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Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul, Turkey

Email: alisah@sabanciuniv.edu

Erkay Savaş
Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul, Turkey

Email: erkays@sabanciuniv.edu

Abstract—The number theoretic transform (NTT) permits a
very efficient method to perform multiplication of very large
degree polynomials, which is the most time-consuming operation
in fully homomorphic encryption (FHE) schemes and a class
of non-interactive succinct zero-knowledge proof systems such
as zk-SNARK. Efficient modular arithmetic plays an important
role in the performance of NTT, and therefore it is studied
extensively. The access pattern to the memory, on the other
hand, may play much greater role, as the NTT execution time is
mostly memory-bound due to large degree polynomials. In this
paper, we propose two algorithms for fast computation of NTT
on a class of graphical processing units (GPU) by optimizing
the memory access patterns. We present an approach i) to
optimize the number of accesses to slow global memory for
thread synchronization, and ii) to make better use of spatial
locality in global memory accesses. It turns out that by controlling
certain parameters in CUDA platform for general-purpose GPU
computing (GPGPU) such as kernel count, block size and block
shape, we can affect the performance of NTT. To best of our
knowledge, this work is unique for it suggests a recipe for
selecting optimum CUDA parameters to obtain the best NTT
performance for a given polynomial degree. Our implementation
results on various GPU devices for all power-of-two polynomial
degrees from 212 to 228 show that our algorithms compare
favorably with the other state-of-the-art GPU implementations
in the literature with the optimum selection of these three CUDA
parameters.

Index Terms—Number Theoretic Transform, GPU, Homomor-
phic Encryption, zk-SNARK, Hardware Acceleration.

I. INTRODUCTION

Advanced cryptographic schemes such as homomorphic
encryption [1] and zero-knowledge proofs [2] are staple
building blocks in many privacy-critical applications including
electronic voting [3], privacy-preserving machine learning [4],
privacy-preserving cryptocurrency [5], smart contracts [6], and
many others. One can even safely say the promise of a
dependable and fair digital age cannot come to pass without
them [7]–[9]. As a result, the research community invested
decades of intense effort and energy to supply practicable
solutions [10]–[15], as their intended functionality can only
be achieved with prohibitively high computation costs [16].
Although an outstanding progress have been made on efficient
implementation of those schemes [17]–[19], there is still
pressing need for further improvement thereof to match up

the latency and throughput requirements of real-life applica-
tions [20].

The multiplication of very large degree polynomials (e.g.,
the multiplication in polynomial rings R = Z[x]/Φn(x),
where Φn(x) is the cyclotomic polynomial of degree n), is
(one of) the most time and resource consuming operation in
both homomorphic encryption and modern zero-knowledge
proof schemes such as zk-SNARK [10], [11]. One widely
adopted method for fast and memory efficient polynomial mul-
tiplication is based on number theoretic transform (NTT) [21],
where fast implementation can be achieved via hardware
acceleration on GPU [22]–[28] and FPGA devices [29]–[34].
Besides academia, industry is also keenly interested in the
acceleration of the cryptographic primitives and organize the
competitions to promote interest therein1.

New generation FPGA devices, with extra high bandwidth
memory communication and relatively low-energy consump-
tion, stand one of the best candidates for acceleration. GPU
devices, on the other hand, can also be profitably utilized in
acceleration of many cryptographic primitives due to their
extraordinary computational resources, easy integration with
software libraries, and superior general-purpose computing
capabilities.

Current GPU devices consist of thousands of parallel run-
ning threads and high bandwidth memory hierarchy featuring
on-chip and off-chip memory. Computations intended to run
on GPU are performed by invoking GPU kernel functions,
and applications running on a host CPU device can call many
kernels to offload some of its computation to GPU. Invoking
each kernel function incurs an overhead in execution time
due to the fact that access to off-chip memory is required for
thread synchronization. The threads are grouped into blocks,
whose size and shape are configurable and the threads in the
same group enjoy faster synchronization. Various factors such
as the number of kernels, block size, and block shape may
have major impact on the performance of the application.
Therefore, developing efficient GPU applications necessitates
novel algorithm design and systematic approach in addition to
code optimization specific to GPU architectures.

1https://www.zprize.io/



In this paper, we aim to develop and implement efficient
algorithms to compute NTT for high degree polynomial mul-
tiplication on a class of GPU devices. We can summarize our
contributions as follows.

• We propose two algorithms for efficient computation of
NTT designed to fully exploit the outstanding parallel
computing capabilities of GPU with carefully optimized
memory access patterns. One of the algorithms is a form
of well-known recursive algorithm while the other based
on the Four-Step algorithm. We aim two degree ranges
for the polynomials: i) n ∈ [212, 216] intended for homo-
morphic encryption applications, and ii) n ∈ [220, 228]
for the zk-SNARK protocol. The algorithms are flexible
and parametric as they can easily be adapted to work with
any value of n provided that it is a power of two.

• We show that the performance of the algorithms is
highly dependent on the selection of parameters such
as the number of kernels, block size and block shape.
We, then, propose a systematic approach to find out
their optimum selection for the fastest implementation
given a polynomial degree. The approach helps determine
the selection of a specific parameter by considering the
interplay of several parameters to improve computational
aspects of an implementation such as fast access to global
memory.

• We implement both algorithms on various GPU devices
using all possible optimization techniques and present our
implementation results for time efficiency. We provide
both latency and throughput results, which suggest the
performance of each algorithm varies depending on the
ring dimension as well as the specific GPU device. Also,
the timing results confirm that our algorithms compare
favorably with other state-of-the-art algorithms for GPU
in the literature.

The remaining of the paper is organized as follows. Sec-
tion II provides the mathematical background of Number
Theoretic Transform and presents the so-called Merge and 4-
Step NTT algorithms for its efficient computation. Section III
reviews the GPU architecture and its working principles and
points outs common practices to use GPU devices efficiently
while Section IV briefly explains the notation used throughout
the paper. Section V presents two different NTT algorithms
customized for efficient GPU implementation. Section VI
presents the implementation results and compares them with
those of the state-of-the-art implementations in the literature.
The paper is concluded in Section VII with final remarks
capturing the achievements and contribution. Additionally, the
NTT-GPU implementation is publicly available on Github2.

II. PRELIMINARIES

The number theoretic transform (NTT) is a form of Discrete
Fourier Transform (DFT) defined over the ring of integers Zq .
In cryptography, it is commonly used for multiplication of
high degree polynomials as it reduces quadratic complexity of

2https://github.com/Alisah-Ozcan/GPU-NTT

the schoolbook multiplication to O(n log n). The coefficients
of an (n−1)-degree polynomial can be thought as a vector of
integers, a = [a0, a1, . . . , an−1], which can be transformed
to another vector ā = [ā0, ā1, . . . , ān−1] using NTT. The
definition of the m-point NTT can be given as

āi =

n−1∑
j=0

ajω
i×j mod q for i = 0, 1, . . . ,m (1)

where m ≥ n. For NTT to be defined, we need the existence
of a constant value value ω ∈ Zq ., which can have two types

• ω ∈ Zq: the primitive n-th root of unity in Zq , which
satisfies the conditions ωn ≡ 1 (mod q) and ωi ̸= 1
(mod q) ∀i < n, where q ≡ 1 (mod n).

• ψ, where ψ ∈ Zq: the primitive 2n-th root of unity, which
satisfies the conditions ψ2n ≡ 1 (mod q) and ψi ̸= 1
(mod q) ∀i < 2n, where q ≡ 1 (mod 2n). Note that
ω = ψ2 mod q and ψn mod q = −1.

The polynomial ring Rq = Zq/Φ(x) consists of polynomi-
als of degree at most n − 1, where Φ(x) is the cyclotomic
polynomial of degree n. Multiplication in Rq requires poly-
nomial multiplication followed by division with Φ(x). The
multiplication can be performed using NTT, which takes the
coefficient vectors of two polynomials, a and b, and computes
ā = NTT (a) and b̄ = NTT (b). We can perform the
component-wise multiplication afterward as c̄i = āi · b̄i mod
q, for i = 0, 1, . . . ,m. Then, we apply the inverse NTT oper-
ation on the resulting vector c̄ to compute c ∈ Rq . Generally,
a final division operation by Φ(x) is applied to obtain the final
result. When n is a power of two, we have Φ(x) = xn+1, and
due to negacyclic convolution, only n-point NTT operations
are performed without the final reduction by Φ(x) = xn + 1.

A. Two Algorithms for Number Theoretic Transform (NTT)

In this section, we explain two different algorithms to
compute number theoretic transform (NTT). For brevity, we
only include algorithms for forward NTT while the details of
the inverse NTT can be found in Appendix A as well as in
the literature [35].

1) Merged NTT Algorithm
The first algorithm (Algorithm 1) is the classical iterative

method that processes the input vector elements in log2 n outer
loop iterations, which have to be executed sequentially (see
do-while loop in Algorithm 1). In each outer iterations, there
are n/2 butterfly operations in every outer loop iterations.
Depending on the NTT algorithm, either Cooley-Tukey (CT)
(Algorithm 2) or Gentleman-Sande (GS) (Algorithm 6 in
Appendix A) are used for butterfly operation. Simply speaking,
a butterfly operation reads two elements of the vector, process
them to compute two integers and writes the results back to
their place in the vector. The access patterns for read and write
operations change in every outer iterations.

