
Sigmabus: Binding Sigmas in Circuits for Fast Curve Operations

George Kadianakis1, Mary Maller1,2, and Andrija Novakovic3

1Ethereum Foundation
2PQShield
3Geometry

asn@ethereum.org

mary.maller@ethereum.org

andrija@geometry.xyz

October 19, 2023

Abstract

This paper introduces Sigmabus, a technique designed to enhance the efficiency of zero-
knowledge circuits by relocating computationally expensive operations outside the circuit.
Specifically, Sigmabus focuses on moving elliptic curve group operations, typically proven with
expensive non-native field arithmetic, to external computations. By leveraging Sigma protocols,
elliptic curve group operations are proven outside the circuit, while additional constraints are
applied to the circuit to ensure correct execution of the Sigma protocol. This approach can
achieve significant performance improvements in zero-knowledge circuits. This paper presents
the Sigmabus protocol along with its security proofs, and demonstrates its practical implications
through various use cases.

1 Introduction

Modern zero-knowledge protocols encounter significant prover computational overhead due to the
execution of elliptic curve group operations within SNARK circuits. These operations are required
for recursion, aggregating proofs or verifying signatures inside the circuit. While it is possible to
perform these elliptic curve group operations using non-native field arithmetic, such an approach
results in field operations that are orders of magnitude slower than native field operations. To
address this inefficiency, researchers have proposed various optimizations, including curve chains,
curve cycles, and deferred computations in recursive settings [Wil].

In this work we aim to leverage algebraic hash functions to greatly improve efficiency for group
operations. Algebraic hash functions were developed because traditional hash functions such SHA2
and SHA3 result in large prover computational overhead - considerably more so than elliptic curve
group operations. Researchers and developers have invested time and resources over many years
in avoiding traditional hash operations. In particular, algebraic hash functions such as MIMC,
Poseidon, Rescue, and Reinforced Concrete were suggested as a cheaper alternative. Designed with
the goal of being efficient to compute inside a SNARK circuit, algebraic hash functions are now so
efficient that they are not only cheaper than their non-algebraic predecessors, they are also orders

1

of magnitude cheaper than group operations. See Table 1 for a comparison of these costs.
This paper introduces Sigmabus, a novel technique that allows circuit designers to relocate

elliptic curve group operations outside the circuit. The approach involves performing a Sigma
protocol [Sch91] outside the circuit and subsequently “binding” it inside the circuit. However, the
message in the first round of the Sigma protocol is computed using a hash function rather than
a group operation, making it cheap to bind inside the circuit. During verification, the verifier
validates both the Sigma transcript and the SNARK proof, ensuring the integrity of the proof
and the correctness of the relocated operations. Sigmabus is provably secure in the random oracle
model assuming a binding commitment scheme and that discrete log is hard.

Sigmabus also supports arbitrary linear elliptic curve operations and allows for amortization,
enabling multiple operations from the circuit to be offloaded with a single Sigma protocol invocation.

We envision that Sigmabus can be used to improve the performance of circuits that aggregate
proofs, or verify signatures. It can also be used to link algebraic with non-algebraic commitments
and hence can serve as a connector between commit-and-prove protocols.

Non-native scalar multiplication Poseidon hash

R1CS 100, 000 constraints 1, 000 constraints
Plonkish 14, 000 constraints 220 constraints

Table 1: Constraints required for performing operations in R1CS and Plonkish

1.1 Related Work

Sun et al. [SSS`22] introduced a technique using a delegated Schnorr protocol enabling the use
of Bulletproofs commitments on a different elliptic curve from the one employed in the SNARK.
Sigmabus works in a similar vein, but uses a generic hiding commitment scheme instead of a hash
function and provides formal security proofs for the construction.

Chase et al. [CGM16] introduced a technique that combines algebraic-based proof protocols,
such as Sigma protocols, with proofs based on garbled circuits. This integration efficiently handles
algebraic operations in the former and non-algebraic operations (e.g. hash functions) in the latter.
The linkage between these proof systems relies on using a private garbling scheme to compute a
one-time MAC of the witness and then proving the correctness of the MAC using a Sigma protocol.
However, this technique requires garbled circuits with privacy properties, as the verifier learning
the MAC value directly reveals the witness. As a result, the approach is not immediately applicable
to proof systems that do not employ private garbled circuits. In contrast, Sigmabus can be utilized
by any circuit-based proof system without being restricted by the need for private garbled circuits.

