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Abstract. Lucas sequences are constant-recursive integer sequences with
a long history of applications in cryptography, both in the design of
cryptographic schemes and cryptanalysis. In this work, we study the
sequential hardness of computing Lucas sequences over an RSA modulus.
First, we show that modular Lucas sequences are at least as sequentially
hard as the classical delay function given by iterated modular squaring
proposed by Rivest, Shamir, and Wagner (MIT Tech. Rep. 1996) in the
context of time-lock puzzles. Moreover, there is no obvious reduction in
the other direction, which suggests that the assumption of sequential
hardness of modular Lucas sequences is strictly weaker than that of
iterated modular squaring. In other words, the sequential hardness of
modular Lucas sequences might hold even in the case of an algorithmic
improvement violating the sequential hardness of iterated modular squaring.
Second, we demonstrate the feasibility of constructing practically-efficient
verifiable delay functions based on the sequential hardness of modular
Lucas sequences. Our construction builds on the work of Pietrzak (ITCS
2019) by leveraging the intrinsic connection between the problem of
computing modular Lucas sequences and exponentiation in an appropriate
extension field.
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1 Introduction

A verifiable delay function (VDF) f : X → Y is a function that satisfies two
properties. First, it is a delay function, which means it must take a prescribed
(wall) time T to compute f , irrespective of the amount of parallelism available.
Second, it should be possible for anyone to quickly verify – say, given a short
proof π – the value of the function (even without resorting to parallelism), where
by quickly we mean that the verification time should be independent of or
significantly smaller than T (e.g., logarithmic in T ). If we drop either of the
two requirements, then the primitive turns out trivial to construct. For instance,



for an appropriately chosen hash function h, the delay function f(x) = hT (x)
defined by T -times iterated hashing of the input is a natural heuristic for an
inherently sequential task which, however, seems hard to verify more efficiently
than by recomputing. On the other hand, the identity function f(x) = x is trivial
to verify but also easily computable. Designing a simple function satisfying the
two properties simultaneously proved to be a nontrivial task.

The notion of VDFs was introduced in [31] and later formalised in [9]. In
principle, since the task of constructing a VDF reduces to the task of incrementally-
verifiable computation [55, 9], constructions of VDFs could leverage succinct
non-interactive arguments of knowledge (SNARKs): take any sequentially-hard
function f (for instance, iterated hashing) as the delay function and then use
the SNARK on top of it as the mechanism for verifying the computation of the
delay function. However, as discussed in [9], the resulting construction is not
quite practical since we would rely on a general-purpose machinery of SNARKs
with significant overhead.

Efficient VDFs via algebraic delay functions. VDFs have recently found interesting
applications in design of blockchains [17], randomness beacons [43, 52], proofs
of data replication [9], or short-lived zero-knowledge proofs and signatures [3].
Since efficiency is an important factor there, this has resulted in a flurry of
constructions of VDFs that are tailored with application and practicality in
mind. They rely on more algebraic, structured delay functions that often involve
iterating an atomic operation so that one can resort to custom proof systems
to achieve verifiability. These constructions involve a range of algebraic settings
like the RSA or class groups [42, 57, 8, 25, 5], permutation polynomials over finite
fields [9], isogenies of elliptic curves [21, 54] and, very recently, lattices [15, 28].
The constructions in [42, 57] are arguably the most practical and the mechanism
that underlies their delay function is the same: carry out iterated squaring
in groups of unknown order, like RSA groups [47] or class groups [12]. What
distinguishes these two proposals is the way verification is carried out, i.e., how
the underlying “proof of exponentiation” works: while Pietrzak [42] resorts to
an LFKN-style recursive proof system [35], Wesolowski [57] uses a clever linear
decomposition of the exponent.

Iterated modular squaring and sequentiality. The delay function that underlies
the VDFs in [42, 57, 25, 5] is the same, and its security relies on the conjectured
sequential hardness of iterated squaring in a group of unknown order (suggested
in the context of time-lock puzzles by Rivest, Shamir, and Wagner [48]). Given
that the practically efficient VDFs all rely on the above single delay function, an
immediate open problem is to identify additional sources of sequential hardness
that are structured enough to support practically efficient verifiability.

1.1 Our Approach to (Verifiable) Delay Functions

In this work, we study an alternative source of sequential hardness in the algebraic
setting and use it to construct efficient verifiable delay functions. The sequentiality
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of our delay function relies on an atomic operation that is related to the computation
of so-called Lucas sequences [34, 29, 59], explained next.

Lucas sequences. A Lucas sequence is a constant-recursive integer sequence that
satisfies the recurrence relation

xi = Pxi−1 −Qxi−2

for integers P and Q.5 Specifically, the Lucas sequences of integers (Uk(P,Q))k∈N
and (Vk(P,Q))k∈N of the first and second type (respectively) are defined recursively
as

Uk(P,Q) = PUk−1(P,Q)−QUk−2(P,Q)

with U1(P,Q) = 1, U0(P,Q) = 0, and

Vk(P,Q) = PVk−1(P,Q)−QVk−2(P,Q)

with V1(P,Q) = P, V0(P,Q) = 2.
These sequences can be alternatively defined by the characteristic polynomial

x2 − Px+Q. Specifically, given the discriminantD = P 2−4Q of the characteristic
polynomial, one can alternatively compute the above sequences by performing
operations in the extension field

Z[
√
D] ≃ Z[x]/(x2 −D)

using the identities

Ui =
ωi − ωi

ω − ω
and Vi = ωi + ωi,

where ω = (P +
√
D)/2 and its conjugate ω = (P −

√
D)/2 are roots of the

characteristic polynomial. Since conjugation and exponentiation commute in
the extension field (i.e., ωi = ωi), computing the i-th terms of the two Lucas
sequences over integers reduces to computing ωi in the extension field, and vice
versa.

The intrinsic connection between computing the terms in the Lucas sequences
and that of exponentiation in the extension has been leveraged to provide alternative
instantiations of public-key encryption schemes like RSA and ElGamal in terms
of Lucas sequences [30, 7]. However, as we explain later, the corresponding underlying
computational hardness assumptions are not necessarily equivalent.

Overview of our delay function. The delay function in [42, 57, 25, 5] is defined as
the iterated squaring base x in a (safe) RSA group6 modulo N :

fN (x, T ) := x2
T

mod N.

5 Note that integer sequences like Fibonacci numbers and Mersenne numbers are
special cases of Lucas sequences.

6 The choice of modulus N is said to be safe if N = pq for safe primes p = 2p′ +1 and
q = 2q′ + 1, where p′ and q′ are also prime.
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Our delay function is its analogue in the setting of Lucas sequences:

fN (P,Q, T ) := (U2T (P,Q) mod N,V2T (P,Q) mod N).

As mentioned above, computing fN (P,Q, T ) can be carried out equivalently
in the extension field ZN [

√
D] using the known relationship to roots of the

characteristic polynomial of the Lucas sequence. Thus, the delay function can
be alternatively defined as

fN (P,Q, T ) := ω2T in ZN [
√
D].

Note that the atomic operation of our delay function is “doubling” the index
of an element of the Lucas sequence modulo N (i.e., Vi 7→ V2i) or, equivalently,
squaring in the extension field ZN [

√
D] (as opposed to squaring in ZN ). Using

the representation of ZN [
√
D] as {a+b

√
D | a, b ∈ ZN}, squaring in ZN [

√
D] can

be expressed as a combination of squaring, multiplication and addition modulo
N , since

(a+ b
√
D)2 = (a2 + b2D) + 2ab

√
D. (1)

Since ZN [
√
D] is a group of unknown order (provided the factorization ofN is

kept secret), iterated squaring remains hard here. In fact, we show in Section 3.2
that iterated squaring in ZN [

√
D] is at least as hard as iterated squaring for RSA

moduli N . Moreover, we conjecture in Conjecture 1 that it is, in fact, strictly
harder (also see discussion below on advantages of our approach).

Verifying modular Lucas sequence. To obtain a VDF, we need to show how to
efficiently verify our delay function. To this end, we show how to adapt the
interactive proof of exponentiation from [42] to our setting, which then – via the
Fiat-Shamir Transform [22] – yields the non-interactive verification algorithm.7

Thus, our main result is stated informally below.

Theorem 1 (Informally stated, see Theorem 2). Assuming sequential hardness
of modular Lucas sequence, there exists statistically-sound VDF in the random-
oracle model.

However, the modification of Pietrzak’s protocol is not trivial and we have to
overcome several hurdles that we face in this task, which we elaborate on in
Section 1.2. We conclude this section with discussions about our results.