Algorithm 1, used to compute forward NTT operation, is
referred as Merge-NTT as there is neither pre- nor post-
processing operations and the bit reverse operation is deferred.
Different powers of the primitive root of unity (ψ) are used
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Algorithm 1 Merge Forward NTT (Merge-NTT)
Input: a(x) ∈ Zq[x]/(x

n + 1) polynomial standard-order
Input: Ψbr[k] = ψbr(k) (mod q) for 0 < k ≤ n − 1

(Powers of ψ stored in bit-reverse order)
Input: n = 2l, q (q ≡ 1 mod 2n)
Output: a← NTT (a) in bit-reversed order

1: t← n; m← 1
2: do
3: t← t/2
4: for i from 0 by 1 to m do
5: j1 ← 2it
6: j2 ← j1 + t− 1
7: for j from j1 by 1 to j2 + 1 do
8: aj , aj+t ← CT(aj , aj+t,Ψbr[m+ i], q)
9: end for

10: end for
11: m← 2×m
12: while m < n
13: return a

Algorithm 2 Cooley-Tukey Butterfly (CT)
Input: U , V , Ψ, q
Output: Ū , V̄

1: Ū ← U + (V ×Ψ) (mod q)
2: V̄ ← U − (V ×Ψ) (mod q)
3: return Ū , V̄

in butterfly operations depending on the iteration and part of
the vector. The algorithm pre-computes and stores them in the
array, Ψbr in bit-reversed order. The inverse NTT operation
(Algorithm 8 in Appendix A) can roughly be considered as
the NTT algorithm being executed backward, which uses the
GS butterfly operation.

2) Four-Step NTT Algorithm
The four-step method [36], described in Algorithm 3, is

another way to compute NTT (and inverse NTT) operations.
In the first stage, it arranges the input vector into a two-
dimensional matrix of n1-by-n2, where n = n1×n2 (Steps 1-
5 of Algorithm 3). In the second stage, it performs n2 NTT
operations of n1-point each (Steps 7-9). In the third stage,
the matrix elements are multiplied with certain powers of
the primitive root of unity, ψ (Steps 11-15). And finally,
the algorithm performs n1 NTT operations of n2-point each
(Steps 16-18). The 4-Step NTT algorithm computes much
smaller (n1-point and n2-point against n-point NTT opera-
tions) and independent NTT computations, which exploits the
parallel processing and locality of memory access much better
than the Merge NTT algorithm. Nevertheless, the transpose
operations (Steps 6, 10, and 19) can be challenging as they can
cause a very fragmented memory access, which can be very
disruptive for threads in a GPU device. The version of the
4-Step NTT algorithm for computing inverse NTT operation
is given in Algorithm 7 in Appendix A.

Algorithm 3 Four-Step NTT (4Step-NTT)
Input: n1, n2 ≤ n and n1 × n2 = n
Input: a(x) ∈ Zq[x]/(x

n − 1) in polynomial standard-order
Input: Ω[k] = Ωbr(j)×i (mod q) for 0 < k ≤ n −

1, for 0 < j ≤ n1 − 1 for 0 < i ≤ n2 − 1
Input: Ω0br [k] = ω

br(k)
0 (mod q) where ω0 = Ω(n/n1)

(mod q), for 0 < k ≤ n1 − 1

Input: Ω1br [k] = ω
br(k)
1 (mod q) where ω1 = Ω(n/n2)

(mod q), for 0 < k ≤ n2 − 1
Output: a← NTT (a) in bit-reversed order

1: for i from 0 by 1 to n1 do ▷ 1) Vector to matrix
2: for j from 0 by 1 to n2 do
3: Bi,j ← ai×n2+j

4: end for
5: end for
6: B = BT ▷ Transpose operation
7: for j from 0 by 1 to n2 do ▷ 2) n2, n1-point NTTs
8: Bj ← NTT(Bj ,Ω0br , n1, q)
9: end for

10: B = BT ▷ Transpose operation
11: for i from 0 by 1 to n1 do ▷ 3) Correction step
12: for j from 0 by 1 to n2 do
13: Bi,j ← Bi,j × Ωi×n2+j (mod q)
14: end for
15: end for
16: for i from 0 by 1 to n1 do
17: Bi ← NTT(Bi,Ω1br , n2, q) ▷ 4) n1, n2-point NTTs
18: end for
19: B = BT ▷ Transpose operation
20: for j from 0 by 1 to n2 do ▷ Matrix to vector
21: for i from 0 by 1 to n1 do
22: aj×n1+i ← Bj,i

23: end for
24: end for
25: return A

III. GPU ARCHITECTURE

GPU is a computing device that facilitates exceptional
parallel processing capability due to that fact that it supports
extremely high number of threads. Therefore, its instruction
throughput far exceeds the one that can possibly be sus-
tained by a conventional general-purpose CPU, which features
comparably modest number of threads. As CPU and GPU
are designed for different applications with different design
principles, quantity, speed and computational power of CPU
and GPU threads are also different. A CPU sustains fewer
number of threads (in the order of tens) that can complete
computationally more involved operations faster while recent
GPU devices can support as high as 15K threads. But the GPU
threads are computationally less capable running at slightly
slower clock speeds. Therefore, the performance comparison
of GPU and CPU can be involved and depends on benchmarks
as pointed out in [37] and advantage of GPU over CPU is
overestimated at times.
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Configurable hardware platforms such as FPGA, which can
offer superior parallelization with better energy efficiency than
GPU. However, being easier to program and integrate with
applications running on CPU and containing more on-chip and
off-chip memory, GPU can be a strong alternative to accelerate
memory-bound applications such as advanced cryptographic
operations, which heavily rely on arithmetic on extremely
large mathematical objects; e.g. polynomial rings of very high
dimensions.

CUDA-enabled GPU is a parallel computing device that
can be used for general-purpose programming via CUDA®,
which is a general purpose parallel computing platform and
programming model. The CUDA software environment allows
developers to use high-level programming languages such as
C++ and Fortran.

In conclusion, GPUs are powerful devices, which proved
to be accessible and easily programmable accelerators for a
wide range of applications. However, it is essential to acquire
deep insight into its micro-architectural details and to design
algorithms to harness their computational resources.

A. High-Level Architecture of GPU

From a very high level, we can consider that a GPU
platform consists of two main parts: i) GPU chip, and ii) off-
chip memory. The GPU chip contains the main computation
units known as streaming multiprocessors (SM) and on-chip
memory that implements registers and shared memory. The
local, global, constant, and texture memory types are all
implemented in off-chip memory, for which the GDDR is
used; a memory technology offering higher bandwidth and
more power-efficient communication when compared with the
DDR technology used in CPU memory systems. Nevertheless,
the off-chip memory is still much slower than registers and
on-chip shared memory.

A GPU contains an array of Streaming Multiproces-
sors (SM), which create, manage, schedule and execute threads
on its functional units. An SM contains L1 cache (which
is used to implement shared memory) and registers that
are accessible to the threads scheduled to run on the SM.
Execution happens in groups of 32 parallel threads called
warps, in which threads start together at the same program
address, but they can execute independently as they maintain
separate states. An SM partitions threads into warps and its
warps schedulers schedule them for execution on functional
units of SM.

Another programming abstraction is thread block (or simply
block), which can contain more than one warp. For instance,
a block can contain as many as 32 warps or 1024 threads in
current GPU devices. For easy indexing of threads, a block
can be defined one, two or three dimensional. All threads in
a block are scheduled to run on the same SM (accessing the
same shared memory), which is capable of executing more
than one block.

A grid is formed by combining multiple blocks, each of
which contains the same number of threads. As the number
of threads in a block is limited, grids are used to run larger

number of threads in parallel than that can fit in a single block.
Namely, different blocks in a grid may run in different SMs,
and therefore, threads in different blocks do not use the same
shared memory. Similar to blocks, a grid can be indexed one,
two or three dimensional. We refer a particular configuration
of block or grid as its shape.

Kernel is a function that is executed on a GPU device, which
takes also the number of threads and blocks as arguments.
As more than one block is used to execute a kernel, when
threads from different blocks have to synchronize, this can
be done by terminating the current kernel and start another
if the computation is expected to continue. Starting and
terminating kernels incur significant timing overhead, therefore
an algorithm that limits the thread synchronization within a
block is more efficient.

The compute capability of a GPU device, which determines
hardware features and/or instructions available, is given by a
version number and should be known to algorithm designers
for developing better algorithms and their efficient implemen-
tations on GPU devices. The compute capability of a GPU
device determines some pertinent information to our work such
as the maximum number of blocks, warps, threads, number of
32-bit registers, maximum amount of shared memory per SM.
In this paper, we use GPU devices with the compute capability
8.6 and some of its relevant features are listed in Table I.

TABLE I
CONFIGURATION OF COMPUTE CAPABILITY 8.6

Maximum number of blocks per SM 16
Maximum number of warps per SM 48
Maximum number of threads per SM 1536
Number of 32-bit registers per SM 64 K
Maximum number of 32-bit registers per thread 255
Maximum amount of shared memory per SM 100 KB

B. GPU Memory Hierarchy

There are different types of memory in the GPU, and the
access pattern to these memory types plays a very important
role in terms of memory latency performance. Each memory
type has its advantages and disadvantages and can be used for
different purposes accordingly. Table II lists these memory
types and their specifications.