LegoSNARK [CFQ19] introduced a generic framework for linking different proof systems. Using
the commit-and-prove paradigm [Kil90] [CLOS02], it provides a framework and generic compiler to
facilitate the generic integration of proof systems and demonstrates its applicability across various
use cases. Sigmabus can be seen as providing an efficient specialized LegoSNARK link between
Sigma protocols and generic SNARK protocols.

GoblinPlonk [Wil] introduces a mechanism for deferring expensive operations in SNARK cir-
cuits. For instance, when encountering an expensive operation X “ xG, the prover defers the
actual computation and directly provides the final result for X. Once multiple such operations
have been deferred, a specialized circuit verifies the correctness of all deferred operations in a single

2

step. Sigmabus can be effectively utilized in a GoblinPlonk final circuit to expedite the verification
process. Furthermore, when integrating Sigmabus into a larger circuit, the prover can provide the
final result for X and defer its actual computation by pushing it to a Sigma protocol, following a
similar approach as in GoblinPlonk.

1.2 Document Structure

We start with Section 2, where we introduce the Sigmabus protocol by giving an informal overview
of its functionality and security and follow up with Section 3 where we provide a formal description
of Sigmabus. Next in Section 4, we present formal proofs for the scheme’s computational knowledge
soundness and honest-verifier zero-knowledge properties. In Section 5, we explore optimizations
and possible extensions to enhance Sigmabus’s performance within complex circuits. Moving on
to Section 6, we explore various protocols where Sigmabus can be effectively utilized. We begin
with Section 6.1, showcasing its application in a simple anonymous credential scheme. Next, in
Section 6.2, we demonstrate its integration into a larger Plonkish proof system. Finally, Section 6.3
delves into the benefits of plugging Sigmabus into proof systems based on boolean circuits.

2 Technical Overview

In this section we provide an informal overview both of the Sigmabus protocol and the security
reasoning.

2.1 Informal Protocol Overview

Suppose that cm “ Commitpxq is a binding commitment to
x and that X “ xG. The prover’s goal is to prove that cm
and X contain the same value x.
Recall in a sigma protocol that verifying transcripts have
the form pR, c, sq where c “ HashpX,Rq and R` cX “ sG.
Our idea is to modify the classic protocol to include an
additional terms cm and rh “ Commitprq. Now transcripts
have the form pR, rh, c, sq where c “ HashpX, cm, R, rhq and
R ` cX “ sG. A formal description is given in Figure 1
using the hash function Hash as a binding commitment.
Any commitment scheme can be used as long as it’s efficient
to open inside GenZK.

Subsequently, the prover modifies the GenZK circuit to accept public inputs pX, cm, rh, c, sq and
witness px, rq. Finally, the prover enhances the GenZK circuit to verify the following constraints:

cm “ Compxq ^ rh “ Hprq ^ s “ r ` cx

A valid proof requires both the Sigma protocol and the GenZK proof to be valid. Notably, the
GenZK circuit avoids performing any elliptic curve group operations.

2.2 Informal Security Overview

In this section, we offer an informal intuition on why Sigmabus is sound, with formal security proofs
presented in subsequent sections.

3

Prover Verifier

r
$

ÐÝ F
R Ð rG

rh Ð Hashprq R, rh

c c
$

ÐÝ F

s Ð r ` cx s

sG
?
“ R ` cX

Figure 1: Modified Schnorr protocol using rh proving X “ xG

Recall that the prover’s objective is to convince the verifier that X “ xG holds within the
GenZK circuit. In the protocol described above, the prover performs a Sigma protocol outside the
circuit to demonstrate knowledge of x such that X “ xG. However, this does not suffice to convince
the verifier that the prover is using the correct x within the circuit.

To address this limitation, the Sigma response value s is passed into the GenZK circuit as an
instance and it is checked that s “ r1 ` cx1 for rh “ Commitpr1q and cm “ Commitpx1q. The
probability that r1 ` cx1 “ r ` cx but x ‰ x1 is negligible. Thus the verifier is convinced that the
witness x is the discrete logarithm of X inside the circuit.

