
Fully Homomorphic Encryption-Based Protocols
for Enhanced Private Set Intersection

Functionalities
Jingwei Hu1, Junyan Chen2, Wangchen Dai2 and Huaxiong Wang1

1 Nanyang Technological University, Singapore, {davidhu,hxwang}@ntu.edu.sg
2 Zhejiang Lab, China, {chjuny,w.dai}@zhejianglab.com

Abstract. This study delves into secure computations for set intersections using
fully homomorphic encryption (FHE) within the semi-honest setting. Our proto-
cols facilitate joint computations between two parties, each holding a set of inputs
denoted as Ns and Nr in size, respectively. The primary objective is to determine
various functionalities, such as intersection size and sum, while maintaining data
confidentiality. These functionalities extend the classic private set intersection (PSI)
and have practical applications in contact tracing, ad conversion analysis, and online
dating, each abstracted into specialized PSI protocols.
Our work demonstrates that these extended PSI functionalities are interconnected,
with the PSI-cardinality protocol serving as the foundation. By adapting this proto-
col, we naturally arrive at PSI-sum-cardinality. Additionally, PSI-token-threshold
is achieved by augmenting PSI-cardinality with FHE-based oblivious polynomial
evaluation (OPE). The tPSI protocol combines PSI-token-threshold and standard
PSI, allowing information sharing when the intersection size exceeds a threshold.
Our protocols excel in simplicity, enhancing ease of understanding, implementation,
optimization, and long-term maintenance. They also exhibit sublinear communication
complexity concerning the larger sender’s set, rendering them well-suited for scenarios
involving substantial data. Various optimization techniques further bolster their
practical efficiency.
Keywords: Private Set Intersection, Threshold Functionality, Fully Homomorphic
Encryption

mailto:{davidhu,hxwang}@ntu.edu.sg
mailto:{chjuny,w.dai}@zhejianglab.com

2

Contents
1 Introduction 3

1.1 Contributions . 4
1.2 Technical Overview . 4

2 Related work 5

3 BFV Fully Homomorphic Encryption 8
3.1 RLWE . 8
3.2 Addition and Multiplication . 8
3.3 SIMD Encoding . 8
3.4 Left Rotation . 9
3.5 Oblivious Polynomial Evaluation (OPE) 10
3.6 Bloom Filter . 10

4 The proposed Private Set Cardinality Protocol 11
4.1 Challenges in PSI-cardinality . 12
4.2 Using OPE for Membership Test . 12
4.3 Use hashing to accelerate OPE . 15
4.4 Batching the computation of OPE . 16
4.5 Homomorphic Sum . 18
4.6 Performance analysis . 20
4.7 Security analysis . 20

5 The proposed Private Set Sum with Cardinality Protocol 21
5.1 Tweaking PSI-cardinality for PSI-sum-cardinality 21
5.2 Performance Analysis . 22
5.3 Security analysis . 22

6 The Proposed Private Set Token with a Threshold on Intersection Car-
dinality 23
6.1 Homomorphic Comparison by Reusing OPE 23
6.2 Performance analysis . 25
6.3 Security analysis . 25

7 The Proposed Threshold Private Set Intersection Protocol 26
7.1 Challenges in the proposed threshold PSI 26
7.2 Homomorphic Secret Token Generation 27
7.3 Performance analysis . 27
7.4 Security analysis . 28

8 Experimental Results and Comparisons 28

9 Conclusions 30

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 3

1 Introduction
This study explores the construction of secure computations for set intersections using fully
homomorphic encryptions within the semi-honest setting. Our protocol facilitates joint
computations between two parties, often referred to as the sender and receiver, each holding
a set of inputs denoted as Ns and Nr in size, respectively. This joint computation aims to
determine various functionalities, such as the intersection size, without compromising the
confidentiality of each party’s set. This extended functionality, beyond the scope of the
classic private set intersection (PSI), holds significant practical applications, including:

Contact Tracing: Contact tracing plays a pivotal role in controlling infectious
diseases, such as COVID-19. However, conventional contact tracing typically entails the
large-scale collection of personal contact information, raising substantial privacy concerns.
A foundational element of privacy-preserving contact tracing applications is to enable
two parties, each possessing a set of items, to determine the intersection size of their
private sets without disclosing the specific items in the intersection. This information
aids disease diagnosis, enabling the isolation and testing of infected individuals, thereby
curbing further disease transmission. Similar applications can be abstracted under the
"PSI-token-threshold" protocol.

Ad Conversion: Ad conversion occurs when a user views an online advertisement for
a specific company on a website and subsequently makes a purchase from that company’s
online store. The company running the ads seeks to quantify the proportion of its revenue
attributable to its online advertising campaign. However, the essential data for computing
these attribution statistics is distributed across two entities: the ad provider, possessing
information about users exposed to a particular ad, and the company itself, holding data
on purchase transactions and expenditures. Both parties may face reservations or technical
constraints preventing them from sharing the underlying data. Nonetheless, they share
a common objective: deriving an aggregate, population-level measurement—identifying
the number of users who both viewed an ad and completed a corresponding purchase,
along with the total amount spent by these users. Their aim is to achieve this without
disclosing any individual user’s information beyond these aggregated values within the
input datasets. Applications akin to ad conversion can be abstracted in this paper as the
"PSI-sum-cardinality" protocol.

Online Dating: Online dating platforms aim to determine whether two individuals, a
man and a woman, share common interests and hobbies. If there is a significant overlap
in their interests and hobbies, it suggests the potential for further communication, and
thus, they should reveal their common interests/hobbies to each other. Conversely, if
their interests and hobbies do not align well, it is advisable not to disclose these details.
Applications similar to online dating can be abstracted under the "tPSI" protocol. In the
"tPSI" protocol, if the intersection size between two parties exceeds a specific threshold (e.g.,
a relatively large intersection), both parties can access information about the intersection.
Otherwise, they receive no information about the other party’s set.

In this paper, we demonstrate that by utilizing fully homomorphic encryptions, these
extended functionalities for private set intersections are closely interconnected. The
foundation for all threshold-related functionalities lies in the "PSI-cardinality" protocol. By
adjusting the "PSI-cardinality" protocol, we naturally arrive at the "PSI-sum-cardinality"
protocol through a double execution of the "PSI-cardinality." Additionally, it is possible
to achieve the "PSI-token-threshold" by augmenting the "PSI-cardinality" protocol with
an FHE-based oblivious polynomial evaluation (OPE). Finally, we show that the "tPSI"
protocol can be realized by combining the "PSI-token-threshold" and the standard PSI
protocol. Our designs for secure computation over PSI outperform in terms of simplicity.
A simple protocol is easier to explain to the multiple stakeholders involved, simplifying
the decision to adopt new technology. It is also easier to implement without errors, test,
audit for correctness, and modify. Furthermore, it is often easier to optimize through

4

parallelization or distributed processing. Simplicity also aids long-term maintenance since,
over time, an expanding group of individuals needs to understand the details of how a
solution operates.

1.1 Contributions
We outline the contributions of our work, which explores the potential of utilizing state-of-
the-art fully homomorphic encryptions to address various computations related to Private
Set Intersection (PSI) problems:

1. Private Set Intersection Cardinality Protocol: We introduce a novel protocol
for calculating the cardinality of the intersection between two sets held by differ-
ent parties when dealing with semi-honest adversaries. This protocol achieves a
communication complexity of Ω(Nr log Ns), which is sublinear concerning the larger
sender’s set.

2. Private Set Intersection Sum with Cardinality Protocol: Building upon our
proposed Private Set Intersection Cardinality Protocol, we develop a new protocol for
computing the sum of elements within the intersection while preserving cardinality
information.

3. Private Set Intersection Token with a Threshold on Cardinality Protocol:
We present a robustPrivate Set Intersection Token with a Threshold on Cardinality
Protocol, constructed based on our previously established Private Set Intersection
Cardinality Protocol.

4. Threshold PSI Protocol: We devise a Threshold PSI Protocol for two parties
within the semi-honest secure model. This protocol combines a standard PSI protocol
with our new Private Set Intersection with Threshold Protocol, offering sublinear
communication complexity.

5. Efficient Performance The communication complexity of the proposed protocols
is low, exhibiting a logarithmic scaling with respect to the size of the sender’s set,
which is particularly advantageous when dealing with relatively large sender sets.
Furthermore, we have introduced various optimization techniques to ensure the
efficiency of our protocols in practice.

6. Simplicity and Modularity: Throughout our work, we maintain a focus on
conceptual simplicity and modularity. This approach streamlines both security
analysis and implementation processes, enhancing the practicality of our protocols.

These contributions collectively advance the understanding and application of fully
homomorphic encryptions in addressing complex computations within the context of PSI
problems.

1.2 Technical Overview
The basis of the secure computations over set intersection is the private set inter-
section cardinality PSI-cardinality protocol. However, in contrast to previous re-
lated works [DCW13, DD15, DD15, ZC18], our new solution is to utilize the FHE-
based oblivious polynomial evaluation technique for directly executing membership tests
and later accumulating these test results to obtain intersection cardinality. Based on
PSI-cardinality, three variant protocols, i.e., prviate set intersection sum with cardi-
nality (PSI-sum-cardinality), i.e., private set intersection cardinality with threshold
(PSI-token-threshold), and threshold private set intersection (tPSI) are proposed.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 5

PSI-cardinality Protocol We assume that one party, referred to as the sender, holds
a set S = {si}i, and the other party, referred to as the receiver, holds another set R = {ri}i.
The PSI-cardinality protocol securely computes the size of the intersection between these
two sets without revealing any other information about the sets themselves. Initially, we
construct a homomorphic membership test, which returns ‘1’ if an element belongs to
the intersection and ‘0’ otherwise. Summing the results of this membership test in a fast
homomorphic manner yields an encryption of the intersection’s cardinality.

PSI-sum-cardinality Protocol In the PSI-sum-cardinality protocol, we consider a
scenario where the sender holds a set S′ = {si : vi}i, where si represents the i-th element
ID, and vi represents the associated payload. The receiver holds another set R = {ri}i.
This protocol securely computes both the intersection size |S ∩R| and the sum of payloads
vi for all si ∈ S ∩ R between the two parties without disclosing additional information
about the sets. The intersection size can be directly computed using the PSI-cardinality
protocol mentioned above. By encoding the values vi into the interpolation polynomial
used in the membership test, it is also possible to obtain

∑
i vi using the PSI-cardinality

protocol.
PSI-token-threshold Protocol The goal of the PSI-token-threshold protocol is to

enable the sender to share a common token with the receiver if and only if the intersection
set size satisfies the threshold criterion. In more formal terms, two parties jointly and
securely compute a token K0 if the intersection size satisfies the condition and compute
another token K1 if it does not. Initially, we employ the PSI-cardinality protocol, allowing
the sender to hold an encryption of the intersection size, i.e., Enc(|S ∩ R|). Then, the
sender invokes an oblivious polynomial evaluation on the input Enc(|S ∩ R|) to obtain
Enc(Ki).

tPSI Protocol Our threshold private set intersection (tPSI) protocol consists of two
subprotocols. First, the PSI-token-threshold protocol securely shares a secret token K ′

between the two parties if the size of the set intersection satisfies the specified requirement.
Otherwise, K ′ remains completely random. Next, we employ a standard private set
intersection protocol. In our modified PSI-token-threshold protocol, the interpolation
polynomial used in homomorphic token generation is simpler, allowing for faster evaluation.
At the end of the PSI-token-threshold protocol, the sender, who has his set S and a secret
token K, modifies his set as SK = {si||K}i, where each element in the new set SK consists
of the original set element si concatenated with the token K. Similarly, the receiver uses
his token K ′ to modify his set as RK′ = {ri||K ′}i. Finally, the sender and receiver engage
in a normal PSI protocol (note that there is no restriction on the PSI protocol used here)
with their updated sets, resulting in the intersection S ∩R if and only if the intersection
size satisfies the threshold condition.

2 Related work
The standard PSI, i.e., two parties securely computing the set intersection (does not
require computing some function f on the intersection) while the privacy of each party is
preserved, is extensively studied in the literature and is still an active research topic. We
categorize these research work into 5 classes as follows.

Diffie-Hellman key exchange based The earliest PSI protocols are build upon
the Diffie-Hellman key exchange [Mea86, HFH99] with semi-honest security, and later
extended with malicious security [CKT10, JL10]. RSA accumulator is exploited in to
implement PSI protocol [ACT11]. The merit of the DH-based PSI protocols is the low
communication complexity. However, these protocols reply on the complicated computation
of expoentiation, which makes the computational overhead rather large. In particular,
when the set held by each party is large, the computation efficiency for the DH-based PSI
is low.

