
A Secure Bandwidth-Efficient Treatment for
Dropout-Resistant Time-Series Data Aggregation
Reyhaneh Rabaninejad

Tampere University
Tampere, Finland

reyhaneh.rabbaninejad@tuni.fi

Alexandros Bakas
Tampere University, and

Nokia-Bell Labs, Finland
alexandros.bakas@tuni.fi

Eugene Frimpong
Tampere University
Tampere, Finland

eugene.frimpong@tuni.fi

Antonis Michalas
Tampere University, Finland and

RISE Research Institutes of Sweden
antonios.michalas@tuni.fi

Abstract—Aggregate statistics derived from time-series data
collected by individual users are extremely beneficial in diverse
fields, such as e-health applications, IoT-based smart metering
networks, and federated learning systems. Since user data are
privacy-sensitive in many cases, the untrusted aggregator may
only infer the aggregation without breaching individual privacy.
To this aim, secure aggregation techniques have been extensively
researched over the past years. However, most existing schemes
suffer either from high communication overhead when users join
and leave, or cannot tolerate node dropouts. In this paper, we
propose a dropout-resistant bandwidth-efficient time-series data
aggregation. The proposed scheme does not incur any interac-
tion among users, involving a solo round of user→aggregator
communication exclusively. Additionally, it does not trigger
a re-generation of private keys when users join and leave.
Moreover, the aggregator is able to output the aggregate value
by employing the re-encrypt capability acquired during a one-
time setup phase, notwithstanding the number of nodes in the
ecosystem that partake in the data collection of a certain epoch.
Dropout-resistancy, trust-less key management, low-bandwidth
and non-interactive nature of our construction make it ideal
for many rapid-changing distributed real-world networks. Other
than bandwidth efficiency, our scheme has also demonstrated
efficiency in terms of computation overhead.

Index Terms—privacy-preserving aggregation, time-series
data, proxy re-encryption, dropout-tolerant, dynamic groups,
bandwidth-efficient

I. INTRODUCTION

Data and analytics constantly evolve shaped by the ever-
improving complexity of technology. The industry is experi-
encing continuous digital transition, resulting in a constantly
increasing volume of generated data. Every organization today
relies on small and big data obtained through networks and
distributed applications, as well as useful information inferred
from them. Data analytics are extremely beneficial in compre-
hending diseases and the effect of medicines in medical IoT-
based applications or target audiences and their preferences in
recommendation systems or even smart energy consumption
meters in smart cities. This rapid growth in the use of
data analytics inevitably raises privacy concerns about how
individual user data are used [1], [2]. For example, according
to a study [3], 19 out of 24 general-purpose mobile health
applications shared user data with more than 50 different
organizations, the majority of which were data analytics firms.
This, along with other previously known privacy breaches are
extremely alarming, given the significance of statistical data

analytics. Secure aggregation techniques fall under privacy-
preserving data analytics category and, hence, have been
extensively researched over the last decade (e.g., [4], [5], [6]).
The fundamental setup for such protocols consists of multiple
independent parties collaborating with an untrusted aggregator,
whose purpose is to compute the sum of different party inputs
without exposing any information about the private inputs
of individual parties with the exception of the aggregated
value itself. However, only a few of the proposed aggregation
solutions are resilient to user failure and compromise, and can
efficiently support dynamic group joins and leaves. In these
static aggregation schemes, even when a single user fails to
submit within a specific aggregation epoch, the protocol aborts
the input and the aggregator is unable to deduce the sum
value. This can prove to be a serious obstacle in realistic
scenarios, where user failures may be inevitable. E.g., in
a distributed IoT-based environment, node failures are quite
likely to happen either due to malfunctioning or Denial-of-
Service attack placed by malicious nodes. Failure resilience
and dynamic user management are considered as important
open-research challenges in secure aggregation.

Contributions. Having in mind that security and failure
resilience are two equilateral problems in aggregation sys-
tems, this paper proposes a secure dynamic construction for
time-series data aggregation based on the promising concept
of Proxy re-Encryption. Our main goals are to design a
mechanism for aggregating data in a privacy-preserving way,
supporting an efficient dynamic user management, also to
provide a new approach towards addressing the data aggrega-
tion problem based on proxy re-encryption techniques for the
first time. Our construction utilizes additively homomorphic
proxy re-encryption and proxy re-signature to translate all
collected ciphertexts/tags on different secret keys to second-
level ciphertexts/tags on a same secret key. This enables the
protocol to tackle dynamic changes in the population of users
(i.e., joins, leaves or user failures) in each round without
triggering a key update. Our contributions are summarized as
follows:

C1. Dynamic construction: The core contribution of this
work is the design of a secure time-series data aggrega-
tion based on proxy re-encryption, which simultaneously
supports efficient dynamic joins/leaves and user dropouts.