3 Sigmabus

Given a field element x P F and a binding commitment cm to x, Sigmabus works over a generic
SNARK proof system GenZK and provides an efficient way to prove the following relation:

Rsigmabus “ tpX, cmq; pxq : cm “ Commitpxq ^ X “ xGqu

Sigmabus uses Sigma protocols to efficiently compute the scalar multiplication xG, and then
links the result into GenZK without sacrificing soundness.

The commitment scheme Commit can be any binding commitment scheme, such as a SNARK-
friendly hash function like Poseidon or a polynomial commitment scheme like KZG.

Sigmabus makes use of two subprotocols:

1. A modified Sigma protocol proving knowledge of x such that X “ xG with challenge c “

HashpX, cm, R, rhq and response s.

2. A SNARK subprotocol using the GenZK proof system, proving the relation RGenZK where:

RGenZK “ tpcm, rh, c, sq; px, r, ohq : cm “ Commitpxq ^ rh “ HCommitpr, ohq ^ s “ r ` cxu

4

where HCommit is a hiding commitment scheme.

We note that Sigmabus can prove arbitrary linear transformations, instead of just scalar mul-
tiplications, using a Sigma protocol that proves knowledge of a vector commited with a Pedersen
commitment. For simplicity, in this report, we focus on scalar multiplications.

A formal description of Sigmabus is provided in Figure 2.

SetuppGq

pcrsGenZK, τGenZKq
$

ÐÝ GenZK.SetuppGq

crs Ð pG, crsGenZKq

τ Ð τGenZK

returnpcrs, τq

Provepcrs, pX, cmq, pxqq Verifypcrs, pX, cmqq

r, oh
$

ÐÝ F
R Ð rG

rh Ð HCommitpr, ohq R, rh

c c
$

ÐÝ F

s Ð r ` cx

π Ð GenZK.Proveppcm, rh, c, sq; px, r, ohqq s, π

sG
?
“ R ` cX

GenZK.Verifyppcm, rh, s, cq, πq
?
“ 1

return 1 iff checks pass

Figure 2: Protocol description of Sigmabus. Sigmabus proves that pX, cmq P Rsigmabus and uses a zero-
knowledge proving scheme for RGenZK as a subroutine.

4 Security

4.1 Computational Knowledge Soundness

Theorem 4.1 (Sigmabus argument is computational knowledge-sound). If GenZK is knowledge-
sound, and the commitment scheme Commit is binding, then the Sigmabus argument described in
Figure 2 is computational knowledge-sound.

Proof. We design an extractor Xsigmabus such that for any adversary A that convinces the verifier,
the extractor with overwhelming probability returns x such that X “ xG and cm “ Commitpxq.

5

This implies
ppX, cmq; pxqq P Rsigmabus

Given a verifying Sigmabus transcript pR, rh, c, s, πq, we run the GenZK extractor on π recovering
px, r, ohq. The extractor Xsigmabus outputs x as the witness. We now demonstrate that the extracted
witness x is valid with high probability.

To demonstrate that x is a valid witness, we first account for the bad cases where our extractor
can fail to return a valid witness. We do so by describing two reductions:

• Let B1 be a reduction against the binding property of the commitment scheme Commit. First,
by continuously rewinding the adversary, B1 obtains two valid Sigmabus transcripts

pX, cmq, pR, rh, c0, s0, π0q

pX, cmq, pR, rh, c1, s1, π1q

where c0 ‰ c1. By the general forking lemma [BN06] B1 can obtain these two transcripts in
polynomial time. Let C be the adversary that runs A to receive pX, cmq, pR, rh, c0, s0, π0q and
returns pcm, rh, c, sq, π. Then B1 runs C with and then the GenZK extractor on πb for b “ 0, 1,
recovering pxb, rb, oh,bq.

Consider the bad event E1 where ppR, rh, c0, s0q, px0, r0, oh,0qq R RGenZK. This happens with
probability AdvGenZK-ksoundC,Ext p1λq. Similar, the bad event E2 where ppR, rh, c1, s1q, px1, r1, oh,1qq R

RGenZK happens with probability AdvGenZK-ksoundC,Ext p1λq.

