
Lattice-based Succinct Arguments from Vanishing Polynomials
(Full Version)

Valerio Cini1∗, Russell W. F. Lai2, and Giulio Malavolta3†

1 AIT Austrian Institute of Technology
2 Aalto University

3 Bocconi University & Max Planck Institute for Security and Privacy

Abstract. Succinct arguments allow a prover to convince a verifier of the validity of any statement in
a language, with minimal communication and verifier’s work. Among other approaches, lattice-based
protocols offer solid theoretical foundations, post-quantum security, and a rich algebraic structure. In
this work, we present some new approaches to constructing efficient lattice-based succinct arguments.
Our main technical ingredient is a new commitment scheme based on vanishing polynomials, a
notion borrowed from algebraic geometry. We analyse the security of such a commitment scheme,
and show how to take advantage of the additional algebraic structure to build new lattice-based
succinct arguments. A few highlights amongst our results are:
(i) The first recursive folding (i.e. Bulletproofs-like) protocol for linear relations with polylogarithmic

verifier runtime. Traditionally, the verifier runtime has been the efficiency bottleneck for such
protocols (regardless of the underlying assumptions).

(ii) The first verifiable delay function (VDF) based on lattices, building on a recently introduced
sequential relation.

(iii) The first lattice-based linear-time prover succinct argument for NP, in the preprocessing model.
The soundness of the scheme is based on (knowledge)-k-R-ISIS assumption [Albrecht et al.,
CRYPTO’22].

1 Introduction

A succinct non-interactive argument of knowledge (SNARK) [Kil92, Mic94] allows a prover to convince
a verifier of the validity of an NP relation. The argument is said to be succinct if the size of the proof
and the runtime of the verifier are sublinear in (or ideally independent of) the time needed to check
the validity of the witness. Due to these strong efficiency requirements, SNARKs for NP have become a
cornerstone of modern cryptography: They count a large array of applications [BCG+14, GM17, KMS+16,
BGH19, BDFG21, BMRS20] and have recently found their way into real-world systems in the context of
blockchain-based cryptocurrencies [BCG+14, GM17, KMS+16, BGH19, BDFG21, BMRS20].

A promising approach for constructing efficient SNARKs is to leverage the algebraic structure offered
by computational problems in lattice-based cryptography [BISW17, BISW18, GMNO18, BLNS20, AL21,
ACK21, ACL+22]. Compared to other approaches (see Section 1.2 for a detailed discussion), lattice-based
SNARKs offer many desirable properties: (i) They are conjectured to be secure against quantum attacks,
(ii) are based on computational problems with solid theoretical foundations, and (iii) have a rich algebraic
structure, allowing to prove many interesting statements “natively”, i.e. without needing to run the
relation through an expensive Karp reduction.

In spite of these promising properties, lattice-based SNARKs are still somewhat limited compared
to competing approaches. In particular, known lattice-based schemes suffer from (at least) one of the
following limitations:

– They require the verifier to hold some information secret from the prover, i.e. they are in the
designated-verifier settings [BISW17, BISW18, GMNO18].

– They have a non-succinct verifier, whose runtime is at least linear in the size of the relation [BLNS20,
AL21, ACK21].

∗V.C. was funded by the Austrian Science Fund (FWF) and netidee SCIENCE grant P31621-N38 (PROFET).
†G.M. was partially funded by the German Federal Ministry of Education and Research (BMBF) in the course

of the 6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA – 390781972.

– They have a slow prover runtime, i.e. quartic [ACL+22] in the size of the relation.

In this work, we propose new techniques for lattice-based SNARKs that allow us to overcome these
barriers, making lattice-based SNARKs qualitatively closer (and, in some aspects, superior) to other
approaches.

1.1 Our Results

We present new algebraic techniques that allow us to overcome traditional limitations of lattice-based
SNARKs. Our central technical ingredient is a new lattice-based commitment scheme based on vanishing
polynomials, an object borrowed from algebraic geometry. The security of our commitment is based on
the vanishing Short Integer Solution (vSIS) problem, a variant of the well-known SIS problem that we
introduce in this work. We then show how to exploit the additional algebraic structure of vSIS to obtain
new results for lattice-based succinct arguments. In more details, our contributions can be summarized as
follows.

(1) The Vanishing-SIS Problem. We introduce the vSIS problem, a variant of the standard SIS over
rings, which asks to find a polynomial with short coefficients which vanishes at the given point(s). We
show that vSIS is no easier than the k-R-ISIS problem, a recently introduced family of problems [ACL+22].
We also show that vSIS can be explained as a natural generalisation of the search NTRU problem. We
propose a worst-case to average-case reduction and a reduction from search NTRU, both conditioning on
the hardness of decision NTRU.

(2) New Commitments Based on vSIS. We show that the vSIS problem immediately implies the
existence of a commitment scheme with useful algebraic properties which are key to our new results in
succinct arguments:

– Succinct: The size of the commitment key and the commitment are logarithmic in the size of the
input. In particular, this implies that the commitment is also a collision-resistant hash function with
very short key.

– Homomorphic: The commitment is (bounded) linearly homomorphic and multiplicatively homomorphic
for a constant number of multiplications.

– Foldable: We show that the commitment can be “folded” (in the sense of folding arguments, e.g.
Bulletproofs [BLNS20]) in such a way that the folded commitment key retains a succinct representation.
Loosely speaking, this allows us to combine the two halves of the committed value and simultaneously
half the size of the input and the size of the commitment key.

(3) Simple Method for Proving Quadratic Relations. Exploiting the multiplicatively homomorphic
property of vSIS commitments, we show a simple method for reducing the task of proving quadratic
relations to that of proving linear relations, with only additive quasi-linear overhead in prover time. As an
example, to prove that ⟨x0, x1⟩ = y, the prover commits to the polynomials p̄x0(V) =

∑
i x0,i · V −i and

px1(V) =
∑

j x1,j ·V j as c̄x0 and cx1 respectively, and proves the linear relations that the commitments are
well-formed. Then, the prover proves that the product c̄x0 · cx1 , which the verifier can compute themself,
is a commitment to a polynomial whose constant term is y, which is again a linear relation. Instantiating
with succinct arguments for linear relations with quasi-linear-time prover, we obtain succinct arguments
for quadratic relations also with quasi-linear-time prover.

(4a) New Folding Protocols for Structured SIS. The first kind of linear relations that we consider
are structured SIS relations (roughly) of the form

A
B A

B
A
B

C1 C2 Cn

 · x = y mod q and ∥x∥ ≈ 0

2

where C1, . . . , Cn conform to certain foldable structure. For such relations, we obtain SNARKs with
transparent setup, quasi-linear time prover, and polylogarithmic time verifier (without preprocessing), in
the random oracle model.4 The main technical ingredient that enables this result is a new Bulletproof-like
folding protocol for foldable linear relations, where the verifier runtime is polylogarithmic in the length of
the relation. Prior folding protocols had a linear-time verifier [BLNS20, AL21, ACK21], including those
based on the discrete logarithm problem [BCC+16, BBB+18], with the exception of [BMM+21] where
the verifier computation is proportional to the square root of the length of the relation.

(4b) Optimised Knowledge-based Protocols for SIS. Next, we consider unstructured SIS relations
of the form “M ·x = y mod q and ∥x∥ ≈ 0”. For these relations, we obtain SNARKs with quasi-linear time
prover and polylogarithmic time verifier after preprocessing, based on the recently introduced (knowledge-)k-
R-ISIS assumption [ACL+22]. This improves upon previous schemes which do not natively support proving
modular arithmetic relations [ACL+22] and require at least a quadratic-time prover [ACL+22, BCFL22].

(5) Applications. Putting everything together, we obtain SNARKs for quadratic relations with quasi-
linear-time prover and polylogarithmic-time verifier (after preprocessing for the unstructured case). We
highlight two particular instances.

First, we obtain SNARKs for proving “M ·x = y mod q and x is exactly binary”. In particular, applying
the structured instantiation on the recently introduced SIS-based sequential relations [LM23], we obtain
the first lattice-based verifiable delay functions (VDF). Prior lattice-based schemes [YAZ+19, BLS19,
ENS20, LNP22] for exact SIS relations5 are not succinct.

Second, we obtain SNARKs for rank-1 constraint satisfiability (R1CS). Prior lattice-based schemes [ACL+22,
BCFL22] have at least quadratic-time prover.

1.2 Related Work

There is a vast amount of literature on SNARKs for different classes of relations. We do not attempt to
survey all existing works here, but rather provide a high-level overview of various approaches and discuss
in details those that are closely related to our work.

Pairing-based. To date, the most efficient and feature-rich SNARKs are constructed over bilinear
pairing groups (e.g. [Gro16]) with a trusted setup. Typically, they are publicly verifiable and have simple
verification algorithms consisting of a constant amount of pairing-product equations. Moreover, pairing-
based SNARKs offer a rich algebraic structures that is known to enable proof batching [LMR19, BMM+21]
and efficient recursive composition [BCTV14].

Hash-based. Another approach to build SNARKs is to compile an information-theoretic proof system,
e.g. a probabilistically checkable proof (PCP) [Kil92, Mic94] or an interactive oracle proof (IOP), via
a vector commitment scheme. Since the vector commitment is usually instantiated with a Merkle-hash
tree in the random oracle (RO) model, we call this the hash-based approach. A major difference between
pairing-based and hash-based SNARKs, from both theoretical and practical perspectives, is the algebraic
structure of the verification algorithm. The reliance of hash-based SNARKs on an RO makes recursive
composition challenging, since an RO is typically instantiated with a hash function of high multiplicative
degree. On the flip side, hash-based SNARKs can be shown to be post-quantum secure [CMS19].

Lattice-based. Finally, we discuss lattice-based approaches to build SNARKs. Until recently, lattice-based
SNARKs required the verifier to keep a secret state hidden from the prover, i.e. they are in the designated
verifier settings [GMNO18, ISW21]. Excitingly, recent development sees two emerging paradigms for
constructing publicly verifiable SNARKs, both of which we improve upon in this work.

The first line of work [BLNS20, AL21, ACK21] studies lattice-based folding protocols which, as
discussed above, give quasi-linear-time prover SNARKs in the random oracle model. However, due to lack
of preprocessing support, the verifier complexity in folding protocols has always been linear in the size of
the relation. In this work, we work around this barrier by considering structured relations which retain

4The interactive variant can be proven secure without random oracles.
5Not counting those for more general relations.

3

their foldable structures after folding, and obtain the first folding protocols with a polylogarithmic-time
verifier.

Another line of work [ACL+22, BCFL22] constructs publicly verifiable SNARKs in the preprocessing
model. At the core of these constructions are functional commitment schemes which allow to succinctly
prove that a committed vector x satisfies f(x) = y for low-degree polynomials [ACL+22] or even
unbounded-depth circuits [BCFL22]. To this end, we propose a construction with quasi-linear-time prover
using similar techniques, while in [ACL+22, BCFL22] the prover has at least quadratic complexity. We
remark that while the recent work of Wee and Wu [WW23] constructs functional commitments for circuits,
their scheme does not support preprocessing and therefore has inefficient verifier.

1.3 Subsequent Work

We have been informed that a recent result [Ano23] shows a counterexample that morally invalidates
the knowledge version of the assumption introduced in [ACL+22]. Although this is a strong indication
that some algorithms may not be captured by the security model that some of our schemes (e.g. those
presented in Section 7) are proven against, it does not imply a direct attack against any of our schemes.
Furthermore, even in light of these recent findings, we believe that our security proofs are meaningful as
sanity checks, for the same reason as proofs in other unsound models, such as the random oracle model or
the generic group model, are also meaningful.

2 Technical Overview

We provide a high-level overview of the techniques that we develop in this work. First, we present our
main new technical ingredient that is at the center of our results, namely a new commitment based on
vanishing-SIS. Then we show how arguments for vanishing-SIS commitments can be efficiently composed
into an argument for binary-satisfiability of both structured and unstructured linear relations. Finally, we
describe our new succinct arguments in both the structured and unstructured settings, and present some
immediate applications.

Throughout this overview, we will work with a cyclotomic field K = Q(ζ) where ζ is a root of unity of
some prime order ρ, its ring of integers R = Z[ζ], and the quotient rings Rq := R/qR for different values
of q ∈ N. Ring elements will be represented by their coefficient embedding and the norm of a ring element
is defined accordingly. Readers not familiar with these objects can treat K = Q and R = Z, which suffices
in most places.

2.1 Vanishing-SIS Commitments

The main technical ingredient behind of our results is a new family of commitment schemes for committing
to short vectors x ∈ Rd and companion argument systems for proving that the committed vector is in
fact a bit string, i.e. x ∈ {0, 1}d. In their simplest form, the commitment key is a single random element
v ←$R×

q , where R×
q is the set of invertible elements in Rq. To commit to a short x ∈ Rd, we interpret x

as the coefficients of a degree-d polynomial px(V) without a constant term, and compute the commitment
as the evaluation of px at the point v modulo q, i.e.

px(V) =
d∑

i=1
xi · V i and c = px(v) mod q.

We refer to this family of commitment schemes as the vanishing short integer solution (vSIS) commitments,
for reasons that will become clear shortly. The binding property of the vSIS commitment above is based
on the following vSIS assumption which we introduce in this work.

Definition 1 (vSIS, Informal). Given a random point v ←$R×
q , it is hard to find a degree-d polynomial

p =
∑d

i=0 pi · V i ∈ R[V] with short coefficients such that p(v) = 0 mod q. In other words, p is a short
element in I(v), the ideal (lattice) of polynomials vanishing at the given point v.

4

In general, the vSIS assumption could be parametrised by a set G of (multivariate) monomials6 over R,
where the task is to find a short linear combination (pg)g∈G such that

∑
g∈G pg · g(v) = 0 mod q. To gain

confidence in its validity, we show that the vSIS assumptions are implied by the k-R-ISIS assumptions
introduced in [ACL+22]. For certain parameter regimes (although not the ones that we need), we show
that the vSIS problem is as hard as the search NTRU problem, conditioned on the hardness of the decision
NTRU problem. For more details, we refer the reader to Section 4 and Appendix A.

The vSIS commitment schemes have nice homomorphic properties. For starters, they are clearly linearly
homomorphic, similarly to the standard SIS-based commitments. More importantly for us, they are also
bounded multiplicatively homomorphic: If cf and cg commit to the polynomials f and g respectively, then
cf · cg mod q commits to the polynomial f · g. An elementary fact that will be particularly useful later, is
that if g(V) = f(V −1), then the constant term of f · g is given by the inner-product of the coefficients of
f and g.

Proof of Binary-Satisfiability of Linear Relations. As a warm-up, we outline the construction of a
succinct argument system for a prover to convince a verifier that a vector x ∈ Rd satisfies

M · x = y mod q0 and x ∈ {0, 1}d.

As building blocks, we will use succinct argument systems for SIS relations with soundness gaps, i.e. they
are complete and sound for relations of the form

M · x = y mod q0 and ∥x∥ ≈ 0

but the constraints on the shortness of x differ. That is, we will turn succinct arguments for showing that
x satisfying a linear relation is short, into an argument for showing the x is exactly binary. While this
may seem like a technicality, this proof of binariness will be crucial for our later applications, and can
be generalised to prove arbitrary quadratic relations. Later in this overview, we will also show how to
instantiate the required building blocks.

The common reference string of our argument system contains a random vector h ∈ Rd
q1

and a vSIS
commitment key v ∈ R×

q2
, where q0 ≪ q1 ≪ q2 and the purpose of h will become clear later. For x ∈ Rd

and w = (w−, w+) ∈ R2d, define the (Laurent) polynomials

p̄x(V) := ph◦x(V −1) and p̃w(V) := pw−(V −1) + pw+(V)

where h ◦ x denotes the Hadamard (component-wise) product of the two vectors. The argument proceeds
as follows:

(i) The prover reveals the following “complementary” vSIS commitments to x:

cx := px(v) mod q2 and c̄x := p̄x(v) mod q2.

(ii) The prover then proves the following relations:

∃ x ∈ Rd,

M · x = y mod q0,

px(v) = cx mod q2,

p̄x(v) = c̄x mod q2,

and ∥x∥ ≈ 0. (1)

∃ w ∈ R2d, p̃w(v) = cx · (c̄x − p̄1(v)) mod q2 and ∥w∥ ≈ 0. (2)

Since px(v), p̄x(v), and p̃w(v) can be computed as linear functions evaluated at the monomials expansion
of v, Eqs. (2) and (6) can be proven by using argument systems for SIS relations, as required above.

The interesting bit of our protocols is that, even though the the underlying arguments for the SIS
relation have soundness gaps, the verifier of our protocol will be convinced that x is exactly binary. First,
from the knowledge soundness of the argument for Eq. (1), the verifier is convinced that there exists a
candidate short vectors x̂ and ŵ satisfying Eq. (1) and Eq. (2) respectively. From x̂, one could derive a
short vector û = (û−, û0, û+) ∈ R2d+1 encoding

p̂û(V) := px(V) · p̄x−1(V) = px(V) · ph◦(x−1)(V −1).
6Or rational functions in general.

5

Clearly, p̂û(v) = cx · (c̄x − p̄1(v)) mod q2. This means that p̃ŵ(V) − p̂û(V) is a polynomial with short
coefficients which vanishes at v. Furthermore, notice that p̃ŵ does not have a constant term, while the
constant term û0 of p̂û is given by the inner-product

û0 = ⟨x, h ◦ (x− 1)⟩ =
d∑

i=1
hi · xi · (xi − 1)︸ ︷︷ ︸

=0 iff xi∈{0,1}

.

Let us first establish that û0 must indeed be 0. This is an easy reduction to the vSIS, since it would
otherwise yield a non-zero short solution to a vSIS problem, which we assume to be hard to find. However,
we are not yet done, since the fact that û0 = 0 does not imply that all of its summands are also zero (which
is what we need to ensure that x is binary). This is where the vector h comes into play, using a technique
first introduced in [ACL+22]: Suppose û0 = 0, then we also have û0 =

∑d
i=1 hi · xi · (xi − 1) = 0 mod q1.

If x is not binary, the vector x ◦ (x− 1) would be a short non-zero solution to the RingSIS instance given
by h over Rq1 .

2.2 Efficient Proofs for SIS Relations

In the above proof of binary-satisfiability of linear relations, the prover and verifier computation costs are
dominated by the costs of the succinct arguments for SIS relations with soundness gaps. Here we discuss
two approaches in the literature, and how we can improve on both fronts using the algebraic properties of
our vSIS-based commitment scheme.

Approach I: Folding Protocols. (Lattice-based) Bulletproofs [BLNS20, AL21, ACK21] are interactive
arguments with quasi-linear time prover, and can be made non-interactive using the Fiat-Shamir transform
in the random oracle model. It is based on the technique of iteratively “folding” the relation into a smaller
one until a trivial relation is derived. Recall that in Bulletproofs the prover wants to convince the verifier
that they know a short vector x satisfying

M · x = y mod q and ∥x∥ ≈ 0.

Let (M, x, y) = (M(0), x(0), y(0)). The protocol consists of ℓ + 1 rounds, where in the i-th round the two
parties “fold” the relation represented by (M(i), y(i)) into another represented by (M(i+1), y(i+1)) where
the dimension of M(i+1) is half that of M(i). Correspondingly, the prover folds its witness x(i) into x(i+1).
After ℓ such folding steps, a constant-size relation (M(ℓ), y(ℓ)) is reached and the prover simply sends the
satisfying witness x(ℓ) over to the verifier.

In more detail, for 0 ≤ i < ℓ, the i-th of the first ℓ rounds of the protocol goes as follows. The parties
split M(i) into two halves as M(i) = (M(i)

L , M(i)
R) and the prover splits x(i) = (x(i)

L , x(i)
R). The prover

sends the cross terms

y(i)
LR =

〈
M(i)

L , x(i)
R

〉
mod q and y(i)

RL =
〈

M(i)
R , x(i)

L

〉
mod q.

The verifier sends a random challenge ri ←$ S sampled from some challenge set S ⊆ R×. Both parties
fold (M(i), y(i)) into

(M(i+1), y(i+1)) := (M(i)
L + M(i)

R · r
−1
i , y(i)

RL · r
−1
i + y(i)

LR) mod q,

and the prover folds x into x(i+1) = x(i)
L + x(i)

R · ri. At the ℓ-th (i.e. last) round, the prover simply sends
x(ℓ) and the verifier checks that x(ℓ) is short and satisfies

〈
M(ℓ), x(ℓ)〉 = y(ℓ) mod q.

It can been shown [BLNS20, AL21, ACK21, AF22] that the protocol satisfies knowledge soundness,
and furthermore it is easy to see that the prover runs in time quasi-linear in the length of the witness.
However, a major drawback of this approach is that the verifier computation is also quasi-linear for general
linear relations M, and it cannot be preprocessed due to the interactive nature of the scheme.

6

Polylogarithmic Verifier for Structured Relations. In this work, we observe that, while we cannot
hope to reduce the verifier complexity for general matrices M, for suitably structured M the verification
can be sped up to run in time polylogarithmic in the witness length. As an example, the simplest M with
the required structure is a vector consisting of powers of an element v ∈ R×

q , i.e.

M =
(
v v2 . . . vd

)
mod q.

Importantly, M ·x = px(v) mod q is the vSIS commitment of x with commitment key v. This observation
allows us to prove the knowledge of a preimage of a vSIS commitment via the above protocol with
polylogarithmic verifier complexity.

