
Correlation Cube Attack Revisited

Improved Cube Search and Superpoly Recovery
Techniques

Jianhua Wang1(B)[0009−0003−8895−676X], Lu Qin2,3(B)[0009−0009−0806−4838], and
Baofeng Wu4,5(B)[0000−0002−6567−9216]

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing, China

wangjianhua@amss.ac.cn
2 China UnionPay Co., Ltd., Shanghai, China

qinlu@unionpay.com
3 School of electronic information and electrical engineering, Shanghai Jiao Tong

University, Shanghai, China
4 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

wubaofeng@iie.ac.cn
5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China

Abstract. In this paper, we improve the cube attack by exploiting low-
degree factors of the superpoly w.r.t. certain ”special” index set of cube
(ISoC). This can be viewed as a special case of the correlation cube
attack proposed at Eurocrypt 2018, but under our framework more ben-
eficial equations on the key variables can be obtained in the key-recovery
phase. To mount our attack, one has two challenging problems: (1) ef-
fectively recover algebraic normal form of the superpoly and extract out
its low-degree factors; and (2) efficiently search a large quantity of good
ISoC s. We bring in new techniques to solve both of them.
First, we propose the variable substitution technique for middle rounds
of a cipher, in which polynomials on the key variables in the algebraic
expressions of internal states are substituted by new variables. This will
improve computational complexity of the superpoly recovery and promise
more compact superpolys that can be easily decomposed with respect to
the new variables. Second, we propose the vector numeric mapping tech-
nique, which seeks out a tradeoff between efficiency of the numeric map-
ping technique (Crypto 2019) and accuracy of the monomial prediction
technique (Asiacrypt 2020) in degree evaluation of superpolys. Combin-
ing with this technique, a fast pruning method is given and modeled by
MILP to filter good ISoC s of which the algebraic degree satisfies some
fixed threshold. Thanks to automated MILP solvers, it becomes practical
to comprehensively search for good cubes across the entire search space.
To illustrate the power of our techniques, we apply all of them to Triv-
ium stream cipher. As a result, we have recovered the superpolys of
three cubes given by Kesarwani et al. in 2020, only to find they do
not have zero-sum property up to 842 rounds as claimed in their pa-
per. To our knowledge, the previous best practical key recovery attack

2 Wang, J., et al.

was on 820-round Trivium with complexity 253.17. We put forward 820-,
825- and 830-round practical key-recovery attacks, in which there are
280 × 87.8%, 280 × 83% and 280 × 65.7% keys that could be practi-
cally recovered, respectively, if we consider 260 as the upper bound for
practical computational complexity. Besides, even for computers with
computational power not exceeding 252 (resp. 255), we can still recover
58% (resp. 46.6%) of the keys in the key space for 820 rounds (resp. 830
rounds). Our attacks have led 10 rounds more than the previous best
practical attack.

Keywords: Correlation cube attack · Variable substitution · Vector nu-
meric mapping · MILP · Trivium.

1 Introduction

Cube attack was introduced by Dinur and Shamir [8] at Eurocrypt 2009, which
is a chosen plaintext key-recovery attack. In performing such an attack, one
would like to express the outputs of a cryptosystem as Boolean functions on
the inputs, namely, key bits and plaintext bits (say, IV bits for stream ciphers).
By examining the integral properties of the outputs over some cubes, i.e., some
indices of plaintext variables, one can obtain equations for the so-called super-
polys over certain key bits of the cipher. After the introduction of cube attack,
several variants of it were proposed, including cube testers [1], dynamic cube
attack [9], conditional cube attack [16], division-property-based cube attack [22]
and correlation cube attack [19]. Among these, correlation cube attack was pro-
posed at Eurocrypt 2018 by Liu et al. [19]. It exploits correlations between the
superpoly fI of a cube and the so-called basis QI , which is a set of low-degree
Boolean functions over key bits such that fI can be expanded over them in terms
of fI =

⊕
h∈QI

h · qh. Then the adversary could utilize the obtained equations
regarding h to extract information about the encryption key.

Superpoly recovery has always been the most important step in a cube attack.
At the beginning, one can only guess the superpolys by performing experiments,
such as linearity tests [8] and degree tests [10]. It only became possible to recover
the exact expressions of superpolys for some cubes when the division property
was introduced to cube attacks.

Division property was introduced by Todo [21] in 2015, which turned out to
be a generalization of the integral property. The main idea is, according to the
parity of xu for all x in a multiset X is even or unknown, one can divide the
set of u’s into two parts. By applying the division property, Todo [21] improved
the integral distinguishers for some specific cryptographic primitives, such as
Keccak-f [3], Serpent [4] and the Simon family [2]. Then, the bit-based division
property was proposed in 2016 [24], which aimed at cryptographic primitives only
performing bit operations. It was also generalized to the three subsets setting to
describe the parity of xu for all x in X as not only even or unknown but also
odd. Since it is more refined than the conventional division property, integral
cryptanalysis against the Simon family of block ciphers was further improved.

Correlation Cube Attack Revisited 3

Afterwards, Xiang et al. [27] firstly transformed the propagation of bit-based
division property into a mixed integer linear programming (MILP) model, and
since then, one could search integral distinguishers by using off-the-shelf MILP
solvers.

At Crypto 2017, cube attack based on the division property was proposed by
Todo et al. [22]. One can evaluate values of the key bits that are not involved in
the superpoly of a cube by using the division property. If we already know the
superpoly is independent of most key bits, then we can recover the superpoly
by trying out all possible combinations of other key variables which may be
involved. At Crypto 2018, Wang et al. [25] improved the division-property-based
cube attack in both complexity and accuracy. They reduced the complexity of
recovering a superpoly by evaluating the upper bound of its degree. In addition,
they improved the preciseness of the MILP model by using the “flag” technique
so that one could obtain a non-zero superpoly. However, with these techniques,
it remains impossible to recover superpolys with high degrees or superpolys for
large-size cubes, as the time complexity grows exponentially in both cases.

Wang et al. [26] transformed the problem of superpoly recovery into evalu-
ating the trails of division property with three subsets, and one could recover
superpolys practically thanks to a breadth-first search algorithm and the pruning
technique. As a result, they successfully recovered the superpolys of large-size
ISoC s for 839- and 840-round Trivium practically, but only gave a theoretical at-
tack against 841-round Trivium. In [11], Hao et al. pointed out that the pruning
technique is not always so efficient. Therefore, instead of a breadth-first search
algorithm, they simply utilized an MILP model for three-subset division property
without unknown subset. As a result, they successfully recovered the superpoly
of 840-, 841- and 842-round Trivium with the aid of an off-the-shelf MILP solver.
At Asiacrypt 2020, Hu et al. [15] introduced the monomial prediction technique
to describe the division property and provided deeper insights to understand
it. They also established the equivalence between three-subset division property
without unknown subsets and monomial predictions, showing both of them were
perfectly accurate. However, the complexity of both techniques are very depen-
dent on the efficiency of the MILP solvers. Once the number of division trails
is very large, it is hard to recover superpolys by these two techniques, since the
MILP solver may not find all solutions in an acceptable time. Afterwards, Hu
et al. [14] proposed an improved framework called nested monomial prediction
to recover massive superpolys. Recently, based on this technique, He et al. [13]
proposed a new framework which contains two main steps: one is to obtain the
so-called valuable terms which contributes to the superpoly in the middle rounds,
and the other is to compute the coefficients of these valuable terms. To recover
the valuable terms, non-zero bit-based division property (NBDP) and core mono-
mial prediction (CMP) were introduced, which promoted great improvement to
the computational complexity of superpoly recovery.

In addition to superpoly recovery, degree evaluation of cryptosystems is also
an important issue in cube attacks, since the algebraic degree is usually used to
judge whether the superpoly is zero and to search for good ISoC s. In [18], Liu

4 Wang, J., et al.

introduced the numeric mapping technique and proposed an algorithm for de-
gree evaluation of nonlinear feedback shift register (NFSR) based cryptosystems,
which could give upper bounds of the degree. This method has low complexity
but the estimation is less accurate generally. For example, it performs badly
for Trivium-like ciphers when there exist adjacent indices in an ISoC. On the
other hand, Hu et al.’s monomial prediction technique [15] can promise accurate
degree evaluation, but the time consumption is too considerable which limits
its application in large-scale search. An algorithm seeking a trade-off between
accuracy and efficiency in degree evaluation has been missing in the literature.

The Trivium cipher [7], a notable member of the eSTREAM portfolio, has
consistently been a primary target for cube attacks. Notably, the advances in
cube attacks in recent years were significantly propelled by analysis of this ci-
pher [5,13,14]. When it comes to theoretical attacks on 840 rounds of Trivium and
beyond, the key challenge is to identify balanced superpolys. These superpolys
often encompass millions to billions of terms, generally involving the majority
of key bits. Due to the infeasibility of solving these high-degree equations, re-
searchers have resorted to exhaustively enumerating most potential keys. This
process simplifies the equations but often only results in the recovery of a hand-
ful of key bits. When it comes to practical attacks, we can look at the attacks
mentioned in [5]. Here, a thorough search for ISoC s with simpler superpolys,
such as linear or quadratic polynomials, is necessary. However, as the number of
rounds increases, smaller ISoC s increasingly produce complex superpolys, mak-
ing higher-round attacks infeasible. These complexities in superpolys obstruct
effective key recovery attacks, leading us to the question that how can we gain
more key information from the equation system to enhance the attack. In this
work, we propose methods to address this challenge.

Our contributions. To handle complex superpolys, leveraging the corre-
lation between superpolys and low-degree Boolean functions is a promising ap-
proach for key recovery. In this paper, we revisit the correlation cube attack and
propose an improvement by utilizing a significant number of so-called “special”
ISoC s whose superpolys have low-degree Boolean factors, improving both the
quantity and quality of equations obtained in the online phase. However, this
approach introduces two challenges: superpoly recovery and the search for good
ISoC s.

For superpoly recovery, we propose a novel and effective variable substitution
technique. By introducing new variables to replace complex expressions of key
bits and eliminating trails in intermediate states, we achieve a more compact
representation of the superpoly on these new variables, making it easier to fac-
torize. This technique also improves the computational complexity of superpoly
recovery, enabling us to effectively identify special ISoC s.

To search good ISoC s, a common method is to filter ISoC s based on a
comparison between the estimated algebraic degree and a fixed threshold. We
introduce the concept of vector degree for a Boolean function, which contains
more information than the conventional algebraic degree. We further employ a
new technique called “vector numeric mapping” to depict the propagation of vec-

Correlation Cube Attack Revisited 5

tor degrees in compositions of Boolean functions. As a result, we can iteratively
estimate an upper bound for the vector degree of the entire composite function.
Our vector numeric mapping technique outperforms Liu’s numeric mapping in
accuracy.

Furthermore, by studying properties of the vector numeric mapping, we intro-
duce a pruning technique to quickly filter out good ISoC s whose superpolys have
estimated degrees satisfying a threshold. We also construct an MILP model to
describe this process, promissing an efficient automated selection of good ISoC s.

Our techniques are applied to the Trivium stream cipher. Initially, we apply
our algorithms to three ISoC s proposed in [17], which were claimed to have
zero-sum distinguishers up to 842 rounds. However, it is verified that these
three ISoC s do not possess zero-sum properties for certain numbers of rounds.
Nevertheless, two of them still exhibit the 841-round zero-sum property, which
is the maximum number of rounds discovered so far for Trivium. Leveraging our
good ISoC search technique and superpoly recovery with variable substitution
technique, we mount correlation cube attacks against Trivium with 820, 825
and 830 rounds, respectively. As a result, there are 280 × 87.8%, 280 × 83% and
280 × 65.7% keys that can be practically recovered, respectively, if we consider
260 as the upper bound for practical computational complexity. Besides, even for
computers with computational power not exceeding 252, we can still recover 58%
of the keys in the key space for 820 rounds. For computers with computational
power not exceeding 255, we can recover 46.6% of the keys in the key space for
830 rounds. Our attacks have achieved a significant improvement compared to
the previous best practical attack [5], with up to 10 additional rounds recovered.
Furthermore, for the first time, the complexity for recovering 830 rounds is less
than 275, even surpassing the threshold of 260. Previous results on key recovery
attacks against Trivium and our results are compared in Table 1.

Organization. The rest of this paper is organized as follows. In Section 2,
we give some preliminaries including some notations and concepts. In Section
3, we review correlation cube attack and propose strategies to improve it. In
Section 4, we propose the variable substitution technique to improve the super-
poly recovery. In Section 5, we introduce the definition of vector degree for any
Boolean function and present an improved technique for degree evaluation. Then
we introduce an ISoC search method. In Section 6, we apply our techniques to
Trivium. Conclusions are given in Section 7.

2 Preliminaries

2.1 Notations

Let v = (v0, · · · , vn−1) be an n-dimensional vector. For any v,u ∈ Fn
2 , denote∏n−1

i=0 vui
i by vu or πu(v), and define an order v ≼ u (v ≽ u, resp.), which

means vi ≤ ui (vi ≥ ui, resp.) for all 0 ≤ i ≤ n− 1. For any u0, · · · ,um−1 ∈ Fn
2 ,

we use u =
∨m−1

i=0 ui ∈ Fn
2 to represent the bitwise logical OR operation, that is,

for 0 ≤ j ≤ n − 1, uj = 1 if and only if there exists an ui whose j-th bit equal
to 1. Use 1 and 0 to represent the all-one and all-zero vector, respectively.