6

Oblivious Transfer based OT-extension based constructions are the mainstream
of PSI protocols. These constructions typically include the hash-to-bins technique by
using various hashing algorithms, i.e., simple hashing, permutation-based hashing, or
Cuckoo hashing, which helps reduce the computational overhead. Since the OT extension
technique which relies on fast symmetric encryptions and a few asymmetric encryptions is
highly efficient, the OT-extension based constructions [PSZ14, KKRT16, PSSZ15, HV17,
RR17, CLR17, OOS17, PSWW18, PSZ18] are also fast. [KKRT16] also points out that
the OT extensions used in this class of PSIs can be viewed as oblivious pseudorandom
function (OPRF).

Oblivious Key-value Store based OKVS-based construction emerges as a new
branch of PSI protocols. It uses a special encoding method to encode the set into an
oblivious data structure called oblivious key-value store(OKVS). The computing efficiency
of OKVS-based constructions [PRTY19, CM20] is initially low since they use complicated
polynomial interpolation technique. Later proposed the so called PaXoS data structure
which significantly improves the computing efficiency. Improving on this result, the up-to-
date fastest OKVS construction appears [RS21]. The concept and the method for OKVS
is further refined in [GPR+21].

Polynomial Manipulation The polynomial manipulation based constructions [FNP04,
KS05, DSMRY09, HN10, Haz18, FHNP16, GS19, GN19] present the set as a polynomial,
and use polynomial related operations, e.g., oblivious polynomial evaluation (OPE), to
equivalently perform set operations. These constructions are generally slower but also show
advantages on other aspects. For example, they can argue the security in the standard
model without replying on non-standard assumptions like random oracle model. They
can provide more functionalities rather than simply computing the set intersection (refer
to the threshold PSI [GS19] as one such instance). [CLR17] exploits fully homomorphic
encryption to perform polynomial evaluation obliviously. Their method shows better
communication complexity which only relies on the size of the smaller set if the size of
set held by each party is different. [CMdG+21] further optimizes [CLR17] by exploring
Paterson-Stockmeyer algorithm, postage-stamp bases, and Frobenius mapping to reduce
the computation and communication overhead.

Branching Program This is a newly emerging and intriguing approach [JTKA22],
with an asymptotic communication complexity sublinear to the smaller set. It exhibits an
advantage when computing between non-equal sets. The core concept involves transforming
set membership tests into Branching Programs (BPs), and homomorphically executing
the BP. The significance of this approach lies not only in its potential for calculating PSI
but also in its convenience for various operations based on PSI results, such as private
computation on set intersections (PCI). Currently, this method is limited to theoretical
constructs and theoretical performance estimations.

Besides the study of standard PSI, the cryptographic research community also in-
vestigate variants of standard PSI. Circuit Private set Intersection, Private intersection
cardinality and threshold private set intersection, among others, are probably most impor-
tant variants.

Circuit Private Set Intersection: Differing from the standard Private Set Inter-
section (PSI), Circuit Private Set Intersection (Circuit-PSI) provides each party with a
vector form of shares (secret shares). These shares can collectively reconstruct a com-
plete 0/1 vector, where ’1’ signifies an element in the intersection, and ’0’ indicates an
element outside the intersection. In the initial work on Circuit-PSI [HEK12], a generic
garbled circuit was considered for constructing PSI, with computational and communica-
tion complexity of Ω(N log N). [PSSZ15] employed Cuckoo-Hashing and Simple-Hashing
for bin-wise comparison, slightly reducing the computational and communication com-
plexity to Ω(N log N/ log log N). [PSTY19] introduced the concept of Oblivious Batched
Programmable PRF (Batched-OPPRF) and, based on this, first constructed Circuit-PSI

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 7

with linear communication complexity of Ω(N). [CGS21] further improves on [PSTY19]
to construct a circuit-PSI with both linear communication and computation complexity.
[RS21], besides introducing VOLE for constructing OPRF and ultimately standard PSI,
explored the transformation of VOLE-based OPRF into Batched-OPPRF to construct
Circuit-PSI. [LPR+21] discussed the Circuit-PSI problem for asymmetric set sizes for the
first time, introducing PIR techniques for resolution. [SJ23] similarly explored Circuit-PSI
with asymmetric set sizes, leveraging Fully Homomorphic Encryption (FHE) and MPC
techniques to construct a more efficient Circuit-PSI.

Private Intersection Cardinality Private intersection cardinality problem [KS05,
HW06, DD15, EFG+15, PSWW18], considers how two parties collaboratively compute the
cardinality of the intersected set, rather than the intersection itself. [FNP04] points out
the lower bound of communication complexity of private set intersection is Ω(n), where n
is the size of the set held by each party. This lower bound naturally applies to the private
intersection cardinality problem. Google’s research team explored a variant of Private
Intersection Cardinality problem called the two-party intersection-sum with cardinality
problem for the first time in [IKN+20]. This problem involves simultaneously calculating the
size of the intersection and the sum of set payloads. According to Google’s paper, the most
practical methods currently still rely on classical Diffie-Hellman and additive homomorphic
encryption schemes. In [MPR+20], research was conducted on the intersection-sum with
cardinality problem under a malicious security model. Additionally, [TSS+20] proposed a
novel method for estimating the size of privacy-preserving intersections in the context of
designing a COVID-19 contact tracing system (utilizing a combination of Diffie-Hellman
and Keyword-PIR).

Threshold Private Set Intersection In many applications, we do not target com-
puting the intersection or the intersection cardinality. For example, the two parties in the
fingerprint matching, i.e., a receiver/client who has a small set of all his features in his
fingerprint, and a sender/server who has a large set which contains fingerprint features for
multiple users. The protocol returns yes if the number of matched features excess some
prescribed threshold parameter t (in order to tolerate false negative errors), otherwise
returns no. Another good example is the lover pairing in dating website. the two parties
are the man who has a set of his preferences, and the women who also has a set of her
preferences. The protocol should return the intersected preferences if the number of shared
preferences are large such that this pair of man and woman can learn more about each other.
Otherwise, it should return an empty set (or nothing) to avoid personal privacy leakage.
These applications are abstractly referred to as threshold PSI where each of the two parties
hold a set of size n, and engates to compute the set intersection if the number of overlapping
is above a threshold value t. Otherwise, each of the two parties should learn nothing.
The threshold PSI problem is investigated in [FNP04, HOS17, GN19, PSWW18, ZC18].
[HOS17] combines the phasing technique and the threshold key encapsulation mechanism
to construct threshold PSI. [PSWW18] optimizes the generic MPC for comparsion circuit
to construct threshold PSI. [GN19] constructs a malicious secure threshold PSI based
on the oblivious linear function evaluation and robust secret sharing. [ZC18] presents
Paillier partial homomorphic encryption based oblivious polynomial evaluation to construct
semi-honest secure PSI protocol. [GS19] reveals that when the intersection is large (say
the size of intersection is at least n − 2t ≈ n), threshold PSI protocol has to have a
communication complexity of Ω(t). Based on the results from [GS19], threshold Private
Set Intersection for multiple parties is further studied in [BMRR21] which suggests the
sublinear communication complexity still holds in the multi-party case.

8

3 BFV Fully Homomorphic Encryption
BFV, also known as one representative scheme in the second generation of fully homomorpic
encryption (FHE), is advantageous for leveled homomorphic encryptions, i.e., homomorphic
evaluation of a circuit with shallow multiplication depth. Theoretically speaking, by using
Gentry’s bootstrapping technique, BFV can support evaluating a circuit with unlimited
multiplication depth. Nevertheless, the state-of-arts of bootstrapping is still far from being
efficient. In this paper, since we focus on constructing efficient for the threshold PSI related
computations with optimal communication complexity, we restrict the usage of BFV to
leveled HE mode.

3.1 RLWE
BFV ciphertext is essentially a RLWE ciphertext defined over polynomial ring Rq =
Zq[X]/(XN + 1):

(a(X), b(X)) = (a(X), a(X) · s(X) + ⌈q
t
⌋m(X) + e(X)) ∈ Rq ×Rq

where s is a secret key, m is the message defined over Rt = Zt[X]/(XN + 1) (a.k.a BFV
plaintext), e =

∑
i eiX

i is an error polynomial where each coefficient is extracted from
a discrete Gaussian distribution with small variance ei ∼ N (0, σ2). Likewise, we use
EncN,q

s (m) to denote a RLWE encryption of message m(X).

3.2 Addition and Multiplication
Homomorphic addition and multiplication are two basic homomorphic operations supported
by BFV. We skip the algorithmic descriptions for these two primitives but outline the
functionality abstractly. HomoAdd takes two inputs as a RLWE encryption of message m0
and a RLWE encryption of message m1 defined over Rq ×Rq and outputs another RLWE
encryption of m0 + m1 defined over Rq ×Rq:

EncN,q
s (m0 + m1)← EncN,q

s (m0) + EncN,q
s (m1)

HomoAdd consumes trivial amount of noise budget and thus BFV can perform almost
unlimited number of homomorphic additions. HomoAdd can also support addition of one
RLWE plaintext and one RLWE ciphertext, i.e., Encs(m0 + m1)← m0 + Encs(m1).

Likewise, HomoMul takes two inputs as a RLWE encryption of m0 and a RLWE
encryption of m1 and outputs another RLWE encryption of m0 ·m1:

EncN,q
s (m0 ·m1)← EncN,q

s (m0)× EncN,q
s (m1)

It is worth noting that HomoMul consumes significantly more noise budget than HomoAdd
does. A typical value for the depth of multiplcation that BFV supports is 8. HomoMul
also supports multiplication of one RLWE plaintext and one RLWE ciphertext, i.e.,
Encs(m0 ·m1)← m0 × Encs(m1).

3.3 SIMD Encoding
SIMD (single instruction multiple data) encoding is a unique feature for the second generation
of FHEs which encodes a vector m = (m0, · · · , mN−1) over Fq to a polynomial over Rq:

FN
q

SIMD−−−→ p(X) ∈ Rt

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 9

The key idea in SIMD is that xN + 1 can be factorized into
∏N−1

i=0 (X − ζ2i+1). By
Chinese remainder theorem (CRT), we have:

Rt = Zt[x]
xN + 1 = Zt[x]∏N−1

i=0 (x− ζ2i+1)
≃CRT

N−1∏
i=0

Zt[x]
x− ζ2i+1 =

i=N−1∏
i=0

Zt[ζ2i+1]

In other terms, every polynomial p(X) =
∑

i piX
i over Rt can be equivalently rep-

resented by its evaluations at X = ζ2i+1 for i ∈ [N]. The evaluations can be written in
matrix form as follows: m0

...
mN−1

 =

 ζ1·0 · · · ζ1·(N−1)

...
...

...
ζ(2N−1)·0 · · · ζ(2N−1)·(N−1)

 ·
 p0

...
pN−1


The vector [m0, · · · , mN−1]T is essentially the N evaluation points associated with

the polynomial p(X). For SIMD encoding purpose, this vector of evaluation points are
interpreted as the BFV plaintext vector, and by using SIMD encoding technique, the BFV
plaintext vector is transformed to BFV plaintex polynomial p(X). It is easily seen that
BFV SIMD encoding is the inverse process of evaluating p(X) at points X = ζ2i+1, written
in matrix form as follows: p0

...
pN−1

 =

 ζ1·0 · · · ζ1·(N−1)

...
...

...
ζ(2N−1)·0 · · · ζ(2N−1)·(N−1)


−1

·

 m0
...

mN−1


Based on the isomorphism between the plaintext vector and the plaintext polynomial

constructed using the CRT, performing addition or multiplication of two plaintext polyno-
mials is equivalent to element-wise addition or multiplication of two plaintext vectors. In
other words,

If p0(X)← SIMD(m0), p1(X)← SIMD(m1), then p0(X) + p1(X)↔m0 + m1, and
p0(X) · p1(X)↔m0 ⊗m1

3.4 Left Rotation
Regarding the rotation, we view the vector after SIMD encoding as a 2× N

2 matrix. In
particular, we set ζj = ζ5j(mod 2N) where ζ is a 2N-th primitive root of unity. ζj =
ζ5j(mod 2N) for all j forms a multiplicative group with order N

2 and thus p(ζj) for j ∈
[N

2]returns the first row of the matrix while p(ζ−1
j (modt)) for j ∈ [N

2] returns the second
row of the matrix.

The left cyclic rotation on the ciphertext ct by r slots LRot(ct, r) is described as
follows:

1. Pre-compute the rotation key rk← KSGen(s, s(X5r))

2. Let ct = (a(X), b(X)), apply Frobenius mapping to obtain ct′ = (a(X5r), b(X5r))

3. Return KS(rk, ct′)

where KSGen(s, s(X5r)) denotes the key-switching key generation algorithm which essen-
tially encrypts s(X5r) under the secret key s and KS(rk, ct′) denotes the key switching
algorithm which essentially converts a message encrypted under s(X5r) to the same message
under a different secret key s.