To see why this is the case, it suffices to observe that the verifier complexity is dominated by the
computation of the matrix M(ℓ), which is obtained by successive foldings of the starting matrix M(0).
Plugging in the structured relation, we can see that at each iteration the matrix evolves into

M(i+1) = M(i)
L + M(i)

R · r
−1
i =

(
v v2 . . . vdi/2)+

(
vdi/2+1 vdi/2+2 . . . vdi

)
· r−1

i

=
(
v v2 . . . vdi/2) · (1 + vdi/2 · r−1

i) mod q

where di is the input length at the i-th iteration. Recursing over all iterations, we obtain that the final
matrix M(ℓ) is defined as

M(ℓ) =
ℓ−1∏
i=0

(
1 + v2ℓ−i−1

· r−1
i

)
mod q,

which can be computed in time polynomial in ℓ, i.e. polylogarithmic in d. In Sections 5 and 6, we extend
the above structured folding technique in three ways:

(i) We identify a general class of “foldable” (block-)matrices for which the verifier computation can be
made polylogarithmic in the number of columns.

(ii) By modifying the Bulletproofs protocol with techniques borrowed from another folding protocol of
Pietrzak [Pie19], we are able to support foldable matrices with an arbitrary (i.e non-power-of-2)
number of columns, without breaking the foldable structure.7

(iii) Borrowing techniques from [Pie19] again, we can make the verifier computation also polylogarithmic
in the number of rows of M, for M with repeating block-bidiagonals, if y is also foldable.

Approach II: Pre-Processing (Knowledge-Based) Protocols. The second approach for lattice-
based arguments for SIS relation is the recent work of [ACL+22], which is based on a recently introduced
(knowledge-)k-R-ISIS assumption. In this protocol, the verifier computation can be preprocessed such
that the online verification time is polylogarithmic in the relation size. However, a major drawback of
this approach is that the public parameters size and the prover complexity are at least quadratic in the
relation size. Let us recall (a somewhat simplified version of) the commit-and-prove protocol of [ACL+22]
specialised to the case of SIS (i.e. linear) relations. The public parameters consists of

A, t, v, h,
(
A−1(t · (g · ḡ′)(v))

)
g,g′∈G,g ̸=g′

for some set of monomials G, where A, t, v are random over Rq2 , h is a random vector over Rq1 ,
ḡ := 1/g denotes the complement of g, and A−1(t · g(v)) denotes a short preimage ug satisfying
A · ug = t · g(v) mod q2. To prove that

M · x = y (without mod) and ∥x∥ ≈ 0,

commit to x as cx :=
∑

g∈G xg · g(v) mod q2 and derive a short vector u satisfying

A · u = t · hT · (M · Ḡ(v) · cx − y) mod q2,

where Ḡ(v) = (ḡ(v))g∈G . To compute such a short vector u, the prover needs to perform a linear combi-
nation of | { g · ḡ′ : g, g′ ∈ G, g ̸= g′ } | short vectors given in the public parameters. For G = {V1, . . . , Vd }
chosen in [ACL+22], we have | { g · ḡ′ : g ̸= g′ ∈ G } | = O(d2), hence the quasi-quadratic prover complexity.

7The usual technique of padding zero columns breaks the foldable structure.

7

Achieving Quasi-Linear Time Prover. A natural idea is to choose G = {V, V 2, . . . , V d } so v becomes
a single element v. This makes

| { g · ḡ′ : g, g′ ∈ G, g ̸= g′ } | = | {V −i, V i }d−1
i=1 | = 2d− 2 = O(d).

Further exploiting fast multiplication algorithms for Toeplitz matrices allows us to achieve quasi-linear
prover time. Notably, with this choice of G we have

cx = px(v) mod q2 and hT ·M · (ḡ(v))g∈G = p̄MT·h(v) mod q2,

and hT ·M · (ḡ(V))g∈G · cx − hT · y being a polynomial with constant term 0. In the main body, we also
show how to support natively modular arithmetic, by borrowing techniques from chainable functional
commitments [BCFL22]. We refer the interested reader to Section 7 for more details.

2.3 Applications

To summarise, we have constructed succinct arguments for relations of the form

M · x = y mod q0 and x ∈ {0, 1}d

with quasi-linear time provers (in both the folding and the preprocessing settings). This gives a efficient
and powerful building block for constructing advanced lattice-based cryptographic primitives which require
proving relations of the above form. We provide a few examples below.

Lattice-based Verifiable Delay Functions. For the instantiation based on folding protocols, the
verifier computation is polylogarithmic if the relation (M, y) conforms to a certain foldable structure.
One example is the sequential-SIS relation proposed in a recent work [LM23], which was used to construct
proofs of sequential work (PoSW). In more details, the sequential-SIS relation proposed in their work
induces the following linear relation

G
A G

A
G
A

︸ ︷︷ ︸

M

·x =

z0
0

0
zT

︸ ︷︷ ︸

y

mod q and x ∈ RmT
2

for a uniformly sampled A and z0. The PoSW construction in [LM23] falls short of giving verifiable
delay functions (VDF) due to the soundness gap in lattice-based folding protocols. By embedding the Z2
coefficients of x ∈ RmT

2 into x′ ∈ {0, 1}mT φ(ρ), and plugging in the structured folding protocol constructed
in this work, we immediately get the first construction of lattice-based VDFs.

Efficient Lattice-based SNARKs for NP. Recall that our results ultimately rely on the observation
that the inner-product of x and y is encoded as the constant term of the polynomial px · p̄y. In the above,
we used this to encode the vectors x and y := h ◦ (x− 1) for proving binariness. The same idea can be
used to prove general quadratic relations.

Consider the NP-complete rank-1 constraint satisfiability (R1CS) relation which is of the form

∃ x, (A · x) ◦ (B · x) = C · x mod q

where some entries of x are publicly known. To prove knowledge of x, the prover computation roughly
goes as follows. First, they compute

a := A · x, b := B · x, and c := C · x.

They then commit to (x, h ◦ a, b, c) as (cx, c̄a, cb, cc), and prove that the commitments are consistent.
Finally, they prove that the constant term in (the polynomial underlying) c̄a · cb is identical to ⟨h, c⟩ for
c committed in cc.

While the above yields a succinct argument for R1CS based on (knowledge-)k-R-ISIS, in Appendix I,
we further sketch a folding-based succinct argument for a structured variant of R1CS called succinct-
R1CS [BCG+19].

8

3 Preliminaries

Let λ ∈ N denote the security parameter, and poly(λ) and negl(λ) the set of all polynomials and negligible
functions in λ respectively. Denote the empty string by ϵ. For a function f which may depend on λ and
other parameters, we write Oλ(f) := f · poly(λ) to hide fixed polynomial factors in λ. For matrices A and

B with the same dimensions, write
[
A
B

]
↘3

:=

A
B A

B A
B

 and define
[
A
B

]
↘n

analogously for n ∈ N. If S

is a set and D is a distribution over S, write D ∼ S.

3.1 Cyclotomic Rings

Let K = Q(ζ) be a cyclotomic field, where ζ is a root of unity of order ρ = poly(λ), and R = Z[ζ] be its
ring of integers. If ρ is a power of 2 (resp. prime power), R is called a power-of-2 (resp. prime power)
cyclotomic ring. For q ∈ N, define the quotient ring Rq := R/qR. We denote by R× and R×

q the sets of
units in R and Rq respectively. An element a =

∑ρ−1
i=0 ai · ζi ∈ R (or Rq) is represented by its coefficients

(a0, . . . , aρ−1) ∈ Zρ (or Zρ
q). The (infinity) norm of a ∈ R (or Rq) is taken as ∥a∥ := maxρ−1

i=0 (|ai|), where
in the case of ai ∈ Zq the balanced representation is taken, i.e. ai ∈ {−⌈q/2⌉+ 1, . . . , ⌊q/2⌋ }. For a
vector a = (a1, . . . , an) ∈ Rn, ∥a∥ := maxn

i=1∥ai∥. For a matrix A = (Ai,j)i,j , the max-norm is taken,
i.e. ∥A∥ = maxi,j∥Ai,j∥. The ring expansion factor of R is defined as γR := maxa,b∈R∥a · b∥/(∥a∥ · ∥b∥).
For power-of-2 and prime-power R, it is known that γR ≤ 2φ(ρ), where φ is Euler’s totient function.
A set S ⊆ R is said to be subtractive if a − b ∈ R× for any distinct a, b ∈ S. For a prime-power R, it
is known that S := { (ζi − 1)/(ζ − 1) : i ∈ [rad(ρ)− 1] } ⊂ R× is subtractive, where rad(ρ) denotes the
radical. Note that ∥r∥ = 1 for all r ∈ S.

3.2 Lattice Trapdoors

In our constructions based on the (knowledge-)k-R-ISIS assumption, we will make use of lattice trap-
door algorithms. Let η, m, q, β be functions of λ. Let (TrapGen, SampD, SampPre) be PPT algorithms
parametrised by (η, m, q, β) with the following syntax and properties [GPV08, MP12, GM18]:

– (D, td) ← TrapGen(1λ) generates a matrix D ∈ Rη×m
q and a trapdoor td. The distribution of D is

statistically close to the uniform distribution over Rη×m
q .

– u← SampD(1λ) samples a vector u ∈ Rm. For any (D, v) ∈ Rη×m
q ×Rη

q and u← SampD(1λ) subject
to Du = v mod q, it is guaranteed that ∥u∥ ≤ β with overwhelming probability. Furthermore, the
following distributions are statistically close:

(D, u, v) :
D←$Rη×m

q

u← SampD(1λ)
v = Du mod q

 and

(D, u, v) :

D←$Rη×m
q

v←$Rη
q

u← SampD(1λ) : Du = v mod q

– u ← SampPre(td, v) inputs a target vector v ∈ Rη

q and samples a vector u ∈ Rm. For (D, td) ←
TrapGen(1λ), it is guaranteed that D · u = v mod q and ∥u∥ ≤ β with overwhelming probability.
Furthermore, for any v ∈ Rη

q , the following distributions are statistically close:
(D, u) :

(D, td)← TrapGen(1λ)
u← SampPre(td, v)

 and

(D, u) :

(D, td)← TrapGen(1λ)
u← SampD(1λ) : Du = v mod q

3.3 Presumed Hard Problems

The Short Integer Solution (SIS) problem was introduced in the seminal work of Ajtai [Ajt96]. It asks
to find a short vector in the kernel of a given random matrix modulo q. In this work, we consider the
generalisation of SIS over R and the k-R-ISIS problem introduced in [ACL+22].

9

Definition 2 (R-SIS Assumption). Let m, q, β∗ ∈ N depend on λ. The Ring-SIS (or R-SIS) problem,
denoted R-SISR,m,q,β∗ , is: Given h ←$ Rm

q , find u ∈ Rm such that 0 < ∥u∥ ≤ β∗ and hTu ≡ 0 mod
q. We write Advr-sis

R,m,q,β∗,A(λ) for the advantage of any algorithm A in solving R-SISR,η,m,q,β∗ . The
R-SISR,η,m,q,β∗ assumption states that, for any PPT adversary A, Advr-sis

R,m,q,β∗,A(λ) ≤ negl(λ).

We state a streamlined version of the (knowledge) k-R-ISIS8 assumptions defined in [ACL+22] with two
main changes: (i) To improve readability, our definitions of the assumptions do not impose admissibility
constraints on parameters. Instead, we mention these admissibility parameters separately outside of the
definitions. (ii) We assume that all preimages ug given to the adversary are sampled from the same
distribution conditioned on different constraints. The original definitions [ACL+22] are more general in
that they allow a different distribution per constraint.

Definition 3 (k-R-ISIS Assumptions). Let η, m, q, β, β∗ ∈ N, G ∪ { g∗ } be a set of w-variate Laurent
monomials, T ∼ Rη

q , and D ∼ Rm, all dependent on λ. Write pp := (R, η, m, w, q, β, β∗,G, g∗,D, T). The
k-R-ISISpp assumption states that, for any PPT adversary A, Advk-r-isis

pp,A (λ) ≤ negl(λ), where Advk-r-isis
pp,A (λ) :=

Pr

D · ug∗ ≡ t · s∗ · g∗(v) mod q

∧ 0 < ∥(ug∗ , s∗)∥ ≤ β∗

∣∣∣∣∣∣∣∣
D←$Rη×m

q ; t←$ T ; v←$ (R×
q)w

ug ←$ D : D · ug = t · g(v) mod q, ∀ g ∈ G

(s∗, ug∗)← A
(

D, t, v, {ug }g∈G

)
 .

Individual parameters are omitted when they are clear from the context.

Definition 4 (Knowledge k-R-ISIS Assumptions). Let η, m, q, α∗, β, β∗ ∈ N, G be a set of w-variate
Laurent monomials, T ∼ Rη

q , and D ∼ Rm, all dependent on λ. Let Z be a PPT auxiliary input generator.
Write pp := (R, η, m, w, q, α∗, β, β∗,G,D, T ,Z). The knowledge k-R-ISISpp assumption states that for any
PPT adversary A there exists a PPT extractor EA such that Advk-r-isis

pp,A (λ) ≤ negl(λ), where Advk-r-isis
pp,A (λ) :=

Pr

D · u ≡ t · c mod q

∧ 0 < ∥u∥ ≤ β∗

∧ ¬

c ≡

∑
g∈G

xg · g(v) mod q

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α∗

∣∣∣∣∣∣∣∣∣∣∣∣∣

D←$Rη×m
q ; t←$ T ; v←$ (R×

q)w

ug ←$ D : D · ug = t · g(v) mod q, ∀ g ∈ G
pp := (D, t, v, {ug }g∈G); aux ← Z(pp)(

(c, u), (xg)g∈G

)
← (A∥EA) (pp, aux)

where (A∥EA) means that A and EA are run on the same input including the randomness, and (c, u) and
(xg)g∈G are the outputs of A and EA respectively. Individual parameters are omitted when they are clear
from the context.

For both assumptions to be meaningful, we always consider m > η.9 For non-triviality, we want g∗ /∈ G
and t ̸= 0 with overwhelming probability. To avoid complications of giving the adversary short vectors in
the kernel of D, we do not consider the case where G is a multiset – all monomials in G are distinct.10 To
avoid SIS attacks in the image space, we want 1/|R×

q | = negl(λ).
For the knowledge assumption to be plausible, we would like that α∗ ≥ β∗, and for t ←$ T ,

1/|⟨t⟩| = negl(λ) and |⟨t⟩|/|Rη
q | = negl(λ) with overwhelming probability. Furthermore, to avoid easy

instances of ideal-SVP (relevant when η = 1), we would like the problem of finding short elements in
{ s ∈ R : t · s = 0 mod q } to be hard.

3.4 Argument Systems

We recall the definition of argument systems which allow a prover to convince a verifier that a relation is
satisfiable. Formally, we define a (family of) relation(s) Ψ(= (Ψλ)λ∈N) to be polynomial-time-decidable

8In [ACL+22], the assumptions over modules were separately called (knowledge-)k-M-ISIS.
9In [ACL+22], m is considered to be large enough so that the leftover hash lemma holds. However, smaller m

only makes the problems harder.
10In [ACL+22, Definition 22], monomials in G and g∗ are further required to be independent of R. We discuss

in Section 4.2 why we believe that this restriction can be lifted.

10

triples of the form (pp, stmt, wit), corresponding to the public parameters of the argument system, the
statement, and the witness respectively. We consider a statement stmt = (stmtoff, stmton) to consist an
offline part stmtoff which is potentially preprocessable and an online part stmton. For any fixed public
parameters pp, we define the (sub-)relation Ψpp := { (stmt, wit) : (pp, stmt, wit) ∈ Ψ } and the corresponding
language Lpp := { stmt : ∃ wit, (stmt, wit) ∈ Ψpp }. We focus on relations where the public parameters pp
can be efficiently generated, and denote such a generator by GenΨ . We suppress pp when it is the empty
string.

Definition 5 (Arguments). A (preprocessing) argument system consists of PPT algorithms (Setup, PreVerify)
and PPT interactive algorithms (Prove, Verify) with the following syntax:

– crs← Setup(1λ, pp): Input some public parameters pp and generate a common reference string crs.
– crsstmtoff ← PreVerify(crs, stmtoff): Preprocess the statement stmtoff. Systems not supporting prepro-

cessing are captured by having a trivial preverification, i.e. crsstmtoff = (crs, stmtoff).
– (tx, b)← ⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩: An interactive protocol where the prover tries

to convince the verifier about the statement stmt. The protocol produces a transcript tx and ends with
the verifier outputting a bit b ∈ {0, 1}. The transcript tx is suppressed from the output when it is not
needed. In the case where the protocol is non-interactive, i.e. the prover sends a single message, then we
split the protocol into two PPT algorithms π ← Prove(crs, stmt, wit) and b← Verify(crsstmtoff , stmton, π),
where π is referred to as a proof.

Definition 6 (Completeness). An argument system Π is said to be complete for Ψ if for all adversaries
A

Pr

(stmt, wit) ∈ Ψpp

∧ b = 0

∣∣∣∣∣∣∣∣∣
pp← GenΨ (1λ); crs← Setup(1λ, pp)
(stmt, wit)← A(pp, crs)
crsstmtoff ← PreVerify(crs, stmtoff)
b← ⟨P(crs, stmt, wit),V(crsstmtoff , stmton)⟩

 ≤ negl(λ).

Definition 7 (Special Soundness). An argument system Π is said to be public-coin if each message
sent by V is sampled from a public distribution independent of the messages sent by Prove. A transcript
tx is said to be accepting for (pp, stmt) if (tx, 1) is in the output space of ⟨P,V(crsstmtoff , stmton)⟩ where
crsstmtoff ∈ PreVerify(Setup(1λ, pp), stmt). Suppose V sends ℓ messages throughout the execution of ⟨P,V⟩.
A tree T is said to be a (k1, . . . , kℓ)-tree of accepting transcripts for (pp, stmt) if it is of (node-)depth
(ℓ + 1), each node is labelled by a prover message, each depth-i node has exactly ki children each connected
by an edge labelled by a distinct verifier message, and the labels on each root-to-leaf path give an accepting
transcript for (pp, stmt). The argument system Π is said to be (k1, . . . , kℓ)-special-sound for Ψ if there
exists a polynomial-time extractor E which on input a (k1, . . . , kℓ)-tree of accepting transcripts for (pp, stmt)
outputs wit∗ such that (stmt, wit∗) ∈ Ψpp.

Definition 8 (Knowledge Soundness). Let κ = κ(λ) denote the knowledge error. An argument system
Π is said to be κ-knowledge-sound for Ψ if for all PPT P∗ there exists an expected polynomial-time
extractor EP∗ such that for all PPT adversaries A the following is at most κ:

Pr

(stmt, wit∗) ̸∈ Ψpp

∧ b = 1

∣∣∣∣∣∣∣∣∣
pp← GenΨ (1λ); crs← Setup(1λ, pp)
(stmt, wit)← A(pp, crs)
crsstmtoff ← PreVerify(crs, stmtoff)
(wit∗, b)← ⟨(P∗|EP∗)(crs, stmt, wit),V(crsstmtoff , stmton)⟩

The argument system Π is said to be knowledge-sound for Ψ if it is κ-knowledge-sound for Ψ for some
κ = negl(λ).

It is known that a parallel-repetition of a (k1, . . . , kℓ)-special-sound protocol yields a knowledge-sound
protocol [AF22].

Note that it is common for lattice-based argument systems to have a “soundness gap”: They are
complete for a relation Ψ , but special- or knowledge-sound for a relaxed relation Ψ ′ ⊇ Ψ , i.e. the extracted
witness wit∗ for (pp, stmt) may not satisfy (stmt, wit∗) ∈ Ψpp but only (stmt, wit∗) ∈ Ψ ′

pp .

11

Definition 9 (Succinctness). An argument system Π is said to have succinct proofs (resp. suc-
cinct verifier) for Ψ if for any pp ∈ GenΨ (1λ), crs ∈ Setup(1λ, pp), (stmt, wit) ∈ Ψpp, crsstmtoff ∈
PreVerify(crs, stmtoff), the communication complexity of ⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ (resp.
computation complexity of Verify(crsstmtoff , stmton)) is polylog(|stmt| + |wit|) · poly(λ) where the poly(λ)
factor is independent of |stmt| and |wit|.

Argument systems which are succinct, non-interactive, and knowledge-sound are known as succinct
non-interactive arguments of knowledge (SNARK). Arguments whose soundness holds even against
adversaries given the randomness of Setup are said to have transparent setups.

4 Vanishing Short Integer Solutions

In this section, we formalise the vanishing-SIS problems and assumptions, and discuss their relations with
existing problems and assumptions. We also discuss the properties of the collision-resistant hash functions
obtained immediately from the vanishing-SIS assumptions.

4.1 Definition

Definition 10 (Vanishing-SIS). Let n, d, w, q, β ∈ N and G, a set of w-variate (Laurent) monomials
of individual degree at most d, be functions of λ. The vSISR,G,n,q,β problem is the following: Given
a set V = {vi }n

i=1 ∈ (R×
q)w of n uniformly random points in (R×

q)w, find a non-zero polynomial
p ∈ R[X1, . . . , Xw] with monomial support11 over G such that

∀i ∈ [n], p(vi) = 0 mod q and ∥p∥ ≤ β

where ∥p∥ is the maximum of the norm of the coefficients of p. The vSISR,G,n,q,β assumption states that,
for any PPT adversary A, the probability of A solving a uniformly random instance of vSISR,G,n,q,β

is negligible in λ. Individual parameters are omitted from the subscript when they are clear from the
context. If G is the set of all w-variate (Laurent) monomials of individual degree at most d, we denote
the problem by vSISR,d,w,n,q,β. To emphasise certain parameters, e.g. n = n∗ and w = w∗, we sometimes
write vSIS(n,w)=(n∗,w∗).

