
Improved Quantum Circuits for AES:
Reducing the Depth and the Number of Qubits

Qun Liu1,3, Bart Preneel4, Zheng Zhao1,3, and Meiqin Wang(B)1,2,3

1 School of Cyber Science and Technology, Shandong University, Qingdao, China,
qunliu@mail.sdu.edu.cn

2 Quan Cheng Laboratory, Jinan, China, mqwang@sdu.edu.cn
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China, zhaozheng@mail.sdu.edu.cn
4 imec-COSIC, KU Leuven, Belgium, Bart.Preneel@esat.kuleuven.be

Abstract. Quantum computers hold the potential to solve problems
that are intractable for classical computers, thereby driving increased
interest in the development of new cryptanalytic ciphers. In NIST’s post-
quantum standardization process, the security categories are defined by
the costs of quantum key search against AES. However, the cost estimates
provided by Grassl et al. for the search are high. NIST has acknowledged
that these initial classifications should be approached cautiously, since
the costs of the most advanced attacks can be significantly reduced.
Therefore, accurate resource estimations are crucial for evaluating the
security of ciphers against quantum adversaries.

This paper presents a set of generic techniques for implementing AES
quantum oracles, which are essential for quantum attacks such as Grover’s
algorithms. Firstly, we introduce the mixing-XOR technique to reuse the
ancilla qubits. At ASIACRYPT 2022, Huang et al. proposed an S-box
structure with 120 ancilla qubits. We are able to reduce the number of
ancilla qubits to 83 without increasing the T -depth. Secondly, we propose
the combined pipeline architecture with the share technique to combine
the S-box and its reverse, which achieves it with only 98 ancilla qubits,
resulting in a significant reduction of 59% compared to the independent
structure. Thirdly, we use a general algorithm to determine the depth of
quantum circuits, searching for the in-place circuit of AES MixColumns
with depth 16. Applying these improvements, we achieve the lower quan-
tum depth of AES circuits, obtaining more precise resource estimates for
Grover’s algorithm. For AES-128, -192, and -256, we only require the
depth of 730, 876, and 1,018, respectively. Recently, the community has
also focused on the trade-off of the time and space cost of quantum cir-
cuits for AES. In this regard, we present quantum implementations of
AES circuits with a lower DW-cost on the zig-zag architecture. Com-
pared with the circuit proposed by Huang et al., the DW-cost is reduced
by 35%.

Keywords: Quantum Circuit · Grover’s Algorithm · S-box · AES

1 Introduction

With the advancements in quantum computing, it has become crucial to in-
vestigate the security of cryptographic primitives against quantum attacks. For
symmetric key ciphers such as AES, Grover’s search algorithm [14] is the main
threat, which provides a quadratic speedup, significantly reducing the time re-
quired to perform an exhaustive search for the key. The speedup reflects the
asymptotic behavior of Grover’s algorithm, providing a rough estimate of the
security vulnerabilities introduced by quantum computers when applied to sym-
metric primitives [19]; moreover, estimating the detailed cost of implementing
Grover’s algorithm is challenging, hence most authors only use a rough approx-
imation.

In 2016, the National Institute of Standards and Technology (NIST, US) ini-
tiated a competition1 aimed at identifying candidate post-quantum algorithms
for standardization. As part of this competition, NIST established various secu-
rity categories for classifying the algorithms (refer to Table 1). These categories
were defined based on the complexity of quantum attacks, which can be quanti-
fied in terms of circuit size. Specifically, security categories 1, 3, and 5 correspond
to key recovery attacks against AES-128, -192, and -256, respectively.

Table 1: The three security levels for NIST’s post-quantum competition defined
based on the security of three AES variants.

Category Cipher Bound of gate counts

Level-1 AES-128 2170/MAXDEPTH
Level-3 AES-192 2233/MAXDEPTH
Level-5 AES-256 2298/MAXDEPTH

In addition to the gate count, another important parameter known as MAXDEPTH
has been introduced. NIST has proposed an approach that limits quantum at-
tacks to a fixed running time or circuit depth. This limitation is motivated by
the challenges associated with executing extremely lengthy serial computations.
As a result, there is growing interest in improving the estimation of these lev-
els, particularly in terms of optimizing the cost of quantum implementations
for AES. This problem is of significant independent interest and has garnered
considerable attention.

The introduction of security levels in NIST’s post-quantum competition has
spurred the search for optimal quantum circuits. With the potential advantages
offered by quantum technology, global efforts are currently directed towards the
design of practical large-scale quantum computer architectures, aiming to achieve
a tangible quantum advantage [12]. At the highest level of abstraction, the first
stage generates a quantum circuit from a reduced set of universal quantum gates.

1 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

2

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

The second stage makes the computation robust to errors and thus requires the
inclusion of quantum error correction methods. The industrial community has
already developed tools for the synthesis and optimization of quantum circuits,
including ProjectQ [17,32] and Q# [30], enabling significant advancements in
this field.

1.1 Related Work

A quantum circuit can be constructed with the Clifford +T gate set. Similar to
[13,21,23,25,26], at ASIACRYPT 2020, Zou et al. [34] followed the definitions of
the complexity of quantum circuits.

– Time Complexity. The time complexity refers to the time required to execute
non-parallelizable logical T gates, also known as T -depth.

– Space Complexity. The space complexity corresponds to the number of logical
qubits needed for the entire quantum computation, often referred to as width.

– Circuit Complexity. The circuit complexity is determined by the product of
the time and space complexity, i.e., DW-cost. This metric has been selected
as the trade-off metric by Jaques et al. at EUROCRYPT 2020 [19] and
Huang et al. at ASIACRYPT 2022 [16].

Extensive research has been conducted on the design of quantum circuits for
AES. The initial circuit proposal by Grassl et al. in [13] introduced a zig-zag
structure to minimize the number of required qubits. This structure has since
been adopted in various works [1,13,23,34]. Langenberg et al. [23] presented a
new circuit for the AES S-box and key expansion, reducing the qubit count.
Building upon this work, Zou et al. [34] further optimized the zig-zag structure
and introduced new AES S-box circuits.

Early research primarily aimed to reduce qubit counts in quantum circuits.
Equally important is minimizing circuit depth, given the challenges of lengthy
serial computations required by Grover’s algorithm. Additionally, ensuring fault
tolerance in quantum circuits is crucial, making the T -depth a significant factor
to consider, as emphasized in [16,18].

Nevertheless, the number of qubits can still be a bottleneck. A significant
challenge in realizing large-scale quantum computers is the redundancy required
for error-correction codes, which demands a large number of physical qubits [15].
Recently, the research community has taken into account both space complexity
and time complexity. At EUROCRYPT 2020, Jaques et al. [19] proposed several
methods to reduce quantum depth and the number of qubits. Building upon this
work, Huang et al. [16] presented S-boxes of depth 3 and 4, effectively reducing
the T -depth and DW-cost. Subsequently, a pipelined architecture was introduced
in [18] to further decrease the circuit depth.

1.2 Our Contributions

This paper aligns with the ongoing research direction and prioritizes the depth
and the number of qubits as the primary goal. By emphasizing a low-depth

3

metric, we strike a favorable balance between time and space. To further optimize
quantum circuits for AES, it becomes crucial to enhance the architecture and
building blocks. The contributions put forth by this paper are outlined below.

Improved structure of S-box. In a recent study by Huang et al. [16] a
structure for the AES S-box was proposed utilizing 120 ancilla qubits with a T -
depth of 4. In this paper, we introduce the mixing-XOR technique, an algorithm
designed to identify idle qubits within linear transformations and repurpose them
to store intermediate values. This technique significantly reduces the depth, the
number of qubits, and gates required for various quantum circuits. Using this
technique, we notably reduce the width of the AES S-box to just 83 ancilla
qubits with a T -depth of 4.

Combination of S-box and S-box† (reverse of S-box). In a study
conducted by Jang et al. [18], the shallowed pipeline architecture was introduced
to evaluate the S-box and its reverse, S-box†, simultaneously for two bytes. The
S-box† operation is used to clean up2 the ancilla qubits used in S-box. During
the execution of the S-box, 120 ancilla qubits are utilized to store intermediate
values. These ancilla qubits need to be cleaned up by S-box† so that they can be
reused in the subsequent round. The approach proposed in [18] requires a total of
120× 2 = 240 ancilla qubits to execute these two operations simultaneously. We
propose the combined pipeline architecture with the share technique to combine
S-box and S-box† concurrently. This technique significantly reduces the required
number of ancilla qubits to just 98, resulting in a 59% reduction.

Improved quantum circuit for reduced circuit complexity.We release
various quantum circuits for AES-128/192/256 under the combined pipeline ar-
chitecture, following a similar approach as in [16,18,19]. Compared with the
results in [18], the qubit count and DW-cost are decreased by 42.4%, 41.2%,
36.5% for AES-128, -192, -256, respectively. Notably, the circuits with the AND
gate and out-of-place linear layer have a lower depth. For AES-128, -192, and -
256, we only require the depth of 730, 876, and 1,018, respectively. When applied
to Grover’s algorithm, these circuits provide more precise and efficient resource
estimates than those proposed in [18,19].

Introducing AND gates into the zig-zag architecture. We propose
modifications to the S-box circuit introduced by Huang et al. [16] at ASI-
ACRYPT 2022. Our improved circuit achieves a remarkable reduction in qubit
count with the increase of the depth (cf. Sect. 7). By applying the round-in-place
zig-zag architecture, the DW-cost for AES-128 is further reduced to 132,800,
while the previous best result is 204,800 in [16]. Fig. 1 illustrates a comparison
of the trade-off between T -depth and width, demonstrating that our circuits
exhibit reduced width and DW-cost compared to [16].

1.3 Organization

In Sect. 2, we present our notation and define our metrics. In Sect. 3, we propose
an improved structure of the S-box. The combination of S-box and S-box† is

2 Cleaning up an ancilla qubit is to assign the value of the qubit to |0⟩ by some reverse
operations.

4

Fig. 1: Width and T -depth for implementing a quantum circuit for AES-128.

0 200 400 600 800 1,000 1,200 1,400 1,600

1,000

2,000

3,000

4,000

T -depth

W
id
th

[16](Circuit-0)

[16](Circuit-1)

[16](Circuit-2)

This paper

described in Sect. 4. The quantum circuits for the AES components are presented
in Sect. 5. The complete circuits for AES and the resource estimations based on
the pipeline and zig-zag architectures are shown in Sect. 6 and Sect. 7. Finally,
we conclude and propose future research directions in Sect. 8.

2 Preliminaries

2.1 Notation

Let F2 be the finite field with two elements 0 and 1 and let F2k be the finite field
with 2k elements. Consider a, b ∈ F2. Then a = a⊕ 1 represents the inversion of
a, and a⊕ b, a · b and a|b denote the XOR, AND and OR operations of a and b.
We denote withM a binary n×n matrix over F2; x and y are n-bit vectors over
F2 with x = [x0x1 . . . xn−1] and y = [y0y1 . . . yn−1]. A linear map defined by M
is defined as yt = M · xt. For a linear map M , M† is defined as the adjoint of
M , where MM† = I and I is the identity map. The linear map is computed by
a circuit as the sequential composition of the individual gates.

2.2 Quantum Circuits

A quantum state is typically written as |u⟩ and |u⟩n is used to emphasize that
the state has n qubits. Quantum gates exploit quantum entanglement and the
superposition states of qubits [7,11]. In general, a quantum circuit is constructed
by using the widely adopted universal fault-tolerant gate set Clifford phase shift

5

or T gate:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =

(
1 0
0 eiπ/4

)
.

We also employ the Pauli-X gate X = HS2H =

(
0 1
1 0

)
. The Pauli-X gate

transforms a single qubit from |a⟩ into |a⊕ 1⟩, and the CNOT gate converts
|a⟩ |b⟩ into |a⟩ |a⊕ b⟩. The Toffoli gate is a universal gate defined as the CCNOT
gate and maps |a⟩ |b⟩ |c⟩ to |a⟩ |b⟩ |c⊕ a · b⟩:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

Optimization goals. In the evaluation of quantum circuits, considering both
time and memory costs is crucial for assessing their efficiency. The metrics of
width, T -depth (#TD), and DW-cost are the primary goals of our focus and at-
tention. A forward-looking perspective suggests that each gate has a depth equal
to one, with the T gate incurring a cost similar to other gates. This perspective
defines the full depth (#FD) as the time cost metric.

Implementing the AND operation. As is shown in [29], the Clifford gates are
much cheaper than the T gate. Thus, the T gate has a higher impact on the
running time. In our quantum circuit, the AND operation a · b is the only source
of T -depth. Currently, there exist multiple approaches for implementing the AND
operations:

– the Toffoli gate with T -depth 1, or 4 (cf. [2,31]), achieving |a⟩ |b⟩ |c⟩ →
|a⟩ |b⟩ |c⊕ a · b⟩.

– the quantum AND gate using one auxiliary qubit with T -depth 1 (cf. [19]),
achieving |a⟩ |b⟩ |0⟩ → |a⟩ |b⟩ |a · b⟩.

The main distinction lies in the fact that the target qubit of the AND gate must
be in the state |0⟩, whereas the Toffoli gate does not have this requirement on its
target qubit. In our paper, we consider the target qubit of the AND operation
to be in the state |0⟩, allowing us to convert a Toffoli gate into an AND gate.
Consequently, implementing the AND operation becomes a unified process, and
whether it is represented as a Toffoli gate or an AND gate depends on specific
scenarios.