10

It is worth mentioning that the left rotation applies to each row of the matrix separately.
It is also possible to rotate the columns,i.e., swap the rows by using the following algorithm
SwapRow(ct):

1. Pre-compute the rotation key rk← KSGen(s, s(X−1))

2. Let ct = (a(X), b(X)), apply Frobenius mapping to obtain ct′ = (a(X−1), b(X−1))

3. Return KS(rk, ct′)

3.5 Oblivious Polynomial Evaluation (OPE)
Oblivious Polynomial Evaluation (OPE) is a simple two-party secure computation protocol
where the sender possesses a secret polynomial p(x) =

∑Ns

i=0 pix
i, and the receiver has a

secret input y. Together, they jointly evaluate the polynomial at a point x = y without
disclosing the sender’s polynomial p(x) and the receiver’s value of y.

OPE can be implemented using the BFV fully homomorphic encryption scheme as
follows: The receiver encrypts their secret input y as Enc(y) and sends this encrypted value,
denoted as Enc(y), to the sender. The sender can then compute Enc(p(y)) by applying the
BFV homomorphic addition (HomoAdd) and multiplication (HomoMul) operations iteratively
as follows: ∑

i

pi · (Enc(y))i = Enc(
∑

i

piy
i) = Enc(p(y))

It is relatively straightforward to prove that the BFV-based OPE protocol is secure in
the semi-honest setting, assuming the RLWE ciphertext is semantically secure. However,
the direct method to compute OPE using this approach requires approximately Ω(N)
homomorphic multiplications, and the multiplication depth is around Ω(log N). As
previously mentioned, BFV in leveled homomorphic encryption mode can only support
limited multiplication depth, making the straightforward approach impractical for large
values of N .

A more practical method proposed in [CLR17] involves the receiver preparing ⌈log Ns⌉
ciphertexts, denoted as Enc(y2i) for i ∈ [⌈log Ns⌉], and sending these logN ciphertexts to
the sender. The sender then employs a homomorphic multiplication algorithm to retrieve
Enc(yi) for all i ∈ [Ns]. It’s important to note that this alternative method requires only
logNs homomorphic multiplications and consumes a relatively low multiplication depth of
approximately Ω(log log Ns). However, the trade-off for this efficiency improvement is a
significant increase in communication complexity, specifically the number of ciphertexts
sent from the receiver to the sender, which goes from approximately Ω(1) to Ω(log Ns).

3.6 Bloom Filter
Bloom filter [Blo70] is a data structure designed to efficiently determine if an element
belongs to a set, but they do not provide a way to retrieve the actual object. It stores
membership information in a compact manner.

A Bloom filter is represented as a bit array, denoted as BF[·] (initialized as an
all-zero vector). Bloom filter supports two elementary operations: AppendObject and
TestMembership.

AppendObject adds the target object to the Bloom filter array and follows these steps:

1. Select k independent hash functions denoted as (Hash1(·), · · · , Hashk(·)). These
hash functions do not necessarily need to be cryptographically secure.

2. Compute the hash value of the target object s for each hash function, denoted as
hashi ← Hashi(s) for all i.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 11

Receiver Server𝑅 = {𝑟𝑖} 𝑆 = {𝑠𝑖}

𝐸𝑛𝑐({𝑟𝑖})

𝐸𝑛𝑐 𝑟𝑖 ← {𝑟𝑖}𝑖

𝐸𝑛𝑐 𝛿𝑖
𝑂𝑃𝐸
 𝐸𝑛𝑐 𝒓𝒊

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖:

𝐸𝑛𝑐 ∑𝛿𝑖
𝑠𝑢𝑚
 𝐸𝑛𝑐 𝛿𝑖

𝐸𝑛𝑐(∑𝛿𝑖) |𝑅 ∩ 𝑆| ≝ ∑𝛿𝑖

𝑑𝑒𝑐𝑟𝑦𝑝𝑡
 𝐸𝑛𝑐 ∑𝛿𝑖

OPE-based
Membership Test

Figure 1: Private set intersection cardinality PSI-cardinaity protocol

3. Treat each hash value, hashi, as an index in the Bloom filter array and set BF[hashi] =
1 for all i.

TestMembership checks whether a target object has been logged in the Bloom filter
and follows these steps:

1. Use the same set of hash functions mentioned in the AppendObject operation to
compute a set of hash values, {hashi}i∈[k], for the given target object.

2. Treat each hash value hashi as an index in the Bloom filter array and check the value
of BF[hashi]. If BF[hashi] = 1 for all hashi, the target object is considered to be in
the Bloom filter. Otherwise, the object is not present.

The false positive rate (pFPR) is an important performance measure for Bloom filters.
It represents the probability that the membership test operation incorrectly asserts that
the target object is in the Bloom filter, which is estimated using the formula [BGK+08]:

pFPR =
(

1− e
−k·|S|

|BF|

)k

where k is the number of hash functions used, |BF| is the bit length of the Bloom filter
array, and |S| is the maximum size of the set that the Bloom filter needs to record.

For a fixed set size |S|, a fixed number of hash functions k, and a desired false positive
rate pFPR, the size of a Bloom filter, namely the bit length of BF can be computed as:

|BF| = k · |S|

ln(1− p
1
k

FPR)−1

In other words, when the Bloom filter system parameters pFPR, k are preconfigured,
the size of the Bloom filter is consequently determined and should be proportional to
the size of the set S, given that |BF| = O(|S|). For instance, setting the false positive
rate to 2−20 and the number of hash functions to k = 10 leads to a Bloom filter size of
|BF| ≈ 34.8× |S|.

4 The proposed Private Set Cardinality Protocol
In this section, we introduce our novel protocol for private set cardinality, also known as
PSI-cardinality. This protocol enables the secure computation of intersection cardinality
without disclosing any information about the sets involved, utilizing the BFV Fully
Homomorphic Encryption scheme.

The PSI-cardinality protocol can be roughly divided into two distinct phases, as
illustrated in Fig. 1:

12

• Membership Test (First Phase): During this phase, the receiver/client en-
crypts their set elements, denoted as Enc(ri) for all i, and transmits them to the
sender/server. Subsequently, the sender/server conducts homomorphic tests on each
ri and returns results denoted as δi. Here, δi = 1 signifies that ri exists in set S,
while δi = 0 indicates that ri is not present in set S.

• Homomorphic Sum (Second Phase): the sender/server homomorphically sums
the results of the membership tests to obtain the cardinality as

∑
i δi.

It’s worth noting that the correctness of the PSI-cardinality protocol is self-evident,
as it accurately computes the intersection cardinality while preserving the confidentiality
of the sets involved.

4.1 Challenges in PSI-cardinality

In this subsection, we highlight the primary challenges encountered in the PSI-cardinality
protocol and present our innovative methods for addressing these challenges.

Challenge 1: Homomorphic Computation of Membership Indicator (δ): The
first challenge revolves around the homomorphic computation of an indicator δ for the
membership test. In essence, the sender, which possesses the set S, must homomorphically
determine whether an element ri from the receiver’s set R belongs to S or not. This can
be formally defined as:

δi
def= δ(ri, S) =

{
1 if ri ∈ S

0 Otherwise

The complexity lies in the need to convert this problem into an Oblivious Polynomial
Evaluation (OPE) while maintaining a low multiplicative depth.

Challenge 2: Homomorphic Summation of δi: The second challenge involves
homomorphically summing the δi values for all ri, resulting in the intersection size
|R ∩ S| =

∑
i s.t. ri∈R δ(si, S). This task becomes intricate due to the utilization of Single

Instruction, Multiple Data (SIMD) coding in Fully Homomorphic Encryption (FHE).
Specifically, it requires manipulation of the elements within the encrypted vector, i.e., the
summation of all elements in the SIMD slot.

To tackle these challenges, our PSI-cardinality protocol introduces innovative meth-
ods that enable efficient homomorphic computation while maintaining data privacy and
security.

4.2 Using OPE for Membership Test
In this subsection, we address the first critical task in our proposed PSI protocol, which
is the implementation of the primitive δ in the membership test. We assume that each
element in the sets R and S is represented as a σmax-bit integer. To achieve this, we define
a super set S(sup) def= {1, 2, · · · , 2σmax −1} that encompasses the sender’s set S. This super
set satisfies two important properties:

1. Nssup
def= |S(sup)| = 2σmax − 1

2. S ⊂ S(sup)

Notably, the element 0 is deliberately excluded from S(sup) and reserved as a dummy
item.

To build the polynomial Pδ(X), we opt for Newton interpolation due to its ability to
incorporate new points without the need for a complete reevaluation of all coefficients.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 13

This advantageous feature substantially reduces the offline processing workload on the
sender’s side, especially when the sender’s set experiences frequent updates.

The Newton interpolation polynomial for Pδ(X) is constructed as:

Pδ(X) = [y0] + [y0, y1](x− x0) + · · ·+ [y0, · · · , yk−1](x− x0)(x− x1) · · · (x− xk−2)

where [y0, · · · , yj] is the notation for divided differences. The set S uses evaluation points
(xi, yi) for xi ∈ S ∩ S(sup), yi = 1 and for xi ∈ S(sup) − S, yi = 0. It is important to note
that the degree of Pδ(X) is precisely 2σmax − 1, aligning with the properties of the super
set S(sup).

It’s essential to emphasize that the membership test described above must be executed
in a homomorphic fashion. Here’s a step-by-step overview of the process:

1. The receiver encrypts each element ri in their set R and transmits the resulting
ciphertexts, denoted as Enc(ri), to the sender/server.

2. The sender/server applies Oblivious Polynomial Evaluation (OPE) on Enc(ri) and
Pδ(X) to compute Enc(Pδ(ri)).

The computation of Enc(Pδ(ci)) using a straightforward method, which computes
Enc(ri)k for all k from Enc(ri), would typically require log Nssup multiplicative depth.
However, it’s important to note that BFV supports a very limited multiplicative depth,
with a typical value being around 8. Consequently, the straightforward approach is not
feasible within the constraints of BFV’s limitations. This challenge highlights the need for
innovative methods to efficiently compute Enc(Pδ(ci)) while adhering to the restrictions
imposed by BFV’s limited multiplicative depth.

Reduce the multiplicative depth To address the challenge of limited multiplicative
depth in BFV, we can employ a technique that balances communication complexity and
multiplicative depth. Here are the key components of this approach:

• Increasing Communication Complexity: The receiver prepares a set of Nssup cipher-
texts for each ri. These ciphertexts include Enc(ri), Enc(r2

i), . . . , Enc(rNssup

i) for
each element ri. All of these ciphertexts are then sent to the sender/server.

• Computing Enc(Pδ(X)) in Depth One: With the receiver’s preparation of these
Nssup ciphertexts, the sender/server can efficiently compute Enc(Pδ(X)) with a
multiplicative depth of just one.

However, this approach significantly increases the communication complexity by a
factor of Nssup . To strike a balance between efficiency and communication complexity,
we can implement a method called "windowing" proposed in [CLR17], which proceeds as
follows:

• Balanced Approach - Windowing: In this method, the receiver prepares a more
balanced set of ciphertexts. Specifically, they generate ⌊log2 Nssup⌋+1 ciphertexts for
each ci. These ciphertexts include encrypted powers-of-two Enc(ri), Enc(r2

i), . . . , Enc(r2⌊log2 Nssup ⌋

i).

• Improved Depth: With this setup, the sender can compute Enc(Pδ(X)) with an
improved depth of ⌈log(⌊log Nssup⌋+ 1)⌉, which is roughly equivalent to log log Nssup .

Improve computational complexity It’s important to highlight the computational
differences between ciphertext-ciphertext multiplication and ciphertext-plaintext multipli-
cation within the context of homomorphic encryption:

• Ciphertext-Plaintext Multiplication: This operation involves just two multiplications
over the ring Rq. It is relatively efficient and consumes minimal computational
resources.

14

• Ciphertext-Ciphertext Multiplication: In contrast, this operation is significantly
more complex. It typically requires about 4 + Ω(log2 q) multiplications over the ring
Rq. As a result, ciphertext-ciphertext multiplication is generally at least two orders
of magnitude slower than ciphertext-plaintext multiplication.

Given this substantial difference in computational cost, it becomes evident that the
bottleneck in the computation of Oblivious Polynomial Evaluation (OPE) lies in the
number of ciphertext-ciphertext homomorphic multiplications used to compute all powers
of X. Therefore, it is reasonable to estimate the computation overhead of the membership
test based on the number of homomorphic multiplications involved in the OPE protocol.

