
Solving the Hidden Number Problem for CSIDH
and CSURF via Automated Coppersmith

Jonas Meers and Julian Nowakowski

Ruhr-University Bochum, Bochum, Germany
{jonas.lehmann-c6j,julian.nowakowski}@rub.de

Abstract. We define and analyze the Commutative Isogeny Hidden
Number Problem which is the natural analogue of the Hidden Num-
ber Problem in the CSIDH and CSURF setting. In short, the task is
as follows: Given two supersingular elliptic curves EA, EB and access
to an oracle that outputs some of the most significant bits of the CDH
of two curves, an adversary must compute the shared curve EAB =
CDH(EA, EB).
We show that we can recover EAB in polynomial time by using Copper-
smith’s method as long as the oracle outputs 13

24
+ε ≈ 54% (CSIDH) and

31
41

+ ε ≈ 76% (CSURF) of the most significant bits of the CDH, where
ε > 0 is an arbitrarily small constant. To this end, we give a purely com-
binatorial restatement of Coppersmith’s method, effectively concealing
the intricate aspects of lattice theory and allowing for near-complete au-
tomation. By leveraging this approach, we attain recovery attacks with
ε close to zero within a few minutes of computation.

Keywords: Coppersmith, Isogenies, CSIDH, CSURF, Hidden Number
Problem

1 Introduction

The Hidden Number Problem (HNP) introduced by Boneh and Venkatesan [5]
asks to compute a hidden number α given many tuples (ti,MSBk(α · ti mod p))
for randomly chosen ti ∈ Z∗p. Here, we denote by MSBk(x) the k most significant
bits of x. One of the applications of the hidden number problem is the assessment
of the bit security of the Diffie-Hellman key exchange over Z∗p. More concretely,
the task can be rephrased as follows: compute the shared Diffie-Hellman key
gab = CDH(ga, gb) ∈ Z∗p given access to an oracle OMSBk

that on input h ∈ Z∗p
outputs the k most significant bits of CDH(ga, h). The famous result by Boneh
and Venkatesan states that one can recover gab in polynomial time if k ≥

√
log p.

Therefore, the
√
log p most significant bits of the shared key gab are as hard

to compute as the whole key. The existence of the oracle OMSBk
is typically

motivated by side-channel attacks and it has recently been shown that such
oracles exist in practice [41,35]. Furthermore, the hidden number problem can
be used to cryptanalyze ECDSA, Intels Software Guard Extensions (SGX), DSA
and qDSA [2,6,17,19,37,47].

https://orcid.org/0000-0002-1755-8153
https://orcid.org/0000-0003-3066-0133

2 Jonas Meers and Julian Nowakowski

The seminal result by Boneh and Venkatesan inspired many follow-up works
that investigated different variants of the hidden number problem, for example in
the context of Elliptic Curve Diffie-Hellman [53,44,26,4]. As it turns out, the El-
liptic Curve Hidden Number Problem (EC-HNP) is already much harder to solve
and requires different techniques. In particular, Boneh, Halevi and Howgrave-
Graham propose in [3] to use Coppersmith’s method [14,13] to solve EC-HNP
for k ≥ 0.98 log p and curves defined over Fp. More recently, this approach was
further improved, making it feasible to solve EC-HNP for k ≥ 1

d+1 log p and

any fixed d > 0 [54].1 Here the key ingredient is (a very involved variant of)
Coppersmith’s method.

The recent advent of quantum computers completely bypasses the bit se-
curity statements of the (elliptic curve) Diffie-Hellman key exchange since the
discrete logarithm problem for groups can be solved in quantum polynomial time
due to Shor’s algorithm [45]. To thwart this issue, many post-quantum secure
alternatives have been proposed. One popular approach is based on isogenies
which are rational maps between (supersingular) elliptic curves. In some set-
tings, isogenies give rise to cryptographic group actions in the sense of [1] which
behave very similarly to exponentiation in prime order groups. Due to this (syn-
tactical) similarity, many protocols and results from the Diffie-Hellman context
have been adapted to the isogeny setting (for example [28,20,29,55]). However,
this is not the case for the bit security of isogeny based key exchanges. One of
the few results in that area studies the bit security of the SIDH key exchange
and states that computing one component of the secret j-invariant of a curve
is as hard as computing both components [22]. Due to the recent devastating
attacks on SIDH [8,31,40], however, the statement about its bit security is now
obsolete. Apart from SIDH there still exist (non-interactive) key exchanges based
on isogenies that are still believed to be post-quantum secure. The most promi-
nent examples are CSIDH [10] and CSURF [7], both of which are based on the
group action of fractional ideals on the set of supersingular elliptic curves over
Fp. These key exchanges are not affected by the attacks on SIDH, yet very little
is known about their bit security.

1.1 Our Contributions

In this work, we close this gap and analyze the hardness of the Commutative
Isogeny Hidden Number Problem (CI-HNP) for CSIDH and CSURF, which can
be informally stated as follows:

Commutative Isogeny Hidden Number Problem (informal). Given two public
curves EA, EB defined over Fp and access to an oracle OMSBk

that on input
two elliptic curves E, E′ outputs MSBk(CDH(E,E′)), recover the shared curve
EAB = CDH(EA, EB).

1 Note that if d is not fixed the runtime of the algorithm is in fact super-exponential
in d.

The Hidden Number Problem for CSIDH and CSURF 3

Solving CI-HNP. Our first major contribution is a (heuristic) polynomial time
algorithm based on Coppersmith’s method that recovers the shared curve EAB

for k = (1324 + ε)n (CSIDH) and k = (3141 + ε)n (CSURF), where n = log p and
ε > 0 is an arbitrarily small constant. We remark that our results do not yield
an unconditional bit security statement for the respective non-interactive key
exchanges due to the heuristic nature of Coppersmith’s method. Nevertheless,
our result implies that (under some constraints) computing the 13

24n (CSIDH)
and 31

41n (CSURF) most significant bits of the shared curve EAB is as hard
as solving CDH and quantumly as hard as solving DLOG due to the quantum
equivalence of the latter two assumptions [52].

Automated Coppersmith. As our second major contribution, we give a signif-
icantly simplified reformulation of Coppersmith’s method. This allows us to au-
tomate Coppersmith’s method almost entirely, and to easily apply it to CI-HNP.
This is in stark contrast to almost all previous Coppersmith-type results, which
typically required highly involved lattice constructions that had to be fine-tuned
using ad-hoc techniques. (See, e.g., May’s recent survey [32] and the references
therein.) Our approach, on the other hand, only requires to specify which mono-
mials we want to include in our lattice basis. For any given set of monomials
our approach then automatically (and efficiently) constructs the corresponding
optimal lattice.

We also give a simple automated strategy for selecting these monomials.
While this strategy might not always yield optimal results, it performs well in
practice, and allows us to derive our bounds for CI-HNP. Furthermore, it enables
another interesting application: For any given system of polynomial equations
our algorithm can (under some reasonable heuristics) automatically derive upper
bounds on the size of the roots that can be recovered by Coppersmith’s method –
a process that prior to our work involved a lot of manual effort. Our reformulation
of Coppersmith’s method is not specific to the application at hand and might
therefore be of independent interest.

Implementation. As our third contribution we provide an efficient open source
implementation of our automated variant of Coppersmith’s method in SageMath.
The source code is available at

https://github.com/juliannowakowski/automated-coppersmith.

Using this implementation, we run our algorithm for CI-HNP on cryptographi-
cally sized instances with bitsize n = 512, 1024, 1792. Our experimental results
verify the correctness of our heuristic algorithm, and show that we come close to
the asymptotic bounds of k = 13

24n ≈ 0.542n and k = 31
41n ≈ 0.756n in a matter

of minutes.

1.2 Technical Details and Related Work

Similar to the case of EC-HNP we use Coppersmith’s method to recover the
least significant bits of the Montgomery coefficient of the shared curve EAB .
To this end, we define polynomial relations between the Montgomery coefficient

https://github.com/juliannowakowski/automated-coppersmith

4 Jonas Meers and Julian Nowakowski

of EAB and the Montgomery coefficients of its d-isogenous neighboring curves,
essentially replicating the behaviour of the modular polynomials but for the
case of Montgomery coefficients. We then embed the partial information from
the oracle OMSBk

in the coefficients of these polynomials by querying OMSBk

on specific input. As a consequence, we can construct a system of polynomial
equations that has a common small root in the Montgomery coefficient of the
curve EAB . In a last step, this small root is found by Coppersmith’s method.

Comparison with HNP and EC-HNP. In their original work Boneh and
Venkatesan use lattice reduction techniques to solve HNP over Z∗p [5]. More
specifically, given many oracle queries one derives an underdetermined system of
linear equations that is subsequently encoded into a lattice. By solving a clos-
est vector problem in the lattice one obtains the secret value. With EC-HNP it
is already much harder to implement this approach as the system of equations
is inherently nonlinear. In fact, each query to the oracle results in a bivariate
polynomial of total degree 3. The secret value is then encoded in a common
small root of these polynomials, and recovered via Coppersmith’s method [54].
Nevertheless, both HNP and EC-HNP have in common that one can get arbi-
trarily many equations by querying the oracle OMSBk

as many times as needed.
Phrased differently, the system of polynomial equations – while still being un-
derdetermined – can be made arbitrarily large. Furthermore, each polynomial in
the system of equations has the same shape.

Unfortunately, in the case of CI-HNP neither of the two properties hold. In
both the CSIDH and CSURF settings, each curve has for any given degree d at
most two d-isogenous neighbours defined over Fp. Hence, if we wish to make many
such oracle queries we necessarily have to use isogenies of higher degree, which
in turn result in high-degree polynomial relations. Therefore, we are left with
a choice: either have few polynomials of low degree or have many polynomials
with very high degree. Additionally, by changing the degree of the isogeny one
obtains polynomials of a different shape, making optimizations very challenging.

Recovery Rates. Curiously, the recovery rates between CSIDH and CSURF
differ quite significantly. It turns out that the reason for this is an order-3 sub-
group of the ideal class group cl(O) in the CSIDH setting that is not present
in CSURF. Subsequently, in the CSIDH setting we are able to construct more
polynomial relations which have smaller degree compared to the CSURF setting.
Since Coppersmith’s method performs best for polynomials with low degree, this
results in a better recovery rate. It is worth mentioning that in the context of
analyzing the security of the CSIDH key exchange the same order-3 subgroup
is also responsible for reducing the security of the key exchange by a factor of
1
3 [11,38].