6 Wang, J., et al.

Table 1. A summary of key-recovery attacks against Trivium

Attack # of Off-line phase On-line Total # of
Ref.

type Round size of ISoC # of ISoC s phase time keys

Practical

672 12 63 217 218.56 280 [8]
767 28-31 35 245 245.00 280 [8]
784 30-33 42 238 239.00 280 [10]
805 32-38 42 238 241.40 280 [30]
806 34-37 29 235 239.88 280 [20]
808 39-41 37 243 244.58 280 [20]
815 44-46 35 245 247.32 280 [5]
820 48-51 30 250 253.17 280 [5]
820 38 213 251 252 279.2 Sect.6.5
820 38 213 251 260 279.8 Sect.6.5
825 41 212 253 254 279.3 Sect.6.5
825 41 212 253 260 279.7 Sect.6.5
830 41 213 254 255 278.9 Sect.6.5
830 41 213 254 260 279.4 Sect.6.5

Theoretical

799 32-37 18 262 262.00 280 [10]
802 34-37 8 272 272.00 280 [28]
805 28 28 273 273.00 280 [19]
832 72 1 279 279.01 280 [22]
832 72 1 279 279.01 280 [23]
832 72 1 279 279.01 280 [26]
835 72 4 279 < 279.01 280 [29]
835 35 41 275 275.00 280 [19]
840 75 3 277 277.32 280 [15]
840 78 2 279 279.58 280 [11]
841 78 2 279 279.58 280 [11]
841 76 2 278 278.58 280 [15]
842 76 2 279 278.58 280 [15]
842 78 2 279 279.58 280 [12]
843 54-57,76 5 275 276.58 280 [14]
843 78 2 279 279.58 280 [20]
844 54-55 2 278 278.00 280 [14]
845 54-55 2 278 278.00 280 [14]
846 51-54 6 251 279.00 280 [13]
847 52-53 2 252 279.00 280 [13]
848 52 1 252 279.00 280 [13]

Correlation Cube Attack Revisited 7

For a set I, denote its cardinality by |I|. For I ⊂ [n] = {0, 1, · · · , n − 1},
let Ic be its complement. For an n-dimensional vector x, let xI represent the
|I|-dimensional vector (xi0 , · · · , xi|I|−1

) for I = {i0, · · · , i|I|−1}. Note that we
always list the elements of I in an increasing order to eliminate ambiguity.

In this paper, we always distinguish j ∈ Z2d with a d-bit vector u in the
sense that

∑d−1
k=0 uk2

k = j.

2.2 Algebraic Normal Form and Algebraic Degree of Boolean
Functions

An n-variable Boolean function f can be uniquely written in the form f(x) =⊕
u∈Fn

2
aux

u, which is called the algebraic normal form (ANF) of f . If the term

xu appears in f , i.e., au = 1, we denote xu → f . Otherwise, denote xu ↛ f .
For an index set I ⊂ [n] with size d, if xI are considered as variables and xIc

are considered as parameters in f , we can write the ANF of f w.r.t. xI as

f(x) =
⊕
v∈Fd

2

gv(xIc)xv
I ,

where gv(xIc) =
⊕

{u∈Fn
2 |uI=v} aux

uIc

Ic .

The algebraic degree of f w.r.t. xI is defined as

deg(f)xI
= max

v∈Fd
2

{wt(v) | gv(xIc) ̸= 0},

where wt(v) is the Hamming weight of v.

2.3 Cube Attack

The cube attack was proposed by Dinur and Shamir in [8], which is essentially
an extension of the higher-order differential attack. Given a Boolean function f
whose inputs are x ∈ Fn

2 and k ∈ Fm
2 , and given a subset I = {i0, · · · , id−1} ⊂

[n], we can write f as

f(x,k) = fI(xIc ,k) · x1
I + qI(xIc ,k),

where each term in qI is not divisible by x1
I . Let CI , called a cube (defined by I),

be the set of vectors x whose components w.r.t. the index set I take all possible
2d values and other components are undetermined. I is called the index set of
the cube (ISoC). For each y ∈ CI , there will be a Boolean function with n− d
variables derived from f . Summing all these 2d derived functions, we have⊕

CI

f(x,k) = fI(xIc ,k).

The polynomial fI is called the superpoly of the cube CI or of the ISoC I.
Actually, fI is the coefficient of x1

I in the ANF of f w.r.t. xI . If we assign all
the values of xIc to 0, fI becomes the coefficient of xu in f , which is a Boolean
function in k, where ui = 1 if and only if i ∈ I. We denote it by Coe(f,xu).

8 Wang, J., et al.

2.4 Correlation Cube Attack

The correlation cube attack was proposed at Eurocrypt 2018 by Liu et al. [19].
The objective and high-level idea of this attack is to obtain key information
by exploiting the correlations between superpolys and their low-degree basis,
thereby deriving equations for the basis rather than the superpolys.

In mathematical terms, for an ISoC I, denote the basis of a superpoly fI as
QI = {h1, · · · , hr}, such that hi has low degree w.r.t. k and

fI(xJ ,k) =

r⊕
i=1

hiqi,

where J ⊂ Ic. This attack primarily works in two phases:

1. Preprocessing phase (see Algorithm 4): In this stage, the adversary tries
to obtain a basis QI of the superpoly fI and add the tuples (I, hi, b) leading
to Pr(hi = b | fI) greater than a threshold p into Ω, where Pr(hi = b | fI) is
the probability of hi = 0 (or hi = 1) given that fI is zero constant (or not)
on xJ for a random fixed key, respectively.

2. Online phase (see Algorithm 5): The adversary randomly chooses α values
for non-cube public bits, and computes corresponding values of the superpoly
fI to check whether it is zero constant or not. If all the values of fI are
zero, for each (I, hi, 0) in Ω the equation hi = 0 holds with probability
greater than p. Otherwise, for each (I, hi, 1) in Ω the equation hi = 1 holds
with probability greater than p. If all the hi’s are balanced and independent
with each other, the adversary would recover r-bit key information with a
probability greater than pr by solving these r equations.

This method, though intricate, provides a solution for dealing with high-
degree superpolys, and has demonstrated effectiveness in extending theoretical
attacks on Trivium to more rounds.

2.5 Superpoly Recovery With Monomial Prediction/Three-subset
Division Property Without Unknown Subset

In [15], Hu et al. established the equivalence between monomial prediction and
three-subset division property without unknown subset [11], showing both tech-
niques could give accurate criterion on the existence of a monomial in f . Here we
take the monomial prediction technique as an example to explain how to recover
a superpoly.

For a vector Boolean function f = fr−1 ◦ · · · ◦ f0, denote the input and
output of fi by xi and xi+1 respectively. If any πui

(xi)→ πui+1
(xi+1), i.e., the

coefficient of πui
(xi) in πui+1

(xi+1) is nonzero, then we call

πu0
(x0)→ πu1

(x1)→ · · · → πur−1
(xr−1)

a monomial trail from πu0(x0) to πur−1(xr−1), denoted by πu0(x0)⇝ πur−1(xr−1).
If there is no trail from πu0

(x0) to πur−1
(xr−1), we denote πu0

(x0) ̸⇝ πur−1
(xr−1).

Correlation Cube Attack Revisited 9

The set of all trails from πu0(x0) to πur−1(xr−1) are denoted by πu0(x0) ⋊⋉
πur−1

(xr−1). Obviously, for any 0 < i < r − 1, it holds that

|πu0
(x0) ⋊⋉ πur−1

(xr−1)| =
∑
ui

|πu0
(x0) ⋊⋉ πui

(xi)| · |πui
(xi) ⋊⋉ πur−1

(xr−1)|.

Theorem 1 (Monomial prediction [11,15]). We have πu0
(x0)→ πur−1

(xr−1)
if and only if

|πu0(x0) ⋊⋉ πur−1(xr−1)| ≡ 1 (mod 2).

That is, πu0
(x0)→ πur−1

(xr−1) if and only if, for any 0 < i < r − 1,

|πu0
(x0) ⋊⋉ πur−1

(xr−1)| ≡
∑

πui
(xi)→πur−1

(xr−1)

|πu0
(x0) ⋊⋉ πui

(xi)| (mod 2).

Theorem 2 (Superpoly recovery [11,15]). Let f be a Boolean function with
input x and k, and f = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x,k). When setting xIc = 0, the
superpoly of an ISoC I is

Coe(f,xu) =
⊕

|kwxu⋊⋉f |≡1 (mod 2)

kw,

where uI = 1 and uIc = 0.

MILP model for monomial trails. It is a difficult task to search all the mono-
mial trails manually. Since Xiang et al. [27] first transformed the propagation
of bit-based division property into an MILP model, it only becomes possible to
solve such searching problems by using off-the-shelf MILP solvers. To construct
an MILP model for the monomial trail of a Boolean function, one needs only to
model three basic operations, i.e., COPY, AND and XOR. Please refer to Appendix
A for details.

2.6 Nested Monomial Prediction With NBDP and CMP Techniques

At Asiacrypt 2021, Hu et al. [14] proposed a framework, called nested monomial
prediction, to exactly recover superpolys. For a Boolean function f(x,k) = fr−1◦
fr−2◦· · ·◦f0(x,k), denote the input and output of fi by yi and yi+1 respectively.
To compute Coe(f,xu), the process is as follows:

1. Set n = r − 1, Yn = {f} and set a polynomial p = 0.
2. Choose l such that 0 < l < n with certain criterion, and set Yl = ∅ and

Tl = ∅.
3. Express each term in Yn with yl by constructing and solving MILP model

of monomial prediction and save the terms πul
(yl) satisfying that the size

of {πun
(yn) ∈ Yn | πul

(yl)→ πun
(yn)} is odd into Tl.

10 Wang, J., et al.

4. For each πul
(yl) ∈ Tl, compute Coe(πul

(yl),x
u) by constructing and solving

MILP model of monomial prediction. If the model about πul
(yl) is success-

fully solved with acceptable time, update p by p⊕Coe(πul
(yl),x

u) and save
the unsolved πul

(yl) into Yl.

5. If Yl ̸= ∅, set n = l and go to Step 2. Otherwise, return the polynomial p.

The idea of Step 3 and Step 4 comes from Theorem 1 and Theorem 2, i.e.,

Coe(f,xu) =
⊕

πun (yn)→f

Coe(πun(yn),x
u) (1)

=
⊕

πun (yn)→f

⊕
πul

(yl)→yn

Coe(πul
(yl),x

u) (2)

=
⊕

πul
(yl)∈Tl

Coe(πul
(yl),x

u) (3)

= p⊕

 ⊕
πul

(yl)∈Yl

Coe(πul
(yl),x

u)

 . (4)

Since the number of monomial trails grows sharply as the number of rounds
of a cipher increases, it becomes infeasible to compute a superpoly for a high
number of rounds with nested monomial prediction. At Asiacrypt 2022, He et
al. [13] proposed new techniques to improve the nested monomial prediction.
They no longer took the way of trying to solve out the coefficient of xu in πul

(yl)
at multiple numbers of middle rounds. Instead, for a fixed number of middle
round rm, they focused on recovering a set of valuable terms (see Definition
1), denoted by VTrm , and then computing coefficient of xu in every valuable
term. They discard the terms πurm

(yrm) satisfying there exists no kw such that
kwxu ⇝ πurm

(yrm), i.e., Coe(πurm
(yrm),xu) = 0 in Eq. (1) for n = rm. The

framework of this technique is as follows:

1. Try to recover VTrm . If the model is solved within an acceptable time, go to
Step 2.

2. For each term πurm
(yrm) in VTrm , compute Coe(πurm

(yrm),xu) and then
sum all of them.

To recover VTrm , He et al. proposed two techniques: non-zero bit-based division
property (NBDP) and core monomial prediction (CMP), which led to great
improvement of the complexity of recovering the valuable terms compared to
nested monomial prediction. For details, please refer [13].

Definition 1 (Valuable terms [13]). For a Boolean function f(x,k) = fr−1◦
fr−2◦· · ·◦f0(x,k), denote the input and output of fi by yi and yi+1, respectively.
Given 0 ≤ rm < r, if a term πurm

(yrm) satisfies (1) πurm
(yrm) → f and

(2) ∃kw such that kwxu ⇝ πurm
(yrm), then it is called a valuable term of

Coe(f,xu) at round rm.

Correlation Cube Attack Revisited 11

3 Improvements to Correlation Cube Attack

As the number of rounds of a cipher increases, it becomes infeasible to search
small-size ISoC s with low-degree superpolys. Correlation cube attack [19] pro-
vides a viable solution to recover keys by using the correlation property between
keys and superpolys, allowing for the use of high-degree superpolys. However,
the correlation cube attack has not shown significant improvements or practical
applications since its introduction. We revisit this attack first and then propose
strategies to improve it.

For convenience, we will continue to use the notations from Section 2.4, where

fI(xJ ,k) =

r⊕
i=1

hiqi.

In the online phase of a correlation cube attack, the adversary computes the
values of fI for all possible values of xJ . Using these values, the adversary can
make guesses about the value of hi in QI . The guessing strategy is as follows:
for the tuple (I, hi, 1) satisfying Pr(hi = 1 | fI) > p, if there exists a value of fI
is 1, guess hi = 1; for the tuple (I, hi, 0) satisfying Pr(hi = 0 | fI) > p, if fI ≡ 0,
guess hi = 0. Therefore, the adversary can obtain some low-degree equations
over k.

Now we examine the probability of one such equation being correct. For
certain i, in the first case, the success probability is Pr(hi = 1 | fI ̸≡ 0). If r > 1,
and fI = 1, qi = 1 and

⊕
j ̸=i hjqj = 1 for some value of xIc , then we have

hi = 0. That is, the guess about hi is incorrect. In the second case, the success
probability is Pr(hi = 0 | fI ≡ 0). If r > 1 and fI ≡ 0, there still exists the
possibility that hi = 1 and qi ≡

⊕
j ̸=i hjqj , leading to incorrect guess of hi.

Therefore, since in the case r > 1 only probabilistic equations can be ob-
tained, we first improve the strategy by constraining r = 1. That is, we consider
the case

fI = hq,

and call the ISoC I satisfying this condition a “special” ISoC. Note that now
the success probability becomes 1 for the first case, and the fail probability for
the second case is actually equal to Pr(h = 1, q ≡ 0). Considering there are a set
of special ISoC s {I1, · · · , Im} such that fIi = hqi, we can modify the strategy as
follows: if ∃i such that fIi ̸≡ 0, guess h = 1; otherwise, guess h = 0. The success
probability is still 1 for the first case. The fail probability for the second case
is now reduced to Pr(h = 1, q1 ≡ 0, . . . , qm ≡ 0). In summary, we can improve
the success probability of the guessing by searching for a large number of special
ISoC s.

Based on the above observations, we propose the improved correlation cube
attack in Algorithm 1 and Algorithm 2. This attack is executed in two phases:

1. Preprocessing phase:

a. Identify special ISoC s.

12 Wang, J., et al.

b. For each h, gather all the special ISoC I for which h is a factor of fI
into a set Th.

c. To reduce the number of equations derived from wrong guesses of h,
for those h whose success probability in the second case is at or below
a threshold p, they will be exclusively guessed in the first case. Their
associated Th are then added to a set T1.

d. The remaining h will be guessed in both cases with their associated Th

forming a set T .
2. Online phase:

a. Computes the value of fI for each ISoC I.
b. For every Th in T , make a guess on the value of h based on fI ’s value

for all I in Th.
c. If for any Th in T1, the values of fI for all I in Th satisfy the condition in

the first case, then h = 1. Otherwise, no guess is formulated concerning
h.

d. Store the equations h = 1 in to a set G1, while store the other equations
into a set G0. Note that only equations in G0 may be incorrect.

e. Using these derived equations along with partial key guesses, we can try
to obtain a candidate of the key. If verifications for all partial key guesses
do not yield a valid key, it indicates that there exist incorrect equations.
In this case, modify some equations from G0 and solve again until a valid
key is obtained. Repeat this iteration until the correct key is ascertained.