Another way to phrase the problem, borrowing terminologies from algebraic geometry, is that it asks
to find an element of bounded norm and degree in the ideal I(V) of polynomials vanishing at the set of
points V . Clearly, the subset of bounded-degree polynomials in I(V) forms a (module) lattice. Therefore
a vanishing-SIS problem can also be seen as an average-case approximate shortest vector problem (SVP)
over such lattices.12

The connection of the vanishing-SIS problem to the standard SIS problem stems from the following
simple observation: If we interpret the coefficients of a solution p as a vector p, and write the relation in
matrix form, we obtain

1 v1,1 . . . v1,w . . .
∏w

j=1 v
ej

1,j . . .
∏w

j=1 vd
1,j

1 v2,1 . . . v2,w . . .
∏w

j=1 v
ej

2,j . . .
∏w

j=1 vd
2,j

...
...

. . .
...

. . .
...

. . .
...

1 vn,1 . . . vn,w . . .
∏w

j=1 v
ej

n,j . . .
∏w

j=1 vd
n,j

 · p = 0 mod q and ∥p∥ ≤ β,

a SIS relation with respect to a (Vandermonde-like) structured matrix.
Note that since vi,j ∈ R×

q for all i and j, it is not important for p to be a polynomial with only
non-negative powers. Laurent polynomials can be captured scaling the each i-th row of the matrix by∏w

j=1 v
−ej

i,j for any desired powers (e1, . . . , ew) ∈ Zw. In fact, using the matrix formulation, the scaling
factors for each row could be different.

It is easy to observe that the vanishing-SIS assumption is implied by the k-R-ISIS assumption with
related parameters. In Appendix A, we discuss this implication in more detail, show that the converse holds
conditioned on a related knowledge-k-R-ISIS assumption, and explore the connections of vanishing-SIS to
more established assumptions, i.e. NTRU and RingLWE.

11e.g. the monomial support of 3X1X2 + 2X2
2 + 1 is {X1X2, X2

2 , 1 }
12Interestingly, after restricting to a bounded-degree subset, we no longer have an ideal. Therefore this

approximate SVP problem is not over ideal-lattices.

12

4.2 On Choice of Parameters

On the modulus q. Note that, for some (preferable) parameters settings, it is important for q > d
for the vSIS assumption to be plausible. Indeed, for example, if q is prime and is such that qR splits
completely into φ(ρ) ideals, then we have vq−1 − 1 = 0 mod q for any v ∈ R. This gives rise to trivial
solutions, e.g. p(X) = Xq−1 − 1, to the vSIS problem.

On the space of V . It is also important for the set of points V to be chosen over R×
q instead of

Rq. For example, consider a power-of-2 R and q = 2ℓ. The ideal qR splits into qR = Iℓ·φ(ρ) for some
ideal I of (algebraic) norm N (I) = 2. Therefore, with probability 1/2, a random element v ←$ Rq

satisfies v = 0 mod I and hence vℓ·φ(ρ) = 0 mod q. This means that p(X) = Xℓ·ϕ(ρ) is a solution to any
vanishing-SIS over Rq if instances were sampled from Rq.13

On the cardinality |R×
q |. It is crucial that the cardinality |R×

q | is large enough so that 1/|R×
q | = negl(λ).

Suppose not, then there might exist small e ∈ N such that { v, v2, . . . , ve } contains a short element modulo
q. Note that the set of elements in R of norm at most β has cardinality (2β + 1)φ(ρ). If we heuristically
model the multiplication-by-v map a 7→ a · v mod q as a random permutation for v ←$R×

q , and if R×
q is

large enough, we have some confidence to believe that small powers of v modulo q will not be short.
In general, it appears that |R×

q | is usually quite close to qφ(ρ). We calculate this cardinality for
some specific choices of q and R. For q = 2ℓ and ρ being a power of 2, we have |R×

q | = qφ(ρ)/2. For
arbitrary R and prime q = 1 mod φ(ρ), we have |R×

q | = (q − 1)φ(ρ). In either case, if β ≤ q/4, we have
Pr
[
∥x∥ ≤ β

∣∣x←$R×
q

]
< 2−φ(ρ) which is negligible in ρ.

4.3 A Family of Hash Functions with Short Keys

Similar to the standard SIS-based hash function, the vanishing-SIS assumption immediately implies the
existence of a collision-resistant hash function, except that in this case the keys are very small, and could
potentially be logarithmic in the message size. Furthermore, the hash function satisfies many desirable
properties, such as (approximate) ring homomorphism.

In more detail, for any set of points V = {vi }n
i=1 ⊆ ((R×

q)w)n, define

HV : R(d+1)w
β → Rn

q , HV (p) = (p(v1), . . . , p(vn)) mod q

where an input p ∈ R(d+1)w
β is interpreted, for example, as a polynomial p ∈ Rβ [X1, . . . , Xw] of individual

degree at most d.
It is easy to show that this function is collision resistant by observing that HV (p) = HV (p′) implies

∀i ∈ [n], (p− p′)(vi) = 0 mod q and ∥p− p′∥ ≤ β,

i.e. p− p′ is a solution to the vSIS instance V .
Observe that each hash function can be described by a key of size n · w log q bits, and can hash

messages of length (d+1) ·w · log β bits to n · log q bits, where n and w could be as small as 1. As discussed
in Section 4.1, for the vSIS assumption to be plausible for the case where q fully splits, which is desirable
for efficiency, it is necessary that q > d. For q = O(d) and n, w, β = poly(λ), the key size and the message
length are Oλ(log d) and Oλ(d) respectively.

Similar to the standard SIS-based hash function, HV is almost linearly homomorphic in the sense that

HV (p) +HV (p′) = HV (p + p′) mod q and ∥p + p′∥ ≤ ∥p∥+ ∥p′∥.

Different from the standard SIS-based hash function, however, is that HV is also almost multiplicatively
homomorphic in the sense that

HV (p) · HV (p′) = HV (p · p′) mod q and ∥p · p′∥ ≤ (d + 1)w · ∥p∥ · ∥p′∥ · γR,

13This is the reason why G was restricted to be independent of R in the definition of “k-R-ISIS-admissible”
parameters in [ACL+22, Definition 22]. However, since [ACL+22, Definition 23] also restricts v ∈ (R×

q)w, the
restriction on G appears to be redundant.

13

with multiplications taken over Rq and R[X] respectively.
For our purpose of construction linear-time succinct arguments, the univariate case (i.e. w = 1) is the

most interesting due to the exponential dependency of various parameters on w. Moreover, we notice
that if p0(X) and p1(X) encode the vectors p0 and p1 respectively as their coefficients, then the product
polynomial p(X) · p(X−1) has norm at most ∥p0∥ · ∥p1∥ · γR, and its constant term encodes the inner
product ⟨p0, p1⟩.

5 Foldable Structures

We define a family of monomials, polynomials, vectors, and matrices that exhibit “foldable” structures.

Definition 11 (Foldable Polynomials). Let ℓ ≥ 0, kℓ > 0, and kℓ−1, . . . , k0 ≥ 0 be integers. A
sequence of (monic multivariate Laurent) monomials m14 of length n =

∑ℓ
i=0 2i · ki (where ki are not

necessarily binary) is said to be (k0, k1, . . . , kℓ)-foldable if the following properties are satisfied:

– m = m0 can be generated from a “seed” mℓ and a “generator” (ℓi, ci, ri)ℓ−1
i=0 , where mℓ is a sequence

of monomials of length kℓ, ci is a sequence of monomials of length ki, and ℓi, ri are monomials, in a
recursive fashion:15

∀i ∈ [ℓ], mT
i−1 :=

(
ℓi−1 ·mT

i ∥ cT
i−1 ∥ ri−1 ·mT

i

)
.

– For all i ∈ { 0, . . . , ℓ }, mi consists of distinct monomials.

We say that m is foldable if it is (k0, k1, . . . , kℓ)-foldable for some (k0, k1, . . . , kℓ). A foldable polynomial
is a polynomial whose supporting monomials can be arranged into a foldable sequence of monomials.

Note that any sequence of monomials m of length n is trivially (0, . . . , 0, n)-foldable. However, we are
most interested in sequences which are (k0, k1, . . . , kℓ)-foldable for small constants ki, e.g. ki ∈ { 0, 1, 2 },
for all i ∈ { 0, . . . , ℓ }. Below, we state some elementary properties satisfied by foldable monomials.

Lemma 1. Let m of length n be (k0, . . . , kℓ)-foldable. Let k∗ := maxℓ
i=0 ki. It holds that ℓ ≤ log n <

ℓ + log 2 · k∗.

The proof of Lemma 1 is deferred to Appendix B. The following properties follow immediately from
the definition and are stated without proof.

Lemma 2 (Chaining/Decomposition). If m is foldable with seed and generator (m′, g′) and m′ is
foldable with seed and generator (m′′, g′′), then m is foldable with seed and generator (m′′, g′′∥g′).

Lemma 3 (Closure under Hadamard Product). If m and m′ are both (k0, k1, . . . , kℓ)-foldable with,
where m and m′ are supported by disjoint sets of variables and have seeds and generators

(s, (ℓi, ci, ri)ℓ−1
i=0) and (s′, (ℓ′

i, c′
i, r′

i)ℓ−1
i=0)

respectively, then the Hadamard product m ◦m′ is also (k0, k1, . . . , kℓ)-foldable with seed and generator

(s ◦ s′, (ℓi · ℓ′
i, ci ◦ c′

i, ri · r′
i)ℓ−1

i=0).

Next, we extend the definition of foldable monomials and polynomials to that of (block-)foldable
vectors and matrices. We then give examples of such objects. The proofs are elementary and are deferred
to Appendix B.

Definition 12 (Foldable Vectors and Matrices). A vector a = (a1, . . . , an) is said to be (k0, k1, . . . , kℓ)-
foldable if there exists a (k0, k1, . . . , kℓ)-foldable sequence of monomials m = (m1, . . . , mn) and a point
v ∈ (R×)k such that ai = mi(v) for all i ∈ [n], i.e. the i-th entry of a is obtained by evaluating the i-th
monomial in m at the point v. The point v is said to be the evaluation point of a. A matrix is said to be
foldable if every row of it is foldable with a common evaluation point v. A block-matrix A = (A1, . . . , An)
where ncol(Ai) = w for all i ∈ [n] is said to be block-foldable with block-size w if, for all (i, j), the vector
formed by taking the (i, j)-th entry of each of (A1, . . . , An) is foldable.

14That is, each entry of m is a monic multivariate Laurent monomial.
15In the recursive expression, “·” denotes the symbolic multiplication of monomials. For example, X · (X2, X3) =

(X3, X4).

14

Lemma 4 (Power Sequence). For any n ∈ N, express n uniquely16 as n =
∑ℓ

i=0 2i ·ki with ki ∈ { 1, 2 }
for i ∈ { 0, . . . , ℓ }. Then for any v ∈ R, the vector vT = (v, v2, . . . , vn). is (k0, k1, . . . , kℓ)-foldable.
Generalising, for w ∈ N, the vector vT = (v, v2, . . . , vwn) is (k0, k1, . . . , kℓ)-block-foldable with block-size
w.
Lemma 5 (Balanced Power Sequence). For any n ∈ N, express n uniquely as n =

∑ℓ
i=0 2i · ki

with kℓ = 1 and ki ∈ { 0, 1 } for all i ∈ { 0, . . . , ℓ− 1 }. Then for any v ∈ R, the following vector is
(0, k0, k1, . . . , kℓ)-foldable:

vT = (v−n, . . . , v−2, v−1, v, v2, . . . , vn).
Lemma 6 (Compression Vector). For any integers ℓ ≥ 0, kℓ > 0 and k0, . . . , kℓ−1 ≥ 0, let Xi,ji

be
independent variables for i ∈ { 0, . . . , ℓ } and ji ∈ { 0, . . . , ki }. The seed and generator

((Xℓ,1, . . . , Xℓ,kℓ
), (1, (Xi,1, . . . , Xi,ki

), Xi,0)ℓ−1
i=0)

generate a (k0, k1, . . . , kℓ)-foldable sequence of monomials m. Furthermore, let x = (xi,j)ℓ,ki

i=0,j=1 be a
vector over R with ∥x∥ ≤ α. Let h := m(x) be the foldable vector obtained by evaluating m at x. It holds
that ∥h∥ ≤ αℓ+1 · γℓ

R.

6 Folding Protocols
We state two folding protocols Πfold

0 and Πfold
1 for bounded-norm satisfiability of (structured) linear

relations which respect the foldable structures (Section 5) of the matrices and vectors defining the
relations. Both protocols have trivial (hence transparent) setup and trivial pre-verification, i.e. crs =
Πfold

b .Setup(1λ, pp) = (1λ, pp) and crsstmtoff = Πfold
b .PreVerify(crs, stmtoff) = (crs, stmt). We detail below

the prove-verify protocols
Πfold

b .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩.

6.1 Type-0 Linear Relations
Define the relation Ψfold

0 = Ψfold
0 [R, h0, h1, w, n, q0, q1, α]:

Ψfold
0 :=

(pp, ((A, B, C, y), z), x) :

[
A
B

]
↘n

· x = y mod q0,

C · x = z mod q1,

and ∥x∥ ≤ α,

 ,

R is a prime-power ring for a prime ≥ 5, A, B ∈ Rh0×w
q0

, C = (C1, . . . , Cn) ∈ Rh1×wn
q1

, y ∈ Rh0·(n+1)
q0 ,

z ∈ Rh1
q1

, and x ∈ Rwn. Note that the linear constraints consist of a sparse structured part represented by
a block-bidiagonal matrix and a dense part. By default, we suppress all parameters of Ψfold

0 except those
that we highlight. Note that the above constraints are independent of pp, therefore Ψfold

0 is compatible
with any parameter generator Gen. We describe Πfold

0 which is complete for Ψfold
0 [α] and knowledge

sound for Ψfold
0 [α∗] for some α∗ > α.

Construction. The protocol Πfold
0 is essentially a merge between (the lattice analogue of) Pietrzak’s

folding protocol [Pie19] and the lattice-based Bulletproofs protocol [BLNS20]. Consider n > 2 and let
n′ = ⌊(n− 1)/2⌋. Our protocol hinges on the following observation: Depending on whether n is odd or
even, we have

[
A
B

]
↘n

=

A
B

[
A
B

]
↘n′ [

A
B

]
↘n′

 or

A
B A

B

[
A
B

]
↘n′

[
A
B

]
↘n′

.

16Suppose the expression is not unique, let n =
∑ℓ

i=0 2i · ki =
∑ℓ

i=0 2i · k′
i with ki, k′

i ∈ { 1, 2 }. Let di =
ki − k′

i ∈ {−1, 0, 1 }. We have
∑ℓ

i=0 2i · di = 0, which means that d0 = 0 or else the LHS is odd while the RHS is
even. Dividing both sides by 2, we get

∑ℓ−1
i=0 2i · di+1 = 0. By the same argument, we have d1 = 0. Repeating this

for all i yields di = 0 for all i ∈ { 0, . . . , ℓ }, a contradiction.

15

The protocol Πfold
0 .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ consists of ℓ + 1 rounds and makes

use of the subtractive set S ⊂ R× mentioned in Section 3.1. Denote (C(0), x(0), y(0), z(0), α(0)) :=
(C, x, y, z, α). Express n uniquely as n =

∑ℓ
j=0 2j · kj where kj ∈ { 1, 2 }. Note that y consists of

n′ := n + 1 =
∑ℓ−1

j=0 2j · (kj − 1) + 2ℓ · (kℓ + 1) blocks. For i ∈ { 0, . . . , ℓ }, define ni :=
∑ℓ

j=i 2j−i · kj and
n′

i :=
∑ℓ−1

j=i 2j−i · (kj − 1) + 2ℓ−i · (kℓ + 1). Then, for i < ℓ, the i-th round of the protocol is as follows:

– Parse (C(i), x(i), y(i)) as

(C(i)
L , C(i)

c , C(i)
R), (x(i)

L , x(i)
c , x(i)

R), and (y(i)
L , y(i)

c , y(i)
R)

respectively where ncol(C(i)
L) = ncol(C(i)

R) = nrow(x(i)
L) = nrow(x(i)

R) = ni · w and nrow(y(i)
L) =

nrow(y(i)
R) = n′

i · h0. Note that nrow(x(i)
c) = ki and nrow(y(i)

c) = ki − 1, meaning that y(i)
c is empty

when ki = 1.
– P sends

x(i)
c , z(i)

LR := C(i)
L · x

(i)
R mod q1, and z(i)

RL := C(i)
R · x

(i)
L mod q1.

– V checks that
∥∥∥x(i)

c

∥∥∥ ≤ α(i). If ki = 2, V further checks that
(
B A

)
· x(i)

c = y(i)
c mod q0. If any of

these checks fails, V aborts.
– V samples ri ←$ S and sends ri to P.
– P computes the compressed witness x(i+1) := x(i)

L + x(i)
R · ri.

– P and V compute the compressed statement

C(i+1) := C(i)
L + C(i)

R · r
−1
i mod q1

y(i+1) := y(i)
L + y(i)

R · ri −

B · ri

0
A

 · x(i)
c mod q0

z(i+1) := z(i) −C(i)
c · x(i)

c + z(i)
RL · r

−1
i + z(i)

LR · ri mod q1

α(i+1) := 2 · α(i) · γR

In the ℓ-th (i.e. final) round, P sends x(ℓ) and V checks that[
A
B

]
↘kℓ

· x(ℓ) = y(ℓ) mod q0,

C(ℓ) · x(ℓ) = z(ℓ) mod q1,

and
∥∥∥x(ℓ)

∥∥∥ ≤ α(ℓ) = (2γR)ℓ · α.

Analysis. We show that Πfold
0 is complete and (unconditionally) special-sound. We further show that

Πfold
0 has short proofs, quasi-linear-time prover, and polylogarithmic-time verifier.

For readability, we defer the proofs of the above claims to Appendix D.

Theorem 1. Πfold
0 is complete for Ψfold

0 [α].

Theorem 2. If α∗ ≥ (8γ4
R)log nα, Πfold

0 is (3, . . . , 3)-special sound for Ψfold
0 [α∗].

For the purpose of estimating the complexities of Πfold
0 , let h0, h1, w, γR = poly(λ) be fixed polynomials

in λ. Pick α∗ to be tight in Theorem 2 and set q0, q1 = Oλ(α∗) = λO(log n). The following theorem states
the complexities of Πfold

0 with the above parameter choices.

Theorem 3. Let h0, h1, w, γR = poly(λ) be fixed polynomials in λ, and q0, q1 = λO(log n). Πfold
0 has

(i) prover time Oλ(n · log2 n), and (ii) proof size Oλ(log2 n). If C is (k0, . . . , kℓ)-block-foldable with block-
size w and y is (k0 − 1, . . . , kℓ−1 − 1, kℓ + 1)-block-foldable with block-size h0, then the verifier time is
Oλ(log3 n).

16

6.2 Type-1 Linear Relations

Define the relation Ψfold
1 = Ψfold

1 [R, h, w, n, q, α]:

Ψfold
1 :=

{
(pp, (A, y), x) : A · x = y mod q and ∥x∥ ≤ α

}
,

R is a prime-power ring for a prime ≥ 5, A = (A1, . . . , An), Ai ∈ Rh×w
q , y ∈ Rh

q , and x ∈ Rwn. By
default, we suppress parameters of Ψfold

1 except those that we highlight. Note that the above constraints
are independent of pp, therefore Ψfold

1 is compatible with any parameter generator Gen. We describe
Πfold

1 which is complete for Ψfold
1 [α] and knowledge sound for Ψfold

1 [α∗] for some α∗ > α.

Construction. We construct in Appendix C a protocol Πfold
1 which can be seen as a simplification of

Πfold
0 by removing components responsible for the structured part of the relation.

Analysis. We state the formal claims about the completeness, special-soundness, and efficiency of Πfold
1 .

The proofs of these claims are almost identical to those of Theorems 1 to 3 and are therefore omitted.

Theorem 4. Πfold
1 is complete for Ψfold

1 [α].

Theorem 5. For α∗ ≥ (8γ4
R)log n · α, Πfold

1 is (3, . . . , 3)-special sound for Ψfold
1 [α∗].

Theorem 6. Let h, w = poly(λ) and q = λO(log n). Πfold
1 has (i) prover time Oλ(n · log2 n), and (ii) proof

size Oλ(log2 n). If A is (k0, . . . , kℓ)-block-foldable with block-size w, then the verifier time is Oλ(log3 n).

7 Knowledge-based Protocols

Mirroring the folding protocols constructed in Section 6, we present below two argument systems Πknow
0

and Πknow
1 for unstructured linear relations based on the (knowledge-)k-R-ISIS assumptions. Different from

existing protocols based on the same family of assumptions and construction template, the constructions
below feature quasi-linear-time provers.

7.1 Linear Relations

Define the relation Ψ0 = Ψ0[R, s, t, q0, q1, q2, α]:

Ψ0 :=

((v, h), ((M, y), (cx, c̄x)), x) :
M · x = y mod q0,

vT · x = cx mod q3,

(v̄ ◦ h)T · x = c̄x mod q3,

∥x∥ ≤ α

where M ∈ Rt×s

q3
, y ∈ Rt

q3
, cx, c̄x ∈ Rq3 , x ∈ Rs, v = (v, v2, . . . , vs), and v̄ = (v−1, v−2, . . . , v−s).