Advantage of our approach. Our main advantage is the reliance on a potentially
weaker (sequential) hardness assumption while maintaining efficiency: we show
in Section 3.2 that modular Lucas sequences are at least as sequentially-hard as
the classical delay function given by iterated modular squaring [48]. Despite the
linear recursive structure of Lucas sequences, there is no obvious reduction in
the other direction, which suggests that the assumption of sequential hardness

7 Further, using the ideas from [20, 14], it is possible to construct so-called continuous
VDFs from Lucas sequences.
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of modular Lucas sequences is strictly weaker than that of iterated modular
squaring (Conjecture 1). In other words, the sequential hardness of modular
Lucas sequences might hold even in the case of an algorithmic improvement
violating the sequential hardness of iterated modular squaring. Even though both
assumptions need the group order to be hidden, we believe that there is need for
a nuanced analysis of sequential hardness assumptions in hidden order groups,
especially because all current delay functions that provide sufficient structure
for applications are based on iterated modular squaring. If the iterated modular
squaring assumption is broken, our delay function is currently the only practical
alternative in the RSA group.

Delay functions in idealised models. Recent works studied the relationship of
group-theoretic (verifiable) delay functions to the hardness of factoring in idealised
models such as the algebraic group model and the generic ring model [27, 50].
In the generic ring model, Rotem and Segev [50] showed the equivalence of
straight-line delay functions in the RSA setting and factoring. Our construction
gives rise to a straight-line delay function and, by their result, its sequentiality is
equivalent to factoring for generic algorithms. However, their result holds only in
the generic ring model and leaves the relationship between the two assumptions
unresolved in the standard model.

Compare this with the status of the RSA assumption and factoring. On
one hand, we know that in the generic ring model, RSA and factoring are
equivalent [2]. Yet, it is possible to rule out certain classes of reductions from
factoring to RSA in the standard model [11]. Most importantly, despite the
equivalence in the generic ring model, there is currently no reduction from
factoring to RSA in the standard model and it remains one of the major open
problems in number theory related to cryptography since the introduction of the
RSA assumption.

In summary, speeding up iterated squaring by a non-generic algorithm could
be possible (necessarily exploiting the representations of ring elements modulo
N), while such an algorithm may not lead to a speed-up in the computation of
modular Lucas sequences despite the result of Rotem and Segev [50].

1.2 Technical Overview

Pietrzak’s VDF. Let N = pq be an RSA modulus where p and q are safe primes
and let x be a random element from Z∗

N . At its core, Pietrzak’s VDF relies on
the interactive protocol for the statement

“(N, x, y, T ) satisfies y = x2
T

mod N”.

The protocol is recursive and, in a round-by-round fashion, reduces the claim to
a smaller statement by halving the time parameter. To be precise, in each round

the (honest) prover sends the “midpoint” µ = x2
T/2

of the current statement to
the verifier and they together reduce the statement to

“(N, x′, y′, T/2) satisfies y′ = (x′)2
T/2

mod N”,
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where x′ = xrµ and y′ = µry for a random challenge r. This is continued till
(N, x, y, T = 1) is obtained at which point the verifier simply checks whether
y = x2 mod N using a single modular squaring.

Since the challenges r are public, the protocol can be compiled into a non-
interactive one using the Fiat-Shamir transform [22] and this yields a means to
verify the delay function

fN (x, T ) = x2
T

mod N.

It is worth pointing out that the choice of safe primes is crucial for proving
soundness: in case the group has easy-to-find elements of small order then it
becomes easy to break soundness: see [10].

Adapting Pietrzak’s protocol to Lucas sequences. For a modulus N = pq and
integers P,Q, T ∈ N, recall that our delay function is defined as

fN (T, P,Q) = (U2T (P,Q) mod N,V2T (P,Q) mod N),

or equivalently

fN (T, P,Q) = ω2T in ZN [
√
D],

for the discriminant D = P 2− 4Q of the characteristic polynomial x2−Px+Q.
Towards building a verification algorithm for this delay function, the natural
first step is to design an interactive protocol for the statement

“(N,P,Q, y, T ) satisfies y = ω2T in ZN [
√
D].”

It turns out that the interactive protocol from [42] can be adapted for this
purpose. However, we encounter two technicalities in this process.

Dealing with elements of small order. The main problem that we face while
designing our protocol is avoiding elements of small order. In the case of
[42], this was accomplished by moving to the setting of signed quadratic
residues [26] in which the sub-groups are all of large order. It is not clear
whether a corresponding object exists for our algebraic setting. However, in
an earlier draft of Pietrzak’s protocol [41], this problem was dealt with in a
different manner: the prover sends a square root of µ, from which the original
µ can be recovered easily (by squaring it) with a guarantee that the result
lies in a group of quadratic residues QRN . Notice that the prover knows
the square root of µ, because it is just a previous term in the sequence he
computed.
In our setting, we cannot simply ask for the square root of the midpoint
as the subgroup of ZN [

√
D] we effectively work in has a different structure.

Nevertheless, we can use a similar approach: for an appropriately chosen
small a, we provide an a-th root of ω (instead of ω itself) to the prover in
the beginning of the protocol. The prover then computes the whole sequence
for ω

1
a . In the end, he has the a-th root of every term of the original sequence

and he can recover any element of the original sequence by raising to the
a-th power.

6



Sampling strong modulus. The second technicality is related to the first one. In
order to ensure that we can use the above trick, we require a modulus where
the small subgroups are reasonably small not only in the group ZN but also
in the extension ZN [

√
D]. Thus the traditional sampling algorithms that are

used to sample strong primes (e.g., [46]) are not sufficient for our purposes.
However, we show in Appendix A that sampling strong primes that suit our
criteria can still be carried out efficiently.

Comparing our technique with [8, 25]. The VDFs in [8, 25] are also inspired by
[42] and, hence, faced the same problem of low-order elements. In [8], this is dealt
with by amplifying the soundness at the cost of parallel repetition and hence
larger proofs and extra computation. In [25], the number of repetitions of [8] is
reduced significantly by introducing the following technique: The exponent of the
initial instance is reduced by some parameter qC and at the end of an interactive
phase, the verifier performs final exponentiation with qC , thereby weeding out
potential false low-order elements in the claim. This technique differs from the
approach taken in our work in the following ways: The technique from [25] works
in arbitrary groups but it requires the parameter qC to be large and of a specific
form. In particular, the VDF becomes more efficient when qC is larger than
2λ. In our protocol, we work in RSA groups whose modulus is the product of
primes that satisfy certain conditions depending on a. This enables us to choose
a parameter a that is smaller than a statistical security parameter and thereby
makes the final exponentiation performed by the verifier much more efficient.
Further, a can be any natural number, while qC must be set as powers of all
small prime numbers up a certain bound in [25].

1.3 More Related Work

Timed Primitives. The notion of VDFs was introduced in [31] and later formalised
in [9]. VDFs are closely related to the notions of time-lock puzzles [48] and proofs
of sequential work [36]. Roughly speaking, a time-lock puzzle is a delay function
that additionally allows efficient sampling of the output via a trapdoor. A proof
of sequential work, on the other hand, is a delay “multi-function”, in the sense
that the output is not necessarily unique. Constructions of time-lock puzzles
are rare [48, 6, 38], and there are known limitations: e.g, that it cannot exist
in the random-oracle model [36]. However, we know how to construct proofs of
sequential work in the random-oracle model [36, 16, 1, 19].

Since VDFs have found several applications, e.g., in the design of resource-
efficient blockchains [17], randomness beacons [43, 52] and proof of data replication
[9], there have been several constructions. Among them, the most notable are
the iterated-squaring based construction from [42, 57, 8, 25], the permutation-
polynomial based construction from [9], the isogenies-based construction from
[21, 54, 13] and the construction from lattice problems [28, 15]. The constructions
in [42, 57] are quite practical (see the survey [10]) and the VDF deployed in
the cryptocurrency Chia is basically their construction adapted to the algebraic
setting of class groups [17]. This is arguably the closest work to ours. On the
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other hand, the constructions from [21, 54], which work in the algebraic setting
of isogenies of elliptic curves where no analogue of square and multiply is known,
simply rely on “exponentiation”. Although, these constructions provide a certain
form of quantum resistance, they are presently far from efficient. Recently,
Freitag et al. [23] constructed VDFs from any sequential hard function and
polynomial hardness of learning with errors, the first from standard assumptions.
Very recently, the works of Cini, Lai and Malavolta [28, 15] constructed the first
VDF from lattice-based assumptions and conjectured it to be post-quantum
secure.