The scheme also enables us to verify the authenticity of
the final aggregation result with the aid of tags generated
based on proxy re-signature. The scheme is proven secure
under the Aggregator Obliviousness security definition.

C2. Bandwidth-efficiency: The proposed dropout-resistant
data aggregation construction has a fixed communication
overhead. Specifically, although dropout-resistant, our
scheme does not require any interaction among users
and it only involves a solo round of user→aggregator
communication. That is, despite unknown user dropouts,
the aggregator is still able to output the aggregate value
by employing the re-encrypt capability acquired during
a one-time setup phase. Moreover, in case of user join/
leave, only the keys related to the moving node need
to be updated, while no key update is triggered for the
rest of users. This result is quite remarkable considering
that bandwidth is typically more expensive than compu-
tational power in most applications including IoT and
mobile devices, making our scheme easy to scale. Table I
provides a communication comparison between this work
and existing dynamic data aggregation frameworks.

C3. Simple trust-less key management: In our construction,
users generate their keys locally and independently. As
a result, no trusted key manager is required. Besides,
users do not need separate keys for encryption and tag
generation, resulting in a simplified key management.

C4. Efficiency: From the performance standpoint, the exper-
imental results demonstrate that the proposed construc-
tion is very efficient with results comparable to those
published in existing schemes. We provide experimental
results with a testbed consisting of a standard desktop ma-
chine and a resource-constrained device to demonstrate
how our solution may be applicable to the real-world.

TABLE I: Comparison between dynamic constructions.
n, U → A, and U ⇔ A respectively denote the number
of users, user-to-aggregator uni-directional communica-
tion, and round-trip user-aggregator communication.

Scheme Avg comm. per user Comm. model
[7] o(logn) U → A

[8] o(d)† U ⇔ A‡

[9] o(n) U ⇔ A
[10] o(n) U ⇔ A

this paper o(1) U → A
† d is a system parameter defined in [8].
‡ To tackle user dropouts, [8] needs bidirectional

communication.

II. RELATED WORK

Secure Data Aggregation. In [11], authors propose and
design a protocol including private and unforgeable data
aggregation (PUDA) for multiple independent users. Unlike
existing data aggregation works that primarily focused on data
confidentiality between end-users and the aggregator, PUDA
ensures that the aggregated result is also unforgeable. To this
end, the authors define new security requirements revolving

around an untrusted aggregator. In an effort to increase the
security requirements of [11], authors in [6] recently pro-
pose a data aggregation protocol that considers both end-
users and aggregators as potentially malicious parties. The
protocol can be considered as an extension of [11] plus
the design of an Oblivious Programmable Pseudo-Random
Function (OPPRF). Notwithstanding the progress, [6] suffers
from additional communication overhead between users and
the aggregator. The scheme also introduces a preliminary
stage consisting of the OPPRF protocol, which in itself is a
very expensive function. Besides, this solution builds upon the
static scheme of [11], where user dropouts induce protocol
aborts and impede the aggregator from deducing the aggregate
value. Actually, contrary to what the authors have claimed,
the scheme in [6] does not tackle malicious users, as they
can potentially place Denial-of-Service attacks by refusing to
respond within a certain epoch. This is an inherent obstacle in
all static aggregation systems, which we call it all-or-nothing
property: the protocol will output the aggregate value within
an epoch, if and only if all users submit data. In addition,
despite the arguments expressed in the threat model regarding
malicious parties that may send bogus inputs, this scheme only
includes threshold checking and does not handle data pollution
attacks where users submit flawed or nonsense input values to
the aggregator.

