
Searching for ELFs in the Cryptographic Forest

Marc Fischlin Felix Rohrbach

Cryptoplexity, Technische Universität Darmstadt, Germany
www.cryptoplexity.de

{marc.fischlin, felix.rohrbach}@cryptoplexity.de

Abstract. Extremely Lossy Functions (ELFs) are families of functions that, depending on the choice
during key generation, either operate in injective mode or instead have only a polynomial image size.
The choice of the mode is indistinguishable to an outsider. ELFs were introduced by Zhandry (Crypto
2016) and have been shown to be very useful in replacing random oracles in a number of applications.
One open question is to determine the minimal assumption needed to instantiate ELFs. While all
constructions of ELFs depend on some form of exponentially-secure public-key primitive, it was conjectured
that exponentially-secure secret-key primitives, such as one-way functions, hash functions or one-way
product functions, might be sufficient to build ELFs. In this work we answer this conjecture mostly
negative: We show that no primitive, which can be derived from a random oracle (which includes all
secret-key primitives mentioned above), is enough to construct even moderately lossy functions in a
black-box manner. However, we also show that (extremely) lossy functions themselves do not imply
public-key cryptography, leaving open the option to build ELFs from some intermediate primitive between
the classical categories of secret-key and public-key cryptography.

1 Introduction
Extremely lossy functions, or short ELFs, are collections of functions that support two modes: the injective
mode, in which each image has exactly one preimage, and the lossy mode, in which the function merely has
a polynomial image size. The mode is defined by a seed or public key pk which parameterizes the function.
The key pk itself should not reveal whether it describes the injective mode or the lossy mode. In case the
lossy mode does not result in a polynomially-sized image, but the function compresses by at least a factor
of 2, we will speak of a (moderately) lossy function (LF).

Extremely lossy functions were introduced by Zhandry [Zha16, Zha19] to replace the use of the random
oracle model in some cases. The random oracle model (ROM) [BR93] introduces a truly random function
to which all parties have access to. This random function turned out to be useful in modeling hash
functions for security proofs of real-world protocols. However, such a truly random function clearly does
not exist in reality and it has been shown that no hash function can replace such an oracle without some
protocols becoming insecure [CGH98]. Therefore, a long line of research aims to replace the random oracle
by different modeling of hash functions, e.g., by the notion of correlation intractability [CGH98] or by
Universal Computational Extractors (UCEs) [BHK13]. However, all these attempts seem to have their own
problems: Current constructions of correlation intractability require extremely strong assumptions [CCR16],
while for UCEs, it is not quite clear which versions are instantiable [BFM14, BST16]. Extremely lossy
functions, in turn, can be built from relatively standard assumptions.

Indeed, it turns out that extremely lossy functions are useful in removing the need for a random oracle
in many applications: Zhandry shows it can be used to generically boost selective security to adaptive
security in signatures and identity-based encryption, construct a hash function which is output intractable,

1

point obfuscation in the presence of auxiliary information and many more [Zha16, Zha19]. Agrikola,
Couteau and Hofheinz [ACH20] show that ELFs can be used to construct probabilistic indistinguishability
obfuscation from only polynomially-secure indistinguishability obfuscation. In 2022, Murphy, O’Neill and
Zaheri [MOZ22] used ELFs to give full instantiations of the OAEP and Fujisaki-Okamoto transforms.
Recently, Brzuska et al. [BCE+23] improve on the instantiation of the Fujisaki-Okamoto transform and
instantiate the hash-then-evaluate paradigm for pseudorandom functions using ELFs.

While maybe not as popular as their extreme counterpart, moderately lossy functions have their own
applications as well: Braverman, Hassidim and Kalai [BHK11] build leakage-resistant pseudo-entropy
functions from lossy functions, and Dodis, Vaikuntanathan and Wichs [DVW20] use lossy functions to
construct extractor-dependent extractors with auxiliary information.

1.1 Our Contributions

One important open question for extremely lossy functions, as well as for moderately lossy functions, is the
minimal assumption to build them. The constructions presented by Zhandry are based on the exponential
security of the decisional Diffie-Hellman problem, but he conjectures that public-key cryptography should
not be necessary and suggests for future work to try to construct ELFs from exponentially-secure symmetric
primitives (As Zhandry shows as well in his work, polynomial security assumptions are unlikely to be
enough for ELFs1). Holmgren and Lombardi [HL18] wondered whether their definition of one-way product
functions might suffice to construct ELFs.

For moderately lossy functions, the picture is quite similar: While all current constructions require
(polynomially-secure) public-key cryptography, it is generally assumed that public-key cryptography should
not be necessary for them and that private-key assumptions should suffice (see, e.g., [QWW21]).

In this work, we answer the questions about building (extremely) lossy functions from symmetric-key
primitive mostly negative: There exists no fully-black box construction of extremely lossy functions, or
even moderately lossy functions, from a large number of primitives, including exponentially-secure one-way
functions, exponentially-secure collision resistant hash functions or one-way product functions. Indeed, any
primitive that exists unconditionally relative to a random oracle is not enough. We will call this family of
primitives Oraclecrypt, in reference to the famous naming convention by Impagliazzo [Imp95], in which
Minicrypt refers to the family of primitives that can be built from one-way functions in a black-box way.

Note that most of the previous reductions and impossibility results, such as the renowned result about
the impossibility of building key exchange protocols from black-box one-wayness [IR89], are in fact already
cast in the Oraclecrypt world. We only use this term to emphasize that we also rule out primitives that are
usually not included in Minicrypt, like collision resistant hash functions [Sim98].

On the other hand, we show that public-key primitives might not strictly be needed to construct ELFs
or moderately lossy functions. Specifically, we show that no fully black-box construction of key agreement is
possible from (moderately) lossy functions, and extend this result to prevent any fully black-box construction
even from extremely lossy functions (for a slightly weaker setting, though). This puts the primitives lossy
functions and extremely lossy functions into the intermediate area between the two classes Oraclecrypt and
Public-Key Cryptography.

Finally, we discuss the relationship of lossy functions to hard-on-average problems in SZK, the class of
problems that have a statistical zero-knowledge proof. We see hard-on-average SZK as a promising minimal
assumption to build lossy functions from – indeed, it is already known that hard-on-average SZK problems
follow from lossy functions with sufficient lossiness. While we leave open the question of building such a

1ELFs can be distinguished efficiently using a super-logarithmic amount of non-determinism. It is consistent with our
knowledge, however, that NP with an super-logarithmic amount of non-determinism is solvable in polynomial time while
polynomially-secure cryptographic primitives exist. Any construction of ELFs from polynomially-secure cryptographic primitives
would therefore change our understanding of NP-hardness.

2

(E)LFs

Oraclecrypt

Public Key Cryptography

✗ Theorem 5.5

✗ Theorem 4.1

Figure 1: We show both an oracle separation between Oraclecrypt and (E)LFs as well as (E)LFs and key agreement.

construction for future work, we give a lower bound for hard-on-average SZK problems that might be of
independent interest, showing that hard-on-average SZK problems cannot be built from any Oraclecrypt
primitive in a fully black-box way. While this is already known for some primitives in Oraclecrypt [BD19],
these results do not generalize to all Oraclecrypt primitives as our proof does.

Note that all our impossibility results only rule out black-box constructions, leaving the possibility of
future non-black-box constructions. However, while there is a growing number of non-black-box constructions
in the area of cryptography, the overwhelming majority of constructions are still black-box constructions.
Further, as all mentioned primitives like exponentially-secure one-way functions, extremely lossy functions
or key agreement might exist unconditionally, ruling out black-box constructions is the best we can hope
for to show that a construction probably does not exist.

1.2 Our Techniques

Our separation of Oraclecrypt primitives and extremely/moderately lossy functions is based on the famous
oracle separation by Impagliazzo and Rudich [IR89]: We first introduce a strong oracle that makes sure no
complexity-based cryptography exists unconditionally, and then add an independent random oracle that
allows for specific cryptographic primitives (specifically, all Oraclecrypt primitives) to exist again. We then
show that relative to these oracles, (extremely) lossy functions do not exist by constructing a distinguisher
between the injective and lossy mode for any candidate construction. A key ingredient here is that we can
identify the heavy queries in a lossy function with high probability with just polynomially many queries to
the random oracle, a common technique used for example in the work by Bitansky and Degwekar [BD19].
Finally, we use the two-oracle technique by Hsiao and Reyzin [HR04] to fix a set of oracles. We note that
our proof technique is similar to a technique in the work by Pietrzak, Rosen and Segev to show that the
lossiness of lossy functions cannot be increased well in a black-box way [PRS12]. Our separation result for
SZK, showing that primitives in Oraclecrypt may not suffice to derive hard problems in SZK, follows a
similar line of reasoning.

Our separation between lossy functions and key agreement is once more based on the work by Impagliazzo
and Rudich [IR89], but this time using their specific result for key agreement protocols. Similar to the
techniques in [GHMM18], we try to compile out the lossy function to be then able to apply the Impagliazzo-
Rudich adversary: We first show that one can build (extremely) lossy function oracles relative to a random
oracle (where the lossy function itself is efficiently computable via oracle calls, but internally makes an
exponentially number of random oracle evaluations). The heart of our separation is then a simulation
lemma showing that any efficient game relative to our (extremely) lossy function oracle can be simulated
efficiently and sufficiently close given only access to a random oracle. Here, sufficiently close means an

3

inverse polynomial gap between the two cases but where the polynomial can be set arbitrarily. Given
this we can apply the key agreement separation result of Impagliazzo and Rudich [IR89], with a careful
argument that the simulation gap does not infringe with their separation.

1.3 Related Work

Lossy Trapdoor Functions. Lossy trapdoor functions were defined by Peikert and Waters in [PW08,
PW11] who exclusively considered such functions to have a trapdoor in injective mode. Whenever we talk
about lossy functions in this work, we refer to the moderate version of extremely lossy functions which does
not necessarily have a trapdoor. The term extremely lossy function (ELFs) is used as before to capture
strongly compressing lossy functions, once more without requiring a trapdoor for the injective case.

Targeted Lossy Functions. Targeted lossy functions were introduced by Quach, Waters and Wichs [QWW21]
and are a relaxed version of lossy functions in which the lossiness only applies to a small set of specified inputs.
The motivation of the authors is the lack of progress in creating lossy functions from other assumptions
than public-key cryptography. Targeted lossy functions, however, can be built from Minicrypt assumptions,
and, as the authors show, already suffices for many applications, such as construct extractor-dependent
extractors with auxiliary information and pseudo-entropy functions. Our work very much supports this line
of research, as it shows that any further progress in creating lossy functions from Minicrypt/Oraclecrypt
assumptions is unlikely (barring some construction using non-black-box techniques) and underlines the
need of such a relaxation for lossy functions, if one wants to build them from Minicrypt assumptions.

Amplification of Lossy Functions. Pietrzak, Rosen and Segev [PRS12] show that it is impossible to
improve the relative lossiness of a lossy function in a black-box way by more than a logarithmic amount.
This translates into another obstacle in building ELFs, even when having access to a moderately lossy
function. Note that this result strengthens our result, as we show that even moderately lossy functions
cannot be built from anything in Oraclecrypt.

2 Technical Overview
In this chapter, we will give an overview about our two main theorems of this paper and techniques used
to prove them. The (extremely) lossy functions consists of two algorithms, Gen(1λ, mode) for generating
a public key in the input mode mode = loss or mode = inj, and Eval(pk, ·) taking a public key and some
input of size in(λ) and outputting a value. Here, the function Eval is (extremely) lossy if the key pk has
been generated in lossy mode, and injective if the key has been generated in injective mode. In most of our
results we give both algorithms also access to one or more oracles.

2.1 No (E)LFs in Oraclecrypt

Our first results says that one cannot build lossy functions, and thus neither extremely lossy functions,
from any primitive that exists (unconditionally) relative to a random oracle:

Theorem 4.1 (informal). There exists no fully black-box construction of lossy functions from any
Oraclecrypt primitive.

Our proof for this Theorem follows a proof idea by Pietrzak, Rosen and Segev [PRS12], which they
used to show that lossy functions cannot be amplified well, i.e., one cannot build a lossy function which
is very compressing in the lossy mode from a lossy function that is only slightly compressing in the lossy
mode. We adapt the idea to show that lossy functions cannot be built unconditionally from a random

4

oracle. Note that some technical details of our construction differ from [PRS12], though. For example, we
show the result relative to a modified PSPACE oracle instead of an EXPTIME oracle.

We will now explain how the proof for our result works. First note that our result only holds for
fully black-box constructions. The reason for this is that we use the two-oracle technique by Hsiao and
Reyzin [HR04]. This approach considers a “constructive” oracle which allows to build the primitive in
question, and a “breaking” oracle which allows to break any construction of the other primitive which is
only based on the first oracle. Presenting such oracles provides a fully black-box separation of the two
primitives.