TABLE II
THE VARIOUS PRINCIPAL TRAITS OF THE MEMORY TYPES

Memory Types Scope Life Time Access Latency

Register 1 Thread Kernel 1×
Shared All threads in block Kernel 1×
Local 1 Thread Kernel ≈ 100×
Global All threads + host Application ≈ 100×

In the hierarchical structure of GPU memory system,
the global memory is in the highest level implemented in
GDDR (off-chip memory), and therefore, its size is larger than
any other GPU memory type. Its access latency is slower than
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other memory types, because of the overhead of accessing
the off-chip memory. Additionally, since the global memory
allocations persist for the lifetime of a GPU application, data
in global memory can be shared among kernels and all threads
in a GPU can access global memory regardless of their block.
The local memory, rather than a physical memory, is an
abstraction of global memory, which is local to the thread and
used to hold variables when register space is not sufficient.

The shared memory persists for the lifetime of a kernel, due
to the fact that they are implemented in the L1 cache (on-chip
memory) of an SM. As the shared memory is private to blocks,
all threads of a block can access the same shared memory
and synchronize. Furthermore, the shared memory, which is
smaller in size, is fast and its access latency is comparable to
that of registers. Consequently, memory-dependent operations
can be profitably performed in the shared memory instead of
the global memory. However, threads from different blocks
can use only the global memory to share data.

The last on-chip memory type, the register file consists of
32-bit registers, which can be accessed in one clock cycle.
The register file size is 64K 32-bit registers per SM and each
thread has at most 255 32-bit registers.

C. Coalesced & Uncoalesced Access to Global Memory

As discussed in Section III-B, each kernel needs to access
global memory to load and store data. Therefore, accessing
global memory plays a very important role in high perfor-
mance GPU programming. The data in the off-chip global
memory are delivered to the CUDA cores via caches. Each
time the global memory is accessed, the entire memory block
is fetched and placed in a cache line of the same size as
the memory block. Therefore, the line sizes of L1 and L2
cache memories have particularly significant impact on the
performance of CUDA programs. As the line sizes of both
cache memories are 128 B, a group of threads accessing con-
secutive addresses that coincide with a memory block of 128 B
contributes to achieving the global memory access latency
values listed in Table II. This is known as coalesced access
in the GPU terminology. For instance, 16 threads accessing
8 B unsigned long long data types each, which happen
to be consecutive in the same memory block, maximizes the
performance as the entire 128 B block is brought to the
cache with one global memory access operation. Otherwise,
uncoalesced and strided accesses occur and the latency figures
in Table II cannot be achieved as the same amount of data
requires more than one memory block to be brought to the
cache. One can affect the coalesced access following good
programming practices.

D. Theoretical Occupancy

Occupancy is defined as the ratio between the number of
actual active warps on an SM and the maximum possible
number of active warps on the SM. As the occupancy plays
an important role in efficient utilization of GPU resources
(and ultimately the application performance), it is extremely
essential to calculate the maximum theoretical occupancy of

TABLE III
NOTATION AND SYMBOLS

symbol explanation
n The ring dimension
q The modulus
ψ The twiddle factor
Ψ The array of twiddle factor powers

bDim # of threads in a block
{bDim.x, . . .} # of threads in each block dimension

bID Block ID
{bID .x, . . .} Block ID in each dimension

tID Thread ID
{tID .x, . . .} Thread ID in each dimension
bc and kc # of blocks and # of kernels

koc Array of # of outer loop iterations per kernel
offset Difference between indices of inputs of

a butterfly operation in a kernel or iteration

GPU before launching a kernel. When a kernel is created, the
number of threads in a block, is determined as well as the
shared memory size that will be available in the block. Since
each block runs in one SM, the size of the register per thread is
also fixed in the block. These three parameters (namely, block
dimensions, the shared memory size, the number of registers
per thread) directly affect the maximum theoretical occupancy.
A block can include at most 1024 threads, which may not
be necessarily optimum for achieving maximum theoretical
occupancy. The reason is that increasing block size limits the
resources per thread. For instance, for GPUs with compute
capability 8.6, shared memory capacity per SM and is 100 KB,
while maximum shared memory per thread block is 99 KB.
Also, the L1 cache is configurable and its some parts can
be used for shared memory and some parts can be used
for data loaded or stored by the L2 cache. If the shared
memory size is too high, a bottleneck occurs because there
is little space left for data loaded or stored by the L2 cache.
Therefore, in order to allocate more resources to threads one
can consider deploying smaller block sizes such as 512 or even
256. This way, more warps can be active at a time. One can
follow the NVIDIA documentation and guidelines to achieve
higher occupancy rates. In Section V, we report the achieved
occupancy rates and how it affects the overall timings of our
NTT implementation (see the discussion of the optimum size
for a thread block).

IV. NOTATION AND GPU DEVICES

In this section, we provide Table III, which includes a quick
reference to symbols and notation frequently used throughout
the paper.

We also detail the configurations of three GPU devices used
in this work in Table IV. While not all GPU devices are of
the same architecture (RTX 3060Ti and A100 are Amphere
and RTX 4090 ADA) both have 64 ALUs in one SM. Three
main features in both architectures are the determining factor
in performance of NTT algorithms: i) Number of threads, ii)
memory bandwidth, and iii) core frequency.
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TABLE IV
HARDWARE FEATURES OF THE TESTBED

GPU

Feature GPU-A GPU-B GPU-C

Architecture RTX 3060Ti A100 80 GB RTX 4090
Threads 4864 6912 16384

Boost Freq. 1665 MHz 1410 MHz 2520 MHz
Memory Size 8 GB 80 GB 24 GB
Memory Type GDDR6 HBM2e GDDR6X
Memory Bus 256 bit 5120 bit 384 bit
Bandwidth 448 GB/s 1935 GB/s 1008 GB/s

V. NTT ALGORITHMS FOR GPU

This section presents two different NTT algorithms and their
implementations on GPU devices; Merge-NTT and 4Step-
NTT. We will detail their steps and explain the rationale in
the specific design choices, which are directly dictated by the
micro-architecture of GPU devices.

A. Merge-NTT GPU Algorithm & Its Implementation

The Merge-NTT consists of two parts: i) NTT host, runing
on the host device (i.e., general-purpose CPU), which deter-
mines the block size, block and grid shapes and the number
of kernels etc., and ii) NTT kernel which performs the actual
NTT computation on GPU. As observable in Algorithm 1,
Merge-NTT consists of 3 main parts: i) the outer loop (the
“do-while” loop starting in line 2), ii) the inner loop (the
”for” loop in line 4), and iii) butterfly operation (CT Coley-
Tukey) in line 8). In the first outer loop iteration, there is one
NTT operation operating on the entire elements of the input
vector. The number of independent NTT operations doubles
from one iteration to the next operating on the separate parts
of the input vector. For instance, in the second iteration, we
have two independent NTT operations operating the first and
the second half of the input vector, respectively. We can even
assign indices to the NTT operations in a outer loop iteration,
increasing from left to right for easy reference to them.

While the outer loop needs to be executed sequentially as
there is data dependency between an iteration of the outer
loop and the next, the inner loop iterations are independent
and, therefore, suitable for parallelization. The threads in a
block can perform all iterations of the inner loop concur-
rently and use the __syncthreads() intrinsic function for
synchronization provided that bDim ≥ n/2 where n is the
ring dimension. Otherwise, more than one block is needed for
full parallelization of the inner loop and the synchronization
becomes problematic as the only way for that is via global
memory, which results in using multiple kernels. For example,
when n = 211, where there are 1024 CT operations in each
inner loop iteration, one block (and one kernel) suffices to
implement NTT operation as the maximum number of threads
in CUDA-capable GPUs is 1024.

When n > 211, however, multiple kernels will be needed
and the approach adopted in [22] uses a new kernel for each
outer iteration until the iteration number log2 n− log2 2bDim .

Therefore, the number of kernels can be calculated using the
formula kc = log2 (n/2bDim). For example, when n = 215

there are 15 outer iterations, the number of kernels needed
can be computed as 4 for bDim = 1024. When the ring
dimension increases to 220 and 224, 9 and 13 kernels are
needed, respectively, which renders the approach in [22]
prohibitively inefficient for high ring dimensions. The work
in [23], adopting a completely different approach, performs all
outer iterations up to log2 n− log2 2bDim in a single kernel,
whereby some iterations of the inner loop is serialized. The
second kernel is used thereafter as inter-block dependency
is no longer an issue. This way, access to global memory
is reduced using only two kernels. But, unfortunately, it can
only perform NTT operation up to n = 215 as the number of
registers in the SM is insufficient to get all vector elements
from the global memory at the start of the kernel.

We can keep track of the number of outer loop iterations
performed in each kernel in an array, named koc (kernel outer
iteration count). For example, for the method in [22], the num-
ber of kernels (kernel count) kc = log2 n−log2 2bDim and the
elements of the array can be written as koc[0] = log2 2bDim
and koc[i] = 1 for i ≥ 1. For [23], we have kc = 2 and
koc[0] = log22bDim , koc[1] = log2 n − log2 2bDim with
n ≤ 215. Nevertheless, the partitioning of the outer loop
iterations into kernels can be done in different ways to obtain
a better GPU implementation as demonstrated in this paper.

Suppose the function Partition (see Algorithm 4) gets
the ring dimension n, the maximum number of threads in a
block (typically mbd = 1024 in CUDA-enabled GPU devices),
and returns the optimal partition for n along with the block
size bDim , without the particular shapes of a block and grid;
namely their dimensions in different coordinates, which may
vary depending on the particular kernel. Note that the returned
block size is not necessarily the maximum block size and it
turns out a smaller block size may be advantageous as will be
shown in the subsequent sections. For example, when bDim =
1024 and n = 218 we can perform NTT in two kernels with
seven outer loop iterations in the first kernel and 11 in the
second kernel. Namely, we can write kc = 2, koc[0] = 11 and
koc[1] = 7. In another example, when bDim = 1024 and n =
224, we have kc = 3, kc[2] = 2, kc[1] = kc[0] = 11. On the
other hand, when we use a smaller block size such as bDim =
256, then we have kc = 3, kc[2] = 6, kc[1] = kc[0] = 9.
Note that a kernel cannot perform more than log2 2bDim outer
loop iterations. One particular contribution of ours is that we
propose such a novel access model to global memory that
blocks in the kernels for i ≥ 1 (i.e., those except the last kernel
running the last log2 2bDim) perform the computations using
shared memory in all outer loop iterations.