Dropout-Robust Data Aggregation. Chan et al. [7] intro-
duced an aggregation scheme resilient to user failure and
compromise by building a binary interval tree over n users,
enabling the aggregator to approximate the sum of contiguous
intervals of users based on tree interval nodes. The scheme
incurs a logarithmic communication cost in the number of
users for achieving fault tolerance. Additionally, it suffers
from a high-aggregation error. The authors in [10] build an
aggregation scheme for privacy-preserving machine learning.
To deal with user dropouts, the scheme requires an all-to-all
communication, with each individual securely sharing their
seed with others in a way that the shares of dropped users
can be reconstructed at the aggregator using alive users’
inputs. This all-to-all secret sharing induces quadratic O(n2)
communication costs, making it impractical for many applica-
tions. The authors in [8] presented a design by leveraging a
ring-based interleaved grouping technique dividing users into
disjoint subsets. This result ensures efficiency in dynamic joins
and leaves, since by joining or leaving a node, only the nodes
in the same cluster with the moving node need to update their
keys. However, the scheme does not tackle node dropouts and
relies on a fully trusted key dealer, aware of the secret keys
of all users. In an effort to eliminate reliance in a trusted
key dealer and tolerate node dropouts, Leontiadis et al. [9]
proposed a secure data aggregation protocol improving [5].
According to this solution, with each interval, users await
to receive an obfuscated value pkA,t = H(t)skA published
by the aggregator, where skA is the aggregator’s secret key.
Each user then computes auxiliary information auxi,t based on
pkA,t and sends it to a semi-trusted collector, while submitting

the ciphertext ci,t to the aggregator. The aggregated auxiliary
value auxt generated by the collector enables the aggregator
to unmask the aggregated ciphertext and retrieve the sum
value for any number of users who have participated in that
certain time interval, thus making the scheme dropout-tolerant.
However, a malicious user ui can perform Denial-of-Service
attack in the protocol by sending auxi,t to the collector and
not submitting ciphertext ci,t to the aggregator. This disables
the aggregator to extract correct aggregations. Furthermore,
at each epoch, the server has to communicate the obfuscated
value to all users. This yields significant communication
latency to the protocol and makes the overall communication
cost linear regarding the number of users. In addition, the
scheme does not provide aggregate unforgeability as intro-
duced in [11]. Considering that bandwidth is typically much
more expensive than computational power in most applications
including IoT and mobile devices, designing communication-
efficient constructions is believed to be a major challenge for
dropout-resistant data aggregation schemes to scale out.

III. PRELIMINARIES

Bilinear Maps: Let G and GT be two multiplicative cyclic
groups of prime order q, g be a generator of G and e be a
bilinear map where e : G × G → GT. The bilinear map
e is a function with the following properties: (1) Bilinearity:
∀u, v ∈ G and a, b ∈ Zq , e(ua, vb) = e(u, v)ab. (2) Non-
degeneracy: e(g, g) ̸= 1, where 1 denotes the identity element
of GT. (3) Computability: An efficient algorithm computes
e(u, v) for u, v ∈ G.
Proxy re-Encryption and Proxy re-Signature: Blaze et
al. [12] developed the concept of “atomic proxy cryptog-
raphy”. Here, a semi-trusted proxy P acts as a translator
between Alice (delegator) and Bob (delegatee) and computes
a function that translates ciphertext/signature for Alice into
ciphertext/signature for Bob on the same message. The proxy,
however, does not acquire information neither about the un-
derlying plaintext nor any encrypt/sign key and cannot sign or
encrypt arbitrary messages on behalf of either Alice or Bob.
These primitives were later followed up by Ateniese et al.
[13]. A proxy re-encryption scheme is a tuple of algorithms
(KeyGen, reKey,Enc, reEnc,Dec), where:

• (KeyGen,Enc,Dec): form the standard key generation,
encryption and decryption algorithms in the same way as
an ordinary encryption scheme.

• reKey: On input (pkA, skA, pkB , skB), the algorithm
outputs a re-encryption key rkA→B for the proxy.

• reEnc: the proxy given a re-encryption key rkA→B ,
translates a valid encryption from user A on message
m, EncA(m), into a valid encryption from user B on the
same message, EncB(m).

Correctness for a proxy re-encryption scheme requires
that (1) Dec(skA,Enc(pkA,m))) = m, and (2)
Dec(skB , reEnc(rkA→B ,Enc(pkA,m))) = m.

Similarly, a proxy re-signature scheme is a tuple of algo-
rithms (KeyGen, reKey,Sign, reSign,Verify), where:

• (KeyGen,Sign,Verify): form the standard key generation,
signing and verification algorithms as with an ordinary
signature scheme.

• reKey: On input (pkA, skA, pkB , skB), the algorithm
outputs a re-signature key rkA→B for the proxy.