In our case, the “constructive” oracle O in the two-oracle technique is a random oracle, supporting the
implementation of any Oraclecrypt primitive. For the “breaking” oracle, we introduce a PSPACE-oracle
with a twist: The PSPACE-oracle will itself have oracle access to another, independent random oracle
O′. The reason for this extra random oracle will become apparent soon. For now we remark that this
independent random oracle O′ does not invalidate the security of the Oraclecrypt primitives relative to O.

The main part of our proof consists of showing that we can use the breaking oracle PSPACEO′ to
distinguish EvalO(pk, ·) for injective public key pk from EvalO(pk, ·) for lossy public key pk . The approach
is now to approximate the image size of EvalO(pk, ·) by the image size of EvalO′(pk, ·). If we can indeed
approximate this sufficiently close, then we can use the PSPACEO′-oracle to give an estimate for the
image size EvalO′(pk, ·) for the same oracle O′ to get the answer for the original function EvalO(pk, ·).
However, the evaluation algorithm for oracle O and for oracle O′ may be quite far apart. To get a
sufficiently close approximation we need to “modify” O′ to at least coincide on the more likely queries of
the evaluation algorithm to O. This is accomplished based on the the heavy queries technique of Bitansky
et al. [BDV17, BD19]:

Definition 4.3 (heavy queries, informal). We call a query q to O heavy for given key pk and oracle
O if, for a large fraction of x ∈ {0, 1}in(λ), the evaluation EvalO(pk, x) queries O about q at some point.
We denote by QH the set of all heavy queries (for pk,O).

We note that we actually need to also take into account the queries of the key generating algorithm but
omit this here in the overview. Remarkably, determining a superset of all heavy queries is easy:

Lemma 4.4 (informal). We can compute in probabilistic polynomial-time (in λ) a set Q̂H which contains
all heavy queries of EvalO(pk, ·) for pk,O with overwhelming probability.

We simply run EvalO(pk, ·) for a sufficiently high, but still polynomial number of random inputs
x ∈ {0, 1}in(λ), recording all random oracle queries to get all heavy queries with probability at least
1 − 2−in(λ). The next step is to switch from oracle O to oracle O′ which is available to the attacker via
the PSPACEO′ oracle. That is, we consider the evaluation function EvalO′(pk, ·) for oracle O′ instead of
EvalO(pk, ·). In order to be still close to the original evaluation function for oracle O, we let O′ agree on
the (computable set of) heavy queries with O. Hence, we formally consider the oracle O′H that is identical
to O on all heavy queries.

The next lemma now states that ignoring the non-heavy queries in oracle R := O′H is inconsequential.
More precisely, the lemma says that if we would also enforce consistency with O on non-heavy queries,
denoted as oracle R′, this would not change the size of the evaluation function noticeably:

Lemma 4.5 (informal). For any oracle R′ that is identical to R everywhere except for the non-heavy
queries Qnonh

G by key generation, i.e., R(q) = R′(q) for any q /∈ Qnonh
G , the image sizes of EvalR(pk, ·) and

EvalR′(pk, ·) differ by at most 2in(λ)

10 .

We next show that we can use an oracle O′H to distinguish lossy from injective keys: We know that for
lossy keys, the image size of EvalO(pk, x) over all inputs x should be at most 1

2 · 2in(λ), while for injective
keys, the image size should be 2in(λ). As switching the oracle from O to O′H only changes the image size

5

slightly, there is still a large gap between the image size for injective keys and the image size for lossy keys.
Therefore, if we can calculate the image size of EvalO′

H (pk, ·) relative to O′H , we can decide between lossy
keys and injective keys.

Now the reason why we need an augmented PSPACE oracle also becomes apparent. In general, we
cannot compute the image size of a function relative to a randomly sampled function O′ in PSPACE. As
we have to compute the function for every input x to calculate the image size, a lazily sampled O′ might
be asked on exponentially many input queries, which we would have to save to answer consistently, which
clearly is not in PSPACE anymore. To work around this problem, we add a randomly sampled O′ to which
the PSPACE oracle has full access. Now we only have to modify O′ on the polynomially many heavy
queries and then can calculate the image size of any function relative to O′H .
Lemma 4.6 (informal). Given a superset of the heavy queries Q̂H ⊇ QH , we can decide correctly
whether EvalO(pk, ·) is lossy or injective with overwhelming probability.

This lemma suffices to prove the theorem’s statement.

2.2 No Key Agreement from (E)LFs

Our first result shows that lossy functions (and therefore also ELFs) are not part of Oraclecrypt, a set
which contains symmetric primitives and also, for example, collision-resistant hash functions. However, this
does not mean that ELFs inherently require public-key cryptography to build them. To show this, our
second main theorem shows that lossy functions do not imply key agreement in a fully black-box way. In
Chapter 5, we also extend this result to ELFs, but in this overview, we will only focus on lossy functions.
Theorem 5.5 (informal). There exists no fully black-box construction of a secure key agreement protocol
from lossy functions.

Our result relies on the famous result by Impagliazzo and Rudich [IR89], showing that no key agreement
can be built in a black-box way from one-way functions. More concretely, they construct an adversary
that, relative to a random oracle and, e.g., a PSPACE oracle, any candidate key agreement protocol can be
broken. We would like to deploy this adversary, but we cannot use it directly: We would need to show that
the adversary also works relative to an oracle that allows for lossy functions to exist, which a random oracle
does not (as we have seen in the previous result). To explain why this makes the problem more challenging
than in the case of separating key agreement from a random oracle, consider the following possibility to use
lossy functions in interactive protocols: Assume that Alice picks a secret bit b randomly and, depending
on the value of b, either generates an injective or a lossy key pk, and sends this public key over to Bob.
For Bob, as well as for an outsider attacker, it is infeasible to determine if pk is lossy or not. However,
Bob is now able to perform computations implicitly depending on Alice’s bit b via the Eval(pk, ·) algorithm.
Potentially, Bob also returns information about the outcomes of these evaluations back to Alice. In other
words, a lossy function already implements a very skewed form of secret bit transfer in which the recipient
only has implicit access to the transfered bit. We have to show that this still does not facilitate the task of
designing a full-fledged key exchange protocol.

Therefore, we start by defining an oracle that implements a lossy function. The oracle consists of two
functions GenΓ,Π(1λ,) and EvalΓ,Π(pk, x), where the first function produces a public key either in injective
or in lossy mode, and the second function lets us evaluate the lossy function for public key pk on input x.
The oracle makes use of two random permutations Γ and Π, where Γ is considered an integral part of the
oracle and cannot be accessed directly, while Π can be accessed directly. Note that our lossy function oracle
is, by definition, efficient when queried as an oracle, but is internally inefficient , i.e., it makes exponentially
many queries to Γ internally. Further, we define the oracle in such a way that it has another useful property
for us: Every random public key, i.e., a key not generated by GenΓ,Π, is a valid public key in injective mode
with overwhelming probability.

6

We could now try to modify the adversary of Impagliazzo-Rudich to our new oracle. Instead, the
heart of our result is the Simulation Lemma which shows, for any security game Game, access to the lossy
function oracle can be simulated sufficiently close by an efficient algorithm (we call Wrap) that only has
access to the random permutation Π. The quality of the simulation is not negligibly close, but instead
determined by an inverse polynomial α(λ) and yields a statistical distance of at most α(λ).

Lemma 5.2 (Simulation Lemma, informal). For any polynomial p(λ) and any inverse polynomial α(λ)
there exists an efficient algorithm Wrap such that for any efficient algorithm A, any efficient experiment
Game making at most p(λ) calls to the oracle, the statistical distance between GameA,(GenΓ,Π,EvalΓ,Π,Π)(1λ)
and GameA,WrapΠ is at most α(λ).

We prove Lemma 5.2 with a series of game hops, starting with the original game and ending with the
finished wrapper algorithm. The main idea is to, at some point, replace all keys by injective keys. Indeed,
as it should be hard to distinguish between lossy keys and injective keys, this switch cannot change the
underlying game significantly. The proof is the main technical challenge in this part.

Now, we have everything together to show that key agreement is not possible relative to our lossy
function oracle. Let us consider a key agreement protocol between Alice and Bob. We show that we
can wrap Alice and Bob using the algorithm defined in the Simulation Lemma, and still have a valid
key agreement protocol. Now, as the wrapped parties in the protocol only rely on Π, we show that the
Impagliazzo-Rudich adversary is successful here. However, by the Simulation Lemma, this means that
the Impagliazzo-Rudich adversary is also successful for the original game (as we would have an efficient
distinguisher otherwise).

3 Preliminaries
We say that two random variables X and Y , both indexed by security parameter λ, are computationally
indistinguishable if for any probabilistic polynomial-time algorithm A∣∣∣Pr

[
A(1λ, X(1λ) = 1

]
− Pr

[
A(1λ, Y (1λ)) = 1

]∣∣∣
is negligible. We denote by [X(1λ)] the support of a random variable (or algorithm), i.e., the set of output
values which are hit with positive probability.

We use the common notion for capturing the statistical distance between two random variables X and
Y , both indexed by a security parameter λ. That is,

SD (X, Y) := 1
2

∑
z

∣∣∣Pr
[
X(1λ) = z

]
− Pr

[
Y (1λ) = z

]∣∣∣,
such that the statistical distance is a function of the parameter λ. We sometimes use the fact that for any
sequences of random variables X1, X2, . . . , Xn, all indexed by λ, it holds

SD (X1, Xn) ≤
n−1∑
i=0

SD (Xi, Xi+1) .

The latter allows us to perform game-hopping type of arguments and bound the statistical distance by the
sum of the differences due to the individual hops.

7

3.1 Lossy Functions

A lossy function can be either injective or compressing, depending on the mode the public key pk has
been generated with. The desired mode (inj or loss) is passed as argument to a (randomized) key
generating algorithm Gen, together with the security parameter 1λ. We sometimes write pkinj or pkloss to
emphasize that the public key has been generated in either mode, and also Geninj(·) = Gen(·, inj) as well
as Genloss(·) = Gen(·, loss) to explicitly refer to key generation in injective and lossy mode, respectively.
The type of key is indistinguishable to outsiders. This holds even though the adversary can evaluate the
function via deterministic algorithm Eval under this key, taking 1λ, a key pk and a value x of input length
in(λ) as input, and returning an image fpk(x) of an implicitly defined function f . We usually assume that
1λ is included in pk and thus omit 1λ for Eval’s input.

In the literature, one can find two slightly different definitions of lossy function. One, which we call the
strict variant, requires that for any key generated in injective or lossy mode, the corresponding function is
perfectly injective or lossy. In the non-strict variant this only has to hold with overwhelming probability
over the choice of the key pk. We define both variants together:

Definition 3.1 (Lossy Functions) An ω-lossy function consists of two efficient algorithms (Gen, Eval)
of which Gen is probabilistic and Eval is deterministic and it holds that:

(a) For pkinj←$ Gen(1λ, inj) the function Eval(pkinj, ·) : {0, 1}in(λ) → {0, 1}∗ is injective with overwhelming
probability over the choice of pkinj.

(b) For pkloss←$ Gen(1λ, loss), the function Eval(pkloss, ·) : {0, 1}in(λ) → {0, 1}∗ is ω-compressing i.e.,∣∣∣{Eval(pkloss, {0, 1}in(λ))}
∣∣∣ ≤ 2in(λ)−ω, with overwhelming probability over the choice of pkloss.

(c) The random variables Geninj and Genloss are computationally indistinguishable.

We call the function strict if properties (a) and (b) hold with probability 1.

Extremely lossy functions need a more fine-grained approach where the key generation algorithm takes
an integer r between 1 and 2in(λ) instead of inj or loss. This integer determines the image size, with r = 2in(λ)

asking for an injective function. As we want to have functions with a sufficiently high lossiness that the
image size is polynomial, say, p(λ), we cannot allow for any polynomial adversary. This is so because
an adversary making p(λ) + 1 many random (but distinct) queries to the evaluating function will find a
collision in case that pk was lossy, while no collision will be found for an injective key. Instead, we define
the minimal r such that Gen(1λ, 2λ) and Gen(1λ, r) are indistinguishable based on the runtime and desired
advantage of the adversary:

Definition 3.2 (Extremely Lossy Function) An extremely lossy function consists of two efficient al-
gorithms (Gen, Eval) of which Gen is probabilistic and Eval is deterministic and it holds that:

(a) For r = 2in(λ) and pk←$ Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) → {0, 1}∗ is injective with
overwhelming probability.

(b) For r < 2in(λ) and pk←$ Gen(1λ, r) the function Eval(pk, ·) : {0, 1}in(λ) → {0, 1}∗ has an image size of
at most r with overwhelming probability.

(c) For any polynomials p and d there exists a polynomial q such that for any adversary A with a runtime
bounded by p(λ) and any r ∈ [q(λ), 2in(λ)], algorithm A distinguishes Gen(1λ, 2in(λ)) from Gen(1λ, r)
with advantage at most 1

d(λ) .

8

Note that extremely lossy functions do indeed imply the definition of (moderately) lossy functions (as
long as the lossiness-parameter ω still leaves an exponential-sized image size in the lossy mode):

Lemma 3.3 Let (Gen, Eval) be an extremely lossy function. Then (Gen, Eval) is also a (moderately) lossy
function with lossiness parameter ω = 0.9λ.