Comparison with SIDH. The Isogeny Hidden Number Problem has been con-
sidered before by Galbraith, Petit, Shani and Ti in the context of SIDH [22].
However, their approach only applies to SIDH due to the fact that in this setting
the resulting polynomial equations are defined over Fp2 . If we let Fp2 = Fp(θ)
where θ2 ∈ Fp denotes some quadratic non-residue, then any equation f(j) = 0

The Hidden Number Problem for CSIDH and CSURF 5

over Fp2 results in two equations over Fp: for f(j) = freal(j) + fim(j) · θ = 0, we
must have freal(j) = 0 and fim(j) = 0 simultaneously. This trick in combination
with the modular polynomial allowed the authors of [22] to build a system of
two polynomial equations in two unknowns which can be solved exactly. Subse-
quently the authors were able to recover one component of the secret j-invariant
given an oracle that returns the other component.

This approach is not applicable to CSIDH and CSURF as in this context
the polynomial relations are necessarily defined over Fp. We therefore have to
resort back to heavy machinery like Coppersmith’s method to solve systems of
polynomial equations.

Coppersmith’s Method. To solve a system of polynomial equations, Copper-
smith’s method requires as input a set of well-chosen shift-polynomials. Crucially,
these shift-polynomials fi must satisfy several technical constraints imposed by
Coppersmith’s method while simultaneously minimizing the determinant of a
certain matrix. Concretely, the matrix has as entries the coefficient vectors of
the fi. In the process of selecting the fi a ripple effect can occur where a lo-
cally optimal choice of a single fi leads to an overall larger determinant. We
observe, however, that choosing globally optimal fi can be fully automated once
we fix the set of monomials over which the fi are defined. Therefore, the only
non-trivial task is choosing a “good” set of monomials. The subsequent optimal
construction of the fi then reduces to a purely combinatorial strategy, somewhat
similar to the celebrated Jochemsz-May strategy [27]. However, we significantly
improve on Jochemsz-May since we can handle systems of polynomial equations,
whereas their strategy only handles single polynomial equations. This is partic-
ularly useful for the application at hand as in the case of CI-HNP we must deal
with such a system of polynomial equations.

Computing Asymptotic Bounds. Similar to the construction of the shift-
polynomials, the task of determining asymptotic upper bounds for Copper-
smith’s method is typically very time-consuming and has to be performed manu-
ally each time a new set of polynomials is considered. Moreover, the proof that a
given asymptotic bound holds is oftentimes convoluted. We overcome both issues
by combining our automated variant of Coppersmith’s method with polynomial
interpolation. More specifically, given a system of polynomial equations our algo-
rithm determines (under some reasonable heuristics) the size of the largest root
that can be recovered. This upper bound may not be optimal with respect to the
given system of polynomial equations, but nevertheless serves as a good starting
point. We demonstrate the usefulness of this approach in the main body of this
paper. In addition, the accompanying proof is easy to verify but crucially relies
on the correctness of the heuristic. Fortunately, it appears that from the output
of our algorithm it is always possible to extract a rigorous proof of correctness
that does not involve the aforementioned heuristic. This task, however, requires
manual work.

6 Jonas Meers and Julian Nowakowski

1.3 Outline of the Paper

The paper is organized as follows: In Section 2 we give some basic preliminaries
for CSIDH, CSURF and Coppersmith’s method. Our new formulation of Cop-
persmith’s method is described in Section 3 and proven in Section 4. In Section 5
we show how to solve CI-HNP and discuss the quantum hardness of simulating
OMSBk

. In Section 6 we give results on the practical recovery rate of our heuristic
algorithm, which experimentally verify its correctness. We conclude our work in
Section 7 where we also state some open problems.

2 Preliminaries

We use the notation x $← X to indicate that x is uniformly sampled from a set
X . By log n we denote the base 2 logarithm of n. For a prime p with p ≡ 3
mod 4 and a square a ∈ Fp we further define

√
a ∈ Fp to be the unique square

root of a which is itself again a square. It can be computed as
√
a = a(p+1)/4

mod p. For a n-bit prime p and an integer x ∈ Zp we denote by MSBk(x) the k
most significant bits of x, i.e. the integer t such that 0 ≤ x− t · 2n−k < p/2k.

2.1 Elliptic Curves and Isogenies

The following facts about isogenies are mostly taken from Silverman [46].
Let E/Fp be an elliptic curve over a finite field Fp with p an odd prime. We

denote the point at infinity with ∞E . For an extension field K ⊇ Fp we denote
the set of K-rational points by E(K). An elliptic curve is called supersingular if
#E(Fp) = p+ 1 and ordinary otherwise.

An isogeny is a morphism φ : E → E′ between elliptic curves E,E′ such
that φ(∞E) =∞E′ . The degree of φ is its degree as a morphism and we call φ
separable if p ∤ degφ. An isogeny can be expressed as a fraction of polynomials
and we call two elliptic curves isogenous if there exists an isogeny between them.
An isogeny is called an isomorphism if it has an inverse (which may be defined
over the algebraic closure of Fp). In that case the inverse is again an isogeny.
One can check whether two elliptic curves are isomorphic by comparing their
j-invariant, which is a simple algebraic expression in the coefficients of the curve
equation.

An isogeny from E to itself is called an endomorphism. The set End(E) of
endomorphisms of E (defined over the algebraic closure) forms a ring under
addition and composition and is thus called the endomorphism ring. We denote
by Endp(E) the subring defined over Fp, which is an order in the imaginary
quadratic field Q(

√
−p) if E is supersingular.

Any isogeny φ : E → E′ is automatically a group homomorphism from E
to E′ and as such its kernel is a finite subgroup of E. In the case where φ is
separable we have that degφ = #kerφ. Conversely, any finite subgroup G ⊂ E
corresponds to a separable isogeny φ : E → E′ with kernel kerφ = G that
is unique up to post-composition with an isomorphism. Since E′ is uniquely

The Hidden Number Problem for CSIDH and CSURF 7

determined by kerφ (again up to isomorphism), we write E′ = E/G from now
on. One can compute φ and E/G via Vélus formula [51], which can be evaluated
in time polynomial in the size of the kernel.

For an integer n we denote the multiplication-by-n map by [n], which is
an endomorphism of E. Its kernel is the n-torsion subgroup E[n] = {P ∈ E :
[n]P =∞E}. Another important endomorphism is the Frobenius endomorphism
πE , sending (x, y) ∈ E to (xp, yp) ∈ E. In the case where E is supersingular it
satisfies πE ◦ πE = −p, implying that Z[

√
−p] ⊆ Endp(E).

2.2 Group Actions from Isogenies

Currently there exist two popular constructions for an isogeny-based group ac-
tion, namely CSIDH [10] and CSURF [7]. They mainly differ in the choice of
Endp(E). Indeed, if p ≡ 3 mod 4 and E is supersingular there are two choices
for Endp(E), namely Z[

√
−p] and Z[(1+

√
−p)/2]. The following section is mostly

based on [7,10], however we also incorporate some recent suggestions related to
CSURF stated in [12].

CSIDH. Let p = 4·ℓ1 . . . ℓn−1 be a prime where the ℓi are small odd primes. Fix
the orderO = Z[π], where π =

√
−p is the Frobenius endomorphism. Let Eℓℓp(O)

be the set of supersingular elliptic curves E defined over Fp with endomorphism
ring Endp(E) ∼= O (called the floor). The ideal class group cl(O) acts on the set
Eℓℓp(O) in the following way: to each a ⊆ O we can associate the subgroup

E[a] :=
⋂
φ∈a
{P ∈ E : φ(P) =∞E} ⊆ E.

Here, we view φ as an endomorphism of E through the isomorphism Endp(E) ∼=
O.

Theorem 1 (Theorem 4.5 of [43]). The map

⋆ : cl(O)× Eℓℓp(O)→ Eℓℓp(O),

sending ([a], E) to a ⋆ E := E/E[a] is a well-defined free and transitive group
action.

Observe that because p ≡ −1 mod ℓi the ideal (ℓi) splits in Z[π] as (ℓi) =
⟨ℓi, π−1⟩⟨ℓi, π+1⟩. Additionally, since #E(Fp) = p+1 each curve in Eℓℓp(O) has
an Fp-rational point P→ generating a subgroup of order ℓi, which corresponds to
the ideal li = ⟨ℓi, π − 1⟩. Therefore, the action ⋆ can be computed efficiently for
the ideals li by finding P→ and then applying Vélu’s formula. A similar reasoning
applies to the ideal li = ⟨ℓi, π+1⟩ where the only difference is that the generating
point P← of order ℓi has its x-coordinate in Fp but its y-coordinate outside of
Fp. Therefore, the CSIDH group action can be evaluated efficiently for ideals of
the form

∏
leii , where the ei are from a small range [−B,B].

8 Jonas Meers and Julian Nowakowski

E E/⟨P→⟩E/⟨P←⟩

E/⟨P↓⟩

Eℓℓp(Z[(1 + π)/2])

Eℓℓp(Z[π])

Fig. 1. The 2-isogeny graph for a prime p ≡ 7 mod 8.

For each E on the floor there exists a unique A ∈ Fp called the Montgomery
coefficient such that E is isomorphic to the curve EA : y2 = x3 + Ax2 + x [10,
Proposition 8]. The curve EA is called the Montgomery form of E and we denote
byMp(O) the set of Montgomery coefficients of curves in Eℓℓp(O). We can now
see the group action ⋆ equivalently as a group action

⋆ : cl(O)×Mp(O)→Mp(O), (1)

where we identify each A ∈ Mp(O) with the curve EA. By slight abuse of
notation we denote this action by ⋆ as well.

Lastly, we define E0 : y2 = x3 + x to be the starting curve of the group
action. Indeed, E0 has endomorphism ring Z[π] and therefore lives on the floor.

CSURF. Let p = 4·ℓ0 . . . ℓn−1 be a prime such that ℓ0 = 2 and the ℓi are small
odd primes for i > 0. Fix the order O = Z[(1+π)/2] where again π =

√
−p is the

Frobenius endomorphism and Eℓℓp(O) is the set of supersingular elliptic curves
with endomorphism ring O (which is now called the surface). The ideal class
group cl(O) acts in a very similar way on Eℓℓp(O). In fact, the action of the ideals
li with i > 0 can be evaluated in the same way as in CSIDH. The only difference
is that the ideal (2) now splits in Z[(1+π)/2] as (2) = ⟨2, (π−1)/2⟩⟨2, (π+1)/2⟩
due to the congruence p ≡ 7 mod 8.

This means that there are two additional ideals l0 and l0 available for the
group action. In contrast to the odd degree isogenies, for each E ∈ Eℓℓp(O) there
are now three points of order 2 with x-coordinate in Fp. It turns out that l0
is generated by a point P→ of order 2 whose four halves are all Fp-rational.
Similarly, the four halves of the point P← generating l0 have x-coordinate in
Fp but y-coordinate outside of Fp. The remaining point P↓ of order two has its
four halves completely outside of Fp and quotienting out ⟨P↓⟩ results in a curve
on the floor (see Figure 1). In order to compute the action of l0 and l0, one
first finds the corresponding point of order 2 and then applies Vélu’s formula. In
accordance with the literature, we call the isogenies generated by P← and P→
horizontal, whereas the isogeny generated by P↓ is called vertical.