• reSign: the proxy given a re-signature key rkA→B , trans-
lates a valid signature from user A on message m,
SignA(m), into a valid signature from user B on the same
message, SignB(m).

Correctness for a proxy re-signature scheme requires
that (1) Verify(m, pkA,Sign(skA,m))) = 1, and (2)
Verify(m, pkB , reSign(rkA→B ,Sign(skA,m))) = 1.
EncA(m)/SignA(m) and EncB(m)/SignB(m) are called first-
level and second-level encryption/signature, respectively [14].

IV. SYSTEM MODEL

In this section, we provide a brief description of the system
model for the proposed scheme. Consider a case in which an
untrusted aggregator wishes to compute the aggregate sum of
some users’ private time-series data sensed at equally spaced
time intervals, without jeopardizing the privacy of individual
data. Our setup consists of four main entities including: Users
(U), Proxy (P), Aggregator (A), and Data Analyst (DA).
1) Users: Let U = {u1, . . . , un} be a set of users or edge
devices deployed to collect data from the environment. Once
data has been generated, each uj computes an encryption of
the data and a verification tag, and sends it to proxy P .
2) Proxy: Let P be an entity to collect data received from
multiple users in each time interval. The proxy is responsible
for computing a second-level ciphertext/tag for each cipher-
text/tag received from individual users. The proxy forwards
set of second-level ciphertexts/tags to the aggregator.
3) Aggregator: Let A be an aggregator deployed in our envi-
ronment to aggregate data received from P . A is responsible
for computing the sum and forwards it to the data analyst. In
our proposed protocol, we assume that both A and P are more
powerful and resourceful devices than edge users.
4) Data Analyst: We consider DA as the final recipient of the
aggregated data and verification tag. The data analyst is able
to verify the authenticity of the aggregated data value with the
aid of the aggregated tag received from A.

V. PROPOSED CONSTRUCTION FOR DROPOUT-RESISTANT
TIME-SERIES DATA AGGREGATION

Now we propose our dropout-resistant data aggregation con-
struction utilizing additive-homomorphic proxy re-encryption
and re-signature techniques in [13]. In the proposed scheme,
users do not need separate keys for encryption and tag gener-
ation. Hence, key management is simplified, as opposed to the
existing verifiable data aggregation schemes. Besides, the re-
quirement for a trusted key manager is eliminated. Intuitively,
we use proxy re-encryption and proxy re-signature to translate
all collected ciphertexts/tags to second-level ciphertexts/tags
with the same secret key possessed by A. This enables efficient
support for dynamic changes in the population of users (i.e.
user joins, leaves, or failures).

Aggregator
Dynamic Users

Data Analyst

Proxy

re-keys

first-level ciphertexts/tags

Fig. 1: Overview of our dynamic data aggregation scheme. Duplex arrow (re-key) represent secure channel.

In compliance with what is described in section IV, the
scheme is executed between a set of n users sending first-
level ciphertexts/tags to proxy P . After computing reProcess
on the received values, P forwards all generated second-level
ciphertexts/tags to aggregator A. The final aggregated result is
sent to a data analyst DA. The overview of our construction is
presented in Figure 1. The proposed scheme consists of seven
algorithms described in Algorithm 1: Setup, KeyGen, reKey,
Process, reProcess, Extract, and Verify.

The setup algorithm takes security parameter λ as input and
defines the bilinear map e : G× G → GT with G and GT as
groups of prime order q = Θ(2λ), g as generator of G, and h
is a member of GT. The assumption here is that GT is a group
with an easy Discrete Logarithm (DL) subgroup as defined in
[15], where Discrete Logarithm Problem (DLP) is easy only
in base h. In KeyGen, without coordination by a trusted key
manager, each user in the group U and aggregator A generate
their private keys and following A publishes its public key.
In reKey algorithm, each user ui ∈ U inputs A’s public key
and non-interactively generates re-key rki→A on base g, and
sends it to P via a secure (private and authenticated) channel.