Proof. Assume (Gen, Eval) is not such a lossy function, i.e., for r = 2 λ
10 there exists an adversary A running

in time p(λ) which is able to distinguish the lossy mode from the injective mode with advantage d(λ).
Now, as any polynomial q(λ) will be eventually smaller than 2 λ

10 , this directly violates property (c) of the
extremely lossy function. □

3.2 Notions of Black-box Constructions and Oracle Separations

Most constructions in Cryptography are black-box, i.e., they are built in a way that they do not depend on
the specifics of the instance of the underlying problem or construction (i.e., a one-way function), but only
access it as an abstract primitive. Reingold, Trevisan and Vadhan [RTV04] as well as Baecher, Brzuska and
Fischlin [BBF13] have given an extensive overview over the different classes of black-box constructions. In
this paper, we will be mostly concerned with fully black-box (in the notion of [RTV04]) or BBB black-box
(in the notion of [BBF13]) construction.

Oracle separations, introduced in the seminal work by Impagliazzo and Rudich [IR89], are very useful in
proving black-box impossibility results, i.e., that a primitive P cannot be built from another primitive Q in a
black-box way. To show such an impossibility result, one comes up with an oracle A (or a collection of such)
such that, while a secure implementation of Q exists unconditionally relative to A, every implementation of
P can be broken. As black-box constructions are relativizing, i.e., the result does not change if we provide
access to some oracle, this shows that no black-box construction can exist.

A simplification of oracle separations, known as the two-oracle technique, was introduced by Hsiao
and Reyzin [HR04]. Here, we have two oracles A and B, where the secure construction of Q only relies
on A, any adversary gets access to both A and B, though. The two-oracles technique only rules out fully
black-box constructions.

Lemma 3.4 (Two-Oracle Technique [HR04]) To show that no fully black-box construction of P from
Q exists, it suffices to show that

1. there is an efficient implementation NA of Q,

2. for every efficient implementation MA of P , there exists an adversary AB such that AB breaks the
security of MA, and

3. there exists no adversary B such that BA,B breaks the security of NA.

Note that according to this lemma, adversary A does not have access to the oracle A. However, we can
always redefine our oracles as A′ = A and B′ = (A, B), which will yield the same result, but allows A to
access oracle A as well.

Another helpful lemma in fixing an oracle as part of an oracle separation is the Borel-Cantelli Lemma:

Lemma 3.5 (Borel-Cantelli) Let E1, E2, . . . be a sequence of events on the same probability space. Then,
if the sum of probabilities of events converges, the probability that infinitely many of the events occur is 0:

∞∑
λ=1

Pr[Eλ] <∞⇒ Pr

 ∞∧
k=1

∨
λ≥k

Eλ

 = 0

9

3.3 Oraclecrypt

In his seminal work [Imp95], Impagliazzo introduced five possible worlds we might be living in, including two
in which computational cryptography exists: Minicrypt, in which one-way functions exist, but public-key
cryptography does not, and Cryptomania, in which public-key cryptography exists as well. In reference to
this classification, cryptographic primitives that can be built from one-way functions in a black-box way
are often called Minicrypt primitives.

In this work, we are interested in the set of all primitives that exist relative to a truly random function.
This of course includes all Minicrypt primitives, as one-way functions exist relative to a truly random
function (with high probability), but it also includes a number of other primitives, like collision-resistant
hash functions and exponentially-secure one-way functions, for which we don’t know that they exist relative
to a one-way function, or even have a black-box impossibility result. In reference to the set of Minicrypt
primitives, we will call all primitives existing relative to a truly random function Oraclecrypt primitives.

Definition 3.6 (Oraclecrypt) We say that a cryptographic primitive is an Oraclecrypt primitive, if there
exists an implementation relative to truly random function oracle (except for a measure zero of random
oracles).

We will now show that by this definition, indeed, many symmetric primitives are Oraclecrypt primitives:

Lemma 3.7 The following primitives are Oraclecrypt primitives:

• Exponentially-secure one-way functions,

• Exponentially-secure collision resistant hash functions,

• One-way product functions.

We moved the proof for this lemma to Appendix C.1.

4 On the Impossibility of Building (E)LFs in Oraclecrypt
In this chapter, we will show that we cannot build lossy functions from a number of symmetric primitives,
including (exponentially-secure) one-way functions, collision-resistant hash functions and one-way product
functions, in a black-box way. Indeed, we will show that any primitive in Oraclecrypt is not enough to
build lossy functions. As extremely lossy functions imply (moderately) lossy functions, this result applies
to them as well.

Note that for exponentially-secure one-way functions, this was already known for lossy functions that
are sufficiently lossy: Lossy functions with sufficient lossiness imply collision-resistant hash functions, and
Simon’s result [Sim98] separates these from (exponentially-secure) one-way functions. However, this does
not apply for lossy functions with e.g. only a constant number of bits of lossiness.

Theorem 4.1 There exists no fully black-box construction of lossy functions from any Oraclecrypt primitive,
including exponentially-secure one-way functions, collision resistant hash functions, and one-way product
functions.

We will use an oracle separation to show this theorem. For this, we will start by introducing two
oracles, a random oracle and a modified PSPACE oracle. We will then, for a candidate construction of
a lossy function based on the random oracle and a public key pk, approximate the heavy queries asked
by Eval(pk, ·) to the random oracle. Next, we show that this approximation of the set of heavy queries

10

is actually enough for us approximating the image size of Eval(pk, ·) (using our modified PSPACE oracle)
and therefore gives an efficient way to distinguish lossy keys from injective keys. Finally, we have to fix a
set of oracles (instead of arguing with a distribution of oracles) and then use the two-oracle technique to
show the theorem.

4.1 Introducing the Oracles

A common oracle to use in an oracle separation in cryptography is the PSPACE oracle, as relative to this
oracle, all non-information theoretic cryptography is broken. As we do not know which (or whether any)
cryptographic primitives exist unconditionally, this is a good way to level the playing field. However, in our
case, PSPACE is not quite enough. In our proof, we want to calculate the image size of a function relative
to a (newly chosen) random oracle. It is not possible to simulate this oracle by lazy-sampling, though,
as to calculate the image size of a function, we might have to save an exponentially large set of queries,
which is not possible in PSPACE. Therefore, we give the PSPACE oracle access to its own random oracle
O′ : {0, 1}λ → {0, 1}λ and will give every adversary access to PSPACEO′ .

The second oracle is a random oracle O : {0, 1}λ → {0, 1}λ. Now, we know that a number of primitives
exist relative to a random function, including exponentially-secure one-way functions, collision-resistant
hash functions and even more complicated primitives like one-way product functions. Further, they still
exist if we give the adversary access to PSPACEO′ , too, as O′ is independent from O and PSPACEO′ does
not have direct access to O.

We will now show that every candidate construction of a lossy function with access to O can be broken
by an adversary AO,PSPACEO′

. Note that we do not give the construction access to PSPACEO′ — this
is necessary, as O′ should look like a randomly sampled oracle to the construction. However, giving the
construction access to PSPACEO′ would enable the construction to behave differently for this specific
oracle O′. Not giving the construction access to the oracle is fine, however, as we are using the two-oracle
technique.

Our proof for Theorem 4.1 will now work in two steps. First, we will show that with overwhelming
probability over independently sampled O and O′, no lossy functions exist relative to O and PSPACEO′ .
However, for an oracle separation, we need one fixed oracle. Therefore, as a second step (Section 4.4), we
will use standard techniques to select one set of oracles relative to which any of our Oraclecrypt primitives
exist, but lossy functions do not.

For the first step, we will now define how our definition of lossy functions with access to both oracles
looks like:

Definition 4.2 (Lossy functions with Oracle Access) A family of functions EvalO(pk, ·) : {0, 1}in(λ) →
{0, 1}∗ with public key pk and access to the oracles O is called ω-lossy if there exist two PPT algorithms
Geninj and Genloss such that for all λ ∈ N,

(a) For all pk in [GenOinj(1λ)] ∪ [GenOloss(1λ)], EvalO(pk, ·) is computable in polynomial time in λ,

(b) For pk←$ GenOinj(1λ), EvalO(pk, ·) is injective with overwhelming probability (over the choice of pk as
well as the random oracle O),

(c) For pk←$ GenOloss(1λ), EvalO(pk, ·) is ω-compressing with overwhelming probability (over the choice of
pk as well as the random oracle O)

(d) The random variables GenOinj and GenOloss are computationally indistinguishable for any polynomial-time
adversary AO,PSPACEO′

with access to both O and PSPACEO′.

11

4.2 Approximating the Set of Heavy Queries

In the next two subsections, we will construct an adversary AO,PSPACEO′
against lossy functions with access

to the random oracle O as described in Definition 4.2.
Let (GenO, EvalO) be some candidate implementation of a lossy function relative to the oracle O. Further,

let pk← GenO? be some public key generated by either Geninj or Genloss. Looking at the queries asked by
the lossy function to O, we can divide them into two parts: The queries asked during the generation of the
key pk, and the queries asked during the execution of EvalO(pk, ·). We will denote the queries asked during
the generation of pk by the set QG. As the generation algorithm has to be efficient, QG has polynomial
size. Let kG be the maximal number of queries asked by any of the two generators. Further, denote by kf

the maximum number of queries of EvalO(pk, x) for any pk and x — again, kf is polynomial. Finally, let
k = max {kG, kf}.

The set of all queries done by Eval(pk,)̇ for a fixed key pk might be of exponential size, as the function
might ask different queries for each input x. However, we are able to shrink the size of the relevant subset
significantly, if we concentrate on heavy queries — queries that appear for a significant fraction of all inputs
x:

Definition 4.3 (Heavy Queries) Let k be the maximum number of O-queries made by the generator
GenO? , or the maximum number of queries of Eval(pk, ·) over all inputs x ∈ {0, 1}in(λ), whichever is higher.
Fix some key pk and a random oracle O. We call a query q to O heavy if, for at least a 1

10k -fraction of
x ∈ {0, 1}in(λ), the evaluation Eval(pk, x) queries O about q at some point. We denote by QH the set of all
heavy queries (for pk,O).

The set of heavy queries is polynomial, as EvalO(pk, ·) only queries the oracle a polynomial number of
times and each heavy query has to appear in a polynomial fraction of all x. Further, we will show that
the adversary AO,PSPACEO′

is able to approximate the set of heavy queries, and that this approximation is
actually enough to decide whether pk was generated in injective or in lossy mode. We will start with a few
key observations that help us prove this statement.

The first one is that the generator, as it is an efficiently-computable function, will only query O at
polynomially-many positions, and these polynomially-many queries already define whether the function is
injective or lossy:

Observation 1 Let QG denote the queries by the generator. For a random pk ← GenOinj generated in
injective mode and a random O′ that is consistent with QG, the image size of EvalO′(pk, ·) is 2λ (except
with a negligible probability over the choice of pk and O′). Similarly, for a random pk← GenOloss generated
in lossy mode and a random O′ that is consistent with QG, the image size of EvalO′(pk, ·) is at most 2λ−1

(except with a negligible probability over the choice of pk and O′).

This follows directly from the definition: As GenO? has no information about O except the queries QG,
properties (2) and (3) of Definition 3.1 have to hold for every random oracle that is consistent with O on QG.
We will use this multiple times in the proof to argue that queries to O that are not in QG are, essentially,
useless randomness for the construction, as the construction has to work with almost any possible answer
returned by these queries.

An adversary is probably very much interested in learning the queries QG. There is no way to capture
them in general, though. Here, we need our second key observation. Lossiness is very much a global
property: to switch a function from lossy to injective, at least half of all inputs x to EvalO(pk, x) must
produce a different result, and vice versa. However, as we learned from the first observation, whether
EvalO(pk, ·) is lossy or injective, depends just on QG. Therefore, some queries in QG must be used over

12

and over again for different inputs x — and will therefore appear in the heavy set QH . Further, due to the
heaviness of these queries, the adversary is indeed able to learn them!

Our proof works alongside these two observations: First, we show in Lemma 4.4 that for any candidate
lossy function, an adversary is able to compute a set Q̂H of the interesting heavy queries. Afterwards, we
show in Lemma 4.6 that we can use Q̂H to decide whether EvalO(pk, ·) is lossy or injective, breaking the
indistinguishability property of the lossy function.

Lemma 4.4 Let EvalO(pk, ·) be a (non-strict) lossy function and pk← GenO? (1λ) for oracle O. Then we
can compute in probabilistic polynomial-time (in λ) a set Q̂H which contains all heavy queries of EvalO(pk, ·)
for pk,O with overwhelming probability.

Proof. To find the heavy queries we will execute EvalO(pk, x) for t random inputs x and record all queries
to O in Q̂H . We will now argue that, with high probability, Q̂H contains all heavy queries.

First, recall that a query is heavy if it appears for at least an ε-fraction of inputs to EvalO(pk, ·) for
ε = 1

10k . Therefore, the probability for any specific heavy query qheavy to not appear in Q̂H after the t
evaluations can be bounded by

Pr
[
qheavy /∈ Q̂H

]
= (1− ε)t ≤ 2−εt.