The proposed approach for determining the block size,
kernel count, grid and kernel shapes is detailed in Algorithm 4,
which is intended to execute on the host device to invoke
kernels. In line 1 of the algorithm, the function Partition
takes the ring dimension n and the maximum block size on
CUDA-enable GPU (by default mbd = 1024) and returns the
block size (bDim ≤ 1024), the number of kernels (kc ≥ 2
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Algorithm 4 NTT HOST
Input: A[n],PsiTable[n], n, q,mbd
Output: A[n] ▷ In-place calculation

1: {bDim, kc, koc} ← Partition(n,mbd = 1024) ▷
Optimal partition

2: bc ← n/(2× bDim) ▷ # of blocks
3: olc ← log2(n) ▷ # of outer loop iterations
4: oc ← −1
5: for i from 0 by 1 to kc − 1 do
6: oc ← oc + koc[i]
7: ko[i]← 2oc

8: olc ← olc − koc[i]
9: if i = 0 then

10: kgs[i]← [1, bc]
11: kbs[i]← [bDim/ko[i], ko[i]]
12: else
13: kgs[i]← [bc/(2olc), 2olc ]
14: kbs[i][1]← (2× ko[i− 1])/kgs[i][1]
15: kbs[i][0]← bDim/kbs[i][1]
16: end if
17: end for
18: m← 1
19: for i from kc − 1 by −1 to 0 do
20: dim3 B(kgs[i][0], kgs[i][1])
21: dim3 T(kbs[i][0], kbs[i][1])
22: NTT ≪ B,T ≫ (A,PsiTable,m, ko[i], koc[i], q)
23: m← m× (2koc[i])
24: end for

for n > 2bDim) and the array koc, whose elements keep
the number of outer iterations in the corresponding kernel in
reverse index; e.g., i = 0 and i = kc − 1 represents the last
and the first kernels, respectively. The function Partition
relies on empirical investigation to a certain extent as shown
in the subsequent sections.

In partitioning the outer loop iterations into kernels, it may
seem intuitive to perform as many as possible iterations in
last kernels and more likely fewer number of them in earlier
kernels. Different partitioning schemes, however, can also
benefit the memory access performance; but care must be taken
on deciding the optimal partitioning.

In Algorithm 4, bc stands for the number of blocks in the
grid (block count) while olc represents the number of outer
loop iterations remaining to be performed. The kernel offset
ko, keeps the difference between the indices of the vector
elements in the butterfly operation at the start of a kernel.
For instance, in the last kernel, in which each block processes
2bDim vector elements, ko = bDim while ko = n/2 in the
first kernel.

After the block dimension bDim , the number of kernels kc,
and the number of iterations in each kernel are determined in
Step 1 of Algorithm 4, shapes of grids and kernels are com-
puted in lines between Steps 5 and 18. Block and grid shapes,
which simply pertain to their dimensionality, are determined
by taking into account the memory dependencies between the

outer loop iterations of the NTT algorithm. Both kgs (kernel
grid shape) and kbs (kernel block shape) are two-dimensional
arrays and their elements keep track of dimensions of grids
and blocks in each kernel.

With two-dimensional access structure, one can arrange the
blocks of the grid into different block groups. The first and
second dimensions of kgs designate the number of blocks in
each group and the number of block groups, respectively. The
blocks, executing the same NTT operation and thus accessing
the same range of vector elements, are organized into the same
block group.

Example 1: Supposing n = 224 and bDim = 1024, the
number of blocks is bc = 8192. Assume also koc = [11, 11, 2].
In the first iteration of the first kernel, all threads in the
blocks access the entire input vector, then all blocks in
the kernel belongs to the same group. Therefore, we have
kgs[2] = [8192, 1]. As the first kernel iterates two times
(koc[2] = 2), the second kernel will process four independent
parts of the input vector in four independent NTT operations
in its first iteration. Then, we can have four groups of blocks,
i.e., kgs[1] = [2048, 4]. The final kernel has blocks, which are
processing their own parts of the vector. Then, one can think
there are as many block groups as the number of blocks. Thus,
we have kgs[0 ] = [1, bc]3.

In a similar fashion, we can group the threads in a block, as
well. While the first dimension of kbs designates the number
of threads in each group, the second does the number of
thread groups.The grouping strategy depends on the number
of iterations in the kernel. The goal is simply to ensure that
the threads in a block will access the same vector elements in
all outer iterations performed in the kernel.

Example 2: In Example 1, the first kernel performs the first
two iterations of the outer loop as koc[2] = 2. Then, a block
is grouped into two thread groups with 512 threads in each;
namely, kbs = [512, 2]. This way, one group of threads will be
accessing the vector elements in the second iteration, which
are processed by the other thread group in the first iteration.
As the first and second groups are in the same block, they use
the same shared memory, which will eliminate accessing the
global memory. In the second kernel, as there are 11 iterations,
the block is organized into 1024 thread groups with a single
thread in each group; namely kbs = [1, 1024]. Finally, in the
last kernel, we can place all threads in the same group as a
block is guaranteed to access the same 2bDim elements of the
vector (i.e., kbs = [1024, 1]).

As observed in Example 2, the thread groups are excessively
fragmented in the second kernel. Since threads in the same
block process the vector elements that are located in distant
locations in memory, this can adversely affect the memory
access performance due to uncoalesced access pattern. Espe-
cially, if we can place the threads that access the same memory
block (i.e., 128 B) in the same group, memory access will be

3Cuda Technical Specification provides us with a maximum grid.x, grid.y
and grid.z as (231 − 1), 65535, and 65535 respectively. Therefore, if the
grid.y is higher than 65535 for ring size, use a new kernel type that has
grid.x and grid.y index switched.
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optimized. Then, different partitioning of outer loop iterations
into kernels should be considered.

Example 3: Suppose koc = [11, 7, 6] for n = 224 and
bDim = 1024. Then we will have

kgs = [[1, 8192], [128, 64], [8192, 1]] and

kbs = [[1024, 1], [16, 64], [32, 32]].

Here, in the first two kernels, there are 32 and 16 threads in
thread groups, respectively. For instance, in the first iterations
of the second kernel, 16 threads access 16 consecutive vector
elements from the global memory, which is likely to be kept
in the same memory block. If each thread accesses 8 B data
types, this will result in a perfect match with the size of the
memory block of 128 B.

Working with the maximum block dimension of bDim =
1024 may not always result in optimum performance, as
good occupancy rate cannot be achieved due to poor resource
utilization as explained in Section III. For instance, if we use
64-bit arithmetic (8 B) in the computation of NTT, then, each
block uses 2048×8 B of the shared memory for the operands
of the butterfly operation. This turns out to result in only a
poor occupancy rate of 66% as an SM in a GPU device with
compute capability 8.6 can run maximum of 1534 threads
(see Table I). If, however, bDim = 256, then the maximum
theoretical occupancy will be achieved as an SM can run more
blocks at the same time with each block using 512×8 = 4 KB.
If, for example, the SM runs 6 blocks of 256, then computation
uses 24 KB of the shared memory.

To see the effects of the occupancy rate on the performance
we ran a set of experiments. We executed our NTT algorithm
with two different block dimensions, bDim = 1024 and
bDim = 256, on three GPU devices. As seen in Table V,
better occupancy rate can lead to more than 10% improvement
in execution times.

TABLE V
EFFECT OF THE BLOCK DIMENSION ON PERFORMANCE WITH n = 217 .

bDim koc GPU-A GPU-B GPU-C

1024 [11,6] 30.1 µs 24.3 µs 12.2 µs
256 [9, 8] 25.5 µs 21.0 µs 12.2 µs

From the discussions, we can conclude that there are couple
of factors that determine the overall performance: block di-
mension, the number of kernels, the number of outer iterations
in the kernels, kernel and grid shapes. As all the internal
architectural details of the GPU devices and the scheduling
of threads in SMs are known to a certain extent, an exact
formula for choosing the best value of a factor cannot be given.
For example, maximum block dimension of bDim = 1024 for
NTT computation of high ring dimensions is not optimum due
to poor occupancy rate. However, it is not easy to determine
whether bDim = 256 or bDim = 128 is better although both
enjoy maximum occupancy. Depending on the ring dimension
and other factors, bDim = 128 may not fully utilize coalesced

access to the memory. All our experiments support that using
bDim = 256 is the optimum choice. For the number of
outer iterations in the kernels koc, we rely on experimental
observations and manual adjustments to a certain extent.

Using the configuration obtained in Algorithm 4 for block
dimension, kernel count, kernel and block shapes, the NTT
Kernel function in Algorithm 5 is called in Steps 19 and 24
of Algorithm 4. The index GAddr in Algorithm 5 is used
to access the global memory for the elements of the input
vector A when the kernel is started. The threads access the
global memory with GAddr for array elements, which are
placed in the shared memory. The size of the shared memory
for each thread block depends on the block dimension BDim
and the size of input vector elements, w (e.g. w = 4 B or
w = 8 B), and can be computed as 2×BDim×w. In order to
exploit the coalesced access to the global memory, the threads
are organized into groups, whose member threads access the
global memory with consecutive indices of the input vector.