At time slot t, each user ui generates sensitive data xi,t

which is an elements from Zq and executes Process algorithm
to compute ciphertext and tag on xi,t. Following it forwards
them to P . At time slot t, in reProcess algorithm, P waits
until a specified timeout and considers all users that did not
respond before the timeout to have dropped out of the protocol
in that specific epoch. Next, P translates the received first-
level ciphertexts/tags to second-level ones using the private
re-keys. It then forwards translated values to A. Since A holds
a delegatee role in this scheme, it can retrieve individual data
from second-level ciphertexts with the aid of its private key.
However, this is tackled due to the random masking applied
by P such that it preserves individual users’ private data, but
neutralized when all ciphertexts are aggregated. Besides, since
all translated ciphertexts/tags are under the same secret key, A
is able to output the correct aggregation value, notwithstanding
the number of nodes in the ecosystem that partake in the data

collection of a certain epoch.
The aggregation of data is performed in Extract algorithm,

where A aggregates second-level ciphertexts/tags received
from P . It then inputs aggregated ciphertext ct to the decryp-
tion algorithm of proxy re-encryption to compute vt, extracts
the sum value by feeding vt to Solve algorithm that solves
DLP in base h and sends the sum and aggregated tag to DA
for correctness validation of the result in Verify algorithm.

VI. SECURITY ANALYSIS

A. Threat Model
– Users: We assume a dynamic group of users in the sense
that not all users are obliged to send their inputs in each epoch
t. Users are assumed to be honest-but-curious in the sense
that they submit correct non-polluted inputs to the aggregation
protocol. We finally assume that in each epoch t, at least three
users provide their inputs and at least two are fully honest.
This is a valid assumption, since if only one user un is honest,
then an adversary could trivially retrieve their input by solving
xn,t =

∑n
1 xi −

∑n−1
1 xi.

– Proxy Server: In compliance with [12], we assume the
existence of a semi-trusted proxy server that receives first-
level ciphertexts from the users and re-encrypts to generate
second-level ciphertexts. Finally, the proxy forwards second-
level ciphertexts to the aggregator.
– Aggregator: The aggregator is an un-trusted entity that
receives second-level ciphertexts from the proxy, aggregates
them and retrieves the sum of all inputs by users. Besides,
we presume that while users in U may collude with either
aggregator or proxy by exposing their private keys to them,
the aggregator and proxy do not collude with each other.

B. Proofs of Security
Similarly to [4], we start by examining the property of

Aggregator Obliviousness (AO). AO ensures that adversary
ADV learns nothing more than the sum of the user data
during protocol execution.

Proposition 1 (AO). Assuming that the aggregator is observed
by a probabilistic polynomial time adversary (ADV), then at

Algorithm 1 The proposed dynamic data aggregation scheme

1: Setup
2: Consider the map e : G × G → GT with G and GT as

groups of prime order q = Θ(2λ), and g as generator of G,
and h is a member of GT. Also we define Z = e(g, g) ∈ GT.
The public parameters are pp = (e, q,G,GT, g, h, Z,H), where
H : {0, 1}∗ → Zq is a secure hash function. Also, the group of
n users is denoted by U = {u1, . . . , un}.

3: KeyGen
4: Without any coordination by a trusted key manager, each user

ui in group U = [1, n] samples random ki←$ Zq and sets its
private key as ski = ki.

5: Also, A samples random k←$ Zq as its private key and pub-
lishes pkA = gk publicly.

6: reKey
7: each user ui in group U = [1, n] takes A’s public key and

generates its re-key rki→A = (gk)1/ki = gk/ki .
8: ui sends its re-key rki→A to proxy P via a secure channel.
9: Process

10: At each time interval t, every user ui generates sensitive data
xi,t and computes first-level ciphertext ci,t and first-level tag
σi,t = (si,t, ri,t) as follows:

11: yoyo samples ei,t←$ Zq and sets ri,t = gei,t .
12: yoyo computes ci,t = (gki·H(t∥ei,t), hxi,t · ZH(t∥ei,t)).
13: yoyo computes si,t = ki(xi,t + ei,t +H(t ∥ ri,t)).
14: yoyo sends first-level ciphertext ci,t = (c

(1)
i,t , c

(2)
i,t) and first-level

tag σi,t = (si,t, ri,t) to P .
15: reProcess
16: At each time interval t, P collects data received from subgroup

of users Ut ⊆ U who have participated in that round, such that
|Ut| > 2. Next, it generates a set of random values ri←$ Zq

with the condition that
∑

i∈Ut
ri = 0.