Accompanying the relation, we define a parameter generator Genunstr which samples v ←$ R×
q3

and
h←$Rs

q1
and outputs (v, h). Note that the compression vector h is unstructured. By default, we suppress

all parameters of Ψ0 except those that we highlight. We describe a protocol Πknow
0 which is complete for

Ψ0[α] and knowledge sound for Ψ0[α∗] for some α∗ > α.

Construction. Let R, s, t, η, m, (qi)3
i=0, β, (δi)3

i=0, T depend on λ. Using the lattice trapdoor algorithms
(Section 3.2) parametrised by (η, m, q3, β), in Fig. 1 we give a formal description of Πknow

0 , which is based
on the construction template of functional commitments in [ACL+22]. In particular, in Πknow

0 the prover
proves to the verifier that they know witnesses to the following relations(

vT

(v̄ ◦ h)T

)
· x =

(
cx
c̄x

)
mod q3, and ∥x∥ ≤ α, (3)

vT
t · r = cr, with r ∈ Rt, (4)

and
M · x = y mod q0 ∥x∥ ≤ α. (5)

17

Setup(1λ, pp)

(v, h)← pp
f 0 ←$Rt

q2 , f 1 ←$Rs
q2

I0 := ±[max { s, t }], I1 := [s]
I2 := −[s], I3 := [t]
for i ∈ {0, 1, 2, 3} do

(Di, tdi)← TrapGen(1λ)
ti ←$ T

ui,j ← SampPre(tdi, ti · vj), ∀j ∈ Ii

crs :=
(

(Di, ti, (ui,j)j∈Ii
)3

i=0,

v h f 0, f 1

)
return crs

Prove(crs, ((M, y), (cx, c̄x)), x)

vt := (v, v2, . . . , vt)
cr := vT

t · r mod q3

u0,0 :=
∑

i∈[s],k∈[t]

f0,kMk,i

∑
j∈[s]:j ̸=i

u0,j−ixj

+
∑

i,k∈[t]

f0,kq0
∑

j∈[t]:j ̸=i

u0,j−irj

u0,1 :=
∑
j∈[s]

hjf1,j

∑
i∈[s]:i ̸=j

u0,i−jxi

−
∑
i∈[s]

f1,i

∑
j∈[s]:j ̸=i

u0,i−jhj · xj

u0 := u0,0 + u0,1

u1 :=
∑
j∈[s]

u1,j · xj

u2 :=
∑
j∈[s]

u2,−j · hj · xj

u3 :=
∑
j∈[t]

u3,j · rj

return π := (cx, c̄x, cr, u0, u1, u2, u3)

PreVerify(crs, (M, y))

v := (v, v2, . . . , vs)
v̄ := (v−1, v−2, . . . , v−s)
v̄t := (v−1, v−2, . . . , v−t)
c̄M := f T

0 ·M · v̄ mod q3

c̄q0 := f T
0 · q0 · v̄t mod q3

c̄I := f T
1 · I · (v̄ ◦ h)

= f T
1 · (v̄ ◦ h) mod q3

cI := vT · I · f 1 = vT · f 1 mod q3

ĉy := f T
0 · y mod q3

ppM,y,cx,c̄x :=
(

(Di, ti)3
i=0,

c̄M, c̄q0 , c̄I, cI, ĉy

)
return ppM,y

Verify(crsM,y, (cx, c̄x), π)

c0,0 := c̄M · cx + c̄q0 · cr − ĉy mod q3

c0,1 := c̄I · cx − c̄x · cI mod q3

c0 := c0,0 + c0,1 mod q3

c1 := cx

c2 := c̄x

c3 := cr

for i ∈ {0, 1, 2, 3} do

bi :=

 Di · ui
?
≡ ti · ci mod q3

∧ ∥ui∥
?
≤ δi

return b0 ∧ b1 ∧ b2 ∧ b3

Fig. 1. Our argument system Πknow
0 .

18

The prover will prove that cx, c̄x, and cr are well-formed by proving knowledge of a short opening of
the commitments cx, c̄x, and cr with respect to the commitment key (vi)i∈[s], (v−i)i∈[s], and (vi)i∈[t]
respectively. To prove consistency between cx and c̄x, the prover proves knowledge of a short opening
of the commitment c̄I · cx − c̄x · cI, where the values c̄I and cI can be precomputed by the verifier. This
is with respect to the commitment key (vk)k∈±[max{s,t}]. Finally, to prove Eq. (5), the prover proves
knowledge of a short opening of the commitment c̄M · cx + c̄q0 · cr − ĉy, where the values c̄M, c̄q0 , and ĉy
can be precomputed by the verifier. This is again with respect to the commitment key (vk)k∈±[max{s,t}].

We highlight a few crucial differences with [ACL+22]:

(i) The witness x is committed using a univariate vSIS commitment, i.e. the commitment key is v =
(v, v2, . . . , vs), while in [ACL+22] the commitment is an s-variate vSIS commitment. The fact that
| { vi−j : i, j ∈ [s] } | has cardinality O(s) and that the prover computation consists of mainly Toeplitz-
vector multiplications are crucial for obtaining a quasi-linear-time prover.

(ii) We support proving relations modulo q0 natively17 by introducing the auxiliary witness r satisfying
M · x + q0 · r = y. In [ACL+22], modular arithmetic is handled via generic and expensive bit-
decomposition techniques.

(iii) To prove that values committed in multiple commitments, i.e. cx, c̄x, and cr, satisfy some relation, we
adapt techniques developed for the recent construction of chainable functional commitments [BCFL22].

Analysis. We show that Πknow
0 is correct and knowledge-sound under (knowledge-)k-R-ISIS and R-

SIS assumptions. We further show that Πknow
0 has short CRS and proofs, quasi-linear-time prover and

preprocessing, and polylogarithmic-time verifier after preprocessing. The proofs are deferred to Appendix F.

Theorem 7 (Completeness). Let (η, m, q3, β) be such that the properties of lattice trapdoor algorithms
described in Section 3.2 hold. For

δ0 ≥ (s + t)4 · q0 · q1 · q2 · α · β · γ3
R, δ1 ≥ s · α · β · γR,

δ2 ≥ s · q1 · α · β · γR, and δ3 ≥ s2 · α · β · γ2
R,

Πknow
0 in Fig. 1 is complete for Ψ0[α].

Theorem 8 (Knowledge Soundness). Let (η, m, q3, β) be such that the properties of lattice trapdoor
algorithms described in Section 3.2 hold. Let w = 1, G0 = {Xi : i ∈ ±[max { s, t }] }, G1 = {Xi : i ∈ [s] },
G2 = {Xi : i ∈ −[s] }, and G3 = {Xi : i ∈ [t] } be sets of monomials in X. Let D = SampD(1λ). For i ∈
{ 1, 2, 3 }, let Zi(1λ) be almost identical to Setup(1λ, Genunstr(1λ)), except that it inputs (Di, ti, v, {ui,j }j∈Ii

)
and generates the rest of crs. Let

α∗
i ≥ δi, ∀i ∈ [3], α∗ := max {α∗

1, α∗
2, α∗

3 } , q2 ≥ β∗
q2
≥ s · q0 · q1 · α∗ · γR,

q3 ≥ β∗
q3
≥ max { 2δ0, (s + t)3 · q0 · q1 · q2 · α∗ · β · γ3

R } .

Πknow
0 in Fig. 1 is knowledge-sound for Ψ0[α∗

1] if the following assumptions hold:

Assumption 0. k-R-ISISR,η,m,w,q3,β,β∗
q3 ,G0,g∗=1,D,T ,

Assumption 1. knowledge-k-R-ISISR,η,m,w,q3,α∗
1 ,β,δ1,G1,D,T ,Z1 ,

Assumption 2. knowledge-k-R-ISISR,η,m,w,q3,α∗
2 ,β,δ2,G2,D,T ,Z2 ,

Assumption 3. knowledge-k-R-ISISR,η,m,w,q3,α∗
3 ,β,δ3,G3,D,T ,Z3 , and

Assumption 4. R-SISR,s+t,q2,β∗
q2

.

For the purpose of estimating complexities, we assume that the assumptions in Theorem 8 hold for
moduli which are a fixed polynomial factor larger than their norm bounds, e.g. q2 ≥ β∗

q2
· poly(λ) for the

R-SISR,s+t,q2,β∗
q2

assumption. For the k-R-ISIS assumptions, we assume that they hold for m = O(η · log q).
Let η, α, β, γR = poly(λ) be fixed polynomials in λ. For our application in Section 8, we want

q1 = O(s2·α2) = Oλ(s2). Pick δ1, δ2, δ3, α∗
1, α∗

2, α∗
3 so that they match their lower bounds given in Theorem 7

and Theorem 8 respectively. Substituting q1, we have α∗
1 = δ1 = Oλ(s), α∗

2 = δ2 = Oλ(s3), and
α∗

3 = δ3 = Oλ(s2). We therefore have α∗ = Oλ(s3). Pick q0 = Oλ(α∗
1) = Oλ(s). Pick β∗

q2
so that

it matches its lower bound in Theorem 8, and set q2 = Oλ(β∗
q2

). Substituting (q0, q1, α∗), we have
17Relations without modular reduction are captured by setting q0 = 0.

19

q2 = Oλ(s7). Pick δ0 so that it matches its lower bound given in Theorem 7. Substituting (q0, q1, q2), we
have δ0 = Oλ((s + t)14). Pick β∗

q3
so that it matches its lower bound in Theorem 8, and set q3 = Oλ(β∗

q3
).

Substituting (q0, q1, q2, α∗), we have q3 = Oλ((s + t)16). Let n = max{|M|, s + t}, where |M| denote the
number of non-zero entries in M. Pick m = O(η · log q) = Oλ(log n).

Theorem 9 states the complexities of Πknow
0 with the above parameter choices.

Theorem 9 (Efficiency). Let n = max{|M|, s+ t}, where |M| denote the number of non-zero entries in
M, η, α, β, γR = poly(λ) be fixed polynomials in λ, and (m, q0, q1, q2, q3) = (log n, s, s2, s7, (s+t)16)·poly(λ).
Then Πfold

0 has (i) common reference string size Oλ(n · log n), (ii) proof size Oλ(log2 n), (iii) prover time
Oλ(n · log3 n), (iv) preprocessing time Oλ(n · log2 n), and (v) verifier time Oλ(log3 n) after preprocessing.

7.2 Well-formedness of vSIS Commitments

Define the relation Ψ1 = Ψ1[R, s, q1, q3, α] equipped with the same parameter generator Genunstr as Ψ0:

Ψ1 :=
{

((v, h), (ϵ, cz), z) :
(
v̄T vT

)
· z = cz mod q3 ∧ ∥z∥ ≤ α

}
where cz ∈ Rq3 , z ∈ R2s, v = (v, v2, . . . , vs), and v̄ = (v−1, v−2, . . . , v−s). By default, we suppress all
parameters of Ψ1 except those that we highlight. We describe a protocol Πknow

1 which is complete for
Ψ1[α] and knowledge sound for Ψ1[α∗] for some α∗ > α.

Construction. We construct in Appendix E a protocol Πknow
1 for the relation Ψ1. The proof for z is

simply D−1(t · cz) with (D, t) given in crs.

Analysis. Πknow
1 is correct and knowledge-sound under the knowledge-k-R-ISIS assumption. It has short

CRS and proofs, quasi-linear-time prover, and polylogarithmic-time verifier. Below, we state these claims
formally and omit the (trivial) proofs.

Theorem 10 (Completeness). Let (η, m, q3, β) be such that the properties of lattice trapdoor algorithms
described in Section 3.2 hold. For δ ≥ 2s · α · β · γR Πknow

1 in Fig. 1 is complete for Ψ1[α].

Theorem 11 (Knowledge Soundness). Let (η, m, q3, β) be such that the properties of lattice trapdoor
algorithms described in Section 3.2 hold, w = 1, α∗ ≥ δ, G = {Xi : i ∈ ±[s] } be a set of monomials
in X, D denote the distribution SampD(1λ), and Z be trivial (i.e. it outputs ⊥). Πknow

1 in Fig. 1 is
knowledge-sound for Ψ0[α∗] if the knowledge-k-R-ISISR,η,m,w,q3,α∗,β,δ,G,D,T ,Z assumption holds.

Theorem 12 (Efficiency). Let parameters be as in Theorem 9. Πfold
1 has (i) common reference string

size Oλ(n · log n), (ii) proof size Oλ(log2 n), (iii) prover time Oλ(n · log2 n), (iv) trivial preprocessing, and
(v) verifier time Oλ(log3 n).

8 Applications

We show how to compose arguments obtain in Sections 6 and 7 to build efficient arguments for more
complex relations. In particular, we show how to construct arguments for the binary-satisfiability of
(structured) linear equations and rank-1 constraint satisfiability (R1CS).

8.1 Proving Binary-Satisfiability of (Structured) Linear Equations

Recall that in Section 6 we built succinct arguments Πfold
0 and Πfold

1 for the relations Ψfold
0 and Ψfold

1
respectively, while in Section 7 we constructed Πknow

0 and Πknow
1 for the relations Ψ0 and Ψ1 respectively.

By inspection, we see that Ψ1 is a special case of Ψfold
1 , and thus Πfold

1 can be specialised to give a succinct
argument for Ψ1. Similarly, Πfold

0 can be specialised as to give a succinct argument for the following
special case of Ψ0 which we denote by Ψstr

0 = Ψstr
0 [R, h, w, n, q0, q1, q3, α], where M is restricted to be of

the form M =
[
A
B

]
↘n

succinctly represented by some A, B ∈ Rh×w
q0

.

Accompanying Ψstr
0 , we define the parameter generator Genstr which samples (v, h) which are

(k0, . . . , kℓ)-block-foldable with block-size w where n =
∑ℓ

i=0 ki for ki ∈ { 1, 2 }. More concretely,

20

Setup(1λ)

pp← Gen(1λ)

crs′ ← Π ′.Setup(1λ, pp)

crs′′ ← Π ′′.Setup(1λ, pp)
return crs := (crs′, crs′′)

PreVerify(crs, (M, y))

crs′
(M,y) ← Π ′.PreVerify(crs′, (M, y))

crs′′
ϵ ← Π ′′.PreVerify(crs′′, ϵ)

return crs(M,y) := (crs′
(M,y), crs′′

ϵ)

Fig. 2. Setup and PreVerify algorithms of the argument system Πbin-sat.

Genstr does the following: (i) Sample v ←$ R×
q and h̃ ←$ Rñ

q1
. (ii) Set v := (v, . . . , vs) mod q3.

(iii) Let ñ :=
∑ℓ−1

i=0(ki + 1) + kℓ. (iv) Generate w copies of ñ-variate monomial sequences m1, . . . , mw

according to Lemma 6, and concatenate them in an interleaved manner into a monomial sequence
m = (m1,1, m2,1, . . . , mw,1, m1,2, . . . , mw,n). (v) Evaluate m at h̃ to produce h = m(h̃).

Equipped with succinct arguments for Ψ0 (or Ψstr
0) and Ψ1, we construct a succinct argument Πbin-sat

for the binary-satisfiability of system of (structured) linear equations mod p. Formally, define the relation
Ψbin-sat = Ψbin-sat[R, s, t, p]:

Ψbin-sat :=
{

(((M, y), ϵ), x) : M · x = y mod q0 ∧ x ∈ {0, 1}s
}

,

with offline statement (M, y) ∈ Rt×s
q0
×Rt

q0
and witness x ∈ Rs, and the corresponding structured variant

Ψstr-bin-sat = Ψstr-bin-sat[R, h, w, n, p] where M is of the form M =
[
A
B

]
↘n

succinctly represented by

some A, B ∈ Rh×w
q0

.
Let q1, q3 depend on λ. Let Π ′ and Π ′′ be argument systems for Ψ0 (or Ψstr

0) and Ψ1 respec-
tively, and let Gen = Genunstr (or Genstr) be the accompanying parameter generator. The algorithms
Πbin-sat.(Setup, PreVerify) are described in Fig. 2. The protocol Πbin-sat.

〈
Prove(crs, stmt, wit), Verify(crs(M,y), ϵ)

〉
is below:

– Prove computes
(i) cx := ⟨v, x⟩ mod q3,
(ii) c̄x := ⟨v̄ ◦ h, x⟩ mod q3, and
(iii) z :=

(∑
0≤i,j≤s:i−j=k hj · xj · (xi − 1)

)
−s≤k≤s

.
– Prove sends (cx, c̄x) to Verify.
– Prove and Verify compute:
• cz := c̄x · (cx − ⟨v, 1⟩) mod q3.
• stmt′ := ((M, y), (cx, c̄x)), stmt′′ := (ϵ, cz).
• (tx′, b′)← Π ′.

〈
Prove(crs′, stmt′, x), Verify(crs′

(M,y), (cx, c̄x))
〉

.
• (tx′′, b′′)← Π ′′. ⟨Prove(crs′′, stmt′′, z), Verify(crs′′

ϵ , cz)⟩.
– Output (tx, b), where tx = (tx′, tx′′) and b = b′ ∧ b′′.

We show that Πbin-sat is complete and knowledge-sound, and that it has short proofs, quasi-linear-time
prover, and polylogarithmic-time verifier (after preprocessing in the unstructured case). All proofs are
deferred to Appendix G.

Theorem 13. If Gen = Genstr (resp. Genunstr), Π ′ is complete for Ψstr
0 [α = 1], and Π ′′ is complete for

Ψ1[α = s · (q1/2)ℓ+1 ·γℓ
R] (resp. Ψ1[α = s · q1/2]) then Πbin-sat is complete for Ψstr-bin-sat (resp. Ψ -bin-sat).

Theorem 14. Let Gen = Genstr (resp. Genunstr). Let G := {Xj : −s ≤ j ≤ s } and Gh be the set
of monomials generated as in Genstr. Let q1, q3, α′, α′′, βq1 , βq3 be such that (i) βq1 ≥ (α′ + 1)2 · γR,
(ii) βq3 ≥ α′′ + s · (q1/2)ℓ+1 · (α′ + 1)2 ·γℓ+2

R (resp. α′′ + s · q1/2 · (α′ + 1)2 ·γ2
R), (iii) Π ′ is knowledge-sound

for Ψstr
0 [α′] (resp. Ψunstr

0 [α′]), and (iv) Π ′′ is knowledge-sound for Ψ1[α′′]. Πbin-sat is knowledge-sound
for Ψstr-bin-sat (resp. Ψbin-sat), if the following assumptions hold:

Assumption 0. vSISR,Gh,1,q1,βq1
(resp. R-SISR,s,q1,βq1

), and
Assumption 1. vSISR,G,1,q3,βq3

.

21

Below, we estimate the complexities of Πbin-sat for parameters chosen in such a way that completeness
and knowledge-soundness (are believed to) hold.

Theorem 15. In the structured setting, let Gen = Genstr, Π ′ = Πfold
0 (specialised for Ψstr

0), Π ′′ = Πfold
1

(specialised for Ψ1), γR, α′, α′′, h, w = poly(λ) be fixed polynomials in λ, and q0, q1, q3 = λO(log n). Πbin-sat

has (i) common reference string size Oλ(log2 n), (ii) prover time Oλ(n · log3 n), and (iii) proof size
Oλ(log2 n). If y is (k0 − 1, . . . , kℓ−1 − 1, kℓ + 1)-block-foldable with block-size h, then the verifier time is
Oλ(log3 n).

In the unstructured setting, let Gen = Genunstr, Π ′ = Πknow
0 , Π ′′ = Πknow

1 , γR = poly(λ) be a
fixed polynomial in λ, n = max{|M|, s + t} where |M| denote the number of non-zero entries in M,
(q0, q1, q3) = (s, s2, (s + t)16) · poly(λ) and other internal parameters of Πknow

0 and Πknow
1 be chosen as

in Theorems 9 and 12. Πbin-sat has (i) common reference string size Oλ(n·log n), (ii) proof size Oλ(log2 n),
(iii) prover time Oλ(n · log3 n), (iv) preprocessing time Oλ(n · log2 n), and (v) verifier time Oλ(log3 n)
after preprocessing.

8.2 Rank-1 Constraint Systems

We show how to use the same ideas to construct an argument of knowledge, ΠR1CS, for the satisfiability of
Rank-1 Constraint Systems. Formally, define the relation ΨR1CS = ΨR1CS[R, t, s1, s2, q0, α]:

ΨR1CS := {((x1, E, F, G), x2) : (E · x) ◦ (F · x) = G · x mod q0 ∧ ∥x∥ ≤ α} ,

where x := (x1, x2) ∈ Rs1 ×Rs2 , E, F, G ∈ Rt×s
q0

, and s = s1 + s2. If we let e := E · x, f := F · x, and
g := G · x, the above equation can be rewritten as e ◦ f + q0 · r = g, for some r ∈ Rt. For readability, we
informally describe here how the argument system works. A formal description of ΠR1CS can be found in
Fig. 4 in Appendix H.

In ΠR1CS, the prover proves that they know witnesses to the following relations

vT
2 · x2 = cx2 mod q3, and ∥x2∥ ≤ α, (6)(v̄t ◦ h)T ·E

vT
t · F

vT
t ·G

 · (x1
x2

)
=

c̄e
cf
cg

 mod q3, and
∥∥(x2

)∥∥ ≤ α, (7)

(
v̄T||vT

)
· z = cz mod q3, and ∥z∥ ≤ α′, (8)

where v2 = (vs1+1, . . . , vs), h ∈ Rt
q1

, and z = (zk)k∈±[s], zk =
∑

i,j,i−j=k hj · ej · fi + q0 · hj · ri − gi · hj ,
cz = c̄e · cf + q0 · cr · c̄I − cg · c̄I, and cr = vT

t · r.
The prover will prove that cx2 is well-formed, i.e. relation in Eq. (6), by proving knowledge of a short

opening of the commitment cx2 with respect to the commitment key (vi)i∈[s1+1;s]. To prove consistency
between cx2 and c̄e, the prover proves knowledge of a short opening of the commitment c̄E · cx − cI · c̄e
where cx := cx1 + cx2 , and the values cx1 := vT

1 · x1, c̄E, and cI can be precomputed by the verifier. This
with respect to the commitment key (vi−j)i−j=k,k∈±[s]. Proofs of consistency between cx2 and cf , cx2 and
cg are obtained similarly. This suffices to prove the relation in Eq. (7).