Another difference to CSIDH is that there are now two isomorphic curves
in Montgomery form for each E ∈ Eℓℓp(O) [7, Corollary 1]. To make the choice
unique one can choose the curve EA : y2 = x3 + Ax2 + x such that A ± 2 are

The Hidden Number Problem for CSIDH and CSURF 9

both squares2 in Fp. As before, letMp(O) denote the set of such Montgomery
coefficients. We again have a group action

⋆ : cl(O)×Mp(O)→Mp(O), (2)

where A ∈Mp(O) is identified with EA.
Lastly, we set the starting curve to be E3/

√
2 : y2 = x3 + (3/

√
2)x2 + x,

which has endomorphism ring Z[(1 + π)/2]. Note that due to the convention on
modular square roots, we also have that

3√
2
± 2 =

1√
2
(3± 2

√
2) =

1√
2
(1±

√
2)2

are both squares.

Remark 1. In [7] it was suggested to identify E ∈ Eℓℓp(O) with its corresponding
Montgomery− form E−A : y2 = x3 + Ax2 − x as it uniquely represents the
isomorphism class of E [7, Proposition 4]. However, this suggestion was later
revoked due to slower low-level arithmetics on Montgomery− curves [12, p. 12].
Additionally, one uses regular Montgomery curves to compute the action of the
2-isogenies anyway [7, Algorithm 1], which is why we choose to work with regular
Montgomery curves as well.

2.3 Cryptographic Assumptions and Protocols

The CSIDH and CSURF group action can be used to instantiate a non-interactive
key exchange (NIKE) similar to the Hashed Diffie-Hellman key exchange over
prime-order groups (see Figure 2). In the Random Oracle Model its passive se-
curity relies on the hardness of the following two problems, which go back to
Couveignes (who called them Vectorization and Parallelization) [16]. Both defi-
nitions apply to the CSIDH and CSURF setting.

Definition 1 (Discrete Logarithm Problem (DLOG)). Let E ∈ Eℓℓp(O) be
a fixed starting curve and [a] $← cl(O). Given the tuple (E, a ⋆ E), recover [a].

Definition 2 (Computational Diffie-Hellman Problem (CDH)). Let E ∈
Eℓℓp(O) be a fixed starting curve and [a], [b] $← cl(O). Given the tuple (E, a ⋆
E, b ⋆ E), compute ab ⋆ E.

Remark 2. In the following we leave out the starting curve E as long as there is
no ambiguity.

Galbraith et al. showed that for efficiently computable group actions, CDH
is equivalent to DLOG in a quantum setting [21]. Their reduction assumes a
perfect adversary A against CDH, i.e. an adversary with success probability 1,
which is then used to construct a quantum adversary against DLOG. Moreover,

2 This actually guarantees that P→ = (0, 0).

10 Jonas Meers and Julian Nowakowski

Alice A Bob B

skA = [a] $← cl(O) skB = [b] $← cl(O)
pkA = a ⋆ M pkB = b ⋆ M

K := H(b ⋆ pkA) = H(a ⋆ pkB) = H(ab ⋆ M)

Fig. 2. Non-interactive key exchange based on CSIDH/CSURF where M is the
Montgomery coefficient of a fixed starting curve and H : {0, 1}∗ → {0, 1}λ is a hash
function.

they assume that the action of a random element [a] $← cl(O) can be computed
efficiently, which in general is not the case for the CSIDH and CSURF group
action. Furthermore, it is currently not known how to sample an element [a]
uniformly at random for arbitrary parameter sets.

More recently, their result was improved by Montgomery and Zhandry who
showed that the equivalence also holds for any adversary A having a non-
negligible success probability [36]. The authors also gave some mild evidence
that the equivalence holds for restricted effective group actions (of which CSIDH
and CSURF are instantiations, see also [1]), but this result only holds for generic
adversaries making classical queries to a group action oracle.

In the special case of the CSIDH and CSURF group action, Wesolowski
showed that CDH and DLOG are quantumly equivalent under the generalized
Riemann hypothesis [52].

2.4 Polynomials

Let x1, . . . , xk be symbolic variables. Amonomial is a product of the form xi1
1 ·. . .·

xik
k , where i1, . . . , ik ∈ N. In particular, a product of the form c·xi1

1 ·. . .·x
ik
k , where

c ̸= 1, is not a monomial. Let f(x1, . . . , xk) =
∑

i1,...,ik∈N αi1,...,ik · x
i1
1 · . . . · x

ik
k

be a polynomial with coefficients αi1,...,ik ∈ Z. We say that xi1
1 · . . . · x

ik
k is a

monomial of f , if αi1,...,ik ̸= 0. If all monomials of f are elements of some set
M, then we say that f is defined overM. We denote by deg(f) the total degree
of f , i.e.,

deg(f) := max
αi1,...,ik

̸=0
(i1 + . . .+ ik).

The degree of some finite set of polynomials F ⊆ Z[x1, . . . , xk] is defined as

deg(F) := max
f∈F

deg(f).

The norm of f , denoted ∥f∥, is defined as the Euclidean norm of its coefficient
vector, i.e.,

∥f∥ :=
√ ∑

i1,...,ik∈N
α2
i1,...,ik

.

The Hidden Number Problem for CSIDH and CSURF 11

Definition 3. For a set of polynomials F ⊂ Z[x1, . . . , xk], we define the set of
its integer roots as

ZZ(F) :=
{
r = (r1, . . . , rk) ∈ Zk | ∀f ∈ F : f(r) = 0

}
.

Similarly, for parameters M,X1, . . . , Xk ∈ N, we define the corresponding set of
its small modular roots as

ZM,X1,...,Xk
(F) :=

{
r = (r1, . . . , rk) ∈ Zk

∣∣∣∀f ∈ F : f(r) ≡ 0 mod M,
∀j : |rj | ≤ Xj

}
.

For a finite set F = {f1, . . . , fn}, we may abuse notation and write

ZZ(f1, . . . , fn) := ZZ(F),
ZM,X1,...,Xk

(f1, . . . , fn) := ZM,X1,...,Xk
(F).

Definition 4. Let M be a set of monomials. A monomial order (on M) is a
total order ≺ onM, that satisfies the following two properties:

1. For every λ ∈M, it holds that 1 ≺ λ.
2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ ∈M.

We frequently use the lexicographic monomial order ≺lex .The leading monomial
of a polynomial f (with respect to some monomial order ≺) is the unique mono-
mial λ of f , which satisfies λ′ ≺ λ for every monomial λ′ of f . The coefficient of
the leading monomial is called leading coefficient. If the monomial order is clear
from the context, we denote by LM(f) and LC(f) the leading monomial and the
leading coefficient of f , respectively. Notice that for any two polynomials f, g we
have

LM(fg) = LM(f)LM(g), (3)

LC(fg) = LC(f)LC(g). (4)

If LC(f) = 1, then we say that f is monic.

2.5 Lattices

A (full-rank) lattice is a set of the form L(B) := B · Zd, where B ∈ Rd×d is an
invertible matrix. We call B a basis matrix of L(B) and say that L(B) is the
lattice generated by the columns of B. The value d is called the dimension of
L(B). The determinant of L(B) is defined as detL(B) := |detB|. We call two
basis matrices B1,B2 ∈ Rd×d equivalent, if L(B1) = L(B2). For equivalent basis
matrices B1,B2 it holds that detL(B1) = detL(B2). The norm of a lattice
vector v ∈ L(B), denoted ∥v∥, is the Euclidean norm.

The famous LLL lattice-reduction algorithm [30] computes on input of a
lattice basis B = (bi,j)1≤i≤j≤d ∈ Zd×d an equivalent basis in time polynomial in
d and maxi,j log(|bi,j |), consisting of relatively short lattice vectors:

12 Jonas Meers and Julian Nowakowski

Lemma 1. Let B = (b1, . . . ,bd) be an LLL-reduced basis of a d-dimensional
lattice Λ ⊆ Zd and let M,m ∈ N, such that log(M) ≥ d ≥ m. Suppose that

det(Λ) ≤M (m−k)d

holds for some k ≤ d. Then

∥bi∥ <
Mm

√
d

holds for every i = 1, . . . , k.

A proof for Lemma 1 is given in the full version of the paper.

3 Coppersmith’s Method

In this section, we introduce our significantly simplified reformulation of Cop-
persmith’s method. In Section 3.1, we recall the high-level idea behind Copper-
smith’s method, as well as the heuristic, that is used in almost all Coppersmith-
type results. After that, we give in Section 3.2 a purely combinatorial reformu-
lation and show how this allows us to automate Coppersmith’s method almost
entirely. As an application of our reformulation, we derive in Section 3.3 two
new Coppersmith-type bounds, which we use in Section 5 to prove our results
for CI-HNP.

3.1 High Level Idea

Suppose we are given a modulusM ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk]
and bounds X1, . . . , Xk ∈ N. If the bounds are sufficiently small (and k is fixed),
then Coppersmith’s method finds all small modular roots

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in log(M).
The main idea behind Coppersmith’s method is to transform the system of

polynomial equations defined by the fi’s over ZM into an efficiently solvable
system of equations defined over Z. To this end, Coppersmith’s method uses
lattice-based techniques to construct k polynomials h1, . . . , hk ∈ Z[x1, . . . , xk],
such that all small modular roots of the fi’s are also integer roots of the hi’s,
i.e.,

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZZ(h1, . . . , hk).

Given the hi’s, we can efficiently compute all small modular roots r as follows:
In the univariate setting, where k = 1, we simply compute all roots of h1

over R using standard techniques (such as Newton’s method or the Sturm se-
quence) and then output those that lie in ZM,X1

(f1, . . . , fn). In the multivari-
ate setting, where k > 1, we follow a Gröbner basis based approach. Here, we
first compute the Gröbner basis of the ideal a := (h1, . . . , hk) ⊆ Q[x1, . . . , xk].
Assuming that the variety of a is zero-dimensional (which is usually the case
in practice) we then efficiently obtain ZZ(h1, . . . , hk) from the Gröbner basis,
again using standard techniques. Finally, from ZZ(h1, . . . , hk) we efficiently ob-
tain ZM,X1,...,Xk

(f1, . . . , fn).

The Hidden Number Problem for CSIDH and CSURF 13

The Coppersmith Heuristic. Unfortunately, there is no provable guarantee
that the variety of a is zero-dimensional. In the multivariate setting, Copper-
smith’s method thus relies on the following (well-established) heuristic.

Heuristic 1 (Coppersmith Heuristic). The polynomials obtained from Cop-
persmith’s method generate an ideal of a zero-dimensional variety.