6

2.3 Description of AES Family

The Advanced Encryption Standard (AES) [8] is a block cipher with 128-bit state
(16 bytes) standardized by NIST. The AES family has three members denoted
as AES-128 (10 rounds), AES-192 (12 rounds), and AES-256 (14 rounds) with
128-bit, 192-bit, 256-bit keys, respectively.

P P P P

P P P P

P P P P

P P P P

SubBytes

K KK K
K K KK

K K K K

K K K K

C CC C

C C CC

C C C C

C C C C

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

ShiftRows MixColumns
⨁⨁

K K K K

AddRoundKey

Fig. 2: Structure of an AES round.

The AES round function consists of four operations: AddRoundKey ◦ Mix-
Columns ◦ ShiftRows ◦ SubBytes (see Fig. 2). The 128-bit state is represented
in a 4× 4 matrix of bytes. Next, we explain each operation.

– AddRoundKey. The operation exclusive-ors each round key to the state.

– ShiftRows. It cyclically rotates the cells of the i-th row to the left over i
positions, for i = 0, 1, 2, 3.

– SubBytes. The operation applies an 8-bit S-box to each byte of the state
in parallel. The 128-bit state is transformed with 16 S-box lookups.

– MixColumns. The MixColumns operation applies a linear transformation
on each column of the state with the matrix

M =

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

 .

For each column in the state, we use MixColumn to represent the operation.
Hence, one MixColumns operation consists of four MixColumn operations on
the four columns of the state. In SubBytes, 16 S-box operations substitute the
individual bytes of the state.

Denote the master key by 32-bit words W0,W1, . . . ,Ws−1, where s = 4 for
AES-128, s = 6 for AES-192, and s = 8 for AES-256, respectively. The key
schedule algorithm is listed in Supplementary Material B. Three operations are
used in the algorithm: RotWord cyclically rotates the four bytes to the left by
one position; Rcon exclusive-ors a constant to each byte of the word; SubWord
applies four S-boxes in parallel to the four bytes of the word.

7

3 Improved Quantum Circuit Implementations of AES
S-box

In [19], the S-box circuit constructed by Jaques et al. for AES requires 120
ancilla qubits with T -depth 6. Subsequently, Huang et al. [16] reduced the T -
depth to 4 while keeping the number of qubits at 120. In this section, our aim
is to construct a new circuit from the classical circuit with a reduced number of
qubits and gates, as well as less quantum depth. We build upon these papers and
introduce the mixing-XOR technique (m-XOR) to accomplish this construction.
The technique enables us to identify reusable qubits within the S-box, resulting
in a circuit with T -depth 4, requiring only 74 + 9 ancilla qubits, where 9 qubits
with the value |0⟩ are used to satisfy the parallelism of AND gates. If the S-box
circuit used for improvements is updated, our approach can still be employed to
reduce these three metrics.

3.1 m-XOR Technique

Two operations are used in quantum linear circuits:

– The updating operation is in-place and can be implemented by a CNOT gate
|a⟩ |b⟩ → |a⟩ |a⊕ b⟩, defined as CNOT(a, b).

– The creating operation is out-of -place, requiring two CNOT gates |a⟩ |b⟩ |c⟩ →
|a⟩ |b⟩ |c⊕ a⟩ and |a⟩ |b⟩ |c⊕ a⟩ → |a⟩ |b⟩ |c⊕ a⊕ b⟩, defined as CNOT2(a, b, c).

which correspond to s-XOR and g-XOR in classical circuits (cf. [20,33]). We
observe that it is beneficial to transform a creating operation into an updating
operation. Based on Observation 1, we propose the m-XOR technique to con-
struct the quantum circuit from the classical circuit with a reduced number of
qubits and gates, as well as less quantum depth.

Observation 1 Given a quantum circuit with creating operations, some qubits
can be reused by transforming creating operations into updating operations.

Definition 1 (m-XOR technique). The m-XOR technique mixes updating
operations and creating operations to implement a linear transformation with
the lowest number of qubits.

Example 1. Given that we assign two qubits to qa and qb, the subsequent opera-
tion is a creating operation: qc = qc⊕ (qa⊕qb). If qa is not further utilized in the
subsequent circuit, this operation can be converted to an updating operation:
qa = qa ⊕ qb. When utilizing qc, we simply select the qubit qa.

The detection of idle qubits forms the essence of this technique. Proposition 1
outlines the qubits that can be eliminated from the circuit.

Proposition 1. In a sequentially written quantum circuit, the conversion from
a creating operation tc = tc ⊕ (ta ⊕ tb) to an updating operation ta = ta ⊕ tb
requires the fulfillment of the following conditions:

8

– ta should not be utilized in the subsequent circuit.
– tc does not appear in the previous circuit.

To successfully perform the conversion, both conditions must be satisfied. Failing
to meet either condition can compromise the correctness of the circuit.

Proof. For the operation tc = tc⊕ (ta⊕ tb), the question is how to save the value
of tc. If ta is involved in subsequent computations, it cannot be safely updated.
If ta is not used in the subsequent circuit, we can use ta = ta ⊕ tb to replace tc,
which requires that tc does not appear in the previous circuit. Otherwise, tc is
not initialized to |0⟩ and the transformation ignores the original value of tc.

⊓⊔

Proposition 1 implies Algorithm 1 to optimize a quantum circuit using the
m-XOR technique.

Algorithm 1 Transformation from creating operations into updating operations

Input: A sequentially written quantum circuit C in sequence
Output: The optimized quantum circuit with a reduced number of qubits and gates,

as well as less quantum depth
1: for each gate g ∈ C do
2: if g is creating operation tc = tc ⊕ (ta ⊕ tb) then
3: if tc appears in the previous circuit then
4: Continue
5: end if
6: Check the subsequent circuit and count the number na that ta is used
7: Check the subsequent circuit and count the number nb that tb is used
8: if ni = 0 (i = a or b) then
9: Replace tc with ti in g and in the subsequent circuit
10: end if
11: end if
12: end for
13: return C

3.2 Applying the m-XOR Technique to AES S-box

We apply Algorithm 1 to optimize the AES S-box from [16]. The circuit contains
34 AND operations, 120 creating operations, and 4 X gates. Apart from the 8-bit
inputs u0, u1, . . . , u7 and the 8-bit outputs s0, s1, . . . , s7, the circuit of the S-box
requires 120 ancilla qubits: t0, . . . , t26, m0, . . . ,m62, and l0, . . . , l29.

We find that 46 qubits are unnecessary. Our optimized S-box circuit requires
only 74 ancilla qubits, denoted as q0, q1, . . . , q73. A detailed list of all allocated
qubits is provided in Table 2. To facilitate the description, we introduce the
AND operation and the X gate, which are defined as follows:

AND(a, b, c) → c = a · b ,
X(a) → a = a⊕ 1 .

9

Table 2: New structure of S-box of AES with 74 ancilla qubits.

No. Gate No. Gate No. Gate

0 CNOT2(u7, u4, q0) 53 AND(q15, q9, q26) 106 CNOT(q25, q63)
1 CNOT2(u7, u2, q1) 54 AND(q61, q21, q32) 107 CNOT(q40, q64)
2 CNOT(u1, u7) 55 AND(q16, q60, q35) 108 CNOT(q36, q65)
3 CNOT2(u4, u2, q2) 56 CNOT(q25, q63) 109 CNOT(q21, q66)
4 CNOT(u1, u3) 57 CNOT2(q16, q26, q27) 110 CNOT(q39, q67)
5 CNOT2(q0, u3, q3) 58 CNOT2(q9, q16, q28) 111 CNOT(q33, q68)
6 CNOT2(u6, u5, q4) 59 CNOT(q28, q62) 112 CNOT(q16, q69)
7 CNOT2(u0, q3, q5) 60 CNOT2(q21, q26, q29) 113 CNOT(q38, q70)
8 CNOT2(u0, q4, q6) 61 CNOT2(q28, q26, q34) 114 CNOT(q41, q71)
9 CNOT2(q3, q4, q7) 62 AND(q29, q28, q30) 115 CNOT(q37, q72)
10 CNOT(u2, u6) 63 AND(q27, q25, q31) 116 CNOT2(q57, q58, q60)
11 CNOT(u2, u5) 64 AND(q62, q32, q33) 117 CNOT2(q46, q52, q61)
12 CNOT2(u7, q2, q8) 65 AND(q63, q35, q36) 118 CNOT2(q42, q44, q62)
13 CNOT2(q3, u6, q9) 66 CNOT(q25, q26) 119 CNOT2(q43, q51, q63)
14 CNOT(u3, u6) 67 CNOT(q30, q16) 120 CNOT2(q50, q54, q64)
15 CNOT(u5, u3) 68 CNOT(q34, q33) 121 CNOT2(q45, q57, q65)
16 CNOT2(q6, u3, q10) 69 CNOT(q31, q21) 122 CNOT2(q58, q65, q66)
17 CNOT(u0, u4) 70 CNOT(q26, q36) 123 CNOT2(q42, q63, q67)
18 CNOT(q4, u4) 71 CNOT2(q33, q36, q37) 124 CNOT2(q47, q55, q68)
19 CNOT2(q0, u4, q11) 72 CNOT2(q16, q21, q38) 125 CNOT2(q48, q49, q69)
20 CNOT(u0, u1) 73 CNOT2(q16, q33, q39) 126 CNOT2(q49, q64, q70)
21 CNOT(u1, q4) 74 CNOT2(q21, q36, q40) 127 CNOT2(q56, q62, q71)
22 CNOT2(q1, q4, q12) 75 CNOT2(q38, q37, q41) 128 CNOT2(q44, q47, q72)
23 CNOT2(q1, q7, q13) 76 CNOT(q40, q64) 129 CNOT2(q66, q70, q73)
24 CNOT2(q11, q10, q14) 77 CNOT(q36, q65) 130 CNOT(q60, q46)
25 CNOT2(u7, u3, q15) 78 CNOT(q21, q66) 131 CNOT(q57, q48)
26 CNOT(q0, u5) 79 CNOT(q39, q67) 132 CNOT(q61, q51)
27 AND(q8, q3, q16) 80 CNOT(q33, q68) 133 CNOT(q60, q52)
28 AND(q12, q5, q17) 81 CNOT(q16, q69) 134 CNOT(q61, q53)
29 AND(u4, u0, q18) 82 CNOT(q38, q70) 135 CNOT(q68, q54)
30 AND(u7, u3, q19) 83 CNOT(q41, q71) 136 CNOT(q64, q59)
31 AND(q4, q6, q20) 84 CNOT(q37, q72) 137 CNOT(q61, q60)
32 AND(q11, q10, q21) 85 AND(q40, q3, q42) 138 CNOT2(q61, q67, s4)
33 AND(q0, u6, q22) 86 AND(q36, q5, q43) 139 CNOT2(q63, q72, s3)
34 AND(q2, u5, q23) 87 AND(q21, u0, q44) 140 CNOT2(q54, q62, s0)
35 AND(q1, q7, q24) 88 AND(q39, u3, q45) 141 CNOT2(q51, q69, s7)
36 CNOT(q16, q9) 89 AND(q33, q6, q46) 142 CNOT2(q67, q69, s6)
37 CNOT(q18, q16) 90 AND(q16, q10, q47) 143 CNOT2(q68, q70, s1)
38 CNOT(q19, q15) 91 AND(q38, u6, q48) 144 CNOT2(q71, q48, s5)
39 CNOT(q19, q21) 92 AND(q41, u5, q49) 145 CNOT2(q71, q53, s2)
40 CNOT(q22, q23) 93 AND(q37, q7, q50) 146 CNOT(q66, s7)
41 CNOT(q22, q24) 94 AND(q64, q8, q51) 147 CNOT(q52, s6)
42 CNOT(q17, q9) 95 AND(q65, q12, q52) 148 CNOT(q59, s5)
43 CNOT(q13, q16) 96 AND(q66, u4, q53) 149 X(s6)
44 CNOT(q20, q15) 97 AND(q67, u7, q54) 150 X(s5)
45 CNOT(q24, q21) 98 AND(q68, q4, q55) 151 CNOT(q66, s4)
46 CNOT(q23, q9) 99 AND(q69, q11, q56) 152 CNOT(q60, s3)
47 CNOT(q24, q16) 100 AND(q70, q0, q57) 153 CNOT(q73, s2)
48 CNOT(q23, q15) 101 AND(q71, q2, q58) 154 CNOT(q46, s1)
49 CNOT(q14, q21) 102 AND(q72, q1, q59) 155 CNOT(q66, s0)
50 CNOT2(q15, q21, q25) 103 CNOT(q15, q60) 156 X(s1)
51 CNOT(q15, q60) 104 CNOT(q9, q61) 157 X(s0)
52 CNOT(q9, q61) 105 CNOT(q28, q62)

10

We take an example to show the process. In No. 2 of the previous circuit,
the operation CNOT2(u7, u1, t2) satisties Proposition 1. Therefore, we can use
u7 to save the value of t2, reducing one ancilla qubit and one CNOT gate. The
gate substitution is

CNOT2(u7, u1, t2) → CNOT(u1, u7) .

3.3 Comparisons of Resource Estimations of the AES S-box

There are various implementations of S-box quantum circuits. Some circuits use
Toffoli gates, while others use AND gates. We show the comparison of different
Toffoli-based circuits in Table 3. Moreover, Jang et al. [18] provided a detailed
comparison by splitting Toffoli gates, which we present in Supplementary Mate-
ria D.