When neither E1 nor E2 occur and the extracted x0, x1, r0, r1, oh,0, oh,1 satisfy:

Commitpx0q “ Commitpx1q “ cm

HCommitpr0, oh,0q “ HCommitpr1, oh,1q “ rh

r0 “ s0 ´ c0x0 pmod pq

r1 “ s1 ´ c1x1 pmod pq

(1)

If x0 ‰ x1 then reduction B1 returns cm, x0, x1 thus breaks the binding of Commit. Else it
aborts.

• Let B2 be a reduction against the binding property of the commitment scheme HCommit.
Then B2 behaves identically to B1 except to extract x0, x1, r0, r1, oh,0, oh,1. Then if r0 ‰ r1then
reduction B2 returns rh, r0, oh,0, r1, oh,1 thus breaks the binding of HCommit.

Observe that with probability 1´AdvbindingB1
pλq´2AdvGenZK-ksoundC,Ext pλq the reduction B1 fails (and

neither E1 nor E2 occur). With probability 1 ´ AdvbindingB2
pλq ´ 2AdvGenZK-ksoundC,Ext pλq the reduction

B2 fails (and neither E1 nor E2 occur).
When both reductions fail, we have that r0 “ r1 and x0 “ x1, and from the equations in (1) we

get:

s0 ´ c0x0 “ s1 ´ c1x0 pmod pq

thus

x0 “
s0 ´ s1
c0 ´ c1

pmod pq (2)

6

Also, since the two transcripts are valid, we have from Schnorr that:

R “ s0G ´ c0X “ s1G ´ c1X

which means that

xG “
s0 ´ s1
c0 ´ c1

G

and hence

x “
s0 ´ s1
c0 ´ c1

pmod pq (3)

By Equation (2) and Equation (3) we have that x “ x0 and that x0 is the discrete logarithm
of X. Hence the extracted witness x0 satisfies x0G “ X and Commitpx0q “ cm (from the GenZK
soundness), it is a valid witness for the sigmabus relation. Thus

Advsigmabus-ksound
A,Ext ď AdvCommit-binding

B1
pλq ` AdvHCommit-binding

B2
pλq ` 4AdvGenZK-ksoundC,Ext pλq

4.2 Computational Honest-Verifier Zero Knowledge

Theorem 4.2 (Sigmabus argument is computational honest-verifier zero-knowledge). If GenZK
is zero-knowledge and if the commitment scheme HCommit is hiding then the Sigmabus argument
described in Figure 2 is computationally honest-verifier zero-knowledge.

Proof. We design a simulator that takes as input a common reference string, trapdoor, and instance,
and outputs a simulated proof transcript where it can choose the verification responses. The
simulator behaves as follows.

Simulatepcrs, τ, pX, cmqq

c, s, r, oh
$

ÐÝ F
R Ð sG ´ cX
rh Ð HCommitpr, ohq

π Ð GenZK.SimulatepcrsGenZK, τGenZK, pcm, rh, c, sqq

returnpR, rh, c, s, πq

We must show that it is difficult for an adversary to distinguish transcripts output by Simulate
from genuine transcripts generated by an honest prover and verifier.
Game 0: This is the standard zero-knowledge game with respect to the simulator Simulate.

Gamesigmabus-zk mainpGq

b
$

ÐÝ t0, 1u

pcrs, τq
$

ÐÝ SetuppGq

b1 $
ÐÝ AObpcrsq

return b “ b1

O0ppX, cmq, pxqq

assert ppX, cmq, xq P Rsigmabus

return xProvepcrs, pX, cmq, xq,Verifypcrs, pX, cmqqy

O1ppX, cmq, pxqq

assert ppX, cmq, xq P Rsigmabus

return Simulatepcrs, τ, pX, cmqq

7

Game 1: The first game Game1 behaves identically to Game0 except that the simulation oracle
generates rh using the witness s ´ cx. See Figure 3. We define a reduction B1 against the hiding
of HCommit and show that

AdvGame0
A ď 2AdvhidingB1

` AdvGame1
A

The reduction B1 behaves as follows. It receives as input a commitment HCommit.