While one can deliberately construct polynomials f1, . . . , fn and moduli M for
which Heuristic 1 fails (see, e.g., [15, Section 12]), the heuristic holds for most
instances arising in practice.

Nevertheless, we stress that it is important to verify the correctness of Heuris-
tic 1 experimentally, since there are a few instances known for which the heuristic
unexpectedly fails (see, e.g., the discussion on [48] in [34, Section 4]). We verify
the correctness of Heuristic 1 for our algorithm for CI-HNP in Section 6.

Constructing h1, . . . , hk. To construct the polynomials h1, . . . , hk, Copper-
smith’s method requires as input a set of polynomials F ⊂ Z[x1, . . . , xk] satisfy-
ing certain technical constraints. (The hi’s are then computed as integer linear
combinations of the elements of F .) Construction of F is often difficult and usu-
ally done in an ad-hoc fashion. Furthermore, proving that a given set F satisfies
the required technical constraints is often very tedious.

To overcome these issues, we introduce in the following Section 3.2 our novel
and automated approach to Coppersmith’s method, which allows us to greatly
simplify construction of F .

3.2 Coppersmith’s Method Automated

The main idea behind our automated approach to Coppersmith’s method is the
following Definition 5. It allows us to abstract away all technicalities arising
from lattice theory in Coppersmith’s method and to replace them by purely
combinatorial constraints.

Definition 5. Let M be a finite set of monomials, and let ≺ be a monomial
order onM. A set of polynomials F is called (M,≺)-suitable, if:

1. Every f ∈ F is defined overM.
2. For every monomial λ ∈M there is a unique polynomial f ∈ F with leading

monomial λ (with respect to ≺).

If F is (M,≺)-suitable and λ ∈ M, then we denote by F [λ] the unique polyno-
mial f ∈ F with leading monomial λ.

We note that similar but less general constraints on F have first been used in [33,
Lemma 4]. Definition 5 now allows us to compactly formulate Coppersmith’s
method as follows.

Theorem 2 (Coppersmith’s Method). Suppose we are given a modulus
M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤

14 Jonas Meers and Julian Nowakowski

M , where k = O(1). Furthermore, suppose we are given an integer m ∈ N, a
set of monomialsM, a monomial order ≺ onM, and an (M,≺)-suitable set of
polynomials F ⊆ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F). (5)

If the conditions ∏
λ∈M

|LC(F [λ])| ≤ M (m−k)|M|∏
λ∈M λ(X1, . . . , Xk)

, (6)

log(M) ≥ |M| ≥ m and |M| ≥ k hold, then we can compute all

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in deg(F) · log(M), under Heuristic 1 for k > 1.

A proof for Theorem 2 is given in Section 4. The algorithm behind Theorem 2
is given in Algorithm 1.

Algorithm 1: Coppersmith’s Method.

Input: Integers M,m ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk], bounds
0 ≤ X1, . . . , Xk ≤M , set of monomialsM, monomial order ≺ onM,
and a (M,≺)-suitable set of polynomials F ⊆ ZMm [x1, . . . , xk],
satisfying the constraints of Theorem 2.

Output: All r ∈ ZM,X1,...,Xk (f1, . . . , fn).
1 Construct an |M| × |M| basis matrix B, whose columns are the coefficient

vectors of the polynomials F [λ](X1x1, . . . , Xkxk), where λ ∈M.
2 LLL-reduce B.
3 Interpret the first k column of the resulting matrix as coefficient vectors of

polynomials hi(X1x1, . . . , Xkxk).

4 Compute the Gröbner basis of
(
h1(x1, . . . , xk), . . . , hk(x1, . . . , xk)

)
.

5 return all r ∈ ZZ(h1, . . . , hk) ∩ ZM,X1,...,Xk (f1, . . . , fn).

Given a modulus M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and
bounds X1, . . . , Xk ∈ N, Theorem 2 now suggests the following simple approach
for computing all small modular roots r ∈ ZM,X1,...,Xk

(f1, . . . , fn):

1. Pick a set of monomials M in x1, . . . , xk with |M| ≥ k, a monomial order
≺ onM, and an m ∈ N, such that log(M) ≥ |M| ≥ m.

2. Pick an (M,≺)-suitable set of polynomials F ⊆ ZMm [x1, . . . , xk], satisfying
Equations (5) and (6).

3. Apply Theorem 2 / Algorithm 1 to compute all r ∈ ZM,X1,...,Xk
(f1, . . . , fn).

As we show below, choosing an optimal F can be automated entirely, once
M, m and ≺ are fixed. Furthermore, choosing m and ≺ is very easy. In our

The Hidden Number Problem for CSIDH and CSURF 15

new approach all difficulties of Coppersmith’s method thus boil down the much
simpler task of choosingM.

Below, we also describe a very simple and automated strategy for choosing
M. While this strategy does not always yield optimal results, it still performs
well in practice.

Choosing F . Suppose we have already chosen M, ≺ and m. The set F then
has to satisfy the following three conditions:

1. It has to be (M,≺)-suitable,
2. it has to satisfy Equation (5),
3. it has to satisfy Equation (6).

Satisfying Equation (5) is easy: Like in all other Coppersmith-type results, we
simply construct F using so-called shift-polynomials, i.e., polynomials of the form

p[j1,...,jk,i1,...,in] := xj1
1 · . . . · x

jk
k · f

i1
1 · . . . · f in

n ·Mm−(i1+...+in), (7)

for some appropriately chosen integers j1, . . . , jk, i1, . . . , in ∈ N, where i1+ . . .+
in ≤ m. Since for any r ∈ ZM,X1,...,Xk

(f1, . . . , fn) we have

f i1
1 (r) · . . . · f in

n (r) ≡ 0 mod M i1+...+in ,

it then holds that
p[j1,...,jk,i1,...,in](r) ≡ 0 mod Mm.

The resulting F := {p[j1,...,jk,i1,...,in]}j1,...,jk,i1,...,in thus satisfies Equation (5).
For satisfying Equation (6), notice that the right hand side in Equation (6)

does not depend on F . For fixed M, ≺, and m, Equation (6) thus simply re-
quires that the product of (the absolute values of) the leading coefficients of the
polynomials in F is smaller than some constant. Making the mild assumption
that the fi’s are monic, it follows from Equation (4) that the leading coefficient
of the shift-polynomial p[j1,...,jk,i1,...,in] from Equation (7) is

LC
(
p[j1,...,jk,i1,...,in]

)
= Mm−(i1+...+in).

Hence, the larger the sum i1+. . .+in gets, the smaller gets the leading coefficient
of the corresponding shift-polynomial. To satisfy Equation (6), we thus have to
take shift polynomials p[j1,...,jk,i1,...,in] with as large i1 + . . .+ in as possible.

Finally, to ensure that F is (M,≺)-suitable, we have to include for every
monomial λ ∈M one shift-polynomial p[j1,...,jk,i1,...,in] in F , such that

1. the leading monomial of p[j1,...,jk,i1,...,in] is λ, and
2. p[j1,...,jk,i1,...,in] is defined overM.

From Equation (3) it easily follows that the shift-polynomials, which satisfy these
conditions, are exactly the polynomials of the form

f[λ,i1,...,in] :=
λ

LM(f1)i1 · . . . · LM(fn)in
· f i1

1 · . . . · f in
n ·Mm−(i1+...+in), (8)

where

16 Jonas Meers and Julian Nowakowski

1. LM(f1)
i1 · . . . · LM(fn)

in divides λ, and
2. f[λ,i1,...,in] is defined overM.

Hence, to construct an optimal set of shift-polynomials, we simply have to enu-
merate all such shift-polynomials f[λ,i1,...,in] and then include for every λ ∈ M
one shift-polynomial in F , that maximizes the sum i1 + . . .+ in.

A formal description of this approach is given in Algorithm 2. The runtime
of Algorithm 2 is O(|M| ·mn), which – for fixed n – is polynomial in our main
parameter log(M), since by construction m ≤ |M| ≤ log(M).

A somewhat optimized implementation of the algorithm is available in our
GitHub repository. As we show in Section 6, our implementation is very efficient,
even for cryptographically-sized instances.

Algorithm 2: Constructing an optimal set F .
Input: Set of monomialsM, monomial order ≺ onM, monic polynomials

f1, . . . , fn, and integer m ∈ N.
Output: (M,≺)-suitable set of shift-polynomials F , satisfying Equation (5),

and minimizing the left hand side in Equation (6).
1 F := ∅
2 for λ ∈M do
3 Enumerate all shift-polynomials f[λ,i1,...,in], as in Equation (8), such that

LM(f)i1 · . . . · LM(f)in divides λ, and f[λ,i1,...,in] is defined overM.
4 Among all such f[λ,i1,...,in] pick one that maximizes i1 + . . .+ in and

include it in F .
5 end
6 return F

Choosing ≺. The choice of ≺ is usually of secondary importance in Copper-
smith’s method, and simply choosing the lexicographic order ≺lex will suffice in
most applications. Indeed, if we were to restate all known Coppersmith-type re-
sults from the literature using the language of our new Theorem 2, then almost
all results would use ≺lex as monomial order.3

Choosing m and M. Instead of choosing one fixed m and M, we define an
increasing sequence M1 ⊂ M2 ⊂ M3 ⊂ . . . of sets of monomials. While the
Coppersmith-type literature strongly suggests that there is no fully automated
strategy for choosing theMi’s, it appears that defining

Mi :=
{
λ | λ is a monomial of f j1

1 · . . . · f jn
n , 0 ≤ j1, . . . , jn ≤ i

}
(9)

mi := i · n, (10)

3 However, we note that some results, which deeply exploit the algebraic struc-
ture of the underlying polynomials f1, . . . , fn via unravelled linearization [24], e.g.,
[49,50,33], would require more involved monomial orders.

The Hidden Number Problem for CSIDH and CSURF 17

often provides a good starting point, which one then may further optimize by
incorporating special properties of the underlying polynomials f1, . . . , fn.

The condition from Equation (6), under which Coppersmith’s method is suc-
cessful, then typically translates to an inequality of the form

Xα1
1 · . . . ·X

αk

k ≤M δ−ε, (11)

for some constants α1, . . . , αk, δ ≥ 0 and some ε > 0 that tends to 0 as Mi

increases. (In other words, the larger we pick Mi, the better Coppersmith’s
method performs.)

For the best possible result, we thus always pick the largest Mi that satis-
fies the condition |Mi| ≤ log(M) (which is imposed by Theorem 2). A typical
Coppersmith-type result thus is a bound on the Xi’s as in Equation (11), where
the error term ε vanishes as M →∞.

Computing Asymptotic Bounds. Once we have chosen our sequence of sets
Mi, we can use Algorithm 2 to construct – for any fixed Mi and mi := i · n
– a corresponding optimal set of shift-polynomials Fi. Given Fi, Mi and mi,
we may then derive from Equation (6) a bound on X1, . . . , Xk, under which
Coppersmith’s method successfully recovers the desired small roots.