Algorithm 5 NTT KERNEL (NTT)
Input: A[n],PsiTable[n],m, ko, koc, q
Output: A[n]

1: t1 ← bDim.x× bDim.y ▷ Block dimension
2: ℓ1 ← tID .y × (ko/2koc−1) ▷ Offset btw. thread groups
3: ℓ2 ← bDim.x× bID .x ▷ offset within an NTT
4: ℓ3 ← 2× ko× bID .y ▷ offset for an NTT
5: GAddr ← tID .x+ ℓ1 + ℓ2 + ℓ3 ▷ For global mem.
6: SAddr ← tID .x+ tID .y × bDim.x ▷ For shared mem.
7: PsiAddr ← tID .x+ ℓ1 + ℓ2 + ℓ3/2 ▷ For twiddle factors
8: offsetG ← ko
9: offsetS ← bDim.x× bDim.y

10: SMem[SAddr ]← A[GAddr ]
11: SMem[SAddr + offsetS ]← A[GAddr + offsetG]
12: for i from 0 by 1 to koc − 1 do
13: u ← ⌊SAddr/t1⌋ × t1 + SAddr
14: PsiIn ← m+ ⌊PsiAddr/ko⌋
15: CT(SMem[u],SMem[u+ t1],PsiTable[PsiIn], q)
16: syncthreads()
17: m← m× 2
18: t1 ← t1/2
19: ko ← ko/2
20: end for
21: A[GAddr ]← SMem[SAddr ]
22: A[GAddr + offsetG]← SMem[SAddr + offsetS ]

Example 4: In a hypothetical GPU, assume n = 256
and bDim = 4 and the partition is kc = 3 and koc =
[3, 3, 2]. Then, we can compute the grid and block shapes
as kgs = [[1, 32], [8, 4], [32, 1]] and kbs = [[4, 1], [1, 4], [2, 2]],
respectively. In the first kernel, the blocks access the entire
range of vector elements (as there is one NTT operation),
therefore, there is one block group with 32 elements as bc = 32
and bID .x ∈ [0, 31], bID .y = 0. The execution of the two
outer loop iterations of the first block of the first kernel is
depicted in Table VI. There are two groups of threads in each
block and threads in the same group access the consecutive
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TABLE VI
THE EXECUTION OF THE FIRST BLOCK OF THE FIRST KERNEL IN

EXAMPLE 4

bID tID GAddr SAddr Corr .GAddr iteration
[0,0] [0,0] [0, 128] [0,4] [0,128] 0

[0,2] [0,64] 1

[1,0] [1, 129] [1,5] [1,129] 0
[1,3] [1,65] 1

[0,1] [64, 192] [2,6] [64,192] 0
[4,6] [128,192] 1

[1,1] [65, 193] [3,7] [65,193] 0
[5,7] [128,192] 1

elements of the input vector. Thus, we have tID .x ∈ [0, 1]
and tID .y ∈ [0, 1]. For example, the two threads in the
first group access the four elements with indices [0,128] and
[1,129], respectively. Note that, in the second iterations, there
is no access to the global memory as all vector elements are
already in the shared memory. The offset value of the indices
between the first and second group of threads is calculated as
ko/2koc−1 = 64 (See ℓ1 in the second step of Algorithm 5).

As mentioned previously, thread blocks are organized as
a two-dimensional array in grids and bID .x and bID .y are
indices of a particular block. Here, bID .y is the index of the
NTT sub-block while bID .x is the offset within the NTT sub-
block.

Example 5: In Example 4, as there is a single NTT operation
in the first iteration of the first kernel, there is one block group
in a grid; namely we have bID .y = 0 for all block groups.
To calculate the index of A in the global memory, we need to
compute the offset value ℓ2 = bDim.x× bID .x. For example,
when bID .x = 1, the offset value for the index of A in global
memory will be 2 as bDim.x = 2. See Table VII for the
execution of the first three blocks of the first kernel for the
first thread groups.

TABLE VII
THE EXECUTION OF THE FIRST THREE BLOCKS OF THE FIRST KERNEL IN

EXAMPLE 4

bID tID GAddr SAddr Corr .GAddr iteration
[0,0] [0,0] [0, 128] [0,4] [0,128] 0

[0,2] [0,64] 1

[1,0] [1, 129] [1,5] [1,129] 0
[1,3] [1,65] 1

. . .

[1,0] [0,0] [2, 130] [0,4] [2,130] 0
[0,2] [2,66] 1

[1,0] [3, 131] [1,5] [3,131] 0
[1,3] [3,67] 1

. . .

[2,0] [0,0] [4, 132] [0,4] [4,132] 0
[0,2] [4,68] 1

[1,0] [5, 133] [1,5] [5,133] 0
[1,3] [5,69] 1

As there are bDim.x threads in each thread group bID .x
executing the same NTT operation, we need to add the offset

value ℓ2 = bDim.x× bID .x (see Algorithm 5, Step 3) within
an NTT operation to the index used to access to global memory
at the start of a kernel. Finally, another offset value ℓ3 =
2× ko × bID .y (Algorithm 5, Step 4) is added to the global
memory index. Here, bID .y is the index of the NTT operation
in outer loop iterations, which needs to be multiplied by twice
the kernel offset value of ko.

As mentioned earlier, tID .y is the index of a thread group
in the same block, which refers to coalesced thread groups.
For example, assume bDim = 256 and kbs = [16, 16]
(i.e., tID .x ∈ [0, 15]). As stated in Section III, since L1
cache memory and L2 cache memory line sizes are 128
bytes and if we use vector elements of 8 B (64-bit), for
the best value of minimum thread group size we should
have bDim.x ≥ 16. Otherwise, the number of clock cycles
increases when accessing global memory due to the increase in
the number of uncoalesced accesses, which leads to decrease
in the bandwidth and increase in the latency of computation.

Except for the last kernel, bDim.x decreases as the number
of outer iterations in kernels increases. Thus, using fewer
outer loop iterations in those kernels must be considered. For
example, in Algorithm 4, if the kernel performs as many as
the maximum number of outer iterations (i.e., log2(2bDim)),
then we will cause the worst memory access pattern as
bDim.x = 1.

Example 6: Assume n = 224, bDim = 1024, bc = 8192.
The partitioning the outer loop iterations as koc = [11, 11, 2]
will lead to bDim.x = 512, 1, in the first and the second
kernels, respectively. However, if we use koc = [11, 7, 6], we
will have bDim.x = 32, 16 for the first two kernels, which
will result in much better global memory access pattern.

Reducing the number of outer iterations in a kernel, on
the other hand, will increase the total number of kernels.
Therefore, the number of accesses to the global memory will
increase; as explained in Section III, which is not good for
the overall latency. However, the best NTT implementation
can be achieved if a balance is found between the number of
accesses to global memory and the number of clock cycles
spent accessing global memory.

Example 7: We examine the effect of the kernel count with a
concrete example, with n = 218 and bDim = 256. We can use
two different partitions: kc1 = 2 and koc1 = [9, 9]; and kc2 =
3 and koc2 = [9, 5, 4]. The results are given in Table VIII. As

TABLE VIII
EFFECT OF THE NUMBER OF KERNELS ON PERFORMANCE WITH n = 218

AND bDim = 256.

koc bDim.x GPU-A GPU-B GPU-C
[9,9] [256, 1] 53.0 µs 31.8 µs 21.2 µs

[9, 5, 4] [256, 16, 32] 41.7 µs 28.4 µs 15.5 µs

can be observed in Table VIII, when kc = 2, bDim.x = 1 for
the first kernel, which will result in inferior latency. On the
other hand, when three kernels are used, as the global memory
access patterns are much better (due to bDim.x ≥ 16), the
latency values are improved. As can be seen from the results,
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using extra kernels may be advantageous depending on input
parameters, if global memory access patterns result in poor
performance despite fewer number of kernels.

B. GPU Implementation of 4Step-NTT
As can be observed in Algorithm 3 given for 4Step-

NTT, the algorithm consists of six main operation blocks:
i) transpose of n1×n2 matrix B (Step 6), ii) n2 n1-point NTT
of rows of B (Steps 7-9), iii) transpose of n2 × n1 matrix B
(Step 10), iv) multiplication with twiddle factors (Steps 11-
15), v) n1 n2-point NTT of columns of B (Steps 16-18), and
vi) transpose of n1 × n2 matrix B (Step 19). Here, the NTT
operation blocks can be performed in parallel as there are n2
or n1 independent NTT operations in each block.

Note that the vector-to-matrix and matrix-to-vector oper-
ations do not have to performed explicitly. Note also that
the first and the last transpose operations are not necessary
and can be skipped provided that both NTT and inverse NTT
operations do not perform them. This naturally necessitates
modification in data access patterns, which will not pose
any significant performance penalty. The transpose operation,
on the other hand, can be prohibitively expensive for large
matrices, and eliminating them results in improvement in the
latency. Finally, the multiplication with twiddle factors in
fourth operations block can be incorporated into the second
NTT operation block. With these optimizations, the 4Step-
NTT algorithm is simplified to have only two NTT operation
blocks and a transpose operation in between.