Choose b
$

ÐÝ t0, 1u, pcrs, τq
$

ÐÝ SetuppGq, and run b1 $
ÐÝ AObpcrsq. When A queries ObppX, cmq, xq

assert that ppX, cmq, xq P sigmabus.

• If b “ 0, return xProvepcrs, pX, cmq, xq,Verifypcrs, pX, cmqqy.

• Else if b “ 1, choose c, r, s
$

ÐÝ F, R Ð sG ´ cX. Query OHCommitpr, s ´ cxq to get rh. Run
π Ð GenZK.SimulatepcrsGenZK, τGenZK, pcm, rh, c, sqq and return pR, rh, c, s, πq

When Adv returns b1, then B1 returns 0 if b “ b1 and 1 if b ‰ b1.
In the case that b “ 0 we have that this is a perfect simulation of both Game0 and Game1. If

however b “ 1, when HCommit commits to r this is a perfect simulation of Game0. When HCommit
commits to s ´ cx this is a perfect simulation of Game1.

We now verify the reduction claim by computing the advantage of B1 in the hiding game. For
convenience, let h be the internal coin of the hiding challenger: let h Ð 0 if OHCommitpr, s ´ cxq

commits to r and h Ð 1 if it commits to s ´ cx.
We start by computing the probability that B1 wins the hiding game:

PrrB1 wins hiding games “ PrrB1pcrsq “ 0 | h “ 0sPrrh “ 0s ` PrrB1pcrsq “ 1 | h “ 1sPrrh “ 1s

“
1

2
pPrrB1pcrsq “ 0 | h “ 0s ` PrrB1pcrsq “ 1 | h “ 1sq

Now we compute the conditional probabilities from above:

PrrB1pcrsq “ 0 | h “ 0s “ PrrApcrsq “ 0 | Game0,b “ 0sPrrGame0,b “ 0s

` PrrApcrsq “ 1 | Game0,b “ 1sPrrGame0,b “ 1s

“
1

2
pPrrApcrsq “ 0 | Game0,b “ 0s ` PrrApcrsq “ 1 | Game0,b “ 1sq

PrrB1pcrsq “ 1 | h “ 1s “ 1 ´ PrrB1pcrsq “ 0 | h “ 1s

“ 1 ´
1

2
pPrrApcrsq “ 0 | Game1,b “ 0s ` PrrApcrsq “ 1 | Game1,b “ 1sq

8

Finally, we bring the above together to calculate the advantage of B1 in the hiding game:

AdvhidingB1
“ |1 ´ 2PrrB1 wins hiding games|

“ |1 ´ PrrB1pcrsq “ 0 | h “ 0s ´ PrrB1pcrsq “ 1 | h “ 1s|

“ |1 ´
1

2
pPrrApcrsq “ 0 | Game0,b “ 0s ` PrrApcrsq “ 1 | Game0,b “ 1sq

´

ˆ

1 ´
1

2
pPrrApcrsq “ 0 | Game1,b “ 0s ` PrrApcrsq “ 1 | Game1,b “ 1sq

˙

“
1

2
|PrrApcrsq “ 0 | Game1,b “ 0s ` PrrApcrsq “ 1 | Game1,b “ 1s

´ PrrApcrsq “ 0 | Game0,b “ 0s ´ PrrApcrsq “ 1 | Game0,b “ 1s|

“
1

2
|1 ´ PrrApcrsq “ 1 | Game1,b “ 0s ` PrrApcrsq “ 1 | Game1,b “ 1s

´ 1 ` PrrApcrsq “ 1 | Game0,b “ 0s ´ PrrApcrsq “ 1 | Game0,b “ 1s|

“
1

2
| pPrrApcrsq “ 1 | Game0,b “ 0s ´ PrrApcrsq “ 1 | Game0,b “ 1sq

´ pPrrApcrsq “ 1 | Game1,b “ 0s ´ PrrApcrsq “ 1 | Game1,b “ 1sq |

Denote a0 “ 2AdvhidingB1
, a1 “ pPrrApcrsq “ 1 | Game0,b “ 0s ´ PrrApcrsq “ 1 | Game0,b “ 1sq and

a2 “ pPrrApcrsq “ 1 | Game1,b “ 0s ´ PrrApcrsq “ 1 | Game1,b “ 1sq. We have that a0 ě 0.