Several variants of VDFs have also been proposed. A VDF is said to be unique
if the proof that is used for verification is unique [42]. Recently, Choudhuri et al.
[5] constructed unique VDFs from the sequential hardness of iterated squaring
in any RSA group and polynomial hardness of LWE. A VDF is tight [18] if the
gap between simply computing the function and computing it with a proof is
small. Yet another extension is a continuous VDF [20]. The feasibility of time-
lock puzzles and proofs of sequential works were recently extended to VDFs. It
was shown [51] that the latter requirement, i.e., working in a group of unknown
order, is inherent in a black-box sense. It was shown in [18, 37] that there are
barriers to constructing tight VDFs in the random-oracle model.

VDFs also have surprising connection to complexity theory [14, 20, 33].

Work related to Lucas sequences. Lucas sequences have long been studied in
the context of number theory: see for example [45] or [44] for a survey of its
applications to number theory. Its earliest application to cryptography can be
traced to the (p + 1) factoring algorithm [58]. Constructive applications were
found later thanks to the parallels with exponentiation. Several encryption and
signature schemes were proposed, most notably the LUC family of encryption
and signatures [30, 39]. It was later shown that some of these schemes can be
broken or that the advantages it claimed were not present [7]. Other applications
can be found in [32].

2 Preliminaries

2.1 Interactive Proof Systems

Interactive protocols. An interactive protocol consists of a pair (P,V) of interactive
Turing machines that are run on a common input x. The first machine P is the
prover and is computationally unbounded. The second machine V is the verifier
and is probabilistic polynomial-time.

In an ℓ-round (i.e., (2ℓ − 1)-message) interactive protocol, in each round
i ∈ [1, ℓ], first P sends a message αi ∈ Σa to V and then V sends a message
βi ∈ Σb to P, where Σ is a finite alphabet. At the end of the interaction, V
runs a (deterministic) Turing machine on input {x, (β1, . . . , βℓ), (α1, . . . , αℓ)}.
The interactive protocol is public-coin if βi is a uniformly distributed random
string in Σb.
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Interactive proof systems. The notion of an interactive proof for a language L is
due to Goldwasser, Micali and Rackoff [24].

Definition 1. For a function ϵ : N→ [0, 1], an interactive protocol (P,V) is an
ϵ-statistically-sound interactive proof system for L if:

– Completeness: For every x ∈ L, if V interacts with P on common input x,
then V accepts with probability 1.

– Soundness: For every x ̸∈ L and every (computationally-unbounded) cheating

prover strategy P̃, the verifier V accepts when interacting with P̃ with probability
less than ϵ(|x|), where ϵ is called the soundness error.

2.2 Verifiable Delay Functions

We adapt the definition of verifiable delay functions from [9] but we decouple the
verifiability and sequentiality properties for clarity of exposition of our results.
First, we present the definition of a delay function.

Definition 2. A delay function DF = (DF.Setup, DF.Gen, DF.Eval) consists of a
triple of algorithms with the following syntax:

pp← DF.Setup(1n):
On input a security parameter 1n, the algorithm DF.Setup outputs public
parameters pp.

x← DF.Gen(pp, T ):
On input public parameters pp and a time parameter T ∈ N, the algorithm
DF.Gen outputs a challenge x.

y ← DF.Eval(pp, (x, T )):
On input a challenge pair (x, T ), the (deterministic) algorithm DF.Eval outputs
the value y of the delay function in time T .

The security property required of a delay function is sequential hardness as
defined below.

Definition 3 (Sequentiality). We say that a delay function DF satisfies the
sequentiality property, if there exists an ϵ ∈ (0, 1) such that for all T (λ) ∈
poly(λ) and for every adversary A = (A0, A1), where A1 uses poly(λ) processors
and runs in time O(T ϵ(λ)), there exists a negligible function µ such that

Pr


A1(pp, state, (x, T (λ))) = y

where
pp← DF.Setup(1n)

state← A0(pp)
x← DF.Gen(pp, T (λ))

y ← DF.Eval(pp, (x, T (λ)))

 ≤ µ(λ).

A few remarks about our definition of sequentiality are in order:
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1. We require computing DF.Eval(pp, (x, T )) to be hard in less than T sequential
steps even using any polynomially-bounded amount of parallelism and precomputation.
Note that it is necessary to bound the amount of parallelism, as an adversary
could otherwise break the underlying hardness assumption (e.g. hardness
of factorization). Analogously, T should be polynomial in λ as, otherwise,
breaking the underlying hardness assumptions becomes easier than computing
DF(x, T ) itself for large values of T .

2. Another issue is what bound on the number of sequential steps of the
adversary should one impose. For example, the delay function based on T
repeated modular squarings can be computed in sequential timeO(T/loglog T )
using polynomial parallelism [4]. Thus, one cannot simply bound the sequential
time of the adversary by o(T ). Similarly to [38], we adapt the O(T ϵ) bound
for ϵ ∈ (0, 1) which, in particular, is asymptotically smaller thanO(T/loglog T ).

3. Without loss of generality, we assume that the size of pp is at least linear in
n and the adversary A does not have to get the unary representation of the
security parameter 1n as its input.

The definition of verifiable delay function extends a delay function with the
possibility to compute publicly-verifiable proofs of correctness of the output
value.

Definition 4. A delay function VDF = (VDF.Setup, VDF.Gen, VDF.Eval) is a verifiable
delay function if it is equipped with two additional algorithms VDF.Prove and
VDF.Verify with the following syntax:

(y, π)← VDF.Prove(pp, (x, T )):
On input public parameters and a challenge pair (x, T ), the VDF.Prove algorithm
outputs (y, π), where π is a proof that the output y is the output of VDF.Eval(pp, (x, T )).

{accept/reject} ← VDF.Verify(pp, (x, T ), (y, π)):
On input public parameters, a challenge pair (x, T ), and an output/proof
pair (y, π), the (deterministic) algorithm VDF.Verify outputs either accept

or reject.

In addition to sequentiality (inherited from the underlying delay function),
the VDF.Prove and VDF.Verify algorithms must together satisfy correctness and
(statistical) soundness as defined below.

Definition 5 (Correctness). A verifiable delay function VDF is correct if for
all T ∈ N

Pr


VDF.Verify(pp, (x, T ), (y, π)) = accept

where
pp← VDF.Setup(1n)
x← VDF.Gen(pp, T )

(y, π)← VDF.Prove(pp, (x, T ))

 = 1.

Definition 6 (Statistical soundness). A verifiable delay function VDF is statistically
sound if for every (computationally unbounded) malicious prover P ∗ there exists
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a negligible function µ(λ) such that

Pr



VDF.Verify(pp, (x, T ), (ỹ, π̃)) = accept

and y ̸= ỹ
where

pp← VDF.Setup(1n)
x← VDF.Gen(pp, T )

y ← VDF.Eval(pp, (x, T ))
(ỹ, π̃)← P ∗(pp, (x, T ))


≤ µ(λ).

3 Delay Functions from Lucas Sequences

In this section, we propose a delay function based on Lucas sequences and prove
its sequentiality assuming that iterated squaring in a group of unknown order
is sequential (Section 3.1). Further, we conjecture (Section 3.2) that our delay
function candidate is even more robust than its predecessor proposed by Rivest,
Shamir, and Wagner [48]. Finally, we turn our delay function candidate into a
verifiable delay function (Section 4).

3.1 The Atomic Operation

Our delay function is based on subsequences of Lucas sequences, whose indexes
are powers of two.

Definition 7. For P,Q ∈ Z and t ∈ N ∪ {0}, we define subsequences (ut) and
(vt) of Lucas sequences by

ut := U2t(P,Q) and vt := V2t(P,Q). (2)

Although the value of (ut, vt) depends on parameters (P,Q), we omit (P,Q) from
the notation because these parameters will be always obvious from the context.

The underlying atomic operation our delay function is

fN (T, P,Q) = (uT mod N, vT mod N).

There are several ways to compute (ut, vt) in T sequential steps, and we
describe two of them below.

An approach based on squaring in a suitable extension ring. To compute the
value fN (T, P,Q), we can use the extension ring ZN [

√
D], where D := P 2−4Q is

the discriminant of the characteristic polynomial f(z) = z2−Pz+Q of the Lucas
sequence. The characteristic polynomial f(z) has a root ω := (P +

√
D)/2 ∈

ZN [
√
D], and it is known that, for all i ∈ N, it holds that

ωi =
Vi + Ui

√
D

2

(
i.e., ω2t =

vt + ut
√
D

2

)
.
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Thus, by iterated squaring of ω, we can compute terms of our target subsequences.
To get a better understanding of squaring in the extension ring, consider the
representation of the root ω = a+ b

√
D for some a, b ∈ ZN . Then,

(a+ b
√
D)2 = (a2 + b2D) + 2ab

√
D.