In both NTT operation blocks, there are many independent
NTT operations of much smaller sizes than those used in the
Merge-NTT algorithm, which can be performed in parallel.
The number and the sizes of NTT operations in the first and
second NTT blocks can be important in the performance of
its GPU implementation. Although in the original 4Step-NTT
algorithm, it is suggested that B be a square matrix (or as close
to square matrix as possible), namely n1 ≈ n2, the algorithm
works with various selections of n1 and n2. Then, we need
to determine specific values of of n1 and n2 for a given n
to optimize the second transpose operation, which may be
problematic as it can result in costly memory accesses.

Example 8: Consider the ring dimension of n = 222,
where the coefficients of input polynomial can be arranged
into a 211 × 211 matrix; i.e., n1 = n2 = 211. Then, the
first NTT block consists of 211-point NTT operations. And,
considering bDim ≤ 1024, one block can only process at
most 2bDim/n1 = 4 NTT operations. Consequently, only a
small number of threads in a block will access the consecutive
addresses in the global memory during the subsequent trans-
pose operation. This will lead to sub-optimal access pattern to
the global memory, which adversely affects the latency. Thus,
after the first NTT operation block, it will be more efficient
to terminate the kernel and launch another that performs
transpose operation through shared memory. Although using
an additional kernel for the transpose increases the number
of global memory accesses, from latency perspective this
turns out to be more efficient compared to storing the matrix

elements in transposed format directly to global memory in
the same kernel after the first NTT operation block. This is
due to the fact that performing the transpose by the existing
threads of the kernel blocks through global memory will lead
to uncoalesced accesses by the threads, resulting in increased
latency for global memory access. Instead, that storing the
matrix elements to the global memory before the transpose and
then loading them in a new kernel will enable to perform the
transpose in the shared memory can be much more efficient.
Therefore, using an additional kernel enables the transpose
process to be performed with much lower latency.

Alternatively, using a smaller value of n1 can be advan-
tageous to improve the memory access pattern during the
transpose operation performed in the same kernel as the
first block of NTT operations. For instance, we can use the
dimensions n1 = 27 and n2 = 215 for n = 222. This way, each
block’s shared memory can be considered as two-dimensional
array, each row of which corresponds to an independent NTT
operation and by this means as many as 2bDim/n1 = 16
NTT operations can be performed for n1 = 128. After all
NTT operations completed, columns of the array are read
by threads and stored to the global memory exploiting the
advantages of coalesced accesses. In summary, using a suitably
small values of n1, one can eliminate the extra kernel for the
transpose operation without the adverse effect of sub-optimal
global memory accesses.

Table IX shows the timing results of 4Step-NTT based on
five different cases for n = 222 for the two matrix dimensions
(n1, n2) ∈ {(211, 211), (27, 215)} on three different GPU de-
vices, where different implementation techniques are applied.

TABLE IX
EFFECT OF THE MATRIX DIMENSION ON THE PERFORMANCE OF THE

4STEP NTT ALGORITHM

n case [n1, n2] GPU-A GPU-B GPU-C

222

1 [211, 211] 1219.29 µs 439.99 µs 342.51 µs
2 [211, 211] 1226.70 µs 413.65 µs 256.77 µs
3 [211, 211] 893.27 µs 302.35 µs 190.70 µs
4 [27, 215] 780.11 µs 296.16 µs 175.92 µs
5 [27, 215] 617.26 µs 252.71 µs 142.84 µs

The first three cases in Table IX capture the effect of
transpose operations in performance. For instance, in cases 1
and 2, the first and last transpose operations explained in Al-
gorithm 3 are included in timings. In case 1, all three transpose
operations described in Algorithm 3 are performed in the NTT
kernels, which has an adverse effect on performance because
of uncoalesced access to the global memory. In case 2, on
the other hand, using an additional kernel for each transpose
results in much better performance compared to case 1 for
A 100 and RTX 4090.

As explained earlier, when used in an application, there is
no need to execute the first and the last transpose operations. In
case 3, only one transpose operation is performed in a separate
kernel, which leads to significant acceleration.

In cases 4 and 5 are we use a rectangular matrix (n1, n2) =
(27, 215), where there is a significant speedup in comparison
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with the first three cases. The difference between cases 4 and
5 is that case 5 does not use an additional kernel for transpose
operation. Since n1 is small, many NTT operations can be
performed in the same GPU block. After the NTT operation,
the transpose operation can be performed in the same kernel
via reading the columns of the shared memory.

The dimension of the second block of NTT operations also
plays an important role and very large values of n2 can lead to
performance penalties. A balance between n1 and n2 should be
reached to achieve the best performance. Table X contains the
matrix dimensions for all ring sizes of interest, which is found
to give the best performance in each case experimentally.

TABLE X
MATRIX SIZES FOR 4STEP NTT IMPLEMENTATION

n n1 × n2 n n1 × n2

212 25 × 27 219 25 × 214

213 25 × 28 220 25 × 215

214 25 × 29 221 26 × 215

215 26 × 29 222 27 × 215

216 27 × 29 223 27 × 216

217 25 × 212 224 28 × 216

218 25 × 213

VI. RESULTS

In this section, we present the GPU implementation results
of the Merge-NTT and the 4STEP-NTT algorithms on three
different GPU machines, whose architectural details are given
in Table IV. Only NTT results and comparisons are included
in this section since INTT is just an inverse model of NTT,
and its results are almost identical to NTT results.

In our NTT implementations, three different types modular
reduction which are optimized in assembly, are applied. Two
of them are Barret [24] and Plantard [38] reduction, which
can work with any NTT friendly prime, while the third is the
Goldilocks reduction [39], if the 64-bit goldilocks prime (i.e.,
q = 264 − 232 + 1) is employed. The goldilocks reduction
method, which consists of fewer number of instructions, is
used for more efficient modular arithmetic. Here, we also
show the effects of a fast goldilocks modular reduction method
on the overall performance of an NTT operation. Lastly, we
include performance comparison of the proposed algorithms
with those in the literature.

All the measurements in the subsequent tables are kernel
timings only; namely, they do not include the transfer time
from the CPU to the GPU. While taking the measurements, the
cudaEventRecord function, which is one of CUDA’s native
functions, is used. It is a reliable function for measuring time
as it measures all GPU activity from the time kernels are
invoked to the terminations of the kernels. To ensure stability,
all scenarios are repeated at least 50 times (as many as 1000
times for most cases) depending on the ring dimension, and
the average values of the results are presented. In addition, the

timings of all implementations are taken on devices with the
same CUDA driver and same operating system4.

A. Comparison of Merge-NTT and 4STEP-NTT Algorithms

In this section, we compare the Merge-NTT and 4Step-
NTT algorithms in terms of both latency and throughput. The
latency results of a single NTT for Merge-NTT and 4Step-
NTT algorithms are given in Table XI with three different
GPUs in Table IV, where the better timings are in bold. As can
be observed from the table, the timings of the two algorithms
are generally close to each other. For relatively small values
of n, the Merge-NTT algorithm tend to perform better than the
4Step-NTT algorithm. For very large values of n, however,
the 4Step-NTT algorithm’s performance is superior, due to
the fact that the former algorithm becomes memory-bound
with the increase of n and that better spatial locality of the
latter algorithm becomes advantageous. Another observation
from the table is that the architectural differences can affect
the performance to a certain extent. For intance, while the
Merge-NTT is slower than the 4Step-NTT on RTX 4090 for
n = 220, the opposite is true for other GPU devices.

TABLE XI
TIMINGS OF NTT ALGORITHMS FOR Single FORWARD NTT ON

DIFFERENT GPUS IN µs (Latency)

MERGE 4-STEP

logn GPU-A / GPU-B / GPU-C GPU-A / GPU-B / GPU-C

12 8.32 / 12.57 / 7.64 7.92 / 12.62 / 7.29
13 8.43 / 12.94 / 7.74 8.30 / 12.64 / 7.53
14 9.15 / 12.97 / 7.80 8.95 / 13.70 / 8.08
15 10.49 / 13.84 / 8.03 10.36 / 14.41 / 8.49
16 14.79 / 15.93 / 8.66 14.33 / 16.34 / 9.04
17 24.66 / 21.94 / 11.81 23.97 / 22.57 / 11.86
18 41.70 / 28.38 / 15.46 40.75 / 28.89 / 15.37
19 85.25 / 43.38 / 24.54 87.30 / 43.19 / 23.13
20 164.02 / 72.12 / 39.40 165.85 / 72.60 / 38.33
21 321.88 / 142.29 / 70.68 317.61 / 135.83 / 66.37
22 647.32 / 272.99 / 135.19 617.26 / 252.71 / 142.84
23 1422.32 / 602.16 / 377.91 1221.85 / 499.01 / 422.91
24 3448.09 / 1152.67 / 1020.95 2514.96 / 1016.50 / 969.92

All time measurements are taken for the 64-bit Goldilocks prime.

In HE implementations, as many independent NTT oper-
ations are executed concurrently, we also need to measure
the throughput. GPU has many threads to execute many NTT
operations in parallel. In fact, running a single NTT does not
reveal the real potential of a GPU device as its resources are
not fully utilized, especially for smaller values of n. Table XII
presents the timing results for different number of concurrently
running NTT operations (i.e., 4, 16, 32,64, 128). It is clear
from the table that GPU devices can compute many NTT
operations in parallel without increasing the execution time
significantly. However, when the GPU resources are fully
utilized, the execution of NTT operations is serialized. For
instance, on RTX 4090, when n = 214 while four NTT
operations take 8.04 µs, 16 of them take only slightly more

4Ubuntu 20.04 LTS and CUDA version 12.1
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time, 11.48 µs when Merge-NTT is used. The increase in
execution times is more salient for RTX 3060 Ti and A 100,
which support fewer number of threads. Nevertheless, we
observe the same effect for RTX 4090 also for higher ring
dimensions, which require more resources.