• If a0 “ |a1 ´ a2| “ a1 ´ a2 then a1 “ a0 ` a2 ď |a0| ` |a2|.

• If a0 “ |a1 ´ a2| “ a2 ´ a1 then a1 “ a2 ´ a0 ď |a0| ` |a2|.

Hence

|PrrApcrsq “ 1 | Game0,b “ 0s ´ PrrApcrsq “ 1 | Game0,b “ 1s|

ď 2AdvhidingB1
` |PrrApcrsq “ 1 | Game1,b “ 0s ´ PrrApcrsq “ 1 | Game1,b “ 1s|

ñ AdvGame0
A ď 2AdvhidingB1

` AdvGame1
A

as required.

O1ppX, cmq, pxqq

assert ppX, cmq, xq P Rsigmabus

c, s, oh
$

ÐÝ F
R Ð sG ´ cX

rh Ð HCommitps ´ cx, ohq

π Ð GenZK.SimulatepcrsGenZK, τGenZK, pcm, rh, c, sqq

returnpR, rh, c, s, πq

Figure 3: Simulated proving oracle O1 in Game1. The differences with Game0 are highlighted

9

Game 2: The second game Game2 behaves identically to Game1 except that the simulation oracle
generates π using the real prover. See Figure 4. We define a reduction B2 against the zero-knowledge
of GenZK and show that

AdvGame1
A ď 2AdvGenZK-zkB2

` AdvGame2
A

Let A be an adversary against Game0. Then the reduction B2 behaves as follows. Upon

receiving crsGenZK it samples b
$

ÐÝ t0, 1u, sets crs Ð pG, crsGenZKq and runs AObpcrsq. When A
queries ObppX, cmq, xq then B2 asserts that ppX, cmq, xq P Rsigmabus. If yes then it responds as
follows:

• If b “ 0, return xProvepcrs, pX, cmq, xq,Verifypcrs, pX, cmqqy.

• Else if b “ 1, choose c, r, s, oh
$

ÐÝ F, R Ð sG ´ cX. Set rh “ HCommitps ´ cx, ohq. Query
π Ð OGenZKppcm, rh, c, sq, px, s ´ cx, ohqq and return pR, rh, c, s, πq

In the case that b “ 0 we have that this is a perfect simulation of both Game0 and Game1. If
however b “ 1, when OGenZK is the proving oracle is a perfect simulation of Game1. Else this is a
perfect simulation of Game2.

We derive the reduction claim using a similar argument to the one of Game1.

O1ppX, cmq, pxqq

assert ppX, cmq, xq P Rsigmabus

c, s, oh
$

ÐÝ F
R Ð sG ´ cX
rh Ð HCommitps ´ cx, ohq

π Ð GenZK.ProvepcrsGenZK, pcm, rh, c, sq, px, s ´ cx, ohqq

returnpR, rh, c, s, πq

Figure 4: Simulated proving oracle O1 in Game2. The differences with Game1 are highlighted

We now see that the transcripts given in Game2 between the two oracles are identically dis-
tributed. Indeed, R is distributed uniformly at random due to s. Then s is the unique value
satisfying the verifiers equation. The adversary cannot see the order in which values are sampled.
Thus Game2 is statistically impossible.

5 Optimizations and Future Extensions

5.1 Improving communication complexity for big linear transformations

While the previous sections showcased Sigmabus with a simple scalar multiplication, we noted that
Sigmabus can also handle arbitrary linear transformations. For instance, a multi-scalar multipli-
cation can be defined as ϕpx⃗q : X⃗ Ñ x1G1 ` x2G2 ` x3G3 ` . . . ` xnGn. In this case, the Sigma
protocol’s communication complexity grows linearly with the size of the vector x⃗, contributing to
the overall proof size of Sigmabus. Future improvements could leverage Compressed Σ-protocols
[AC20] to amortize the communication complexity. This optimization could reduce the communi-
cation complexity from linear to polylogarithmic in the input size.