As mentioned earlier, the windowing method is employed to strike a balance be-
tween multiplicative depth and communication overhead. In this method, the num-
ber of ciphertext-ciphertext multiplications is upper-bounded by approximately Nssup −
⌊log2 Nssup⌋, which is roughly equivalent to Nssup .

To enhance computation efficiency while maintaining a low multiplicative depth, we em-
ploy a better method than windowing called the Paterson-Stockmeyer algorithm [CMdG+21]
in the Oblivious Polynomial Evaluation (OPE) protocol. In this context, we rewrite
Pδ(Enc(X)) as follows:

Pδ(Enc(X)) =
B∑

i=0
Pδ,i · (Enc(X))i =

H−1∑
i=0

L−1∑
j=0

Pδ,iL+j · Enc(X)j

 · Enc(X)iL

Here, we ensure that H · L ≥ B + 1 and H ≈ L = Ω(
√

Nssup). The sender’s pre-
computation involves calculating Enc(X)j for all j ∈ [L] and Enc(X)iL for all i ∈ [H]
using values sent by the receiver. This process consumes exactly L + H − ⌈log2 L⌉ −
⌈log2 H⌉−2 ciphertext-ciphertext multiplications. Additionally, H−1 ciphertext-ciphertext
multiplications are required to evaluate Pδ(Enc(X)).

In summary, the OPE protocol’s total consumption of ciphertext-ciphertext multipli-
cations is approximately L + 2H − ⌈log2 H⌉ − ⌈log2 L⌉ − 3 ≈ 3

√
Nssup . This approach

significantly improves efficiency by striking a better balance between computational com-
plexity and multiplicative depth.

Process items with arbitary bit length In the preceding discussion, we make the
assumption that each item si in the sender’s set S is at most σmax bits long. However, due
to the limited system parameters supported by leveled FHE, the value of σmax cannot be
set too large, typically staying below 32. Nevertheless, this relatively small value for σmax

might prove inadequate for real-world applications, as the string length used to represent
an item in the set could be arbitrary. We propose here an alternative solution involves
compressing the bit length of si through Bloom Filter (BF) encoding.

BF encoding transforms each si ∈ S into an array of indices (idxsi,1, · · · , idxsi,k),
where idxsi,j ← Hashj(si), and sets BFS [idxsi,j] = 1. Since the size of the BF array is
proportional to the set size |S|, i.e., |BFS | = O(|S|), the upper bound for idxsi,j is O(|S|),
and thus O(log |S|) bits are sufficient to represent it, regardless of the bit length of the
string si.

We provide a more detailed description of the BF-based method in Algorithm 1 for
handling arbitrary-long strings in the membership test. In line 1, a BF array BFS

associated with S is constructed, where BFS [idxsi,j] = 1 and idxsi,j ← Hashj(si) for all
i, j. In line 2, an equivalent polynomial fBFS

(X) associated with BFS is constructed,
such that fBFS

(idxsi,j) = 1 and otherwise 0 for all i, j. Lines 3-4 encrypt the BF encoding
indices associated with the receiver’s set element ci ∈ C. The for loop in lines 5-6 exploits
the OPE primitive to obliviously compute Enc(fBFS

(idxci,j)) for all j, where fBFS
(idxci,j)

is either 1 or 0. Line 7 performs k − 1 homomorphic multiplications to obtain Enc(δi).
It is worth noting that Enc(fBFS

(idxci,j)) computed in line 6 might be too noisy to
continue further homomorphic multiplication required in line 7. However, this issue can

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 15

Input: The sender holding a set S and the reciever holding an element ci in his
own set C

Output: an encryption of δi where δi = 1 if ci ∈ S and δi = 0 otherwise
1 Sender encodes the sender’s set S into a Bloom filter array as BFS

2 Sender encodes BFS into a polynomial fBFS
(X)

3 Client encodes an element ci in the receiver’s set C as BF indices
(idxci,1, · · · , idxci,k) where idxci,j ← Hashj(ci) for all j

4 Client encrypts BF indices assoicated to ci as (Enc(idxci,1), · · · , Enc(idxci,k))
5 for j ← 1 up to k do
6 Sender obliviously evaluates fBFS

(X) at Enc(idxci,j) to obtain
Enc(fBFS

(idxci,j))
7 Sender obliviously computes Enc(

∏k
j=1 fBFS

(idxci,j))←
∏k

j=1 Enc(fBFS
(idxci,j))

8 return Enc(δi) where δi
def=

∏k
j=1 fBFS

(idxci,j)
Algorithm 1: Use Bloom filter (BF) encoding to compress long items in the set
for computing δi in the OPE-based membership test

be easily resolved using the randomize-decrypt-re-encrypt paradigm. In this approach,
the sender randomizes Enc(fBFS

(idxci,j)) as Enc(fBFS
(idxci,j) + r), where r is a random

number in the field Ft, and sends it to the receiver for decryption. Once the receiver
decrypts Enc(fBFS(idxci,j) + r) as fBFS

(idxci,j) + r, he re-encrypts fBFS
(idxci,j) + r

to send a fresh ciphertext Enc(fBFS
(idxci,j) + r) with minimal noise to the sender. The

sender finally recovers Enc(fBFS
(idxci,j))← Enc(fBFS

(idxci,j) + r)− r.

4.3 Use hashing to accelerate OPE
In this subsection, we discuss the hashing techniques designed to enable SIMD-style
computations for the OPE-based membership test in the context of the PSI-cardinality
protocol. These techniques are used to reduce computational overhead.

Permutation-based Hashing: Assuming both the receiver and sender each hold a
set of size m, they agree to use permutation-based hashing to compress their sets, thereby
reducing computation overhead. Specifically, consider an element x represented as a
σmax-bit string in the receiver’s set, with x = xL||xR denoting its left and right parts. To
insert (xL, j) into the Locj(x)-th bin, the location function Locj(x) is defined as follows:

Locj(x) = Hj(xL)⊕ xR

Here, Hj(·) hashes the input to an integer in the range of [0, log2 m − 1], and three
independent hash functions H0, H1, H2 are employed. This hashing technique effectively
reduces the string presentation for x from a σmax-bit representation down to σmax −
log2 m + 2 bits.

Cuckoo Hashing for Receiver: The receiver employs Cuckoo hashing on his side to
insert his set elements into m bins, ensuring that each bin can hold at most one element.

Simple Hashing for Sender: On the sender’s side, simple hashing is utilized. Each
element si ∈ Ssup is hashed to three different locations Locj(si) for j = 0, 1, 2.

To further decrease the computational complexity of evaluating Pδ(X) for all ri ∈ R,
the classic hash-to-bins technique is employed. Assuming that each element in sets R
and S is represented as a σmax-bit integer, and reasonably setting |S(sup)| = NS(sup) =
2σmax − 1 > Ns and |R| = Nr, the receiver invokes Cuckoo Hashing (with three hash
functions h0, h1 and h2) to hash his set elements {ri}i into approximately Ω(Nr) bins (with
1.5Nr bins prepared in practice to achieve a negligible hash collision probability of 2−30),
with each bin having at most one element. The sender invokes simple hashing (with the

16

same hash functions h0, h1 and h2) to hash his set elements {s(sup)
i }i into approximately

Ω(Nr) bins (with the number of bins also set to 1.5Nr in practice). Each bin contains up
to N(sup)

Nr
+O(

√
N(sup)·log Nr

Nr
) elements with high probability.

As a result, the sender and receiver only need to perform bin-wise PSI for each
bin, where the polynomial associated with each sender’s bin has a reduced degree of
N

s(sup)
Nr

+O(
√

N
s(sup) ·log Nr

Nr
).

An illustrative toy example is provided in Fig. 2, where |S(sup)| = NS(sup) = 5,
|C| = n = 5, and the number of bins is set to 5. The sender uses simple hashing to hash
his set elements x1, · · · , x5 to 5 bins, and the receiver uses Cuckoo hashing to hash his
set elements y1, · · · , y5 to 5 bins without hash collision (with a high probability). After
hashing, the sender and receiver perform bin-wise comparisons to determine whether yi

belongs to set S.

Sender Receiver

𝑦4

𝑦5

𝑦3

𝑦1

𝑦2

𝑥5 𝑥4

𝑥2 𝑥3 𝑥1

𝑥4 𝑥5

𝑥1 𝑥2

𝑥3

Figure 2: An illustrative example for hash-to-bins technqiue used in the OPE-based
memberhip test

4.4 Batching the computation of OPE
To further enhance the computational efficiency while keeping the multiplicative depth
low, we propose a method that leverages SIMD encoding to parallelize the computation of
OPE. In practice, the elements in the sender’s bins are represented by membership test
polynomials denoted as Pδi(X) for bin No.i, i ∈ [N].

How this batching optimization works is as follows:

• Receiver Batching: The receiver batches Nr items from N distinct bins into one
ciphertext, which is then sent to the sender.

• Sender Batching: The sender batches N coefficients from his membership test
polynomials {Pδi

(X)}i, taking one coefficient from each membership test polynomial,
into one plaintext. Consequently, N

s(sup)
N + O(

√
N

s(sup) ·log N

N) such plaintexts are
sufficient for representing the coefficients of N distinct membership test polynomials.

• OPE Computation: The sender performs OPE on the ciphertext sent by the re-
ceiver and the N

s(sup)
N +O(

√
N

s(sup) ·log N

N) plaintexts from his own side to obtain an
encryption of N membership test results.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 17

An illustrative toy example for batching OPE is shown in Fig.3 with the same configu-
ration as in Fig.2. For security reasons, the degree of each membership test polynomial
Pδi

(X) associated with bin No.i on the sender’s side must be equal. To achieve this, these
bins are inserted with dummy items. For instance, sender’s bin No.1 has x5 and x4, and a
direct Newton interpolation yields a polynomial Pδ1

(X) with degree 2. To equalize the
degree, the sender inserts a dummy item, i.e., X = 0, and makes Pδ1(X) = X · Pδi

(X)
with degree 3. This interpolation polynomial construction process is repeated for all bins
to create Pδi

(X) =
∑3

j=0 Pδi,jXj for all i ∈ {1, 2, 3, 4, 5}.
Then, the sender batches Pδi,j for all i, i.e., the j-th coefficient of the polynomial Pδi

(X)
for all i, into one plaintext denoted as pt(j)(X). It is evident that 3 such plaintexts are
sufficient to batch all the coefficients Pδi,j for all i and all j. Finally, the sender combines
the ciphertext Enc(y) that encrypts y = (y4, y5, y3, y1, y2) sent by the receiver with his
own plaintexts pt(j)(X) for j ∈ 1, 2, 3 to perform an OPE protocol, effectively batching
the computation of Pδ(y) = {Pδ1(y4), · · · , Pδ5(y2)}.

Sender Receiver

𝑦4

𝑦5

𝑦3

𝑦1

𝑦2

𝑥5 𝑥4

𝑥2 𝑥3 𝑥1

𝑥4 𝑥5

𝑥1 𝑥2

𝑥3

Dummy item

𝑝𝑡(1)(𝑋) 𝑝𝑡(2)(𝑋) 𝑝𝑡(3)(𝑋)

Figure 3: Batching the computation of Pδ(X) together with the hash-to-bins technique

Finally, we present a quantitative performance analysis of the OPE-based membership
test, taking into account all the optimizations we have introduced.

Computation Overhead: To align with FHE parameters, we set the size of the
hash table (the number of bins used) equal to the FHE parameter N . In this setup, we
utilize three hash functions for simple hashing on the sender’s side and implement the
Cuckoo hashing scheme for the receiver. Consequently, the maximum load in a bin for the
sender/server’s set is approximately B ≈ 3 · |S(sup)|/N when |S(sup)| is sufficiently large,
while for the receiver, each bin holds a maximum of one element. Given that we employ
batching, a single OPE operation is sufficient to complete the membership test. The
OPE operation is implemented using the Paterson-Stockmeyer algorithm, which precisely
requires L + 2H − ⌈log2 L⌉ − ⌈log2 H⌉ − 3 ciphertext-ciphertext (ctx-ctx) multiplications
and B − 1 plaintext-ciphertext (ptx-ctx) multiplications. To simplify implementations, we
set L = 65 and H = ⌈B/L⌉ ≈ 3

65 ·
|S(sup)|

N , which suggests the computation overhead only
depends on the ratio of |S(sup)| and N .

Noise Growth: In the OPE-based membership test, the noise growth primarily

18

occurs in two stages. The first stage involves preprocessing for Enc(xj) with j ∈
[L] and Enc(xiL) with i ∈ [H], derived from Enc(x), Enc(x2), . . . , Enc(x2log2 L) and
Enc(xL), Enc(x2L), . . . , Enc(x2log2 H L). This stage consumes ⌈log2⌈log2(max(H, L))⌉⌉ lay-
ers of multiplicative depth.