Then, the atomic operation of our delay function can be interpreted as g : ZN ×
ZN → ZN × ZN , defined for all a, b ∈ ZN as

g : (a, b) 7→ (a2 + b2D, 2ab) gt(

(
P

2
,
1

2

)
) =

(vt
2
,
ut
2

)
. (3)

An approach based on known identities. Many useful identities for members of
modular Lucas sequences are known, such as

Uj+i = UjVi −QiUj−i, and Vj+i = VjVi −QiVj−i. (4)

Setting j = i we get

U2i = UiVi, and V2i = V 2
i − 2Qi. (5)

The above identities are not hard to derive (see, e.g., Lemma 12.5 in [40]). Indexes
are doubled on each of application of the identities in Equation (5), and, thus,

for t ∈ N ∪ {0}, we define an auxiliary sequence (qt) by qt := Q2t . Using the
identities in Equation (5), we get recursive equations

ut+1 = utvt, vt+1 = v2t − 2qt and qt+1 = q2t . (6)

Then, the atomic operation of our delay function can be interpreted as g : ZN ×
ZN × ZN → ZN × ZN × ZN , defined for all u, v, q ∈ ZN as

g : (u, v, q) 7→ (uv, v2 − 2q, q2), gt((1, P,Q)) = (ut, vt, Q
2t). (7)

After a closer inspection, the reader may have an intuition that an auxiliary
sequence qt, which introduces a third state variable, is redundant. This intuition
is indeed right. In fact, there is another easily derivable identity

qt =
v2t − u2tD

4
, (8)

which can be found, e.g., as Lemma 12.2 in [40]. On the other hand, Equation (8)
is quite interesting because it allows us to compute large powers of an element
Q ∈ ZN using two Lucas sequences. We use this fact in the security reduction
in Section 3.2. Our construction of a delay function, denoted LCS, is given
in Figure 1.
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LCS.Setup(1n): Samples two n-bit primes p and q and outputs N := p · q.
LCS.Gen(N,T ): Samples P and Q independently from the uniform distribution on

ZN , sets D := P 2 − 4Q and outputs (P,D, T ).
LCS.Eval(N, (P,D, T )): Sets

g : ZN × ZN → ZN × ZN

(a, b) 7→ (a2 + b2D, 2ab),

computes (vT
2
,
uT

2

)
:= gT

(
P

2
,
1

2

)
and outputs (uT , vT ).

Fig. 1. Our delay function candidate LCS based on a modular Lucas sequence.

On the discriminant D. Notice that whenever D is a quadratic residue modulo
N , the value

√
D is an element of ZN and hence ZN [

√
D] = ZN . By definition,

LCS.Gen generates a parameter D that is a quadratic residue with probability
1/4, so it might seem that in one fourth of the cases there is another approach to
compute (ut, vt): find the element

√
D and then perform n sequential squarings

in the group ZN . However, it is well known that finding square roots of uniform
elements in ZN is equivalent to factoring the modulus N , so this approach is
not feasible. We can therefore omit any restrictions on the discriminant D in the
definition of our delay function LCS.

3.2 Reduction from RSW Delay Function

In order to prove the sequentiality property (Definition 3) of our candidate LCS,
we rely on the standard conjecture of the sequentiality of the RSW time-lock
puzzles, implicitly stated in [48] as the underlying hardness assumption.

Definition 8 (RSW delay function). The RSW delay function is defined as
follows:

RSW.Setup(1n): Samples two n-bit primes p and q and outputs N := p · q.
RSW.Gen(N,T ): Outputs an x sampled from the uniform distribution on Z∗

N .

RSW.Eval(N, (x, T )): Outputs y := x2
T

mod N .

Theorem 2. If the RSW delay function has the sequentiality property, then the
LCS delay function has the sequentiality property.

Proof. Suppose there exists an adversary (A0, A1) who contradicts the sequentiality
of LCS, where A0 is a precomputation algorithm and A1 is an online algorithm.
We construct an adversary (B0, B1) who contradicts the sequentiality of RSW as
follows:

– The algorithm B0 is defined identically to the algorithm A0.

13



– On input (N, state, (x ∈ Z∗
N , T )),B1 picks a P from the uniform distribution

on ZN , sets

Q := x, D := P 2 − 4Q

and it runs A1(N, state, (P,D, T )) to compute (uT , vT ). The algorithm B1

computes y = x2
T

= Q2T = qT using the identity in Equation (8).

Note that the input distribution for the algorithm A1 produced by B1 differs from
the one produced by LCS.Gen, because the LCS generator samples Q from the
uniform distribution on ZN (instead of Z∗

N ). However, this is not a problem since
the size of ZN ∖ Z∗

N is negligible compared to the size of ZN , so the statistical
distance between the distribution of D produced by B1 and the distribution of
D sampled by LCS.Gen is negligible in the security parameter. Thus, except for
a negligible multiplicative loss, the adversary (B0, B1) attains the same success
probability of breaking the sequentiality of RSW as the probability of (A0, A1)
breaking the sequentiality of LCS – a contradiction to the assumption of the
theorem. ⊓⊔

We believe that the converse implication to Theorem 2 is not true, i.e., that
breaking the sequentiality of RSW does not necessarily imply breaking the sequentiality
of LCS. Below, we state it as a conjecture.

Conjecture 1. Sequentiality of LCS cannot be reduced to sequentiality of RSW.

One reason why the above conjecture might be true is that, while the RSW

delay function is based solely only on multiplication in the group Z∗
N (·), our

LCS delay function uses the full arithmetic (addition and multiplication) of the
commutative ring ZN .

One way to support the conjecture would be to construct an algorithm
that speeds up iterated squaring but is not immediately applicable to Lucas
sequences. By [49] we know that this cannot be achieved by a generic algorithm.
A non-generic algorithm that solves iterated squaring in time O(T/loglog(T )) is
presented in [4]. The main tool of their construction is the Explicit Chinese
Remainder Theorem modulo N . However, a similiar theorem exists also for
univariate polynomial rings, which suggests that a similar speed-up can be
obtained for our delay function by adapting the techniques in [4] to our setting.

4 VDF from Lucas sequences

In Section 3.1 we saw different ways of computing the atomic operation of the
delay function. Computing (ut, vt) in the extension field seems to be the more
natural and time and space effective approach. Furthermore, writing the atomic
operation g(a, b) = (a2 + b2D, 2ab) as ω 7→ ω2 is very clear, and, thus, we follow
this approach throughout the rest of the paper.
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4.1 Structure of ZN [x]/(x2 − Px + Q)

To construct a VDF based on Lucas sequences, we use an algebraic extension

ZN [x]/(x2 − Px+Q), (9)

where N is an RSA modulus and P,Q ∈ ZN . In this section, we describe
the structure of the algebraic extension given in Expression (9). Based on our
understanding of the structure of the above algebraic extension, we can conclude
that using modulus N composed of safe primes (i.e., for all prime factors p of
N , p − 1 has a large prime divisor) is necessary but not sufficient condition for
security of our construction. We specify some sufficient conditions on factors of
N in the subsequent Section 4.2.

First, we introduce some simplifying notation for quotient rings.

Definition 9. For m ∈ N and f(x) ∈ Zm[x], we denote by Zm,f the quotient
ring Z[x]/(m, f(x)), where (m, f(x)) denotes the ideal of the ring Z[x] generated
by m and f(x).

Observation 1, below, allows us to restrict our analysis only to the structure
of Zp,f for prime p ∈ P.

Observation 1 Let p, q ∈ P be distinct primes, N := p · q and f(x) ∈ ZN [x].
Then

ZN,f ≃ Zp,f × Zq,f .

Proof. Using the Chinese reminder theorem, we get

ZN,f ≃
Z[x]/(f(x))

(N)
≃ Z[x]/(f(x))

(p)
× Z[x]/(f(x))

(q)
≃ Zp,f × Zq,f

as claimed. ⊓⊔

The following lemma characterizes the structure of Zp,f with respect to the

discriminant of f . We use
(

a
p

)
to denote the standard Legendre symbol.