17: for all i ∈ Ut at each time interval t, P do
18: inputs re-key rki→A, first-level ciphertext ci,t, and first-level

tag σi,t.
19: computes second-level ciphertext c′i,t = (c

′(1)
i,t , c

′(2)
i,t):

20: c
′(1)
i,t = e(c

(1)
i,t , rki→A) = e(gki·H(t∥ei,t), gk/ki) =

Zk·H(t∥ei,t)

21: c
′(2)
i,t = c

(2)
i,t · h

ri = hxi,t+ri · ZH(t∥ei,t) ▷ randomly mask
individual data

22: computes second-level tag σ′
i,t = (s′i,t, ri,t):

23: s′i,t = (rki→A)
si,t = (gk/ki)ki(xi,t+ei,t+H(t∥ri,t)) =

24: gk(xi,t+ei,t+H(t∥ri,t)).
25: end for
26: P sends second-level ciphertexts/tags {c′i,t, σ′

i,t}i∈Ut to A.
27: Extract
28: Set c(1)t ← 1, c(2)t ← 1, and σt ← 1
29: for all i ∈ Ut at each time interval t, A do
30: inputs second-level ciphertext c′i,t = (c

′(1)
i,t , c

′(2)
i,t) and

second-level tag σ′
i,t = (s′i,t, ri,t).

31: aggregates the ciphertexts as c
(l)
t ← c

(l)
t × c

′(l)
i,t , l = 1, 2

32: aggregates the tags as σt ← σt × s′i,t.
33: end for
34: computes vt =

c
(2)
t(

c
(1)
t

)1/k ▷ decryption algorithm of proxy

re-encryption
35: Finally, A computes the sum value sumt ← Solve(pp, vt) and

sends (sumt, σt, {ri,t}i∈Ut) to DA.
36: Verify

37: DA verifies if sumt
?
=

∑
i∈Ut

xi,t by checking the following
equation:

38: yoyo e(g, σt)
?
= e(pkA, g

sumt
∏

i∈Ut

(
ri,tg

H(t∥ri,t)
)
)

each time interval t, ADV only learns the sum of user inputs
xi,t and nothing else. Also, if aggregator colludes with an
arbitrary set of users Uc, it will be able to learn nothing but
the sum of honest users inputs (i.e.,

∑
i∈U−Uc

xi,t).

Proof. For a complete proof of proposition 1, we consider
two distinct cases; First we examine what can ADV learn
from looking at the re-processed ciphertexts received from
the proxy. Then, we rely on a hybrid argument to prove the
security of the computations deployed on the aggregator’s side.
C1: Received Ciphertexts. Each ciphertext received from the
proxy at each time interval t, is of the form c′i,t = (c

′(1)
i,t , c

′(2)
i,t),

where c
′(1)
i,t = e(g, g)kH(t∥ei,t) = ZkH(t∥ei,t) and for the

second component we get c
′(2)
i,t = hxi,t+ri · ZH(t∥ei,t). We

will examine each component separately:

• Since we have assumed that the DLP is hard in Z, ADV
can only break c

′(1)
i,t with negligible probability.

• Our construction is feasible based on the assumption that
the DLP is easy in base h. Hence, when ADV sees c

′(2)
i,t ,

they can trivially recover the exponent xi,t+ri. However,
since the aggeregator cannot collude with the proxy (by
assumption), it is impossible to know the value of ri and

hence, has zero advantage in recovering xi,t.

C2: Secure Computation on second-level ciphertexts. After
the aggregator has received all second-level ciphertexts, they
aggregate them by simply multiplying them. It suffices to show
that for each pair of received ciphertexts, the multiplication
does not leak any information that is not already known to
the aggregator - and hence to ADV . W.l.o.g. we assume
that at some point in the time interval t, the aggregator
receives second-level ciphertexts of the users ui and uj . That
is c′i,t = (c

′(1)
i,t , c

′(2)
i,t) and c′j,t = (c

′(1)
j,t , c

′(2)
j,t). For each received

pair, the aggregator performs two multiplications. We examine
each multiplication separately:

• Multiplying the first components (i.e.
(
c
′(1)
i,t · c′(1)j,t

)
)

yields
[
Zk[

∑ℓ=2
ℓ=1 H(t∥eℓ,t)]

]
and, as already stated, under

the assumption that the DLP is hard in Z, no information
can be leaked with all but negligible probability.