However, in practice one usually is not interested in the performance of Cop-
persmith’s method for one fixed i, but rather in its asymptotic performance, i.e.,
usually it is desirable to obtain asymptotic bounds as in Equation (11). Luckily,
Algorithm 2 also allows us to derive such asymptotic bounds via polynomial
interpolation as follows:

It turns out that the terms in Equation (6) grow in practice as

M (m−k)|Mi| = MpM(mi), (12)∏
λ∈Mi

|LC(Fi[λ])| = MpF (mi) (13)

∏
λ∈Mi

λ(X1, . . . , Xk) = X
p1(mi)
1 · . . . ·Xpk(mi)

k , (14)

where pM, pF , p1, . . . , pk are polynomials of degree k + 1. Based on this obser-
vation, we simply run Algorithm 2 on M1, . . . ,Mk+2 to construct k + 2 sets
of shift-polynomials F . Given M1, . . . ,Mk+2 and the corresponding Fi’s, we
obtain the values of the polynomials pF , pM, p1, . . . , pk on k+2 different inputs.
Using polynomial interpolation, we then easily construct pM, pF , p1, . . . , pk.

Denoting the leading coefficients of the polynomials by ℓM, ℓF , ℓ1, . . . , ℓk,
Equation (6) then translates to an asymptotic bound

Xℓ1
1 · . . . ·X

ℓk
k ≤M ℓM−ℓF−ε, (15)

for some ε > 0 that vanishes as m increases, similar to Equation (11).
When defining Mi and mi as in Equations (9) and (10), it is easy to see

that exponents in Equations (12) and (14) indeed grow as polynomials in mi.

18 Jonas Meers and Julian Nowakowski

However, proving that the same also holds for Equation (13) appears to be
difficult. Therefore, we require the following heuristic assumption.

Heuristic 2. Let f1, . . . , fn ∈ Z[x1, . . . , xk], let ≺ be a monomial order on
x1, . . . , xk, and define

Mi :=
{
λ | λ is a monomial of f j1

1 · . . . · f jn
n , 0 ≤ j1, . . . , jn ≤ i

}
mi := i · n,

for i ∈ N. Then there exists a polynomial p(m) of degree k+1, such that for any
set Fi, that is obtained from Algorithm 2 on input (Mi,≺, (f1, . . . , fn),mi), it
holds that ∏

λ∈Mi

|LC(Fi[λ])| = Mp(mi).

In practice, Heuristic 2 always seems to hold. It is in an interesting open problem
to further explore this behavior of Algorithm 2.

We note that in order to increase confidence in Heuristic 2 for any given set of
polynomials {f1, . . . , fn}, one may construct significantly more than k+2 setsMi

with corresponding sets of shift-polynomials Fi. If the polynomial interpolation
then still yields a polynomial of degree k+1, this serves as a very strong indication
of the correctness of Heuristic 2.

If one still wishes to rigorously prove asymptotic bounds, i.e. without Heuris-
tic 2, then one can proceed as follows: We run Algorithm 2 onM1, . . . ,Mk+2,
but instead of using polynomial interpolation, we (manually) look for patterns
in the algorithms output, i.e., we look for patterns in the resulting sets of shift-
polynomials Fi. From these patterns, we then derive formulas that describe for
any givenMi the corresponding set Fi. Finally, these formulas allow us to derive
an asymptotic bound as in Equation (15).4

Clearly, this approach is significantly less automated than our polynomial
interpolation approach based on Heuristic 2. However, due to the use of Al-
gorithm 2 it is arguably still much simpler than most previous approaches to
Coppersmith’s method.

3.3 Applications of our Automated Approach

Let us now use our automated approach to Coppersmith’s method to derive two
new Coppersmith-type bounds, which we use in the subsequent Section 5 to
prove our results for CI-HNP.

Theorem 3. Suppose we are given a modulus M ∈ N, polynomials

f(x, y, z) := xy + f1x+ f2y + f3,

g(x, y, z) := yz + g1y + g2z + g3,

h(x, y, z) := xz + h1x+ h2z + h3,

4 We note that this approach is similar to the integer programming approach recently
introduced by May, Nowakowski and Sarkar [33, Remark 1].

The Hidden Number Problem for CSIDH and CSURF 19

for some constants fi, gi, hi ∈ Z, bounds X,Y, Z ∈ N, and an arbitrarily small
constant ε > 0. If M is sufficiently large, and

XY Z < M11/8−ε,

then we can compute all r ∈ ZM,X,Y,Z(f, g, h) in time polynomial in log(M),
under Heuristics 1 and 2.

Proof. Following our strategy from Section 3.2, we choose a parameter i ∈ N,
define

Mi :=
{
λ | λ is a monomial of f j1gj2hj3 , 0 ≤ j1, j2, j3 ≤ i

}
mi = i · 3,

and equip the elements in Mi with the lexicographic monomial order ≺lex on
x, y, z. Note that the constraints |Mi| ≥ mi and |Mi| ≥ 3 from Theorem 2 are
trivially satisfied. For sufficiently large M , the additional constraint log(M) ≥
|Mi| is also satisfied.

It is easy to see that

M (m−3)|Mi| = MpM(mi),∏
λ∈Mi

λ(X,Y, Z) = XpX(mi) · Y pY (mi) · ZpZ(mi),

for some polynomials pM, pX , pY , pZ of degree 4. Under Heuristic 2, we also have∏
λ∈Mi

|LC(Fi[λ])| = MpF (mi)

for some polynomial pF of degree 4, where Fi denotes the output of Algorithm 2
on input (Mi,≺lex, (f, g, h),mi).

We run Algorithm 2 for i = 1, . . . , 5. From the output of the algorithm, we
obtain the following values:

mi pM(mi) pF (mi) pX(mi) pY (mi) pZ(mi)

3 0 50 27 27 27

6 375 439 250 250 250

9 2058 1767 1029 1029 1029

12 6561 4946 2916 2916 2916

15 15972 11200 6655 6655 6655

Using polynomial interpolation, we obtain

pM(mi) =
8

27
m4

i + o(m4
i),

pF (mi) =
13

81
m4

i + o(m4
i),

pX(m) = pY (mi) = pZ(mi) =
8

81
m4

i + o(m4
i).

20 Jonas Meers and Julian Nowakowski

Hence, the condition from Equation (6) becomes

X8/81Y 8/81Z8/81 < M8/27−13/81−ε = M11/81−ε

for some ε > 0 that vanishes as m (or equivalently M) increases. Taking the
8
81 -th root and replacing ε by 81

8 ε in the above inequality, we obtain

XY Z < M11/8−ε,

as required. ⊓⊔

In the full version of the paper, we show that Theorem 3 remains correct even
when removing Heuristic 2 from the theorem. (However removing the heuristic
comes at the cost of a significantly more complicated proof and manual effort.)
We see this as a strong indication of the correctness of Heuristic 2.

Theorem 4. Suppose we are given a modulus M ∈ N, polynomials

f(x, y, z) := x2 + f1xy
2 + f2xy + f3x+ f4y

2 + f5y + f6,

g(x, y, z) := z2 + g1x
2z + g2xz + g3z + g4x

2 + g5x+ g6,

for some bounds fi, gi ∈ Z, bounds X,Y, Z ∈ N, and an arbitrarily small constant
ε > 0. If M is sufficiently large, and

XY Z < M30/41−ε,

then we can compute all r ∈ ZM,X,Y,Z(f, g, h) in time polynomial in log(M),
under Heuristics 1 and 2.

The proof of Theorem 4 is analogous to that of Theorem 3 and therefore omitted.
A rigorous but involved proof that does not require Heuristic 2 is given in the
full version of the paper.

The ε-term in Theorems 3 and 4. Previous works on Coppersmith’s method
often (implicitly) assume that one can easily eliminate the ε-term in Coppersmith-
type bounds. However, as we discuss in the full version of the paper, when deal-
ing with systems of multivariate equations (as in Theorems 3 and 4), the ε-term
is inherent and eliminating it requires sub-exponential (but super-polynomial)
runtime.

4 Proof for Theorem 2

The main idea behind Coppersmith’s method is the following simple Lemma 2.
Intuitively, it states that small modular roots of a polynomial h with small
coefficients are actually integer roots of h.

The Hidden Number Problem for CSIDH and CSURF 21

Lemma 2 (H̊astad [23], Howgrave-Graham [25]). Let h(x1, . . . , xk) be a
polynomial with at most d monomials, and let Mm, X1, . . . , Xk ∈ N. Suppose
h has a root r = (r1, . . . , rk) modulo Mm, satisfying |ri| ≤ Xi for every i =
1, . . . , k. If

∥h(X1x1, . . . , Xkxk)∥ <
Mm

√
d
,

then h(r1, . . . , rk) = 0 holds over the integers.

As discussed in Section 3.1, given a set of polynomials F , Coppersmith’s method
efficiently computes all small modular roots r ∈ ZM,X1,...,Xk

(F) by constructing
a set of k-polynomials {h1, . . . , hk} such that

ZM,X1,...,Xk
(F) ⊆ ZZ(h1, . . . , hk).

To this end, Coppersmith’s method uses LLL lattice reduction to construct the
hi’s as small-norm integer linear combinations of the f ∈ F . By Lemma 2 every
r then is an integer root of the hi’s, as required.

Using this observation we now prove Theorem 2, which for the sake of read-
ability we recall below.

Theorem 2 (Coppersmith’s Method). Suppose we are given a modulus
M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤
M , where k = O(1). Furthermore, suppose we are given an integer m ∈ N, a
set of monomialsM, a monomial order ≺ onM, and an (M,≺)-suitable set of
polynomials F ⊆ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F). (5)

If the conditions ∏
λ∈M

|LC(F [λ])| ≤ M (m−k)|M|∏
λ∈M λ(X1, . . . , Xk)

, (6)

log(M) ≥ |M| ≥ m and |M| ≥ k hold, then we can compute all

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in deg(F) · log(M), under Heuristic 1 for k > 1.

Proof. For every i = 1, . . . , |M|, let λi denote the i-th smallest monomial inM
(with respect to ≺). For every λ ∈ M, we denote by fλ ∈ Z|M| the coefficient
vector of F [λ](X1x1, . . . , Xkxk), where the i-th coordinate of fλ is the coefficient
of λi in F [λ](X1x1, . . . , Xkxk).

We construct an |M| × |M| lattice basis matrix B, where the i-th column
of B is the vector fλi . Since λi is the leading monomial of Fλi , the i-th entry of
fλi

equals LC(Fλi
) ·λi(X1, . . . , Xk). Further, for every j > i the j-th entry of fλi

equals 0, since λi ≺ λj . Hence, B is a triangular matrix with determinant

detB =
∏
λ∈M

LC(F [λ]) · λ(X1, . . . , Xk).