A crucial factor for the success of this attack is to acquire a significant number
of special ISoC s. To achieve this goal, the first step is to search for a large number
of good ISoC s and recover their corresponding superpolys. Then, low-degree
factors of these superpolys need to be computed.

Using degree estimation techniques is one of the common methods for search-
ing cubes. In Section 5, we will first introduce a vector numeric mapping tech-
nique to improve the accuracy of degree estimation. By combining this attack,
we will propose an algorithm for fast search of lots of good ISoC s on a large
scale.

To our knowledge, it is difficult to decompose a complicated Boolean polyno-
mial. To solve this problem, we propose a novel and effective technique to recover
superpolys in Section 4. Using this technique, not only the computational com-
plexity for recovering superpolys can be reduced, making it feasible to recover a
large number of superpolys, but also it allows for obtaining compact superpolys
that are easy to decompose.

4 Recover Superpolys From A Novel Perspective

4.1 Motivation

As discussed in Section 3, we need lots of special ISoC s to improve the correla-
tion cube attack. On the one hand, it is still difficult to compute the factor of

Correlation Cube Attack Revisited 13

Algorithm 1: Preprocessing Phase of Improved Correlation Cube At-
tacks

1 Generate a set I of ISoC ’s;
2 T = ∅, and T1 = ∅;
3 for each ISoC I in I do
4 Recover the superpoly fI ;
5 for each low-degree factor h of fI do
6 If Th ∈ T , set Th = Th ∪ {I}; Otherwise, insert Th = {I} into T ;
7 end

8 end
9 for Th in T do

10 Estimate the conditional probability Pr(h = 0 | fI = 0 for ∀I ∈ Th); If its
value is <= p, insert Th into T1 and remove Th from T .

11 end
12 return T and T1.

Algorithm 2: Online Phase of Improved Correlation Cube Attacks

1 Require: T and T1;
2 I =

⋃
Th∈T ∪T1

Th

3 G0 = ∅ and G1 = ∅;
4 for each ISoC I in I do
5 Compute the sum of the output function f over all values in the cube CI ,

i.e., the value of the superpoly fI ;
6 end
7 for Th in T do
8 if for any I ∈ Th the value of fI is equal to 0 then
9 Set G0 = G0 ∪ {h = 0};

10 else
11 Set G1 = G1 ∪ {h = 1};
12 end

13 end
14 for Th in T1 do
15 if there exists I ∈ Th s.t. the value of fI is equal to 1 then
16 Set G1 = G1 ∪ {h = 1};
17 end

18 end
19 Set e = 0;
20 for all possible choices of e equations from G0 do
21 Reset h = 1 for these e equations, and remain others in G0;
22 Solve these |G0|+ |G1| equations and check whether the solutions are

correct;
23 end
24 If none of the solutions is correct, set e = e+ 1 and go to Step 20.

14 Wang, J., et al.

a complicated polynomial effectively with current techniques to our best knowl-
edge. On the other hand, the efficiency of recovering superpolys needs to be
improved in order to recover a large number of superpolys within an accetable
time. Therefore, we propose new techniques to address the aforementioned is-
sues. Let f(x,k) = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x,k) and denote the input and output
of fi by yi and yi+1, respectively. Here we adopt the notations used in the
monomial prediction technique (see Section 2.5). Since

Coe(f,xu) =
⊕

πurm
(yrm)

Coe(f, πurm
(yrm))Coe(πurm

(yrm),xu)

=
⊕

πurm
(yrm)→f

Coe(πurm
(yrm),xu)

=
⊕

πurm
(yrm)→f and ∃w s.t. kwxu⇝πurm

(yrm)

Coe(πurm
(yrm),xu).

By Definition 1, the superpoly is equal to

Coe(f,xu) =
⊕

πurm
(yrm)∈VTrm

Coe(πurm
(yrm),xu).

Therefore, recovering a superpoly requires two steps: obtaining the valuable
terms VTrm and recovering the coefficients Coe(πurm

(yrm),xu). The specific
steps are as follows:

1. Try to obtain VTrm . If the model is solved within an acceptable time, go to
Step 2.

2. For each term πurm
(yrm) in VTrm , compute Coe(πurm

(yrm),xu) with our
new techniques and sum them.

We will provide a detailed explanation of the procedures for each step.

4.2 Obtain Valuable Terms

One important item to note about the widly used MILP solver, the Gurobi
optimizer, is that model modifications are done in a lazy fashion, meaning that
effects of modifications of a model are not seen immediately. We can set up an
MILP model with callback function indicating whether the optimizer finds a new
solution. Algorithm 6 shows the process of how to obtain the rm-round Valuable
Terms. The main steps are:

1. Establish a modelM to search for all trails kwxu ⇝ πur1
(yr1)⇝ · · ·⇝ f .

2. Solve the modelM. Once a trail is found, go to Step 3. If there is no solution,
go to Step 4.

3. (VTCallbackFun) Determine whether πurm
(yrm) → f by the parity of the

number of trails πurm
(yrm) ⇝ f . If πurm

(yrm) → f , add πurm
(yrm) to the

set VTrm . Remove all trails from M that satisfy kwxu ⇝ πurm
(yrm) ⇝ f .

Go to the Step 2.

Correlation Cube Attack Revisited 15

4. Return the Valuable Terms VTrm .

Note that for each πurm
(yrm) satisfying πurm

(yrm)⇝ f , the parity of the num-
ber of trails is calculated only once due to the removal of all trails satisfying
kwxu ⇝ πurm

(yrm)⇝ f .
He et al. [13] also applied the same framework, but they used different tech-

niques. By combining their NBDP and DBP techniques, we can further improve
the efficiency of recovering VTrm . We will show the results of experiments in
Section 6.

4.3 Variable Substitution Technique for Coefficient Recovery

For a Boolean function f(x,k) = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x,k) whose inputs are
x ∈ Fn

2 and k ∈ Fm
2 , denote the input and output of fi by yi and yi+1, re-

spectively. We study about the problem of recovering Coe(πurm
(yrm),xu) at

middle rounds from an algebraic perspective. Let
←−−
frm denote frm−1 ◦ · · · ◦ f0,

i.e., yrm =
←−−
frm(x,k). Assume the algebraic normal form of

←−−
frm in x is

←−−
frm =

⊕
v∈Fn

2

hv(k)x
v.

Then one could get that Coe(πurm
(yrm),xu) is an XOR of some products over

hv(k). Assume that the number of different non-constant hv[j]’s is t for all
v and j, where hv[j] represents the j-th component of hv. Now we introduce
new intermediates denoted by z to substitute these t hv[j]’s. Without loss of
generality, assume z = d(k), where d[i] is equal to a certain non-constant hv[j].

From the ANF of
←−−
frm , it is natural to derive the vectorial Boolean function grm

such that yrm = grm(x, z), whose ANF in x and z can be written as

grm [j] =
⊕
v

av,jz
cv,jxv,

where grm [j] represents j-th component of grm , and av,j ∈ F2 and cv,j ∈ Ft
2 are

both determined by v and j.
Example 1 serves as an illustration of the process of variable substitution. The

transition from round 0 to round rm with (k0k1⊕k2k5⊕k9+k10)(k2k7⊕k8)x0x2x3

will have at least 4 * 2 = 8 monomial trails. But after variable substitution,
there remains only one trail z0z2x0x2x3, which means we have consolidated 8
monomial trails into a single one. As the coefficients become more intricate and
the number of terms in the product increases, the magnitude of this reduction
becomes more pronounced. Additionally, it is evident that this also makes the
superpoly more concise. In general, the more compact the superpoly is, the easier
it is to factorize.

Example 1. Assume yrm = grm(x,k) = [(k0k1 ⊕ k2k5 ⊕ k9 + k10)x0x2 ⊕ (k3 ⊕
k6)x5, (k2k7⊕k8)x3⊕x6x7]. Through variable substitution, all coefficients within

16 Wang, J., et al.

yrm , including k0k1 ⊕ k2k5 ⊕ k9 + k10, k3 ⊕ k6, and k2k7 ⊕ k8, will be replaced
with new variables z0, z1, and z2, respectively. Then yrm could be rewritten as
yrm = grm(x, z) = [z0x0x2 ⊕ z1x5, z2x3 ⊕ x6x7].

Therefore, we take such a way of substituting variables at the middle round
rm to recover Coe(πurm

(yrm),xu), and the process is as follows:

1. Compute the ANF of yrm in x.

2. Substitute all different non-constant hv[j] for all v and j by new variables
z.

3. Recover Coe(πurm
(yrm),xu) in z by monomial prediction.

In fact, to solve Coe(πurm
(yrm),xu) in z by monomial prediction is equiv-

alent to find all possible monomial trails zcxu ⇝ πurm
(yrm) about c. We can

construct an MILP model to describe all feasible trails.

Model for recovering Coe(πurm
(yrm), xu) in z. To describe monomial

prediction into an MILP model, we actually need only to construct an MILP
model to describe all the trails for grm . Since the ANF of grm is known, three
consecutive operations Copy → And → XOR are sufficient to describe grm . The
process is as follows:

– [Copy] For each xi (resp. zi), the number of copies is equal to the number of
monomials divisible by xi (resp. zi) contained in grm [j] for all j.

– [And] Generate all monomials contained in grm [j] for all j.

– [XOR] According to the ANF of each grm [j], collect monomials using XOR to
form grm [j].

We give an example to show how to describe grm by Copy → And → XOR. The
algorithm for recovering Coe(πurm

(yrm),xu) can be found in Algorithm 3.

Example 2. If yrm = grm(x, z) = (x0x1x2 ⊕ x0z0 ⊕ z1, x2 ⊕ z0z1 ⊕ z0), we can
describe grm by the following three steps.

(x0, x1, x2, z0, z1)
Copy−→ (x0, x0, x1, x2, x2, z0, z0, z0, z1, z1)

And−→

(x0x1x2, x0z0, z1, x2, z0z1, z0)
XOR−→ (x0x1x2 ⊕ x0z0 ⊕ z1, x2 ⊕ z0z1 ⊕ z0)

Discussion. We have given a method of describing grm into an MILP model,
which is easy to understand and implement. In general, there may be other
ways to construct the MILP model for a concrete grm . Of course, different ways
do not affect the correctness of the coefficients recovered. It is difficult to find
theoretical methods to illustrate what kind of way of modeling grm is easier to
solve. In order to verify the improvement of our variable substitution technique
over previous methods, we will compare the performance by some experiments.

Correlation Cube Attack Revisited 17

Algorithm 3: Coefficient Recovery with Variable Substitution

Input: u, urm and the ANF of grm

Output: q = Coe(πurm
(yrm),xu)

1 Declare an empty MILP modelM. Let a be n+ t MILP variables ofM
corresponding to the n+ t components of x||z.

2 M.con← ai = ui for all i ∈ [n].
3 UpdateM according to the function grm and denote b as the output state of

grm .
4 M.con← bi = urm [i] for all i.
5 M.optimize().
6 Prepare a hash table H whose key is t-bit string and value is counter.
7 for each feasible solution ofM do
8 Let c denote the solution (an, · · · , an+t−1).
9 H[c]← H[c] + 1.

10 end
11 Prepare a polynomial q ← 0.
12 for each c satisfying H[c] is odd do
13 q ← q ⊕ zc.
14 end

5 Improved Method for Searching A Large Scale of
Cubes

The search of ISoC s in cube attacks often involves degree evaluations of cryp-
tosystems. While the numeric mapping technique [18] offers lower complexity,
it performs not well for Trivium-like ciphers when dealing with sets of adjacent
indices. This limitation arises from the repeated accumulation of estimated de-
grees due to the multiplications of adjacent indices during updates. Although the
monomial prediction technique [15] provides exact results, it is time-intensive.
Thus, efficiently obtaining the exact degree of a cryptosystem remains a chal-
lenge. To efficiently search for promising cubes with adjacent indices on a large
scale, we propose a compromise approach for degree evaluation called the “vec-
tor numeric mapping” technique. This technique yields a tighter upper bound
than the numeric mapping technique while maintaining lower time complexity
than monomial prediction. Additionally, we have developed an efficient algorithm
based on an MILP model for large-scale search of ISoC s.

5.1 The Numeric Mapping

Let Bn be the set consisting of all n-variable Boolean functions. The numeric
mapping [18], denoted by DEG, is defined as

DEG : Bn × Zn −→ Z

(f,d) 7−→ max
au ̸=0

{
n−1∑
i=0

u[i]d[i]

}
,

18 Wang, J., et al.

where au is the coefficient of the term xu in the ANF of f .
Let g = (g1, . . . , gn) be an (m,n)-vectorial Boolean function, i.e. gi ∈ Bm,

1 ≤ i ≤ n. Then for f ∈ Bn, the numeric degree of the composite function
h = f ◦ g = f(g1, . . . , gn), denoted by DEG(h), is defined as DEG(f,dg), where
dg[i] ≥ deg(g[i]) for all 0 ≤ i ≤ n − 1. The algebraic degree of h is always
no greater than DEG(h), therefore, the algebraic degrees of internal states of an
NFSR-based cryptosystem can be estimated iteratively by using the numeric
mapping.

5.2 The Vector Numeric Mapping

Firstly, we introduce the definition of vector degree of a Boolean function, from
which we will easily understand the motivation of the vector numeric mapping.
For the sake of simplicity, let deg(g1, . . . , gn) represent (deg(g1), . . . ,deg(gn)).

Definition 2 (Vector Degree). Let f be an n-variable Boolean function rep-
resented w.r.t. xI as

f(x) =
⊕
u∈Fd

2

gu(xIc)xu
I ,

where I ⊂ [n], |I| = d. The vector degree of f w.r.t. x and the index set I,
denoted by vdeg[I,x], is defined as

vdeg[I,x](f) = deg(gu0
, gu1

, . . . , gu
2d−1

)xIc
=
(
deg(gu0

)xIc
, . . . ,deg(gu

2d−1
)xIc

)
,

where uj satisfies
∑d−1

k=0 uj [k]2
k = j, 0 ≤ j ≤ 2d − 1.

When we do not emphasize I and x, we abbreviate vdeg[I,x] as vdegI or
vdeg. Similarly, for a vectorial Boolean function g = (g1, . . . , gn), we denote the
vector degree of g by vdeg(g) = (vdeg(g1), . . . ,vdeg(gn)).