Lemma 1. Let p ∈ P \ {2} and f(x) ∈ Zp[x] be a polynomial of degree 2 with
the discriminant D. Then

Z∗
p,f (·) ≃


Zp2−1(+)

(
D
p

)
= −1

Zp−1(+)× Zp(+)
(

D
p

)
= 0 .

Zp−1(+)× Zp−1(+)
(

D
p

)
= 1

Proof. We consider each case separately:

– If
(

D
p

)
= −1, then f(x) is irreducible over Zp and Zp,f is a field with

p2 elements. Since Zp,f is a finite field, Z∗
p,f is cyclic and contains p2 − 1

elements.
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– If
(

D
p

)
= 0, then D = 0 and f has some double root α and it can be written

as β(x − α)2 for some β ∈ Z∗
p. Since the ring Zp,β(x−α)2 is isomorphic to

the ring Zp,x2 (consider the isomorphism g(x) 7→ g(x + α)), we can restrict
ourselves to describing the structure of Zp,x2 .

We will prove that the function ψ,

ψ : Z∗
p(·)× Zp(+)→ Z∗

p,x2(·),
ψ : (a, b) 7→ a · (1 + x)b,

is an isomorphism. First, the polynomial a+ cx ∈ Zp,x2 is invertible if and only
if a ̸= 0 (inverse is a−1 − a−2cx). For the choice b = a−1c, we have

ψ(a, b) = a(1 + x)b ≡ a(1 + bx) ≡ a(1 + a−1cx) ≡ a+ cx mod (p, x2).

Thus ψ is onto. Second, ψ is, in fact, a bijection, because

|Z∗
p,x2(·)| = p2 − p = (p− 1) · p = |Z∗

p(·)× Zp(+)|. (10)

Finally, ψ is a homomorphism, because

ψ(a1, b1) · ψ(a2, b2) = a1a2(1 + x)b1+b2 = ψ(a1a2, b1 + b2).

If
(

D
p

)
= 1, then f(x) has two roots β1, β2 ∈ Zp. We have an isomorphism

ψ : Zp[x]/(f(x))→ Zp × Zp

ψ : g(x) + (f(x)) 7→ (g(β1), g(β2))

and (Zp × Zp)
∗ ≃ Z∗

p × Z∗
p ≃ Zp−1(+)× Zp−1(+). ⊓⊔

4.2 Strong Groups and Strong Primes

To achieve the verifiability property of our construction, we need Z∗
p,f to contain

a strong subgroup (defined next) of order asymptotically linear in p. We remark
that our definition of strong primes is stronger than the one by Rivest and
Silverman [46].

Definition 10 (Strong groups). For λ ∈ N, we say that a non-trivial group
G is λ-strong, if the order of each non-trivial subgroup of H is greater than 2λ.

Observation 2 If G1 and G2 are λ-strong groups, then G1 ×G2 is a λ-strong
group.

It can be seen from Lemma 1 that Z∗
p,f always contains groups of small order

(e.g. Z2(+)). To avoid these, we descend into the subgroup of a-th powers of
elements of Z∗

p,f . Below, we introduce the corresponding notation.
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Definition 11. For an Abelian group G and a ∈ N, we define the subgroup
G(a) := {xa | x ∈ G} of G in the multiplicative notation and aG := {ax | x ∈ G}
in the additive notation.

Further, we show in Lemma 2 below that (λ, a)-strong primality (defined
next) is a sufficient condition for (Z∗

p,f )
(a) to be a λ-strong group.

Definition 12 (Strong primes). Let p ∈ P and λ, a ∈ N. We say that p
is a (λ, a)-strong prime, if λ > a and there exists W ∈ N, W > 1, such that
p2 − 1 = aW and every prime factor of W is greater than 2λ.

Since a is a public parameter in our setup, super-polynomial a could reveal
partial information about the factorization of N . However, we could allow a to
be polynomial in λ while maintaining hardness of factoring N .8 For the sake of
simplicity of Definition 12, we rather use stronger condition a < λ. The following
simple observation will be useful for proving Lemma 2.

Observation 3 For ∀m,n ∈ N : nZm ≃ Zm/gcd(m,n).

Lemma 2. Let p be a (λ, a)-strong prime and f(x) ∈ Zp[x] be a quadratic
polynomial. Then, (Z∗

p,f )
(a) is a λ-strong group.

Proof. From definition of the strong primes, there exists W ∈ N, whose factors
are bigger than 2λ and p2 − 1 = aW . We denote W− := gcd(p− 1,W ) a factor
of W . Applying Observation 3 to Lemma 1, we get

(Z∗
p,f )

(a) ≃


aZp2−1(+) ≃ aZaW (+) ≃ ZW (+)

(
D
p

)
= −1

aZp(+)× aZp−1(+) ≃ Zp(+)× ZW−(+)
(

D
p

)
= 0

aZp−1(+)× aZp−1(+) ≃ ZW−(+)× ZW−(+)
(

D
p

)
= 1.

In particular, we used above the fact that Observation 2 implies that aZp−1(+) ≃
ZW− as explained next. Since (p−1)(p+1) = aW , all divisors of p−1 are divisors
of aW . By definition of a andW in Definition 12, we also have that gcd(a,W ) =
1, which implies that any factor of p−1 divides either a orW , but not both. When
we divide p − 1 by all the common divisors with a, only the common divisors
with W are left, which implies (p− 1)/gcd(a, p− 1) = gcd(W,p− 1) =W−. The
proof of the lemma is now completed by Observation 2.

Corollary 1. Let p be a (λ, ap)-strong prime, q be a (λ, aq)-strong prime, N =
p · q, a = lcm(ap, aq), P,Q ∈ ZN and f(x) = x2 − Px + Q. Then (Z∗

N,f )
(a) is

λ-strong.

8 Since we set a to be at most polynomial in λ, its is possible to go over all possible
candidate values for a in time polynomial in λ. Thus, any algorithm that could factor
N using the knowledge of a can be efficiently simulated even without the knowledge
of a.
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4.3 Our Interactive Protocol

Our interactive protocol is formally described in Figure 3. To understand this
protocol, we first recall the outline of Pietrzak’s interactive protocol from Section 1.2
and then highlight the hurdles. Let N = p · q be an RSA modulus where p and
q are strong primes and let x be a random element from Z∗

N . The interactive
protocol in [42] allows a prover to convince the verifier of the statement

“(N, x, y, T ) satisfies y = x2
T

mod N”.

The protocol is recursive and in a round-by-round fashion reduces the claim to
a smaller statement by halving the time parameter. To be precise, in each round

the (honest) prover sends the “midpoint” µ = x2
T/2

of the current statement to
the verifier and they together reduce the statement to

“(N, x′, y′, T/2) satisfies y′ = (x′)2
T/2

mod N”,

where x′ = xrµ and y′ = µry for a random challenge r. This is continued until
(N, x, y, T = 1) is obtained at which point the verifier simply checks whether
y = x2 mod N .

The main problem, we face while designing our protocol is ensuring that the
verifier can check whether µ sent by prover lies in an appropriate subgroup of
ZN [
√
D]. In the first draft of Pietrzak’s protocol[41], prover sends a square root

of µ, from which the original µ can be recovered easily (by simply squaring it)
with a guarantee, that the result lies in a group of quadratic residues QRN .
Notice that the prover knows the square root of µ, because it is just a previous
term in the sequence he computed.

Using Pietrzak’s protocol directly for our delay function would require computing
a-th roots in RSA group for some arbitrary a. Since this is a computationally
hard problem, we cannot use the same trick. In fact, the VDF construction of
Wesolowski [56] is based on similar hardness assumption.

While Pietrzak shifted from QRN to the group of signed quadratic residues
QR+

N in his following paper [42] to get unique proofs, we resort to his old idea
of ‘squaring a square root’ and generalise it.

The high level idea is simple. First, on input ω, prover computes the sequence

(ω, ω2, . . . , ω2T ). Next, during the protocol, verifier maps all elements sent by the
prover by homomorphism

ψ : Z∗
N,f → (Z∗

N,f )
(a), ψ(x) = xa (11)

into the target strong group (Z∗
N,f )

(a). This process is illustrated in Figure 2.

Notice that the equality y = ω2T for the original sequence implies the equality

ya = (ωa)2
T

for the mapped sequence (ωa, ω2a, . . . , ωa2T ).