Furthermore, there exist at most k
ε heavy queries, because each heavy query accounts for at least ε · 2in(λ)

of the at most k · 2in(λ) possible queries of EvalO(pk, x) when iterating over all x. Therefore, the probability
that any heavy query qheavy is not included in Q̂H is given by

Pr
[
∃qheavy /∈ Q̂H

]
≤ k

ε
· 2−εt

Choosing t = 10kλ we get
Pr

[
∃qheavy /∈ Q̂H

]
≤ 10k2 · 2−λ

which is negligible. Therefore, with all but negligible probability, all heavy queries are included in Q̂H . □

4.3 Distinguishing Lossiness from Injectivity

We next make the transition from oracle O to our PSPACE-augmenting oracle O′. According to the
previous subsection, we can compute (a superset Q̂H of) the heavy queries efficiently. Then we can fix the
answers of oracle O on such frequently asked queries in Q̂H , but otherwise use the independent oracle O′
instead. Denote this partly-set oracle by O′|Q̂H

. Then the distinguisher for injective and lossy keys, given

some pk, can approximate the image size of #im(Eval
O′

|Q̂H (pk, ·)) with the help of its PSPACEO′ oracle
and thus also derives a good approximiation for the actual oracle O. This will be done in Lemma 4.6.

We still have to show that the non-heavy queries do not violate the above approach. According to the
proof of Lemma 4.5 it suffices to look at the case that the image sizes of oracles R := O′|Q̂H

and for oracle
R′ := O′|Q̂H∪QG

, where we als fix on the key generator’s non-heavy queries to values from O, cannot differ
significantly. Put differently, missing out the generator’s non-heavy queries QG in Q̂H only slightly affects
the image size of Eval

O′
|Q̂H (pk, ·), and we can proceed with our approach to consider only heavy queries.

Lemma 4.5 Let pk← GenR? (1λ) and Qnonh
G = {q1, . . . , qk′} be the k′ generator’s queries to R in QG when

computing pk that are not heavy for pk,R. Then, for any oracle R′ that is identical to R everywhere
except for the queries in Qnonh

G , i.e., R(q) = R′(q) for any q /∈ Qnonh
G , the image sizes of EvalR(pk, ·) and

EvalR′(pk, ·) differ by at most 2in(λ)

10 .

13

Proof. As the queries in Qnonh
G are non-heavy, every qi ∈ Qnonh

G is queried for at most 2in(λ)

10k inputs x to
EvalR(pk, ·) when evaluating the function. Therefore, any change in the oracle R at qi ∈ Qnonh

G affects the
output of EvalR(pk, ·) for at most 2in(λ)

10k inputs. Hence, when considering the oracle R′, which differs from R
only on the k′ queries from Qnonh

G , moving from R to R′ for evaluating EvalR(pk, ·) changes the output for
at most k′2in(λ)

10k inputs x. In other words, letting ∆f denote the set of all x such that EvalR(pk, x) queries
some q ∈ Qnonh

G during the evaluation, we know that

|∆f | ≤
k′2in(λ)

10k

and
EvalR(pk, x) = EvalR′(pk, x) for all x ̸∈ ∆f .

We are interested in the difference of the image sizes of EvalR(pk, ·) and EvalR′(pk, ·). Each x ∈ ∆f may add
or subtract an image in the difference, depending on whether the modified output EvalR′(pk, x) introduces
a new image or redirects the only image EvalR(pk, x) to an already existing one. Therefore, the difference
between the image sizes is at most

∣∣∣#im(EvalR(pk, ·))−#im(EvalR′(pk, ·))
∣∣∣ ≤ k′2in(λ)

10k
≤ 2in(λ)

10 ,

where the last inequality is due to k′ ≤ k. □

Lemma 4.6 Given Q̂H ⊇ QH , we can decide correctly whether EvalO(pk, ·) is lossy or injective with
overwhelming probability.

Proof. As described in Section 4.1, we give the adversary, who has to distinguish a lossy key from a
injective key, access to PSPACEO′ , where O′ is another random oracle sampled independently of O. This
is necessary for the adversary, as we want to calculate the image size of EvalO′(pk, ·) relative to a random
oracle O′, and we cannot do this in PSPACE with lazy sampling.

We will consider the following adversary A: It defines an oracle O′|Q̂H
that is identical to O′ for all

queries q ̸∈ Q̂H and identical to O for all queries q ∈ Q̂H . Then, it calculates the image size

#im(Eval
O′

|Q̂H (pk, ·)) =
∣∣∣∣{Eval

O′
|Q̂H (pk, {0, 1}in(λ))}

∣∣∣∣ .

Note that this can be done efficiently using PSPACEO′ as well as polynomially many queries to O. If
#im(Eval

O′
|Q̂H (pk, ·)) is bigger than 3

42in(λ), A will guess that EvalO(pk, ·) is injective, and lossy otherwise.
For simplicity reasons, we will assume from now on that pk was generated by Geninj — the case where pk
was generated by Genloss follows by a symmetric argument.

First, assume that all queries QG of the generator are included in Q̂H . In this case, any O′ that is
consistent with QH is also consistent with all the information Geninj have about O. However, this means that
by definition, EvalO(pk, ·) has to be injective with overwhelming probability, and therefore, an adversary
can easily check whether pk was created by Geninj.

Otherwise, let q1, . . . , qk′ be a set of queries in QG which are not included in Q̂H . With overwhelming
probability, this means that q1, . . . , qk′ are all non-heavy. We now apply Lemma 4.5 for oracles R := O′|Q̂H

and R′ := O′|Q̂H∪QG
. These two oracles may only differ on the non-heavy queries in QG, where R coincides

with O′ and R′ coincides with O; otherwise the oracles are identical. Lemma 4.5 tells us that this will

14

change the image size by at most 2in(λ)

10 . Therefore, with overwhelming probability, the image size calculated
by the distinguisher is bounded from below by

#im(Eval
O′

|Q̂H (pk, ·)) ≥ 2in(λ) − 2in(λ)

10 ≥ 3
42in(λ)

and the distinguisher will therefore correctly decide that EvalO(pk, ·) is in injective mode. □

Theorem 4.7 Let O and O′ be two independent random oracles. Then, with overwhelming probability over
the choice of the two random oracles, lossy functions do not exist relative the oracles O and PSPACEO′.

Proof. Given the key pk, our distinguisher (with oracle access to random oracle O) against the injective
and lossy mode first runs the algorithm of Lemma 4.4 to efficiently construct a super set Q̂H of the heavy
queries QH for pk,O. This succeeds with overwhelming probability, and from now on we assume that
indeed QH ⊆ Q̂H . Then our algorithm continues by running the decision procedure of Lemma 4.6 to
distinguish the cases. Using the PSPACEO′ oracle, the latter can also be carried out efficiently. □

4.4 Fixing an Oracle

We have shown now (in Theorem 4.7) that no lossy function exists relative to a random oracle with
overwhelming probability. However, to prove our main theorem, we have to show that there exists one
fixed oracle relative to which one-way functions (or collision-resistant hash functions, or one-way product
functions) exist, but lossy functions do not.

In Lemma 3.7, we have already shown that (exponentially-secure) one-way functions, collision-resistant
hash functions and one-way product functions exist relative to a random oracle with high probability.
In the next lemma, we will show that there exists a fixed oracle relative to which exponentially-secure
one-way functions exist, but lossy functions do not. The proofs for existence of oracles relative to which
exponentially-secure collision-resistant hash functions or one-way product functions, but no lossy functions
exist follow similarly.

Lemma 4.8 There exists a fixed set of oracles O, PSPACEO′ such that relative to these oracles, one-way
functions using O exist, but no construction of lossy functions from O exists.

Now, our main theorem of this section directly follows from this lemma (and its variants for the other
primitives):

Theorem 4.1 (restated) There exists no fully black-box construction of lossy functions from any Oracle-
crypt primitive, including exponentially-secure one-way functions, collision resistant hash functions, and
one-way product functions.

Proof. By Lemma 4.8, there exist two oracles O and PSPACEO′ such that exponentially-secure one-way
functions (or any of the other Oraclecrypt primitives) exist relative to O, even if the adversary against the
one-wayness has additional access to PSPACEO′ . However, there exists an adversary with access to O and
PSPACEO′ that breaks any construction of a lossy function relative to O. The two-oracle technique then
shows that this means no fully black-box construction of lossy functions from exponentially-secure one-way
functions (or, from any other primitive in Oraclecrypt) can exist. □

Let us now focus on Lemma 4.8 again. Up to this point, we have argued over distributions of oracles
(i.e., we have required the oracles O and O′ to be chosen at random from any possible oracle). For a proper
oracle separation, however, we have to show that our results hold for a set of fixed oracles.

We use the following Borel-Cantelli-style theorem from Mahmoody, Mohammed, Nematihaji, Pass and
Shelat [MMN+16]:

15

Lemma 4.9 ([MMN+16], Lemma 2.9) Let E1, E2, . . . be a sequence of events such that ∃c∀n ∈ N :
Pr[En] ≥ c, where c is a constant, 0 < c < 1. Then,

Pr

 ∞∧
k=1

∨
n>k

En

 ≥ c

Further, we also need the so-called splitting lemma [PS00] which allows to relate the probability of
events over a product space X × Y to the ones when the X-part is fixed:

Lemma 4.10 (Splitting Lemma [PS00]) Let D = DX ×DY be some product distributions over X × Y .
Let Z ⊆ X × Y be such that PrD[(x, y) ∈ Z] > ε. For any α < ε call x ∈ X to be α-good if

Pry ←$DY
[(x, y) ∈ Z] > ε− α.

Then we have Prx←$DX
[x is α-good] ≥ α.

Proof (of Lemma 4.8). We will show that for each primitive out of exponentially-secure one-way functions,
collision-resistant hash functions and one-way product functions, there exist two fixed oracles O and O′
such that, relative to O and PSPACEO′ , this primitive exists, but lossy functions do not. We will now
prove this for exponentially-secure one-way functions – the proof for the other primitives works analogously.

Let AO,PSPACEO′
be the adversary against lossy functions as described in the last sections. Then, by

Theorem 4.7, we know that the adversary wins with overwhelming probability over the choice of the two
random oracles as well as any internal randomness of A, i.e., there exists a negligible function ε(λ) such
that

∀λ ∈ N : PrO,O′,A

[
AO,PSPACEO′

wins
]
≥ 1− ε(λ).

We will now first fix an oracle O. To do this, we have to split out oracle O using the Splitting Lemma
(4.10) with α = 1

2(1− ε(λ)):

∀λ ∈ N : PrO
[
PrO′,A

[
AO,PSPACEO′

wins
]
≥ 1

2(1− ε(λ))
]
≥ 1

2(1− ε(λ))

Next, we want to use the constant version of the Borel-Cantelli Lemma (4.9), for which we need a constant
bound in the outer probability. For large security parameters, we can just bound the outer probability by
1
3 , as a negligible function will eventually be smaller than any constant. For small security parameters,
this might not work directly, but we can modify the negligible function ε′ to be 1 in these cases (ε′ stays
negligible, as the modification only happens for small security parameters).

∀λ ∈ N : PrO
[
PrO′,A

[
AO,PSPACEO′

wins
]
≥ 1

2(1− ε′(λ))
]
≥ 1

3

Now, the constant version of Borel-Cantelli gives us

PrO

 ∞∧
k=1

∨
λ>k

PrO′,A

[
AO,PSPACEO′

wins
]
≥ 1

2(1− ε′(λ))

 ≥ 1
3 .

In other words, for a 1
3 fraction of all oracles O, adversary A wins for infinitely many security parameters

with probability 1
2(1− ε′(λ)) (over the choice of O′ and the randomness of A).

Now, we want to have a fixed oracle O relative to which not only lossy functions do not exist, but also
exponentially-secure one-way functions do exist. However, by Lemma 3.7 we know that exponentially-secure

16

one-way functions exist relative to a 1-measure of random oracles O. Therefore, it is clear we will find a
fixed oracle O relative to which exponentially-secure one-way functions exist, but lossy functions do not.
Let us now fix such an oracle O.

Now, it remains for us to fix the other random oracle, O′. We can apply the splitting lemma again to
get

∀λ ∈ N : PrO′

[
PrA

[
AO,PSPACEO′

wins
]
≥ 1

4(1− ε′(λ))
]
≥ 1

4(1− ε′)

By a similar argument as above, we can fix the outer probability by modifying the negligible function to ε′′,
which lets us apply Borell-Cantelli again:

PrO′

 ∞∧
k=1

∨
λ>k

PrA
[
AO,PSPACEO′

wins
]
≥ 1

4(1− ε′′(λ))

 ≥ 1
5 .