TABLE XII
TIMINGS OF GPU IMPLEMENTATIONS OF BATCH FORWARD NTT IN µs

NTT GPU-A GPU-B GPU-C

n count † / ‡ † / ‡ † / ‡

212

4 8.67 / 8.67 12.24 / 12.98 7.59 / 7.72
16 12.27 / 12.63 13.91 / 14.20 7.86 / 8.14
32 17.09 / 17.41 15.65 / 16.98 8.54 / 9.25
64 26.90 / 28.69 19.63 / 20.91 10.67 / 10.68
128 53.04 / 54.71 27.85 / 28.97 15.62 / 15.25

213

4 9.45 / 9.82 13.25 / 13.66 7.65 / 8.04
16 17.52 / 18.53 16.20 / 17.14 8.80 / 9.51
32 28.00 / 29.24 20.22 / 21.73 11.08 / 11.36
64 54.41 / 57.89 29.10 / 30.48 16.05 / 15.92
128 101.53 / 104.55 46.07 / 48.11 24.89 / 24.72

214

4 13.24 / 13.70 14.94 / 15.10 8.04 / 8.55
16 29.80 / 31.90 21.10 / 22.34 11.48 / 11.70
32 56.19 / 60.98 30.63 / 31.76 16.82 / 16.80
64 103.47 / 110.90 48.90 / 51.29 26.36 / 26.32
128 197.25 / 209.85 88.52 / 90.58 47.11 / 45.16

215

4 19.41 / 20.46 17.26 / 18.59 9.19 / 9.86
16 57.71 / 62.48 32.26 / 33.21 17.55 / 17.31
32 106.48 / 112.25 51.85 / 53.47 27.81 / 27.41
64 200.83 / 211.89 93.86 / 94.58 49.83 / 47.72
128 389.93 / 407.62 192.83 / 185.17 90.66 / 85.48

216

4 33.64 / 34.28 23.26 / 24.30 12.46 / 12.49
16 113.16 / 112.93 55.92 / 56.30 30.76 / 28.56
32 219.09 / 211.73 100.77 / 99.30 53.85 / 49.66
64 422.00 / 406.88 196.43 / 188.83 97.16 / 91.00
128 819.44 / 803.18 366.00 / 354.03 184.86 / 192.16

†: MERGE NTT
‡: 4STEP NTT
All time measurements are taken for the 64-bit Goldilocks prime.

When performances of the three GPUs are compared, both
algorithms run faster on RTX 3060Ti than A 100 at low
ring dimensions when the number of NTT operations is low.
This is due to the fact that the clock frequency is more
dominant than the bandwidth; in other words the operations
are compute-bounded for those input sizes. However, when
the ring dimension and the number of NTT operations are
high, the execution becomes memory-bound. Then, A 100
performs much better than RTX 3060 Ti with its superior
memory bandwidth. RTX 4090 has a relatively high memory
bandwidth, albeit only half as much as A100. Nonetheless,
thanks to the new ADA architecture, RTX 4090 has many
more threads and operates at a very high frequency. Thus, RTX
4090 is the best of the three GPU devices for all instances (see
Table XI and Table XII). However, as the operations become
memory-bound for higher values of n, the difference in the
timing results obtained on RTX 4090 and A 100 becomes
mush less visible. For example, for n = 222 Merge-NTT
takes 272.99 µs and 135.19 µs on A100 and on RTX 4090,
respectively, which translates into a speedup of 2.02× (see

Table XI). However, the speedup values dramatically drop to
1.59× for n = 223 and 1.13× for n = 224.

In our all experiments, we report the timing results for
the 64-bit goldilocks primes, for which the modular reduc-
tion is very fast. On the other hand, when residue number
system (RNS) is used to work with much larger modulus,
as in the case of Homomorphic Encryprion (HE) schemes,
using random primes with a fast reduction algorithm can be
advantageous as it decreases the number of base moduli in
the RNS [40]. For HE applications, special goldilocks prime
Q = 264 + 232 + 1 is used carrier for smaller primes qi
employed in RNS arithmetic. When carrier prime is used for
NTT, there is an upper bound for RNS prime bases, imposed
by the inequality q2i n < Q. For instance, each base can be at
most 25-bit and 24-bit, respectively, for the ring sizes n = 214

and n = 215.
Thus, we also implemented the Merge-NTT algorithm

using 60-bit NTT-friendly random primes with Barret and
Plantard reduction to see the performance penalty due to their
usage. For the ring dimension range of [212, 224], using 64-
bit goldilocks primes offers maximum 25.5% speedup over
the NTT implementation with random primes for A100 (the
figures are very close for the other GPU devices). Conse-
quently, we can conclude that using NTT-friendly random
primes can be more advantageous for HE applications using
RNS arithmetic.

B. Comparison of NTT Results with Related Works in the
Literature

The literature contains several works that accelerates NTT
(and related operations) using old as well as the contemporary
GPU devices. They either use a randomly chosen NTT-friendly
primes or specials primes (e.g., goldilocks primes), which offer
faster modular reduction. We compare our timing results of
single NTT with those in the literature for the parameter sets
suitable for the HE algorithms in Table XIII. The table lists
the results for both 60-bit random primes implemented with
Plantard Reduction and the 64-bit goldilocks prime imple-
mented with Goldilocks Reduction. Considering the architec-
tural differences, our MERGE NTT algorithm compares fa-
vorably with all works in the literature. More results including
those taken with three different modular reduction methods,
Goldilocks, Plantard, and Barret Reductions, respectively, are
available Table XV in Appendix.

We also compare our results with the GPU implementation
(known as SPPARK5), which is intended for ZK-SNARK
protocols working with much higher ring dimensions and a
larger 253-bit random prime. For a fair comparison, we adopt
the SPARKK implementation of the Montgomery multipli-
cation algorithm in our CUDA code. Only the kernels of
SPPARK for NTT are included in the timings excluding the
kernels for LDE or bit reverse order operations. In addition,
the execution times of same number of NTT operations are
measured for both SPPARK and our implementations and

5https://github.com/supranational/sppark/tree/main
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TABLE XIII
TIMINGS (µs) OF GPU IMPLEMENTATION OF OUR SINGLE FORWARD

NTT AND THEIR COMPARISON WITH THE WORKS IN LITERATURE

log2 n

Work Device log2 q 12 13 14 15 16

[25] Titan V 60 - - 44.1 84.2 -
[27] RTX 2080 Ti 64∗ - - - 83.3 -
[28] GTX 1070 64∗ - - 57.8 - -
[26] GTX 1070 64∗ - - 66.8 - -
[22] V 100 55 - - 29 39 -
[23] RTX 3060 Ti 62 14.0 14.9 19.1 35.9 -
[24] A 100 62 - - 13.3 - 16.5
[24] V 100 62 - - 11.5 - 16.4
T.W. RTX 3060 Ti 64∗ 8.32 8.43 9.15 10.49 14.79
T.W. A 100 64∗ 12.57 12.94 12.97 13.84 15.93
T.W. RTX 4090 64∗ 7.64 7.74 7.78 8.03 8.66
T.W. RTX 3060 Ti 60 8.45 8.67 9.38 11.45 15.00
T.W. A 100 60 12.72 13.22 13.27 14.56 16.15
T.W. RTX 4090 60 7.60 7.65 7.77 8.20 8.86

T.W.: This Work (MERGE NTT)
⋆: uses constant prime q = 264 − 232 + 1

TABLE XIV
TIMINGS (µs) OF GPU IMPLEMENTATION OF OUR SINGLE FORWARD NTT

FOR HIGHER VALUES OF n WITH log q = 253 (q IS BLS12-377 PRIME)

GPU-B GPU-C

logn T.W. / SPPARK T.W. / SPPARK

19 230.68 / 246.66 111.60 / 132.96
20 416.47 / 515.72 206.88 / 259.88
21 854.36 / 937.38 424.25 / 504.40
22 1690.40 / 1912.60 959.88 / 1075.67
23 3511.66 / 4284.51 2027.27 / 2362.28
24 7294.05 / 8060.20 4178.86 / 4484.67
25 15251.5 / 16952.4 8620.7 / 9131.73
26 31388.1 / 38815.0 17728.4 / 20213.7
27 65097.4 / 74886.3 36780.5 / 38177.9
28 137242.0 / 179563.0 78886.7 / 82987.3

T.W.: This Work (MERGE NTT)

their averages are calculated. The average timings of a single
NTT operation for ring dimensions between 219 and 228 are
reported in Table XIV6. The results in Table XIV show that
our implementation is 6.9/30.8% and 3.8/25.6% min/max
faster than SPPARK on A 100 and RTX 4090, respectively.
In addition, our implementation also supports higher ring
dimensions than 228 as the SPPARK implementation.