Table 3: Comparison of implementations of S-box using Toffoli gates. “6+16”
represents 6 ancilla qubits and 16 input and output qubits of the AES S-box.

Source Width #Toffoli #CNOT #1qCliff Toffoli depth

[23] 16+16 55 314 4 40
[34] 6+16 52 326 4 41
[34] 7+16 48 330 4 39
[34] 8+16 46 332 4 37
[26] 5+16 57 193 4 24
[26] 6+16 57 195 4 22

[19] 120+16 34 186 4 6
[16] 120+16 34 214 4 4

This paper 74+16 34 168 4 4

Next, we compare the S-box circuits utilizing AND gates with [16,19]. The
authors estimated both the S-box and S-box† using Q#. To ensure a fair com-
parison, we adopt the same approach (cf. Table 4). As mentioned in [16], for
the 4-th AND layer, the execution of 18 parallel AND gates is required, with
each gate necessitating an ancilla qubit, resulting in a total of 18 qubits. We
find that q73, s0, s1, . . . , s7 remain |0⟩ after the 4-th AND layer. Thus, the re-
maining 9 qubits need to be allocated. Thus, the width of the S-box circuit is
74 + 16 + 9 = 99. We find that the optimized quantum circuit has a reduced
number of qubits and gates, as well as less quantum depth.

4 Improved Combination of S-box and S-box†

In [19], Jaques et al. used the pipeline architecture for AES. Subsequently, Jang
et al. [18] proposed the shallowed pipeline architecture, which necessitates 120+
120 = 240 ancilla qubits for executing S-box and S-box†. In this section, we

11

Table 4: Comparison of several implementations of S-box and S-box† based on
the AND gates. Here #M counts the number of Measurements.

Source Width #CNOT #1qCliff #T #M #TD #FD

[19] 136 664 205 136 34 6 117
[16] 136 718 208 136 34 4 109

This paper 99 624 204 136 34 4 101

present the combined pipeline architecture with the share technique to combine
the S-box and S-box†. The combined architecture demonstrates a significant
efficiency improvement by utilizing only 74 + 24 = 98 ancilla qubits. Note that
we do not use the inverse S-box in the pipeline architecture.

4.1 Pipeline Architecture for AES

A pipeline architecture is employed to reduce the reuse of qubits and achieve
lower T -depth in circuit execution. As is shown in [18], the resource estimation
based on AND gates and the pipeline architecture in [19] may underestimate
the depth/width cost of the circuits, partly due to the bugs in Q#3. Then, Jang
et al. [18] proposed a shallowed pipeline architecture as depicted in Fig. 3. In
the following, we provide a detailed description of each component.

Input SB • SB†

|0⟩⊗128 r1 SB • SB†

|0⟩⊗128 r2 SB • SB†

|0⟩⊗128 r3 SB

· · · · · ·

|0⟩⊗128 r10 Output

Fig. 3: The shallowed pipeline architecture.

The SubBytes operation comprises 16 distinct S-boxes applied to 16 bytes,
denoted as SB in Fig. 3. For the i-th round function Ri, we represent Ri as the
sum of SB and ri. Each S-box takes an 8-qubit input, utilizes a set of ancilla
qubits Q1

i for each byte Bi (0 ≤ i ≤ 15), and produces an 8-qubit output on
the subsequent line. In [18], |Q1

i | = 120. If we do not clean up the ancilla qubits
in each Q1

i , we would need to allocate an ancilla qubit set for the subsequent
S-box operations, resulting in a total of 10 rounds × 16 bytes × 120 qubits =
19, 200 qubits.

Hence, the use of SB†, which represents the adjoint of SB, becomes necessary
to clear the ancilla qubits. During the execution of SB, 16 sets of ancilla qubits

3 https://github.com/microsoft/qsharp-runtime/issues/1037.

12

https://github.com/microsoft/qsharp-runtime/issues/1037

Q1
i (0 ≤ i ≤ 15) are utilized. Subsequently, SB† is employed to clean up the

qubits in each Q1
i . To ensure that the T -depth does not increase, the execution

of SB† in Rj and SB in Rj+1 is performed simultaneously. To achieve this, 16
sets of ancilla qubits Q2

k (0 ≤ k ≤ 15) are required. We illustrate this relationship
using an example.

Example 2. We begin with an initial set of 16 Q1
i (0 ≤ i ≤ 15) and 16 Q2

k

(0 ≤ k ≤ 15).

– In R1, SB uses 16 Q1
i (0 ≤ i ≤ 15).

– In R2, SB uses 16 Q2
k (0 ≤ k ≤ 15) and SB† cleans up the qubits in 16 Q1

i

(0 ≤ i ≤ 15).
– Then, in round R3, SB uses the 16 Q1

i (0 ≤ i ≤ 15) sets, and SB† clears the
qubits in the 16 Q2

k (0 ≤ k ≤ 15) sets.
– These two sets of ancilla qubits are alternated in the remaining rounds.
– The total count of ancilla qubits is 2× 16× 120 = 3840.

|Q1
i ⟩ •

|u1⟩8 S-box†

|Q2
k⟩ •

|u2⟩8 S-box

Fig. 4: Independent structure to execute S-box and S-box† simultaneously.

4.2 Combined Pipeline Architecture

For each byte Bi of the state, there are two ancilla qubit sets Q1
i and Q2

i used in
S-box and S-box† (see Fig. 4). With the S-box circuit from [16], the independent
structure in [18] requires |Q1

i | + |Q2
i | = 120 + 120 = 240 ancilla qubits. For 16

bytes of AES, the total ancilla qubit count is 240× 16 = 3840.
We point out that there are unnecessary qubits for this operation, which is

based on Observation 2.

Observation 2 In the independent structure of S-box and S-box†, during the
execution of S-box†, the qubits are consistently cleaned up, and these qubits are
not utilized in the S-box operation. Conversely, S-box employs a fresh qubit set
to select the available qubits.

Thus, it should be explored to reuse the qubits cleaned up by S-box† imme-
diately. We propose the share technique that combines the qubit sets of S-box
and S-box† (see Fig. 5). The combination only uses one set, the share set SQi.
After the analysis in Sect. 4.3, we have |SQi| = 74 + 24 = 98, which is much
smaller than |Q1

i | + |Q2
i | = 240. Using the combined S-box and S-box†, we can

propose the combined pipeline architecture for AES (cf. Fig. 6).

13

|Share Set SQi⟩ •
|u1, u2⟩16 Combination of S-box† and S-box

Fig. 5: Combined structure to execute S-box and S-box† simultaneously.

Input SB •
C

|0⟩⊗128 r1 •
C

|0⟩⊗128 r2 •
C

|0⟩⊗128 r3

· · · · · ·
|0⟩⊗128 r10 Output

Fig. 6: The combined pipeline architecture, where C is the combined S-box and

S-box†.

Discussion on different pipeline architectures. We employ a simple structure
to discuss this distinction. Assume that an r-round cipher (r ≥ 1) consists of
only two components, SB and MixColumns, with corresponding depths of ds
(ds ≥ 1) and dm (dm ≥ 1). Additionally, SB requires qs (qs ≥ 0) ancilla qubits,
MixColumns requires qm (qm ≥ 0) ancilla qubits, and each round requires qr
(qr ≥ 1) qubits. Table 5 shows the comparison.

Table 5: Comparison of different pipeline architectures.

Architecture Width #FD

Original architecture[19] (r + 1) · qr + qs + qm ds +max(ds, dm)
Shallowed architecture[18] (r + 1) · qr +max(2qs, qm) ds + dm
Combined architecture (r + 1) · qr +max((1 + ϵ) · qs, qm) ds + dm

In the original pipeline architecture, we first execute SB, and then run SB†

and MixColumns simultaneously. Then, we use ((r+1) ·qr+qs+qm) qubits with
depth (ds + max(ds, dm)). For the shallowed pipeline architecture, we use the
independent structure to execute SB and SB† simultaneously and then execute
MixColumns. The circuit requires ((r+1) · qr+max(2qs, qm)) qubits with depth
(ds+dm). In the combined pipeline architecture, we use the combined structure
to execute SB and SB† simultaneously and then execute MixColumns. For the
share set, we use (1 + ϵ)qs qubits, where ϵ depends on the size of the share set
and we have 0 ≤ ϵ ≤ 1. Then, we can obtain the following observation.

Observation 3 If ds > dm, the shallowed and combined pipeline architectures
have the lowest circuit depth. If qm > ϵ · qs, the combined pipeline architecture
has the lowest width.

14

4.3 Share Technique

The share technique is based on Observation 4, where we determine which qubits
can be reused and preassign them accordingly.

Observation 4 Suppose that S-box and S-box† are executed simultaneously. When
S-box† clears up a qubit, the qubit can be immediately reused by S-box.

Next, we introduce the general share technique in Definition 2. This technique
utilizes five sets that satisfy Property 1, defined as follows.

Definition 2. The share technique utilizes a set SQi to execute S-box and S-
box† simultaneously for a single byte Bi. Four sets are employed to split SQi,
where the set with subscript public stores the qubits in the state |0⟩, and the set
with subscript private stores the qubits that are being used.

– qoldprivate is the set of qubits that will be cleaned up by S-box†.

– qoldpublic is the set of unallocated qubits for S-box†.
– qnewprivate is the set of qubits used by S-box.
– qnewpublic is the set of qubits that are not used by S-box.

Property 1. The five qubit sets in the public qubit technique satisfy the following
equations:

SQi = qoldprivate ∪ qoldpublic = qnewprivate ∪ qnewpublic ,

qoldprivate ∩ qoldpublic = ϕ , qnewprivate ∩ qnewpublic = ϕ .
(1)

These equations can be explained as follows: S-box and S-box† utilize the share
set SQi in our optimization, where we set |SQi| = 74+ 24 = 98. For each S-box
operation, an ancilla qubit set stores 74 qubits, resulting in |qoldprivate| = 74, and

|qoldpublic| = |SQi/q
old
private| = 24. When S-box† cleans up one qubit q, we have

qoldprivate = qoldprivate/{q} , qoldpublic = qoldpublic ∪ {q} . (2)

At the same time, S-box requires qubits to store intermediate values. S-box
chooses these qubits from qoldpublic. Assuming that q is chosen by S-box, we have

qoldpublic = qoldpublic/{q} , qnewprivate = qnewprivate ∪ {q} . (3)

Finally, after completing the combination, we assign the qubits not used in S-box
to qnewpublic, i.e., q

new
public = SQ/qnewprivate. Since this S-box also uses 74 ancilla qubits,

we have
|qnewprivate| = |qoldprivate| = 74 , |qnewpublic| = |qoldpublic| = 24 . (4)

Proposition 2 demonstrates that the sizes of the five qubit sets remain un-
changed after executing the combination in the share technique.

Proposition 2. In the share technique, after completing the combination of S-
box and S-box†, the sizes of the five qubit sets remain constant.

15

Proof. During the combination process, we set |SQi| = a and |qoldprivate| = u. By

Property 1, |qoldpublic| is z = a− u.

Next, we examine the combination process in detail. S-box† cleans up all the
qubits in qoldprivate and adds them to qoldpublic. This results in a total of u + z =

a qubits in qoldpublic. When executing S-box, u qubits are selected from qoldpublic.

Therefore, |qoldpublic| remains a − u = z. Additionally, the unselected qubits from

|qoldpublic|, which amount to z, are stored in |qnewpublic|.
In conclusion, as long as qoldpublic contains a sufficient number of qubits, the

sizes of the qubit sets remain unchanged. This completes the proof. ⊓⊔

Example 3. Suppose we visualize the unallocated qubits in qoldpublic as a pool of
water, as shown in Fig. 7. The water in the pool represents the available qubits
for allocation. The process in which S-box† cleans up the qubits can be likened to
adding water to the pool, replenishing the available qubits. When S-box requires
an ancilla qubit, it can be seen as drawing water (qubits) from the pool.

S-box†
POOL

S-box

WATER WATER

Fig. 7: The water pool in the public qubit technique.

We provide Algorithm 2 to decide the size of SQi. In the aforementioned
process, the ability to execute the S-box depends on the availability of qubits
in the pool. If the pool is empty, the S-box cannot be executed. Specifically,
if we find |qoldpublic| = 0, it means that no qubits can be selected from qoldpublic,
indicating that |SQi| is too small to accommodate the S-box operation. Here,
|SQi| represents the maximum capacity of the “pool” to hold qubits. Therefore,
we gradually increase the size until Algorithm 2 no longer returns “Error”.

As a result, SQi is composed of two parts: the initially set qubits, which are
assigned the value |0⟩ and stored in qoldpublic, and the qubits that require cleaning

by S-box†, which are stored in qnewprivate.

4.4 Applying the Share Technique to the AES S-box

In this section, we present the complete combination of AES S-box and S-box†

using the share technique. We illustrate the implementation of the S-box based
on the structure provided in Table 2. To facilitate the combination, we propose
a method to split the S-box circuit based on its T -depth. The S-box circuit is
divided into several layers, taking into account the T -depth of each gate. The
layering scheme is as follows:

16

Algorithm 2 Combination of S-box and S-box†

Input: Public qubit set SQi, used qubit set qoldprivate, and unallocated qubit set qoldpublic

Output: New used qubit set qnew
private, and new unallocated qubit set qnew

public

1: The depth dmax is the maximum of depth of S-box and S-box†

2: for the current depth d from 1 to dmax do
3: if |qoldpublic| = 0 then
4: return Error
5: end if
6: Choose q ∈ qoldpublic, execute S-box under depth d, and put q into qnew

private

7: Execute S-box† under depth d. If one qubit q′ is cleaned up, put q′ into qoldpublic

8: end for
9: qnew

public = SQi/q
new
private

10: return qnew
public and qnew

private

– The first layer consists of the gates that precede the execution of T gates
(No. 0-26).

