext into the new epoch, which A can
fetch via a OupdC call.

– C: List of all epochs e in which A learned an updated version of the challenge
ciphertext.

– K: List of all epochs e in which A corrupted the secret key ke.
– T : List of all epochs e in which A corrupted the update token ∆e.

Efficient Secure Storage with Version Control and Key Rotation 39

Oenc(m): On input a message m ∈ M, compute C ← UE.Enc(ke,m) where
ke is the secret key of the current epoch e. Add C to the list of ciphertexts
L ← L ∪ {(C, e)} and return the ciphertext to the adversary.
Onext: Upon triggering, the oracle Onext generates new epoch key by run-

ning ke+1 ← UE.Keygen(e + 1), and generates a new update token ∆e+1 by
invoking the function UE.Next(ke, ke+1). The global state is then updated to
(ke+1, ∆e+1, S, e + 1). If a challenge query has been previously made, this op-
eration also updates the challenge ciphertext to the new epoch. Specifically, it
executes Ce+1 ← UE.Upd(∆e+1, Ce) for each (Ce, e) ∈ L̃ and adds the resulting
pair (Ce+1, e+ 1) to the set L̃ ∪ {(Ce+1, e+ 1)}.
Oupd(Ce−1): On input ciphertext Ce−1, check that (Ce−1, e−1) ∈ L (i.e., it is

a valid ciphertext from the previous epoch e−1), compute Ce ← UE.Upd(∆e, Ce−1),
add (Ce, e) to the list L, and output Ce to A.
Ocorrupt({token, key}, e∗): This oracle models adaptive corruption of the host

and owner keys, respectively. The adversary can request a key or update token
from the current epoch or any of the previous epochs.

– Upon input token, e∗ ≤ e, the oracle returns ∆e∗ , i.e., the update token is
leaked. Calling the oracle in this mode sets T ← T ∪ {e∗}.

– Upon input key, e∗ ≤ e, the oracle returns ke∗ , that is, the secret key is
leaked. Calling the oracle in this mode sets K ← K ∪ {e∗}.

OupdC̃: Returns the current challenge ciphertext Ce from L̃. Note that the
challenge ciphertext gets updated to the new epoch by the Onext oracle, whenever
a new key is generated. Calling this oracle sets C ← C ∪ {e}.

Extended sets. Since in RISE both the key update and ciphertext update are
bi-directional, we define the extended sets C∗ and K∗ as follows.

Recall that K∗ denotes the set of epochs in which the adversary has obtained
the secret key:

K∗ ← {e ∈ {0, . . . , eend } | corrupt-key (e) = true }
and true ← corrupt-key (e) iff:

(e ∈ K) ∨ (corrupt-key (e− 1) ∧ e ∈ T)
∨(corrupt-key (e+ 1) ∧ e+ 1 ∈ T)

Define the set C∗ containing all challenge-equal epochs:

C∗ ← {e ∈ {0, . . . , eend } | challenge-equal (e) = true }
and true ← challenge-equal (e) iff:

(e = ẽ) ∨ (e ∈ C)
∨ (challenge-equal (e− 1) ∧ e ∈ T ∗)

∨ (challenge-equal (e+ 1) ∧ e+ 1 ∈ T ∗)

Now, let’s review the IND-ENC security notion. It ensures that ciphertexts
obtained from the UE.Enc algorithm do not reveal any information about the

40 L. Chen, H. Guo, Y. Li and Q. Tang

underlying plaintexts even when A adaptively compromises a number of keys
and tokens before and after the challenge epoch:

Definition 8 (IND-ENC). An updatable encryption scheme UE is said to be
IND-ENC secure if for any probabilistic polynomial-time adversary A it holds

that
∣∣∣Pr[Expind-enc-cpaUE,A (1λ, 0) = 1]− Pr[Expind-enc-cpaUE,A (1λ, 1) = 1]

∣∣∣ is negligible in λ.

Expind-enc-cpaUE,A (1λ, b)

k0 ← UE.Setup(1λ)

e← 0; ẽ←⊥; L ← ∅

(m0,m1, state)← AOenc,Onext,Oupd,Ocorrupt(1λ)

proceed only if |m0| = |m1|
ẽ← e

C̃ ← UE.Enc (kẽ,mb) , L̃ ← {(C̃, ẽ)}

b′ ← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(state)

return b′ if C∗ ∩ K∗ = ∅

Fig. 7. The game of IND-ENC for UE

Then, recall the IND-UPD security notion. It ensures that an updated ci-
phertext obtained from the UE.Upd algorithm does not reveal any information
about the previous ciphertext, even when A adaptively compromises a number
of keys and tokens before and after the challenge epoch adaptive manner:

Definition 9 (IND-UPD). An updatable encryption scheme UE is said to be
IND-UPD secure if for any probabilistic polynomial-time adversary A it holds∣∣∣Pr[Expind−upd−cpa

UE,A (1λ, 0) = 1]− Pr[Expind−upd−cpa
UE,A (1λ, 1) = 1]

∣∣∣ is negligible in λ.

Efficient Secure Storage with Version Control and Key Rotation 41

Expind-upd-cpa
UE,A (1λ, b)

k0 ← UE.Setup(1λ)

e← 0; ẽ←⊥; L ← ∅

(C0, C1, state)← AOenc,Onext,Oupd,Ocorrupt(1
λ)

proceed only if (C0, ẽ− 1) ∈ L and (C1, ẽ− 1) ∈ L and |C0| = |C1|
ẽ← e

C̃ ← UE.Upd (∆ẽ, Cb) , L̃ ← {(C̃, ẽ)}

b′ ← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(state)

return b′ if ẽ /∈ T ∗ ∧ C∗ ∩ K∗ = ∅ ∧ if UE.Upd is deterministic, then

A has neither queried OupdC̃ (C0) nor OupdC̃ (C1) in epoch ẽ

Fig. 8. The game of IND-UPD for UE

	Efficient Secure Storage with Version Control and Key Rotation