Fixing an oracle O′ out of the 1
5 fraction gives us the desired result. □

5 On the Impossibility of Building Key Agreement Protocols from
(Extremely) Lossy Functions

In the previous section we showed that lossy functions cannot be built from many symmetric primitives in
a black-box way. This raises the question if lossy functions and extremely lossy functions might be inherent
asymmetric primitives. In this section we provide evidence to the contrary, showing that key agreement
cannot be built from lossy functions in a black-box way. For this, we adapt the proof by Impagliazzo and
Rudich [IR89] showing that key agreement cannot be built from one-way functions to our setting. We
extend this result to also hold for extremely lossy functions, but in a slightly weaker setting.

5.1 Lossy Function Oracle

We specify our lossy function oracle relative to a (random) permutation oracle Π, and further sample
(independently of Π) a second random permutation Γ as integral part of our lossy function oracle. The
core idea of the oracle is to evaluate EvalΓ,Π(pkinj, x) = Π(pkinj∥ax + b) for the injective mode, but set
EvalΓ,Π(pkloss, x) = Π(pkloss∥setlsb(ax + b)) for the lossy mode, where a, b describe a pairwise independent
hash permutation ax + b over the field GF(2µ) with a ̸= 0 and setlsb sets the least significant bit to 0.
Then the lossy function is clearly two to one. The values a, b will be chosen during key generation and
placed into the public key, but we need to hide them from the adversary in order to make the keys of the
two modes indistinguishable. Else a distinguisher, given pk, could check if EvalΓ,Π(pk, x) = EvalΓ,Π(pk, x′)
for appropriately computed x ̸= x′ with setlsb(ax + b) = setlsb(ax′ + b). Therefore, we will use the secret
permutation Γ to hide the values in the public key. We will denote the preimage of pk under Γ as pre-key.

Another feature of our construction is to ensure that the adversary cannot generate a lossy key pkloss
without calling GenΓ,Π in lossy mode, while allowing it to generate keys in injective mode. We accomplish
this by having a value k in our public pre-key that is zero for lossy keys and may take any non-zero value
for an injective public key. Therefore, with overwhelming probability, any key generated by the adversary
without a call to the GenΓ,Π oracle will be an injective key.

We finally put both ideas together. For key generation we hide a, b and also the string k by creating
pk as a commitment to the values, pk ← Γ(k∥a∥b∥z) for random z. To unify calls to Γ in regard of the
security parameter λ, we will choose all entries in the range of λ/5.2 When receiving pk the evaluation

2For moderately lossy function we could actually use λ/4 but for compatibility to the extremely lossy case it is convenient
to use λ/5 already here.

17

algorithm EvalΓ,Π first recovers the preimage k∥a∥b∥z under Π, then checks if k signals injective or lossy
mode, and then computes Π(a∥b∥ax + b) resp. Π(a∥b∥setlsb(ax + b)) as the output.

Definition 5.1 (Lossy Function Oracle) Let Π, Γ be permutation oracles with Π, Γ : {0, 1}λ → {0, 1}λ
for all λ. Let µ = µ(λ) = ⌊(λ− 2)/5⌋ and pad = pad(λ) = λ− 2− 5µ define the length that the rounding-off
loses to λ− 2 in total (such that pad ∈ {0, 1, 2, 3, 4}). Define the lossy function (GenΓ,Π, EvalΓ,Π) with input
length in(λ) = µ(λ) relative to Π and Γ now as follows:

Key Generation: Oracle GenΓ,Π on input 1λ and either mode inj or loss picks random b←$ {0, 1}µ,
z←$ {0, 1}2µ+pad and random a, k←$ {0, 1}µ \ {0µ}. For mode inj the algorithm returns Γ(k∥a∥b∥z).
For mode loss the algorithm returns Γ(0µ∥a∥b∥z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}µ algorithm EvalΓ,Π first recovers (via exhaustive search)
the preimage k∥a∥b∥z of pk under Γ for k, a, b ∈ {0, 1}µ, z ∈ {0, 1}2µ+pad. Check that a ̸= 0 in the field
GF(2µ). If any check fails then return ⊥. Else, next check if k = 0µ. If so, return Π(a∥b∥setlsb(ax+b)),
else return Π(a∥b∥ax + b).

We now show that there exist permutations Π and Γ such that relative to Π and the lossy function oracle
(GenΓ,Π, EvalΓ,Π), lossy functions exist, but key agreement does not. We will rely on the seminal result by
Impagliazzo and Rudich [IR89] showing that no key agreement exists relative to a random permutation.
Note that we do not give direct access to Γ — it will only be accessed by the lossy functions oracle and is
considered an integral part of it.

The following lemma is the technical core of our results. It says that the partly exponential steps of
the lossy-function oracles GenΓ,Π and EvalΓ,Π in our construction can be simulated sufficiently close and
efficiently through a stateful algorithm Wrap, given only oracle access to Π, even if we filter out the mode
for key generation calls. For this we define security experiments as efficient algorithms Game with oracle
access to an adversary A and lossy function oracles GenΓ,Π, EvalΓ,Π, Π and which produces some output,
usually indicating if the adversary has won or not. We note that we can assume for simplicity that A makes
oracle queries to the lossy function oracles and Π via the game only. Algorithm Wrap will be black-box
with respect to A and Game but needs to know the total number p(λ) of queries the adversary and the
game make to the primitive and the quality level α(λ) of the simulation upfront.

Lemma 5.2 (Simulation Lemma) Let Filter be a deterministic algorithm which for calls (1λ, mode) to
GenΓ,Π only outputs 1λ and leaves any input to calls to EvalΓ,Π and to Π unchanged. For any polynomial
p(λ) and any inverse polynomial α(λ) there exists an efficient algorithm Wrap such that for any efficient
algorithm A, any efficient experiment Game making at most p(λ) calls to the oracle,the statistical distance
between GameA,(GenΓ,Π,EvalΓ,Π,Π)(1λ) and GameA,WrapGenΓ,Π,Π◦Filter is at most α(λ). Furthermore Wrap initially
makes a polynomial number of oracle calls to GenΓ,Π, but then makes at most two calls to Π for each query.

In fact, since GenΓ,Π is efficient relative to Γ, and Wrap only makes calls to GenΓ,Π for all values up to a
logarithmic length L0, we can also write WrapΓ|L0 ,Π to denote the limited access to the Γ-oracle. We also
note that the (local) state of Wrap only consists of such small preimage-image pairs of Γ and Π for such
small values (but Wrap later calls Π also about longer inputs).

Proof. The proof strategy is to process queries of Game and A efficiently given only access to Π, making
changes to the oracle gradually, depending on the type of query. The changes will be actually implemented
by our stateful algorithm Wrap, and eventually we will add Filter at the end. To do so, we will perform
a series of games hops where we change the behavior of the key generation and evaluation oracles. For
each game Game1, Game2, . . . let Gamei(λ) be the randomized output of the game with access to A. Let

18

Game Genloss Geninj Eval(pk, x) Π(x)
Game0 pk← GenΓ,Π

loss(1
λ)

return pk
pk← GenΓ,Π

inj (1λ)
return pk

y ← EvalΓ,Π(pk, x)
return y

Π(x)

Game2 (pk, b)←$ {0, 1}6µ

a←$ {0, 1}µ
̸=0µ

k←$ {0, 1}µ
̸=0µ

stpk ← (k, a, b)
return pk

(pk, b)←$ {0, 1}6µ

a←$ {0, 1}µ
̸=0µ

stpk ← (0µ, a, b)
return pk

if stpk = ⊥
k, b←$ {0, 1}2µ

a←$ {0, 1}µ
̸=0µ

stpk ← (k, a, b)
(k, a, b)← stpk

if k = 0µ

return Π(pk∥setlsb(ax + b))
else

return Π(pk∥ax + b)

Π(x)

Game3 [. . .]
stpk ← (loss, a, b)
[. . .]

[. . .]
stpk ← (inj, a, b)
[. . .]

if stpk = ∅
b←$ {0, 1}µ

a←$ {0, 1}µ
̸=0µ

stpk ← (inj, a, b)
(mode, a, b)← stpk

if mode = loss
return Π(pk∥setlsb(ax + b))

else
return Π(pk∥ax + b)

Π(x)

Game4 [. . .]
stpk ← (a, b)
[. . .]

[. . .]
stpk ← (a, b)
[. . .]

[. . .]
stpk ← (a, b)

a, b← stpk

return Π(pk∥ax + b)

Π(x)

Game5 [. . .] [. . .] [. . .]
return Π1(pk∥ax + b)

Π1(x)

Game6 pk←$ {0, 1}5µ

return pk
pk←$ {0, 1}5µ

return pk
a∥b∥ · · · ← Π0(pk)
return Π1(pk∥ax + b)

Π1(x)

Game7 [. . .] [. . .] return Π0(pk∥x) Π1(x)

Figure 2: An overview of all the game hops. Note that for simplicity we ignored the modifications related to inputs of length
L0 here, in particular the game hop to Game1.

19

p(λ) denote the total number of oracle queries the game itself and A make through the game, and let
Game0(λ) be the original attack of A with the defined oracles. The final game will then immediately give
our algorithm Wrap with the upstream Filter. We give an overview over all the game hops in Figure 2.

Game1. In the first game hops we let Wrap collect all information about very short queries (of length
related to L0) in a list and use this list to answer subsequent queries. Change the oracles as follows. Let

L0 := L0(λ) :=
⌈
log2(80α−1(λ) · p(λ)2 + p(λ))

⌉
.

Then our current version of algorithm Wrap, upon initialization, queries Π about all inputs of size at most
2L0 and stores the list of queries and answers. The reason for using 2L0 is that the evaluation algorithm
takes as input a key of security parameter λ and some input of size µ ≈ λ/5, such that we safely cover all
evaluations for keys of security size λ ≤ L0.

Further, for any security parameter less than 2L0, our algorithm queries GenΓ,Π for λ22L0 times; recall
that we do not assume that parties have direct access to Γ but only via GenΓ,Π. This way, for any valid key,
we know that it was created at some point except with probability (1− 2−2L0)λ22L0 ≤ 2−λ and therefore the
probability that any key was not generated is at most 2L02−λ, which is negligible. Further, for every public
key, it evaluates EvalΓ,Π at x = 0 and uses the precomputed list for Π to invert, revealing the corresponding
a and b. Note that all of this can be done in polynomial time.

Any subsequent query to GenΓ,Π for security parameter at most L0, as well as to EvalΓ,Π for a public
keys of size at most L0 (which corresponds to a key for security parameter at most L0), as well as to Π for
inputs of size at most 2L0, are answered by looking up all necessary data in the list. If any data is missing,
we will return ⊥. Note that as long as we do not return ⊥, this is only a syntactical change. As returning
⊥ happens at most with negligible probability over the randomness of Wrap,

SD (Game0, Game1) ≤ 22L02−λ.

From now one we will implicitly assume that queries of short security length up to L0 are answered genuinely
with the help of tables and do not mention this explicitly anymore.

Game2. In this game, we will stop using the lossy function oracles altogether, and instead introduce a
global state for the Wrap algorithm. Note that this state will be shared between all parties having access
to the oracles (via Wrap). Now, for every call to GenΓ,Π, we do the following: If the key is created in
injective mode, Wrap will sample b←$ {0, 1}µ and a, k←$ {0, 1}µ \ {0µ}, if the key is created in lossy mode,
it sets k = 0µ. Further, it samples a public key pk←$ {0, 1}5µ+pad, and sets the state stpk ← (k, a, b).
Finally it returns pk. Any call to EvalΓ,Π(pk, x) will be handled as follows: First, Wrap checks whether a
state for pk exists. If this is not the case, we generate k, a, b←$ {0, 1}µ (with checking that a ≠ 0) and
save stpk ← (k, a, b). Then, we read (k, a, b) ← stpk from the (possibly just initialized) state and return
Π(a∥b∥ax + b).

What algorithm Wrap does here can be seen as emulating Γ. However, there are two differences: We do
not sample z, and we allow for collisions. The collisions can be of either of two types: Either we sample the
same (random) public key pk = pk′ but for different state values (k, a, b) ̸= (k′, a′, b′), or we sample the same
values (k, a, b) = (k′, a′, b′) but end up with different public keys pk ̸= pk′. In this case, an algorithm that
finds such a collision of size at least µ for µ ≥ L0/5 —smaller values are precomputed and still answered as
before— could be able to distinguish the two games. Still, the two games are statistically close since such
collisions happen with probability at most 2−2L0/5+1 for each pair of generated keys:

SD (Game2, Game1) ≤ 2p(λ)2 · 2−2L0/5+1 ≤ α(λ)
8

20

Game3. Next, instead of generating and saving a value k depending on the lossy or injective mode, we
just save a label inj or loss for the mode the key was created for. Further, whenever EvalΓ,Π(pk, x) is called
on a public key without saved state, i.e., if it has not been created via key generation, then we always label
this key as injective.

The only way the adversary is able to recognize the game hop change is because a self-chosen public
key, not determined by key generation, will now never be lossy (or will be invalid because a = 0). However,
any adversarially chosen string of size at least 5µ ≥ L0 would only describe a lossy key with probability at
most 1

2µ−p(λ) and yield an invalid a = 0 with the same probability. Hence, taking into account that the
adversary learns at most p(λ) values about Γ though genuinely generated keys, and the adversary makes at
most p(λ) queries, the statistical difference between the two games is small:

SD (Game2, Game3) ≤ 2p(λ) · 1
2−L0/5+1 − p(λ)

≤ α(λ)
8 .