• The multiplication of the second components
yields hxi,t+riZH(t∥ei,t) · hxj,t+rjZH(t∥ej,t) =
hxi,t+xj,t+ri+rjZH(t∥ei,t)+H(t∥ej,t). However, similarly
to C1, breaking it would yield

∑
xi +

∑
ri. Since,

by assumption, the proxy cannot collude with the

aggregator, the ri’s remain private and, therefore, no
information can be leaked from multiplying the second
components either.

Proposition 2, proves Proxy Obliviousness (PO) to guarantee
privacy against proxy server.
Proposition 2 (PO). Let ADV be a PPT adversary that
observes the semi-trusted Proxy Server. Then, ADV cannot
infer any information about the data of individual users either
from the first-level ciphertexts it receives directly from the
users or by computations on the proxy side. Also, if the proxy
colludes with an arbitrary set of users Uc, it will not be able to
learn additional information about the private data of honest
users in set U − Uc.

Proof. Similarly to Proposition 1, we examine two distinct
cases. First, we will examine what information can ADV infer
by looking at first-level ciphertexts. Then, we will prove the
security of the computations from the aspect of the proxy.

C1: Received Ciphertexts. At each epoch time t, the proxy
receives a number of first-level ciphertexts of the form
ci,t = (gki·H(t∥ei,t), hxi,t · ZH(t∥ei,t)). As per our assumption,
the DLP is hard in base g and, hence, no information can be
leaked from the first component of the message gki·H(t∥ei,t).
Concerning the second component hxi,t · ZH(t∥ei,t)), while
solving the DLP in base h is easy, the values ei, t are private
since they are generated locally on the users’ side. Hence, no
information can be gained from the second component as well.
As a result, the observation of first-level ciphertexts does not
leak anything to ADV .
C2: Secure Computation on first-level ciphertexts. To
prove the security of the computations on the proxy side,
we will compare the distribution of the real outputs to an
ideal model, in which users provide input to a fully trusted
entity (a simulator S) that computes second-level ciphertexts
and outputs the result. Our goal is to prove that the two
distributions are indistinguishable. To do so, we will prove
that the following hybrids are indistinguishable:

Hybrid 0: This is the real world.

Hybrid 1: Like Hybrid 0 but S now randomly generates the
random values ri such that rn = −

∑n−1
i=1 ri, where n is the

index of the last sampled value.
However, it is trivial to prove that Hybrid 0 and Hybrid 1 are

indistinguishable, as the original set or the ri values used in
the real world are also randomly sampled. Hence, we conclude
that no novel information can be leaked from re-processing
first-level ciphertexts.

VII. EXPERIMENTS

In this section, we provide a comprehensive performance
evaluation of our proposed scheme. For these experiments,
our testbed consisted of the following commercially available
devices: (1) Users (Device A): An nRF25840-dk1 board

1www.nordicsemi.com/Products/Development-hardware/nrf52840-dk

built on a 64 MHz Cortex-M4 SoC with 1 MB Flash and
256 KB RAM. To implement the proposed protocols, we
installed Zephyr RTOS2 on the board and utilized the built-
in c25519 cryptographic library to design the cryptographic
components. (2) Aggregator/Proxy (Device B): An Intel Core
i7 Desktop with 16GB RAM and an 8-core 3.60GHz CPU. We
installed Ubuntu 20.04 on this machine and utilized the PBC
cryptographic library3 to implement the proposed scheme.
Evaluation at User Side: In an effort to show the real-
world applicability of the proposed scheme, we evaluated
the performance of user-specific functions on a resource-
constrained device (Device A). More precisely, we measured
the execution time of the reKey and Process functions. Prior
works and experiments have shown that the performance
of any scheme on a resource-constrained device correlates
directly to the cost of exponentiation and Elliptic Curve (EC)
point multiplications. To this end, we equate the computational
cost of one exponentiation to the cost of executing the reKey
function. On average, it took 0.742 seconds to execute reKey
function, while the time taken to execute the Process function
was 3.513 seconds on Device A.
Evaluation on the Aggregator/Proxy Side: We now evalu-
ate the performance of the Process, reProcess, and Extract
functions by measuring their execution times on the Proxy
and Aggregator. Aggregator and Proxy entities are run on the
same device for these evaluations (Device B). We iterated the
execution of each function 50 times with a varying number
of users ranging from 10 to 1500. For 10 users, it took
the device 0.034 seconds to execute the Process function,
0.018 seconds to execute the reProcess function and 0.0001
seconds to execute the Extract function. For 1500 users, it took
5.06 seconds to execute the Process function, 2.68 seconds
to execute the reProcess function, and 0.02 seconds for the
Extract function (Figure 2).