The second stage pertains to the Paterson-Stockmeyer method, where one layer of
plaintext-ciphertext (ptx-ctx) multiplication and one layer of ciphertext-ciphertext (ctx-ctx)
multiplication are utilized. In summary, the total multiplicative depth employed in the
OPE protocol is bounded by ⌈log2⌈log2(max(H, L))⌉⌉+ 2.

4.5 Homomorphic Sum

In the previous subsection, we computed a single ciphertext denoted as Enc(v) def=
Enc(v0, · · · , vN−1), where each vi ∈ 0, 1 represents the memership test result for an
individual element. However, to obtain the encryption of the sum of these elements,
denoted as Enc(sum(v)) = Enc(

∑
i vi), a homomorphic summation procedure is required.

Method-I with optimal communication complexity There are two methods to
implement the homomorphic sum, and we will first introduce the first method, which
utilizes the homomorphic cyclic rotation to accumulate all the elements in the encrypted
vector (v0, · · · , vn−1). This method is illustrated in the total sum algorithm (see Alg. 2).
It eventually returns Enc(

∑N−1
i=0 vi), where

∑N−1
i=0 vi = |R ∩ S|.

Input: RLWE ciphertext ct which encrypts a vector v = (v0, v1, · · · , vN−1)
Output: RLWE ciphertext ct′ which encrypts a vector v′ = (

∑
i vi, · · · ,

∑
i vi)

1 ct′ ← ct, e← 1
2 for j ← numBits(N)− 2 down to 0 do
3 ct′ ← ct′ + LeftRotate(ct′,−e)
4 e← 2 · e
5 if bitj(N) == 1 then
6 ct′ ← ct + LeftRotate(ct′,−1)
7 e← e + 1
8 return ct′

Algorithm 2: Total_Sum algorithm which accumulates every element in the en-
crypted vector

The function numBits(·) in step 2 of Alg.2 denotes the number of bits used to represent
the input integer. This algorithm is highly efficient in terms of computational complexity.
Assuming that N is 2n−1 for some n, which is exactly the worst case since the if condition
(step 10 to step 12) is always performed. In this case, it is readily seen that the number of
homomorphic rotations required in Alg.2 is 2(log N − 1) = Ω(log N). This means that the
algorithm has a computational complexity proportional to the logarithm of the input size,
which is a favorable characteristic for efficient execution.

However, one challenge with the Total_Sum algorithm described in Alg. 2 is that it can
require a large amount of storage for rotation keys. Specifically, it needs log2N rotation
keys to perform each rotation mentioned in step 3.

To address this storage issue, a more storage-efficient version of Total_Sum is presented
in Alg. 3. The main idea behind this improvement is to factor the right rotation by e slots
into a combination of at most k types of right rotations. In this approach, we choose k
rotation keys, corresponding to right rotations by 2ℓi slots for i ∈ [k], in order to save
storage for rotation keys. A natural choice for the values of {ℓi}i∈[k] is to evenly divide
the interval [0, 1, · · · , log2 N].

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 19

For the purpose of analysis, let’s assume that N is 2n − 1 for some n, which represents
the worst-case scenario, as e starts with 12 and grows to 112, 1112, and so on. For e falling
in the interval i with [2i·log N/k, 2(i+1)·log N/k−1] and i ∈ [k], the number of cyclic rotations
is given by:

(2
logN

k − 1)i +
logN

k∑
j=1

(2j − 1) = (2
logN

k − 1)i + 2
logN

k +1 − logN

k
− 2

Therefore, the total number of cyclic rotations in the worst case is:

(2
logN

k −1 · k − 1
2 · k) + 2

logN
k +1 · k − (logN

k
+ 2)k = Ω(k22

logN
k)

This indicates that the total number of rotations required is quadratic in k and
exponential in log N/k. The storage-efficient Total_Sum algorithm significantly reduces
the number of required rotation keys while still achieving the desired functionality.

Input: RLWE ciphertext ct which encrypts a vector v = (v0, v1, · · · , vN−1)
Output: RLWE ciphertext ct′ which encrypts a vector v′ = (

∑
i vi, · · · ,

∑
i vi)

1 ct′ ← ct, e← 1
2 for j ← numBits(N)− 2 down to 0 do
3 rewrite e w.r.t the base {2ℓ1 , · · · , 2ℓk} such that e =

∑
i ei · 2ℓi

4 ct′′ ← ct′

5 for i← k down to 1 do
6 for j ← ei − 1 down to 0 do
7 ct′′ ← LeftRotate(ct′′,−2ℓi)

8 ct′ ← ct′ + ct′′

9 e← 2 · e
10 if bitj(N) == 1 then
11 ct′ ← ct + LeftRotate(ct′,−1)
12 e← e + 1
13 return ct′

Algorithm 3: Total_Sum algorithm (storage efficient version) which accumulates
every element in the encrypted vector

Method-II with balanced performance In the previous section, we introduced
Method-I for homomorphic accumulation of the encrypted vector, which extensively utilizes
cyclic rotations but lacks computational efficiency due to its heavy reliance on rotations.
Method-I also avoids interaction between the sender and receiver entirely. However, to
address this computational inefficiency, we introduce a more practical Method-II, as
illustrated in Fig. 4, which reduces computational overhead through a single round of light
communication between the sender and receiver.

In Fig. 4, the sender randomizes the encryption of a sensitive and secret vector
v def= (v0, · · · , vN−1) by adding a random vector r to it, creating a new ciphertext Enc(v+r).
It’s important to note that the noise term of the input ciphertext Enc(v) may contain
additional sensitive information from the sender’s set. There exists two approaches to handle
this privacy issue, either by OPRF preprocessing [CMdG+21] or noise flooding [AJLA+12].
In this work, we choose to use noise flooding to obscure this undesirable leakage before
sending it to the receiver since this technqiue is slightly more computationally efficient.
Upon receiving Enc(v + r), the receiver locally decrypts it to v + r and calculates the sum
of all elements in the vector v + r to obtain sum(v + r). The receiver then re-encrypts

20

Sender Receiver

𝒗 + 𝒓
𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝒗 + 𝒓)

𝐸𝑛𝑐 𝒗 + 𝒓 ← 𝐸𝑛𝑐 𝒗 + 𝒓

𝐸𝑛𝑐(𝒗 + 𝒓)

𝑠𝑢𝑚(𝒗 + 𝒓)
𝑠𝑢𝑚 ⋅
 𝒗 + 𝒓

𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗 + 𝒓))

𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗)) ← 𝐸𝑛𝑐 𝑠𝑢𝑚(𝒗 + 𝒓) − 𝑠𝑢𝑚(𝒓)

𝒓
$
← ℤ𝑡

𝑁

𝐸𝑛𝑐 𝒗 + 𝒓
𝑛𝑜𝑖𝑠𝑒 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝐸𝑛𝑐 𝒗 + 𝒓

𝐸𝑛𝑐(𝑠𝑢𝑚 𝒗 + 𝒓)
𝐸𝑛𝑐 ⋅
 𝑠𝑢𝑚 𝒗 + 𝒓

𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗))

𝑠𝑢𝑚(𝒗)
𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗))

Figure 4: A fast homomorphic accumulation for all elements in an encrypted vector by
interaction

sum(v + r) and sends this ciphertext back to the sender. Finally, the sender de-randomizes
Enc(sum(v + r)) by subtracting r to obtain Enc(sum(v)) without gaining knowledge of
the exact sum(v).

In terms of performance, the sender performs two homomorphic additions and one noise
flooding operation, while the receiver executes one encryption, one decryption, and one sum
of all elements in the plaintext. The computational overhead for these operations is almost
negligible when compared to the homomorphic cyclic rotations used in Method-I. The cost
of Method-II is an additional round of communication, including two BFV ciphertexts,
which is approximately a few megabytes in size. This trade-off improves computational
efficiency while maintaining security and privacy.

4.6 Performance analysis
In summary, the proposed PSI-cardinality protocol, with all the optimizations incorpo-
rated, exhibits reasonable computational and communication overheads. The computa-
tional cost is primarily determined by the number of ciphertext-ciphertext multiplications
used in the membership test, which is approximately L + 2H − ⌈log2 L⌉ − ⌈log2 H⌉ − 3
with specific values of L = 65 and H ≈ ⌈ 3|S(sup)|

L·N ⌉. On the other hand, the communication
overhead is mainly influenced by the number of ciphertexts exchanged during the protocol.
The membership test requires ⌈log2 L⌉+ ⌈log2 H⌉ ciphertexts, while the homomorphic sum
involves 3 ciphertexts for interaction. Consequently, the overall communication overhead
is on the order of (⌈log2 L⌉ + ⌈log2 H⌉ + 3) · 2 · logq ·N bits, which exhibits logarithmic
scaling with respect to the size of the universe set |Ssup|.

4.7 Security analysis
We use the following theorem to argue that our new PSI-cardinality protocol is secure
against semi-honest adversaries:

Theorem 1. Assuming the existence of CPA-secure fully homomorphic encryption scheme,
semi-honest secure private set intersection cardinality protocol and semi-honest seucre
standard PSI protocol; then the protocol in Fig. 1 is secure in the presence of semi-honest
adversaries.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 21

Proof. Assume that P1 who plays as the sender/server is corrupted. We construct the
simulator S1 to simulate P1’s view in both OPE-based membership test and homomorphic
accumulation as follows. In the OPE-based membership, P1’s view includes Enc({ri}i)
for all i and thus can be simulated by a random message whose length is as the same as
Enc({ri}i). In the homomorphic accumulation, P1 sees Enc(v + r) which is obviously
indistinguishable from a random message generated by S1. To conclude, it is possible for
the simulator S1 to generate a view which is computationally indistinguishable from P1’s
view.

Assume that P2 who plays as the receiver/client is corrupted. We construct the
simulator S2 to simulate P2’s view in both OPE-based membership test and homomorphic
accumulation as follows. In the OPE-based membership, P2 sees nothing and therefore
no need to simulate. In the homomorphic accumulation, P2 sees Enc(v + r), v + r and
Enc(sum(v)). Enc(v + r) can be simulated by an encryption of a random message since
the CPA security of FHE holds and v + r is a random vector. S2 knows the final result
sum(v) and therefore it is natural for him to simulate Enc(sum(v)) by encrypting sum(v).
In both cases, the simulators are capable of generating views that are computationally
indistinguishable from the actual views of the corrupted players, ensuring semi-honest
security of the protocol.

Discussion In the proof, the circuit privacy property of fully homomorphic encryption
schemes must be fulfiled. In the secretTokenGen subprotocol, the sender/server may
interact with the receiver/client for reducing the noise in the ciphertexts. However, the
noise term is related to the function that the FHE computes and the receiver/client can
extract the noise term for learning information leakage in the ciphertext by decrypting it
locally. To fix this circuit privacy issue, we apply the noise flooding technique, where the
sender re-randomizes the output ciphertext c by homomorphically adding an encryption
of zero with a large noise term [Gen09]. Specifically, if the error component in the output
ciphertext is bounded by B, denoted as |e| < B, then the noise term in Enc(0) is bounded
by Ω(2λB) [AJLA+12]. By adding this large noise term, denoted as c′ = c + Enc(0), a
statistical distance of 2−λ (negligible) is achieved between c and c′.

5 The proposed Private Set Sum with Cardinality Protocol
In this section, we present our new protocol for private set sum with cardinality, denoted
as PSI-sum-cardinality. This protocol securely computes the sum of the payload values
associated with the intersected set elements and also computes the size of the set intersec-
tion using BFV Fully Homomorphic Encryption. Unlike the previous PSI-cardinality
protocol, which only computes the intersection cardinality, PSI-sum-cardinality extends
its functionality to sum the payload values associated with the intersected elements.

5.1 Tweaking PSI-cardinality for PSI-sum-cardinality

We build upon the foundation of PSI-cardinality described in the previous section. In
PSI-sum-cardinality, we approach the Newton interpolation in the membership test
from a different angle. Each set element si ∈ Ssup ∩ S is now associated with a default
payload value of ’1’ and ’0’ for elements that are not in the intersection. To compute the
sum of all payload values vi associated with the intersection elements si (i.e., si ∈ R ∩ S),
we modify the default payload value ’1’ to vi when constructing the membership polynomial
Pδ(X). Now, when we execute the PSI-cardinality, it securely computes the sum of the
payload values.