According to Definition 2, it is straightforward to get an upper bound of the
vector degree of f , which is shown in Proposition 1.

Proposition 1. For any 0 ≤ j < 2|I|, vdeg[I,x](f)[j] ≤ n− |I|.

Moreover, it is obvious that the vector degree of f contains more information
about f than the algebraic degree. We can also derive the algebraic degree of f
from its vector degree, that is,

deg(f) = max
0≤j<2|I|

{vdegI(f)[j] + wt(j)}.

Therefore, the upper bound of the algebraic degree can be estimated by the
upper bound of the vector degree.

Corollary 1. Let v be an upper bound of the vector degree of f , i.e., vdeg[I,x](f) ≼
v. Then we have

deg(f) ≤ max
0≤j<2|I|

{min {v[j], n− |I|}+wt(j)} .

Correlation Cube Attack Revisited 19

In fact, the algebraic degree of f is the degenerate form of the vector degree
of f w.r.t. I = ∅. Moreover, if I1 ⊂ I2, the vector degree of f w.r.t. I1 can be
deduced from the vector degree of f w.r.t. I2, that is,

vdegI1(f)[j] = max
0≤j′<2|I2|−|I1|

{
vdegI2(f)[j

′ · 2|I1| + j] + wt(j′)
}

(5)

for any 0 ≤ j < 2|I1|.
In order to estimate the vector degree of composite functions, we propose the

concept of vector numeric mapping.

Definition 3 (Vector Numeric Mapping). Let d ≥ 0. The vector numeric
mapping, denoted by VDEGd, is defined as

VDEGd : Bn × Zn×2d −→ Z2d

(f, V) 7−→ w,

where f =
⊕

u∈Fn
2
aux

u and for any 0 ≤ j < 2d,

w[j] := max
au ̸=0

max
j0,··· ,jn−1

0≤ji≤u[i](2d−1)

j=
∨n−1

i=0 u[i]ji

{
n−1∑
i=0

u[i]V [i][ji]

}
.

For an (m,n)-vectorial Boolean function g = (g0, . . . , gn−1), we define its
vector numeric mapping as VDEG(g, V) = (VDEG(g0, V), . . . , VDEG(gn−1, V)).

Theorem 3. Let f be an n-variable Boolean function and g be an (m,n)-
vectorial Boolean function. Assume vdegI(gi) ≼ vi for all 0 ≤ i ≤ n − 1 w.r.t.
an index set I. Then each component of the vector degree of f ◦g is less than or
equal to the corresponding component of VDEGI(f, V), where V = (v0, · · · ,vn−1).

The proof of Theorem 3 is given in Appendix D. By Theorem 3, we know that the
vector numeric mapping VDEG(f, V) gives an upper bound of the vector degree
of the composite function f ◦ g when V is the upper bound of the vector degree
of the vectorial Boolean function g.

For a Boolean function f(x) = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x), let I be the index
set. We denoted the upper bound of the vector degree of f w.r.t. x and I by

v̂deg[I,x](f) = VDEG(fr−1, Vr−2),

where Vi = VDEG(fi, Vi−1), 0 < i ≤ r − 2, and V0 = vdeg[I,x](f0).
According to Proposition 1 and Corollary 1, the estimation of algebraic degree

of f w.r.t. x and I, denoted by d̂eg[I,x](f), can be derived from v̂deg[I,x](f).
To meet different goals in various scenes, we give the following three modes to

get d̂eg[I,x](f):

Mode 1. d̂eg[I,x](f) = max0≤j<2|I|{min{v̂deg[I,x](f)[j], n− |I|}+wt(j)}.

20 Wang, J., et al.

Mode 2. d̂eg[I,x](f) = v̂deg[I,x](f)[2
|I| − 1] + |I|.

Mode 3. d̂eg[I,x](f) = max0≤j<2|I|{v̂deg[I,x](f)[j] + wt(j)}.
Mode 1 gives the estimated degree that can be totally derived from previ-

ous discussions, which is most precise. Mode 2 focuses on the value of the last

coordinate of v̂deg[I,x](f), which may tell us whether the algebraic degree can
reach the maximum value. Mode 3 gives the estimated degree without revision,
which will be used when choosing the index set of the vector degree.

Since the index set I is an important parameter when estimating the vector
degree of f , we learn about how different choices of the index set influence the
estimation of the vector degree. Then, we give the relationship between numeric
mapping and vector numeric mapping.

Theorem 4. Let f ∈ Bn and I1 and I2 be two index sets with |I1| = k, |I2| = d

and I1 ⊂ I2. If V1 ∈ Zn×2k and V2 ∈ Zn×2d satisfy

V1[i][j] ≥ max
0≤j′<2d−k

{
V2[i][j

′ · 2k + j] + wt(j′)
}

(6)

for any 0 ≤ i ≤ n− 1 and 0 ≤ j < 2k, then we have

VDEGk(f, V1)[j] ≥ max
0≤j′<2d−k

{
VDEGd(f, V2)[j

′ · 2k + j] + wt(j′)
}

(7)

for any 0 ≤ j < 2k.

The proof of Theorem 4 is given in Appendix E. Let Vi ≽ vdegIi(g) for
i = 1, 2 in Theorem 4, and assume that they satisfy the inequality (6). Since
VDEGd(f, V2) ≽ vdegI2(f ◦ g) by Theorem 3, we can see that the RHS of (7) is
larger than or equal to vdegI1(f ◦ g)[j] from (5). It implies that the RHS of (7)
gives a tighter upper bound of vdegI1(f ◦ g)[j] than the LHS of (7). Moreover,
the relation in (6) would be maintained after iterations of the vector numeric
mapping by Theorem 4.

In fact, the numeric mapping is the degenerate form of the vector numeric
mapping in the sense of d = 0. Therefore, we can assert that deg(gr · · · g1)
derived from the iterations of the vector numeric mapping VDEG(gi, Vi) leads to
a tighter upper bound than the iterations of the numeric mapping DEG(gi,di).
We gave an example in Appendix F.

How to choose a suitable index set of the vector degree? One can consider
the index set I = [m], where m is the size of the input of the function g. Of
course, it is the best set by Theorem 4 if we only consider the accuracy of the
estimated degree. However, the space and time complexity of the vector numeric
mapping is exponential w.r.t. such a set. Therefore, we should choose the index
set of the vector degree carefully. We will put forward some heuristic ideas for
the Trivium cipher in Section 6.

5.3 Algorithm for Searching Good ISoCs

As mentioned in Section 3, finding a large scale of special ISoC s is quite im-
portant in improving correlation cube attacks. Indeed, we observe that if the

Correlation Cube Attack Revisited 21

estimated algebraic degree of f over an ISoC exceeds the size of it, the higher
the estimated algebraic degree is, the more complex the corresponding super-
poly tends to. Therefore, when searching ISoC s of a fixed size, imposing the
constraint that the estimated algebraic degree of f is below a threshold may
significantly increase the likelihood of obtaining a relatively simple superpoly.
Then, we heuristically convert our goal of finding large scale of special ISoC s
to finding large scale of good ISoC s whose corresponding estimated algebraic
degrees of f are lower than a threshold d.

In the following, we propose an efficient algorithm for searching large scale
of such good ISoC s.

Theorem 5. Let f(x,k) = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x,k) be a Boolean function,
where x ∈ Fn

2 represents the initial vector and k ∈ Fm
2 represents the key. Let

J ⊂ [n] be an index set for vector degree and I and K be two ISoCs satisfying
J ⊂ K ⊂ I. Then we have

v̂deg[J,xK](f |xKc=0) ≼ v̂deg[J,xI](f |xIc=0).

Proof. Let U0 = vdeg[J,xK](f0|xKc=0), V0 = vdeg[J,xI](f0|xIc=0), and Ut =

VDEG(ft, Ut−1), Vt = VDEG(ft, Vt−1) for 1 ≤ t ≤ r−2. Then v̂deg[J,xK](f |xKc=0)

= VDEG(f, Ur−2), v̂deg[J,xI](f |xIc=0) = VDEG(f, Vr−2).
It is obvious that the set of monomials in f0|xIc=0 is a superset of the set of

monomials in f0|xKc=0 since Ic ⊂ Kc. Thus, we can get U0 ≼ V0 from Definition
2. According to Definition 3, we can iteratively get Ui ≼ Vi for all 1 ≤ i ≤ r− 2,

which leads to v̂deg[J,xK](f |xKc=0) ≼ v̂deg[J,xI](f |xIc=0).

Corollary 2. Let f(x,k) = fr−1 ◦ fr−2 ◦ · · · ◦ f0(x,k) be a Boolean function.
Let J be an index set of vector degree, d > |J | be a threshold of algebraic de-

gree, and K be an ISoC satisfying J ⊂ K. If d̂eg[J,xK](f |xKc=0) ≥ d, then

d̂eg[J,xI](f |xIc=0) ≥ d for all ISoCs I satisfying K ⊂ I.

Corollary 2 can be derived from Theorem 5 directly. Theorem 5 shows a rela-
tionship between the estimated vector degrees of f w.r.t. a fixed index set J
for two ISoC s containing J . According to Corollary 2, we can delete all the
sets I containing an ISoC K from the searching space of ISoC s if K satisfies

d̂eg[J,xK](f |xKc=0) ≥ d. Therefore, in order to delete more “bad” ISoC s from
the searching space, we can try to find such an ISoC K as small as possible.

For a given ISoC I satisfying d̂eg[J,xI](f |xIc=0) ≥ d, we can iteratively

choose a series of ISoC s I ⫌ I1 ⫌ · · · ⫌ Iq ⊃ J such that d̂eg[J,xIi
](f |xIc

i
=0) ≥ d

for all 1 ≤ i ≤ q and d̂eg[J,xI′]
(f |xI′c=0) < d for any I ′ ⫋ Iq. Note that this

process can terminate with a smallest ISoC Iq from I since d̂eg[J,xJ](f |xJc=0) ≤
|J | < d.

Next, we give a new algorithm according to previous discussions for searching
a large scale of good ISoC s.

22 Wang, J., et al.

Process of searching good ISoC s. Let J be a given index set, Ω be the
set of all subsets of [n] containing J and with size k, d be a threshold of degree,
and a be the number of repeating times. The main steps are:

1. Prepare an empty set I.
2. Select an element I from Ω as an ISoC.

3. Estimate the algebraic degree of f w.r.t. the variable xI and the index set
J , denoted by dI . If dI < d, then add I to I and go to Step 5; otherwise, set
count = 0 and go to Step 4.

4. Set count = count + 1. Let I ′ = I, randomly remove an element i ∈ I ′ \ J
from I ′ and let xi = 0. Then, estimate the algebraic degree of f w.r.t. the
variable xI′ . If the degree is less than d and count < a, continue to execute
Step 4; if the degree is less than d and count ≥ a, go to step 5; if the degree
is greater than or equal to d, let I = I ′ and go to Step 3.

5. Remove all the sets containing I from Ω. If Ω ̸= ∅, go to Step 2; otherwise,
output I.

The output I is the set of all good ISoC s we want. In the algorithm, Step 4
shows the process of finding a “bad” ISoC as small as possible. Since the index
i we choose to remove from I ′ is random every time, we use a counter to record
the number of repeating times and set the number a as an upper bound of it to
ensure that the algorithm can continue to run.

To implement the algorithm efficiently, we establish an MILP model and use
the automated searching tool Gurobi to solve the model, and then we can get a
large scale of good ISoC s that are needed.

MILP Model for searching good ISoC s. In order to evaluate the elements
of Ω more clearly, we use linear inequalities over integers to describe Ω. We use
a binary variables bi to express whether to choose vi as a cube variable, namely,
bi = 1 iff vi is chosen as a cube variable, 0 ≤ i ≤ n− 1. Then the sub-models are
established as follows:

Model 1 To describe that the size of each element of Ω is equal to k, we use

n−1∑
i=0

bi = k.

Model 2 To describe that each element of Ω includes the set J , we use

bj = 1 for ∀j ∈ J.

Model 3 To describe removing all the sets that contain I from Ω, we use∑
i∈I

bi < |I|.

Correlation Cube Attack Revisited 23

Since some ISoC s are deleted in Step 5 during the searching process, we need
to adjust the MILP model continuously. Thus we can use the Callback function
of Gurobi to implement this process. In fact, using Callback function to adjust
the model will not repeat the test for excluded nodes that do not meet the
conditions, and will continue to search for nodes that have not been traversed,
so the whole process of adjusting the model will not cause the repetition of the
solving process, and will not result in a waste of time.

According to the above descriptions and the MILP model we have already
established, we give an algorithm for searching good ISoC s. The algorithm in-
cludes two parts which are called the main procedure and the callback function,
and the complete algorithm is given in Appendix G.

6 Application To Trivium

In this section, we apply all of our techniques to Trivium, including degree
estimation, superpoly recovery and improved correlation cube attack. We set
rm = 200 in the experiment of recovering superpolys below, and expression
of the states after 200-round initialization of Trivium has been computed and
rewritten in new variables as described in Section 4, where the ANF of new vari-
ables in the key k is also determined. For details, please visit the git repository
https://github.com/faniw3i2nmsro3nfa94n/Results. All experiments are com-
pleted on a personal computer due to the promotion of the algorithms.

6.1 Description of Trivium Stream Cipher

Trivium [7] consists of three nonlinear feedback shift registers whose size is 93,
84, 111, denoted by r0, r1, r2, respectively. Their internal states, denoted by s
with a size of 288, are initialized by loading 80-bit key ki into si and 80-bit IV
xi into si+93, 0 ≤ i ≤ 79, and other bits are set to 0 except for the last three bits
of the third register. During the initialization stage, the algorithm would not
output any keystream bit until the internal states are updated for 1152 rounds.
The linear components of the three update functions are denoted by ℓ1, ℓ2 and
ℓ3, respectively, and the update process can be described as

sni = sni−1 · sni−2 ⊕ ℓi(s) for i = 1, 2, 3,

s← (s287, s0, s1, · · · , s286) ,
(8)

where n1, n2, n3 are equal to 92, 176, 287, respectively. Denote z to be the output
bit of Trivium. Then the output function is z = s65⊕s92⊕s161⊕s176⊕s242⊕s287.