10

5.2 Amortizing multiple transformations

In a circuit that computes multiple linear operations, such as X1 “ x1G ^ X2 “ x2G ^ X3 “ x3G,
a naive approach with Sigmabus would involve performing three separate Schnorr proofs for each
Xi. We can amortize the operation by conducting a random linear combination of all the claims
and verifying them within a single Schnorr proof. This amortization strategy, specifically tailored
for PLONK, is demonstrated in Section 6.2.2.

6 Applications

6.1 Anonymous Credentials

Consider a simple protocol dlhash where given an algebraic commitment X and a hash-based
commitment xh, the prover demonstrates knowledge of x such that X “ xG and xh “ Hpxq.
Similar protocols find applications in anonymous credential systems [KMNC] or privacy-preserving
signature verification [CGM16].

In this context, we instantiate Sigmabus with Commitpxq : x Ñ Hashpxq for a hash function
Hash, resulting in the following relation:

Rdlhash “ tpX,xhq; pxq : xh “ Hashpxq ^ X “ xGu

The construction makes use of a SNARK protocol inner as a subprotocol, with the following relation:

Rinner “ tpxh, rh, s, cq; px, rq : xh “ Hashpxq ^ rh “ Hashprq ^ s “ r ` cxu

By incorporating Sigmabus into this protocol, we significantly reduce the number of constraints by
replacing the in-circuit scalar multiplication with an algebraic hash function invocation. Moreover,
the dlhash protocol can be flexibly adapted to accommodate different types of discrete-log-based
commitments and various kinds of Sigma protocols.

We also note that when the Fiat-Shamir heuristic is applied in dlhash, the prover can avoid
sending rh to the verifier. Instead the prover can utilize the Fiat-Shamir challenge c, and show that
c was computed correctly inside the SNARK, effectively using c as a commitment to r.

6.1.1 Hiding Commitment

Observe that in Rinner we are treating Hashprq as a hiding commitment. This is an abuse of the
term. Even if Hashpq were a perfect random oracle, one could distinguish Hashpr1q from Hashpr2q

given r1 and r2. However, in Sigmabus, if the adversary ever queried Hashprq then one could build
a discrete logarithm solving reduction. This reduction observes queries ri to Hashpq, computes
xi “

s´ri
c for the adveraries proof pR, rh, s, πq, and returns xi if X “ xiG. The function Hashpq

does meet the necessary hiding requirements against adversaries that cannot query Hash on r.

6.2 Plonkish

In this section we show how Sigmabus can be integrated into a PlonK circuit.
Consider a PlonK circuit with witness column w⃗ and its low degree extension wpxq. In PlonK

circuits, we construct gates and selectors to check constraints over specific positions in the witness.

11

Given witness polynomial wpxq, we can check that w⃗ris satisfies constraint C by constrainting that
LipXqpCpfpXqq “ 0, where Lipxq is the Lagrange polynomial of index i.

In the following two sections we show how Sigmabus can be used to efficiently compute elliptic
curve operations in PlonK circuits:

6.2.1 PlonK circuit with a single scalar multiplication

For this section, our circuit computes H “ xG where x is in cell i of the witness column w⃗. This
can be seen as the following Plonkish constraint: LipXqpwpXq ¨ G ´ Hq “ 0

Here is an informal description of how Sigmabus can be used in this context:

1. Prover sends H and Compwq, where H is the intended result and Compwq is a KZG commit-
ment to the witness polynomial

2. Prover initiates the Sigmabus protocol (see Figure 2) by sending R and rh

3. Verifier sends Sigmabus challenge c

4. Prover sends the Sigmabus response s

5. Prover modifies the Plonkish circuit to demonstrate knowledge of r such that rh “ Hprq and
also adds the following constraint: LipXqps ´ c ` r ¨ wpXqq

Note that in the above protocol, the prover had to send the scalar multiplication result H to
the verifier. This would break zero-knowledge if H is part of the circuit’s trace. In those cases, the
protocol can be modified to compute a hiding Pedersen commitment so that H is never revealed
directly.