Game4. Now, we remove the label inj or loss again. Wrap will now, for any call to Eval, calculate everything
in injective mode.

There are two ways an adversary can distinguish between the two games: Either by inverting Π, e.g.,
noting that the last bit in the preimage is not as expected, or by finding a pair x ≠ x′ for a lossy key pkloss
such that Eval(pkloss, x) = Eval(pkloss, x′) in Game3. Inverting Π (or guessing a and b) only succeeds with
probability 2(p(λ)+1)

2µ . For the probability of finding a collision, note that viewing the random permutation
Π as being lazy sampled (see Appendix A) shows that the answers are chosen independently of the input
(except for repeating previous answers), and especially of a, b for any lossy public key of the type considered
here. Hence, we can imagine to choose a, b for any possible pairs of inputs only after x, x′ have been
determined. But then the probability of creating a collision among the p(λ)2 many pairs for the same key
is at most 2p(λ)2

2µ for µ > L0/5. Therefore, the distance between these two games is bounded by

SD (Game3, Game4) ≤ 3(p(λ) + p(λ)2) · 2−L0/5+1 ≤ α(λ)
8 .

Game5. We split the random permutation Π to have two oracles. For β ∈ {0, 1} and x ∈ {0, 1}5µ, we now
define

Πβ(x) = Π(β∥x)1...5µ−1,

i.e., we add a prefix β and drop the last bit. We now replace any use of Π in Wrap, including direct queries
to Π, by Π1.

Would Π1 be a permutation, this would be a perfect simulation. However, Π1 is not even injective
anymore, but finding a collision is still very unlikely (as random functions are collision resistant). In
particular, using once more that we only look at sufficiently large values, the statistical distance of the
games is still small:

SD (Game4, Game5) ≤ 2p(λ)2

25µ
≤ α(λ)

8 .

Game6. Next, we stop using the global state st for information about the values related to a public key
(except for keys of security parameter at most L0). The wrapper for Gen now only generates a uniformly
random pk and returns it. For Eval calls, Wrap instead calculates a∥b← Π0(pk) on the fly. Note that there
is a small probability of 2−L0/5+1 of a = 0, yielding an invalid key. Except for this, since the adversary
does not have access to Π0, this game otherwise looks completely identical to the adversary:

SD (Game5, Game6) ≤ p(λ) · 2−L0/5+1 ≤ α(λ)
8 .

21

Game7. For our final game, we use Π0 to evaluate the lossy function:

EvalΠ(pk, x) = Π0(pk∥x).

Note that, as A has no access to Π0, calls to Eval in Game7 are random for A. For Game6, calls to Eval
looks random as long as A does not invert Π1, which happens at most with probability 2(p(λ)+1)

2µ . Therefore,
the statistical distance between the two games is bound by

SD (Game6, Game7) ≤ 3p(λ) · 2−2L0/5+1 ≤ α(λ)
8 .

In the final game the algorithm Wrap now does not need to save any state related to large public keys,
and it behaves identically for the lossy and injective generators. We can therefore safely add our algorithm
Filter, stripping off the mode before passing key generation requests to Wrap. Summing up the statistical
distances we obtain a maximal statistical of 7

8α(λ) ≤ α(λ) between the original game and the one with our
algorithms Wrap and Filter. □

We next argue that the simulation lemma allows us to conclude immediately that the function oracle in
Definition 5.1 is indeed a lossy function:

Theorem 5.3 The function in Definition 5.1 is a lossy function for lossiness parameter 2.

Proof. We first prove the easier structural properties. Clearly, the evaluation can be done efficiently
given EvalΓ,Π as an oracle (despite EvalΓ,Π itself requiring exponential time). The same holds for key
generation. We next argue that key generation in mode inj leads to an injective function. The reason
is that, as Γ is a permutation, k will not be zero by construction when being reconstructed by EvalΓ,Π,
such that subsequent calls to EvalΓ,Π will transform different inputs x ̸= x′ ∈ {0, 1}µ to different inputs
values a∥b∥ax + b ̸= a∥b∥ax′ + b for Π. Similarly, EvalΓ,Π, for a key in mode loss, will recover a value
k = 0µ, causing evaluation to set the least significant bit after the hashing step. Then there are exactly two
inputs inputs x ̸= x′ such that setlsb(ax + b) = setlsb(ax′ + b). Both inputs thus yield the same output. In
conclusion, the function is then two-to-one.

The indistinguishability of injective and lossy keys holds by the simulation lemma as follows. Let
Game be the security experiment which on input 1λ first picks a challenge bit β←$ {0, 1} at random, and
then queries oracle GenΠ about (1λ, inj) if β = 0 resp. (1λ, loss) is β = 1, obtaining a public key pk. It
then initializes the adversary A on input (1λ, pk), from then on relaying all queries of A to the oracles
GenΓ,Π, EvalΓ,Π, Π and the responses. When A eventually outputs a guess β′ ∈ {0, 1} the game checks if
β = β′ and outputs 1 if and only if this is the case.

Now assume that there was an adversary successfully attacking our lossy function. In particular, the
game outputs 1 with probability at least 1

2 + α(λ) for some inverse polynomial α and infinitely many λ.
Then we can simulate the game and this adversary with statistical distance at most α(λ)/2 for any λ via
our algorithms Wrap and Filter as in the Simulation Lemma 5.2, such that the game still outputs 1 with
probability at least 1

2 +α(λ)/2 infinitely often. This, however, contradicts the fact that Wrap with upstream
Filter operate completely independent of the key mode, such that A cannot do better than guessing β with
probability 1

2 in this simulation. □

5.2 Key Exchange

We next argue that given our oracle-based lossy function in the previous section one cannot build a secure
key agreement protocol based only this lossy function (and having also access to Π). The line of reasoning
follows the one in the renowned work by Impagliazzo and Rudich [IR89]. They show that one cannot build

22

a secure key agreement protocol between Alice and Bob, given only a random permutation oracle Π. To
this end they argue that, if we can find NP-witnesses efficiently, say, if we have access to a PSPACE oracle,
then the adversary with oracle access to Π can efficiently compute Alice’s key given only a transcript of a
protocol run between Alice and Bob (both having access to Π).

We use the same argument as in [IR89] here, noting that according to our Simulation Lemma 5.2 we
could replace the lossy function oracle relative to Π by our algorithm WrapΠ. This, however, requires some
care, especially as Wrap does not provide access to the original Π.

We first define (weakly) secure key exchange protocols relative to some oracle (or a set of oracles) O.
We assume that we have an interactive protocol

〈
AliceO, BobO

〉
between two efficient parties, both having

access to the oracle O. The interactive protocol execution for security parameter 1λ runs the interactive
protocol between AliceO(1λ; zA) for randomness zA and BobO(1λ, zB) with randomness zB, and we define
the output to be a triple (kA, T, kB)←

〈
AliceO(1λ; zA), BobO(1λ; zB)

〉
, where kA is the local key output

by Alice, T is the transcript of communication between the two parties, and kB is the local key output by
Bob. When talking about probabilities over this output we refer to the random choice of randomness zA

and zB.
Note that we define completeness in a slightly non-standard way by allowing the protocol to create

non-matching keys with a polynomial (but non-constant) probability, compared to the negligible probability
the standard definition would allow. The main motivation for this definition is that it makes our proof
easier, but as we will prove a negative result, this relaxed definition makes our result even stronger.

Definition 5.4 A key agreement protocol ⟨Alice, Bob⟩ relative to an oracle O is

complete if there exists an at least linear polynomial p(λ) such that for all large enough security parameters
λ:

Pr
[
kA ̸= kB : (kA, T, kB)←$

〈
AliceΠ(1λ), BobO(1λ)

〉]
≤ 1

p(λ) .

secure if for any efficient adversary A the probability that

Pr
[
k∗ = kA : (kA, T, kB)←$

〈
AliceO(1λ), BobO(1λ)

〉
, k∗←$AO(1λ, T)

]
is negligible.

Theorem 5.5 There exist random oracles Π and Γ such that relative to GenΓ,Π, EvalΓ,Π, Π and PSPACE,
the function oracle (GenΓ,Π, EvalΓ,Π) from Definition 5.1 is a lossy function, but no construction of secure
key agreement from GenΓ,Π, EvalΓ,Π and Π exists.

From this theorem and using the two-oracle technique, the following corollary follows directly:

Corollary 5.6 There exists no fully black-box construction of a secure key agreement protocol from lossy
functions.

Proof (Theorem 5.5). Assume, to the contrary, that a secure key agreement exists relative to these oracles.
We first note that it suffices to consider adversaries in the Wrap-based scenario. That is, A obtains a
transcript T generated by the execution of AliceWrapΓ,Π◦Filter(1λ; zA) with BobWrapΓ,Π◦Filter(1λ; zA) where
Wrap is initialized with randomness zW and itself interacts with Π. Note that WrapΠ ◦ Filter is efficiently
computable and only requires local state (holding the oracle tables for small values), so we can interpret
the wrapper as part of Alice and Bob without needing any additional communication between the two
parties—see Figure 3.

We now prove the following two statements about the key agreement protocol in the wrapped mode:

23

Alice(1λ; zA) Bob(1λ; zB)

Wrap ◦ Filter(1λ; zW) Wrap ◦ Filter(1λ; zW)

Γ, Π

Figure 3

1. For non-constant α(λ), the protocol ⟨AliceWrapΓ,Π◦Filter, BobWrapΓ,Π◦Filter⟩ still fulfills the completeness
property of the key agreement, i.e., at most with polynomial probability, the keys generated by Alice
and Bob differ; and

2. there exists a successful adversary EWrapΓ,Π◦Filter,PSPACE with additional PSPACE access, that, with
at least polynomial probability, recovers the key from the transcript of Alice and Bob.

If we show these two properties, we have derived a contradiction: If there exists a successful adversary
against the wrapped version of the protocol, then this adversary must also be successful against the protocol
with the original oracles with at most a negligible difference in the success probability – otherwise, this
adversary could be used as a distinguisher between the original and the wrapped oracles, contradicting the
Simulation Lemma 5.2.

Completeness. The first property holds by the Simulation Lemma: Assume there exists a protocol
between Alice and Bob such that in the original game, the keys generated differ for at most a polynomial
probability 1

p(λ) , while in the case where we replace the access to the oracles by WrapΓ,Π ◦ Filter for some
α(λ), the keys differ with constant probability 1

cα
. In such a case, we could—in a thought experiment—

modify Alice and Bob to end their protocol by revealing their keys. A distinguisher could now tell from
the transcripts whether the keys of the parties differ or match. Such a distinguisher would however now be
able to distinguish between the oracles and the wrapper with probability 1

cα
− 1

p(λ) , which is larger than
α(λ) for large enough security parameters, which is a contradiction to the Simulation Lemma.

Attack. For the second property, we will argue that the adversary by Impagliazzo and Rudich from their
seminal work on key agreement from one-way functions [IR89] works in our case as well. For this, first
note that the adversary has access to both Π1 (by Π-calls to Wrap) and Π0 (by Eval-calls to Wrap) and
Wrap also makes the initial calls to Γ. Combining Γ, Π0 and Π1 into a single function we can apply the
Impagliazzo-Rudich adversary. Specifically, [IR89, Theorem 6.4] relates the agreement error, denoted ϵ here,
to the success probability approximately 1− 2ϵ of breaking the key agreement protocol. Hence, let ϵ(λ) be
the at most polynomial error rate of the original key exchange protocol. We choose now α(λ) sufficiently
small such that ϵ(λ) + α(λ) is an acceptable error rate for a key exchange, i.e., at most 1/4. Then this key
exchange using the wrapped oracles is a valid key exchange using only our combined random oracle, and
therefore, we can use the Impagliazzo-Rudich adversary to recover the key with non-negligible probability.

Fixing the oracles. Finally, we have to fix the random permutations Π and Γ such that the Simulation
Lemma holds and the Impagliazzo-Rudich attack works. The Impagliazzo-Rudich attack is known to work
for all but a zero-measure of random oracles. For the Simulation Lemma, we can use Borel-Cantelli to

24

show that for a one-measure of oracle choices of Γ and Π, no successful adversary can distinguish between
the original oracles and the wrapped ones.

To show this, let us fix some game, an adversary A and an α(λ). We now know that there exists a
wrapper WrapΠ such that the statistical distance between the original game and the wrapped game is
smaller than α(λ)

λ2 :

SD
(
GameGenΓ,Π,EvalΓ,Π,Π

A , GameWrapΠ◦Filter
A

)
≤ α(λ)

λ2 .

We can now define sdA,Γ,Π as the statistical distance for fixed Γ and Π. Then, we know that the expected
value of sdΓ,Π is bound by

EΓ,Π[sdA,Γ,Π] ≤ α(λ)
λ2 .

Using the Markov inequality, we get

Pr[sdA,Γ,Π ≥ α(λ)] ≤ 1
λ2 .