Protocol Execution The PSI-sum-cardinality protocol can be divided into two
executions, as depicted in Fig. 5:

22

Receiver Sender𝑅 = {𝑟𝑖} 𝑆||𝑉 = {𝑠𝑖 : 𝑣𝑖}

𝐸𝑛𝑐(|𝑅 ∩ 𝑆|)

Private Set Intersection Sum
with Cardinality

𝐸𝑛𝑐({𝑟𝑖})
Private Intersection Cardinality

Protocol

|𝑅 ∩ 𝑆|

𝐸𝑛𝑐(∑𝑣𝑖 𝑠. 𝑡. 𝑐𝑖 ∈ 𝑅 ∩ 𝑆)

𝐸𝑛𝑐({𝑟𝑖})
Private Intersection Cardinality

Protocol

∑𝑣𝑖 s.t. 𝑠𝑖 ∈ 𝑅 ∩ 𝑆

Use to interpolate the
membership test polynomial 𝑃𝛿(𝑥)

 𝑠𝑖 ∈ 𝑆, 1 , (𝑠𝑖 ∈ 𝑆𝑠𝑢𝑝 − 𝑆, 0) Use to interpolate the
membership test polynomial 𝑃𝛿(𝑥)

 𝑠𝑖 ∈ 𝑆, 1 , (𝑠𝑖 ∈ 𝑆𝑠𝑢𝑝 − 𝑆, 0)

Use to interpolate the
membership test polynomial 𝑃𝛿 ′ (𝑥)

 𝑠𝑖 ∈ 𝑆, 𝑣𝑖 , (𝑠𝑖 ∈ 𝑆𝑠𝑢𝑝 − 𝑆, 0)

Figure 5: Private set intersection sum with cardinality (PSI-sum-cardinaity) protocol

1. In the first execution, the protocol computes the intersection cardinality using the
PSI-cardinality protocol, as described in the previous section.

2. In the second execution, the membership test polynomial Pδ′(x) is modified such
that Pδ′(si ∈ R∩S) = vi for elements in the intersection and Pδ′(si /∈ R∩S) = 0 for
others. This modified polynomial is then used to securely compute the sum

∑
i vi of

all payload values associated with the intersection elements.

5.2 Performance Analysis
The computational overhead in PSI-sum-cardinality is roughly doubled compared to
PSI-cardinality, as it involves two executions of the protocol. However, it’s important to
note that the computational complexity remains asymptotically proportional to the square
root of |Ssup|. On the other hand, the communication overhead remains largely unchanged
(⌈log2(L)⌉+ ⌈log2(H)⌉+ 6 BFV ciphertexts in total, with L = 25, H = ⌈ 3|S(sup)|

N ·L ⌉).
In summary, PSI-sum-cardinality extends the functionality of PSI-cardinality

by securely computing the sum of payload values associated with intersected elements.
While this enhanced functionality comes with an increased computational overhead, it
remains affordable, especially when considering the security and privacy benefits it provides.
Importantly, the communication overhead in PSI-sum-cardinality remains at a similar
level to that of PSI-cardinality, making it a practical choice for secure set intersection
and sum operations.

5.3 Security analysis
We use the following theorem to argue that our new PSI-sum-cardinality protocol is
secure against semi-honest adversaries:

Theorem 2. Assuming the existence of semi-honest secure private set intersection car-
dinality protocol, then the protocol in Fig. 5 is secure in the presence of semi-honest
adversaries.

Proof. The proof is obvious. The first execution of PSI-cardinality protocol guarantees
the receiver/client learns nothing but the intersection size |R ∩ S|. The second execution
of PSI-cardinality protocol guarantees the receiver/client learns nothing but the sum
of payload values associated with the intersection, i.e.,

∑
i vi such that si ∈ R ∩ S.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 23

Receiver Sender𝑅 = {𝑟𝑖} 𝑆 = {𝑠𝑖}

𝐸𝑛𝑐(𝑲′)

𝐸𝑛𝑐(|𝑅 ∩ 𝑆|)

𝐸𝑛𝑐 𝐾′
𝑂𝑃𝐸
 𝐸𝑛𝑐 𝑅 ∩ 𝑆 ,𝑅𝑁𝐷,𝐾

Private Set Cardinality with
Threshold Protocol

𝐸𝑛𝑐({𝑟𝒊})
Private Intersection Cardinality

Protocol

𝐾′
𝑑𝑒𝑐𝑟𝑦𝑝𝑡
 𝐸𝑛𝑐(𝐾′)

Figure 6: Private set token with threshold on intersection cardinal-
ity(PSI-token-threshold) protocol

6 The Proposed Private Set Token with a Threshold on
Intersection Cardinality

In this section, we introduce our new protocol for private set token with a threshold
on cardinality, referred to as PSI-token-threshold. This protocol securely determines
whether the intersection cardinality satisfies a given condition without revealing any
information about the sets involved, using BFV Fully Homomorphic Encryption.

PSI-token-threshold can be built upon the PSI-cardinality protocol, as illustrated
in Fig 6. An additional homomorphic binary evaluation step is required to indicate whether
the intersection size meets the specified condition. To be more specific, the challenge here
is how to homomorphically evaluate the following threshold function:

fth(|R ∩ S|) =
{

K0 if |R ∩ S| satisfies threshold
K1 Otherwise

We achieve this by using Newton interpolation to construct fth(X), where the interpo-
lation points are (x ∈ threshold, K0) and (x /∈ threshold, K1). We then homomorphically
evaluate the Newton polynomial, which returns an encryption of K ′ with either K ′ = K0 or
K ′ = K1. The challenge lies in the fact that the initial noise in the ciphertext Enc(|R∩S|)
is too large to perform a meaningful evaluation of fth(X). While bootstrapping is a
theoretical approach to reduce the noise level, in practice, we aim to avoid using this
method.

6.1 Homomorphic Comparison by Reusing OPE
We propose a method to efficiently reduce the noise in the ciphertext Enc(|R ∩ S|) while
preserving the security of the protocol. The basic idea involves a receiver/client-assisted
bootstrapping process in which the sender/server resends the ciphertext Enc(|R ∩ S|)
to the receiver/client. The receiver/client can then decrypt it and re-encrypt |R ∩ S| to
create a new ciphertext with minimal noise. However, the receiver/client would learn
the exact value of |R ∩ S| during this process, which is not permissible for security
reasons. To address this, the sender/server randomizes the ciphertext before sending it
back to the receiver/client. This ensures that the receiver/client receives a randomized
message that leaks no information. Concretely, the sender performs Enc(|R ∩ S|+ r′) =
Enc(|R ∩ S|) + (0, r′) and sends it to the receiver. The receiver re-encrypts it to create a

24

refreshed ciphertext Enc(|R∩S|+ r′). Finally, the sender de-randomizes Enc(|R∩S|+ r′)
by performing Enc(|R ∩ S|) = Enc(|R ∩ S|+ r′)− (0, r′).

Sender Receiver

 𝑅 ∩ 𝑆 + 𝑟0

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝑅 ∩ 𝑆 + 𝑟0)

 𝐸𝑛𝑐(𝑅 ∩ 𝑆 2𝑖
)

𝑖
, 𝐸𝑛𝑐(𝑅 ∩ 𝑆 2𝑗 ⋅𝐿)

𝑗
, 𝑓𝑡ℎ 𝑋

𝑂𝑃𝐸
 𝐸𝑛𝑐 𝑓𝑡ℎ(|𝑅 ∩ 𝑆|)

𝐸𝑛𝑐 𝑅 ∩ 𝑆 + 𝑟0 ← 𝐸𝑛𝑐 𝑅 ∩ 𝑆 + 𝑟0

𝐸𝑛𝑐(𝑅 ∩ 𝑆 + 𝑟0)

𝐸𝑛𝑐(𝑅 ∩ 𝑆 + 𝑟0)
𝐸𝑛𝑐𝑝𝑘 ⋅

 𝑅 ∩ 𝑆 + 𝑟0 𝐸𝑛𝑐(𝑅 ∩ 𝑆 + 𝑟0)

 𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖 × 𝑡𝑚𝑝𝑖

𝑡𝑚𝑝0 ← 𝐸𝑛𝑐 𝑅 ∩ 𝑆 + 𝑟0

𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖+1 + 𝑟𝑖+1

𝑡𝑚𝑝𝑖+1

 𝑅 ∩ 𝑆 2𝑖+1
+ 𝑟𝑖+1

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖+1

𝐸𝑛𝑐𝑝𝑘 ⋅

 𝑅 ∩ 𝑆 2𝑖+1
+ 𝑟𝑖+1

𝐸𝑛𝑐 𝑅 ∩ 𝑆 2𝑖
 ← 𝑡𝑚𝑝𝑖 − 𝑟𝑖

𝑓𝑜𝑟 𝑖 = 0, ⋯ , log2 𝐿′ − 2:

𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖 ← 𝑡𝑚𝑝𝑖 − 𝑟𝑖

𝑟0

$
← ℤ𝑞

𝑟𝑖+1

$
← ℤ𝑞

Repeat log2 𝐿′ − 1

times to generate

 𝑡𝑚𝑝𝑖 𝑖∈[0, log2 𝐿′ −1]

with minimal noise.

𝑓𝑜𝑟 𝑖 = 1, ⋯ , log2 𝐿′ − 2:

𝑓𝑜𝑟 𝑖 = log2 𝐿′ , ⋯ , log2 𝐿′ + log2 𝐻′ − 2:

𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖 × 𝑡𝑚𝑝𝑖

𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖+1 + 𝑟𝑖+1

𝑡𝑚𝑝𝑖 ← 𝑡𝑚𝑝𝑖 − 𝑟𝑖

𝑟𝑖+1

$
← ℤ𝑞

𝑡𝑚𝑝𝑖+1

𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖+1

𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖+1

 𝑅 ∩ 𝑆 2𝑖+1⋅𝐿 + 𝑟𝑖+1

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖+1

𝐸𝑛𝑐𝑝𝑘 ⋅

 𝑅 ∩ 𝑆 2𝑖+1⋅𝐿 + 𝑟𝑖+1 𝑡𝑚𝑝𝑖+1

Repeat log2 𝐻′ − 1 times to

generate

 𝑡𝑚𝑝𝑖 𝑖∈[log2 𝐿′ +1, log2 𝐿′ + log2 𝐻 ′ −1]

with minimal noise.

𝑡𝑚𝑝 log2 𝐿′ ← 𝑡𝑚𝑝 log2 𝐿′ −1 × 𝑡𝑚𝑝0

𝑡𝑚𝑝 log2 𝐿′

 𝑅 ∩ 𝑆 𝐿
′

+ 𝑟 log2 𝐿′

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝 log2 𝐿′

𝐸𝑛𝑐𝑝𝑘 ⋅

 𝑅 ∩ 𝑆 𝐿
′

+ 𝑟 log2 𝐿′ 𝑡𝑚𝑝 log2 𝐿′

𝑡𝑚𝑝 log2 𝐿′ −1 ← 𝑡𝑚𝑝 log2 𝐿′ −1 − 𝑟 log2 𝐿′ −1

𝑡𝑚𝑝 log2 𝐿′ ← 𝑡𝑚𝑝 log2 𝐿′ + 𝑟 log2 𝐿′

𝑡𝑚𝑝 log2 𝐿′

𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝑡𝑚𝑝 log2 𝐿′

𝐸𝑛𝑐 𝑅 ∩ 𝑆 2𝑗 ⋅𝐿′ ← 𝑡𝑚𝑝𝑗+ log2 𝐿′ − 𝑟𝑗+ log2 𝐿′

𝑓𝑜𝑟 𝑗 = 1, ⋯ , log2 H′ − 1:

𝐸𝑛𝑐 𝑓𝑡ℎ(|𝑅 ∩ 𝑆|)

𝑓𝑡ℎ(|𝑅 ∩ 𝑆|)
𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝑓𝑡ℎ(|𝑅 ∩ 𝑆|))

𝐸𝑛𝑐(𝑓𝑡ℎ(|𝑅 ∩ 𝑆|))
𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝐸𝑛𝑐(𝑓𝑡ℎ(|𝑅 ∩ 𝑆|))

𝐸𝑛𝑐(𝑓𝑡ℎ 𝑅 ∩ 𝑆 + 𝑟0)
𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝐸𝑛𝑐(𝑓𝑡ℎ 𝑅 ∩ 𝑆 + 𝑟0)

Figure 7: Homomorphic comparison used in the PSI-cardinaity-threshold protocol

To ensure that the noise reduction is effective, the server must refresh not only
Enc(|R ∩ S|) but also Enc(|R ∩ S|)2m for m ∈ [⌈log2 L′⌉] and Enc(|R ∩ S|)2nL′ for n ∈

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 25

[⌈log2 H ′⌉]. This is necessary for compatibility with Paterson’s algorithm and to minimize
the multiplicative depth. Fig. 7 provides a detailed description of the homomorphic
comparison sub-protocol, where the server inputs an RLWE encryption of the intersection
cardinality, i.e., Enc(|R ∩ S|), and outputs an RLWE encryption of fth(|R ∩ S|) after
⌈log2 L′⌉+ ⌈log2 H ′⌉ rounds of interactions.