22 Jonas Meers and Julian Nowakowski

Together with Equation (6) this implies

detL(B) ≤M (m−k)|M|. (16)

We compute an LLL-reduced basisBLLL = (b1, . . . ,b|M|) of L(B). From log(M) ≥
|M| ≥ m, Lemma 1 and Equation (16) it follows that the first k columns
b1, . . . ,bk of BLLL have norm

∥b1∥, . . . , ∥bk∥ <
Mm√
|M|

. (17)

Notice, since |M| ≥ k, the matrix BLLL indeed has at least k columns.
By definition of B, every vector bi from the LLL-reduced basis is the coeffi-

cient vector of some polynomial hi(X1x1, . . . , Xkxk), such that

hi(x1, . . . , xk) =
∑
λ∈M

αi,λF [λ](x1, . . . , xk), (18)

for some αi,λ ∈ Z. Let r ∈ ZM,X1,...,Xk
(f1, . . . , fn). Since

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F),

it follows from Equation (18) that

hi(r) ≡
∑
λ∈M

αi,λF [λ](r) ≡ 0 mod Mm.

Together with Equation (17) and Lemma 2, this implies that r is a root of
h1, . . . , hk have r over the integers. Hence,

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZZ(h1, . . . , hk).

Since the entries of B are upper bounded by polynomials of degree at most
d := deg(F) in Mm, the runtime of LLL to compute BLLL is polynomial in
d ·m · log(M) ≤ d log(M)2 and |M| ≤ log(M). Hence, we can compute h1, . . . , hk

in time polynomial in d · log(M), as required.
Finally, if k = 1, we efficiently obtain all r ∈ ZM,X1,...,Xk

(f1, . . . , fn), by
computing all integer roots of h1 and then outputting only those that lie in
ZM,X1,...,Xk

(f1, . . . , fn). If k > 1, we efficiently obtain all such r’s under Heuris-
tic 1 from the Gröbner basis of a := (h1, . . . , hk), which we can compute in
polynomial time, since k = O(1). ⊓⊔

5 The Commutative Isogeny Hidden Number Problem

In this section we use the results developed in Section 3 to solve the Commutative
Isogeny Hidden Number Problem. We assume that an elliptic curve is always
represented by its corresponding Montgomery coefficient. That is, oracles or

The Hidden Number Problem for CSIDH and CSURF 23

algorithms that take as input an elliptic curve always expect the Montgomery
coefficient of said curve. The same principle applies to the output of such an
oracle or algorithm. This means that we mainly work with the group action
from Equation (1) and Equation (2), respectively.

We now define the main computational problem, which applies to both
CSIDH and CSURF where we (implicitly) set the prime p, the order O and
the starting curve M accordingly.

Definition 6 (Commutative Isogeny Hidden Number Problem (CI-HNPk)).
Let p be an n-bit prime and let k < n be a positive integer. Further let [a], [b] $←
cl(O). Assume that there exists an oracle OMSBk

that on input two Montgomery
coefficients M0,M1 ∈Mp(O) computes

OMSBk
(M0,M1) := MSBk(CDH(M0,M1)).

Given the tuple (a⋆M, b⋆M) and access to OMSBk
, the task is to recover ab⋆M .

Remark 3. Because we can write

Mab := ab ⋆ M = OMSBk
(a ⋆ M, b ⋆ M) · 2n−k +mab (19)

for some mab < 2n−k we focus on recovering mab from now on.

In the next sections we give an algorithm A that solves CI-HNPk for both
CSIDH and CSURF. Like many algorithms that solve a flavour of the hidden
number problem, A proceeds in two stages:

1. Query the oracle OMSBk
on specific input, obtaining a set of bivariate poly-

nomial equations that have a common small root in mab.

2. Use Coppersmith’s method to solve the system of equations, yielding the
common root mab.

We remark that the second stage is the same for both CSIDH and CSURF.
Furthermore, for the results in the following sections it is actually sufficient to
have a static oracle. That is, an oracle where one of the inputs to the oracle is
fixed, i.e.

OMSBk
(M ′) := MSBk(CDH(M

′, b ⋆ M))

with b as in Definition 6.

5.1 Solving CI-HNP for CSIDH

Let p ≡ 3 mod 8 be a prime and O = Z[π]. Our goal is to find polynomial
relations between neighboring Montgomery curves similar to what the modular
polynomial provides for j-invariants. A variant of Vélu’s formula dedicated to
Montgomery curves provides a good starting point.

24 Jonas Meers and Julian Nowakowski

Theorem 5 (Proposition 1 in [39]). Let EA : y2 = x3+Ax2+x with A2 ̸= 4
be a Montgomery curve defined over Fp and let G ⊂ EA(Fp) be a finite subgroup
such that (0, 0) /∈ G. Further define φ to be a separable isogeny with kerφ = G.
Then there exists a Montgomery curve EB : y2 = x3 +Bx2 + x such that, up to
isomorphism, φ : EA → EB and

B = τ(A− 3σ), where τ =
∏

P∈G\{∞}

xP , σ =
∑

P∈G\{∞}

(
xP −

1

xP

)
.

By expanding the equation for B we immediately get a polynomial that re-
lates two isogenous Montgomery coefficients to each other. Evidently, Theorem 5
can handle isogenies of almost arbitrary degree d and therefore could be used to
derive polynomials describing the neighborhood of any two d-isogenous curves.
To keep the total degree of the polynomial low, however, it is beneficial to look
at isogenies of small degree. It is therefore natural to consider 3-isogenies as they
have the smallest kernel amongst those isogenies admissible by the CSIDH group
action. Moreover, removing the unwanted variables {xP }P∈G\{∞} can be done
via the 3-division polynomial (for a precise definition see [9]) and a resultant
computation.

In the case of 3-isogenies this approach yields polynomial relations of total
degree 6. However, we can improve on this by instead considering 4-isogenies.
In fact, the ideal (4) splits in Z[π] as ll = ⟨4, π − 1⟩⟨4, π + 1⟩. Most notably, the
ideal l has order 3 which is a direct result of using the class group of the non-
maximal order Z[π] [11,38]. Hence the following formulas are only applicable to
the CSIDH setting.

Proposition 1 (Theorem 7 in [38]). Let A ∈Mp(Z[π]) be the Montgomery
coefficient of the curve EA ∈ Eℓℓp(Z[π]). The two 4-isogenous curves of EA in
Eℓℓp(Z[π]) are

EB : y2 = x3 +Bx2 + x, where B = 2
A− 6

A+ 2

and

EC : y2 = x3 + Cx2 + x, where C = 2
A+ 6

2−A
.

It is immediately evident that due to their simple form, the 4-isogeny formulas
result in polynomial relations of degree only 2.

Corollary 1. The Montgomery coefficients A, B and C from Proposition 1
satisfy the relations

2A−AB − 2B − 12 = 0,

2C −AC − 2A− 12 = 0 and

2B −BC − 2C − 12 = 0.

The Hidden Number Problem for CSIDH and CSURF 25

M Ma

Mb MSB(Mab)

Mac

MSB(Mabc)

b
a

b

a c

c
b

Fig. 3. Visualization of the general strategy where c is an ideal of small norm (i.e. an
isogeny of small degree). Here, OMSBk allows us to compute the most significant bits of
Mab and Mabc, which are connected by the same ideal c.

Proof. This is a simple restatement of Proposition 1 where the third formula is
derived from the first two by taking the resultant with respect to A. ⊓⊔

Remarkably, due to the small order of l we get three relations between A and
its 4-isogenous neighbors B and C that all have the same total degree. This is
particularly interesting as we can usually only hope to craft two polynomial re-
lations of the same degree between A and its d-isogenous neighbors. The reason
for this is that the two neighboring curves B and C are in general d2-isogenous,
resulting in a third polynomial relation of larger degree. As it turns out, Cop-
persmith’s method strongly benefits from having a third relation of the same
total degree, which in turn allows us to solve CI-HNPk for a smaller value k.

Theorem 6. Let p ≡ 3 mod 8 be a n-bit prime, and let ε > 0 be an arbitrarily
small constant. There exists a PPT algorithm A that solves CI-HNPk in the
CSIDH setting for k = (1324 + ε)n under Heuristic 1.

Proof. Let (Ma,Mb) be an instance of CI-HNPk. The algorithm A proceeds as
follows: First, it uses Proposition 1 to compute the 4-isogenous neighbors of
Ma, which we denote by Mac and Mad respectively. It then submits the queries
OMSBk

(Ma,Mb) and OMSBk
(Mac,Mb), which yield the most significant bits of

Mab = CDH(Ma,Mb) andMabc = CDH(Mac,Mb) (see Figure 3). Since the group
action is commutative we have that Mab and Mabc are 4-isogenous as well, thus
satisfying the first equation in Corollary 1. The same process is repeated forMad,
yielding the most significant bits of Mabd. Finally, by using Equation (19) we can
rewrite the resulting equations in terms of the least significant bits mab, mabc

and mabd, which are now small roots of size p11/24 of the respective polynomials.
A then finds these small roots via Theorem 3. ⊓⊔

5.2 Solving CI-HNP for CSURF

Let p ≡ 7 mod 8 be a prime and O = Z[(1 + π)/2]. We use a very similar
strategy compared to Section 5.1 to craft the polynomials. Unfortunately, we
cannot use the same trick involving 4-isogenies from Proposition 1 as they are
specific to the CSIDH setting. Instead, we can consider 2-isogenies since we have
the ideals l0 and l0 available. The resulting formulas still have small degree but
cannot quite compete with the formulas for 4-isogenies in CSIDH. In particular,

26 Jonas Meers and Julian Nowakowski

the ideal l0 has very large order, meaning that we only get two relations between
a curve and its 2-isogenous neighbors.

Recall that the point P→ = (0, 0) has order 2 and corresponds to the ideal
l0. In order to compute the image curve of the vertical isogeny with kernel ⟨P→⟩
we use the following formula from [18, Equation (18)].

Proposition 2. Let A ∈ Mp(Z[(1 + π)/2]) be the Montgomery coefficient of
the curve EA and let P→ = (0, 0). The curve EA/⟨P→⟩ is isomorphic to a
Montgomery curve EB that can be written as

EB : y2 = x3 +Bx2 + x, where B =
A+ 6

2
√
A+ 2

.

Note that A + 2 is a square by definition. Squaring both sides and rearranging
terms yields a bivariate polynomial of total degree 3.

Corollary 2. Let the notation be as in Proposition 2. The Montgomery coeffi-
cients A and B satisfy

A2 + 12A− 4B2A− 8B2 + 36 = 0.