0100 500 1,000 1,500
0

1

2

3

4

5

Number of Users

Ti
m

e
(s

)

Process
reProcess
Extract

Fig. 2: Function Execution Times

Open Science and Reproducible Research: To support open
science and reproducible research, our source codes have been
anonymized and made publicly available4.

2https://www.zephyrproject.org/
3https://github.com/blynn/pbc
4https://anonymous.4open.science/r/DynamicDAS-F1EB

www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.zephyrproject.org/
https://github.com/blynn/pbc
https://anonymous.4open.science/r/DynamicDAS-F1EB

VIII. CONCLUSION

We presented scalable constructions for dropout-resistant
time-series data aggregation by leveraging the concept of
proxy re-encryption. The protocol can tolerate an arbitrary
and unknown number of user dropouts and provides efficient
support for join and leave operations. These properties together
with the trust-less, low-bandwidth and non-interactive nature
of our construction make it ideal for many rapid-changing
distributed real-world networks.

ACKNOWLEDGMENT

This work was funded by Technology Innovation Institute
(TII), UAE, for the project ARROWSMITH: Living (Securely)
on the edge.

REFERENCES

[1] A. Bakas, A. Michalas, and T. Dimitriou, “Private lives matter: A
differential private functional encryption scheme,” in Proceedings of the
Twelfth ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 300–311.

[2] A. Bakas, A. Michalas, E. Frimpong, and R. Rabaninejad, “Feel the
quantum functioning: Instantiating generic multi-input functional en-
cryption from learning with errors,” in Data and Applications Security
and Privacy XXXVI: 36th Annual IFIP WG 11.3 Conference, DBSec
2022, Newark, NJ, USA, July 18–20, 2022, Proceedings. Springer,
2022, pp. 279–299.

[3] Q. Grundy, K. Chiu, F. Held, A. Continella, L. Bero, and R. Holz, “Data
sharing practices of medicines related apps and the mobile ecosystem:
traffic, content, and network analysis,” BMJ, vol. 364, 2019.

[4] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data,” in Proc. NDSS, vol. 2.
Citeseer, 2011, pp. 1–17.

[5] M. Joye and B. Libert, “A scalable scheme for privacy-preserving
aggregation of time-series data,” in Financial Cryptography and Data
Security. Springer, 2013, pp. 111–125.

[6] F. Karakoç, M. Önen, and Z. Bilgin, “Secure aggregation against
malicious users,” in ACM Symposium on Access Control Models and
Technologies, 2021, pp. 115–124.

[7] T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream aggrega-
tion with fault tolerance,” in Financial Cryptography and Data Security.
Springer, 2012, pp. 200–214.

[8] Q. Li and G. Cao, “Efficient privacy-preserving stream aggregation
in mobile sensing with low aggregation error,” in Privacy Enhancing
Technologies Symposium. Springer, 2013, pp. 60–81.

[9] I. Leontiadis, K. Elkhiyaoui, and R. Molva, “Private and dynamic time-
series data aggregation with trust relaxation,” in Cryptology and Network
Security. Springer, 2014, pp. 305–320.

[10] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1175–1191.

[11] I. Leontiadis, K. Elkhiyaoui, M. Önen, and R. Molva, “Puda – privacy
and unforgeability for data aggregation,” Cryptology and Network Se-
curity, p. 3–18, 2015.

[12] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in Advances in Cryptology– EUROCRYPT’98.
Springer, 1998, pp. 127–144.

[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Transactions on Information and System Security (TISSEC), 2006.

[14] R. Rabaninejad, M. A. Attari, M. R. Asaar, and M. R. Aref, “A
lightweight auditing service for shared data with secure user revocation
in cloud storage,” IEEE Transactions on Services Computing, vol. 15,
no. 1, pp. 1–15, 2022.

[15] G. Castagnos and F. Laguillaumie, “Linearly homomorphic encryption
from DDH,” in Cryptographers’ Track at the RSA Conference. Springer,
2015, pp. 487–505.

	Introduction
	Related Work
	Preliminaries
	System Model
	Proposed Construction for Dropout-Resistant Time-Series Data Aggregation
	Security Analysis
	Threat Model
	Proofs of Security

	Experiments
	Conclusion
	References