In summary, this client-assisted bootstrapping technique allows for noise reduction
in the ciphertext Enc(|R ∩ S|), and it is essential for the efficient execution of the PSI-
caPrdinality-threshold protocol while preserving security.

6.2 Performance analysis
We analyze quntatively the timing performance and the comunication cost of the proposed
PSI-token-threshold protocol. Compared with PSI-cardinality protocol, the extra
computational overhead mainly comes from the number of ciphertext-ciphertext multipli-
cations used in the OPE-based comparsion, which is L′ + 2H ′− 4 with L′ = 65, H ′ = ⌈ |R|

L′ ⌉.
Therefore, the total computational overhead is L + 2H−⌈log2 L⌉−⌈log2 H⌉+ L′ + 2H ′−7
with L = 65, H = ⌈ 3|Ssup|

N ·L ⌉. This amount is essentially aymptotically logrithmic in√
|S(sup)|/N +

√
|R|.

As for the communication cost, the OPE-based comparison introduces 2⌈log2 L′⌉ +
2⌈log2 H ′⌉ ciphertexts. Therefore, the total communication overhead is (⌈log2 L⌉ +
⌈log2 H⌉+ 2⌈log2 L′⌉+ 2⌈log2 H ′⌉+ 4) · 2 · log2 q ·N bits.

6.3 Security analysis
We use the following theorem to argue that our new PSI-token-threshold protocol is
secure against semi-honest adversaries:

Theorem 3. Assuming the existence of CPA-secure fully homomorphic encryption scheme,
semi-honst secure private set intersection cardinality protocol and semi-honest seucre
standard PSI protocol; then the protocol in Fig. 6 is secure in the presence of semi-honest
adversaries.

Proof. We first prove that the OPE-based homomorphic comparsion as shown in Fig. 7 is
secure and later prove PSI-token-threshold is secure based on it.

Assume that P1 plays the role of sender/server and is corrupted. The simulator S1 simu-
lating the view of P1 is constructed as follows: S1 randomly generates ⌈log2 L′⌉+ ⌈log2 H ′⌉
messages with the same length as FHE ciphertext. These messages are indistinguishable
from tmpi for i = 0, · · · , ⌈log2 L′⌉+ ⌈log2 H ′⌉ − 1 in P1’s view.

Assume that P2 plays the role of receiver/client and is corrupted. The simulator S2
simulating the view of P2 is constructed as follows: S2 randomly generates ⌈log2 L′⌉ +
⌈log2 H ′⌉ messages with the same length as FHE ciphertext. Decryption of these random
messages are random integers indistinguishable from the masked |R ∩ S|2i and |R ∩ S|2j ·L

computed on P1. S2 certainly knows the final result fth(|R ∩ S|) and therefore the
encryption of fth(|R ∩ S|) is indistinguishable from Enc(fth(|R ∩ S|)) sent by the sender.
This completes the security proof for the OPE-based homomorphic comparsion as shown
in Fig. 7.

Next we proceed to prove that the main protocol PSI-token-threshold is secure.
Assume that P1 plays the role of sender/server and is corrupted. Since PSI-cardinality
and the OPE-based homomorphic comparison are secure, the sender’s view can be fully
regenerated by S1. The same argument goes to the corrupted P2 who plays as the
receiver/client.

26

Receiver Sender

𝑅 = {𝑠𝑖}

𝑅′ = 𝑟𝑖
′ 𝑖 = 𝑟𝑖 𝐾

′ 𝑖
𝑆′ = 𝑠𝑖

′ 𝑖 = 𝑠𝑖 𝐾 𝑖

Standard PSI
Protocol

Private Set Cardinality with
threshold Protocol

𝐶 = {𝑐𝑖} 𝑆 = {𝑠𝑖}

PSI-Token-Threshold
 𝑆 = {𝑠𝑖}

𝐸𝑛𝑐 𝐾′

PSI-Token-Threshold
 𝑆 = {𝑠𝑖}

𝐸𝑛𝑐 𝐾′ 𝐾

𝐾′ ← 𝐸𝑛𝑐 𝐾′

Standard PSI Protocol

𝑅′ = 𝑟𝑖
′ 𝑖 = 𝑟𝑖 𝐾

′ 𝑖 𝑆′ = 𝑠𝑖
′ 𝑖 = 𝑠𝑖 𝐾 𝑖

𝑅′ ∩ 𝑆′ 𝑅′ ∩ 𝑆′

Figure 8: An abstract framework for our threshold PSI protocol

7 The Proposed Threshold Private Set Intersection Proto-
col

In this section, we introduce our construction for threshold PSI, denoted as tPSI, at an
abstract level. Threshold PSI encompasses different types of thresholds: below-threshold
(returning the set intersection if the cardinality is below a certain value), above-threshold
(returning the intersection if the cardinality exceeds a threshold), and in-between-threshold
(returning the intersection if the cardinality falls within a specified range). The setup
involves a receiver/client with a set R and a sender/server with a set S. The tPSI protocol
is built on two subprotocols: the private set intersection token with threshold and the
standard PSI protocol as shown in Fig. 8.

In the private set intersection token with threshold on cardinality subprotocol, known as
PSI-token-threshold, two secret tokens, K ′ and K, are generated by the sender/server
based on the encrypted intersection cardinality, Enc(|R ∩ S|). The crucial point here is
that K ′ = K if the intersection cardinality satisfies the threshold criterion; otherwise, K’ is
a random token. The receiver/client decrypts the encryption of K ′ and appends it to every
item in their set R, resulting in the updated set R′. Simultaneously, the sender/server
updates their set S to S′, with each item augmented by K.

In the standard PSI protocol, the receiver/client inputs their updated set R′, and
the sender/server inputs their updated set S′. The protocol then proceeds like a typical
PSI protocol. At the protocol’s conclusion, the receiver/client learns no more than the
intersection R ∩ S if the threshold criterion is met. Otherwise, the receiver/client, with
overwhelming probability, receives an empty set.

7.1 Challenges in the proposed threshold PSI
One of the main challenges in the proposed threshold PSI (tPSI) protocol is the need
to homomorphically compare the intersection size |R ∩ S| with a given threshold t and
generate a secret token based on this comparison result. We denote this variant of

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 27

PSI-token-threshold as SecretTokenGen. Specifically, the challenge is to compute the
function:

fth(|R ∩ S|) =
{

K if |R ∩ S| satisfies threshold
RND Otherwise

Here, K is generated by the sender/server to update their own set, while RND is a
completely random token. The difficulty lies in ensuring low multiplicative depth for the
underlying OPE-based comparison. This is made even more challenging because the input,
i.e., the encryption of |R ∩ S|, contains a relatively high level of noise. The noise budget
available for computing fth is limited, adding to the complexity of the problem.

7.2 Homomorphic Secret Token Generation
In the SecretTokenGen subprotocol, we apply OPE to perform a specific homomorphic
comparison that aims to generate a secret token based on whether the input satisfies a given
threshold. This is different from the normal comparison used in the PSI-token-threshold
protocol. Here, we want to determine if a value is smaller or larger than a threshold and
produce a corresponding secret token.

For instance, in the above-threshold criteria, where we output a valid secret token K if
and only if the cardinality is above a certain threshold t, the interpolation polynomial is
constructed in the following form:

fth(X) = r ·
|R|∏
i=t

(X − i) + K

Here, r is a random number, and K is the target secret token. The multiplicative depth
for computing fth(X) is log log(N − t + 1).

To make this functionality more general for any discrete threshold criteria, where it
outputs a valid secret token K if and only if the cardinality satisfies some given threshold
t, the polynomial can be constructed as follows:

fth(X) = r ·
∏

i∈threshold
(X − i) + K

Analogous to the method used in PSI-token-threshold, the receiver/client and the
sender/server interact to generate the encryption of |R∩S|m for m ∈ [log2 L] and |R∩S|2nL

for n ∈ [log2 H].

7.3 Performance analysis
The computation overhead for the tPSI protocol, which includes homomorphic secret token
generation, is primarily determined by the number of ciphertext-ciphertext homomorphic
multiplications used. If we assume that the degree of the polynomial fth(X) is ε|R|,
where 0 < ε < 1, and we apply a combination of the windowing method and the Paterson-
Stockmeyer algorithm, then the number of ctx-ctx multiplications is reduced to L′ +2H ′−3
where L′ = 65, H ′ = ⌈ ε|R|

L′ ⌉.
Assuming we instantiate the standard PSI protocol from FHE-based constructions, the

overall computational overhead for the tPSI protocol is: L + 2H − ⌈log2 L⌉ − ⌈log2 H⌉ −
3+L′ +2H ′−3+L′′ +2H ′′−⌈log2 L′′⌉−⌈log2 H ′′⌉−3 where L = 65, H = ⌈ 3|Ssup|

NL ⌉, L′′ =
65, H ′′ = ⌈ 3|S|

NL ⌉. This computational overhead is asymptotically on the order of
√
|Ssup|+√

|S|+
√

ε|R|.

28

For the communication overhead, the homomorphic secret token generation requires
⌈log2(L)⌉+⌈log2(H)⌉+2⌈log2(L′)⌉+2⌈log2(H ′)⌉+3 ciphertexts. The standard PSI requires
⌈log2(L′′)⌉+ ⌈log2(H ′′)⌉+ 1 ciphertexts. Therefore, the total communication overhead is
(⌈log2(L)⌉+⌈log2(H)⌉+2⌈log2(L′)⌉+2⌈log2(H ′)⌉+⌈log2(L′′)⌉+⌈log2(H ′′)⌉+4)·2·log2 q·N
bits.

7.4 Security analysis
We use the following theorem to argue that our new threshold PSI protocol is secure
against semi-honest adversaries:

Theorem 4. Assuming the existence of CPA-secure fully homomorphic encryption scheme,
semi-honst secure private set intersection cardinality with threshold protocol and semi-
honest seucre standard PSI protocol; then the protocol in Fig.8 is secure in the presence of
semi-honest adversaries.

Proof. Let P1 play as the receiver/client, and P2 play as the sender/server. Since we use
a standard PSI protocol secure against semi-honest adversaries, it suffices to prove that
the threshold token generation protocol is semi-honest secure. First, we consider the
case that P2 is corrupted. Thus, we merely need to show how to simulate the view of
the incoming messages received by P2 by constructing a simulator called S2. This part
is easy because P2’s view contains only FHE encryptions of the receiver/client’s set, i.e.,
Enc({ri}i)

def= Enc(ri) for all ri ∈ R. S2 chooses a uniformly distributed message whose
length equals to that of the ciphertext Enc({ri}i). This simulated message cannot be
distinguished from Enc({ri}i) in the real model by a probabilistic polynomial-time-bounded
adversaries due to the CPA-security of FHE ciphertexts.

Next, we proceed to the case that P1 is corrupted, and construct a simulator
S1. The view of P1 merely contains an FHE ciphertext Enc(K ′) sent by P2. Enc(K ′)
is the output of the PSI-token-threshold protocol performed on P2, and thus is still
CPA secure. Note that in this case, P1 outputs the secret token K ′ which is either the
actual secret token K or a random value RND depending on whether or not the threshold
condition is fulfilled. Either way, S1 uses P1’s FHE secret key to encrypt K ′ and thus this
new FHE ciphertext is indistinguishable from the incoming Enc(K ′) from P2 in the real
model.