Finally, to prove that e ◦ f = g mod q0, i.e. relation in Eq. (8), the prover will prove knowledge of a
short opening of the commitment

cz = c̄e · cf + q0 · c̄I · cr − cg · c̄I

again with respect to the commitment key (vi−j)i−j=k,k∈±[s].

Analysis. In Appendix H we show that ΠR1CS is correct and knowledge-sound under (knowledge-)k-R-ISIS
and R-SIS assumptions. We further show that ΠR1CS has short CRS and proofs, quasi-linear-time prover
and preprocessing, and polylogarithmic-time verifier after preprocessing. For readability, we defer formal
claims and relative proofs to Appendix H.2, and Appendix H.3.

22

References
ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices. In Tal

Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579,
Virtual Event, August 2021. Springer, Heidelberg. 1, 3, 6

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan
Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively composable
- (extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 102–132. Springer, Heidelberg, August 2022. 1, 2, 3, 4, 5, 6, 7, 9, 10, 13,
17, 19, 25

AF22. Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-sound multi-round interactive
proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 415–443. Springer, Heidelberg, August 2022. 6, 11

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC,
pages 99–108. ACM Press, May 1996. 9

AL21. Martin R. Albrecht and Russell W. F. Lai. Subtractive sets over cyclotomic rings - limits of Schnorr-like
arguments over lattices. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume
12826 of LNCS, pages 519–548, Virtual Event, August 2021. Springer, Heidelberg. 1, 3, 6, 31

Ano23. Anonymous. Lattice-based functional commitments: Fast verification and cryptanalysis. private
communication, May 2023. 4

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security
and Privacy, pages 315–334. IEEE Computer Society Press, May 2018. 3

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer,
Heidelberg, May 2016. 3

BCFL22. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Functional commitments for
circuits from falsifiable assumptions. Cryptology ePrint Archive, Report 2022/1365, 2022. https:
//eprint.iacr.org/2022/1365. 3, 4, 8, 19

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014. 1

BCG+19. Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas Spooner.
Linear-size constant-query IOPs for delegating computation. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019, Part II, volume 11892 of LNCS, pages 494–521. Springer, Heidelberg, December
2019. 8, 46

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via
cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014. 3

BDFG21. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data from
additive polynomial commitments. In Annual International Cryptology Conference, pages 649–680.
Springer, 2021. 1

BGH19. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021. 1

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application
to more efficient obfuscation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 247–277. Springer, Heidelberg, April / May
2017. 1

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear multi-prover
interactive proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 222–255. Springer, Heidelberg, April / May 2018. 1

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-PCP approach
to succinct quantum-safe zero-knowledge. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 441–469. Springer, Heidelberg, August 2020. 1,
2, 3, 6, 15

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) ex-
act lattice-based zero-knowledge proofs. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 176–202. Springer, Heidelberg, August 2019. 3

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner pairing
products and applications. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part III, volume 13092 of LNCS, pages 65–97. Springer, Heidelberg, December 2021. 3

23

https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2019/1021

BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, 2020. 1

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS,
pages 1–29. Springer, Heidelberg, December 2019. 3

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices:
New techniques to exploit fully-splitting rings. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 259–288. Springer, Heidelberg, December 2020.
3

GL96. Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University
Press, USA, 1996. 37

GM17. Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 473–489. ACM Press, October / November 2017. 1

GM18. Nicholas Genise and Daniele Micciancio. Faster Gaussian sampling for trapdoor lattices with arbitrary
modulus. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 174–203. Springer, Heidelberg, April / May 2018. 9

GMNO18. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-based zk-SNARKs from
square span programs. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 556–573. ACM Press, October 2018. 1, 3

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197–206. ACM Press, May 2008. 9

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer,
Heidelberg, May 2016. 3

ISW21. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier zkSNARKs
from lattices. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 212–234. ACM Press,
November 2021. 3

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pages 723–732. ACM Press, May 1992. 1, 3

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium
on Security and Privacy, pages 839–858. IEEE Computer Society Press, May 2016. 1

LM23. Russell W. F. Lai and Giulio Malavolta. Lattice-based timed-cryptography. In CRYPTO 2023, 2023.
3, 8

LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments for bilinear group
arithmetic: Practical structure-preserving cryptography. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2057–2074. ACM Press, November
2019. 3

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-based zero-knowledge proofs
and applications: Shorter, simpler, and more general. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101. Springer, Heidelberg, August
2022. 3

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society
Press, November 1994. 1, 3

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
700–718. Springer, Heidelberg, April 2012. 9

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019, volume 124,
pages 60:1–60:15. LIPIcs, January 2019. 7, 15

PS21. Alice Pellet-Mary and Damien Stehlé. On the hardness of the NTRU problem. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 3–35. Springer,
Heidelberg, December 2021. 26

WW23. Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from lattices.
In EUROCRYPT 2023, 2023. To appear. 4

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient
lattice-based zero-knowledge arguments with standard soundness: Construction and applications. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 147–175. Springer, Heidelberg, August 2019. 3

24

A Relating Vanishing-SIS and other Assumptions

In the following, we show that the vanishing-SIS assumption is implied by, and tightly related to, the
k-R-ISIS assumption. We also explore the connections between the vanishing-SIS, NTRU, and RingLWE
assumptions.

A.1 Relations with k-R-ISIS
We discuss how the vSIS assumption relates to the k-R-ISIS family of assumptions defined in [ACL+22].
We show implications in both directions that hold in different parameter regimes.

k-R-ISIS =⇒ vSIS. We show that vSISG∪{ g∗ },α is no easier than k-R-ISISG,g∗,β,β∗ with β∗ = |G|·α·β·γR.
Assuming that we have a solver for vSISG∪{ g∗ },α that outputs a polynomial p with

p(v) =
∑
g∈G

pg · g(v) + pg∗ · g∗(v) = 0 mod q,

we can construct an algorithm solving k-R-ISISG,g∗,β,β∗ as follows. The algorithm is given as input(
D, t, v, {ug }g∈G

)
. It runs the vSISG∪{ g∗ },α solver on v to obtain p, and returns

ug∗ =
∑
g∈G

pg · ug and s∗ = −pg∗ .

Note that this is a valid solution for k-R-ISISG,g∗,β,β∗ since

D · ug∗ = D ·
∑
g∈G

pg · ug =
∑
g∈G

pg · g(v) = −pg∗ · g∗(v) mod q

and furthermore, by assumption, we have that ∥p∥ ≤ α and thus

∥ug∗∥ ≤ |G| · α · β · γR = β∗ and ∥pg∗∥ ≤ α < β∗.

Knowledge k-R-ISIS and vSIS =⇒ k-R-ISIS. We show that, conditioned on knowledge k-R-ISISG,α∗,β,β∗ ,
the hardness of vSISG∪{ g∗ },α∗ implies that of k-R-ISISG,g∗,β,β∗ , for α∗ ≥ β∗. At first glance, it may ap-
pear strange that we are using the knowledge version of k-R-ISIS to prove k-R-ISIS itself. Nevertheless
the statement is meaningful, since knowledge k-R-ISIS is not a computational problem, but rather an
assumption about the attacker itself. In some sense, this statement shows that vSIS is the underlying
computational assumption that connects k-R-ISIS and knowledge k-R-ISIS. We sketch the reduction
in the following. Assume that we are given a k-R-ISISG,g∗,β,β∗ solver that, on input

(
D, t, v, {ug }g∈G

)
,

outputs (ug∗ , s∗) such that

D · ug∗ = t · s∗ · g∗(v) and ∥(ug∗ , s∗)∥ ≤ β∗ ≤ α∗.

By knowledge k-R-ISISG,α∗,β,β∗ , there exists an extractor that returns {xg }g∈G such that

s∗ · g∗(v) =
∑
g∈G

xg · g(v) and ∥xg∥ ≤ α∗.

It follows that p =
∑

g∈G xg · g − s∗ · g∗ is a valid solution for vSISG∪{ g∗ } since∑
g∈G

xg · ug − s∗ · g∗(v) = p(v) = 0 mod q and ∥p∥ ≤ α∗.

A.2 Relations with NTRU
In the following, we study the relation between vSIS and the search NTRU assumption, conditioned on
the decision NTRU assumption. Recall that the decision NTRU assumption states that the “NTRU distri-
bution”, i.e. that of h = f/g mod q ∈ R×

q where f, g ←$R are random short elements, is indistinguishable
from the uniform distribution over R×

q . From the decision NTRU assumption, we immediately have that
the distribution of vSIS instances is indistinguishable from a modified version where each entry of each
point v ∈ V is sampled from the NTRU distribution instead of uniformly from R×

q . In the following, we
refer to this modified version of vSIS as NTRU-vSIS.

25

Univariate NTRU-vSIS =⇒ Search NTRU. First, we make a simple observation that NTRU-vSIS
generalises search NTRU. The search NTRU problem is the following: Given h sampled from the NTRU
distribution, find short f ′, g′ such that that g′h+f ′ = 0 mod q, i.e. find a degree-1 polynomial p with short
coefficients which vanishes at h modulo q. Clearly, a search NTRU solver also solves NTRU-vSISn=1,G if
{ 1, X } ⊆ G.

Solution Space. The search NTRU problem can be viewed (see e.g. [PS21]) as the problem of finding a

short vector spanned by
(

q −h
1

)
. Similarly, the vSIS(n,w)=(1,1) problem can be viewed as the problem of

finding a short vector in the rank-(d+1) module lattice spanned by
(

q
[
−v
1

]
↘d

)
. In [PS21], Pellet-Mary

and Stehlé showed that all solutions to a search NTRU problem lie in a unique rank-1 submodule of the
module-lattice spanned by (−f, g)T.18 Similarly, we can show that, for large enough q (exponential in
d), all solutions to an NTRU-vSIS(n,w)=(1,1),d problem lie in a unique rank-d submodule. The argument
roughly goes as follows.

Consider v = f/g mod q where ∥f∥, ∥g∥ ≤ α, and let p be a solution to the NTRU-vSIS(n,w)=(1,1),d

instance v. We have
∑d

j=0 pj · vj = 0 mod q or equivalently
∑d

j=0 pj · f j · gd−j = 0 mod q. Assuming that
q > 2 · (d + 1) · αd · β · γd

R, we have
∑d

j=0 pj · f j · gd−j = 0, with arithmetic done over K. In other words,

the solution lies in the kernel of (gd, f · gd−1, . . . , fd) for which a basis is given by
[
−f
g

]
↘d

.

Decision NTRU + Worst-Case =⇒ Average-Case. The vSISn=1 problem admits a worst-case to
average-case reduction, conditioned on the hardness of decision NTRU. Note that this reduction produces
a solution of norm exponential in d and w. In the following, we sketch the reduction.

Let v∗ be any fixed vSISn=1,β∗ instance for some β∗ to be specified later. For each j ∈ [w], sample
an NTRU element hj = fj/gj mod q where ∥fj∥, ∥gj∥ ≤ α for all j. Define v where vj := v∗

j · hj mod q.
Note that v ◦ g = v∗ ◦ f where ◦ denotes the Hadamard product. By the decision NTRU assumption, v is
indistinguishable from a random vSISn=1,β instance. Suppose p is a solution to the vSISβ instance v, i.e.
p(v) = 0 mod q and ∥p∥ ≤ β, then

w∏
j=1

gd
j · p(v) =

w∏
j=1

gd
j · p

(
v∗ ◦

(
f1

g1
, . . . ,

fw

gw

))
= 0 mod q.

Note that
∏w

j=1 gd
j · p

(
v∗ ◦

(
f1
g1

, . . . , fw

gw

))
can be seen as a polynomial with coefficients in R evaluated at

v∗ (since all denominators are cancelled out). Denote this polynomial by p∗. We have p∗(v∗) = 0 mod q.
Furthermore, notice that ∥p∗∥ ≤ ∥p∥ · αd·w · γd·w

R = αd·w · β · γd·w
R . Therefore p∗ is a solution to the

vSISn=1,β∗ instance v∗ with β∗ = αd·w · β · γd·w
R .

vSIS, NTRU, and RingLWE. It is clear that the vSISn=1 problem can be reduced to the vSIS problem
(with the same parameters except that n is changed from 1 to an arbitrary polynomial). In the following,
we sketch a reduction from the search NTRU problem to the vSIS(n,w)=(1,1),d problem, conditioned on
the hardness of either decision NTRU or RingLWE. We note that this reduction could only work for a
certain extreme parameter regime which is not suitable for our application of succinct arguments.

Using Decision NTRU. Given a NTRU-vSIS(n,w)=(1,1),d,β′ solver for some β′, we would like to find a
solution to a random NTRU instance v of norm bounded by some β∗. Interpreting v as an NTRU-
vSIS(n,w)=(1,1),d,β instance, using the decision-NTRU rerandomisation technique in the above worst-case
to average-case reduction, we can rerandomise v to d vSIS(n,w)=(1,1),d,β′ instances vi for i ∈ [d], where
β := αd · β′ · γd

R. Let p′
i be a solution of norm β′ to the i-th instance vi. Using the transformation as in

the above worst-case to average-case reduction, we can obtain d solutions (pi)d
i=1 to the vSIS(n,w)=(1,1),d,β

18Recovering this submodule (represented by a possibly long vector) was formalised as the NTRUmod problem
in [PS21]. This variant of the search NTRU problem is trivially not harder than the standard variant, and [PS21]
gave a reduction from the decision NTRU problem.

26

instance v. Note that each pi is a degree-d polynomial of norm β. Recursively running the following
algorithm produces a degree-1 polynomial of norm (2γR)2d−1−1 · β2d−1

< (2βγR)2d−1 =: β∗:

– Input: L = (p0, p1, . . . , pd−1), degree-d polynomials each of norm β.
– Output: L′ = (p′

1, . . . , p′
d−1), degree-(d− 1) polynomials each of norm 2β2γR.

– Procedure:
• For 0 ≤ i < d, let ai be the coefficient of the degree-d term in pi.
• Output L′ = (p′

1, . . . , p′
i) where p′

i = a0 · pi − ai · p0.

If we could argue that (p1, . . . , pd) are linearly independent (as polynomials over K) and set q ≫ β∗, then
the above gives a solution of norm β∗ to the NTRU instance v. In particular, if β∗ ≪ √q, then a search
NTRU solver would also solve decision NTRU, contradicting the initial assumption that decision NTRU
holds. We therefore obtain a reduction from decision NTRU to NTRU-vSIS. Note that for this reduction
to work it is necessary to have q being doubly-exponential in the number of monomials d + 1, which forces
d to be constant.

Using RingLWE. Instead of using decision NTRU for rerandomisation, we could use RingLWE by exploiting
the fact that we start with a random search NTRU instance v.19 Specifically, we can rerandomise v to
vi := v · si + ei mod q for ∥si∥, ∥ei∥ ≤ α, provided that we reject those vi which are not invertible. By
the (normal-form) RingLWE assumption, each vi is indistinguishable from a random vSIS(n,w)=(1,1),d,β

instance. Suppose p′
i is a solution to the vSIS(n,w)=(1,1),d,β′ instance vi, then

p′
i(vi) = p′

i(v · si + ei)

meaning that pi(X) = p′
i(X · si + ei) is a solution to the vSIS(n,w)=(1,1),d,β instance v, where now

β = d · αd · β′ · γd
R. The rest then follows similar to the reduction using decision NTRU.

B Proofs for Foldable Structures

B.1 Proof of Lemma 1

Proof. By the definition of a foldable sequence, n =
∑ℓ

i=0 2i ·ki. Since kℓ ≥ 1, ki ≤ k∗ for all i ∈ { 0, . . . , ℓ },
and

∑ℓ
i=0 2i = 2ℓ+1 − 1, we can derive 2ℓ ≤ n < k∗ · 2ℓ+1. The claim then follows. ⊓⊔

B.2 Power Sequence - Proof of Lemma 4

Proof. For the first claim, it suffices to show that the sequence of monomials m = (X, X2, . . . , Xn) in
variable X is (k0, k1, . . . , kℓ)-foldable, and realise that v can be obtained by evaluating m at the point v.
We construct a seed and a generator of m recursively as follows. Define a procedure, which on input a
seed m = (X, X2, . . . , Xk) of length k and a generator g = ϵ, does the following:

– If k ≤ 2, output (m, g).
– If k > 2 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1, c′ = (Xk′+1),

and r′ = Xk′+1.
– If k is even (hence k ≥ 4), write k = 2 ·k′ + 2. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1, c′ = (Xk′+1, Xk′+2),

and r′ = Xk′+2.
– Let g′ = (l′, c′, r′)∥g.
– Run the procedure on (m′, g′).

It is easy to observe that running the above procedure on (m, ϵ) finds a seed and a generator of m with
the desired parameters.

For the generalised claim, we similarly define a procedure, which on input a seed m = (X, X2, . . . , Xwk)
of length wk and a generator g = ϵ, does the following:

– If k ≤ 2, output (m, g).
– If k > 2 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xwk′), ℓ′ = 1, c′ =

(Xwk′+1, . . . , Xwk′+w), and r′ = Xwk′+w.
19We could not do this in the worst-case to average-case reduction where v was fixed.

27

– If k is even (hence k ≥ 4), write k = 2 · k′ + 2. Let m′ = (X, X2, . . . , Xwk′), ℓ′ = 1, c′ =
(Xwk′+1, . . . , Xwk′+2w), and r′ = Xwk′+2w.

– Let g′ = (l′, c′, r′)∥g.
– Run the procedure on (m′, g′).

It is easy to observe that running the above procedure on (m, ϵ) finds a seed and a generator of m with
the desired parameters. ⊓⊔

B.3 Balanced Power Sequence - Proof of Lemma 5

Proof. It suffices to show that the sequence of monomials

m = (X−n, . . . , X−2, X−1, X, X2, . . . , Xn)

in variable X is (0, k0, k1, . . . , kℓ)-foldable, and realise that v can be obtained by evaluating m at the
point v.

Let m̂ = (X, X2, . . . , Xn), ℓ̂ = X−(n+1) ĉ = ϵ the empty vector, and r̂ = 1. Let ĝ = (l̂, ĉ, r̂). Clearly,
m̂ is foldable with seed m̂ and generator ĝ.

We next construct a generator of m̂ recursively as follows. Define a procedure, which on input a
sequence m of length k and possibly partial generator g, does the following:

– If k = 1, output (m, g).
– If k > 1 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1, c′ = (Xk′+1),

and r′ = Xk′+1.
– If k is even (hence k ≥ 2), write k = 2 · k′. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1, c′ = ϵ the empty vector,

and r′ = Xk′ .
– Let g′ = (l′, c′, r′)∥g.
– Run the procedure on (m′, g′).

It is easy to observe that running the above procedure on (m̂, ĝ) finds a seed and a generator of m with
the desired parameters. ⊓⊔

B.4 Compression Vector - Proof of Lemma 6

Proof. To show that mℓ := m is (k0, k1, . . . , kℓ)-foldable, it suffices to show that m0, . . . , mℓ induced
by the given seed and generator as described in the procedure of Definition 11 each consists of distinct
monomials.

By construction, mℓ = (Xℓ,1, . . . , Xℓ,kℓ
) consists of distinct monomials. Suppose mi consists of distinct

monomials. Consider
mT

i−1 = (mT
i , Xi−1,1, . . . , Xi−1,ki−1 , Xi−1,0 ·mT

i).

By construction, none of the monomials in mT
i is a multiple of Xi−1,j for any j ∈ { 0, . . . , ki−1 }. Therefore

mi−1 consists of distinct monomials. The claim thus follows from induction.
Finally, the norm bound of h follows from the observation that each entry of h is a product of at most

ℓ + 1 entries of x. ⊓⊔

C Folding Argument for Type-1 Linear Relations

The protocol Πfold
1 .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ consists of ℓ + 1 rounds and makes use

of the subtractive set S ⊂ R× mentioned in Section 3.1. Denote

(A(0), x(0), y(0), α(0)) := (A, x, y, α).

Let n =
∑ℓ

j=0 2j · kj be the binary representation of n, where kj ∈ {0, 1}. For i ∈ { 0, . . . , ℓ }, define
ni :=

∑ℓ
j=i 2j−i · kj . Then, for i < ℓ, the i-th round of the protocol is as follows:

– Parse
• A(i) as (A(i)

L , A(i)
c , A(i)

R), and

28

• x(i) as (x(i)
L , x(i)

c , x(i)
R)

where ncol(A(i)
L) = ncol(A(i)

R) = nrow(x(i)
L) = nrow(x(i)

R) = ni+1 · w. Note that ncol(A(i)
c) = ki · w,

meaning that A(i)
c and x(i)

c are empty when ki = 0.
– P sends
• x(i)

c (if ki > 0),
• y(i)

LR := A(i)
L · x

(i)
R mod q, and

• y(i)
RL := A(i)

R · x
(i)
L mod q.

– V samples ri ←$ S and sends ri to P.
– P computes the compressed witness

x(i+1) := x(i)
L + x(i)

R · ri

– P and V compute the compressed statement

A(i+1) := A(i)
L + A(i)

R · r
−1
i mod q,

y(i+1) := y(i) −A(i)
c · x(i)

c + y(i)
RL · r

−1
i + y(i)

LR · ri mod q

α(i+1) := 2 · α(i) · γR.