6.2 Practical Verification for Known Cube Distinguishers

In [17], Kesarwani et al. found three ISoC s having Zero-Sum properties till
842 initialization rounds of Trivium by cube tester experiments. The ISoC s
are listed in Appendix H, namely I1, I2, I3. We apply the superpoly recovery

https://github.com/faniw3i2nmsro3nfa94n/Results

24 Wang, J., et al.

algorithm proposed in Section 4 to these ISoC s. It turns out that the declared
Zero-Sum properties of these ISoC s is incorrect, which is due to the randomness
of experiments on a small portion of the keys. The correct results are listed in
Table 2, where “Y” represents the corresponding ISoC has Zero-Sum property,
while “N” represents the opposite. For more details about the superpolys of these
ISoC s, please refer to our git repository. We also give some values of the key for
which the value of non-zero superpolys is equal to 1, listed in Appendix I.

Table 2. Verification of Zero-Sum properties in [17]

Rounds ≤ 835 836 837 – 839 840 841 842

I1 Y N N N Y N
I2 Y N N N N N
I3 Y Y N Y Y N

Comparison of computational complexity for superpoly recovery. For
comparison, we recover superpoly of the ISoC I2 for 838 rounds by nested mono-
mial prediction, nested monomial prediction with NBDP and CMP techniques,
and nested monomial prediction with our variable substitution technique, re-
spectively, where the number of middle rounds is set to rm = 200 for the last
two techniques. As a result, it takes more than one day for superpoly recovery
by nested monomial prediction, about 13 minutes by NBDP and CMP tech-
niques, and 15 minutes by our method. It implies that variable substitution
technique plays a role as important as the NBDP and CMP techniques in im-
proving the complexity of superpoly recovery. Further, by combining our meth-
ods with NBDP and CMP techniques to obtain valuable terms, it takes about
2 minutes to recover this superpoly. Thus, it is the best choice to combine our
variable substitution technique with NBDP and CMP in superploy recovery.

6.3 Estimation of Vector Degree of Trivium

Recall the algorithm proposed by Liu in [18] for estimating the degree of Trivium-
like ciphers. We replace the numeric mapping with the vector numeric mapping.
The reason is that vector numeric mapping can perform well for the ISoC s
containing adjacent indices but numeric mapping cannot.

The algorithm for estimation of the vector degree of Trivium is detailed in
Algorithm 11 and Algorithm 12 in Appendix K. The main idea is the same
as Algorithm 2 in [18], but the numeric mapping is replaced. For the sake of

simplicity, we denote VDEG(
∏k

i=1 x[i], (v1, · · · ,vk)) as VDEGM(v1, · · · ,vk) in the
algorithms.

Heuristics method for choosing indices of vector degree. As we discussed
earlier, the size of the index set of vector degree should not be too large, and

Correlation Cube Attack Revisited 25

we usually set the size less than 13. How to choose the indices to obtain a good
degree evaluation? We give the following two heuristic strategies.

1. Check whether there are adjacent elements in the ISoC I. If yes, add all the
adjacent elements into the index set J . When the size of the set J exceeds a
preset threshold, randomly remove elements from J until its size is equal to
the threshold. Otherwise, set I = I \ J and execute Strategy 2.

2. Run Algorithm 11 with the input (s0, Ii, ∅, R, 3) for all i ∈ I, where Ii = {i}.
Remove the index with the largest degree evaluation of the R-round output
bit from I every time, and add it to J until the size of J is equal to the preset
threshold. If there exist multiple choices that have equal degree evaluation,
randomly pick one of them.

After applying the above two strategies, we will get an index set of vector
degree. Since there are two adjacent states multiplied in the trivium update
function, the variables with adjacent indices may be multiplied many times. So
in Strategy 1, we choose adjacent indices in I and add them to the index set of
vector degree. In Strategy 2, we compute the degree evaluation of the R-round
output bit by setting the degree of xj to be zero for all j ∈ I except i. Although
the exact degree of the output bit is less than or equal to 1, the evaluation is
usually much larger than 1. This is because the variable xi is multiplied by itself
many times and the estimated degree is added repeatedly. So we choose these
variables, whose estimated degrees are too large, as the index of vector degree.
Once we fix a threshold of the size of the index set of vector degree, we can
obtain the index set by these two strategies.

Degree of Trivium on all IV bits. We have estimated the upper bound of
the degree of the output bit on all IV bits for R-round Trivium by Algorithm
11 with mode = 1. Every time we set the threshold to be 8 to obtain the index
set of vector degree and run the procedure of degree estimation with the index
set. We repeat 200 times and choose the minimum value as the upper bound
of the output bit’s degree. The results compared with the numeric mapping
technique are illustrated in Figure 1. In our experiments, the upper bound of
the output bit’s degree reaches the maximum degree 80 till 805 rounds using
vector numeric mapping, while till 794 rounds using numeric mapping. Besides,
the exact degree [6] exhibits the behavior of a decrease when the number of
rounds increases at certain points. The vector numeric mapping can also capture
this phenomenon, whereas numerical mapping cannot. This is because the vector
numeric mapping can eliminate the repeated degree estimation of variables whose
indices are in the index set of vector degree.

Degree of Trivium on partial IV bits. In fact, the degree evaluation algo-
rithm will perform better when there are a few adjacent indices in the ISoC. We
generate the ISoC in the following way. Firstly, randomly generate a set I0 ⊂ [n]
with size 36 which does not contain adjacent indices. Next, find a set I0 ⊂ I with
size 36+ l such that there are exactly l pairs adjacent indices in I. Then, one can

26 Wang, J., et al.

Fig. 1. Degree evaluations by vector numeric mapping and numeric mapping

estimate the degree for the ISoC I by numeric mapping technique and vector
numeric mapping technique, where the size of the index set of vector degree is
set to 8, and calculate the difference of a maximum number of zero-sum rounds
between these two techniques. For each l, we repeat 200 times and record the
average of the differences; see Table 3 for details.

Table 3. Average improved number of rounds by vector numeric mapping relative to
numeric mapping technique

l 0 1 2 3 4 5 6 7 8

Number 6.8 27.8 41.0 44.7 45.4 39.4 34.6 31.5 29.7

It is obvious that when the ISoC contains adjacent indices, the vector nu-
meric mapping technique can improve more than 27 rounds compared with the
numerical mapping technique on average, even to 45 rounds. When there are
no adjacent index or few adjacent indices, the difference between degree evalu-
ations by numerical mapping technique and vector mapping technique is small.
It implies the reason for the success of degree evaluation for cubes with no adja-
cent index by numeric mapping in [18]. As l increases, the improved number of
rounds first increases and then slowly decreases. This is because the index set of
vector degree cannot contain all adjacent indices when l is large. But the vector
numeric mapping technique compared with the numeric mapping technique can
still improve by about 30 rounds.

Complexity and precision comparison of degree evaluation. In theory,
the complexity of degree evaluation using vector numeric mapping technique is
no more than 2|J| times that of degree evaluation using numeric mapping tech-

Correlation Cube Attack Revisited 27

nique, where J is the index set of vector degree. As evidenced by the experiments
conducted above, we have observed that our degree estimation is notably more
accurate when the ISoC involves only a small adjacent subset. Moreover, since
complexity is exponentially related to the size of the index set of vector degree,
we typically limit its size to not exceed 10.

The runtime of our algorithm for 788-round Trivium with various sizes is
detailed in Table 9. In comparison to degree estimation based on the division
property [6], the difference between the two methods is not substantial when
the ISoC consists of only a few adjacent indices. Furthermore, our algorithm
significantly outpaces that method, as they require nearly 20 minutes to return
degree evaluations for 788 rounds of Trivium.

6.4 The complexity of fast cube search

To validate the effectiveness of our pruning technique, we conducted a com-
parative experiment. As a comparison, we replicated a partial experiment by
Liu [18], which involved searching for 837-round distinguishers using cubes of
size 37 with non-adjacent indices. As a result, our search algorithm made a to-
tal of 9296 calls to the degree estimation algorithm to complete the search of
entire space, while exhaustive search required over 38320568 calls to the degree
estimation algorithm. This clearly demonstrates the effectiveness of our pruning
technique.

6.5 Practical Key Recovery Attacks

Benefiting from the new framework of superpoly recovery and the ISoC search
technique, we could obtain a large scale of special ISoC s within an acceptable
time so that we can mount practical correlation cube attacks against Trivium
with large number of rounds. For correlation cube attacks, we choose the thresh-
old of the conditional probability as p = 0.77. We will not elaborate further on
these parameters.

Practical key recovery attacks against 820-round Trivium.

Parameter settings. Set Ω to be the total space of the ISoC with size k = 38.
Set the index set J = {0, 1, 2, i, i+ 1}, the threshold of degree d to be 41 in the
ISoC search algorithm in Section 5.3, where i ranges from 3 to 26. We call the
search algorithms in parallel for different i.

Attacks. We have finally obtained 27428 special ISoC s with size 38, whose con-
crete information can be found in our git repository, including the ISoC s, super-
polys, factors and balancedness of superpolys, where the balancedness of each
superpoly is estimated by randomly testing 10000 keys. Besides, these ISoC s are
sorted by balancedness of superpolys in descending order. Finally, we choose the
first 213 ISoC s to mount key recovery attacks.

28 Wang, J., et al.

For the first 213 ISoC s, we call Algorithm 1 to generate the sets T and T1
whose elements are pairs composed of the factor of superpoly and the corre-
sponding special ISoC, and sizes are 30 and 31, respectively. The results are
listed in Appendix L, where the probabilities are estimated by randomly testing
10000 keys. The details about the ISoC corresponding to each factor h are listed
in our git repository.

In the online phase, after computing all the values of the superpolys, one
obtain the set of equations G0 and G1. To make full use of the equations, one
should recover keys as follows:

1. For all 54 ≤ i ≤ 79, guess the value of ki if the equation for ki is not in
G0 ∪G1.

2. For i from 53 to 0, if the equation for ki+ki+25ki+26+ki+27 or ki+ki+25ki+26

is in G0 ∪G1, recover the value of ki. Otherwise, guess the value of ki.
3. Go through over all possible values of ki guessed in Step 1 and Step 2, and

repeat Step 1 until the solution is correct.
4. If none of the solutions is correct, adjust the equations in G0 according to

Step 20 in Algorithm 2 and go to Step 1.

Note that the complexity of recovering the value of ki for i < 53 is O(1), since
the values of ki+25, ki+26 and ki+27 are known before. In our experiments, the
factors are all chosen in the form ki + ki+25ki+26 + ki+27 for 0 ≤ i ≤ 52 or
k53 + k78k79 or ki for 54 ≤ i ≤ 65. Thus the number of key bits obtained by the
equations is always equal to the number of equations.

Now we talk about computing the complexity of our improved correlation
cube attack. Since the set I of ISoC s is fixed, for each fixed key k, the corre-
sponding values of the superpolys of all ISoC s are determined. Therefore, we can
calculate the time complexity of recovering this k using the following method.
The complexity for computing the values of superpolys remains the same, which
is O(213 · 238). For brute force key recovery, the complexity can be determined
by combining the values of the superpolys with the guessing strategy, allowing
us to obtain the number of equations in G0 and G1, say, ak and bk, respec-
tively, as well as the numbers of incorrect equations in G0, denoted by ek. It
then enables us to determine the complexity of the preprocessing phase to be
280−ak−bk ·

(∑ek
i=0

(
ak

i

))
. Thus, the complexity for recovering k is

Ck = O(213 · 238) +O

(
280−ak−bk ·

(
ek∑
i=0

(
ak
i

)))
.

We estimated the proportion of keys with a complexity not larger than C by
randomly selecting 10,000 keys, namely, |{k : Ck ≤ C}|/10000, and the result is
listed in Table 4. Due to the extensive key space, we have performed a hypoth-
esis testing in Appendix O to assess whether these proportions can accurately
approximate the true proportions. In conclusion, our findings indicate a very
strong correlation between them. From Table 4, it can be seen that 87.8% of the
keys can be practically recovered by the attack. In particular, 58.0% of keys can
be recovered with a complexity of only O(252).

Correlation Cube Attack Revisited 29

Table 4. The proportion of keys with attack complexities not exceeding C for 820
rounds

C 252 254 256 258 260

proportion 58.0% 69.2% 77.0% 82.8% 87.8%

Practical key recovery attacks against 825-round Trivium.

Parameter settings. Set Ω to be the total space of ISoC with size 41. Set the
index set J = {0, 1, · · · , 10} \ {j0, j1, j2}, the threshold of degree d to be 44
in the ISoC search algorithm in Section 5.3, where j0 > 2, j1 > j0 + 1 and
j1 + 1 < j2 < 11. We call the search algorithms in parallel for different tuples
(j0, j1, j2).

Attacks. We finally obtained 12354 special ISoC s with size 41, and we provide
their concrete information in our git repository. Besides, these ISoC s are sorted
by balancedness of superpolys in descending order, where the balancedness is
estimated by randomly testing 10000 keys. We choose the first 212 ISoC s to
mount key recovery attacks.

For the first 212 ISoC s, we call Algorithm 1 to generate the sets T and T1
whose elements are pairs composed of the factor of superpoly and the corre-
sponding special ISoC, and the sizes are 31 and 30, respectively. The results are
listed in Appendix M, where the probabilities are estimated by randomly testing
10000 keys. The details about the ISoC corresponding to each factor h are listed
in our git repository.

We estimate the proportion of keys with a complexity not larger than C by
randomly selecting 10,000 keys, and the result is listed in Table 5. From Table
5, it can be seen that 83% of the keys can be practically recovered by the attack.
In particular, 60.9% of keys can be recovered with a complexity of only O(254).

Table 5. The proportion of keys with attack complexities not exceeding C for 825
rounds

C 254 256 258 260

proportion 60.9% 70.7% 77.7% 83.0%

Practical key recovery attacks against 830-round Trivium.

Parameter settings. The parameter settings are the same as that of 825 rounds,
except the threshold of degree d is set to 45 here. We also call the search algo-
rithms in parallel for different tuples (j0, j1, j2).

30 Wang, J., et al.

Attacks. We finally obtained 11099 special ISoC s with size 41, whose concrete
information can be found in our git repository. Besides these ISoC s are sorted
by balancedness of superpolys in descending order, where the balancedness is
estimated by randomly testing 10000 keys. We choose the first 213 ISoC s to
mount key recovery attacks.

For the first 213 ISoC s, we call Algorithm 1 to generate the sets T and T1,
with sizes 25 and 41, respectively. The results are listed in Appendix N, where the
probabilities are estimated by randomly testing 10000 keys. The details about
the ISoC corresponding to each factor h are listed in our git repository.