6.2.2 PlonK circuit with a multiple scalar multiplications

In this section, we consider a PlonK circuit that wants to compute multiple scalar multiplications:
H1 “ x1G ^ H2 “ x2G ^ H3 “ x3G

This translates to the following in vector notation:

w⃗1ri1s ¨ G “ H1 ^ w⃗2ri2s ¨ G “ H2 ^ w⃗3ri3s ¨ G “ H3

Naively, we would need to conduct the Sigmabus protocol three times, but we now demonstrate
how to amortize the operation.

Here is how this can be done:

1. Prover sends H1, H2, H3, Compw1q, Compw2q, Compw3q

2. Prover sends R and rh

3. Verifier sends pc, γq where γ
$

ÐÝ F

4. Prover sends s of Schnorr for H where H “ H1 ` γH2 ` γ2H3

5. Prover modifies the Plonkish circuit to demonstrate knowledge of r such that rh “ Hprq and
also adds the following constraint:

LipXqps ´ c ` r ˚ pw1pXq ` γw2pXq ` γ2w3pXqqq

12

6.3 Linking algebraic with non-algebraic commitments

Consider a protocol where a party aims to demonstrate knowledge of a secret value x that has been
committed using a Pedersen commitment X “ xG and a non-algebraic hash xh “ SHA3pxq

Similar to the approach of [CGM16], we can use a proof system over boolean fields like [GMO16]
(where SHA3 can be efficiently computed) and offload the algebraic operations to a Sigma protocol
using Sigmabus.

A similar technique can be used to link Pedersen commitments with Merkle commitments.

7 Acknowledgements

Special thanks to Michele Orrù, Nicolas Mohnblatt and to Mark Simkin for valuable inputs and
discussions.

References

[AC20] Thomas Attema and Ronald Cramer. Compressed σ-protocol theory and practical appli-
cation to plug & play secure algorithmics. Cryptology ePrint Archive, Paper 2020/152,
2020. https://eprint.iacr.org/2020/152.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006,
pages 390–399. ACM, 2006.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. Legosnark: Modular design and
composition of succinct zero-knowledge proofs. Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge proof of
algebraic and non-algebraic statements with applications to privacy preserving creden-
tials. Cryptology ePrint Archive, Paper 2016/583, 2016. https://eprint.iacr.org/

2016/583.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. Cryptology ePrint Archive, Paper
2002/140, 2002. https://eprint.iacr.org/2002/140.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. Cryptology ePrint Archive, Paper 2016/163, 2016. https://eprint.
iacr.org/2016/163.

[Kil90] Joe Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, Cambridge,
MA, USA, 1990.

[KMNC] George Kadianakis, Mary Maller, Andrija Novakovic, and Suphanat Chunhapanya.
Proof of Validator: A simple anonymous credential scheme for Ethereum’s DHT.

13

https://eprint.iacr.org/2020/152
https://eprint.iacr.org/2016/583
https://eprint.iacr.org/2016/583
https://eprint.iacr.org/2002/140
https://eprint.iacr.org/2016/163
https://eprint.iacr.org/2016/163

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174,
jan 1991.

[SSS`22] Huachuang Sun, Haifeng Sun, Kevin Singh, Akhil Sai Peddireddy, Harshad Patil, Jian-
wei Liu, and Weikeng Chen. The inspection model for zero-knowledge proofs and effi-
cient zerocash with secp256k1 keys. Cryptology ePrint Archive, Paper 2022/1079, 2022.
https://eprint.iacr.org/2022/1079.

[Wil] Zac Williamson. Goblin plonk: lazy recursive proof composition.

14

https://eprint.iacr.org/2022/1079

	Introduction
	Related Work
	Document Structure

	Technical Overview
	Informal Protocol Overview
	Informal Security Overview

	Sigmabus
	Security
	Computational Knowledge Soundness
	Computational Honest-Verifier Zero Knowledge

	Optimizations and Future Extensions
	Improving communication complexity for big linear transformations
	Amortizing multiple transformations

	Applications
	Anonymous Credentials
	Hiding Commitment

	Plonkish
	PlonK circuit with a single scalar multiplication
	PlonK circuit with a multiple scalar multiplications

	Linking algebraic with non-algebraic commitments

	Acknowledgements