– The second layer includes gates with T -depth 1 (No. 27-35).
– The third layer encompasses gates between T -depth 1 and 2 (No. 36-52).
– The fourth layer comprises gates with T -depth 2 (No. 53-55).
– The remaining layers are split according to the proposed method: No. 56-61,

No. 62-65, No. 66-84, No. 85-102, No. 103-157.

The circuit is executed in order, with a total of nine layers. We denote each
layer as Li. For S-box†, the order of execution is reversed. The ancilla qubits
involved in each layer are specified in Table 6.

Table 6: The layers and the corresponding ancilla qubits in S-box and S-box†.

S-box Ancilla qubits S-box†

L1 q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15 L9

L2 q16, q17, q18, q19, q20, q21, q22, q23, q24 L8

L3 q25, q60, q61 L7

L4 q26, q32, q35 L6

L5 q27, q28, q29, q34, q62, q63 L5

L6 q30, q31, q33, q36 L4

L7 q37, q38, q39, q40, q41, q64, q65, q66, q67, q68, q69, q70, q71, q72 L3

L8 q42, q43, q44, q45, q46, q47, q48, q49, q50, q51, q52, q53, q54, q55, q56, q57, q58, q59 L2

L9 q73 L1

In the case of S-box, in each layer Li, every qubit q represents the qubit
that is initially used by the S-box. Prior to Li, the qubit q is initialized to |0⟩.
Conversely, for S-box†, in each layer Li, each qubit q indicates the qubit that is
cleaned up by S-box†. After the completion of Li, the qubit q is reset to |0⟩.

To ensure that the T -depth remains unchanged, we align each layer in S-box
and S-box†. In each layer Li, when S-box requires a qubit in the |0⟩ state, we
check if the water pool is empty. If the pool is empty, we preset a qubit in the
pool, thereby increasing the size of SQi. After the completion of Li, the qubits

17

Table 7: Qubit allocation for the combination of S-box and S-box†. “Previous
Pool” is the qubit count of the previous pool in Li. “Need” is the qubit count
that S-box requires in Li. “Preset Qubits” is the number of qubits that we preset.
“Cleaning” is the qubit count that S-box† cleans up. “New Pool” is the qubit
count of the new pool.

Layer Previous pool Need Preset qubits Cleaning New pool

L1 0 16 16 1 1

L2 1 9 8 18 18

L3 18 3 0 14 29

L4 29 3 0 4 30

L5 30 6 0 6 30

L6 30 4 0 3 29

L7 29 14 0 3 18

L8 18 18 0 9 9

L9 9 1 0 16 24

that are cleaned up by S-box† are placed back into the pool for the next layer
Li+1. The size of SQi is the sum of qoldprivate and the number of preset qubits.
The complete qubit allocation is illustrated in Table 7, and we provide a detailed
explanation below.

– Prior to L1, there are no qubits in the pool.

– During the execution of L1, we preset 16 qubits in S-box. Then, one qubit
is cleaned up by S-box† and added to the pool.

– In L2, we need to preset an additional 8 qubits in the pool. A total of 18
qubits are cleaned up by S-box†, resulting in a pool size of 18 qubits.

– The subsequent steps follow a similar pattern.

Table 8: Cost comparison of the cost of the combination of S-box and S-box†.
Here 32 qubits represent 16-bit inputs and 16-bit outputs of two bytes.

Source Method Width #CNOT #Toffoli(AND) Toffoli(AND) depth

[18] Independence 120 + 120 + 32 = 240 + 32 428 68 4
This paper Combination 74 + 24+ 32 = 98+ 32 312 68 4

In total, we preset 24 qubits in the pool. Consequently, |SQi| = 74+24 = 98.
Prior to executing the combination, 74 ancilla qubits are utilized, and then we
allocate 24 qubits with an initial state of |0⟩ in qoldpublic. After the combination,
there are still 24 qubits remaining in the pool for subsequent combinations (see
Proposition 2). Therefore, we have |SQ| = 98, |qoldpublic| = 24, |qoldprivate| = 74,
|qnewpublic| = 24, and |qnewprivate| = 74. We give the complete comparison in Table 8.
The number of ancilla qubits is reduced from 240 to 98.

18

5 The Components of Quantum Circuits for AES

This section describes the quantum circuits for the AES components MixColumns,
Key Schedule, AddRoundKey, and ShiftRows. We mainly introduce the improve-
ment of the depth of MixColumns. Other components are similar to the previous
work.

5.1 Implementation of MixColumns

The implementation of MixColumns has been widely studied [16,18,34]. Usu-
ally, we can use optimized classical circuits to reduce the cost (see for example
[22,24,27,28,33]).

In quantum key search, the full depth of the circuit influences the time cost
for Grover’s search. However, the depth in classical circuits and quantum cir-
cuits is different. The main reason is that one qubit cannot be used in two gates
simultaneously. The previous work merely translated the optimal classical cir-
cuits into quantum circuits. However, we believe that relaxing the gate count
constraint could lead to better depth performance. Therefore, we relaxed the
gate count constraint in Xiang et al.’s approach in [33] and generated a series of
candidate circuits. Then, we propose FINDDEPTH() (cf. Algorithm 3) to calculate
their quantum depth quickly. As a result, we obtained an in-place circuit with a
depth of 16 (cf. Table 9).

Table 9: Comparison of MixColumns implementations for each column.

Source #CNOT Width #FD

[3,28] 206 135 13
[24] 210 137 11
[19] 277 32 111

[13,34] 277 32 39
[33] 92 32 30

This Paper 98 32 16

5.2 Implementation of the Key Schedule

In the key schedule of AES, we use several 32-bit words to save the key. For AES-
128, we use 128 qubits to represent the 128-bit master key (calledW0,W1,W2,W3).
After executing XOR operations for these qubits and the 128-bit state, we update
128 qubits for the next AddRoundKey operation.

The schedule is similar to [16,18,19]. Firstly, we use four ancilla qubit set
SQi (0 ≤ I ≤ 3) to run SubWord, which requires 4 × 98 = 392 ancilla qubits.
All the S-boxes in the key schedule and round function are designed to operate
in parallel. SubWord† is executed in the next round to clean up the ancilla
qubits, which is introduced in Sect. 4. The 32-bit output values of SubWord

19

are XORed to |W4i+0⟩. The Rcon operation is implemented with X gates for
the corresponding qubits to generate W4i+4. Finally, W4i+5,W4i+6,W4i+7 are
updated by CNOT gates. Rcon is executed by adding X gates. The schedule in
our pipeline architecture is similar to [16,18,19].

5.3 Implementation of AddRoundKey and ShiftRows

In AddRoundKey, 128 CNOT gates are required and no ancilla qubits are set.
For the ShiftRows operation, the swap for qubits is a logical operation that only
changes the index of qubits. Therefore, the operation does not require any gates.

6 Quantum Circuit of AES based on the Pipelined
Architecture

As mentioned in Sect. 4, the pipelined architecture is suitable for implement-
ing low-depth AES circuits. In this section, we have made improvements with
different quantum circuits based on the combined pipeline architecture using
ProjectQ. The code is available at https://github.com/QunLiu-sdu/Improved-
Quantum-Circuits-for-AES. Then, we provide a more precise analysis of the
Grover algorithm’s complexity.

6.1 Resource Estimations based on the Toffoli Gate and AND Gate

In [16,18,23,25,26,34], the authors present the quantum resources needed for the
circuits without decomposing the Toffoli gates. We adhere to the same circuit
metrics to facilitate a fair comparison.

Grover’s algorithm requires us to estimate the complexity resulting from
decomposing Toffoli gates. According to [31], the Toffoli gate can be decomposed:

– the circuit with T -depth 1 and 4 ancilla qubits;
– the circuit with T -depth 4 and 0 ancilla qubits.

On the other hand, in [19,18], the authors recommend using AND gates
to achieve a lower complexity for Grover’s algorithm. We also utilize AND-
based decomposition to construct AES quantum circuits. In fact, the circuits
constructed using this method have the lowest circuit depth. We applied these
circuits to Grover’s algorithm, obtaining more precise resource estimates.

The structure of each AES round is shown in Fig. 6. For each round, 20
S-boxes are executed in parallel (16 S-boxes for SubBytes and 4 S-boxes for
SubWord). In R1, we execute 20 S-boxes with 20 shared qubit sets because no
S-boxes† are required. In other rounds, we execute 20 combinations of S-box and
S-box†. After S-box operations, the output is saved in 128 new qubits for the
ShiftRows, MixColumns, and AddRoundKey operations.

Moreover, for each AES quantum circuit, we considered two implementations
for the linear layer:

20

https://github.com/QunLiu-sdu/Improved-Quantum-Circuits-for-AES
https://github.com/QunLiu-sdu/Improved-Quantum-Circuits-for-AES

– in-place circuit, which utilizes the circuit found by us with depth 16.
– out-of-place circuit, which is from [24] with depth 11.

In Table 10, the results use the Toffoli gate and do not decompose it. Our
circuit achieves the optimal trade-off between Toffoli depth and width. In con-
clusion, compared with the previous lowest results in [26], the product of our
implementations achieved a reduction of 35%, 38%, 36% for AES-128, -192, and
-256, respectively. Compared with the shallowed architecture in [18], the number
of qubits achieves a reduction of 42%, 41%, and 36%, respectively.

In Table 11, we show the results of decomposing Toffoli gates into circuits
with T -depth 4. Compared with the shallowed architecture in [18], the number
of qubits, full depth, and DW-cost achieve a reduction. The minimum depth of
circuits is 770, 924, and 1074 for AES-128, -192, and -256 respectively. Table 12
also shows the results of decomposing Toffoli gates into circuits with T -depth 1.
To reduce the T -depth, we employed additional qubits to implement the quantum
circuit.

The circuits using the AND gates are shown in Table 13, which achieves
the lower circuit depth. For the in-place version, the circuit depth achieves a
reduction of 13.8%, 13.6%, and 14.3%, respectively. It is worth noting that the
circuits with the AND gate and out-of-place linear layer have a lower depth.
For AES-128, -192, and -256, we only require the depth of 730, 876, and 1,018,
respectively.

In conclusion, for the different types of AND operations, we find that the
circuits decomposed using AND gates have the lowest complexity for Grover’s
algorithm, which we show in Sect. 6.2. We also used the AES S-box with T -depth
3 proposed in [16]. Since the number of gates was almost doubled, we were not
able to obtain high-quality Grover algorithm attack complexity.

6.2 Performance of Grover’s Algorithm

In this part, based on the circuits implemented using AND gates and the out-of-
place linear layer, we applied these AES circuits to Grover’s algorithm (cf. Sup-
plementary Material C), obtaining more precise and efficient resource estimates
(cf. Table 14). “r = ⌈k/n⌉” (plaintext, ciphertext) is the number of pairs that are
required to recover a unique key. For AES-128, we just choose r = 1. For AES-
192/-256, we choose r = 2. It implies that we need to use two plaintext-ciphertext
pairs to determine the key. In terms of resources corresponding to Grover’s al-
gorithm, one key expansion algorithm corresponds to two round functions. We
primarily focus on four metrics, FD ×G, FD ×W , FD2 ×G, and FD2 ×W .

7 Quantum Circuit of AES based on the Zig-Zag
Architecture

In this section, we propose AES circuits based on the zig-zag architecture uti-
lizing AND gates. The zig-zag architecture is typically employed for low-width
implementations.

21

Table 10: Comparisons of quantum resources of AES without decomposing the
Toffoli gates.

Cipher Source #CNOT #NOT #Toffoli Toffoli depth Width Toffoli depth × Width

AES-128

[13] 166,548 1,456 151,552 12,672 984 12,469,248
[1] 192,832 1,370 150,528 - 976 -
[25] 53,360 1,072 16,688 12,168 264 3,212,352
[23] 107,960 1,570 16,940 1,880 864 1,624,320
[34] 128,517 4,528 19,788 2,016 512 1,032,192

[16](p = 9) 126,016 2,528 17,888 1,558 374 582,692
[25] 53,496 1,072 16,664 1,472 328 482,816

[16](p = 18) 126,016 2,528 17,888 820 492 403,440
[18] 81,312 800 12,240 40 6,368 254,720

[26](m = 16) 77,984 2,224 19,608 476 474 225,624
This paper(out-of-place) 75,024 800 12,920 40 4,823 192,920
This paper(in-place) 65,736 800 12,920 40 3,667 146,680

AES-192

[13] 189,432 1,608 172,032 11,088 1,112 12,329,856
[25] 70,736 1,160 19,328 14,496 328 4,754,688
[23] 125,580 1,692 19,580 1,640 896 1,469,440
[34] 152,378 5,128 22,380 2,022 640 1,294,080
[18] 92,856 896 14,008 48 6,688 321,024

[26](m = 16) 90,832 2,568 22,800 572 538 307,736
This paper(out-of-place) 85,808 896 14,552 48 5,356 257,088
This paper(in-place) 74,456 896 14,552 48 3,935 188,880

AES-256

[13] 233,836 1,943 215,040 14,976 1,336 20,007,936
[25] 74,472 1,367 23,480 17,412 392 6,825,504
[23] 151,011 1,992 23,760 2,160 1,232 2,661,120
[34] 177,645 6,103 26,774 2,292 768 1,760,256
[18] 113,744 1,103 17,408 56 6,976 390,656

[26](m = 16) 110,688 3,069 27,816 646 502 388,892
This paper(out-of-place) 106,704 1,119 18,360 56 6,097 341,432
This paper(in-place) 93,288 1,119 18,360 56 4,429 248,024

Table 11: Comparisons of quantum resources of AES decomposing Toffoli gates
with T -depth 4.