We also estimate the proportion of keys with a complexity not larger than
C by randomly selecting 10000 keys, and the result is listed in Table 6. From
Table 6, it can be seen that 65.7% of the keys can be practically recovered by
the attack. In particular, 46.6% of keys can be recovered with a complexity of
only O(255).

Table 6. The proportion of keys with attack complexities not exceeding C for 830
rounds

C 255 256 257 258 259 260

proportion 46.6% 50.6% 54.2% 58.0% 61.9% 65.7%

Due to limited computational resources, we were unable to conduct practical
validations of key recovery attacks. Instead, we randomly selected some gen-
erated superpolys and verified the model’s accuracy through cross-validation,
utilizing publicly accessible code for superpoly recovery. Furthermore, we have
performed practical validations for the non-zero-sum case presented in Table 8
to corroborate the accuracy of our model. In addition, as mentioned in [5], at-
tempting to recover keys would take approximately two weeks on a PC equipped
with two RTX3090 GPUs when the complexity reaches O(253). Therefore, for
servers with multiple GPUs and nodes, it is feasible to recover a 830-round key
within a practical time.

Discussion about the parameter selections. Parameter selection is a nu-
anced process. The number of middle rounds rm is determined by the complexity
of computing the expression of grm . Once rm exceeds 200, the expression for grm
becomes intricate and challenging to compute, and overly complex expressions
also hinder efficient computation of Coe(πurm

(yrm),xu) for MILP solvers. For
ISoC s, we chose their size not exceeding 45 to maintain manageable complexity.
We focused on smaller adjacent indices as bases when searching for ISoC s. The
decision is based on the observation that smaller indices become involved later
in the update process of Trivium. Consequently, this usually results in compara-
tively simpler superpolys. We directly selected these preset index sets as index of
set for vector degree. When determining the threshold for searching good ISoC s,
we noticed that a higher threshold tended to result in more complex superpolys.

Correlation Cube Attack Revisited 31

Thus, we typically set the threshold slightly above the size of the ISoC s. In the
improved correlation cube attacks, the probability threshold significantly affects
the complexity. Too low threshold will increase the number of incorrect guessed
bits ek, raising the complexity. Conversely, an excessively high threshold reduces
the number of equations in G0, i.e., ak, prolonging the brute-force search. One
can modify the p-value to obtain a relative high success probability.

Comparison with other attacks. From the perspective of key recovery, our
correlation cube attack differs from attacks in [5, 13, 14] in how we leverage key
information from the superpolys. We obtain equations from the superpolys’ fac-
tors through their correlations with superpolys, whereas [5,13,14] directly utilize
the equations of the superpolys. This allows us to extract key information even
from high-degree complex superpolys. We also expect that this approach will
be effective for theoretical attacks and find applications in improving theoretical
attacks to more extended rounds.

7 Conclusions

In this paper, we propose a variable substitution technique for cube attacks,
which makes great improvement to the computational complexity of superpoly
recovery and can provide more concrete superpolys in new variables. To search
good cubes, we give a generalized definition of degree of Boolean function and
give out a degree evaluation method with the vector numeric mapping technique.
Moreover, we introduce a pruning technique to fast filter the ISoC s and describe
it into an MILP model to search automatically. It turn out that, these techniques
perform well in cube attacks. We also propose practical verifications for some
former work by other authors and perform practical key recovery attacks on
820-, 825- and 830-round Trivium cipher, promoting up to 10 more rounds than
previous best practical attacks as we know. In the future study, we will apply
our techniques to more ciphers to show their power.

References

1. Aumasson, J.P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key
recovery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (Feb 2009).
https://doi.org/10.1007/978-3-642-03317-9 1

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference. DAC ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2744769.2747946

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT
2013. pp. 313–314. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 19

https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-3-642-38348-9_19

32 Wang, J., et al.

4. Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal.
In: Vaudenay, S. (ed.) Fast Software Encryption. pp. 222–238. Springer Berlin
Heidelberg, Berlin, Heidelberg (1998)

5. Che, C., Tian, T.: An experimentally verified attack on 820-round trivium. In:
Deng, Y., Yung, M. (eds.) Information Security and Cryptology - 18th International
Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 13837, pp. 357–369. Springer
(2022). https://doi.org/10.1007/978-3-031-26553-2 19

6. Chen, S., Xiang, Z., Zeng, X., Zhang, S.: On the relationships between different
methods for degree evaluation. IACR Trans. Symm. Cryptol. 2021(1), 411–442
(2021). https://doi.org/10.46586/tosc.v2021.i1.411-442

7. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (Aug / Sep
2006)

8. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(Apr 2009). https://doi.org/10.1007/978-3-642-01001-9 16

9. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (Feb 2011).
https://doi.org/10.1007/978-3-642-21702-9 10

10. Fouque, P.A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 502–517. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-662-
43933-3 26

11. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-
subset division property without unknown subset - improved cube attacks
against Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 466–495. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45721-1 17

12. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. Journal of Cryptology 34(3), 22 (Jul
2021). https://doi.org/10.1007/s00145-021-09383-2

13. He, J., Hu, K., Preneel, B., Wang, M.: Stretching cube attacks: Improved methods
to recover massive superpolies. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptol-
ogy – ASIACRYPT 2022. pp. 537–566. Springer Nature Switzerland, Cham (2022).
https://doi.org/10.1007/978-3-031-22972-5 19

14. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recov-
ery with nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part I. LNCS, vol. 13090, pp. 392–421. Springer, Heidelberg (Dec
2021). https://doi.org/10.1007/978-3-030-92062-3 14

15. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491,
pp. 446–476. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-
64837-4 15

16. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round Keccak sponge function. In: Coron, J.S., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Heidelberg
(Apr / May 2017). https://doi.org/10.1007/978-3-319-56614-6 9

https://doi.org/10.1007/978-3-031-26553-2_19
https://doi.org/10.46586/tosc.v2021.i1.411-442
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/s00145-021-09383-2
https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-319-56614-6_9

Correlation Cube Attack Revisited 33

17. Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers
on nfsr-based stream ciphers. Des. Codes Cryptogr. 88(1), 173–199 (2020).
https://doi.org/10.1007/s10623-019-00674-1

18. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 227–249. Springer, Hei-
delberg (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9 8

19. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: From weak-key dis-
tinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 715–744. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78375-8 23

20. Sun, Y.: Automatic search of cubes for attacking stream ci-
phers. IACR Trans. Symmetric Cryptol. 2021(4), 100–123 (2021).
https://doi.org/10.46586/tosc.v2021.i4.100-123

21. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46800-5 12

22. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomi-
als based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 250–279. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63697-9 9

23. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. IEEE Trans. Computers 67(12), 1720–1736 (2018).
https://doi.org/10.1109/TC.2018.2835480

24. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(Mar 2016). https://doi.org/10.1007/978-3-662-52993-5 18

25. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 275–305.
Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-1 10

26. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 398–427. Springer,
Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34618-8 14

27. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching in-
tegral distinguishers based on division property for 6 lightweight block ciphers.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031,
pp. 648–678. Springer, Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-
53887-6 24

28. Ye, C.D., Tian, T.: A new framework for finding nonlinear superpolies in
cube attacks against Trivium-like ciphers. In: Susilo, W., Yang, G. (eds.)
ACISP 18. LNCS, vol. 10946, pp. 172–187. Springer, Heidelberg (Jul 2018).
https://doi.org/10.1007/978-3-319-93638-3 11

29. Ye, C., Tian, T.: Algebraic method to recover superpolies in cube attacks. IET Inf.
Secur. 14(4), 430–441 (2020). https://doi.org/10.1049/iet-ifs.2019.0323

30. Ye, C.D., Tian, T.: A practical key-recovery attack on 805-round trivium. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 187–
213. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92062-
3 7

https://doi.org/10.1007/s10623-019-00674-1
https://doi.org/10.1007/978-3-319-63697-9_8
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.46586/tosc.v2021.i4.100-123
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1109/TC.2018.2835480
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1049/iet-ifs.2019.0323
https://doi.org/10.1007/978-3-030-92062-3_7
https://doi.org/10.1007/978-3-030-92062-3_7

34 Wang, J., et al.

A MILP Models for Three Basic Operations

Model 1 (Copy [11, 15]) Let a
Copy−→ (b0,b1, · · · ,bn−1) be a propagation trail of

Copy. The following inequalities are sufficient to describe all trails for Copy.

M.var ← a,b0,b1, · · · ,bn−1 as binary;

M.con← b0 + b1 + · · ·+ bn−1 ≥ a;

M.con← a ≥ bi for all i ∈ {0, 1, · · · , n− 1}.

Model 2 (And [11, 15]) Let (b0,b1, · · · ,bn−1)
And−→ a be a propagation trail of

And. The following equations are sufficient to describe all trails for And.

{
M.var ← a,b0,b1, · · · ,bn−1 as binary;

M.con← a = bi for all i ∈ {0, 1, · · · , n− 1}.

Model 3 (XOR [11, 15]) Let (b0,b1, · · · ,bn−1)
Xor−→ a be a propagation trail of

XOR. The following equations are sufficient to describe all trails for XOR.

{
M.var ← a,b0,b1, · · · ,bn−1 as binary;

M.con←
∑n−1

i=0 bi = a,

where
∑

represents the summation over Z.

B Algorithms for Correlation Cube Attacks

Algorithm 4: Preprocessing Phase of Correlation Cube Attacks [19]

1 Generate a set of ISoC I;
2 for each ISoC I in I do
3 QI ← Decompostion(I), and goto next I if QI is empty;
4 Estimate the conditional probability Pr(hi = b | fI) for each function

hi in the basis QI of the superpoly fI , and select (I, hi, b) that
satisfies Pr(hi = b | fI) > p.

5 end

Correlation Cube Attack Revisited 35

Algorithm 5: Online Phase of Correlation Cube Attacks [19]

1 Require: a set of ISoC I and Ω = {(I, h, b)|Pr(h = b|fI) > p}
2 G0 = ∅ and G1 = ∅;
3 for each ISoC I in I do
4 Randomly generate α values from free non-cube public bits;
5 Compute the α values of the superpoly fI over the cube CI ;
6 if all the values of fI equal to 0 then
7 Set G0 = G0 ∪ {h = 0|(I, h, 0) ∈ Ω};
8 else
9 Set G1 = G1 ∪ {h = 1|(I, h, 1) ∈ Ω}

10 end
11 Deal with the case that {h|h = 0 ∈ G0 and h = 1 ∈ G1} is not

empty;
12 Randomly choose r0 equations from G0 and r1 equations from G1,

solve these r0 + r1 equations and check whether the solutions are
correct;

13 Repeat Step 12 if none of the solutions is correct.

14 end

C Algorithms for Obtaining VT

Algorithm 6: Obtain Valuable Terms

Input: u, rm
1 Declare an empty MILP modelM.
2 Let s0 be n+m MILP variables ofM corresponding to the n+m

components of x||k.
3 M.con← s0[j] = uj for all j ∈ [n].
4 Update MILP modelM according to the round function fj and denote

sj+1 as the output state after fj for 0 ≤ j ≤ r − 1.
5 M.con← sr[0] = 1.
6 Prepare an empty set VTrm .
7 M.update().
8 cb = VTCallbackFun(&VTrm , rm, s0, s1, · · · , sr).
9 M.setCallback(&cb)

10 M.optimize().
11 return VTrm .

36 Wang, J., et al.

Algorithm 7: VTCallbackFun

Input: &VTrm , rm, s0, s1, · · · , sr
1 if where = MIPSOL then
2 Let uj be the solution corresponding to sj .
3 end
4 flag = ComputeNumberOfTrails(urm , rm) mod 2 ≡ 1.
5 if flag then
6 Add πurm

(yrm) to VTrm .
7 end
8 addLazy(srm ̸= urm)

Algorithm 8: ComputeNumberOfTrails

Input: urm , rm
1 Declare an empty MILP modelM′.
2 Let srm be MILP variables ofM′ corresponding to the output states of

frm−1.
3 M′.con← srm [j] = urm [j] for all j.
4 Update MILP modelM′ according to the round function fj and denote

sj+1 as the output state after fj for rm ≤ j ≤ r − 1.
5 M′.con← sr[0] = 1.
6 M′.optimize().
7 return The number of solutions ofM′.

D Proof of Theorem 3

Proof. Assume that g[i] =
⊕

w giwxw
I . Then we have

gu =
⊕
w

 ⊕
w0,··· ,wn−1,wi∈u[i]Fd

2

w=
∨n−1

i=0 u[i]wi

n−1∏
i=0

(giwi
)u[i]

xw
I ,

where u[i]Fd
2 = Fd

2 if u[i] = 1 and otherwise, it is equal to {0}. Then the (j+1)-th
(0 ≤ j ≤ 2d − 1) component of the vector degree of gu is less than or equal to

max
j0,··· ,jn−1,0≤ji≤u[i](2d−1)

j=
∨n−1

i=0 u[i]ji

(
n−1∑
i=0

u[i]vi[ji]

)
,

since deg(giwi
) ≤ vi[ji], where wi is the d-bit binary representation of ji. Assume

f =
⊕

u aux
u. Then we can conclude that each component of the vector degree

of f ◦ g =
⊕

u aug
u is less than or equal to the corresponding component of

VDEG(f, V)d by Definition 3.

Correlation Cube Attack Revisited 37

E Proof of Theorem 4

Proof. Assume that f =
⊕

u aux
u. By Definition 3, we have

max
0≤j′<2d−k

(
VDEGd(f, V2)[j

′ · 2k + j] + wt(j′)
)

= max
0≤j′<2d−k

max
au ̸=0

max
j′0·2

k+j0,...,j
′
n−1·2

k+jn−1

0≤ji≤u[i](2k−1)

0≤j′i≤u[i](2d−k−1)

j′·2k+j=
∨n−1

i=0 u[i](j′i·2
k+ji)

{
n−1∑
i=0

u[i]V2[i][j
′
i · 2k + ji]

}
+ wt(j′)

= max

0≤j′<2d−k
max
au ̸=0

max
j0,··· ,jn−1

0≤ji≤u[i](2k−1)

j=
∨n−1

i=0 u[i]ji

max
j′0,··· ,j

′
n−1

0≤j′i≤u[i](2d−k−1)

j′=
∨n−1

i=0 u[i]j′i

{
n−1∑
i=0

u[i]V2[i][j
′
i · 2k + ji] + wt(j′)

}

= max
au ̸=0

max
j0,··· ,jn−1

0≤ji≤u[i](2k−1)

j=
∨n−1

i=0 u[i]ji

max
0≤j′<2d−k

max
j′0,··· ,j

′
n−1

0≤j′i≤u[i](2d−k−1)

j′=
∨n−1

i=0 u[i]j′i

{
n−1∑
i=0

u[i]V2[i][j
′
i · 2k + ji] + wt(j′)

}
.