The formula above only applies to the vertical isogeny generated by the point
P→. However, one can treat the other vertical isogeny generated by P← ̸= (0, 0)
similarly by observing that if E′ = E/⟨P←⟩, then E ∼= E′/⟨P→⟩. We thus get
almost the same formula as in Corollary 2 where the only difference is that the
coefficient A now takes the role of the image curve.

Corollary 3. Let A ∈ Mp(Z[(1 + π)/2]) be the Montgomery coefficient of EA

and let EC be the Montgomery curve isomorphic to EA/⟨P←⟩. Then the Montgomery
coefficients A and C satisfy

C2 + 12C − 4A2C − 8A2 + 36 = 0.

Observe that in Corollary 3 the monomials involving the Montgomery coeffi-
cient A are quite different compared to Corollary 2. This is in stark contrast to
the CSIDH setting (in particular Corollary 1) where in the first two equations the
monomials involving A are almost identical (up to sign). This “asymmetry” in
the polynomials is undesirable for Coppersmith’s method. In combination with
the fact that we only have two relations instead of three, we have to increase the
value k significantly in order to solve CI-HNPk for CSURF.

Theorem 7. Let p ≡ 7 mod 8 be a n-bit prime, and let ε > 0 be an arbitrarily
small constant. There exists a PPT algorithm A that solves CI-HNPk in the
CSURF setting for k = (3141 + ε)n under Heuristic 1.

Proof. The algorithm A proceeds like in the previous section. Given an instance
(Ma,Mb) of CI-HNPk, A first computes the 2-isogenous coefficients Mac and
Mad by quotienting out ⟨P→⟩ and ⟨P←⟩ on Ma, respectively. It then submits the

The Hidden Number Problem for CSIDH and CSURF 27

Simulating OMSBk Solving CDH Solving DLOG

Thm. 6/7 [52]

Fig. 4. Overview of the reduction from simulating the oracle OMSBk to DLOG. Dashed
lines denote quantum reductions.

oracle queries OMSBk
(Ma,Mb) and OMSBk

(Mac,Mb), which yield the most signif-
icant bits of the coefficients Mab = CDH(Ma,Mb) and Mabc = CDH(Mac,Mb).
Lastly it uses Equation (19) to express the equation from Corollary 2 in terms
of mab and mabc, where mab and mabc are now small roots of size p10/41 of the
corresponding polynomial. The same process is repeated with the curve Mad and
Corollary 3. The small root mab is then found by Coppersmith’s method and
the bound for k follows from Theorem 4. Note that the monomials in Theorem 4
differ slightly from those appearing in Corollary 2 and Corollary 3 due to the
substitution mentioned in Equation (19). ⊓⊔

5.3 Hardness of Simulating OMSBk

The results from the previous sections can be directly used to analyze the hard-
ness of simulating the oracle OMSBk

. More concretely, simulating OMSBk
is quan-

tumly as hard as solving DLOG due to the equivalence of CDH and DLOG in
the CSIDH/CSURF setting. For simplicity we state the following result only for
CSIDH, the statement and proof for CSURF is completely analogous.

Corollary 4. Let p ≡ 3 mod 4 be an n-bit prime, O = Z[π] and k = (1324 + ε)n
for some arbitrary small constant ϵ > 0. Assume that there exists an efficient
(possibly quantum) algorithm A with

Pr[A(a ⋆ M, b ⋆ M) = OMSBk
(a ⋆ M, b ⋆ M)] = 1

where [a], [b] $← cl(O). Then there exists an efficient quantum algorithm B solving
DLOG in the CSIDH setting under Heuristic 1.

Proof. The reduction is straightforward and depicted in Figure 4. In a first step,
we use our algorithm developed in Theorem 6 to transform the algorithm A
into an algorithm A′ solving CDH under Heuristic 1. In a second step we can
simply use A′ (which still has success probability 1) together with the techniques
developed by [52] to construct the algorithm B solving DLOG. ⊓⊔

We currently require A to simulate OMSBk
perfectly. This is a direct con-

sequence of the fact that there is no obvious way to re-randomize the inputs
to the oracle OMSBk

such that we still get meaningful information about the
neighboring curves of ab ⋆ M .

28 Jonas Meers and Julian Nowakowski

6 Experimental Results

We implemented our new automated variant of Coppersmith’s method from
Theorem 2 in SageMath and used it to run our algorithms from Theorems 6
and 7 in practice.

CSIDH and CSURF results. We ran our algorithms from Theorems 6 and 7
using SageMath 9.7 on an AMD EPYC 7763 processor with 128 physical and 256
logical cores. As Table 1 shows, our algorithms perform well in practice and we
come close to our asymptotic bounds of k = 13

24n ≈ 0.542n and k = 31
41n = 0.756n

in a matter of minutes.
In every experiment Heuristic 1 was valid, i.e., we were always able to extract

the unknowns from the Gröbner basis. This confirms the correctness of our
heuristic algorithms.

Implementation Details. For constructing the set of shift-polynomials F , we
used in our experiments a slightly optimized implementation of Algorithm 2.
Instead of simply enumerating all possible shift-polynomials in Step 3 of the
algorithm, our implementation iterates over a carefully crafted tree of shift-
polynomials. The tree is constructed only implicitly, and our implementation
automatically detects (and ignores) some branches that are not worth visiting.
This results in a significant speed-up in practice.

The LLL lattice reduction step was performed using the recently published
flatter algorithm [42], which significantly outperforms SageMath’s native im-
plementation of LLL (which internally calls FPLLL).

For the Gröbner basis computation, we used SageMath’s native Gröbner
basis algorithm (which internally calls Singular) to compute Gröbner bases
over small finite fields F2,F3,F5,F7 . . ., and then recovered the desired roots via
Chinese remaindering.

7 Conclusion

In this work we analyzed the Commutative Isogeny Hidden Number Problem
and solved it for k = 13

24n (CSIDH) and k = 31
41n (CSURF) by using a new

and automated variant of Coppersmith’s method. Since the recovery rate for
CSURF is much worse compared to CSIDH, we conclude that in the context of
side-channel attacks, CSURF offers more resilience against exposing the most
significant bits of the shared key. Even more generally it seems to be advisable
that the class group cl(O) does not contain a small order subgroup, which is in
line with previous observations [11,38].

Furthermore, we gave a purely combinatorial restatement of Coppersmith’s
method that allows for near complete automation. In particular, we identified a
single step in Coppersmith’s method that, when optimized, yields provably opti-
mal results. We implemented our variant of Coppersmith’s method in SageMath

The Hidden Number Problem for CSIDH and CSURF 29

n k (known bits) m |M| (lattice dim.)
Runtime

F LLL GB

512 318 (62.11%) 3 27 < 1sec < 1sec < 1sec

512 302 (58.98%) 6 125 < 1sec 30sec 5sec

512 297 (58.00%) 9 343 2sec 8min 56sec

1024 634 (61.91%) 3 27 < 1sec 1sec 1sec

1024 601 (58.69%) 6 125 < 1sec 39sec 9sec

1024 589 (57.52%) 9 343 3sec 10min 2min

1792 1108 (61.83%) 3 27 < 1sec 1sec 1sec

1792 1051 (58.65%) 6 125 < 1sec 50sec 15sec

1792 1028 (57.37%) 9 343 3sec 13min 3min

n k (known bits) m |M| (lattice dim.)
Runtime

F LLL GB

512 438 (85.55%) 2 33 < 1sec 1sec < 1sec

512 419 (81.84%) 4 165 < 1sec 52sec 4sec

512 405 (79.10%) 6 469 1sec 16min 34sec

1024 874 (85.35%) 2 33 < 1sec 1sec < 1sec

1024 830 (81.05%) 4 165 < 1sec 1min 6sec

1024 808 (78.91%) 6 469 1sec 22min 57sec

1792 1528 (85.27%) 2 33 < 1sec 2sec 1sec

1792 1451 (80.97%) 4 165 < 1sec 2min 7sec

1792 1412 (78.79%) 6 469 1sec 31min 2min

Table 1. Experimental results for CSIDH / Theorem 6 (top) and CSURF / Theorem 7
(bottom) with n-bit prime p and k-bit MSB oracle, averaged over 10 runs each. The
columns m and |M| show the parameters m and |M| used in Coppersmith’s method.
The columns F , LLL and GB show the required runtime for constructing the set F ,
running LLL and computing the Gröbner basis, respectively. For every n and m, the
table shows the smallest k for which our algorithms were able to solve CI-HNPk.

and demonstrated its practicality by using it to solve the Commutative Isogeny
Hidden Number Problem. In particular, we gave highly simplified proofs for the
recovery bound of our algorithm that only rely on a mild heuristic.

Open Problems. Lastly we state some open problems. Improving the recovery
bound for either CSIDH or CSURF would of course be desirable. Apart from
incremental improvements coming from an improved Coppersmith lattice the
only other natural option seems to be to incorporate higher-degree isogenies.
This would yield more polynomial relations at the expense of higher total degrees

30 Jonas Meers and Julian Nowakowski

of said polynomials. It is currently not known whether this trade-off can be used
to increase the overall recovery rate. Alternatively, finding a completely different
approach to solving CI-HNP would be very intriguing.

Secondly, any improvements to Corollary 4 would be welcome, either by
extending the reduction to adversaries with non-negligible success probability or
by removing the condition on CSIDH/CSURF being effective group actions.

Thirdly, proving Heuristic 2 (even in some special cases) would be very in-
teresting as it would yield an efficient algorithm that can derive provably correct
recovery bounds.