VII. CONCLUSION

In this work, we presented two NTT algorithms which
are specifically designed for GPU implementations. The first
algorithm is based on an iterative version while the other on
a version know as the 4-step algorithm. The main objective
of the proposed algorithms is to optimize the memory access

6The extended version of the execution times comparison for ring dimen-
sions between 212 and 228 is available in Table XVI in Appendix.

latency by optimizing the number of CUDA kernel invoca-
tions, and by determining the optimum sizes and shapes of
the thread blocks to take advantage of coalesced access to the
global memory. We provided two types of timing results for
both algorithms on three powerful GPUs: i) execution time of
a single NTT operation (latency) and ii) the execution times
of many concurrently running NTT operations (throughput).
Throughput is a more important metric for the performance
of NTT in homomorphic encryption applications as they
execute a multitude of them in parallel. Nevertheless, all
other works on the subject report only latency results for a
very limited input parameters such as ring dimension and
coefficient modulus size, which may be misleading to asses
the performance of an NTT algorithm. Therefore, ours is a
unique work in the literature by providing a very extensive
timing results on a wide range of input parameter set and
three different GPU devices. Our latency results suggest that
the two algorithms perform comparably with very close timing
results. The throughput results, on the other hand, indicate that
the the iterative algorithm performs markedly better than the
4-step algorithm. While the later algorithm is usually preferred
in the literature for its better spatial locality, our results
suggest that the former can be an alternative for homomorphic
encryption applications. Also, when compared with the best
known implementation for very high degree polynomials in
the range of [212, 228], our implementation is superior.

As future work, we are planning to develop a method for
the twiddle factor generation in the iterative NTT algorithm as
it suffers from the increased number of them processed in a
large portion of iterations. Other optimization techniques such
as higher radix butterfly circuits can be incorporated to further
accelerate both algorithms.
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APPENDIX

A. Additional Algorithms

Algorithm 6 Gentleman-Sande Butterfly (GS)
Input: U , V , Ψ, q
Output: Ū , V̄

1: Ū ← U + V (mod q)
2: V̄ ← (U − V )×Ψ (mod q)
3: return Ū , V̄

Algorithm 7 Four-Step INTT (4Step-INTT)
Input: n1, n2 ≤ n and n1 × n2 = n
Input: A(x) ∈ Zq[x]/(x

n − 1) in bit-reversed order
Input: Ω[k] = Ω−br(j)×i (mod q) for 0 < k ≤ n −

1, for 0 < j ≤ n1 − 1 for 0 < i ≤ n2 − 1
Input: ω0br [k] = ω

−br(k)
0 (mod q) where ω0 = Ω−(n/n1)

(mod q), for 0 < k ≤ n1 − 1 (Powers of ω0 stored in
bit-reverse order)

Input: ω1br [k] = ω
−br(k)
1 (mod q) where ω1 = Ω−(n/n2)

(mod q), for 0 < k ≤ n2 − 1 (Powers of ω1 stored in
bit-reverse order)

Output: A← INTT (A) in polynomial standard-order
1: for i from 0 by 1 to n1 do ▷ Vector to matrix
2: for j from 0 by 1 to n2 do
3: Bi,j ← Ai×n2+j

4: end for
5: end for
6: B = BT ▷ 1st transpose operation
7: for j from 0 by 1 to n2 do ▷ n2, n1-point INTTs
8: Bj ← INTT(Bj , ω0, n1, q)
9: end for

10: B ← BT ▷ 2nd transpose operation
11: for i from 0 by 1 to n1 do
12: for j from 0 by 1 to n2 do
13: Bi,j ← Bi,j × Ω[i× n2 + j] (mod q)
14: end for
15: end for
16: for i from 0 by 1 to n1 do
17: Bi ← INTT(Bi, ω1, n2, q) ▷ n1, n2-point INTTs
18: end for
19: B = BT ▷ 3rd transpose operation
20: for j from 0 by 1 to n2 do ▷ Matrix to vector
21: for i from 0 by 1 to n1 do
22: Aj×n1+i ← Bj,i

23: end for
24: end for
25: for k from 0 by 1 to n do
26: Ak ← (Ak × n−1) (mod q)
27: end for
28: return A

B. Additional Tables

Algorithm 8 Merge Inverse NTT (Merge-INTT)
Input: ā ∈ Zn

q in bit-reversed order
Input: Ψrev[k] = Ψ−br(k) (mod q) for 0 < k ≤ n − 1

(power of Ψ−1 stored in bit-reverse order)
Input: n = 2l, q (q ≡ 1 mod 2n)
Output: a(x) ∈ Zq[x]/(x

n + 1) standard-order
1: t← 1; m← n
2: do
3: j1 ← 0; h← m/2
4: for i from 0 by 1 to h do
5: j2 ← j1 + t− 1
6: for j from j1 by 1 to j2 + 1 do
7: āj , āj+t ← GS(āj , āj+t,Ψrev[h+ i], q)
8: end for
9: j1 ← j1 + 2× t

10: end for
11: t← 2× t
12: m← m/2
13: while m < n
14: for i from 0 by 1 to n do
15: ai ← (āi · n−1) (mod q)
16: end for
17: return a

Algorithm 9 Goldilock Reduction [39]
Input: C = a× b, where a, b < q ≡ 264 − 232 + 1
Output: Cout (C mod q)

1: X3 ← C ≫ 96
2: X2 ← (C ≫ 64)&(232 − 1)
3: X1 ← C&(264 − 1)
4: Cout ← X1 + (X2 × (232 − 1))−X3

5: if Cout ≥ q then Cout ← Cout − q
6: else Cout ← Cout

7: end if

Algorithm 10 Plantard Reduction [38]
Input: a, b where a, b < q; k = ⌈log2(q)⌉ and w = 2k+2

Output: Cout (a× b mod q)
1: σ ← (−22w) mod q ▷ Pre-computed
2: b̃← b× σ mod q ▷ Pre-computed
3: b̃← b̃× (q−1 mod 22w) mod 22w ▷ Pre-computed
4: T ← a× b̃ mod 22w

5: T ← T ≫ w
6: T ← (T × (q + 1))≫ w
7: if T ≡ q then Cout ← 0
8: else Cout ← T
9: end if
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TABLE XV
TIMINGS OF MERGE NTT ALGORITHM FOR SINGLE FORWARD NTT ON DIFFERENT GPUS WITH THREE DIFFERENT MODULAR REDUCTION

ALGORITHMS IN µs (LATENCY)

GPU-A GPU-B GPU-C

logn † / ‡ / ♠ † / ‡ / ♠ † / ‡ / ♠

12 8.32 / 8.45 / 8.93 12.57 / 12.72 / 12.95 7.64 / 7.60 / 7.76
13 8.43 / 8.67 / 9.31 12.94 / 13.22 / 13.42 7.74 / 7.65 / 7.80
14 9.15 / 9.38 / 9.71 12.97 / 13.27 / 13.46 7.80 / 7.77 / 8.06
15 10.49 / 11.45 / 11.88 13.84 / 14.56 / 14.69 8.03 / 8.20 / 8.23
16 14.79 / 15.00 / 17.67 15.93 / 16.15 / 17.37 8.66 / 8.86 / 8.96
17 24.66 / 28.24 / 28.45 21.94 / 22.45 / 24.09 11.81 / 12.94 / 12.52
18 41.70 / 45.26 / 49.90 28.38 / 28.46 / 32.36 15.46 / 16.33 / 17.44
19 85.25 / 94.46 / 97.88 43.38 / 41.67 / 51.74 24.54 / 24.18 / 27.97
20 164.02 / 179.82 / 188.30 72.12 / 68.87 / 89.69 39.40 / 38.36 / 47.73
21 321.88 / 351.73 / 373.72 142.29 / 135.10 / 182.17 70.68 / 66.64 / 87.19
22 647.32 / 735.41 / 759.05 272.99 / 262.17 / 342.66 135.19 / 129.97 / 168.43
23 1422.32 / 1596.05 / 1607.2 602.16 / 580.07 / 727.43 377.91 / 465.20 / 409.42
24 3448.09 / 3882.28 / 3596.6 1152.67 / 1122.70 / 1445.5 1020.95 / 1173.72 / 1028.55

†: Goldilock Reduction used. (64bit)
‡: Plantard Reduction used. (60bit)
♠: Barret Reduction used. (60bit)

Algorithm 11 Barrett Reduction [24]
Input: C = a × b, where a, b < q; k = ⌈log2(q)⌉; µ =

⌊ 2
2k+1

q ⌋
Output: Cout (C mod q)

1: r ← C ≫ (k − 2)
2: r ← r · µ
3: r ← r ≫ (k + 3)
4: r ← q · r
5: Cout ← (C − r)
6: if Cout >= q then Cout ← Cout − q
7: else Cout ← Cout

8: end if

TABLE XVI
TIMINGS (µs) OF OUR SINGLE FORWARD NTT AND COMPARISON WITH
SPPARK’S IMPLEMENTATION WITH log q = 253 (q IS BLS12-377 PRIME)

GPU-B GPU-C

logn T.W. / SPPARK T.W. / SPPARK

12 26.79 / 23.33 15.38 / 11.71
13 28.88 / 28.08 16.25 / 15.84
14 29.97 / 28.48 17.04 / 18.73
15 31.72 / 37.73 18.50 / 20.35
16 48.27 / 47.14 21.64 / 27.58
17 77.10 / 77.61 39.44 / 42.04
18 120.06 / 116.45 64.04 / 65.81
19 230.68 / 246.66 111.60 / 132.96
20 416.47 / 515.72 206.88 / 259.88
21 854.36 / 937.38 424.25 / 504.40
22 1690.40 / 1912.60 959.88 / 1075.67
23 3511.66 / 4284.51 2027.27 / 2362.28
24 7294.05 / 8060.20 4178.86 / 4484.67
25 15251.5 / 16952.4 8620.7 / 9131.73
26 31388.1 / 38815.0 17728.4 / 20213.7
27 65097.4 / 74886.3 36780.5 / 38177.9
28 137242.0 / 179563.0 78886.7 / 82987.3

T.W.: This Work (MERGE NTT)
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