Restriction to Elements of (Z∗
N,f)

(a). Mapping Equation (11) introduces a
new technical difficulty. Since ψ is not injective, we narrow the domain inputs, for
which the output of our VDF is verifiable, from Z∗

N,f to (Z∗
N,f )

(a). Furthermore,
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Fig. 2. Illustration of our computation of the iterated squaring using the a-th root of
ω. Horizontal arrows are x 7→ x2 and diagonal arrows are x 7→ xa.

the only way to verify that a certain x is an element of (Z∗
N,f )

(a) is to get an
a-th root of x and raise it to the ath power. So we have to represent elements of
(Z∗

N,f )
(a) by elements of Z∗

N,f anyway. To resolve these two issues, we introduce

a non-unique representation of elements of (Z∗
N,f )

(a).

Definition 13. For a ∈ N and x ∈ Z∗
N,f , we denote x

a (an element of (Z∗
N,f )

(a))
by [x]. Since this representation of xa is not unique, we define an equality relation
by

[x] = [y]
def↔ xa = ya

We will denote by tilde (x̃) the elements that were already powered to the a by a
verifier (i.e. x̃ = xa). Thus tilded variables verifiably belong to the target group
(Z∗

N,f )
(a).

In the following text, the goal of the brackets notation in Definition 13 is
to distinguish places where the equality means the equality of elements of Z∗

N,f

from those places, where the equality holds up to Ker(ψ). A reader can also see
the notation in Definition 13 as a concrete representation of elements of a factor
group ZN,f/Ker(ψ).

Our security reduction 2 required the delay function to operate everywhere
on ZN . This is not a problem if the LCS.Setup algorithm is modified to output
the set Ker(ψ).

4.4 Security

Recall here that (Z∗
N,f )

(a) is λ-strong group, so there exist

p1, . . . , pm ∈ P ∩ (2λ,∞) and k1, . . . , km ∈ N such that

(Z∗
N,f )

(a) ≃ Z
p
k1
1
(+)× · · · × Zpkm

m
(+) (12)

Definition 14. For z ∈ (Z∗
N,f )

(a) and i ∈ [m], we define zi as i-th coordinate
of ψ(z), where ψ is the isomorphism given by Equation (12).
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Setting

n ∈ N computational security parameter
λ ∈ N statistical security parameter
a ∈ N exponentiation parameter
N ∈ N a product of n-bit (λ, ap)-safe prime p and

(λ, aq)-safe prime q such that a = lcm(ap, aq)
f(x) = x2 − Px+Q for some P,Q ∈ ZN

((N, a), [ω], T ) a challenge tuple
((N, a), [ω], T, [y]) a solution tuple

The Interactive Protocol
1. Prover and verifier get a challenge tuple ((N, a), [ω], T ) as a common input.
2. Prover computes the sequence

ω → ω2 → ω4 → . . . → ω2T

and sends its last element [y] := [ω2T ] to the verifier.
3. Prover and verifier repeat the halving protocol, initiated with solution

tuple ((N, a), [ω], T, [y]), until verifier either accept or reject.

The Halving Protocol
1. Prover and verifier get solution tuple ((N, a), [ω], T, [y]) as common input.
2. If T = 1, then the verifier computes (ω̃, ỹ) = (ωa, ya) and it outputs accept

provided that ỹ = ω̃2 or reject otherwise.

3. Prover sends [µ] := [ω2⌊T/2⌋
] to verifier.

4. If µ /∈ Z∗
N,f , then verifier output reject.

5. Verifier picks a random r from uniform distribution on Z2λ and he sends
r to the prover.

6. Finally prover and verifier merge solution tuples

((N, a), [ω], ⌊T/2⌋, [µ]) and{
((N, a), [µ], T/2, [y]) for even T
((N, a), [µ], ⌈T/2⌉, [y2]) for odd T

into the new solution tuple{
((N, a), [ωrµ], T/2, [µry]) for even T(
(N, a), [ωrµ], ⌈T/2⌉, [(µry)2]

)
for odd T .

Fig. 3. Our Interactive Protocol for LCS.

Lemma 3. Let T ∈ N and ω, µ, y ∈ (Z∗
N,f )

(a). If y ̸= ω2T , then

Pr


y′ = (ω′)2

T/2

where
r ← Z2λ

ω′ := ωrµ
y′ := µry

 < 1

2λ
. (13)
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Proof. Fix ω, µ and y. Let some r ∈ Z2λ satisfy

µry = (ωrµ)2
T/2

. (14)

Using notation from Definition 14, we rewrite Equation (14) as a set of equations

rµ1 + y1 ≡ 2T/2(rω1 + µ1) mod pk1
1 ,

...

rµm + ym ≡ 2T/2(rωm + µm) mod pkm
m .

For every j ∈ [m], by reordering the terms, the j-th equation becomes

r(2T/2ωj − µj) + (2T/2µj − yj) ≡ 0 mod p
kj

j (15)

If ∀j ∈ [m] : 2T/2ωj − µj ≡ 0 mod p
kj

j , then µ = ω2T/2

. Further for every

j ∈ [m] : 2T/2µj − yj ≡ 0 mod p
kj

j . It follows that y = µ2T/2

. Putting these two

equations together gives us y = ω2T , which contradicts our assumption y ̸= ω2T .
It follows that there exists j ∈ [m] such that

2T/2ωj − µj ̸≡ 0 mod p
kj

j . (16)

Thereafter there exists k < kj such that pkj divides (2T/2ωj − µj) and

(2T/2ωj − µj)/p
k
j ̸≡ 0 mod pj . (17)

Furthermore, from Equation (15), pkj divides (2T/2µj − yj). Finally, dividing eq.

Equation (15) by pkj , we get that r is determined uniquely (mod pj),

r ≡ −
(2T/2µj − yj)/pkj
(2T/2ωj − µj)/pkj

mod pj .

Using the fact that 2λ < pj , this uniqueness of r upper bounds number of
r ∈ Z2λ , such that Equation (14) holds, to one. It follows that the probability
that Equation (14) holds for r chosen randomly from the uniform distribution
over Z2λ is less than 1/2λ. ⊓⊔

Corollary 2. The halving protocol will turn an invalid input tuple (i.e. [y] ̸=
[ω2T ]) into a valid output tuple (i.e. [y′] = [(ω′)2

T/2

]) with probability less than
1/2λ.

Theorem 3. For any computationally unbounded prover who submits anything

other than [y] such that [y] = [ω2T ] in phase 2 of the protocol, the soundness
error is upper-bounded by log(T )/2λ
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Proof. In each round of the protocol, T decreases to ⌈T/2⌉. It follows that the
number of rounds of the halving protocol before reaching T = 1 is upper bounded
by log T .

If the verifier accepts the solution tuple ((N, a), [ω′′], 1, [y′′]) in the last round,
then the equality [y′′] = [(ω′′)2] must hold. It follows that the initial inequality
must have turned into equality in some round of the halving protocol. By
Lemma 3, the probability of this event is bounded by 1/2λ. Finally, using the
union bound for all rounds, we obtain the upper bound (log T )/2λ. ⊓⊔

4.5 Our VDF

Analogously to the VDF of Pietrzak [42], we compile our public-coin interactive
proof given in Figure 3 into a VDF using the Fiat-Shamir heuristic. The complete
construction is given in Figure 4. For ease of exposition, we assume that the time
parameter T is always a power of two.

As discussed in Section 4.3, it is crucial for the security of the protocol that
the prover computes a sequence of powers of the a-th root of the challenge and
the resulting value (as well as the intermediate values) received from the prover
is lifted to the appropriate group by raising it to the a-th power. We use the
tilde notation in Figure 4 in order to denote elements on the sequence relative
to the a-th root.

Note that, by the construction, the output of our VDF is the a · 2T -th power
of the root of the characteristic polynomial for Lucas sequence with parameters
P and Q. Therefore, the value of the delay function implicitly corresponds to
the a · 2T -th term of the Lucas sequence.

Theorem 4. Let λ be the statistical security parameter. The LCS VDF defined
in Figure 4 is correct and statistically-sound with a negligible soundness error
if hash is modelled as a random oracle, against any adversary that makes o(2λ)
oracle queries.

Proof. The correctness follows directly by construction.
To prove its statistical soundness, we proceed in a similar way to [42]. We

cannot apply Fiat-Shamir transformation directly, because our protocol does
not have constant number of rounds, thus we use Fiat-Shamir heuristic to each
round separately.