In the ℓ-th (i.e. final) round, P sends x(ℓ) and V checks that

A(ℓ) · x(ℓ) = y(ℓ) mod q and
∥∥∥x(ℓ)

∥∥∥ ≤ α(ℓ).

D Proofs for Folding Arguments

D.1 Completeness - Proof of Theorem 1

Proof. The case where n ≤ 2 is trivial. For n > 2, it is clear that for each i the checks
∥∥∥x(i)

c

∥∥∥ ≤ α(i) and,

if ki = 2,
(
B A

)
· x(i)

c = y(i)
c mod q0, pass. It remains to show that, for each i, if[

A
B

]
↘ni

· x(i) = y(i) mod q0,

C(i) · x(i) = z(i) mod q1,

and
∥∥∥x(i)

∥∥∥ ≤ α(i),

then [
A
B

]
↘ni+1

· x(i+1) = y(i+1) mod q0,

C(i+1) · x(i+1) = z(i+1) mod q1,

and
∥∥∥x(i+1)

∥∥∥ ≤ α(i+1).

First, by
([

A
B

]
↘ni

)
· x(i) = y(i) mod q0 we have

[
A
B

]
↘ni+1

· x(i)
L +

(
0
A

)
· x(i)

c = y(i)
L mod q0,(

B
0

)
· x(i)

c +
[
A
B

]
↘ni+1

· x(i)
R = y(i)

R mod q0.

It follows that [
A
B

]
↘ni+1

· x(i+1) =
[
A
B

]
↘ni+1

· (x(i)
L + x(i)

R · ri)

= y(i)
L −

(
0
A

)
· x(i)

c + y(i)
R · ri −

(
B
0

)
· x(i)

c · ri

29

= y(i+1) mod q0.

Next, by C(i) · x(i) = z(i) mod q1 we have

C(i)
L · x

(i)
L + C(i)

c · x(i)
c + C(i)

R · x
(i)
R = z(i) mod q1.

Therefore

C(i+1) · x(i+1) = (C(i)
L + C(i)

R · r
−1
i) · (x(i)

L + x(i)
R · ri)

= C(i)
L · x

(i)
L + C(i)

R · x
(i)
R + C(i)

R · x
(i)
L · r

−1
i + C(i)

L · x
(i)
R · ri

= z(i) −C(i)
c · x(i)

c + z(i)
RL · r

−1
i + z(i)

LR · ri

= z(i+1) mod q1.

Finally, since
∥∥x(i)

∥∥ ≤ α(i), it follows that
∥∥x(i+1)

∥∥ =
∥∥∥x(i)

L + x(i)
R · ri

∥∥∥ ≤ 2 · α(i) · γR = α(i+1). ⊓⊔

D.2 Special Soundness - Proof of Theorem 2

Proof. The case of n ≤ 2 is trivial. Recall that α(i) = (2γR)i · α. Let α̂(ℓ) = α(ℓ) = (2γR)ℓ · α. For
i ∈ { 0, . . . , ℓ− 1 }, define α̂(i) = 4γ3

R · α̂(i+1), so that α̂(0) = (4γ3
R)ℓ · α̂(ℓ) = (8γ4

R)ℓ · α. In the following,
assume that n > 2. We need to show that if (x(i)

c , z(i)
LR, z(i)

RL, x(i+1)
0 , x(i+1)

1 , x(i+1)
2) satisfies(

B A
)
· x(i)

c = y(i)
c mod q0 if ki = 2,

∥∥∥x(i)
c

∥∥∥ ≤ α(i),[
A
B

]
↘ni+1

· x(i+1)
j = y(i+1)

j mod q0,

C(i+1)
j · x(i+1)

j = z(i+1)
j mod q1,

and
∥∥∥x(i+1)

j

∥∥∥ ≤ α̂(i+1),

where

C(i+1)
j = C(i)

L + C(i)
R · r

−1
i,j mod q1,

y(i+1)
j = y(i)

L + y(i)
R · ri,j −

B · ri,j

0
A

 · x(i)
c mod q0

z(i+1)
j = z(i) −C(i)

c · x(i)
c + z(i)

RL · r
−1
i,j + z(i)

LR · ri,j mod q1

for distinct challenges ri,0, ri,1, ri,2 ∈ S, then we can extract x(i) satisfying[
A
B

]
↘ni

· x(i) = y(i) mod q0,

C(i) · x(i) = z(i) mod q1,

and
∥∥∥x(i)

∥∥∥ ≤ α̂(i).

Let

X :=
(

x(i+1)
0 x(i+1)

1 x(i+1)
2

x(i+1)
0 · r−1

i,0 x(i+1)
1 · r−1

i,1 x(i+1)
2 · r−1

i,2

)
and V :=

r−1
i,0 r−1

i,1 r−1
i,2

1 1 1
ri,0 ri,1 ri,2

 .

From the hypothesis, we can derive the following relations:

[
A
B

]
↘ni+1[

A
B

]
↘ni+1

 ·X =

 0 y(i)
L −

(
0
A

)
· x(i)

c y(i)
R −

(
B
0

)
· x(i)

c

y(i)
L −

(
0
A

)
· x(i)

c y(i)
R −

(
B
0

)
· x(i)

c 0

 ·V mod q0,

30

(
C(i)

L C(i)
R

)
·X =

(
z(i)

RL z(i) −C(i)
c · x(i)

c z(i)
LR

)
·V mod q1.

Since det(V) = r−1
i,0 · r

−1
i,1 · r

−1
i,2 · (ri,0 − ri,1) · (ri,1 − ri,2) · (ri,2 − ri,0) and S is subtractive, V is invertible.

Let (
x(i)

L

x(i)
R

)
:= X ·V−1 ·

0
1
0

 .

We have

[
A
B

]
↘ni+1[

A
B

]
↘ni+1

 ·
(

x(i)
L

x(i)
R

)
=

y(i)
L −

(
0
A

)
· x(i)

c

y(i)
R −

(
B
0

)
· x(i)

c

 mod q0,

(
C(i)

L C(i)
R

)
·

(
x(i)

L

x(i)
R

)
=
(

z(i) −C(i)
c · x(i)

c

)
mod q1,

or equivalently [
A
B

]
↘ni

· x(i) = y(i) mod q0

C(i) · x(i) = z(i) mod q1

where x(i) = (x(i)
L , x(i)

c , x(i)
R).

It remains to show that
∥∥x(i)

∥∥ ≤ α̂(i). Note that

V−1 ·

0
1
0

︸ ︷︷ ︸

wi

=

ri,0·(ri,1+ri,2)

(ri,0−ri,1)·(ri,2−ri,0)
ri,1·(ri,2+ri,0)

(ri,0−ri,1)·(ri,1−ri,2)
ri,2·(ri,0+ri,1)

(ri,1−ri,2)·(ri,2−ri,0)

where each entry can be simplified to be of the form

−(ζa − 1) · (ζb + ζc − 2)
(ζa − ζb) · (ζa − ζc) .

By a routine calculation (see e.g. [AL21, Proposition 11]), the norm of the above and hence ∥wi∥ can be
upper bounded by 4γR. Therefore

∥∥x(i)
∥∥ ≤ 4γ3

R · α̂(i+1) = α̂(i). ⊓⊔

D.3 Efficiency - Proof of Theorem 3

Proof. Note that log |Rq0 | < log |Rq1 | = log q
φ(ρ)
1 = Oλ(log q1) = Oλ(log n), and an Rq1 operation takes

at most Oλ(log2 n) bit operations. It is easy to verify that the prover computes Oλ(n) operations over Rq0

or Rq1 , which takes Oλ(n · log2 n) time, and that Oλ(ℓ) elements of Rq0 or Rq1 are being communicated,
for which the overall description size is at most Oλ(log2 n). To analyse the computation cost of the verifier,
we break down the computation steps, consisting of Oλ(ℓ +

∑ℓ
i=0 ki) = Oλ(log n) operations over Rq0 or

Rq1 , which take time Oλ(log3 n), into three parts.
First, Oλ(

∑ℓ−i
i=0 ki) operations over Rq1 are contributed by the computation of

C(i)
c · x(i)

c mod q1, i ∈ { 0, . . . , ℓ− 1 } .

Second, Oλ(ℓ + kℓ) operations over Rq1 are contributed by the recursive computation of

C(i+1) = C(i)
L + C(i)

R · r
−1
i mod q1, i ∈ { 0, . . . , ℓ− 1 } .

31

Since C is (k0, . . . , kℓ)-block-foldable with block-size w, there exists poly(λ)-size matrices Mℓ over Rkℓ
q1

and (Li, Ri)ℓ−1
i=0 over Rq1 such that

C(ℓ) = (L0 + R0 · r−1
0) ◦ . . . ◦ (Lℓ−1 + Rℓ−1 · r−1

ℓ−1) ◦Mℓ mod q1.

Computing C(ℓ) this way requires Oλ(ℓ + kℓ) operations over Rq1 .
Third, another Oλ(ℓ + kℓ) operations over Rq0 are contributed by the recursive computation of

y(i+1) = y(i)
L + y(i)

R · ri −

B · ri

0
A

 · x(i)
c mod q0

for i ∈ { 0, . . . , ℓ− 1 }. Since y is (k0 − 1, . . . , kℓ−1, kℓ + 1)-block-foldable with block-size h0, there exists
poly(λ)-size vectors mℓ over Rkℓ+1

q0
and (li, ri)ℓ−1

i=0 over Rq0 such that

y(ℓ) = (l0 + r0 · r−1
0) ◦ . . . ◦ (lℓ−1 + rℓ−1 · r−1

ℓ−1) ◦mℓ −
ℓ−1∑
i=0

(A + B · ri) · x(i)
c mod q0.

Computing y(ℓ) this way requires Oλ(ℓ + kℓ) operations over Rq0 .
Last, the remaining Oλ(ℓ + kℓ) operations over Rq1 are contributed by the recursive computation of

z(i+1) = z(i) −C(i)
c · x(i)

c + z(i)
RL · r

−1
i + z(i)

LR · ri mod q1, and
α(i+1) = 2 · α(i) · γR

for i ∈ { 0, . . . , ℓ− 1 } and well as the final check[
A
B

]
↘kℓ

· x(ℓ) = y(ℓ) mod q0,

C(ℓ) · x(ℓ) = z(ℓ) mod q1,

and
∥∥∥x(ℓ)

∥∥∥ ≤ α(ℓ).

⊓⊔

E Knowledge-based Argument for Well-formedness of vSIS Commitments

LetR, s, η, m, q1, q3, α, β, δ, T depend on λ. Using the lattice trapdoor algorithms (Section 3.2) parametrised
by (η, m, q3, β), in Fig. 3 we give a formal description of Πknow

1 .

F Proofs for Knowledge-based Arguments

F.1 Completeness - Proof of Theorem 7

Proof. Condition b0. We first consider the condition b0 in the verification algorithm. Recall that c0 =
c0,0 + c0,1 mod q3 where

c0,0 = c̄M · cx + c̄q0 · cr − ĉy mod q3,

c0,1 = c̄I · cx − c̄x · cI mod q3.

Substituting the expressions of each component, we have

c0,0 = f T
0 ·M · v̄ · vT · x + f T

0 · q0 · v̄t · vT
t · r− f T

0 · y mod q3

= f T
0 · (M · v̄ · vT · x + q0 · v̄t · vT

t · r− y) mod q3

= f T
0 · (M · (v̄ · vT − Is) · x + q0 · (v̄t · vT

t − It) · r) mod q3

=
∑

i,j∈[s],k∈[t],i̸=j

f0,k ·Mk,i · vj−i · xj +
∑

i,j,k∈[t],i̸=j

f0,k · q0 · vj−i · rj mod q3

32

Setup(1λ, pp)

v ← pp; t←$ T

(D, td)← TrapGen(1λ)

ui ← SampPre(td, t · vi), ∀i ∈ ±[s]
pp := v

crs :=
(
D, t, v, (ui)i∈±[s]

)
return crs

Prove(crs, (ϵ, cz), z)

u :=
∑

i∈±[s]

ui · zi

return π := u

PreVerify(crs, ϵ)

return ppϵ := (D, t)

Verify(crsϵ, cz, π)

b0 :=
(

D · u
?
≡ t · cz mod q3

)
b1 :=

(
∥u∥

?
≤ δ

)
return b0 ∧ b1

Fig. 3. Our argument system Πknow
1 .

where the last equality is due to M · x + q0 · r = y, and

c0,1 = f T
1 · I · (v̄ ◦ h) · vT · x− xT · (v̄ ◦ h) · vT · I · f1 mod q3

= f T
1 · (v̄ ◦ h) · vT · x− f T

1 · v · (v̄ ◦ h)T · x mod q3

= f T
1 · ((v̄ ◦ h) · vT − v · (v̄ ◦ h)T) · x mod q3

=
∑

i,j∈[s]

f1,i · (hi · vj−i − vi−j · hj) · xj mod q3

=
∑

i,j∈[s]

f1,j · hj · vi−j · xi −
∑

i,j∈[s]

f1,i · vi−j · hj · xj mod q3

=
∑

i,j∈[s]

vi−j · hj · (f1,j · xi − f1,i · xj) mod q3.

Since
D0 · u0,i = t0 · vi mod q3

for all i ∈ ±[max { s, t }], it follows that

D0 · u0 = t0 · c0 mod q3.

Furthermore, we observe the following norm bounds:

(i) ∥u0,j∥ ≤ β for all j ∈ ±[max { s, t }],
(ii) ∥h∥ ≤ q1/2,
(iii) ∥f0∥, ∥f1∥ ≤ q2/2,
(iv) ∥M∥, ∥y∥ ≤ q0/2,
(v) ∥x∥ ≤ α, and
(vi) ∥r∥ ≤ 1

q0
· (s · ∥M∥ · ∥x∥ · γR + ∥y∥) ≤ s · α · γR.

Therefore

∥u0∥ ≤ s2 · t · q2 · q0 · β · α · γ3
R + t3 · q2 · q0 · β · s · α · γ3

R + s2 · β · q1 · q2 · α · γ3
R

≤ (s + t)4 · q0 · q1 · q2 · α · β · γ3
R

≤ δ0.

33

Conditions b1, b2, and b3. We next consider the conditions b1, b2, and b3 in the verification algorithm.
Clearly, it holds that

D1 · u1 = D1 ·

∑
j∈[s]

u1,j · xj

 =
∑
j∈[s]

t1 · vj · xj = t1 · cx mod q3,

D2 · u2 = D2 ·

∑
j∈[s]

u2,−j · hj · xj

 =
∑
j∈[s]

t2 · v−j · hj · xj = t2 · c̄x mod q3,

D3 · u3 = D3 ·

∑
j∈[t]

u3,j · rj

 =
∑
j∈[t]

t3 · vj · rj = t3 · cr mod q3.

Furthermore, since ∥u1,j∥ ≤ β for j ∈ [s], ∥u2,j∥ ≤ β for j ∈ −[s], ∥u3,j∥ ≤ β for j ∈ [t], ∥h∥ ≤ q1/2,
∥x∥ ≤ α, and ∥r∥ ≤ s · α · γR, we have

∥u1∥ ≤ s · α · β · γR ≤ δ1,

∥u2∥ ≤ s · q1 · α · β · γR ≤ δ2,

∥u3∥ ≤ s2 · α · β · γ2
R ≤ δ3.

Putting everything together yields the claim. ⊓⊔

F.2 Knowledge Soundness - Proof of Theorem 8

Proof. Fix a PPT prover P∗. Consider an algorithm B1 = BP∗ which, on input (crs, stmt, wit), runs
π ← P∗(crs, stmt, wit), parses cx from stmt and u1 from π, and outputs (cx, u1). Similarly, consider the
algorithms B2 = BP∗ and B3 = BP∗ which do almost the same, except that B2 = BP∗ parses c̄x from stmt
and u2 from π and outputs (c̄x, u2), and B3 = BP∗ parses cr from stmt and u3 from π and outputs (cr, u3).
Let Ek-R-ISIS,1

B1
, Ek-R-ISIS,2

B2
, and Ek-R-ISIS,3

B3
be the knowledge extractors whose existence are guaranteed by

Assumptions 1, 2, and 3. Define an extractor EP∗ which, on input (crs, stmt, wit), does the following:

– run x†
1 ← E

k-R-ISIS,1
B,1 (crs, stmt, wit),

– run x†
2 ← E

k-R-ISIS,2
B,2 (crs, stmt, wit),

– run r† ← Ek-R-ISIS,3
B,3 (crs, stmt, wit),

– checks that x†
1 ◦ h = x†

2,
– checks that M · x†

1 + q0 · r† = y, and
– outputs x† := x†

1 if both checks pass.

Fix any adversary A and consider the following experiment Exp:

Exp(1λ)
pp← Genunstr(1λ)

crs← Setup(1λ, pp)
(stmt, wit)← A(pp, crs)

(π, wit†)← (P∗|EP∗)(crs, stmt, wit)
crsstmtoff ← PreVerify(crs, stmtoff)

return Verify(crsstmtoff , stmton, π) = 1 ∧ (stmt, wit†) /∈ Ψpp

We claim that Pr
[
Exp(1λ) = 1

]
≤ negl(λ), which proves the theorem.

To prove the claim, consider a modified experiment Exp′ where in the setup Setup(1λ, pp) the matrices
D0, D1, D2, D3 are sampled uniformly at random and the SampPre steps are replaced with sampling from
SampD subject to the appropriate constraints. By the properties of (TrapGen, SampD, SampPre), Exp′ is
statistically close to Exp. Therefore it suffices to show that Pr

[
Exp′(1λ) = 1

]
≤ negl(λ).

34

We now examine wit† generated during the execution of Exp′(1λ). Parse stmt = (M, y, cx, c̄x) and
wit† = x†. First, suppose that EP∗ returns something, i.e. x†

2 = x†
1 ◦ h and M · x†

1 + q0 · r† = y, then by
Conditions b1, b2, and b3 of the verification algorithm and Assumptions 1, 2, and 3 we have

cx = vT · x†
1 mod q3,

∥∥∥x†
1

∥∥∥ ≤ α∗
1

c̄x = v̄T · x†
2 mod q3,

∥∥∥x†
2

∥∥∥ ≤ α∗
2

cr = vT
t · r† mod q3, and

∥∥r†∥∥ ≤ α∗
3.

It remains to show that x†
1 ◦ h = x†

2 and M · x†
1 + q0 · r† = y, so that EP∗ returns something, with

overwhelming probability.
Examining the condition b0 in the verification algorithm, we observe

D0 · u0

= t0 · (c̄M · cx + c̄q0 · cr − ĉy + c̄I · cx − c̄x · cI) mod q3

= t0 · (f T
0 ·M · v̄ · vT · x†

1 + f T
0 · q0 · v̄t · vT

t · r†

+ f T
1 · (v̄ ◦ h) · vT · x†

1 − f T
0 · y− v̄T · x†

2 · vT · f1) mod q3

= t0 · f T
0 · (M · v̄ · vT · x†

1 + q0 · v̄t · vT
t · r† − y)

+ t0 · f T
1 · (diag(h) · v̄ · vT · x†

1 − v · v̄T · x†
2) mod q3

= t0 · f T
0 · (M · (v̄ · vT − Is) · x†

1 + q0 · (v̄t · vT
t − It) · r† + (M · x†

1 + q0 · r† − y))

+ t0 · f T
1 · (diag(h) · (v̄ · vT − Is) · x†

1 − (v · v̄T − Is) · x†
2 + (h ◦ x†

1 − x†
2)) mod q3.

Let

u†
0 :=

∑
i,j∈[s],k∈[t]:i̸=j

f0,k ·Mk,i · u0,j−i · x†
1,j +

∑
i,j,k∈[t]:i̸=j

f0,k · q0 · u0,j−i · r†
j

+
∑

i,j∈[s]:i ̸=j

f1,i · hi · u0,j−i · x†
1,j +

∑
i,j∈[s]:i ̸=j

f1,i · u0,i−j · x†
2,j ,

e†
0 := M · x†

1 + q0 · r† − y,

e†
1 := h ◦ x†

1 − x†
2.

We have

D0 · (u0 − u†
0) = t0 · (f T

0 · e
†
0 + f T

1 · e
†
1) mod q3.

Suppose, contrary to our claim, that (e†
0, e†

1) ̸= 0 with non-negligible probability. Then one (or both) of
the following must be true:

(i) f T
0 · e

†
0 + f T

1 · e
†
1 = 0 with non-negligible probability.

(ii) f T
0 · e

†
0 + f T

1 · e
†
1 ̸= 0 with non-negligible probability.

If Case (i) is true, then we also have with non-negligible probability

f T
0 · e

†
0 + f T

1 · e
†
1 = 0 mod q2.

Note that ∥∥∥e†
0

∥∥∥ ≤ s · q0/2 · α∗
1 · γR + q0 · α∗

3 + q0/2 ≤ s · q0 · α∗ · γR,∥∥∥e†
1

∥∥∥ ≤ q1/2 · α∗
1 · γR + α∗

2 ≤ q1 · α∗ · γR.

Therefore
∥∥∥(e†

0, e†
1)
∥∥∥ ≤ s · q0 · q1 · α∗ · γR ≤ β∗

q2
. This would, however, violate Assumption 4. We thus

conclude that Case (i) is impossible.