(9)

Since j′ =
∨n−1

i=0 u[i]j′i, we know that wt(j′) ≤
∑n−1

i=0 u[i]wt(j′i). Then by the
inequality (6), we have

max
0≤j′<2d−k

max
j′0,··· ,j

′
n−1

0≤j′i≤u[i](2d−k−1)

j′=
∨n−1

i=0 u[i]j′i

{
n−1∑
i=0

u[i]V2[i][j
′
i · 2k + ji] + wt(j′)

}

≤ max
0≤j′<2d−k

max
j′0,··· ,j

′
n−1

0≤j′i≤u[i](2d−k−1)

j′=
∨n−1

i=0 u[i]j′i

{
n−1∑
i=0

u[i]
(
V2[i][j

′
i · 2k + ji] + wt(j′i)

)}

≤ max
0≤j′<2d−k

max
j′0,··· ,j

′
n−1

0≤j′i≤u[i](2d−k−1)

j′=
∨n−1

i=0 u[i]j′i

{
n−1∑
i=0

u[i]V1[i][ji]

}

=

n∑
i=1

u[i]V1[i][ji].

(10)

By (9), (10), and Definition 3, we assert that the inequalities given in Equation
(7) hold for all 0 ≤ j < 2k.

38 Wang, J., et al.

F Example for Estimating Algebraic Degree

Example 3. Let f = y0y1 and g = {x0x2 + x1, x0x1 + x3}. Then the composite
function

f ◦ g = x0x1x2 + x0x1 + x0x2x3 + x1x3.

(1) Denote d as deg(g) = (2, 2). Then the numeric degree of f ◦g is DEG(f,d) =
4 > deg(f ◦ g) = 3.

(2) For the vector numeric mapping, we consider three cases according as I =
{0}, {1} or {0, 1}.

(a) Let I1 = {0}, and assume the vector degree of g is vdegI1(g) = ((1, 1), (1, 1)),
denoted by V . The estimated vector degree of f ◦ g is VDEG1(f, V) =
(2, 2) = vdegI1(f ◦ g). Then the estimated degree of f ◦ g can be com-
puted by VDEG1(f, V), which is equal to max{0+2, 1+2} = 3 = deg(f◦g).

(b) Let I2 = {1}, and assume the vector degree of g is vdegI2(g) = ((2, 0), (1, 1)),
denoted by V . The estimated vector degree of f ◦ g is VDEG1(f, V) =
(3, 3) ≽ vdegI2(f ◦ g) = (3, 2). Then the estimated degree of f ◦ g can
be computed by VDEG1(f, V), which is equal to max{0 + 3, 1 + 3} = 4 >
deg(f ◦ g).

(c) Let I3 = {0, 1}, and assume the vector degree of g is vdegI3(g) =
((−∞, 1, 0, −∞), (1,−∞,−∞, 0)), denoted by V . The estimated vector
degree of f ◦ g is VDEG2(f, V) = (−∞, 2, 1, 1) = vdegI3(f ◦ g). Then
the estimated degree of f ◦ g can be computed by VDEG2(f, V), which is
equal to max{0−∞, 1+ 2, 1+ 1, 2+ 1} = 3 = deg(f ◦ g). Moreover, the
estimated vector degree of f ◦ g w.r.t. I1 and I2, respectively, derived
from VDEG2(f, V), is (max{0−∞, 1 + 1},max{0 + 2, 1 + 1}) = degI1(f ◦
g) and

(
(max{0−∞, 1 + 2},max{0 + 1, 1 + 1}) = degI2(f ◦ g)

)
, respec-

tively.

From Example 3, we see that the vector numeric mapping for estimating the
degree of the composite function is more accurate than the numeric mapping if
we choose a suitable I. This is because the vector numeric mapping can eliminate
the repeated degree estimation of variables whose indices are in the index set of
vector degree. In Example 3, the degree of x0 would be computed twice if the
index set of vector degree does not contain 0.

Correlation Cube Attack Revisited 39

G Algorithm for Searching Good ISoC s

Algorithm 9: Search Good ISoC s

Input: J, k, d, a
Output: I

1 I ← ∅
2 Generate an empty MILP modelM
3 Let b0, b1, · · · , bn−1 be the n binary variables of modelM
4 M.con←

∑n−1
i=0 bi = k

5 M.con← bj = 1, for ∀j ∈ J
6 M.update()
7 cb = CallbackFun(&I, d, a, b0, b1, · · · , bn−1)
8 M.setCallback(&cb)
9 M.optimize()

40 Wang, J., et al.

Algorithm 10: CallbackFun

Input: &I, d, a, b0, b1, · · · , bn−1

1 if where=MIPSOL then
2 I ← ∅
3 for each i from 0 to n− 1 do
4 if bi = 1 then
5 I ← I ∪ {i}
6 end

7 end
8 Get dI , the estimate of algebraic degree w.r.t. the variable vI and

the index set J
9 if dI ≤ d then

10 I ← I ∪ {I}
11 else
12 dI′ = dI
13 while dI′ > d do
14 for each j from 0 to a− 1 do
15 I ′ = I
16 Randomly choose i ∈ I \ J , I ′ = I ′ \ {i}
17 Get dI′ , the estimate of algebraic degree w.r.t. the

variable vI′ and the index set J
18 if dI′ > d then
19 I = I ′, break
20 end

21 end

22 end

23 end

24 end
25 addLazy(

∑
i∈I bi < |I|)

26 end

H The ISoC s for Practical Verification

See Table 7.

Correlation Cube Attack Revisited 41

Table 7. The ISoC s

No. Cube Indices Size

I1

0, 2, 4, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30,
3932, 34, 36, 39, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60,

62, 64, 66, 69, 71, 73, 75, 77, 79

I2

0, 2, 4, 6, 8, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30,
3932, 34, 36, 39, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60,

62, 64, 66, 69, 71, 73, 75, 77, 79

I3

0, 1, 2, 4, 6, 8, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28,
4030, 32, 34, 36, 39, 41, 43, 45, 47, 49, 51, 54, 56, 58,

60, 62, 64, 66, 69, 71, 73, 75, 77, 79

I Found Secret Keys

Table 8. Found secret keys

No. Rounds key Rounds key

I1

836 0xebd75e597e62736ce784 837 0x43f576b9b75b28e4030c
838 0xf327d6a7b3bdb3d62c36 839 0xe55eeaa86dc1cd764c83
840 0x75cd618a4e6f7ef37c68 842 0x1822b5ad2b15206020d3

I2

836 0x8c128672e9143c6bdc96 837 0xe23551dfcf9d08c4aff4
838 0x4caedab34723fd69c667 839 0xb3fb4e2e8f8ec6162f97
840 0x75cd618a4e6f7ef37c68 841 0x6bee17ab37a8bf9b8e26
842 0x77a9785a05263c44e8f3

I3
837 0x894e029da347a27baa6 838 0x3948a5e54a48eee74d75
839 0xcf48f654983cdd34c923 842 0x76766e29cee533d4233e

See Table 8, where key = k7 ∥ k6 ∥ · · · ∥ k0 ∥ k15 ∥ k14 ∥ · · · ∥ k8 ∥ · · · ∥ k79 ∥
k78 ∥ · · · ∥ k72.

J Running time of the algorithm of degree evaluation

See Table 9.

Table 9. Running time of the algorithm of degree evaluation by vector numeric map-
ping of 788-round Trivium with different size of J .

|J | 0 1 2 3 4 5 6 7 8 9 10

Time(Sec) 1.63 1.68 1.78 2.04 2.33 3.06 4.58 7.87 15.66 35.72 89.97

42 Wang, J., et al.

K Algorithm for Estimation of Vector Degree of Trivium

The algorithm for estimation of the vector degree of Trivium is detailed in Al-
gorithm 11 and Algorithm 12.

Algorithm 11: Estimation of Vector Degree of Trivium

Input: s0, I, J,R,mode
1 V ← vdeg[J,xI](s

0).

2 Prepare Vl,Vm,Vs with size of 288× 2|J|.
3 for t from 1 to R do
4 for i from 1 to 3 do
5 Vl[ni]← VDEG(li, V).
6 Vm[ni]← DegreeMul(V, Vl, Vm, Vs, i, t).
7 V [ni][j]← max(Vl[ni][j], Vm[ni][j]) for all j.
8 Vs[ni] = V [ni − 1].

9 end
10 V ← (V [287], V [0], · · · , V [286]).
11 Vl ← (Vl[287], Vl[0], · · · , Vl[286]).
12 Vm ← (Vm[287], Vm[0], · · · , Vm[286]).
13 Vs ← (Vs[287], Vs[0], · · · , Vs[286]).

14 end
15 if mode = 1 then
16 return

maxj{maxi∈{65,92,161,176,242,287}{min{V [i][j], |I| − |J |}}+wt(j)}
17 else if mode = 3 then
18 return maxj{maxi∈{65,92,161,176,242,287}{V [i][j]}+wt(j)}
19 end

20 end

Algorithm 12: DegreeMul

Input: V, Vl, Vm, Vs, i, t
1 t1 ← t− ri.
2 if t1 < 0 then
3 return VDEGM(V [ni − 1], V [ni − 2]).
4 end
5 v1 ← VDEGM(Vm[ni − 1], Vs[ni − 3]).
6 v2 ← VDEGM(Vs[ni − 1], Vm[ni − 2]).
7 v3 ← VDEGM(Vs[ni − 1], Vs[ni − 2], Vs[ni − 3]).
8 v4[j]← min{v1[j],v2[j],v3[j]} for all j.
9 v5 ← VDEGM(Vm[ni − 1], Vl[ni − 2]).

10 v6 ← VDEGM(Vl[ni − 1], V [ni − 2]).
11 v[j]← max{v4[j],v5[j],v6[j]} for all j.
12 return v.

We denote VDEG(
∏k

i=1 x[i], (v1, · · · ,vk)) as VDEGM(v1, · · · ,vk). The input of
Algorithm 11 are initial internal state s0 of Trivium, ISoC I, index set of vector

Correlation Cube Attack Revisited 43

degree J ⊂ I and end-round R. And the output of Algorithm 11 is the infor-
mation about the degree of R-round output bit. The notations V, Vl, Vm and Vs

represent array with size of 288× 2|J|. V [j] represents the estimated vector de-
gree of sj , where s is the internal state of Trivium. Vl[i], Vm[i] and Vs[i] represent
the estimated vector degree of the linear component, quadratic term, and one
factor of quadratic term in si respectively by Equation (8); see Algorithm 11 for
details.

In Algorithm 12, if t1 ≥ 0, by Equation (8) sni−1sni−2 can be expanded as

(q1q2 + l1)(q2q3 + l2) = q1q2q3 + q1q2l2 + l1(q2q3 + l2),

where q1, q2 (q2, q3) are the factors of nonlinear term in sni−1 (sni−2) and 12 is
the common factor, and l1 (l2) is the linear term in sni−1 (sni−2). The estimated
vector degree of q1, q2, q3 are Vs[ni − 1], Vs[ni − 2], Vs[ni − 3] respectively. And
Vm[ni − 1], Vm[ni − 2], Vl[ni − 1], Vl[ni − 2] correspond to the estimation of the
vector degree of q1q2, q2q3, l1, l2. To estimate the vector degree of q1q2q3, we
calculate the minimum value of three values v1,v2 and v3, where v1 is the
estimation when view q1q2q3 as the multiple of q1q2 and q3, v2 is the estimation
when view q1q2q3 as the multiple of q1 and q2q3, and v3 is the estimation when
view q1q2q3 as the multiple of q1, q2 and q3. Then compute the estimation of
the vector degree of q1q2l1 and l1sni−2 denoted by v5,v6, and we can obtain the
estimation of the vector degree of the nonlinear term. Every round we compute
the estimated vector degree of the linear term, nonlinear term, and the sum
of them, and save the values into Vl, Vm, V, Vs in Algorithm 11. Finally, return
different information about the output bit according to different values of mode.
If mode = 3, return the unprocessed estimated degree of the output bit, which
is used to search for good cubes. If mode = 1, return the more accurate degree
evaluation of the output bit by Corollary 1, which is used to evaluate degree.

L The Equations and Probabilities in the 820-Round
Attack

Refer to Table 10 and Table 11, where h is the factor, # of ISoC s denotes
the number of ISoC s in the set Th, Th is the set containing all the ISoC s the
superpoly of which factored by h, Pr(0|0) represents the probability Pr(h =
0|fI = 0 for ∀I ∈ Th).