First, we use a random oracle as the hash function. Second, if a malicious
prover computed a proof accepted by verifier for some tuple ((N, a), ([ω], T ), [y])
such that

[y] ̸= [ω2T ], (19)

then he must have succeeded in turning inequality from Equation (19) into
equality in some round. By Lemma 3, probability of such a flipping is bounded
by 1/2λ. Every such an attempt requires one query to random oracle. Using a
union bound, it follows that the probability that a malicious prover who made
q queries to random oracle succeeds in flipping initial inequality into equality in
some round is upper-bounded by q/2λ.
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LCS.Setup(1n, 1λ): Runs a strong primes generator on input 1n, 1λ to get an n-bit
(λ, ap)-strong prime p and an n-bit (λ, aq)-strong prime q, such that N = p · q
is a Blum integer. Then it chooses a hash function

hash : Z× Z3
N → Z2λ .

and it outputs the public parameters

(N := p · q, a := lcm(ap, aq), hash).

LCS.Gen(N,T ): Samples P and Q independently from the uniform distribution on
ZN , sets

D := P 2 − 4Q and ω :=
P + z

2
,

where z is a formal variable satisfying z2 = D, and outputs (ω, T ).
LCS.Eval(N, (ω, T )): Computes the sequence

ω → ω2 → ω4 → ω8 → . . . → ω2T−1

→ ω2T

and outputs its last term ω2T .
LCS.Prove((N, a, hash), ([ω], T )): Computes

y := [ω2T ]

and sets (ω1, y1) = (ω, y). For i = 1, . . . , t computes

µi := ω2T/2i

i ,

ri := hash(T/2i−1, ωa
i , y

a
i , µ

a
i ),

ωi+1 := ωri
i µ,

yi+1 := µriyi.

It outputs ([y], π = ([µ1], . . . , [µt])).
LCS.Verify((N, a, hash), ([ω], T ), ([y], π)): Sets ω̃1 = ωa, ỹ1 = ya and for each i =

1, . . . , t, computes

µ̃i := µa
i ,

ri := hash(T/2i−1, ω̃i, ỹi, µ̃i),

ω̃i+1 := ω̃i
ri µ̃i,

ỹi+1 := µ̃ri
i ỹi.

It outputs accept if
ỹt+1 = ω̃2

t+1, (18)

otherwise it outputs reject.

Fig. 4. VDF based on Lucas sequences
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Since q is o(2λ), q/2λ is a negligible function and thus the soundness error is
negligible. ⊓⊔

5 Open Problems

In this work, we constructed verifiable delay functions from modular Lucas
sequences, which are linear recurrences of order two, and gave a reduction from
the sequentiality of iterated squaring to the sequentiality of our delay function. A
natural question to ask is if our approach can be generalised to linear recurrences
of higher order. In Appendix C we show that in certain groups one can soundly
verify linear recurrences of order k > 2. However, not all linear recurrences
satisfy the sequentiality property. Constructing instances of higher-order linear
recurrences that are provably sequential remains an open problem.
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14. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. IACR Cryptology
ePrint Archive 2019, 667 (2019)

15. Cini, V., Lai, R.W.F., Malavolta, G.: Lattice-based succinct arguments from
vanishing polynomials. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in
Cryptology – CRYPTO 2023. pp. 72–105. Springer Nature Switzerland, Cham
(2023)

16. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: EUROCRYPT (2).
Lecture Notes in Computer Science, vol. 10821, pp. 451–467. Springer (2018)

17. Cohen, B., Pietrzak, K.: The Chia network blockchain. Tech. rep. (2019),
https://www.chia.net/assets/ChiaGreenPaper.pdf, Accessed: 2022-07-29
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39. Müller, W.B., Nöbauer, W.: Some remarks on public-key cryptosystems. Studia
Sci. Math. Hungar. 16, 71–76 (1981)

40. P., C., Bressoud, D.M.: Factorization and primality testing. Mathematics of
Computation 56(193), 400 (1991)

41. Pietrzak, K.: Simple verifiable delay functions. IACR Cryptology ePrint Archive
2018, 627 (2018), https://eprint.iacr.org/2018/627/20180720:081000

42. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. LIPIcs, vol. 124, pp.
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

26



43. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

44. Ribenboim, P.: My Numbers, My Friends: Popular Lectures on Number Theory.
Springer-Verlag New York (2000)

45. Riesel, H.: Prime numbers and computer methods for factorization (1985)
46. Rivest, R., Silverman, R.: Are ’strong’ primes needed for rsa. Cryptology ePrint

Archive, Report 2001/007 (2001), https://eprint.iacr.org/2001/007
47. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983)
48. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto. Tech. rep., Massachusetts Institute of Technology (1996)
49. Rotem, L., Segev, G.: Generically speeding-up repeated squaring is equivalent to

factoring: Sharp thresholds for all generic-ring delay functions. In: Micciancio,
D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020. pp. 481–509.
Springer International Publishing, Cham (2020)

50. Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require hidden-
order groups. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 12107, pp. 155–
180. Springer (2020)

51. Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require hidden-
order groups. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol.
12107, pp. 155–180. Springer (2020)

52. Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., Weippl, E.R.: Randrunner:
Distributed randomness from trapdoor VDFs with strong uniqueness. In: 28th
Annual Network and Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021. The Internet Society (2021)

53. Seres, I.A., Burcsi, P.: A note on low order assumptions in RSA groups (2020),
https://eprint.iacr.org/2020/402

54. Shani, B.: A note on isogeny-based hybrid verifiable delay functions. IACR
Cryptology ePrint Archive 2019, 205 (2019)

55. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: TCC. Lecture Notes in Computer Science, vol. 4948, pp.
1–18. Springer (2008)

56. Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT (3). Lecture
Notes in Computer Science, vol. 11478, pp. 379–407. Springer (2019)

57. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020), https://doi.org/10.1007/s00145-020-09364-x

58. Williams, H.C.: A p + 1 method of factoring. Math. Comput. 39(159), 225–234
(1982)
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A Generating Strong Primes

We propose two algorithms for sampling strong primes necessary for security of
our verifiable delay function. Recall that if p is a (λ, a)-strong prime, then p2−1
has only a few small factors and all remaining factors are larger than 2λ. From
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p2 − 1 = (p − 1)(p + 1) and gcd(p − 1, p + 1) = 2, it follows that p2 − 1 always
has at least two large factors.

Naive algorithm. To sample a random strong prime, we can simply pick some
random n-bit pseudo-prime and check if it is a strong prime. First, the algorithm
finds a small factors of p − 1 by trial division and then it checks whether the
co-factor p− := (p−1)/a− is a prime (where a− denotes the product of all small
factors). Identical test is done for p + 1. If p succeeds in both tests, then p is a
(λ, a−a+)-strong prime.

Algorithm 1 (Naive strong primes generator)
Input: Security parameters 1n, 1λ.
Output: Integer tuple (p, a) such that p is (λ, a)-strong prime.

1. Pick an n-bit pseudo-prime p.
2. Factorize p− 1 to product a−p−, where factors of a− are smaller than

λ. If p− is not a pseudo-prime, goto Item 1.
3. Factorize p+ 1 to product a+p+, where factors of a+ are smaller than

λ. If p+ is not a pseudo-prime, goto Item 1.
4. Output (p, a−a+).

Enhanced algorithm. Note that for every p output by the naive algorithm (Algorithm 1),
both p− 1 and p+ 1 have exactly one large prime divisor. We can increase the
efficiency of our strong primes generator by allowing p− 1 and p+1 to have two
large prime factors. Our enhanced algorithm first fixes p−, a large prime divisor
of p − 1, and p+, a large prime divisor of p + 1. Using the Chinese Remainder
Theorem (CRT), the algorithm then computes a p such that

p ≡ +1 mod p−,

p ≡ −1 mod p+

and it adds (p−p+) to p until p is a prime.

During the next step, the algorithm checks whether (p − 1)/(a−p−) (resp.
(p+1)/(a+p+)) is a prime, where a− (resp. a+) is the product of all small factors
of (p − 1)/b− (resp. (p + 1)/b+) found by trial division. If at least one of these
tests fails, then the algorithm keeps on adding (p−p+) to p to get get another
prime.
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Algorithm 2 (Enhanced strong primes generator)
Input: Security parameters 1n, 1λ.
Output: Integer tuple (p, a) such that p is (λ, a)-strong prime.

1. Choose two random n-bits pseudo-primes p+ and p−.
2. Using CRT compute p s.t.

p ≡ +1 mod p− (i.e., ∃a− : p− 1 = b−p−) and

p ≡ −1 mod p+ (i.e., ∃a+ : p+ 1 = b+p+).