35

If Case (ii) is true, we observe that∥∥∥u†
0

∥∥∥ ≤ s2 · t · q2 · q0 · β · α∗
1 · γ3

R + t3 · q2 · q0 · β · α∗
3 · γ2

R

+ s2 · q2 · q1 · β · α∗
1 · γ3

R + s2 · q2 · β · α∗
2 · γ2

R

≤ (s + t)3 · q0 · q1 · q2 · α∗ · β · γ3
R

≤ β∗
q3

/2,∥∥∥u0 − u†
0

∥∥∥ ≤ β∗
q3

,∥∥∥f T
0 · e

†
0 + f T

1 · e
†
1

∥∥∥ ≤ (s + t) · q2 · s · q0 · q1 · α∗ · γ2
R

≤ (s + t)2 · q0 · q1 · q2 · α∗ · γ2
R

≤ β∗
q3

.

This would, however, violate Assumption 0. We thus conclude that Case (ii) is impossible.
Since both cases are impossible, we conclude that (e†

0, e†
1) ̸= 0 with non-negligible probability. ⊓⊔

F.3 Efficiency - Proof of Theorem 9

Proof. Note that, log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq3 operation takes at most

Oλ(log2 n) bit operations. The common reference string

crs =

D0, t0, (u0,j)j∈I0

,

D1, t1, (u1,j)j∈I1
,

D2, t2, (u2,j)j∈I2
,

D3, t3, (u3,j)j∈I3
,

v, h, f0, f1

has description size at most

(4 · η · (m + 1) + 6 · (s + t)) · |Rq3 | = Oλ(n · log n).

A proof (cr, u0, u1, u2, u3) has description size at most

(4m + 1) · log |Rq3 | = Oλ(log2 n).

Preprocessing requires O(n) Rq3 operations, which cost Oλ(n · log2 n) bit operations. After preprocessing,
verification requires Oλ(m) Rq3 operations, which cost Oλ(log3 n) bit operations.

It remains to show that prover time is Oλ(n · log3 n). It suffices to analyse the time needed for
computing u0,0 and u0,1 since they dominate the prover computation. Recall that

u0,0 =
∑

i∈[s],k∈[t]

f0,k ·Mk,i ·
∑

j∈[s]:j ̸=i

u0,j−i · xj +
∑

i,k∈[t]

f0,k · p ·
∑

j∈[t]:j ̸=i

u0,j−i · rj ,

u0,1 =
∑
j∈[s]

hj · f1,j ·
∑

i∈[s]:i ̸=j

u0,i−j · xi −
∑
i∈[s]

f1,i ·
∑

j∈[s]:j ̸=i

u0,i−j · hj · xj .

It is clear that once the terms∑
j∈[s]:j ̸=i

u0,j−i · xj ,
∑

j∈[t]:j ̸=i

u0,j−i · rj ,

∑
i∈[s]:i̸=j

u0,i−j · xi, and
∑

j∈[s]:j ̸=i

u0,i−j · hj · xj

are computed, u0,0 and u0,1 can be computed with Oλ(n) Rq3 operations. We examine the cost for
computing the first term, i.e.

∑
j∈[s]:j ̸=i u0,j−i · xj .

36

Observe that
∑

j∈[s]:j ̸=i u0,j−i · xj can be written in the form

0 u0,1 u0,2 u0,s−1

u0,−1 0 u0,1
. . .

...

u0,−2 u0,−1
.

...
...

. u0,1 u0,2
...

. . . u0,−1 0 u0,1
u0,−(s−1) u0,−2 u0,−1 0

·

x1
x2
x3
...
...

xs

which can be expressed as a sum of m matrix-vector products where each of the m matrices is an s-by-s
Toeplitz matrix over Rq3 . It is well-known (see e.g. [GL96]) that multiplying an s-by-s Toeplitz matrix to
a vector takes O(s · log s) operations over the base ring, i.e. Rq3 . Therefore

∑
j∈[s]:j ̸=i u0,j−i · xj can be

computed using Oλ(n · log n ·m · log q) = Oλ(n · log3 n) bit operations.
By splitting the other terms as sums of Toeplitz-vector products, we conclude that the computation

of u0,0 and u0,1, and hence the the overall prover computation, takes time

Oλ(n · log3 n).

⊓⊔

G Proofs for Applications

G.1 Completeness - Proof of Theorem 13

Proof. Since x ∈ {0, 1}s, observe that

∥z∥ ≤

∥∥∥∥∥∥
∑

0≤i,j≤s:i−j=k

hj · xj · (xi − 1)

∥∥∥∥∥∥ ≤ s · ∥h∥.

For h generated by Genstr, Lemma 6 implies that ∥h∥ ≤ (q1/2)ℓ+1 · γℓ
R. For h generated by Genunstr, we

have h ∈ Rs
q1

and thus ∥h∥ ≤ q1/2. ⊓⊔

G.2 Knowledge-Soundness - Proof of Theorem 14

Proof. Fix a PPT prover P∗ and let P∗
0 and P∗

1 be wrappers of P∗ which interact with Π ′.Verify and
Π ′′.Verify respectively. By the knowledge-soundness of Π ′ and Π ′′, there exist knowledge extractors EΠ′

P∗
0

and EΠ′′

P∗
1

respectively. Define an extractor EP∗ which, on input (crs, stmt) = ((v, h), (M, y)), does the
following:

– Obtain (cx, c̄x) from P∗.
– Compute cz := c̄x · (cx − ⟨v, 1⟩) mod q3.
– Obtain x† by running EΠ′

P∗
0

on (crs′, ((M, y), (cx, c̄x)).
– If x† ∈ {0, 1}s, output x†, else continue.
– Compute ẑ0 := −

∑
i hi · (x†

i − 1) · x†
i .

– If ẑ0 = 0, output ((x†
i − 1) · x†

i)i∈[s], else continue.
– Obtain ẑ−0 = (ẑ−s, . . . , ẑ−1, ẑ1, . . . , ẑs) by running EΠ′′

P∗
1

on (crs′′, (ϵ, cz)).
– Define ẑ := (ẑ−s, . . . , ẑ−1, ẑ0, ẑ1, . . . , ẑs).
– Compute z† :=

(∑
0≤i,j≤s:i−j=k hj · x†

j · (x
†
i − 1)

)
−s≤k≤s

.

– Output ẑ− z†.

37

We claim that with overwhelming probability EP∗ outputs x† such that ((M, y), x†) ∈ Ψstr-bin-sat (resp.
Ψbin-sat).

First, by the knowledge-soundness of Π ′, we have with overwhelming probability that M·x† = y mod q0
and that x† satisfies〈

v, x†〉 = cx mod q3,
〈
v̄ ◦ h, x†〉 = c̄x mod q3,

∥∥x†∥∥ ≤ α′.

It remains to argue that x† ∈ {0, 1}s with overwhelming probability.
Suppose towards a contradiction that x† ̸∈ {0, 1}s with non-negligible probability. By the knowledge-

soundness of Π ′′, with overwhelming probability ẑ−0 satisfies

⟨(v̄||v), ẑ−0⟩ = cz mod q3

= c̄x · (cx − ⟨v, 1⟩) mod q3

=

∑
j

v̄j · hj · x†
j

 ·(∑
i

vi · (x†
i − 1)

)
mod q3

=
∑

i

hi · (x†
i − 1) · x†

i +
∑

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3,

⟨(v̄||1||v), ẑ⟩ =
∑

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3,

and ∥ẑ∥ ≤ α′′, where in the third equality we have used that the extracted vector x† satisfies
〈
v, x†〉 =

cx mod q3, and
〈
v̄ ◦ h, x†〉 = c̄x mod q3. On the other hand, z† satisfies〈

(v̄||1||v), z†〉 =
∑

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3

with z†
0 = 0 and

∥∥z†
∥∥ ≤ s · ∥h∥ · (α′ + 1)2 · γ2

R ≤ s · (q1/2)ℓ+1 · (α′ + 1)2 · γℓ+2
R (resp. s · q1/2 · (α′ + 1)2 · γ2

R).
Therefore, 〈

(v̄||1||v), ẑ− z†〉 = 0 mod q3 and
∥∥ẑ− z†∥∥ ≤ βq3 .

One (or both) of the following two cases must be true

(i)
∑

i hi · (x†
i − 1) · x†

i = 0 with non-negligible probability.
(ii)

∑
i hi · (x†

i − 1) · x†
i ̸= 0 with non-negligible probability,

If Case (i) is true, we have∑
i

hi · (x†
i − 1) · x†

i = 0 mod q1 and 0 <
∥∥∥((x†

i − 1) · x†
i)i∈[s]

∥∥∥ ≤ βq1

with non-negligible probability. This contradicts Assumption 0. If Case (ii) is true, we have〈
(v̄||1||v), ẑ− z†〉 = 0 mod q and 0 <

∥∥ẑ− z†∥∥ ≤ βq3

with non-negligible probability. This contradicts Assumption 1. Since none of the two cases could be true,
we must have x† ∈ {0, 1}s, as claimed. ⊓⊔

G.3 Efficiency - Proof of Theorem 15

Proof. Note that log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq3 operation takes at most

Oλ(log2 n) bit operations.
Notice that z can be computed in time Oλ(n · log3 n), exploiting fast multiplication algorithms for

Toeplitz matrices (similarly to what described in Appendix F.3). All claims about the unstructured case
then follow from Theorems 9 and 12.

For the structured case, we need to argue that crs has a short description size. Note that crs can
be succinctly described by (v, h̃) ∈ R×

q3
× (R×

q3
)ñ where ñ =

∑ℓ−1
i=0(ki + 1) + kℓ and n =

∑ℓ
i=0 ki with

ki ∈ { 1, 2 }. We thus conclude that crs has description size Oλ(log2 n). The rest of the claims for the
structured case then follow from Theorems 3 and 6. ⊓⊔

38

H Construction and Proofs for R1CS Argument

Let R, s1, s2, t, η, m, q0, q1, q2, q3, α, β, δ0, δ1, δ2, δ3, δ4, δ5, δ6, T depend on λ. Using the lattice trapdoor
algorithms (Section 3.2) parametrised by (η, m, q3, β), in Fig. 4, we construct an argument system for
ΨR1CS.

H.1 Completeness

Theorem 16 (Completeness). Let (η, m, q3, β) be such that the properties of lattice trapdoor algorithms
described in Section 3.2 hold. For

δ0 ≥ 6 · t2 · s2 · q0 · q1 · q2 · α · β · γ4
R, δ1 ≥ s2 · α · β · γR,

δ2 ≥ s · t · q0 · q1 · α · β · γ3
R, δ3 ≥ s · t · q0 · α · β · γ2

R,

δ4 ≥ s · t · q0 · α · β · γ2
R, δ5 ≥ 2 · s2 · q0 · α2 · β · γ4

R,

δ6 ≥ 6 · s2 · t2 · q2
0 · q1 · α2 · β · γ6

R,

ΠR1CS in Figure 4 is complete.

Proof. Condition b0. We first consider the condition b0 in the verification algorithm. Recall that c0 =
c0,E + c0,F + c0,G mod q3 where

c0,E = c̄E · cx − cI,1 · c̄e mod q3,

c0,F = c̄F · cx − cI,2 · c̄f mod q3

c0,G = c̄G · cx − cI,3 · c̄g mod q3

Substituting the expressions of each component, we have

c0,E = (ℓ1 ◦ h)T ·E · v̄ · vT · x− vT
t · ℓ1 · (v̄t ◦ h)T ·E · x mod q3

= (ℓ1 ◦ h)T ·E · v̄ · vT · x− ℓT
1 · vt · (v̄t ◦ h)T ·E · x mod q3

=
∑

i∈[t],j,k∈[s]
j ̸=k

Ei,j · hi · ℓ1,i · vk−j · xk −
∑

i,k∈[t],j∈[s]
k ̸=i

Ei,j · xj · hi · vk−i · ℓ1,k mod q3,

c0,F = ℓT
2 · F · v̄ · vT · x− v̄T

t · ℓ2 · vT
t · F · x mod q3

= ℓT
2 · (F · v̄ · vT · x− v̄t · vT

t · F · x) mod q3

= ℓT
2 · (F · (v̄ · vT − Is) · x− (v̄t · vT

t − It) · F · x) mod q3

=
∑

i∈[t],j,k∈[s]
j ̸=k

ℓ2,i · Fi,j · vk−j · xk −
∑

k,i∈[t],j∈[s]
i̸=k

ℓ2,k · vi−k · Fi,j · xj mod q3,

and

c0,G = ℓT
3 ·G · v̄ · vT · x− v̄T

t · ℓ3 · vT
t ·G · x mod q3

= ℓT
3 · (G · v̄ · vT · x− v̄t · vT

t ·G · x) mod q3

= ℓT
3 · (G · (v̄ · vT − Is) · x− (v̄t · vT

t − It) ·G · x) mod q3

=
∑

i∈[t],j,k∈[s]
j ̸=k

ℓ3,i ·Gi,j · vk−j · xk −
∑

k,i∈[t],j∈[s]
i ̸=k

ℓ3,k · vi−k ·Gi,j · xj mod q3

Since
D0 · u0,i = t0 · vi mod q3

for all i ∈ ±[max { s, t }], it follows that

D0 · u0 = t0 · c0 mod q3.

Furthermore, we observe the following norm bounds:

39

Setup(1λ, pp)

(v, h, ℓ1, ℓ2, ℓ3)←$R×
q ×Rt

q1 ×R
t
q2 ×R

t
q2 ×R

t
q2

I0 := ±[max { s, t }], I1 := [s1 + 1; s],
I2 := −[t], I3 := [t], I4 := [t], I5 := [t]
I6 := ±[t]
for i ∈ {0, 1, 2, 3, 4, 5, 6} do

(Di, tdi)← TrapGen(1λ), ti ←$ T

ui,j ← SampPre(tdi, ti · vj), ∀j ∈ Ii

crs :=
(

(Di, ti, (ui,j)j∈Ii
)6

i=0,

v, h, ℓ1, ℓ2, ℓ3

)
return crs

PreVerify(crs, (x1, E, F, G))

cx1 := vT
1 · x1 mod q3

c̄E := (ℓ1 ◦ h)T ·E · v̄ mod q3

c̄F := ℓT
2 · F · v̄ mod q3

c̄G := ℓT
3 ·G · v̄ mod q3

cI,1 := vT
t · ℓ1 mod q3

c̄I,2 := v̄T
t · ℓ2 mod q3

c̄I,3 := v̄T
t · ℓ3 mod q3

c̄I,6 := v̄T
t · h mod q3

crsE,F,G :=

((Di, ti)6
i=0,

cx1 , c̄E, c̄F, c̄G,
cI,1, c̄I,2, c̄I,3, c̄I,6

)
return crsx1,E,F,G

Verify(crsx1,E,F,G, π)

cx := cx1 + cx2 mod q3

c0,E := c̄E · cx − cI,1 · c̄e mod q3

c0,F := c̄F · cx − c̄I,2 · cf mod q3

c0,G := c̄G · cx − c̄I,3 · cg mod q3

c0 := c0,E + c0,F + c0,G mod q3

(c1, c2, c3, c4, c5) := (cx2 , c̄e, cf , cg, cr)
c6 := c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg mod q3

for i ∈ {0, 1, 2, 3, 4, 5, 6} do

bi := (Di · ui
?
≡ ti · ci mod q3 ∧ ∥ui∥

?
≤ δi)

return b0 ∧ b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5 ∧ b6

Prove(crs, (E, F, G), x2)

cx2 := vT
2 · x2 mod q3

cr := vT
t · r mod q3

c̄e := (v̄t ◦ h)T ·E · x mod q3

cf := vT
t · F · x mod q3

cg := vT
t ·G · x mod q3

uE :=
∑

i∈[t],j∈[s]

Ei,j · hi · ℓ1,i ·
∑

k∈[s]:k ̸=j

u0,k−j · xk

−
∑

i∈[t],j∈[s]

Ei,j · xj · hi ·
∑

k∈[t]:k ̸=i

u0,k−i · ℓ1,k

uF :=
∑

i∈[t],j∈[s]

Fi,j · ℓ2,i ·
∑

k∈[s]:k ̸=j

u0,k−j · xk

−
∑

i∈[t],j∈[s]

Fi,j · xj ·
∑

k∈[t]:k ̸=i

u0,i−k · ℓ2,k

uG :=
∑

i∈[t],j∈[s]

Gi,j · ℓ3,i ·
∑

k∈[s]:k ̸=j

u0,k−j · xk

−
∑

i∈[t],j∈[s]

Gi,j · xj ·
∑

k∈[t]:k ̸=i

u0,i−k · ℓ3,k

u0 := uE + uF + uG

u1 :=
∑

j∈[s1+1;s]

u1,j · xj

u2 :=
∑
i∈[t]

∑
j∈[s]

u2,−i · Ei,j · hi · xj

u3 :=
∑
i∈[t]

∑
j∈[s]

u3,i · Fi,j · xj

u4 :=
∑
i∈[t]

∑
j∈[s]

u4,i ·Gi,j · xj

u5 :=
∑
i∈[t]

u5,i · ri

u6 :=
∑

i,j∈[t],i ̸=j

u6,i−j · (ej · fi + q0 · ri − gi) · hj

return π :=
(

cx2 , cr, c̄e, cf , cg,
u0, u1, u2, u3, u4, u5, u6

)

Fig. 4. Our argument system ΠR1CS.

40

(i) ∥u0,j∥ ≤ β for all j ∈ ±[max { s, t }],
(ii) ∥h∥ ≤ q1/2,
(iii) ∥ℓ1∥, ∥ℓ2∥, ∥ℓ3∥ ≤ q2/2,
(iv) ∥E∥, ∥F∥, ∥G∥ ≤ q0/2, and
(v) ∥x∥ ≤ α.

Therefore

∥u0∥ ≤ 2 · s2 · t2 · q0 · q1 · q2 · α · β · γ4
R + 2 · s2 · t2 · q0 · q2 · α · β · γ3

R + 2 · s2 · t2 · q0 · q2 · α · β · γ3
R

≤ 6 · s2 · t2 · q0 · q1 · q2 · α · β · γ4
R

≤ δ0.

Conditions b1, b2, b3, b4, and b5. We next consider the conditionsb1, b2, b3, b4, and b5 in the verification
algorithm. Clearly, it holds that

D1 · u1 = D1 ·

 ∑
j∈[s1+1;s]

u1,j · xj

 =
∑

j∈[s1+1;s]

t1 · vj · xj = t1 · cx mod q3,

D2 · u2 = D2 ·

 ∑
i∈[t],j∈[s]

u2,−i · Ei,j · hi · xj

 =
∑

i∈[t],j∈[s]

t2 · v−i · Ei,j · hi · xj = t2 · c̄e mod q3,

D3 · u3 = D3 ·

 ∑
i∈[t],j∈[s]

u3,i · Fi,j · xj

 =
∑

i∈[t],j∈[s]

t3 · vi · Fi,j · xj = t3 · cf mod q3,

D4 · u4 = D4 ·

 ∑
i∈[t],j∈[s]

u4,i ·Gi,j · xj

 =
∑

i∈[t],j∈[s]

t4 · vi ·Gi,j · xj = t4 · cg mod q3,

D5 · u5 = D5 ·

∑
i∈[t]

u5,i · ri

 =
∑
i∈[t]

t5 · vi · ri = t5 · cr mod q3.

Furthermore, since ∥uk,i∥ ≤ β for k ∈ [5], j ∈ ±[max { s, t }], ∥h∥ ≤ q1/2, ∥x∥ ≤ α, and ∥r∥ ≤ 2 · s2 · q0 ·
α2 · γ3

R we have

∥u1∥ ≤ s2 · α · β · γR ≤ δ1,

∥u2∥ ≤ s · t · ·q0 · q1 · α · β · γ3
R ≤ δ2,

∥u3∥ ≤ s · t · q0 · α · β · γ2
R ≤ δ3,

∥u4∥ ≤ s · t · q0 · α · β · γ2
R ≤ δ4,

∥u5∥ ≤ 2 · s2 · q0 · α2 · β · γ4
R ≤ δ5.

Condition b6. Finally, we consider the condition b6 in the verification algorithm. Recall that c6 =
c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg mod q3 where

c̄e = (v̄t ◦ h)T ·E · x mod q3,

cf = vT
t · F · x mod q3

cg = vT
t ·G · x mod q3

cr = vT
t · r mod q3

c̄I,6 = v̄T
t · h mod q3.

Substituting the expressions of each component, we have

c6 = (v̄t ◦ h)T ·E · x · vT
t · F · x + q0 · v̄T

t · h · vT
t · r− v̄T

t · h · vT
t ·G · x mod q3

= (v̄t ◦ h)T · e · vT
t · f + q0 · v̄T

t · h · vT
t · r− v̄T

t · h · vT
t · g mod q3

41

= eT · (v̄t ◦ h) · vT
t · f + q0 · hT · v̄t · vT

t · r− hT · v̄t · vT
t · g mod q3

=
∑

i,j∈[t],i̸=j

vi−j · (ej · fi + q0 · ri − gi) · hj .

where in the last equality we have used that ei · fi + q0 · ri − gi = 0. Furthermore, since ∥u6,i∥ ≤ β for
j ∈ ±[max { s, t }], ∥h∥ ≤ q1/2, ∥x∥ ≤ α, and ∥r∥ ≤ 2 · s2 · q0 · α2 · γ3

R we have

∥u6∥ ≤ 6 · s2 · t2 · q2
0 · q1 · α2 · β · γ6

R ≤ δ6,

Putting everything together yields the claim. ⊓⊔

H.2 Knowledge Soundness

Theorem 17 (Knowledge Soundness). Let (η, m, q3, β) be such that the properties of lattice trapdoor
algorithms described in Section 3.2 hold. Let w = 1, G := {Xj : −s ≤ j ≤ s }, G0 = {Xi : i ∈ ±[max { s, t }] },
G1 = {Xi : i ∈ [s1; s] }, G2 = {Xi : i ∈ −[t] }, G3 = {Xi : i ∈ [t] }, G4 = {Xi : i ∈ [t] }, G5 = {Xi : i ∈ [t] },
and G6 = {Xi : i ∈ ±[t] } be sets of monomials in X. Let D denote the distribution SampD(1λ). For
i ∈ { 1, 2, 3, 4, 5, 6 }, let Zi(1λ) be almost identical to Setup(1λ, Genunstr(1λ)), except that it is given
(Di, ti, v, {ui,j }j∈Ii

) as input and generates the rest of crs. Let

α∗
i ≥ δi, ∀i ∈ [6]

α∗ := max {α∗
1, α∗

2, α∗
3, α∗

4, α∗
5, α∗

6 } ,

q1 ≥ β∗
q1
≥ s · q0 · (α∗)2 · γR

q2 ≥ β∗
q2
≥ t · s · q · q1 · α∗ · γ2

R,

q3 ≥ βq3 ≥ t · s · q0 · q1 · (α∗)2 · γ3
R,

q3 ≥ β∗
q3
≥ max { 2δ0, (s + t)2 · q0 · q1 · q2 · α∗ · β · γ4

R } .