Cipher Source #CNOT #1qCliff #T T -depth Width DW-cost #FD

AES-128

[18](out-of-place) 164,256 16,832 85,680 160 7,520 1,203,200 799
This paper(out-of-place) 152,544 19,080 90,440 160 4,844 775,040 770

[18](in-place) 154,752 14,400 85,680 160 6,368 1,018,880 978
This paper(in-place) 143,256 19,080 90,440 160 3,688 590,080 840

AES-192

[18](out-of-place) 188,520 19,440 98,056 192 8,096 1,554,432 955
This paper(out-of-place) 173,120 21,384 101,864 192 5,356 1,028,352 924

[18](in-place) 176,904 16,400 98,056 192 6,688 1,284,096 1,174
This paper(in-place) 161,768 21,384 101,864 192 3,944 755,136 1,010

AES-256

[18](out-of-place) 231,920 23,519 121,856 224 8,640 1,935,360 1,118
This paper(out-of-place) 216,864 26,759 128,520 224 6,124 1,371,776 1,074

[18](in-place) 218,192 19,871 121,856 224 6,976 1,562,624 1,377
This paper(in-place) 203,448 26,759 128,520 224 4,456 998,144 1,176

Table 12: Comparisons of quantum resources of AES decomposing Toffoli gates
with T -depth 1.

Cipher Source #CNOT #1qCliff #T T -depth Width DW-cost #FD

AES-128
This paper(out-of-place) 281,744 19,080 90,440 40 4,844 193,760 750
This paper(in-place) 272,456 19,080 90,440 40 3,691 147,640 820

AES-192
This paper(out-of-place) 318,640 21,384 101,864 48 5,356 257,088 900
This paper(in-place) 307,288 21,384 101,864 48 3,947 189,456 986

AES-256
This paper(out-of-place) 400,464 26,759 128,520 56 6,124 342,944 1,046
This paper(in-place) 387,048 26,759 128,520 56 4,459 249,704 1,148

22

Table 13: Comparisons of quantum resources with the AND gates.

Cipher Source #CNOT #1qCliff #T #M T -depth Width DW-cost #FD

AES-128

[18](out-of-place) 152,496 39,952 27,200 5,440 40 7,524 300,960 749
This paper(out-of-place) 141,664 51,800 27,200 6,120 40 4,844 193,760 730

[18](in-place) 142,992 37,520 27,200 5,440 40 6,372 254,880 928
This paper(in-place) 132,376 51,800 27,200 6,120 40 3,689 147,560 800

AES-192

[18](out-of-place) 174,152 46,232 30,464 6,392 48 8,100 388,800 895
This paper(out-of-place) 160,608 58,424 30,464 6,936 48 5,356 257,088 876

[18](in-place) 162,536 43,192 30,464 6,392 48 6,692 321,216 1,114
This paper(in-place) 149,256 58,424 30,464 6,936 48 3,945 189,360 962

AES-256

[18](out-of-place) 213,624 56,975 37,536 8,024 56 8,644 484,064 1,048
This paper(out-of-place) 200,544 73,879 38,080 8,840 56 6,124 342,944 1,018

[18](in-place) 199,896 53,327 37,536 8,024 56 6,980 390,880 1,307
This paper(in-place) 187,128 73,879 38,080 8,840 56 4,457 249,592 1,120

Table 14: Quantum resources required for Grover’s search on AES.

Cipher r Source Width (W)Gates (G) #FD FD ×G FD ×W FD2 ×G FD2 ×W

AES-128 1
[19] 1.92× 211 1.33× 282 1.08× 275 1.436× 2157 1.038× 287 1.551× 2232 1.120× 2162

[18] 1.84× 212 1.36× 282 1.15× 274 1.564× 2156 1.055× 287 1.797× 2230 1.212× 2161

This paper 1.18× 212 1.37× 282 1.12× 274 1.535× 2156 1.325× 286 1.719× 2230 1.480× 2160

AES-192 2
[19] 1.02× 213 1.50× 2115 1.14× 2107 1.710× 2222 1.163× 2120 1.949× 2239 1.326× 2227

[18] 1.84× 213 1.45× 2115 1.37× 2106 1.988× 2221 1.261× 2120 1.365× 2328 1.731× 2226

This paper 1.24× 213 1.44× 2115 1.35× 2106 1.944× 2221 1.679× 2119 1.312× 2328 1.130× 2226

AES-256 2
[19] 1.09× 213 1.84× 2147 1.29× 2139 1.187× 2287 1.401× 2152 1.531× 2426 1.814× 2291

[18] 1.96× 213 1.74× 2147 1.61× 2138 1.398× 2286 1.576× 2152 1.123× 2425 1.266× 2291

This paper 1.43× 213 1.76× 2147 1.56× 2138 1.373× 2286 1.117× 2152 1.071× 2425 1.740× 2290

At ASIACRYPT 2022, Huang et al. [16] aimed to reduce the DW-cost in
the zig-zag architecture by introducing low-depth S-boxes based on AND gates.
They proposed an improved zig-zag architecture based on the round-in-place
technique. The S-box requires 120 ancilla qubits with T-depth 4, resulting in a
minimum DW-cost of 204,800 (width × T -depth = 2, 560×80) for AES-128. We
notice that several papers have adopted similar circuits based on the round-in-
place technique to optimize the quantum circuit for AES (cf. [26]).

Our approach begins by introducing the zig-zag architecture and round-in-
place technique. We then highlight the advantages of utilizing the round-in-place
zig-zag architecture iteratively, offering an improved trade-off between width
and T -depth. Subsequently, we propose a new circuit for the AES S-box that
significantly reduces the required ancilla qubits to just 60 + 10. By employing
this optimized S-box in the circuits in [16], we achieve a substantial reduction in
DW-cost, resulting in a final value of 132,800 (width × T -depth = 1, 660× 80).

7.1 Zig-Zag Architecture and Round-in-Place Technique in [16]

The zig-zag architecture is proposed in [13], which reduces the number of qubits
by performing reverse operations in each round (cf. Fig. 8). R1, R2, R3, and

R4 are performed in order. Then, R†
3, R

†
2, and R†

1 are utilized to clean up the
4-th, 3-rd, and 2-nd lines, which can be reused to store the outputs of R7, R6,
and R5, respectively. Other rounds proceed similarly. This method requires a
larger T -depth. Subsequently, at ASIACRYPT 2020, Zou et al. [34] improved
the zig-zag architecture and implemented AES-128 with 512 qubits and Toffoli
depth 2016.

23

Input • •

|0⟩⊗128 R1 • • R†
1 R5 • • R†

5 R8 • R†
8 R10 Output

|0⟩⊗128 R2 • • R†
2 R6 • R†

6 R9 •

|0⟩⊗128 R3 • R†
3 R7 • •

|0⟩⊗128 R4 • •

Fig. 8: Zig-zag architecture.

Huang et al. [16] improved the zig-zag architecture based on a round-in-
place technique. We simply introduce the technique. Suppose Uf is a circuit

that map |x⟩ |0⟩ |0⟩⊗a
to |x⟩ |S(x)⟩ |0⟩⊗a

, where |0⟩⊗a
denotes the ancilla qubits,

then, Uf is not in-place. If we also have the inverse circuit Uf−1 that maps

|S(x)⟩ |x⟩ |0⟩⊗a
to |S(x)⟩ |0⟩ |0⟩⊗a

, we can achieve the in-place circuit by swap-
ping |x⟩ and |S(x)⟩. Fig. 9 shows a round-in-place S-box circuit, which maps
|x⟩ |0⟩ |0⟩⊗a

to |S(x)⟩ |0⟩ |0⟩⊗a
.

Input: |x⟩
Uf

|x⟩ × |S(x)⟩
Uf−1

|S(x)⟩
Output: |0⟩ |S(x)⟩ × |x⟩ |x⊕ S−1(S(x))⟩ = |0⟩
Ancilla: |0⟩ |0⟩ |0⟩ |0⟩

Fig. 9: Round-in-place S-box circuit.

Usually, Uf is easy to construct. Huang et al. [16] provide a method to convert
Uf into Uf−1 . Suppose x, y ∈ F8

2 are the input and output of Uf . we have
y = LS0(x) + c, where L is a linear function and S0(x) is the inverse of x in
F8
2. Then, x = S−1

0 L−1(y + c) = S0L
−1(y + c) = L−1(LS0)L

−1(y + c). Let
the last 4 X gates of AES S-box be Uc. Uf = U0 + Uc, where U0 implements
|x⟩ |0⟩ |0⟩ → |x⟩ |LS0(x)⟩ |0⟩. Then, the circuit in Fig. 10 is Uf−1 , where UL and
UL−1 are the circuits of L and L−1, respectively. Huang et al. provide an SAT-
based method and implement UL or UL−1 by 14 CNOT gates. Finally, adding
14× 3 = 42 CNOT gates and 4 X gates, Uf can be converted into Uf−1 .

|y⟩ Uc UL−1 |L−1(y + c)⟩
U0

|L−1(y + c)⟩ UL Uc |y⟩

|0⟩ |0⟩ |LS0L
−1(y + c)⟩ UL−1 |S−1(y)⟩

|0⟩ |0⟩ |0⟩ |0⟩

Fig. 10: The circuit of Uf−1 based on Uf .

Based on the round-in-place S-box circuit, one can construct the round-in-
place round function Ri easily. Fig. 11 shows the round function. SubByte1 uses
S-box circuits. SubByte−1 uses S-box−1 circuits. SB, MC, and ARK represent the

24

in-place ShiftRows, MixColumns, and AddRoundKey, respectively. The circuit
maps |x⟩ |0⟩ |0⟩⊗a

to |R(x)⟩ |0⟩ |0⟩⊗a
.

Input: |x⟩
SubBytes1

×
SubBytes−1

|S(x)⟩ SR MC ARK |R(x)⟩
Output: |0⟩ × |0⟩
Ancilla: |0⟩ |0⟩

Fig. 11: Round-in-place round function of AES.

7.2 Executing the Round-in-Place Round Function Iteratively

In [16,26], the authors provide a method for executing the round-in-place round
function iteratively. We simply introduce the technique. For AES, there are 16
bytes for the state. Each byte requires an ancilla qubit set to run round-in-place
S-box circuits. If onlym S-boxes of SubBytes are executed in parallel, then 16/m
ancilla qubit sets are needed. We define the number of iterations as i = 16/m
(i = 1, 2, 4, 8, 16).

For i = 1, 2, the key schedule can be split. In the key schedule, four S-boxes
are needed in each round. However, they do not require a round-in-place S-box
because |W4i+0⟩ contains the output values of SubWord. Thus, the schedule only
uses the Uf mapping |x⟩ |y⟩ |0⟩⊗a

to |x⟩ |y ⊕ S(x)⟩ |0⟩⊗a
. The S-box used in the

schedule is single-depth, while the round-in-place S-box in the round function
is double-depth. We can split the SubWord in the key schedule into two parts
(cf. Fig. 12). SubWord 1

2
indicates that only half of SubWord is used in the

operations. The first part and SubByte1 are executed in parallel. The second
part and SubByte−1 are executed in parallel. For more detailed information,
refer to [16,26].

Key: |ki−1⟩ SubWord 1
2

SubWord 1
2

|ki⟩

Input: |x⟩

SubBytes1

×

SubBytes−1

SR MC ARK |R(x)⟩

Output: |0⟩ × |0⟩

Ancilla: |0⟩ |0⟩

Fig. 12: Two parts in round function for i = 1.

For i = 4, 8, 16, we execute two operations in parallel (cf. Fig. 13). We take
i = 4 as an example. SB 1

4
represents a quarter of SubBytes and SW 1

4
represents

a quarter of SubWord. It requires five ancilla qubit sets and the T -depth is four
double-depth S-boxes.

25

Key: |ki−1⟩ SW 1
4

SW 1
4

SW 1
4

SW 1
4

|ki⟩

Input: |x⟩

SB 1
4

SB 1
4

SB 1
4

SB 1
4

SR MC ARK |R(x)⟩

Output: |0⟩ |0⟩

Ancilla: |0⟩ |0⟩

Fig. 13: Round-in-place round function executing SubBytes and SubWord in par-
allel for i = 4.

7.3 Constructing a Low-Width S-box Circuit

To improve the circuit, we constructed a new AES S-box circuit with only 60+10
ancilla qubits. The circuit is suitable for the round-in-place zig-zag architecture
with AND gates.

Next, we present this construction method, which always allows the use of
the minimum number of qubits without increasing the T-depth. Our approach
first satisfies the maximum parallel count of AND gates in different layers.

– For the structure of AES S-box with T -depth 4 in [16], 8 input qubits
u0, . . . , u7, and 8 output qubits s0, . . . , s7.

– We consider that the target qubit of each AND gate is allocated as |0⟩.
q0, q1, . . . , q33 are allocated for each target qubit. There are 9, 3, 4, and 18
target qubits in T -depth 1, 2, 3, and 4, respectively.