Let us now denote by Eλ the event that for security parameter λ, the statistical distance sdA,Γ,Π is at least
α(λ). Since the hyperharmonic series converges, we have that

∞∑
λ=1

Pr[Eλ] <∞

and we can therefore apply Borel-Cantelli to get that the statistical distance is not bound by α(λ) for
infinitely many security parameters only happens for a zero measure of oracles Γ and Π:

PrΓ,Π

 ∞∧
k=1

∨
λ≥k

Eλ

 = 0.

As there exist only countable many (uniform) adversaries, there exists a one-measure of oracles Γ, Π such
that the Simulation Lemma holds for any adversary. Therefore, there clearly exist some oracles Γ, Π such
that the Simulation Lemma holds, while the Impagliazzo-Rudich attack is successful. □

5.3 ELFs

We will show next that our result can also be extended to show that no fully black-box construction of key
agreement from extremely lossy functions is possible. However, we are only able to show a slightly weaker
result: In our separation, we only consider constructions that access the extremely lossy function on the
same security parameter as used in the key agreement protocol. We call such constructions security-level-
preserving. This leaves the theoretic possibility of building key agreement from extremely lossy functions
of (significantly) smaller security parameters. At the same time it simplifies the proof of the Simulation
Lemma for this case significantly since we can omit the step where Wrap samples Γ for all small inputs,
and we can immediately work with the common negligible terms.

We start by defining an ELF oracle. In general, the oracle is quite similar to our lossy function oracle.
Especially, we still distinguish between an injective and a lossy mode, and make sure that any key sampled
without a call to the GenΓ,Π

ELF oracle will be injective with overwhelming probability. For the lossy mode,
we now of course have to save the parameter r in the public key. Instead of using setlsb to lose one bit of
information, we take the result of ax + b (calculated in GF (2µ)) modulo r (calculated on the integers) to
allow for the more fine-grained lossiness that is required by ELFs.

25

Definition 5.7 (Extremely Lossy Function Oracle) Let Π, Γ be permutation oracles with Π, Γ : {0, 1}λ →
{0, 1}λ for all λ. Let µ = µ(λ) = ⌊(λ− 2)/5⌋ and pad = pad(λ) = λ− 2− 5µ defines the length that the
rounding-off loses to λ − 2 in total (such that pad ∈ {0, 1, 2, 3, 4}. Define the extremely lossy function
(GenΓ,Π

ELF, EvalΓ,Π
ELF) with input length in(λ) = µ(λ) relative to Γ and Π now as follows:

Key Generation: Oracle GenΓ,Π
ELF on input 1λ and mode r picks random b←$ {0, 1}µ, z←$ {0, 1}µ+pad and

random a, k←$ {0, 1}µ \ {0µ}. For mode r = 2in(λ) the algorithm returns Γ(k∥a∥b∥r∥z). For mode
r < 2in(λ) the algorithm returns Γ(0µ∥a∥b∥r∥z) instead.

Evaluation: On input pk ∈ {0, 1}λ and x ∈ {0, 1}µ algorithm EvalΓ,Π
ELF first recovers (via exhaustive search)

the preimage k∥a∥b∥r∥z of pk under Γ for k, a, b, r ∈ {0, 1}µ, z ∈ {0, 1}µ+pad. Check that a ̸= 0 in the
field GF(2µ). If any check fails then return ⊥. Else, next check if k = 0m. If so, return Π(a∥b∥(ax + b
mod r)), else return Π(a∥b∥ax + b).

We can now formulate versions of Theorem 5.5 and Corollary 5.6 for the extremely lossy case.

Theorem 5.8 There exist random oracles Π and Γ such that relative to GenΓ,Π
ELF, EvalΓ,Π

ELF, Π and PSPACE,
the extremely lossy function oracle (GenΓ,Π

ELF, EvalΓ,Π
ELF) from Definition 5.7 is indeed an ELF, but no security-

level-preserving construction of secure key agreement from GenΓ,Π
ELF,EvalΓ,Π

ELF and Π exists.

Corollary 5.9 There exists no fully black-box security-level-preserving construction of a secure key agree-
ment protocol from extremely lossy functions.

Proving Theorem 5.8 only needs minor modifications of the proof of Theorem 5.5 to go through. Indeed,
the only real difference lies in a modified Simulation Lemma for ELFs, which we will formulate next,
together with a proof sketch that explains where differences arrive in the proof compared to the original
Simulation Lemma. To stay as close to the previous proof as possible, we will continue to distinguish
between an injective generator Geninj(1λ) and a lossy generator Genloss(1λ, r), where the latter also receives
the parameter r. Figure 4 provides an overview of the modified game hops.

Lemma 5.10 (Simulation Lemma (ELFs)) Let Filter be a deterministic algorithm which for calls
(1λ, mode) to GenΓ,Π

ELF only outputs 1λ and leaves any input to calls to EvalΓ,Π
ELF and to Π unchanged. There

exists an efficient algorithm Wrap such that for any polynomials p and d′ there exists a polynomial q such that
for any adversary A which makes at most p(λ) queries to the oracles, any efficient experiment Game making
calls to the GenΓ,Π

ELF oracle with r > q(λ) the distinguishing advantage between GameA,(GenΓ,Π
ELF,EvalΓ,Π

ELF,Π)(1λ)
and GameA,WrapΠ◦Filter is at most 1

d′(λ) for sufficiently large λ. Furthermore Wrap makes at most two calls
to Π for each query.

Proof (Sketch). We will now describe how the game hops differ from the proof of Lemma 5.2, and how
these changes affect the advantage of the distinguisher. Note that allowing only access to the ELF oracle
at the current security parameter allows us to argue that differences between game hops are negligible,
instead of having to give a concrete bound.

Game1. stays identical to Game0 – as we only allow access to the ELF oracle at the current security level,
precomputing all values smaller than some L0 is not necessary here.

26

Game Genloss(r) Geninj Eval(pk, x) Π(x)
Game0 pk← GenΓ,Π

loss(1
λ, r)

return pk
pk← GenΓ,Π

inj (1λ)
return pk

y ← EvalΓ,Π
ELF(pk, x)

return y

Π(x)

Game2 (pk, b)←$ {0, 1}6µ

a←$ {0, 1}µ
̸=0µ

k←$ {0, 1}µ
̸=0µ

stpk ← (k, a, b, r)
return pk

(pk, b)←$ {0, 1}6µ

a←$ {0, 1}µ
̸=0µ

stpk ← (0µ, a, b, 0µ)
return pk

if stpk = ∅
k, b, r←$ {0, 1}3µ

a←$ {0, 1}µ
̸=0µ

stpk ← (k, a, b, r)
k, a, b, r ← stpk

if k = 0µ

return Π(pk∥(ax + b) mod r)
else

return Π(pk∥ax + b)

Π(x)

Game3 [. . .]
stpk ← (loss, a, b, r)
[. . .]

[. . .]
stpk ← (inj, a, b, 0µ)
[. . .]

if stpk = ∅
b←$ {0, 1}µ

a←$ {0, 1}µ
̸=0µ

stpk ← (inj, a, b, 0µ)
mode, a, b, r ← stpk

if mode = loss
return Π(pk∥(ax + b) mod r)

else
return Π(pk∥ax + b)

Π(x)

Game4 [. . .]
stpk ← (a, b)
[. . .]

[. . .]
stpk ← (a, b)
[. . .]

[. . .]
stpk ← (a, b)

a, b← stpk

return Π(pk∥ax + b)

Π(x)

Game5 [. . .] [. . .] [. . .]
return Π1(pk∥ax + b)

Π1(x)

Game6 pk←$ {0, 1}5µ

return pk
pk←$ {0, 1}5µ

return pk
a∥b∥ · · · ← Π0(pk)
return Π1(pk∥ax + b)

Π1(x)

Game7 [. . .] [. . .] return Π0(pk∥x) Π1(x)

Figure 4: An overview of all the game hops for the Simulation Lemma, ELF version.

27

Game2. introduces changes similar to Game2 in Lemma 5.2 – however, we now of course also have to save
the parameter r in the state. Again, the only notable difference to the distinguisher is that we sample pk
independently of the public key parameters and therefore, collisions might happen more often. However,
the probability for this is clearly negligible:

SD (Game1, Game2) ≤ negl(λ)

Game3. replaces k with a label inj or loss. Again, the only noticeable difference is that keys sampled
without calling Geninj or Genloss will now always be injective, while they are lossy with probability 2−µ in
Game2, yielding only a negligible difference between the two games however.

SD (Game2, Game3) ≤ negl(λ)

Game4. is the game where we start to always evaluate in injective mode. There are two options a
distinguisher might distinguish between the two games: Either by inverting Π, or by finding a collision for
a lossy key. Inverting Π only happens with probability 2(p(λ)+1)

2µ , while finding a collision happens with
probability 2p(λ)2

r . Let d(λ) = d′(λ)
2 be the advantage we want to allow for the distinguisher in this game

hop. Choosing
q(λ) = 4p(λ)2d(λ)

for the bound on r of the ELF, we get

AdvGame3,Game4
A (λ) ≤ 1

d(λ)

Game4 is now identical to Game4 in the proof of Lemma 5.2 (except for the different handling of calls to
security parameters smaller than L0). Therefore, all game hops up to Game7 are identical to the ones in the
proof of Lemma 5.2, with the statistical difference being negligible for all of them. Therefore, the overall
advantage of an distinguisher is bounded by 1

d(λ) + negl(λ) ≤ 1
d′(λ) for large enough security parameters λ.

□

Let ⟨AliceGenΓ,Π
ELF,EvalΓ,Π

ELF,Π, BobGenΓ,Π
ELF,EvalΓ,Π

ELF,Π⟩ be some candidate key agreement protocol with completeness
error 1

ϵ(λ) < 1
8 that makes at most p(λ) queries in sum, and let 1

d′(λ) < 1
8 be the advantage bound for any

adversary against the key agreement we are trying to reach.
To determine the correct parameters for the ELF oracle, we need to know how many queries the

Impagliazzo-Rudich adversary makes against the transcript of the wrapped version of the protocol
⟨AliceWrapΠ◦Filter, BobWrapΠ◦Filter⟩, which depends on the number of queries of the protocol. Note that
we know that WrapΠ makes at most two queries to Π for each internal query of Alice or Bob, so we know
that the wrapped version makes at most 2p(λ) queries to Π. Let p′(λ) be the number of queries needed by
the Impagliazzo-Rudich protocol.

First, we have to show that completeness still holds for the wrapped version of the protocol. The
wrapped protocol has an error rate of at most 1

ϵ′ < 1
ϵ + 1

d′ ≤ 1
4 , as otherwise, we would have a successful

distinguisher for the Simulation Lemma. Further, as the error rate 1
ϵ′ is smaller than 1

4 , we know that
Impagliazzo-Rudich will have a success probability of at least 1

2 .
Further, we know from the Simulation Lemma that we need d(λ) = d′(λ)

2 for it to hold. Therefore, we
set the bound for r in the ELF oracle to

q(λ) = 4p′(λ)2d(λ).

28

Now, the Impagliazzo-Rudich attack has to be successful for the original protocol with polynomial probability
1

d′′ , as otherwise, there would be an distinguisher for the Simulation Lemma with advantage 1
2 − negl(λ) >

1
d′(λ) . Fixing oracles Π, Γ such that (GenΓ,Π

ELF, EvalΓ,Π
ELF) is an ELF, while the Impagliazzo-Rudich attack is

successful yields the Theorem.

6 Relationship of Lossy Functions to Statistical Zero-Knowledge
The complexity class (average-case) SZK, introduced by Goldwasser, Micali and Rackoff [GMR85], contains
all languages that can be proven by a statistical zero-knowledge proof, and is often characterized by
its complete promise problem (average-case) Statistical Distance [SV03]. Hardness of Statistical Zero-
Knowledge follows from a number of algebraic assumptions like Discrete Logarithm [GK93] and lattice
problems [MV03] and the existence of some Minicrypt primitives like one-way functions [Ost91] and
distributional collision resistant hash functions [KY18] follow from hard problems in SZK – it is not known
to follow from any Minicrypt assumptions, however, and for some, e.g., collision-resistant hash functions,
there exist black-box separations [BD19].

Therefore, average-case hard problems in SZK seem to be a natural candidate for a non-public key
assumption to build lossy functions from. Intuitively, one can see similarities between lossy functions and
statistical distance: Both are, in a sense, promise problems, if one looks at the image size of a lossy function
with a large gap between the injective mode and the lossy mode. Further, it is known that hard problems
in SZK follow from lossy functions (this seems to be folklore knowledge – we give a proof for this fact in
Appendix B).

Note that a construction of lossy functions would also be interesting from a different perspective: As
collision-resistant hash functions can be build from sufficiently lossy functions, a construction of (sufficiently)
lossy functions from average-case SZK hardness would mean that collision resistance follows from average-
case SZK hardness. However, right now, this is only known for distributional collision resistance, a weaker
primitive [KY18].