ΠR1CS in Fig. 4 is knowledge-sound for ΨR1CS[α∗
1] if the following assumptions hold:

Assumption 0. k-R-ISISR,η,m,w,q3,β,β∗
q3 ,G0,g∗=1,D,T ,

Assumption 1. knowledge-k-R-ISISR,η,m,w,q3,α∗
1 ,β,δ1,G1,D,T ,Z1 ,

Assumption 2. knowledge-k-R-ISISR,η,m,w,q3,α∗
2 ,β,δ2,G2,D,T ,Z2 ,

Assumption 3. knowledge-k-R-ISISR,η,m,w,q3,α∗
3 ,β,δ3,G3,D,T ,Z3 ,

Assumption 4. knowledge-k-R-ISISR,η,m,w,q3,α∗
4 ,β,δ4,G4,D,T ,Z4 ,

Assumption 5. knowledge-k-R-ISISR,η,m,w,q3,α∗
5 ,β,δ5,G5,D,T ,Z5 ,

Assumption 6. knowledge-k-R-ISISR,η,m,w,q3,α∗
6 ,β,δ6,G6,D,T ,Z6 ,

Assumption 7. R-SISR,t,q1,β∗
q1

,
Assumption 8. R-SISR,3·t,q2,β∗

q2
, and

Assumption 9. vSISR,G,1,q3,βq3
.

Proof. Fix a PPT prover P∗. Consider an algorithm B1 = BP∗ which, on input (crs, stmt, wit), runs
π ← P∗(crs, stmt, wit), parses cx2 and u1 from π, and outputs (cx2 , u1). Similarly, consider the algorithms
B2 = BP∗ , B3 = BP∗ , B4 = BP∗ , B5 = BP∗ , and B6 = BP∗ which do almost the same, except that

– B2 = BP∗ extracts (c̄e, u2) from π ,
– B3 = BP∗ extracts (cf , u3) from π,
– B4 = BP∗ extracts (cg, u4) from π,
– B5 = BP∗ extracts (cr, u5) from π, and
– B6 = BP∗ parses (c̄e, cf , cr, cg, u6) from π, computes c̄I,6 := v̄T

t · h and

cz := c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg,

and outputs (cz, u6).

Let Ek-R-ISIS,1
B1

, Ek-R-ISIS,2
B2

, Ek-R-ISIS,3
B3

, Ek-R-ISIS,4
B4

, Ek-R-ISIS,5
B5

, and Ek-R-ISIS,6
B6

be the knowledge extractors
whose existence are guaranteed by Assumptions 1, 2, 3, 4, 5, and 6. Define an extractor EP∗ which, on
input (crs, stmt, wit), does the following:

42

– run x†
2 ← E

k-R-ISIS,1
B,1 (crs, stmt, wit),

– run e† ← Ek-R-ISIS,2
B,2 (crs, stmt, wit),

– run f † ← Ek-R-ISIS,3
B,3 (crs, stmt, wit),

– run g† ← Ek-R-ISIS,4
B,4 (crs, stmt, wit),

– run r† ← Ek-R-ISIS,5
B,5 (crs, stmt, wit),

– run z†
−0 ← E

k-R-ISIS,6
B,6 (crs, stmt, wit),

– check that e† = diag(h) ·E ·
(

x1
x†

2

)
,

– check that f † = F ·
(

x1
x†

2

)
– check that g† = G ·

(
x1
x†

2

)
– check that

(
E ·
(

x1
x†

2

))
◦
(

F ·
(

x1
x†

2

))
+ q0 · r† =

(
G ·

(
x1
x†

2

))
, and

– output x†
2 if all checks pass.

Fix any adversary A and consider the following experiment Exp:

Exp(1λ)
pp← Genunstr(1λ)

crs← Setup(1λ, pp)
(stmt, wit)← A(pp, crs)

(π, wit†)← (P∗|EP∗)(crs, stmt, wit)
crsstmtoff ← PreVerify(crs, stmtoff)

return Verify(crsstmtoff , stmton, π) = 1 ∧ (stmt, wit†) /∈ Ψpp

We claim that Pr
[
Exp(1λ) = 1

]
≤ negl(λ), which proves the theorem.

To prove the claim, consider a modified experiment Exp′ where in the setup Setup(1λ, pp) the matrices
(Di)6

i=0 are sampled uniformly at random and the SampPre steps are replaced with sampling from
SampD subject to the appropriate constraints. By the properties of (TrapGen, SampD, SampPre), Exp′ is
statistically close to Exp. Therefore it suffices to show that Pr

[
Exp′(1λ) = 1

]
≤ negl(λ).

We now examine wit† generated during the execution of Exp′(1λ). Parse stmt = (x1, (E, F, G)) and
wit† = x†

2. First, suppose that EP∗ returns something, i.e.

(i) e† = diag(h) ·E ·
(

x1
x†

2

)
,

(ii) f † = F ·
(

x1
x†

2

)
,

(iii) g† = G ·
(

x1
x†

2

)
, and

(iv)
(

E ·
(

x1
x†

2

))
◦
(

F ·
(

x1
x†

2

))
+ q0 · r† =

(
G ·

(
x1
x†

2

))
,

then by Conditions b1, b2, b3, b4, and b5 of the verification algorithm and Assumptions 1, 2, 3, 4, and 5,
we have

cx2 = vT
2 · x

†
2 mod q3,

∥∥∥x†
2

∥∥∥ ≤ α∗
1

c̄e = v̄T
t · e† mod q3,

∥∥e†∥∥ ≤ α∗
2

cf = vT
t · f † mod q3,

∥∥∥f †
∥∥∥ ≤ α∗

3

cg = vT
t · g† mod q3,

∥∥g†∥∥ ≤ α∗
4

cr = vT
t · r† mod q3, and

∥∥r†∥∥ ≤ α∗
5,

43

Let us first show that Item (i), Item (ii), and Item (iii) hold.

Let x† =
(

x1
x†

2

)
. Examining the condition b0 in the verification algorithm, we observe

D0 · u0,E = t0 · (c̄E · cx − cI,1 · c̄e)
= t0 · ((ℓ1 ◦ h)T ·E · v̄ · vT · x† − vT

t · ℓ1 · v̄T
t · e†)

= t0 · ℓT
1 · (diag(h) ·E · (v̄ · vT − Is) · x† − (vt · v̄†

t − It) · e† + diag(h) ·E · x† − e†) mod q3

D0 · u0,F = t0 · (c̄F · cx − c̄I,2 · cf)
= t0 · (ℓT

2 · F · v̄ · vT · x† − v̄T
t · ℓ2 · vT

t · f †)
= t0 · ℓT

2 · (F · (v̄ · vT − Is) · x† − (v̄t · vT
t − It) · f † + F · x† − f †) mod q3,

D0 · u0,G = t0 · (c̄G · cx − c̄I,3 · cg)
= t0 · (ℓT

3 ·G · v̄ · vT · x† − v̄T
t · ℓ3 · vT

t · g†)
= t0 · ℓT

3 · (G · (v̄ · vT − Is) · x† − (v̄t · vT
t − It) · g† + G · x† − g†) mod q3.

Let

u†
0,E :=

∑
i∈[t],j,k∈[s]:k ̸=j

ℓ1,i · hi · Ei,j · u0,k−j · x†
k +

∑
i,k∈[t]:k ̸=i

ℓ1,k · u0,k−i · e†
i

u†
0,F :=

∑
i∈[t],j,k∈[s]:k ̸=j

ℓ2,i · Fi,j · u0,k−j · x†
k +

∑
i,k∈[t]:k ̸=i

ℓ2,i · u0,i−k · f†
k

u†
0,G :=

∑
i∈[t],j,k∈[s]:k ̸=j

ℓ3,i ·Gi,j · u0,k−j · x†
k +

∑
i,k∈[t],j∈[s]:i ̸=j

Gi,j · x†
j · ℓ3,i · u0,i−k · hk,

and

w†
1 := diag(h) ·E · x† − e†

w†
2 := F · x† − f †

w†
3 := G · x† − g†

We have

D0 · (u0,E − u†
0,E) = t0 · (ℓT

1 ·w
†
1) mod q3

D0 · (u0,F − u†
0,F) = t0 · (ℓT

2 ·w
†
2) mod q3

D0 · (u0,G − u†
0,G) = t0 · (ℓT

3 ·w
†
3) mod q3.

Suppose, contrary to our claim, that w† := (w†
1, w†

2, w†
3) ̸= 0 with non-negligible probability. Then,

one (or both) of the following must be true:

(1) ℓT ·w† = 0 with non-negligible probability
(2) ℓT ·w† ̸= 0 with non-negligible probability,

where ℓ := (ℓ1, ℓ2, ℓ3). If Case (1) is true, then we also have with non-negligible probability

ℓT ·w† = 0 mod q2.

Note that ∥∥∥w†
1

∥∥∥ ≤ t · s · q1/2 · q0/2 · α∗
1 · γ2

R + α∗
2 ≤ t · s · q0 · q1 · γ2

R · α∗∥∥∥w†
2

∥∥∥ ≤ s · q0/2 · α∗
1 · γR + α∗

3 ≤ s · q0 · γR · α∗

44

∥∥∥w†
3

∥∥∥ ≤ s · q0/2 · α∗
1 · γR + α∗

3 ≤ s · q0 · γR · α∗,

Therefore
∥∥w†

∥∥ ≤ t ·s ·q0 ·q1 ·α∗ ·γ2
R ≤ β∗

q2
. This would, however, violate Assumption 8. We thus conclude

that Case (1) is impossible.
If Case (2) is true, we observe that for each j ∈ {E, F, G}∥∥∥u†

0,j

∥∥∥ ≤ 2 · t2 · s · q0/2 · q1/2 · q2/2 · β · α∗ · γ4
R

≤ (s + t)2 · q0 · q1 · q2 · α∗ · β · γ4
R

≤ β∗
q3

/6,∥∥∥u0,j − u†
0,j

∥∥∥ ≤ β∗
q3

/3

Therefore ∥∥∥u0,E − u†
0,E + u0,F − u†

0,F + u0,G − u†
0,G

∥∥∥ ≤ β∗
q3

.

Moreover ∥∥ℓT ·w†∥∥ ≤ (t + s)2 · q2 · s · q0 · q1 · α∗ · γR ≤ β∗
q3

.

This would, however, violate Assumption 0. We thus conclude that Case (2) is impossible.
It remains to show that Item (iv) also holds, so that EP∗ returns something with overwhelming

probability. Suppose, for the sake of contradiction, that this is not the case. Let ê := E·x†, i.e. e† = diag(h)·ê.
Compute z†

0 := −
∑

i∈[t](êi · f†
i + q0 · r†

i + g†
i) · hi. Then∥∥∥(êi · f†

i + q0 · r†
i + g†

i)i

∥∥∥ ≤ s · q0/2 · α∗
1 · α∗

3 · γR + q0 · α∗
5 + α∗

4

≤ s · q0 · (α∗)2 · γR

≤ β∗
q1

By Condition b6 of the verification algorithm and Assumption 6, we have

(v̄||v)T · z†
−0 = cz mod q3

= c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg mod q3

=

∑
j∈[t]

v−j · e†
j

 ·
∑

i∈[t]

vi · f†
i

+ q0 ·

∑
j∈[t]

v−j · hj

 ·
∑

i∈[t]

vi · r†
i

−

∑
i∈[t]

g†
i · v

i

 ·
∑

j∈[t]

hj · v−j

=
∑

i,j∈[t]

êj · f†
i · hj · vi−j + q0 ·

∑
i,j∈[t]

r†
i · hj · vi−j −

∑
i,j∈[t]

g†
i · hj · vi−j

=
∑

i,j∈[t]

(
êj · f†

i + q0 · r†
i − g†

i

)
· hj · vi−j .

If z†
−0 = (z†

−s, . . . , z†
−1, z†

1, . . . , z†
s), and we let z† := (z†

−s, . . . , z†
−1, z†

0, z†
1, . . . , z†

s), we obtain

(v̄||1||v)T · z† =
∑

i,j∈[t],i̸=j

(êj · f†
i + q0 · r†

i − g†
i) · hj · vi−j mod q3

and ∥∥z†∥∥ ≤ max{α∗
6, t · s · q0 · α∗ · γ2

R} ≤ βq3/2

On the other hand, if we define ẑ−0 = (ẑ−s, . . . , ẑ−1, ẑ0, ẑ1, . . . , ẑs) as

ẑ0 := 0

45

ẑk :=
∑

i,j∈[t],i−j=k

(
êj · f†

i + q0 · r†
i − g†

i

)
· hj for k ∈ ±[s]

we have that
(v̄||1||v)T · ẑ =

∑
i,j∈[t],i̸=j

(ê†
j · f

†
i + q0 · r†

i − g†
i) · hj · vi−j mod q3,

and

∥ẑ∥ ≤ t · q0/2 · α∗
2 · α∗

3 · q1 · γ3
R + q0 · q1 · α5 · γ2

R + q0 · α4 · γR

≤ t · q0 · q1 · (α∗)2 · γ3
R

≤ βq3/2

Therefore 〈
(v̄||1||v), ẑ− z†〉 = 0 mod q3 and

∥∥ẑ− z†∥∥ ≤ βq3 .

One (or both) of the following two cases must be true

(i)
∑

i∈[t] hi · (êi · f†
i + q0 · r†

i + g†
i) = 0 with non-negligible probability.

(ii)
∑

i∈[t] hi · (êi · f†
i + q0 · r†

i + g†
i) ̸= 0 with non-negligible probability,

If Case (i) is true, we have∑
i∈[t]

hi · (êi · f†
i + q0 · r†

i + g†
i) = 0 mod q1 and 0 <

∥∥∥(êi · f†
i + q0 · r†

i + g†
i)i∈[s]

∥∥∥ ≤ βq1

with non-negligible probability. This contradicts Assumption 7. If Case (ii) is true, we have〈
(v̄||1||v), ẑ− z†〉 = 0 mod q3 and 0 <

∥∥ẑ− z†∥∥ ≤ βq3

with non-negligible probability. This contradicts Assumption 9. Since none of the two cases could be true,
we must have (E · x†) ◦ (F · x†) = G · x† mod q0, as claimed. ⊓⊔

H.3 Efficiency

Theorem 18. Let n = max{|E|, |F|, |G|, s + t}, η, α, β, γR = poly(λ) be a fixed polynomial in λ,
(q0, q1, q2, q3) = (s, s2, t · s4, (s + t)14) · poly(λ), and m = log n · poly(λ). Then Πbin-sat has (i) common ref-
erence string size Oλ(n · log n), (ii) proof size Oλ(log2 n), (iii) prover time Oλ(n · log3 n), (iv) preprocessing
time Oλ(n · log2 n), and (v) verifier time Oλ(log3 n) after preprocessing.

Proof. Note that log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq operation takes at most

Oλ(log2 n) bit operations. Notice that uE, uF, uG, uz can be computed in time Oλ(n · log3 n), exploiting
fast multiplication algorithms for Toeplitz matrices (similarly to what described in Appendix F.3). All
claims then follow by the same calculations as in Theorem 9. ⊓⊔

I Argument for Succinct-R1CS

In this section, we describe a folding-based succinct argument for succinct-R1CS [BCG+19], which
captures computations involving iterative executions of small circuits, with quasi-linear-time prover and
polylogarithmic-time verifier without preprocessing. The high-level idea of the construction is identical to
that in Section 8, except that here we will consider linear relations represented by not just a single, but
multiple, foldable matrices. To avoid distraction by having too many variables, we only provide a sketch
of the construction.

Recall that a succinct-R1CS instance is given by (A, B, C, D, y) and a witness x satisfies

(A · x) ◦ (B · x) = (C · x) mod q0

D · x = y mod q0

46

where A, B, C representing the “time constraints” are of the form

A =

A0 A1

A0 A1

A0 A1

, B =

B0 B1

B0 B1

B0 B1

, C =

C0 C1

C0 C1

C0 C1

and (D, y) represents the “boundary constraints”. In the following, we outline a folding protocol for a
variant of succinct-R1CS over R where x additionally satisfies a bounded-norm constraint ∥x∥ ≤ α and
D (after removing the first and last block-columns) is foldable.

Let s = w(n + 2) denote the number of columns in A (and hence also in B, C, and D). Similar to the
strategy for proving R1CS, we let the prover commit to a = A · x, b = B · x, and c = C · x as

– c̄h◦a = v̄T · (h ◦ a) mod q3,
– cb = vT · b mod q3, and
– cc = vT · c mod q3

respectively, where h is a foldable vector of norm q0 ≪ ∥h∥ ≪ q3, and prove that
A −I
B −I
C −I
D

 ·

x
a
b
c

 =

0
0
0
y

 mod q0, (9)

0 (v̄ ◦ h)T

0 vT

0 vT

 ·

x
a
b
c

 =

c̄h◦a
cb
cc

 mod q3, (10)

and ∥(x, a, b, c)∥ ≈ 0. Observe that Eq. (9) is equivalent to A · x = a, B · x = b, C · x = c, and D · x = y
all modulo q0, whereas Eq. (10) ensures that the commitments c̄h◦a, cb, and cc are well-formed. Then, we
let the prover prove that a ◦ b = c by proving the existence of

z =

 ∑
0≤i,j,≤s:j−i=k

hiaibj − hicj

−s≤k≤s

which satisfies

(v̄ | v)T · z = c̄h◦a · cb − c̄h · cc mod q3 and ∥z∥ ≈ 0. (11)

Since Eqs. (10) and (11) are represented by foldable matrices, an adaption of the folding protocol
in Section 6 applies. For Eq. (9), we need to handle one technical issue: The matrices A, B, and C are
not in the block-bidiagonal form which is supported by the folding protocol in Section 6. Taking A as
an example, we observe that we have one A0 block extra at the top left, and one A1 block extra at the
bottom right. To deal with this issue, we let the prover reveal the first and last blocks of x, so that the
verifier can subtract the contributions of these blocks from a, b, and c. Letting A′, B′, C′, and D′ be
derived from their counterparts with the first and last block-columns removed, we obtain a relation of the
form

A′ −I
B′ −I
C′ −I
D′

 ·

x
a
b
c

 =

ya

yb

yc

yd

 mod q0,

where A′ =
[
A1
A0

]
↘n

, B′ =
[
B1
B0

]
↘n

, C′ =
[
C1
C0

]
↘n

, D′, ya, yb, yc, and yd are foldable. We can therefore

adapt the folding protocol in Section 6 to prove the statement.

47

	Lattice-based Succinct Arguments from Vanishing Polynomials
	Introduction
	Our Results
	Related Work
	Subsequent Work

	Technical Overview
	Vanishing-SIS Commitments
	Efficient Proofs for SIS Relations
	Applications

	Preliminaries
	Cyclotomic Rings
	Lattice Trapdoors
	Presumed Hard Problems
	Argument Systems

	Vanishing Short Integer Solutions
	Definition
	On Choice of Parameters
	A Family of Hash Functions with Short Keys

	Foldable Structures
	Folding Protocols
	Type-0 Linear Relations
	Type-1 Linear Relations

	Knowledge-based Protocols
	Linear Relations
	Well-formedness of vSIS Commitments

	Applications
	Proving Binary-Satisfiability of (Structured) Linear Equations
	Rank-1 Constraint Systems

	Relating Vanishing-SIS and other Assumptions
	Relations with k-R-ISIS
	Relations with NTRU

	Proofs for Foldable Structures
	Proof of lem:foldablelength
	Power Sequence - Proof of lem:powseq
	Balanced Power Sequence - Proof of lem:balpowseq
	Compression Vector - Proof of lem:compression

	Folding Argument for Type-1 Linear Relations
	Proofs for Folding Arguments
	Completeness - Proof of thm:complete-folding
	Special Soundness - Proof of thm:sound-folding
	Efficiency - Proof of thm:eff-folding

	Knowledge-based Argument for Well-formedness of vSIS Commitments
	Proofs for Knowledge-based Arguments
	Completeness - Proof of thm:complete
	Knowledge Soundness - Proof of thm:know
	Efficiency - Proof of thm:eff

	Proofs for Applications
	Completeness - Proof of thm:bin-complete
	Knowledge-Soundness - Proof of thm:bin-sound
	Efficiency - Proof of thm:bin-eff

	Construction and Proofs for R1CS Argument
	Completeness
	Knowledge Soundness
	Efficiency

	Argument for Succinct-R1CS