– Because the layer in T -depth 4 contains the most AND gates, we must satisfy
its parallelism first. Thus, q34, q35, . . . , q50 are allocated as the inputs of these
AND gates.

– However, the AND gates in T -depth 4 still cannot be implemented in parallel.
The main reason is that nine qubits are included in two AND gates at the
same time.

– We have to allocate nine qubits q51, q52, . . . , q59 to restore these qubits.
Thus, there are 60 ancilla qubits q0, q1, . . . , q59 in T -depth 4. Note that
q51, q52, . . . , q59 can be reset as |0⟩ after these AND gates and be used in
other AND gates.

– In other layers, AND gates do not require any more ancilla qubits. The lower
bound on the number of ancilla qubits is 60.

– For the 4-th AND layer, 18 ancilla qubits are required for the AND gates.
Apart from 8 qubits from s0, s1, . . . , s7, we need to allocate 10 ancilla qubits.

– The final number of ancilla qubits of the S-box is 70.

After executing the S-box, we need to execute S-box† to clean up the ancilla
qubits, which corresponds to Uf in Fig. 9. We estimate the resource of S-box and
S-box† (cf. Table 15). Compared with the S-box circuit with 83 ancilla qubits,
the new circuit requires more gates and depth. Therefore, this S-box circuit does
not optimize the complexity of Grover’s algorithm.

Fig. 10 shows how to transform Uf into Uf−1 , which requires 42 additional
CNOT gates and 4 X gates based on Uf . Thus, Uf−1 requires 688 + 42 = 730
CNOT gates and 220 + 4 = 224 1qClifford gates.

26

Table 15: Implementation of Uf (S-box and S-box†) based on the AND gates.
Here #M counts the number of Measurements.

Width #CNOT #1qCliff #T #M T -depth Full depth

60+10+16 688 220 136 34 4 132

Two types of S-boxes. In the previous work [34,16], there are two types of
S-boxes. The first type is used in SubBytes, called the C0-circuit, which maps
|x⟩ |0⟩ |0⟩⊗a

to |x⟩ |S(x)⟩ |0⟩⊗a
. The second type is used in SubWord, called the

C∗-circuit, which maps |x⟩ |y⟩ |0⟩⊗a
to |x⟩ |y ⊕ S(x)⟩ |0⟩⊗a

. We follow a unified
principle to design the circuit of the AES S-box. If the output qubits s0, s1, . . . , s7
are only used to save the output, the S-box is suitable for both C0- and C∗-
circuits.

7.4 Applying New S-box Circuit into the Architecture in [16]

With reference to Fig. 12, we can calculate the resources for each round of AES.
We take AES-128 as an example. Note that there is no MixColumns operation in
the last round of AES. In SubBytes1, there are 16 Uf . In SubBytes−1, there are
16 Uf−1 . In MixColumns, there are 92×4 = 368 CNOT gates. In AddRoundKey,
there are 128 CNOT gates. In the Key Schedule, there are 4 Uf , and at most
4 X gates for Rcon. Therefore, one round of AES requires 20 Uf , 16 Uf−1 ,
368+128 = 496 CNOT gates, and at most 4 X gates for Rcon. AES-128 requires
10× 20 = 200 Uf , 10× 16 = 160 Uf−1 , 10× 496− 368 = 4592 CNOT gates, and
8× 1 + 2× 4 = 16 X gates.

Next, based on the number of iterations i (i = 1, 2, 4, 8, 16), different trade-
offs of width/T -depth are provided in Table 16. We describe how to calculate
the number of ancilla qubits and T -depth.

Table 16: Different trade-offs of width/T -depth for quantum citcuit of AES-128.

AES-128 Width T -depth DW-cost

i = 1 256 + 128 + 156 + 1120 = 1660 80× 1 = 80 132,800
i = 2 256 + 64 + 78 + 560 = 958 80× 2 = 160 153,280
i = 4 256 + 32 + 78 + 280 = 646 80× 4 = 320 206,720
i = 8 256 + 16 + 78 + 140 = 490 80× 8 = 640 313,600
i = 16 256 + 8 + 78 + 70 = 412 80× 16 = 1280 527,360

For the case of i = 1, 2, we execute the two-part round function (cf. Fig. 12),
which allows the key schedule to require only 2

i × (60 + 18) ancilla qubits. In
round function, SubBytes1 and SubBytes−1 require 16

i ×(60+10) ancilla qubits.
The number of ancilla qubits is 2

i × 78 + 16
i × 70. Then, 256 input qubits and

128
i output qubits are needed. For each round, the T -depth is 4 × 2 × i = 8i.

Therefore, T -depth of AES-128 is 10× 8i = 80i.

27

For the case of i = 4, 8, 16, we execute the round function like Fig. 13.
The key schedule requires 78 ancilla qubits. In round function, SubBytes1 and
SubBytes−1 require 16

i × 70 ancilla qubits. The number of ancilla qubits is 78+
16
i × 70. Then, 256 input qubits and 128

i output qubits are needed. The T -depth
is 10× i× 2× 4 = 80i.

Furthermore, we can also make an interleaved execution of the S-boxes be-
tween key schedule and round functions, reducing the number of additional
qubits by increasing the T -depth (cf. Fig. 14). However, this method does not af-
fect the lowest DW-cost. Therefore, we compared this approach with the circuits
used in [16] in Fig. 1.

Key: |ki−1⟩ SW |ki⟩
Input: |x⟩

SB 1
4

SB 1
4

SB 1
4

SB 1
4

SR MC ARK |R(x)⟩
Output: |0⟩ |0⟩
Ancilla: |0⟩ |0⟩

Fig. 14: Round-in-place round function executing SubBytes and SubWord seri-
ally for i = 4.

Finally, AES-128 can be implemented by the round-in-place round function
with the lower DW-cost 132,800, while the previous best result is 204,800 in [16].
For AES-192, we achieve a circuit with DW-cost (width × T -depth) 1, 724×96 =
165, 504. For AES-256, we achieve a circuit with DW-cost (width × T -depth)
1, 788× 112 = 200, 256.

8 Conclusion

In this paper, we investigated the optimization of quantum circuits for AES
variants (-128, -192, -256). We provided an improved structure of the S-box
based on the m-XOR technique and combined the S-box and S-box† based on
the share technique. Then, we introduce the implementations of the AES com-
ponents. Next, we estimated the required resources based on the pipelined and
zig-zag architectures with Toffoli gates and AND gates. The combined pipeline
architecture reduces the depth and the number of qubits required for various
quantum circuits. Although our circuits perform well in the quantum case, we
believe that further improvements are possible by exploiting the structure of the
S-box. If a superior S-box circuit is proposed, our method can be immediately
applied to reduce the complexity of the AES quantum circuit.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions to improve the quality of the paper. This work is sup-
ported by the National Key Research and Development Program of China (Grant

28

No. 2018YFA0704702), the National Natural Science Foundation of China (Grant
No. 62032014), the Major Basic Research Project of Natural Science Founda-
tion of Shandong Province, China (Grant No. ZR202010220025), Quan Cheng
Laboratory (Grant No. QCLZD202306).

References

1. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Information Processing 17(5), 1–30 (2018)

2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 32(6), 818–830 (2013). https://doi.org/10.1109/TCAD.

2013.2244643
3. Banik, S., Funabiki, Y., Isobe, T.: Further results on efficient implementations of

block cipher linear layers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
104-A(1), 213–225 (2021). https://doi.org/10.1587/transfun.2020CIP0013

4. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) Experimental Algorithms, 9th In-
ternational Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6049, pp. 178–189. Springer
(2010). https://doi.org/10.1007/978-3-642-13193-6_16

5. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box. In: Gritza-
lis, D., Furnell, S., Theoharidou, M. (eds.) Information Security and Privacy Re-
search - 27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012,
Heraklion, Crete, Greece, June 4-6, 2012. Proceedings. IFIP Advances in Infor-
mation and Communication Technology, vol. 376, pp. 287–298. Springer (2012).
https://doi.org/10.1007/978-3-642-30436-1_24

6. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

7. Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Mathematics of quan-
tum computation, pp. 117–134. Chapman and Hall/CRC (2002)

8. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020). https://doi.org/10.1007/978-3-662-60769-5

9. Dansarie, M.: Cryptanalysis of the sodark family of cipher algorithms (2017-09),
https://hdl.handle.net/10945/56118

10. Dansarie, M.: sboxgates: A program for finding low gate count implementations of
s-boxes. Journal of Open Source Software 6(62), 2946 (2021). https://doi.org/
10.21105/joss.02946, https://doi.org/10.21105/joss.02946

11. DiVincenzo, D.P.: Quantum gates and circuits. Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences 454, 261 –
276 (1998)

12. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: To-
wards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (Sep
2012). https://doi.org/10.1103/PhysRevA.86.032324

13. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s al-
gorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9606,
pp. 29–43. Springer (2016). https://doi.org/10.1007/978-3-319-29360-8_3

29

https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1587/transfun.2020CIP0013
https://doi.org/10.1587/transfun.2020CIP0013
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://hdl.handle.net/10945/56118
https://doi.org/10.21105/joss.02946
https://doi.org/10.21105/joss.02946
https://doi.org/10.21105/joss.02946
https://doi.org/10.21105/joss.02946
https://doi.org/10.21105/joss.02946
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp.
212–219. ACM (1996). https://doi.org/10.1145/237814.237866

15. Hanks, M., Estarellas, M.P., Munro, W.J., Nemoto, K.: Effective compression of
quantum braided circuits aided by ZX-calculus. Physical Review X 10(4), 041030
(2020)

16. Huang, Z., Sun, S.: Synthesizing quantum circuits of AES with lower T-depth and
less qubits. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 13793, pp. 614–644. Springer (2022),
https://doi.org/10.1007/978-3-031-22969-5_21

17. Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for compil-
ing quantum programs. Quantum Science and Technology 3(2), 020501 (feb 2018).
https://doi.org/10.1088/2058-9565/aaa5cc

18. Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.: Quantum
analysis of AES. IACR Cryptol. ePrint Arch. p. 683 (2022)

19. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for
quantum key search on AES and LowMC. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 280–310. Springer
(2020)

20. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of
lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168
(2017). https://doi.org/10.13154/tosc.v2017.i4.130-168

21. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 339 (2018). https://doi.org/10.1007/s11128-018-2107-3

22. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line
programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211
(2017). https://doi.org/10.13154/tosc.v2017.i4.188-211

23. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the
Advanced Encryption Standard as a quantum circuit. IEEE Transactions on Quan-
tum Engineering 1, 1–12 (2020). https://doi.org/10.1109/TQE.2020.2965697

24. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory MDS
matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2019(1), 84–
117 (2019). https://doi.org/10.13154/tosc.v2019.i1.84-117

25. Li, Z., Gao, F., Qin, S., Wen, Q.: New record in the number of qubits for a quantum
implementation of aes. Frontiers in Physics 11, 1171753 (2023)

26. Lin, D., Xiang, Z., Xu, R., Zhang, S., Zeng, X.: Optimized quantum implementation
of aes. Cryptology ePrint Archive (2023)

27. Lin, D., Xiang, Z., Zeng, X., Zhang, S.: A framework to optimize implementations
of matrices. In: Paterson, K.G. (ed.) Topics in Cryptology - CT-RSA 2021 - Cryp-
tographers’ Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12704, pp. 609–632. Springer
(2021). https://doi.org/10.1007/978-3-030-75539-3_25

28. Liu, Q., Wang, W., Fan, Y., Wu, L., Sun, L., Wang, M.: Towards low-latency
implementation of linear layers. IACR Trans. Symmetric Cryptol. 2022(1), 158–
182 (2022). https://doi.org/10.46586/tosc.v2022.i1.158-182

29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016)

30

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-031-22969-5_21
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.1007/s11128-018-2107-3
https://doi.org/10.1007/s11128-018-2107-3
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.1109/TQE.2020.2965697
https://doi.org/10.1109/TQE.2020.2965697
https://doi.org/10.13154/tosc.v2019.i1.84-117
https://doi.org/10.13154/tosc.v2019.i1.84-117
https://doi.org/10.1007/978-3-030-75539-3_25
https://doi.org/10.1007/978-3-030-75539-3_25
https://doi.org/10.46586/tosc.v2022.i1.158-182
https://doi.org/10.46586/tosc.v2022.i1.158-182

30. Q#, M.: Quantum development https://devblogs.microsoft.com/qsharp/
31. Selinger, P.: Quantum circuits of t-depth one. CoRR abs/1210.0974 (2012), http:

//arxiv.org/abs/1210.0974

32. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework
for quantum computing. Quantum 2, 49 (Jan 2018). https://doi.org/10.22331/
q-2018-01-31-49

33. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of
linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145 (2020). https:
//doi.org/10.13154/tosc.v2020.i2.120-145

34. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12492, pp.
697–726. Springer (2020). https://doi.org/10.1007/978-3-030-64834-3_24

31

https://devblogs.microsoft. com/qsharp/
http://arxiv.org/abs/1210.0974
http://arxiv.org/abs/1210.0974
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24

A Complete Structure of S-box in [16]

In [16], Huang et al. provided two structures of the AES S-box with T -depth 4.
We show the structure below.