8 Experimental Results and Comparisons
We have implemented the PSI-cardinality, PSI-token-threshold, and tPSI protocols
in C++, utilizing the SEAL [Res21b] and APSI [Res21a] libraries. Initially, we evaluated
the performance of the tPSI protocol by varying the size of the sender’s set while keeping
the receiver’s set relatively small as shown in Table. 1. The results demonstrate that the
online runtime has been significantly reduced, ranging from 10.2 to 98.1 seconds, which
appears to be a favorable outcome for practical real-world applications. However, it’s
noteworthy that the offline phase experiences notable growth due to our utilization of
Newton interpolation for constructing the membership test polynomial, a process with
a time complexity of Ω(|Ssup|2). It’s important to emphasize that this offline phase is
a one-time computation performed on the sender’s side, and its amortized cost could
be negligible when the tPSI protocol is executed across multiple clients and scenarios.
Moreover, we observed that the communication overhead exhibited gradual growth, ranging
from 16 MB to 22 MB, as the size of the sender’s set increased. This trend underscores
the advantage of our FHE-based design, which keeps communication costs relatively low
even with larger sets.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 29

Table 1: Details of Computation and communication cost of our tPSI implementation

|Ssup| |S| |R| sender offline sender online comm.(MB)
total interpolate_set cmp_poly total membership_test homo_sum homo_cmp standard_PSI R→ S S → R

216 212

212

5.4s 0.3s 5.1s 10.2s 0.5s 0.3s 6.4s 0.7s 8.77 7.40
220 216 6.8s 1.6s 5.2s 13.3s 1.7s 0.3s 6.5s 2.0s 9.77 7.40
224 220 43.3s 40.0s 3.3s 22.0s 7.1s 0.4s 6.7s 4.7s 12.70 8.33
225 224 80.2s 79.0s 1.2s 98.1s 14.1s 1.5s 7.2s 71.1s 13.7 8.33

Table 2: Comparisons between our computations-over-PSI implementation and others

|S| |R| Protocol sender offline sender online comm.(MB)

212 212

ours, PSI-cardinality 2.8s 1.6s 4.62
ours,PSI-token-threshold 8.3s 9.5s 12.95

ours, tPSI 8.3s 10.2s 15.73
[JTKA22], PSI — 7.396s 141

220 11041
ours, tPSI 52s 35.4s 20.36

[CLR17], PSI 43s 4.47s 14.34
[CMdG+21], PSI 29s 4.23s 8.94

220 1024 ours, PSI-cardinality 73.1s 9.1s 6.47
ours, PSI-token-threshold 73.4s 12.1s 16.66

≈ 222 1120 [TSS+20], PSI-cardinality — 35.2s 126.7

220 28 [LPR+21], circuit-PSI, Construction 1 137 0.62 7
[LPR+21], circuit-PSI, Construction 2 0 3026 29

220 28 [SJ23], circuit-PSI, Construction 1 7.64 4.96 4.8
[SJ23], circuit-PSI, Construction 2 3.8 2.59 12.2

220 220 [IKN+20], PSI-sum-cardinality — 776.4s 84
220 220 [MPR+20], PSI-sum-cardinality — 35583s 436.7
220 220 [PSWW18], PSI-token-threshold — 86.6s 6950.6

In Table 2, we present a comparative analysis of our work with existing literature on
computation-over-PSI protocols. Our contributions include tPSI for securely comput-
ing the intersection based on a threshold condition, PSI-cardinality for determining
the size of the set intersection, PSI-sum-cardinality for securely summing payload
values associated with intersected elements and computing the intersection size, and
PSI-token-threshold for generating an encryption of a valid token when the intersection
size exceeds a threshold value. To evaluate our work, we first compare it with FHE-based
standard PSI protocols such as [CLR17, CMdG+21]. Our protocols exhibit acceptable
computation and communication overhead compared to these reference works.

Another recent approach presented in [JTKA22] employs homomorphic evaluation
of a branching program for constructing PSI and its variants. While their approach
has advantages in certain communication cost scenarios, our work offers competitive
performance, even for parameter setups involving relatively small set sizes.

In contrast, [IKN+20] and [MPR+20] focus on the private intersection-sum with
cardinality (PSI-sum-cardinality) protocol, utilizing Diffie-Hellman Protocol + Pail-
lier and distributed oblivious pseudorandom function (D-OPRF), respectively. Our
PSI-cardinality design can be easily adapted to implement PSI-sum-cardinality with
only a modest increase in runtime and communication overhead, making it a more favorable
option for asymmetric scenarios where the sender’s set is substantially larger than the
receiver’s.

[TSS+20] introduces a PSI-cardinality protocol based on keyword PIR, which is par-
ticularly suited for asymmetric sets. Although their work provides performance estimates
rather than direct implementations, our approach exhibits better runtime efficiency and
lower communication cost.

[PSWW18] proposes a circuit-based construction for PSI protocols, optimizing per-
formance efficiency for symmetric sets. In contrast, our work focuses on asymmetric

30

sets, where the sender’s set is large and the receiver’s set is small, resulting in superior
communication complexity for such scenarios.

Lastly, [LPR+21, SJ23] propose to use FHE to construct the circuit-based PSI. Gen-
erally, the performance of these state-of-the-art circuit PSI protocols surpasses that of
our work. However, it is essential to highlight that the functionality of our threshold PSI
protocols is quite different from the circuit protocol. Circuit-PSI must additionally employ
generic MPC protocols to construct SecretTokenGen and other threshold-related functions.
Our primary focus in this study is to explore the feasibility of employing FHE technique for
a direct construction of a PSI-with-computations protocol. In comparison, our approach
achieves comparable performance, and our protocols maintain conceptual simplicity and
modularity. This simplicity streamlines both security analysis and implementations.

9 Conclusions
In this study, we address the challenge of constructing threshold-related functionalities
for private set intersection (PSI) from fully homomorphic encryptions (FHE). Existing
PSI protocols with computations primarily target symmetric sets, where the sender
and the receiver possess sets of equal size. However, these protocols face challenges in
achieving optimal communication overhead when transitioning to asymmetric sets, where
the sender’s set is substantially larger than the receiver’s. Leveraging the advantages
of FHE primitives in communication complexity, we tackle this issue while maintaining
computational efficiency by introducing various optimization techniques.

To be more specific, we initially present a variant of the FHE-based Oblivious Polynomial
Evaluation (OPE) primitive to build the PSI-cardinality protocol. This protocol securely
computes the cardinality of the set intersection. We then modify this FHE-based OPE
primitive to develop the PSI-cardinality-sum protocol, which securely computes both
the cardinality of the set intersection and the sum of payload values associated with
the intersected elements. Augmenting the PSI-cardinality-sum protocol with a novel
proposal for an OPE-based comparison primitive, we establish the PSI-token-threshold
protocol, which securely computes a token if and only if the intersection size satisfies a
presribed requirement. Finally, by combining PSI-token-threshold with a standard PSI,
we construct a tPSI protocol. This protocol securely computes the set intersection if and
only if the intersection size satisfies a prescribed requirement.

Our findings indicate a close connection between the constructions of threshold-related
PSI variants, demonstrating the technical feasibility of developing efficient PSI-with-
computation protocols over asymmetric sets exclusively from FHE. We hope that our
work stimulates interest among researchers in the field, encouraging further exploration of
practical solutions for FHE-based PSI-with-computation, especially in scenarios involving
disparate set sizes.

References
[ACT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters:

size-hiding private set intersection. In International Workshop on Public Key
Cryptography, pages 156–173. Springer, 2011.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold fhe. In Advances in
Cryptology–EUROCRYPT 2012: 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings 31, pages 483–501. Springer, 2012.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 31

[BGK+08] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin,
Jason Morrison, Michiel H. M. Smid, and Yihui Tang. On the false-positive
rate of bloom filters. Inf. Process. Lett., 108(4):210–213, 2008.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[BMRR21] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter
Rindal. Multi-party threshold private set intersection with sublinear com-
munication. In IACR International Conference on Public-Key Cryptography,
pages 349–379. Springer, 2021.

[CGS21] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-psi with lin-
ear complexity via relaxed batch opprf. Cryptology ePrint Archive, Paper
2021/034, 2021. https://eprint.iacr.org/2021/034.

[CKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity
private set intersection protocols secure in malicious model. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 213–231. Springer, 2010.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1243–1255,
2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet
setting from lightweight oblivious prf. In Annual International Cryptology
Conference, pages 34–63. Springer, 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. Labeled psi from homomorphic
encryption with reduced computation and communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1135–1150, 2021.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages
789–800, 2013.

[DD15] Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set
intersection cardinality using bloom filter. In International Conference on
Information Security, pages 209–226. Springer, 2015.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In International Conference on Applied
Cryptography and Network Security, pages 125–142. Springer, 2009.

[EFG+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and
Jörn Tillmanns. Privately computing set-union and set-intersection cardinality
via bloom filters. In Australasian Conference on Information Security and
Privacy, pages 413–430. Springer, 2015.

[FHNP16] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Effi-
cient set intersection with simulation-based security. Journal of Cryptology,
29(1):115–155, 2016.

https://eprint.iacr.org/2021/034

32

[FNP04] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International conference on the theory and
applications of cryptographic techniques, pages 1–19. Springer, 2004.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford university,
2009.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure
private set intersection. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 154–185. Springer, 2019.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersection.
In Annual International Cryptology Conference, pages 395–425. Springer,
2021.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Annual International Cryptology Conference, pages
3–29. Springer, 2019.

[Haz18] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection
from algebraic prfs. Journal of Cryptology, 31(2):537–586, 2018.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are
garbled circuits better than custom protocols? In NDSS, 2012.

[HFH99] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Proceedings of the 1st ACM conference
on Electronic commerce, pages 78–86, 1999.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of
malicious adversaries. In International Workshop on Public Key Cryptography,
pages 312–331. Springer, 2010.

[HOS17] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 276–291. IEEE, 2017.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-
party private set-intersection. In IACR international workshop on public key
cryptography, pages 175–203. Springer, 2017.

[HW06] Susan Hohenberger and Stephen A Weis. Honest-verifier private disjointness
testing without random oracles. In International Workshop on Privacy
Enhancing Technologies, pages 277–294. Springer, 2006.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying
secure computing: Private intersection-sum-with-cardinality. In 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 370–389.
IEEE, 2020.

[JL10] Stanisław Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In International Conference on Security and Cryptography for Networks, pages
418–435. Springer, 2010.

Jingwei Hu, Junyan Chen, Wangchen Dai and Huaxiong Wang 33

[JTKA22] Jonas Janneck, Anselme Tueno, Jörn Kußmaul, and Matthew Akram. Private
computation on set intersection with sublinear communication. Cryptology
ePrint Archive, 2022.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious prf with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829, 2016.

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual
International Cryptology Conference, pages 241–257. Springer, 2005.

[LPR+21] Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu.
Private join and compute from pir with default. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
605–634. Springer, 2021.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy, pages 134–134. IEEE, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality. In
Annual International Cryptology Conference, pages 3–33. Springer, 2020.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n
ot extension with application to private set intersection. In Cryptographers’
Track at the RSA Conference, pages 381–396. Springer, 2017.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse ot extension. In Annual
International Cryptology Conference, pages 401–431. Springer, 2019.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In 24th USENIX
Security Symposium (USENIX Security 15), pages 515–530, 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.
Efficient circuit-based psi with linear communication. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Ger-
many, May 19–23, 2019, Proceedings, Part III 38, pages 122–153. Springer,
2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Effi-
cient circuit-based psi via cuckoo hashing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 125–157.
Springer, 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on {OT} extension. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 797–812, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private
set intersection based on ot extension. ACM Transactions on Privacy and
Security (TOPS), 21(2):1–35, 2018.

34

[Res21a] Microsoft Research. APSI: C++ library for Asymmetric PSI. https://
github.com/microsoft/APSI, 2021. [Online; accessed September-2023].

[Res21b] Microsoft Research. Microsoft SEAL. https://github.com/microsoft/
SEAL, 2021. [Online; accessed September-2023].

[RR17] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via
dual execution. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1229–1242, 2017.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: fast oprf and circuit-psi
from vector-ole. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 901–930. Springer, 2021.

[SJ23] Yongha Son and Jinhyuck Jeong. Psi with computation or circuit-psi for
unbalanced sets from homomorphic encryption. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security, pages
342–356, 2023.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song.
Epione: Lightweight contact tracing with strong privacy. arXiv preprint
arXiv:2004.13293, 2020.

[ZC18] Yongjun Zhao and Sherman SM Chow. Can you find the one for me? In
Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pages
54–65, 2018.

https://github.com/microsoft/APSI
https://github.com/microsoft/APSI
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL

	Introduction
	Contributions
	Technical Overview

	Related work
	BFV Fully Homomorphic Encryption
	RLWE
	Addition and Multiplication
	SIMD Encoding
	Left Rotation
	Oblivious Polynomial Evaluation (OPE)
	Bloom Filter

	The proposed Private Set Cardinality Protocol
	Challenges in PSI-cardinality
	Using OPE for Membership Test
	Use hashing to accelerate OPE
	Batching the computation of OPE
	Homomorphic Sum
	Performance analysis
	Security analysis

	The proposed Private Set Sum with Cardinality Protocol
	Tweaking PSI-cardinality for PSI-sum-cardinality
	Performance Analysis
	Security analysis

	The Proposed Private Set Token with a Threshold on Intersection Cardinality
	Homomorphic Comparison by Reusing OPE
	Performance analysis
	Security analysis

	The Proposed Threshold Private Set Intersection Protocol
	Challenges in the proposed threshold PSI
	Homomorphic Secret Token Generation
	Performance analysis
	Security analysis

	Experimental Results and Comparisons
	Conclusions