Acknowledgements. We would like to thank Sabrina Kunzweiler for her help-
ful discussions and pointing us to the 4-isogenies in the CSIDH setting. Jonas
Meers was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972. Julian Nowakowski is funded by the DFG grant 465120249.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part II. LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg (Dec 2020).
https://doi.org/10.1007/978-3-030-64834-3 14

2. Aranha, D.F., Fouque, P.A., Gérard, B., Kammerer, J.G., Tibouchi, M., Za-
palowicz, J.C.: GLV/GLS decomposition, power analysis, and attacks on ECDSA
signatures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (Dec
2014). https://doi.org/10.1007/978-3-662-45611-8 14

3. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1 3

4. Boneh, D., Shparlinski, I.: On the unpredictability of bits of the elliptic curve Diffie-
Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212.
Springer, Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8 12

5. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits
of secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.)
CRYPTO’96. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (Aug 1996).
https://doi.org/10.1007/3-540-68697-5 11

6. Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 3–20. Springer, Heidelberg (Feb 2019).
https://doi.org/10.1007/978-3-030-32101-7 1

7. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.P. (eds.)
Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020. pp.
111–129. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-44223-1 -
7

8. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447.
Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-3-031-30589-4 15

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.1007/3-540-44647-8_12
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-031-30589-4_15

The Hidden Number Problem for CSIDH and CSURF 31

9. Castryck, W., Decru, T., Vercauteren, F.: Radical isogenies. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 493–519. Springer,
Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3 17

10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3 15

11. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irra-
tional endomorphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part II. LNCS, vol. 12106, pp. 523–548. Springer, Heidelberg (May 2020).
https://doi.org/10.1007/978-3-030-45724-2 18

12. Castryk, W.: Csidh on the surface (csurf) (2021), https://homes.esat.kuleuven.
be/~wcastryc/summer_school_csurf.pdf

13. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (May 1996). https://doi.org/10.1007/3-540-
68339-9 16

14. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 155–165. Springer, Heidel-
berg (May 1996). https://doi.org/10.1007/3-540-68339-9 14

15. Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (Sep 1997).
https://doi.org/10.1007/s001459900030

16. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

17. Dall, F., De Micheli, G., Eisenbarth, T., Genkin, D., Heninger, N.,
Moghimi, A., Yarom, Y.: CacheQuote: Efficiently recovering long-term se-
crets of SGX EPID via cache attacks. IACR TCHES 2018(2), 171–191
(2018). https://doi.org/10.13154/tches.v2018.i2.171-191, https://tches.iacr.

org/index.php/TCHES/article/view/879

18. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. Cryptology ePrint Archive, Report 2011/506
(2011), https://eprint.iacr.org/2011/506

19. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40349-1 25

20. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Group action key encapsulation and non-interactive key exchange in the QROM.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
36–66. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22966-
4 2

21. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the
DLP and CDHP for group actions. Cryptology ePrint Archive, Report 2018/1199
(2018), https://eprint.iacr.org/2018/1199

22. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of su-
persingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53887-6 3

https://doi.org/10.1007/978-3-030-64834-3_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45724-2_18
https://homes.esat.kuleuven.be/~wcastryc/ summer_school_csurf.pdf
https://homes.esat.kuleuven.be/~wcastryc/ summer_school_csurf.pdf
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/s001459900030
https://eprint.iacr.org/2006/291
https://doi.org/10.13154/tches.v2018.i2.171-191
https://tches.iacr.org/index.php/TCHES/article/view/879
https://tches.iacr.org/index.php/TCHES/article/view/879
https://eprint.iacr.org/2011/506
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-031-22966-4_2
https://doi.org/10.1007/978-3-031-22966-4_2
https://eprint.iacr.org/2018/1199
https://doi.org/10.1007/978-3-662-53887-6_3

32 Jonas Meers and Julian Nowakowski

23. H̊astad, J.: On using RSA with low exponent in a public key network. In: Williams,
H.C. (ed.) CRYPTO’85. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg (Aug
1986). https://doi.org/10.1007/3-540-39799-X 29

24. Herrmann, M., May, A.: Attacking power generators using unravelled lin-
earization: When do we output too much? In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (Dec 2009).
https://doi.org/10.1007/978-3-642-10366-7 29

25. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) Cryptography and Lattices, International Conference, CaLC 2001, Provi-
dence, RI, USA, March 29-30, 2001, Revised Papers. Lecture Notes in Com-
puter Science, vol. 2146, pp. 51–66. Springer (2001). https://doi.org/10.1007/3-
540-44670-2 6, https://doi.org/10.1007/3-540-44670-2_6

26. Jao, D., Jetchev, D., Venkatesan, R.: On the bits of elliptic curve Diffie-Hellman
keys. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 33–47. Springer, Heidelberg (Dec 2007)

27. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (Dec 2006).
https://doi.org/10.1007/11935230 18

28. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authen-
ticated key exchange from random self-reducibility on CSIDH. In: Hong, D.
(ed.) ICISC 20. LNCS, vol. 12593, pp. 58–84. Springer, Heidelberg (Dec 2020).
https://doi.org/10.1007/978-3-030-68890-5 4

29. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange
with optimal tightness. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 451–479. Springer, Heidelberg (Oct 2020).
https://doi.org/10.1007/978-3-030-81652-0 18

30. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische annalen 261, 515–534 (1982)

31. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 448–471. Springer, Heidelberg (Apr 2023).
https://doi.org/10.1007/978-3-031-30589-4 16

32. May, A.: Lattice-based integer factorisation: An introduction to coppersmith’s
method. In: Computational Cryptography: Algorithmic Aspects of Cryptology, p.
78–105. London Mathematical Society Lecture Note Series, Cambridge University
Press (2021)

33. May, A., Nowakowski, J., Sarkar, S.: Partial key exposure attack on short se-
cret exponent CRT-RSA. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part I. LNCS, vol. 13090, pp. 99–129. Springer, Heidelberg (Dec 2021).
https://doi.org/10.1007/978-3-030-92062-3 4

34. May, A., Nowakowski, J., Sarkar, S.: Approximate divisor multiples - factoring
with only a third of the secret CRT-exponents. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 147–167. Springer,
Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2 6

35. Merget, R., Brinkmann, M., Aviram, N., Somorovsky, J., Mittmann, J., Schwenk,
J.: Raccoon attack: Finding and exploiting most-significant-bit-oracles in TLS-
DH(E). In: Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021. pp. 213–230.
USENIX Association (Aug 2021)

https://doi.org/10.1007/3-540-39799-X_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-92062-3_4
https://doi.org/10.1007/978-3-031-07082-2_6

The Hidden Number Problem for CSIDH and CSURF 33

36. Montgomery, H., Zhandry, M.: Full quantum equivalence of group action DLog
and CDH, and more. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022,
Part I. LNCS, vol. 13791, pp. 3–32. Springer, Heidelberg (Dec 2022).
https://doi.org/10.1007/978-3-031-22963-3 1

37. Nguyen, P.Q.: The dark side of the hidden number problem: Lattice attacks on
dsa. In: Lam, K.Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptography and
Computational Number Theory. pp. 321–330. Birkhäuser Basel, Basel (2001)

38. Onuki, H., Takagi, T.: On collisions related to an ideal class of order 3 in CSIDH. In:
Aoki, K., Kanaoka, A. (eds.) IWSEC 20. LNCS, vol. 12231, pp. 131–148. Springer,
Heidelberg (Sep 2020). https://doi.org/10.1007/978-3-030-58208-1 8

39. Renes, J.: Computing isogenies between Montgomery curves using the action of
(0,0). Cryptology ePrint Archive, Report 2017/1198 (2017), https://eprint.

iacr.org/2017/1198

40. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472–503. Springer, Heidelberg
(Apr 2023). https://doi.org/10.1007/978-3-031-30589-4 17

41. Ryan, K., Heninger, N.: Cryptanalyzing MEGA in six queries. Cryptology ePrint
Archive, Report 2022/914 (2022), https://eprint.iacr.org/2022/914

42. Ryan, K., Heninger, N.: Fast practical lattice reduction through iterated compres-
sion. Cryptology ePrint Archive, Report 2023/237 (2023), https://eprint.iacr.
org/2023/237

43. Schoof, R.: Nonsingular plane cubic curves over finite fields. Jour-
nal of Combinatorial Theory, Series A 46(2), 183–211 (1987).
https://doi.org/https://doi.org/10.1016/0097-3165(87)90003-3

44. Shani, B.: On the bit security of elliptic curve Diffie-Hellman. In: Fehr, S. (ed.)
PKC 2017, Part I. LNCS, vol. 10174, pp. 361–387. Springer, Heidelberg (Mar 2017).
https://doi.org/10.1007/978-3-662-54365-8 15

45. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

46. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate texts in mathematics,
Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-09494-6, https://
cds.cern.ch/record/1338326

47. Takahashi, A., Tibouchi, M., Abe, M.: New Bleichenbacher records: Fault
attacks on qDSA signatures. IACR TCHES 2018(3), 331–371 (2018).
https://doi.org/10.13154/tches.v2018.i3.331-371, https://tches.iacr.org/

index.php/TCHES/article/view/7278

48. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on CRT-RSA: Better
cryptanalysis to full size encryption exponents. In: Malkin, T., Kolesnikov, V.,
Lewko, A.B., Polychronakis, M. (eds.) ACNS 15. LNCS, vol. 9092, pp. 518–537.
Springer, Heidelberg (Jun 2015). https://doi.org/10.1007/978-3-319-28166-7 25

49. Takayasu, A., Lu, Y., Peng, L.: Small CRT-exponent RSA revisited. In: Coron, J.S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 130–159.
Springer, Heidelberg (Apr / May 2017). https://doi.org/10.1007/978-3-319-56614-
6 5

50. Takayasu, A., Lu, Y., Peng, L.: Small CRT-exponent RSA revisited. Journal
of Cryptology 32(4), 1337–1382 (Oct 2019). https://doi.org/10.1007/s00145-018-
9282-3

51. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sciences 273, 238–241 (1971)

https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1007/978-3-030-58208-1_8
https://eprint.iacr.org/2017/1198
https://eprint.iacr.org/2017/1198
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2022/914
https://eprint.iacr.org/2023/237
https://eprint.iacr.org/2023/237
https://doi.org/https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1007/978-3-662-54365-8_15
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-0-387-09494-6
https://cds.cern.ch/record/1338326
https://cds.cern.ch/record/1338326
https://doi.org/10.13154/tches.v2018.i3.331-371
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://doi.org/10.1007/978-3-319-28166-7_25
https://doi.org/10.1007/978-3-319-56614-6_5
https://doi.org/10.1007/978-3-319-56614-6_5
https://doi.org/10.1007/s00145-018-9282-3
https://doi.org/10.1007/s00145-018-9282-3

34 Jonas Meers and Julian Nowakowski

52. Wesolowski, B.: Orientations and the supersingular endomorphism ring prob-
lem. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III.
LNCS, vol. 13277, pp. 345–371. Springer, Heidelberg (May / Jun 2022).
https://doi.org/10.1007/978-3-031-07082-2 13

53. Xu, J., Hu, L., Sarkar, S.: Cryptanalysis of elliptic curve hidden number prob-
lem from pkc 2017. Designs, Codes and Cryptography 88(2), 341–361 (Feb
2020). https://doi.org/10.1007/s10623-019-00685-y, https://doi.org/10.1007/

s10623-019-00685-y

54. Xu, J., Sarkar, S., Wang, H., Hu, L.: Improving bounds on elliptic curve hidden
number problem for ECDH key exchange. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part III. LNCS, vol. 13793, pp. 771–799. Springer, Heidelberg
(Dec 2022). https://doi.org/10.1007/978-3-031-22969-5 26

55. Yoneyama, K.: Post-quantum variants of ISO/IEC standards: Compact chosen
ciphertext secure key encapsulation mechanism from isogeny. In: Proceedings
of the 5th ACM Workshop on Security Standardisation Research Workshop. p.
13–21. SSR’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3338500.3360336

https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/978-3-031-22969-5_26
https://doi.org/10.1145/3338500.3360336

	Solving the Hidden Number Problem for CSIDH and CSURF via Automated Coppersmith