The top linear part US takes u0, u1, . . . , u7 as inputs and generates u0, t0, t1, . . . , t26.

t0 = u4 ⊕ u7, t1 = u2 ⊕ u7, t2 = u1 ⊕ u7, t3 = u2 ⊕ u4, t4 = u1 ⊕ u3,
t5 = t0 ⊕ t4, t6 = u5 ⊕ u6, t7 = u0 ⊕ t5, t8 = u0 ⊕ t6, t9 = t5 ⊕ t6,
t10 = u2 ⊕ u6, t11 = u2 ⊕ u5, t12 = t2 ⊕ t3, t13 = t5 ⊕ t10, t14 = t4 ⊕ t10,
t15 = t4 ⊕ t11, t16 = t8 ⊕ t15, t17 = u0 ⊕ u4, t18 = t6 ⊕ t17, t19 = t0 ⊕ t18,
t20 = u0 ⊕ u1, t21 = t6 ⊕ t20, t22 = t1 ⊕ t21, t23 = t1 ⊕ t9, t24 = t19 ⊕ t16,
t25 = t2 ⊕ t15, t26 = t0 ⊕ t11.

The nonlinear part FS takes u0, t0, t1, . . . , t26 as inputs and generatesm0,m1, . . . ,m62,
l0, l1, . . . , l12.

m0 = t5 · t12, m1 = t7 · t22, m2 = m0 ⊕ t13, m3 = u0 · t18, m4 = m0 ⊕m3,
m5 = t2 · t15, m6 = t8 · t21, m7 = m5 ⊕ t25, m8 = t16 · t19, m9 = m5 ⊕m8,
m10 = t0 · t14, m11 = t3 · t26, m12 = m10 ⊕m11, m13 = t1 · t9, m14 = m10 ⊕m13,
m15 = m1 ⊕m2, m16 = m4 ⊕ t23, m17 = m6 ⊕m7, m18 = m9 ⊕m14, m19 = m12 ⊕m15,
m20 = m14 ⊕m16, m21 = m12 ⊕m17, m22 = m18 ⊕ t24, m23 = m21 ⊕m22, l0 = l0 ⊕m21,
l1 = l1 ⊕m19, m24 = m19 ·m21, m30 = l1 ·m22, m33 = l0 ·m20, l3 = l3 ⊕m23,
m25 = m20 ⊕m24, m26 = m19 ⊕m20, l2 = l2 ⊕m26, m27 = m22 ⊕m24, m32 = m24 ⊕m26,
m28 = m26 ·m27, m29 = m23 ·m25, m31 = m30 · l2, m34 = m33 · l3, m35 = m23 ⊕m24,
m36 = m20 ⊕m28, m37 = m31 ⊕m32, m38 = m22 ⊕m29, m39 = m34 ⊕m35, m40 = m37 ⊕m39,
m41 = m36 ⊕m38, m42 = m36 ⊕m37, m43 = m38 ⊕m39, m44 = m40 ⊕m41, l4 = l4 ⊕m43,
l5 = l5 ⊕m39, l6 = l6 ⊕m38, l7 = l7 ⊕m42, l8 = l8 ⊕m37, l9 = l9 ⊕m36,
l10 = l10 ⊕m41, l11 = l11 ⊕m44, l12 = l12 ⊕m40, m45 = t5 ·m43, m46 = t7 ·m39,
m47 = u0 ·m38, m48 = t15 ·m42, m49 = t8 ·m37, m50 = t16 ·m36, m51 = t14 ·m41,
m52 = t26 ·m44, m53 = t9 ·m40, m54 = t12 · l4, m55 = t22 · l5, m56 = t18 · l6,
m57 = t2 · l7, m58 = t21 · l8, m59 = t19 · l9, m60 = t0 · l10, m61 = t3 · l11,
m62 = t1 · l12.

The bottom linear part BS takes m0,m1, . . . ,m62, l0, l1, . . . , l12 as inputs and
generates s0, s1, . . . , s7.

l0 = l0 ⊕m21, l1 = l1 ⊕m19, l2 = l2 ⊕m26, l3 = l3 ⊕m23, l4 = l4 ⊕m43,
l5 = l5 ⊕m39, l6 = l6 ⊕m38, l7 = l7 ⊕m42, l8 = l8 ⊕m37, l9 = l9 ⊕m36,
l10 = l10 ⊕m41, l11 = l11 ⊕m44, l12 = l12 ⊕m40, l0 = m60 ⊕m61, l1 = m49 ⊕m55,
l2 = m45 ⊕m47, l3 = m46 ⊕m54, l4 = m53 ⊕m57, l5 = m48 ⊕m60, l6 = l5 ⊕m61,
l7 = l3 ⊕m45, l8 = m50 ⊕m58, l9 = m51 ⊕m52, l10 = l4 ⊕m52, l11 = l2 ⊕m59,
l12 = m47 ⊕m50, l13 = l0 ⊕m49, l14 = m51 ⊕m60, l15 = l1 ⊕m54, l16 = l0 ⊕m55,
l17 = l1 ⊕m56, l18 = l8 ⊕m57, l19 = l4 ⊕m62, l20 = l0 ⊕ l1, l21 = l1 ⊕ l7,
l22 = l3 ⊕ l12, l23 = l2 ⊕ l18, l24 = l9 ⊕ l15, l25 = l6 ⊕ l10, l26 = l7 ⊕ l9,
l27 = l8 ⊕ l10, l28 = l11 ⊕ l14, l29 = l11 ⊕ l17, s7 = l6 ⊕ l24, s6 = l16 ⊕ l26,
s5 = l19 ⊕ l28, s6 = s6 ⊕ 1 s5 = s5 ⊕ 1, s4 = l6 ⊕ l21, s3 = l20 ⊕ l22,
s2 = l25 ⊕ l29, s1 = l13 ⊕ l27, s0 = l6 ⊕ l23, s1 = s1 ⊕ 1 s0 = s0 ⊕ 1.

32

B Key Schedule for AES

For AES-128, the word Wi is computed as:

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1))⊕ Rcon(i/4), if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, . . . , 43.
For AES-192, the word Wi is computed as:

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1))⊕ Rcon(i/6), if i ≡ 0 mod 6

Wi−6 ⊕Wi−1, otherwise,

where i = 6, 7, . . . , 51.
For AES-256, the word Wi is computed as:

Wi =

Wi−8 ⊕ SubWord(RotWord(Wi−1))⊕ Rcon(i/8), if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, . . . , 59.
The schedule in our pipeline architecture is similar to [16,18,19] (see Fig. 15).

|W4i+3⟩⊗32 Rotation SubWord • Rotation† |W4i+7⟩⊗32

|W4i+2⟩⊗32 • |W4i+6⟩⊗32

|W4i+1⟩⊗32 • |W4i+5⟩⊗32

|W4i+0⟩⊗32 Rcon • |W4i+4⟩⊗32

Fig. 15: The key schedule of AES-128.

C Grover’s Algorithm for Quantum Key Search

For a block cipher with a k-bit key, we use c = Encx(m) to represent the
encryption of plaintext m to ciphertext c under the k-bit key x ∈ {0, 1}k. For
a given m and c, we use an operator Uf for evaluating a Boolean function
f : {0, 1}k → {0, 1}, where

f(x) =

{
1, if Encx(m) = c ,

0, if Encx(m) ̸= c .

Grover’s algorithm [14] searches a space of 2k elements, working with a su-
perposition:

33

|ψ⟩ = H⊗k |0⟩⊗k
=

1

2k/2
Σx∈{0,1}k |x⟩

and a single qubit:

|φ⟩ = (|0⟩ − |1⟩)/
√
2 .

When we apply the Grover Oracle Uf to a state |x⟩ |y⟩, where |y⟩ is a single
qubit, the oracle maps |x⟩ |y ⊕ f(x)⟩. If we set |y⟩ = |φ⟩, the transformation is

|x⟩ |φ⟩ → (−1)f(x) |x⟩ |φ⟩ .
Following the above process, Grover’s algorithm prepares the state |ψ⟩ |φ⟩. Then,
it repeatedly applies the Grover iteration,

G = (2 |ψ⟩ ⟨ψ| − I)Uf .

Each iteration is viewed as a rotation of the state vector spanned by two orthogo-
nal vectors, the superposition corresponding to solutions and non-solutions. The
iteration G rotates the vector by a constant angle towards the superposition of
solutions. The algorithm executes the process in a series to sufficiently increase
the amplitude of the solution and observes it at the end. Let M be the number

of solutions. After ⌊π
4

√
2k

M ⌋ iterations, the algorithm can find a solution with

an overwhelming probability of at least 1− M
2k

[6]. According to [19], if n is the
length of plaintext in bits, r = ⌈k/n⌉ pairs (plaintext, ciphertext) guarantee that
the solution is the correct key rather than spurious keys with a high probability,
which means M = 1.

D Comparison of implementations of the AES S-box
with [18]

Jang et al. [18] provided a detailed comparison by splitting Toffoli gates with
T -depth 4. We give the comparison with [18] in Table 17.

E Enhanced Performance based on Circuits in [16,19]

To reduce the depth, the previous works [16,19] use the pipelined architecture.
They utilized the tool proposed by Jaques et al. for AES based on the AND gates
in [19]. The tool provided the automated resource estimation and unit tests on
Q#. We replaced the components of [19] at EUROCRYPT 2020.

We adopt the approach in [16] to calculate the width. For AES-128, 128
qubits are used to store the plaintext, and 128 qubits are used to store the key.
Each round uses 128 qubits, which requires 1280 qubits. Each S-box in round
function requires 74 + 9 = 83 ancilla qubits. Each S-box in the key algorithm
requires 74 + 17 = 91 ancilla qubits. For 20 S-boxes in parallel, we need 83 ×
16 + 91 × 4 = 1692 ancilla qubits. Finally, the circuit for AES-128 requires
256 + 1280 + 1692 = 3228 qubits.

34

Table 17: Comparison of implementations of S-box by splitting Toffoli gates.

Source #CNOT #1qCliff #T #TD Width #FD

[13] 1818 124 1792 88× 4 40 951
[4] 358 68 224 8× 4 123 104
[5] 392 72 238 6× 4 136 85
[23] 628 98 367 40× 4 32 514
[34] 437 72 245 55× 4 22 339
[9,10] 1470 670 1218 66× 4 399 640
[9,10] 1507 548 1245 74× 4 414 709
[9,10] 1484 561 1169 62× 4 421 591
[9,10] 1483 574 1190 74× 4 416 693
[9,10] 2244 1006 2254 111× 4 408 998
[16] 418 72 238 4× 4 136 72
[16] 824 160 546 3× 4 198 69

This paper 372 72 238 4× 4 90 69

Table 18: Quantum resources for AES and AES† using Q#.

Operation Source #CNOT #1qCliff #T #M #TD #FD Width DW-cost

AES-128

[19] 291,150 83,116 54,400 13,600 120 2,827 3,936 472,320
[16] 570,785 189,026 124,800 31,200 60 2,312 5,576 334,560
[16] 298,720 83,295 54,400 13,600 80 2,198 3,936 314,880

This paper 262,358 83,308 54,400 13,600 80 2,121 3,228 258,240

F The Implementation of FINDDEPTH()

We propose FINDDEPTH() (cf. Algorithm 3) to calculate their quantum depth
quickly based on Property 2.

Property 2. We use |t⟩ = g(|a0⟩ , |a1⟩) to represent a quantum gate. Every qubit
has two states:

– Unfixed. The value of unfixed |t⟩ is updated by the gate.
– Fixed. The values of fixed |a0⟩ and |a1⟩ are not changed.

Each unfixed qubit |t⟩ must be put at depth d, where |t⟩ is not used at depth
d′ (d′ ≥ d).

Each fixed qubit |ai⟩, i = 0 or 1, it must be put at depth d, where |ai⟩ is not
updated at depth d′ (d′ ≥ d).

Example 4. Assume that the circuit C has gates:

|a⟩ = |a⟩ ⊕ |c⟩ , |b⟩ = |b⟩ ⊕ |c⟩ , |d⟩ = |d⟩ ⊕ |b⟩ .

For |a⟩ = |a⟩ ⊕ |c⟩, |a⟩ is unfixed and |c⟩ is fixed. The gate is put into depth 1.
For |b⟩ = |b⟩ ⊕ |c⟩, the unfixed |b⟩ can be put into depth 1, while the fixed |c⟩
must be put into depth 2. Thus, this gate is put into depth max(1, 2) = 2. For
|d⟩ = |d⟩⊕ |b⟩, the unfixed |d⟩ can be put into depth 1. However, the value of the
fixed |b⟩ is changed in depth 2. Thus, |b⟩ must be put into depth 3. This gate is
put into depth max(1, 3) = 3.

35

Algorithm 3 FINDDEPTH()

Input: The quantum circuit C with l gates
Output: The depth of C
1: MaxDepth = 1 ▷ The current depth
2: UsedNode = dict()
3: UsedNode[1] = dict()
4: UsedNode[1][all]= [], UsedNode[1][used] = [], UsedNode[1][updated] = []
5: for each gate g ∈ C do ▷ Suppose g : a = a⊕ b
6: node1 = a, node2 = b
7: if a ∈ UsedNode[MaxDepth][updated] or b ∈ UsedNode[MaxDepth][updated]

then
8: MaxDepth = MaxDepth + 1
9: Set[all] = [a, b], Set[updated] = [a], Set[used] = [b]
10: UsedNode[MaxDepth] = Set
11: Continue
12: end if
13: FeasibleDepth = []
14: minDeptha = 1, minDepthb = 1
15: for thisDepth from 1 to MaxDepth do
16: if a ∈ UsedNode[thisDepth][all] then
17: minDeptha = thisDepth
18: end if
19: if b ∈ UsedNode[thisDepth][updated] then
20: minDepthb = thisDepth
21: end if
22: end for
23: minDepth = max(minDeptha = 1, minDepthb = 1)
24: for thisDepth from minDepth to MaxDepth do
25: if a /∈ UsedNode[thisDepth][all] and b /∈ UsedNode[thisDepth][all] then
26: FeasibleDepth.append(thisDepth)
27: end if
28: end for
29: Let CurrentDepth be the minimum depth in FeasibleDepth
30: if FeasibleDepth is empty then
31: MaxDepth = MaxDepth + 1
32: Set[all] = [a, b], Set[updated] = [a], Set[used] = [b]
33: UsedNode[MaxDepth] = Set
34: Continue
35: end if
36: UsedNode[CurrentDepth][all].append(a, b)
37: UsedNode[CurrentDepth][updated].append(a)
38: UsedNode[CurrentDepth][used].append(b)
39: end for
40: return MaxDepth

36

G The s-XOR Circuit of MixColumn with Depth 16

The s-XOR circuit with depth 16 is used in all the implementations for AES.
Thus, we show the circuit in Table 19.