44 Wang, J., et al.

Table 10. Set T for 820-round attack

No. h # of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) # of Rounds

1 k103 = k32 + k57k58 + k59 1210 0.9996 0.5005 820

2 k104 = k31 + k56k57 + k58 1432 0.9986 0.5015 820

3 k54 826 0.9851 0.4883 820

4 k102 = k33 + k58k59 + k60 413 0.9621 0.4699 820

5 k89 = k46 + k71k72 + k73 702 0.9610 0.4712 820

6 k116 = k19 + k44k45 + k46 727 0.9570 0.4702 820

7 k117 = k18 + k43k44 + k45 442 0.9567 0.4776 820

8 k124 = k11 + k36k37 + k38 638 0.9455 0.4625 820

9 k111 = k24 + k49k50 + k51 303 0.9424 0.4789 820

10 k91 = k44 + k69k70 + k71 678 0.9395 0.4725 820

11 k115 = k20 + k45k46 + k47 365 0.9291 0.4596 820

12 k87 = k48 + k73k74 + k75 451 0.9277 0.4566 820

13 k56 338 0.9209 0.4511 820

14 k110 = k25 + k50k51 + k52 512 0.9151 0.4537 820

15 k109 = k26 + k51k52 + k53 405 0.9102 0.4552 820

16 k59 171 0.9028 0.4549 820

17 k123 = k12 + k37k38 + k39 374 0.8825 0.4308 820

18 k106 = k29 + k54k55 + k56 666 0.8692 0.4198 820

19 k90 = k45 + k70k71 + k72 462 0.8659 0.4214 820

20 k88 = k47 + k72k73 + k74 374 0.8609 0.4235 820

21 k58 231 0.8591 0.4231 820

22 k57 140 0.8584 0.4181 820

23 k63 976 0.8535 0.4196 820

24 k92 = k43 + k68k69 + k70 452 0.8470 0.4046 820

25 k105 = k30 + k55k56 + k57 416 0.8462 0.4186 820

26 k114 = k21 + k46k47 + k48 102 0.8415 0.4055 820

27 k121 = k14 + k39k40 + k41 170 0.8369 0.4144 820

28 k82 = k53 + k78k79 290 0.7963 0.3806 820

29 k122 = k13 + k38k39 + k40 189 0.7913 0.3674 820

30 k108 = k27 + k52k53 + k54 124 0.7870 0.3658 820

Correlation Cube Attack Revisited 45

Table 11. Set T1 for 820-round attack

No. h #of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) #of Rounds

1 k55 99 0.76 0.34 820

2 k134 = k1 + k26k27 + k28 115 0.7567 0.337 820

3 k93 = k42 + k67k68 + k69 218 0.7326 0.3167 820

4 k125 = k10 + k35k36 + k37 130 0.72563 0.3137 820

5 k84 = k51 + k76k77 + k78 62 0.7183 0.2922 820

6 k83 = k52 + k77k78 + k79 50 0.7111 0.2865 820

7 k61 54 0.6922 0.2826 820

8 k96 = k39 + k64k65 + k66 648 0.6835 0.2729 820

9 k85 = k50 + k75k76 + k77 27 0.6808 0.2554 820

10 k132 = k3 + k28k29 + k30 33 0.6794 0.2632 820

11 k94 = k41 + k66k67 + k68 68 0.6761 0.2677 820

12 k98 = k37 + k62k63 + k64 334 0.6742 0.2518 820

13 k120 = k15 + k40k41 + k42 32 0.6712 0.256 820

14 k60 62 0.6459 0.2311 820

15 k62 69 0.6457 0.224 820

16 k107 = k28 + k53k54 + k55 29 0.6232 0.1972 820

17 k119 = k16 + k41k42 + k43 92 0.6179 0.1996 820

18 k135 = k0 + k25k26 + k27 13 0.6150 0.1846 820

19 k95 = k40 + k65k66 + k67 14 0.6034 0.1649 820

20 k97 = k38 + k63k64 + k65 23 0.6001 0.1621 820

21 k99 = k36 + k61k62 + k63 54 0.5935 0.1565 820

22 k133 = k2 + k27k28 + k29 18 0.5899 0.1505 820

23 k118 = k17 + k42k43 + k44 8 0.5680 0.1078 820

24 k64 7 0.5533 0.0946 820

25 k131 = k4 + k29k30 + k31 7 0.5506 0.0898 820

26 k65 5 0.5444 0.0979 820

27 k100 = k35 + k60k61 + k62 14 0.5421 0.0805 820

28 k113 = k22 + k47k48 + k49 7 0.5376 0.0744 820

29 k112 = k23 + k48k49 + k50 4 0.5254 0.0428 820

30 k130 = k5 + k30k31 + k32 2 0.5200 0.0445 820

31 k86 = k49 + k74k75 + k76 2 0.5192 0.0514 820

M The Equations and Probabilities in the 825-Round
Attack

Refer to Table 12 and Table 13, where h is the factor, # of ISoC s denotes
the number of ISoC s in the set Th, Th is the set containing all the ISoC s the
superpoly of which factored by h, Pr(0|0) represents the probability Pr(h =
0|fI = 0 for ∀I ∈ Th).

46 Wang, J., et al.

Table 12. Set T for 825-round attack

No. h #of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) #of Rounds

1 k88 = k47 + k72k73 + k74 16 1 0.5037 825

2 k86 = k49 + k74k75 + k76 726 0.9998 0.5074 825

3 k63 151 0.9966 0.5029 825

4 k109 = k26 + k51k52 + k53 630 0.989425 0.4988 825

5 k55 102 0.9742 0.4851 825

6 k84 = k51 + k76k77 + k78 250 0.9726 0.4773 825

7 k110 = k25 + k50k51 + k52 570 0.9544 0.4762 825

8 k85 = k50 + k75k76 + k77 287 0.9539 0.4686 825

9 k95 = k40 + k65k66 + k67 738 0.9536 0.4716 825

10 k108 = k27 + k52k53 + k54 450 0.9530 0.4763 825

11 k127 = k8 + k33k34 + k35 419 0.9363 0.4691 825

12 k93 = k42 + k67k68 + k69 193 0.9308 0.4622 825

13 k128 = k7 + k32k33 + k34 181 0.9257 0.4642 825

14 k65 288 0.9176 0.4648 825

15 k64 142 0.9017 0.4444 825

16 k94 = k41 + k66k67 + k68 165 0.8764 0.4351 825

17 k97 = k38 + k63k64 + k65 265 0.8419 0.4028 825

18 k58 135 0.8365 0.4075 825

19 k92 = k43 + k68k69 + k70 123 0.8362 0.3969 825

20 k129 = k6 + k31k32 + k33 222 0.8207 0.3939 825

21 k56 91 0.8196 0.3832 825

22 k99 = k36 + k61k62 + k63 183 0.8161 0.3866 825

23 k113 = k22 + k47k48 + k49 85 0.8160 0.3902 825

24 k107 = k28 + k53k54 + k55 112 0.8132 0.3848 825

25 k112 = k23 + k48k49 + k50 108 0.8066 0.3765 825

26 k116 = k19 + k44k45 + k46 72 0.7894 0.3577 825

27 k126 = k9 + k34k35 + k36 45 0.7816 0.3521 825

28 k62 57 0.7797 0.3573 825

29 k111 = k24 + k49k50 + k51 131 0.7745 0.3659 825

30 k114 = k21 + k46k47 + k48 125 0.7729 0.3527 825

31 k115 = k20 + k45k46 + k47 101 0.7717 0.3494 825

Correlation Cube Attack Revisited 47

Table 13. Set T1 for 825-round attack

No. h #of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) #of Rounds

1 k96 = k39 + k64k65 + k66 159 0.767686 0.3526 825

2 k82 = k53 + k78k79 35 0.73722 0.331 825

3 k122 = k13 + k38k39 + k40 93 0.736827 0.3206 825

4 k83 = k52 + k77k78 + k79 61 0.71214 0.2875 825

5 k57 38 0.699972 0.2864 825

6 k89 = k46 + k71k72 + k73 24 0.697885 0.2718 825

7 k98 = k37 + k62k63 + k64 72 0.661855 0.2379 825

8 k121 = k14 + k39k40 + k41 28 0.658825 0.2561 825

9 k120 = k15 + k40k41 + k42 16 0.642728 0.223 825

10 k87 = k48 + k73k74 + k75 29 0.641839 0.2146 825

11 k59 38 0.627119 0.2153 825

12 k54 16 0.622961 0.1908 825

13 k117 = k18 + k43k44 + k45 11 0.607733 0.1776 825

14 k130 = k5 + k30k31 + k32 20 0.597595 0.1685 825

15 k125 = k10 + k35k36 + k37 4 0.593281 0.1606 825

16 k103 = k32 + k57k58 + k59 32 0.580514 0.1399 825

17 k60 15 0.574038 0.1349 825

18 k90 = k45 + k70k71 + k72 8 0.573292 0.1261 825

19 k101 = k34 + k59k60 + k61 7 0.567661 0.1317 825

20 k118 = k17 + k42k43 + k44 5 0.558273 0.0922 825

21 k102 = k33 + k58k59 + k60 10 0.554529 0.0803 825

22 k61 4 0.545475 0.0896 825

23 k91 = k44 + k69k70 + k71 5 0.540871 0.0837 825

24 k119 = k16 + k41k42 + k43 2 0.539662 0.0835 825

25 k123 = k12 + k37k38 + k39 4 0.537047 0.0647 825

26 k100 = k35 + k60k61 + k62 4 0.526177 0.0526 825

27 k106 = k29 + k54k55 + k56 1 0.520648 0.0314 825

28 k124 = k11 + k36k37 + k38 1 0.520483 0.0236 825

29 k135 = k0 + k25k26 + k27 2 0.515787 0.0277 825

30 k104 = k31 + k56k57 + k58 1 0.505586 0.0154 825

N The Equations and Probabilities in the 830-Round
Attack

Refer to Table 14 and Table 15, where h is the factor, # of ISoC s denotes
the number of ISoC s in the set Th, Th is the set containing all the ISoC s the
superpoly of which factored by h, Pr(0|0) represents the probability Pr(h =
0|fI = 0 for ∀I ∈ Th).

48 Wang, J., et al.

Table 14. Set T for 830-round attack

No. h #of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) #of Rounds

1 k114 = k21 + k46k47 + k48 2058 0.9996 0.4995 830

2 k61 826 0.984731 0.4957 830

3 k101 = k34 + k59k60 + k61 1280 0.958204 0.4856 830

4 k59 493 0.947987 0.4809 830

5 k115 = k20 + k45k46 + k47 1678 0.93623 0.4637 830

6 k57 477 0.932773 0.4645 830

7 k100 = k35 + k60k61 + k62 1193 0.910669 0.4526 830

8 k58 244 0.880441 0.4371 830

9 k120 = k15 + k40k41 + k42 1102 0.88031 0.4327 830

10 k99 = k36 + k61k62 + k63 386 0.868343 0.4235 830

11 k89 = k46 + k71k72 + k73 885 0.86694 0.4138 830

12 k88 = k47 + k72k73 + k74 912 0.859543 0.4226 830

13 k132 = k3 + k28k29 + k30 1117 0.838526 0.403 830

14 k98 = k37 + k62k63 + k64 296 0.825532 0.389 830

15 k118 = k − 17 + k42k43 + k44 318 0.822193 0.3836 830

16 k90 = k45 + k70k71 + k72 327 0.818627 0.388 830

17 k84 = k51 + k76k77 + k78 109 0.816969 0.3777 830

18 k133 = k2 + k27k28 + k29 496 0.81071 0.3819 830

19 k85 = k50 + k75k76 + k77 179 0.80079 0.367 830

20 k60 468 0.798007 0.3777 830

21 k102 = k33 + k58k59 + k60 757 0.786552 0.3516 830

22 k62 258 0.785423 0.362 830

23 k131 = k4 + k29k30 + k31 254 0.783615 0.3604 830

24 k119 = k16 + k41k42 + k43 239 0.781359 0.367 830

25 k116 = k19 + k44k45 + k46 250 0.776892 0.3474 830

Correlation Cube Attack Revisited 49

Table 15. Set T1 for 830-round attack

No. h #of ISoC s Pr(0|0) Pr(fI ̸= 0|∃I ∈ Th) #of Rounds

1 k113 = k22 + k47k48 + k49 176 0.768494 0.3525 830

2 k91 = k44 + k69k70 + k71 132 0.764579 0.3518 830

3 k87 = k48 + k73k74 + k75 375 0.760676 0.3373 830

4 k121 = k14 + k39k40 + k41 273 0.760081 0.3552 830

5 k56 87 0.743492 0.3201 830

6 k103 = k32 + k57k58 + k59 517 0.737083 0.3226 830

7 k86 = k49 + k74k75 + k76 70 0.686507 0.2826 830

8 k127 = k8 + k33k34 + k35 131 0.671031 0.2592 830

9 k97 = k38 + k63k64 + k65 149 0.668884 0.2483 830

10 k63 265 0.666039 0.2562 830

11 k82 = k53 + k78k79 181 0.665407 0.2588 830

12 k117 = k18 + k43k44 + k45 170 0.631779 0.2089 830

13 k93 = k42 + k67k68 + k69 20 0.630082 0.2055 830

14 k126 = k9 + k34k35 + k36 119 0.626578 0.1918 830

15 k83 = k52 + k77k78 + k79 50 0.61258 0.1717 830

16 k108 = k27 + k52k53 + k54 66 0.596439 0.1632 830

17 k54 146 0.586709 0.1408 830

18 k129 = k + 6 + k31k32 + k33 62 0.582027 0.1454 830

19 k122 = k13 + k38k39 + k40 25 0.578461 0.1346 830

20 k107 = k28 + k53k54 + k55 87 0.574397 0.129 830

21 k134 = k1 + k26k27 + k28 44 0.574093 0.1261 830

22 k92 = k43 + k68k69 + k70 18 0.573785 0.1211 830

23 k55 22 0.573388 0.1252 830

24 k130 = k + 5 + k30k31 + k32 111 0.564082 0.1191 830

25 k106 = k29 + k54k55 + k56 42 0.559277 0.0983 830

26 k68 21 0.552496 0.0885 830

27 k104 = k31 + k56k57 + k58 17 0.541853 0.0813 830

28 k64 33 0.541563 0.0749 830

29 k109 = k26 + k51k52 + k53 38 0.528171 0.0611 830

30 k125 = k10 + k35k36 + k37 9 0.522999 0.0478 830

31 k110 = k25 + k50k51 + k52 9 0.522362 0.043 830

32 k112 = k23 + k48k49 + k50 3 0.518507 0.0301 830

33 k135 = k + 0 + k25k26 + k27 3 0.512572 0.0216 830

34 k124 = k11 + k36k37 + k38 2 0.512195 0.0078 830

35 k95 = k40 + k65k66 + k67 2 0.510278 0.0125 830

36 k128 = k7 + k32k33 + k34 5 0.509816 0.0271 830

37 k123 = k12 + k37k38 + k39 2 0.506351 0.008 830

38 k94 = k41 + k66k67 + k68 2 0.501012 0.0118 830

39 k96 = k39 + k64k65 + k66 1 0.49995 0.0059 830

40 k105 = k30 + k55k56 + k57 5 0.499898 0.0158 830

41 k65 1 0.49772 0.0133 830

50 Wang, J., et al.

O Hypothesis Testing for Success Probability

Hypothesis testing is a statistical technique used to make decisions or draw
conclusions about a population based on sample data. We have treated the
proportion denoted as P in the Table 4, 5, 6 as the expected success probability.
Consequently, we’ve formulated H0, the null hypothesis, positing that the success
rate equals P . Our chosen significance level, alpha, is set at 0.01. The Table 16,
17, 18 presents the outcomes derived from randomly sampling 10,000 keys and
recording the instances of success. Utilizing Python, we conducted a binomial
distribution hypothesis test to scrutinize whether the frequency of successful key
recoveries significantly deviates from the anticipated success probability, P. The
results indicate that we do not have grounds to reject the null hypothesis H0,
i.e., P is highly related with the success probability.

Table 16. The number of successful key recoveries for 820 rounds.

C 252 254 256 258 260

5732 6877 7638 8255 8698

Table 17. The number of successful key recoveries for 825 rounds.

C 254 256 258 260

6022 7066 7763 8313

Table 18. The number of successful key recoveries for 830 rounds.

C 255 256 257 258 259 260

4601 5021 5447 5824 6189 6575

	Correlation Cube Attack Revisited