3. While p is not a pseudo-prime: p← p+ (p−p+).
4. Set b+ := (p− 1/p−) and b+ := (p+ 1)/p+.
5. Find all factors of b− (resp. b+) smaller than λ. We denote product of

these small factors a− (resp. a+).
6. If b−/a− is not a prime or b+/a+ is not a prime,

– then p← p+ p+p− and goto step. Item 3.
– Otherwise return (p, a), where a = a−a+.

In practice, the primality tests performed both in Algorithm 1 and Algorithm 2
would be implemented via a probabilistic primality test such as the Rabin-Miller
test. As a proof of concept, we provide some strong primes generated using these
two algorithms in the subsequent Appendix A.1.

A.1 Strong Primes

Here we provide two examples of 1000-bit strong primes p and q which were
respectively generated by the naive algorithm (Algorithm 1) and the enhanced
algorithm (Algorithm 2). Both primes were generated on Intel(R) Core(TM)

i5-7300U CPU @ 2.60GHz in order of minutes using a non-optimized implementation
in Python language.

p = 16408592246576726456969932179194674106366655621783510604835826
7877575793554322862873708216982336932497877306592612185351096567268923
9644418348975757669937149605849873877638112191296871434393810322378148
5730129446100301122864628024924538827741957556943380929448283532844233
385323309124719640161469841327

To enable one to verify strong primality of q, we attach factorization of q− 1
and q + 1.

q = 23431087568335585935301753944518420232264392846964012282057899
5172828328102897933036376469140764836174213983164443102567714128700069
8992550859534909244209805217509635347700270538351518573488090307705911
3597177482338823338570697425399068152914575835200148255301806733310760
872426408848064390478655071959378603

q−1 = 6×118225268749840193323823399253069714597018923011547379456
6893016478849571514658796977944834938066237523329049950868850487804475
801126211387024059597783077341× 3303169705329634117042218209873003593
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1477397769844682281016630571857576646433577269285374788809964746289633
81697478959470030923336816151545105795187187

q+1 = 4×965145252603408985383566356917121740684230267039596589830
0550695862839000667091709800596466174449546912130807847460885840798364
23774713032529731835526736407× 60693163814285815334827546554817051090
3771332405605666137156429502250424322289837971024383353900191909702827
8533426159618911544580597767730536544228493

B Safe primes modulus

In this section we explore how reduce requirements on modulus at the expense of
losing statistical soundness. Let N be product of two safe primes p = 2p′+1 and
q = 2q′ + 1. Let P be sampled from uniform distribution on ZN , D be sampled
from uniform distribution on

{D ∈ ZN |
(
D

N

)
= 1}

and set Q := 1
4 (P

2 −D). Since
(
D
N

)
= 1, there are two possible cases:

1.
(

D
p

)
= −1 and

(
D
q

)
= −1 or

2.
(

D
p

)
= 1 and

(
D
q

)
= 1

Similarly to proof of Lemma 2,

(Z∗
N,f )

(a) ≃
{
aZp2−1(+)× aZq2−1(+) in case 1
(aZp−1(+))2 × (aZq−1(+))2 in case 2

,

Since the modulus N is composed of safe primes instead of strong primes, group
(Z∗

N,f )
(a) can contain subgroups of low order in case 1. We show that the protocol

remains computationally secure assuming that every polynomial adversary has
only negligable advantage in the following decisional problem:

Problem 1 (Quadratic residuocity problem). Given an RSA modulus N and a
sampled from uniform distribution on ZN such that

(
a
N

)
= 1, decide whether a

is a quadratic residue mod N .

Definition 15. Let n ∈ N be a security parameter and N = Θ(2n). We say that
τ is a low-order element of ZN , if there exists a e = poly(λ) such that τe = 1.

Claim. If there is exists a polynomial malicious prover P ∗ who is able break the
protocol, then there exists a polynomial algorithm A for computing low-order
elements in (Z∗

N,f )
(a).

Proof (Sketch). As far as y and x2
T

differ in in some large component, it is

statistically impossible that we will get an equality y′ = (x′)2
T /2 at the end of the
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halving protocol. Therefore y and x2
T

can differ only in some small component

and the desired low-order element can be extracted as y−1x2
T

.
Formal version of this claim with a complete proof can be found in [10]. There

is an enhanced version of this claim in [53], which shows a sub-exponential lower-
bound on order of element returned by extractor.

Claim. If there exists a polynomial algorithmA for computing low-order elements
in (Z∗

N,f )
(2), then there exists a polynomial algorithm B solving the Quadratic

residuocity problem for safe primes RSA modulus.

Proof. For given N,D, algorithm B samples a random P and compute Q :=
1
4 (P

2 −D) mod N . B runs algorithm A for group (Z∗
N,f )

(2) getting element τ .
Algorithm B verifies output of A by verifying τ r = 1 for random r ← Z2λ . Let us
denote order of τ by e. If e is polynomial in λ, then this test is true positive with
non-negligible probability 1/e (=1/poly(λ)). Otherwise if e is superpolynomial,
then this test is false negative with only negligible probability 1/e.

If τ passes the low-orderity test, B output 0 (D is not quadratic residuo mod
N). Otherwise B output 1. We split the computation of success rate of B into
two cases.

In case 1, B’s success rate is equal to A’s success rate times success rate of
the low-orderity test (=1/e).

In case 2, there are no low-order elements in (Z∗
N,f )

(2) and thus output of
A cannot be valid. It follows that success rate of B in this case is equal to true
negativeness of the low-orderity check, which is 1− negl(λ).

Since these two cases occurs with the same probability, this computation
concludes in

1

2
(1− negl(λ)) +

1

2
Succ(A)

1

poly(λ)
=

1

2
+

1

poly(λ)

success rate of B, where Succ(A) denotes (non-negligible) success rate of A.

C On Linear Recurrences of Higher Order

In this chapter, we discuss a possible extension of our approach to linear recurrences
with order greater then two. In particular we show that one can soundly verify
higher-order linear recurrences in ZN if all prime factors of N are so called
generalized strong primes.

Definition 16. Let R be a ring and k ∈ N. The linear recurrence (si)i∈N0
of

order k is given by set of initial conditions b0, . . . , bk−1 ∈ R s.t. ∀i ∈ 0, . . . , k − 1 :
si = bi and coefficients of linear recurrence a0, . . . , ak−1 ∈ R s.t.

∀i > k : si = ak−1si−1 + . . .+ a0si−k

Definition 17. We define the characteristic polynomial of linear recurrence

f(x) := xk − ak−1x
k−1 − ak−2x

k−2 + . . .+ a0.
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Linear recurrences modulo p are known as linear-feedback shift registers
(LSFR) and they are well studied.

Proposition 1 (Galois representation of LSFR). Let (si)i∈N0
be linear

recurrence and f(x) be its characteristic polynomial. There exists a polynomial
g(0)(x) of degree k − 1 s.t. for every i ∈ N0 the leading coefficient of

g(i)(x) := xig(0)(x) mod f(x)

is equal to si.

Corollary 3. The n-th element of linear recurrence can be computed in O(log(n))
sequential steps.

Fact 1 Let p ∈ P, f(x) ∈ Zp[x] be a monic polynomial of degree k, r1(x) ·
. . . · rℓ(x) be the factorization of f(x) to irreducible factors. We denote di =
deg(ri(x)). Then

Zp,f ≃
ℓ×

i=1

Zp,ri ≃
ℓ×

i=1

Zpdi−1(+).

We derive sufficient conditions on factors of N to be able to use our protocol
with recurrences of higher order.

First of all, notice that the fact that f has degree 2 is used for proving
strength of (Z∗

p,f )
(a), but it is no longer needed for protocol security proof. It

follows that if we are able to find p and a, a = poly(λ), such that (Z∗
p,f )

(a) is
λ-strong group for all polynomials of degree d over Zp, then we are able to apply
our protocol to recurrences of order d. Fact 1 gives us characterization of primes
that satisfy this property.

If we restrict ourselves to recurrences of order d with irreducible characteristic
polynomial, then p must be (λ, a, d)-strong prime for some a ∈ N to achieve λ-
strength of (Z∗

p,f )
(a) and thus λ-bit security, where (λ, a, d)-strong primality is

defined as follows:

Definition 18 (Generalized strong primes). Let p ∈ P and λ, a, d ∈ N. We
say that p is a (λ, a, d)-strong prime, if λ > a and there exists W ∈ N such that
pd − 1 = aW and every factor of W (excluding number 1) is greater than 2λ.

If we want to compute recurrences of order d for any characteristic polynomial,
then p must be a (λ, ai, di)-strong prime for every di ∈ [d].

Generalized strong primes can be generated by analog of naive algorithm
(algorithm 1).
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