H Qubit Permutation of the Second S-box

Based on the share technique, the combination of S-box and S-box† can be opti-
mized. We show the qubit permutation in Table 20. Based on the permutation,
we can generate the complete circuit of the combination.

I New Structures of S-box with 60 Ancilla Qubits

We provide a quantum circuit for the AES S-box with 60 ancilla qubits in Ta-
ble 21.

Table 19: New circuit of MixColumns with quantum depth 16. Here every num-
ber represents a qubit. Update(b, a) represents the CNOT operation |a⟩ |b⟩ →
|a⟩ |a⊕ b⟩. |y0⟩ , |y1⟩ , . . . , |y31⟩ are represented by 24, 1, 10, 11, 12, 13, 30, 15,
8, 25, 2, 3, 4, 5, 14, 7, 0, 17, 26, 19, 20, 29, 22, 31, 16, 9, 18, 27, 28, 21, 6, 23,
respectively.

Operation Operation Operation Operation Operation Operation

Depth 1 Update(12, 28) Update(11, 27) Update(5, 4) Update(7, 31) Update(11, 3)
Update(31, 23) Depth 3 Update(13, 21) Depth 8 Update(4, 28) Update(9, 1)
Update(24, 8) Update(7, 15) Update(30, 14) Update(18, 23) Depth 11 Depth 14
Update(21, 29) Update(8, 23) Update(18, 17) Update(20, 11) Update(23, 6) Update(22, 30)
Update(26, 18) Update(9, 25) Update(28, 23) Update(19, 26) Update(1, 25) Update(13, 5)
Update(1, 17) Update(4, 12) Depth 6 Update(3, 10) Update(19, 31) Update(7, 15)
Update(11, 3) Update(6, 13) Update(0, 31) Update(12, 7) Update(17, 7) Update(16, 8)
Update(10, 2) Update(2, 17) Update(14, 5) Update(24, 16) Update(10, 2) Update(3, 27)
Update(28, 20) Update(5, 28) Update(27, 2) Depth 9 Update(28, 20) Update(1, 17)
Update(14, 22) Depth 4 Update(21, 20) Update(23, 30) Update(26, 18) Depth 15
Update(27, 19) Update(25, 8) Update(28, 19) Update(26, 1) Depth 12 Update(14, 22)
Update(13, 5) Update(16, 7) Update(17, 24) Update(18, 10) Update(31, 22) Update(5, 21)
Depth 2 Update(12, 11) Depth 7 Update(3, 7) Update(25, 16) Update(15, 31)
Update(23, 7) Update(30, 13) Update(0, 24) Update(20, 31) Update(6, 14) Update(27, 19)
Update(25, 1) Update(15, 14) Update(14, 29) Update(4, 12) Update(19, 11) Update(8, 24)
Update(22, 6) Update(29, 28) Update(27, 18) Depth 10 Update(1, 0) Update(17, 25)
Update(20, 4) Update(17, 23) Update(20, 12) Update(23, 15) Depth 13 Depth 16
Update(17, 9) Depth 5 Update(2, 26) Update(18, 9) Update(22, 13) Update(31, 23)
Update(29, 13) Update(8, 0) Update(28, 3) Update(10, 1) Update(16, 7) Update(21, 29)

37

Table 20: Qubit permutation of the second S-box.

qnew
private Qubit qnew

private Qubit qnew
private Qubit qnew

private Qubit qnew
private Qubit

0 qold
public[0] 17 qold

public[16] 34 qoldprivate[53] 51 qoldprivate[34] 68 qoldprivate[66]

1 qold
public[1] 18 qold

public[17] 35 qoldprivate[47] 52 qoldprivate[62] 69 qoldprivate[67]

2 qold
public[2] 19 qold

public[18] 36 qoldprivate[57] 53 qoldprivate[63] 70 qoldprivate[68]

3 qold
public[3] 20 qold

public[19] 37 qoldprivate[58] 54 qoldprivate[26] 71 qoldprivate[69]

4 qold
public[4] 21 qold

public[20] 38 qoldprivate[59] 55 qoldprivate[32] 72 qoldprivate[70]

5 qold
public[5] 22 qold

public[21] 39 qoldprivate[37] 56 qoldprivate[35] 73 qoldprivate[20]

6 qold
public[6] 23 qold

public[22] 40 qoldprivate[38] 57 qoldprivate[25]

7 qold
public[7] 24 qold

public[23] 41 qoldprivate[39] 58 qoldprivate[60]

8 qold
public[8] 25 qoldprivate[42] 42 qoldprivate[71] 59 qoldprivate[61]

9 qold
public[9] 26 qoldprivate[45] 43 qoldprivate[72] 60 qoldprivate[43]

10 qold
public[10] 27 qoldprivate[49] 44 qoldprivate[30] 61 qoldprivate[44]

11 qold
public[11] 28 qoldprivate[50] 45 qoldprivate[31] 62 qoldprivate[51]

12 qold
public[12] 29 qoldprivate[52] 46 qoldprivate[33] 63 qoldprivate[48]

13 qold
public[13] 30 qoldprivate[54] 47 qoldprivate[36] 64 qoldprivate[40]

14 qold
public[14] 31 qoldprivate[55] 48 qoldprivate[27] 65 qoldprivate[41]

15 qold
public[15] 32 qoldprivate[46] 49 qoldprivate[28] 66 qoldprivate[64]

16 qoldprivate[73] 33 qoldprivate[56] 50 qoldprivate[29] 67 qoldprivate[65]

38

Table 21: New structure of the AES S-box with 60 ancilla qubits.

No. Gate No. Gate No. Gate No. Gate

0 CNOT2(u7, u4, q34) 46 CNOT(q3, q53) 92 CNOT2(u7, u3, q53) 138 CNOT(q0, q56)
1 CNOT2(u7, u2, q35) 47 CNOT(q3, q5) 93 CNOT2(q53, q5, q54) 139 CNOT(q47, q57)
2 CNOT(u1, u7) 48 CNOT(q6, q7) 94 CNOT(q7, q53) 140 CNOT(q50, q58)
3 CNOT2(u4, u2, q36) 49 CNOT(q6, q8) 95 CNOT(q4, q53) 141 CNOT(q46, q59)
4 CNOT(u1, u3) 50 CNOT(q51, q0) 96 CNOT(q3, q53) 142 CNOT2(q31, q32, q51)
5 CNOT2(q34, u3, q37) 51 CNOT2(q35, q41, q51) 97 CNOT2(u7, u3, q53) 143 CNOT2(q20, q26, q52)
6 CNOT2(u6, u5, q38) 52 CNOT(q4, q53) 98 CNOT(q12, q0) 144 CNOT2(q16, q18, q53)
7 CNOT2(u0, q37, q39) 53 CNOT(q8, q5) 99 CNOT(q13, q5) 145 CNOT(q25, q17)
8 CNOT2(u0, q38, q40) 54 CNOT(q7, q1) 100 CNOT(q9, q15) 146 CNOT(q28, q24)
9 CNOT2(q37, q38, q41) 55 CNOT(q8, q0) 101 CNOT2(q14, q15, q46) 147 CNOT(q31, q19)
10 CNOT(u2, u6) 56 CNOT(q7, q53) 102 CNOT2(q0, q5, q47) 148 CNOT(q32, q19)
11 CNOT(u2, u5) 57 CNOT(q52, q5) 103 CNOT2(q0, q14, q48) 149 CNOT(q17, q16)
12 CNOT2(u7, q36, q42) 58 CNOT2(q44, q43, q52) 104 CNOT2(q5, q15, q49) 150 CNOT(q21, q29)
13 CNOT2(q37, u6, q59) 59 CNOT(q53, q51) 105 CNOT2(q47, q46, q50) 151 CNOT2(q22, q23, q54)
14 CNOT(u3, u6) 60 CNOT(q1, q52) 106 CNOT(q49, q51) 152 CNOT(q24, q23)
15 CNOT(u5, u3) 61 AND(q53, q1, q9) 107 CNOT(q15, q52) 153 CNOT(q53, q30)
16 CNOT2(q40, u3, q43) 62 AND(q52, q5, q10) 108 CNOT(q5, q53) 154 CNOT(q18, q21)
17 CNOT(u0, u4) 63 AND(q0, q51, q11) 109 CNOT(q48, q54) 155 CNOT2(q19, q23, q55)
18 CNOT(q38, u4) 64 CNOT(q53, q51) 110 CNOT(q14, q55) 156 CNOT(q51, q20)
19 CNOT2(q34, u4, q44) 65 CNOT2(q53, q5, q54) 111 CNOT(q0, q56) 157 CNOT(q31, q22)
20 CNOT(u0, u1) 66 CNOT(q7, q53) 112 CNOT(q47, q57) 158 CNOT(q52, q25)
21 CNOT(u1, q38) 67 CNOT(q4, q53) 113 CNOT(q50, q58) 159 CNOT(q51, q26)
22 CNOT2(q35, q38, q45) 68 CNOT(q3, q53) 114 CNOT(q46, q59) 160 CNOT(q52, q27)
23 CNOT(q34, u5) 69 CNOT2(u7, u3, q53) 115 AND(q49, q37, q16) 161 CNOT(q29, q28)
24 AND(q42, q37, q0) 70 CNOT(q1, q52) 116 AND(q15, q39, q17) 162 CNOT(q24, q33)
25 AND(q45, q39, q1) 71 CNOT2(q0, q9, q55) 117 AND(q5, u0, q18) 163 CNOT(q52, q51)
26 AND(u4, u0, q2) 72 CNOT2(q1, q0, q56) 118 AND(q48, u3, q19) 164 CNOT(q16, q52)
27 AND(u7, u3, q3) 73 CNOT2(q5, q9, q57) 119 AND(q14, q40, q20) 165 CNOT(q17, q21)
28 AND(q38, q40, q4) 74 CNOT(q54, q52) 120 AND(q0, q43, q21) 166 CNOT(q28, q53)
29 AND(q44, q43, q5) 75 CNOT(q56, q51) 121 AND(q47, u6, q22) 167 CNOT(q54, q25)
30 AND(q34, u6, q6) 76 AND(q57, q56, q12) 122 AND(q50, u5, q23) 168 CNOT(q16, q54)
31 AND(q36, u5, q7) 77 AND(q55, q54, q13) 123 AND(q46, q41, q24) 169 CNOT(q29, q23)
32 AND(q35, q41, q8) 78 AND(q51, q10, q14) 124 AND(q51, q42, q25) 170 CNOT(q30, q22)
33 CNOT2(q35, q41, q51) 79 AND(q52, q11, q15) 125 AND(q52, q45, q26) 171 CNOT(q30, q27)
34 CNOT2(q44, q43, q52) 80 CNOT2(q0, q9, q55) 126 AND(q53, u4, q27) 172 CNOT2(q25, q19, s7)
35 CNOT2(u7, u3, q53) 81 CNOT2(q5, q9, q57) 127 AND(q54, u7, q28) 173 CNOT2(q26, q54, s6)
36 CNOT(q59, q1) 82 CNOT(q54, q52) 128 AND(q55, q38, q29) 174 CNOT2(q33, q22, s5)
37 CNOT(q34, u5) 83 CNOT2(q56, q9, q58) 129 AND(q56, q44, q30) 175 CNOT2(q52, q19, s4)
38 CNOT(u5, u3) 84 CNOT(q58, q14) 130 AND(q57, q34, q31) 176 CNOT2(q51, q21, s3)
39 CNOT(u3, u6) 85 CNOT2(q56, q9, q58) 131 AND(q58, q36, q32) 177 CNOT2(q55, q27, s2)
40 CNOT2(q37, u6, q59) 86 CNOT(q56, q51) 132 AND(q59, q35, q33) 178 CNOT2(q20, q23, s1)
41 CNOT(u3, u6) 87 CNOT2(q1, q0, q56) 133 CNOT(q49, q51) 179 CNOT2(q19, q53, s0)
42 CNOT(u5, u3) 88 CNOT(q54, q9) 134 CNOT(q15, q52) 180 X(s6)
43 CNOT(q34, u5) 89 CNOT(q7, q53) 135 CNOT(q5, q53) 181 X(s5)
44 CNOT(q0, q1) 90 CNOT(q4, q53) 136 CNOT(q48, q54) 182 X(s1)
45 CNOT(q2, q0) 91 CNOT(q3, q53) 137 CNOT(q14, q55) 183 X(s0)

39

	Improved Quantum Circuits for AES: Reducing the Depth and the Number of Qubits