Alas, we are unable to either give a construction of a lossy function from a hard-on-average statistical
zero-knowledge problem or to prove an black-box impossibility result between the two, leaving this as an
interesting open question for future work. Instead, we give a lower bound on the needed assumptions for
hard-on-average problems in SZK by showing that no Oraclecrypt primitive can be used in a black-box way
to construct a hard-on-average problem in SZK – this serves as hint that indeed SZK is an interesting class
of problems to look at for building lossy functions, but the result might also be interesting independently.

Note some Oraclecrypt primitives, such a separation already exists: For example, Bitansky and Degwekar
give an oracle separation between collision-resistant hash functions and (even worst-case) hard problems in
SZK. However, this result uses a Simon-style oracle separation (using a break-oracle that depends on the
random oracle), which means that the result is specific to the primitive and does not easily generalize to all
Oraclecrypt primitives.

Theorem 6.1 There exists no black-box construction of an hard-on-average problem in SZK from any
Oraclecrypt primitive.

Our proof techniques will be quite similar to Chapter 4: First, we will reuse the oracles O and
PSPACEO′ . As average-case statistical distance is complete for average-case SZK, we will assume there
exists an hard-on-average statistical distance problem relative to these random oracles. We will then
calculate the heavy queries of the circuits produced by the statistical distance problem and show that the
heavy queries are sufficient to decide whether the circuits are statistically far from each other or not, yielding
a contradiction to the assumed hardness-on-average of statistical distance. Fixing O and PSPACEO′ to
specific oracles then yields the theorem.

29

(E)LFs

Oraclecrypt

Public Key Cryptography

✗ Theorem 5.5

✗ Theorem 4.1
avg-SZK

✗Theorem 6.1

?

Figure 5: We show an oracle separation between Oraclecrypt and average-case SZK as well. The question whether lossy
functions can be build from average-case SZK is still open.

We will start by defining average-case statistical distance:

Definition 6.2 (Average-case Statistical Distance) An average-case statistical distance problem is
characterized by a pair of probabilistic polynomial-time algorithms DOY (1λ) and DON (1λ) each producing
pairs of circuits CO0 , CO1 : {0, 1}λ → {0, 1}λ such that:

∀(CO0 , CO1)← DOY (1λ) : SD
(
CO0 , CO1

)
≥ 2

3 ,

∀(CO0 , CO1)← DON (1λ) : SD
(
CO0 , CO1

)
≤ 1

3 .

Statistical distance is considered hard-on-average if there exists such a pair (DY , DN) such that no polynomial-
time adversary A has more than negligible advantage in distinguishing Yes-instances from No-instances:

∀A∀λ ∈ N : Prb←$ {Y,N}; (C0,C1)←Db(1λ)

[
A(1λ, C0, C1) = b

]
≤ 1

2 + negl(λ).

Lemma 6.3 Let DO? (1λ) be a polynomial-time sampler of instances of the statistical distance problem
for either Yes- or No-instances, and let (CO0 , CO1) ← DO? (1λ). Then we can compute in probabilistic
polynomial-time (in λ) a set Q̂H which contains all 1

10k -heavy queries of both CO0 and CO1 to O with
overwhelming probability.

Again, k denotes the maximum number of queries of either DO? or CO0 or CO1 , whichever is highest.
The proof is identical to the one of Lemma 4.4, except that we now have to find the heavy queries for two
circuits instead of one function.

Next, we want to show that we can approximate the statistical distance of CO0 and CO1 with the heavy
queries and by using the PSPACEO′ oracle. First, note that we can calculate the statistical difference of
CO

′
0 and CO

′
1 efficiently using the PSPACEO′ oracle – see Figure 6 for an algorithm. Similar to Chapter 4,

we observe that the circuit sampler DOY (or DON) only makes polynomially many queries to the oracle O and,
by correctness, has therefore to produce circuits CÕ0 , CÕ1 for any extension Õ of the polynomially-many
queries.

Lemma 6.4 Let DO? (1λ) be a polynomial-time sampler of instances of the statistical distance problem for
either Yes- or No-instances, and let (CO0 , CO1) ← DO? (1λ). Let Q̂H be the heavy queries of both CO0 and
CO1 . Then, we can distinguish whether (CO0 , CO1) are far or close with high probability using PSPACEO′.

30

SD
(
CO

′
0 , CO

′
1

)
d← 0
∀y ∈ im(CO′

0 ∪ CO′

1) :

s0 ←
∣∣∣{x : CO′

0 (x) = y}
∣∣∣

s1 ←
∣∣∣{x : CO′

1 (x) = y}
∣∣∣

d← d + |s0 − s1|

return 1
2 ·

d

2n

Figure 6: An algorithm to calculate the statistical distance of two oracle-aided circuits using the PSPACEO′
oracle. We go

through all possible images of the two circuits, then check for each image how many preimages it has under either circuit. We
then add up the difference of the number of preimages between the circuits, and finally return the normalized sum. As we do
not use more than polynomial space at any point in time, this algorithm is indeed in PSPACEO′

.

Proof. We distinguish the two cases as follows: We define O′
Q̂H

as the random oracle O′ modified to match

O for all queries in Q̂H . Now, we use the PSPACEO′ oracle to calculate the statistical distance of C
O′

Q̂H
0

and C
O′

Q̂H
1 using the PSPACEO′ oracle (note that by definition, Q̂H is of polynomial size and therefore can

be passed to the PSPACEO′ oracle). If the statistical distance is at least 1
2 , we claim it was generated by

DOY , otherwise, we claim it was created by DON .
Now, of course, we still need to show that if the two circuits were far for the original oracle, they are

still far for our new oracle – and that if they were close for the original oracle, they are still close for our
new oracle. We know this must true for all changes in the oracle that were not queried by the distribution
sampler D?, and we made sure that no heavy queries are changed between the two oracles, so the only
thing that might influence the closeness or farness of the circuits are the polynomially many queries done
by D? that are not heavy queries. We will now show that while these queries might push the statistical
difference beyond the 1

3 or 2
3 bound, they will not change the statistical difference enough to push the

statistical difference beyond the 1
2 bound, meaning that our distinguisher is still able to tell them apart.

Let k′ denote the number of these non-heavy queries asked by the distribution sampler. By definition
of k, we know that k′ ≤ k. Each of the queries is non-heavy, which means that only a 1

10k -fraction of inputs
generates different outputs if one of these queries is changed between the oracles. Each changed output
changes the statistical difference by at most 1

2λ . Therefore, each changed non-heavy query changes the
statistical distance by at most 1

10k , and all non-heavy queries asked by the distribution sampler change the
statistical distance by at most k′

10k ≤
1
10 . However, as 1

3 + 1
10 < 1

2 (and 2
3 −

1
10 > 1

2), the changes do not
push the statistical distance beyond the 1

2 bound, and our distinguisher is therefore successful. □

Proof (of Theorem 6.1). The proof works again in the same vein as the proof of Theorem 4.1: Lemma 6.3
and Lemma 6.4 show that with overwhelming probability, hard-on-average SZK problems do not exist
relative to O and PSPACEO′ , over the probability of choosing O and O′. Now, we just have to show that
there exists a fixed pair of oracles such that our Oraclecrypt primitive exists, but hard-on-average SZK
problems do not – which we can easily do using the methods described in Section 4.4. This separation
then proves that no fully-black-box construction of a hard-on-average SZK problem from any Oraclecrypt
primitive may exist. □

31

Acknowledgments
We thank the anonymous reviewers for valuable comments.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1119
– 236615297 and by the German Federal Ministry of Education and Research and the Hessian Ministry
of Higher Education, Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

References
[ACH20] Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz. The usefulness of sparsifiable inputs:

How to avoid subexponential iO. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 12110 of Lecture Notes in Computer Science, pages
187–219, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany. (Cited on page 2.)

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions, revisited.
In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013,
Part I, volume 8269 of Lecture Notes in Computer Science, pages 296–315, Bengalore, India,
December 1–5, 2013. Springer, Heidelberg, Germany. (Cited on page 9.)

[BCE+23] Chris Brzuska, Geoffroy Couteau, Christoph Egger, Pihla Karanko, and Pierre Meyer. New
random oracle instantiations from extremely lossy functions. Cryptology ePrint Archive, Report
2023/1145, 2023. https://eprint.iacr.org/2023/1145. (Cited on page 2.)

[BD19] Nir Bitansky and Akshay Degwekar. On the complexity of collision resistant hash functions:
New and old black-box separations. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part I, volume 11891 of Lecture Notes in Computer
Science, pages 422–450, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg,
Germany. (Cited on pages 3, 5, and 29.)

[BDV17] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure vs. hardness through
the obfuscation lens. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 696–723,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. (Cited on page 5.)

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 188–205, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany. (Cited on page 1.)

[BHK11] Mark Braverman, Avinatan Hassidim, and Yael Tauman Kalai. Leaky pseudo-entropy functions.
In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011, Tsinghua University,
Beijing, China, January 7-9, 2011. Proceedings, pages 353–366. Tsinghua University Press,
2011. (Cited on page 2.)

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via
UCEs. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 398–415, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. (Cited on page 1.)

32

https://eprint.iacr.org/2023/1145

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press. (Cited on
page 1.)

[BST16] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland: Obfuscation,
leakage and UCE. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part II, volume 9563 of Lecture Notes in Computer Science, pages
542–564, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany. (Cited on page 1.)

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of obfuscated
pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th
Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 389–415, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany. (Cited on
page 1.)

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages
209–218, Dallas, TX, USA, May 23–26, 1998. ACM Press. (Cited on page 1.)

[Dur64] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420, 1964.
(Cited on page 35.)

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting randomness from
extractor-dependent sources. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
– EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science, pages
313–342, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. (Cited on page 2.)

[GHMM18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer Mohammed. Limits
on the power of garbling techniques for public-key encryption. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 335–364, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany. (Cited on page 3.)

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a problem
equivalent to the discrete logarithm. Journal of Cryptology, 6(2):97–116, June 1993. (Cited on
page 29.)

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th Annual ACM Symposium on Theory of Computing,
pages 291–304, Providence, RI, USA, May 6–8, 1985. ACM Press. (Cited on page 29.)

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In Mikkel Thorup, editor, 59th Annual
Symposium on Foundations of Computer Science, pages 850–858, Paris, France, October 7–9,
2018. IEEE Computer Society Press. (Cited on pages 2 and 37.)

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure
hash functions need secret coins? In Matthew Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 92–105, Santa

33

Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg, Germany. (Cited on pages 3, 5,
and 9.)

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22,
1995, pages 134–147. IEEE Computer Society, 1995. (Cited on pages 2 and 10.)

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st Annual ACM Symposium on Theory of Computing, pages 44–61, Seattle,
WA, USA, May 15–17, 1989. ACM Press. (Cited on pages 2, 3, 4, 6, 9, 17, 18, 22, 23, and 24.)

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1998. (Cited on page 35.)

[KY18] Ilan Komargodski and Eylon Yogev. On distributional collision resistant hashing. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II,
volume 10992 of Lecture Notes in Computer Science, pages 303–327, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany. (Cited on page 29.)

[MF21] Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random Oracles.
Springer, 2021. (Cited on page 37.)

[MMN+16] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and abhi shelat.
A note on black-box separations for indistinguishability obfuscation. Cryptology ePrint Archive,
Report 2016/316, 2016. https://eprint.iacr.org/2016/316. (Cited on pages 15 and 16.)

[MOZ22] Alice Murphy, Adam O’Neill, and Mohammad Zaheri. Instantiability of classical random-
oracle-model encryption transforms. In Shweta Agrawal and Dongdai Lin, editors, Advances in
Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of Lecture Notes in Computer Science,
pages 323–352, Taipei, Taiwan, December 5–9, 2022. Springer, Heidelberg, Germany. (Cited on
page 2.)

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 282–298, Santa Barbara, CA, USA,
August 17–21, 2003. Springer, Heidelberg, Germany. (Cited on page 29.)

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-knowledge
proofs. In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago,
Illinois, USA, June 30 - July 3, 1991, pages 133–138. IEEE Computer Society, 1991. (Cited on
page 29.)

[PRS12] Krzysztof Pietrzak, Alon Rosen, and Gil Segev. Lossy functions do not amplify well. In
Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of
Lecture Notes in Computer Science, pages 458–475, Taormina, Sicily, Italy, March 19–21, 2012.
Springer, Heidelberg, Germany. (Cited on pages 3, 4, and 5.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. (Cited on page 16.)

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of Computing,
pages 187–196, Victoria, BC, Canada, May 17–20, 2008. ACM Press. (Cited on page 4.)

34

https://eprint.iacr.org/2016/316

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.
Comput., 40(6):1803–1844, 2011. (Cited on page 4.)

[QWW21] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions and applications. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part IV, volume
12828 of Lecture Notes in Computer Science, pages 424–453, Virtual Event, August 16–20,
2021. Springer, Heidelberg, Germany. (Cited on pages 2 and 4.)

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 1–20, Cambridge, MA, USA,
February 19–21, 2004. Springer, Heidelberg, Germany. (Cited on page 9.)

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be based
on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98,
volume 1403 of Lecture Notes in Computer Science, pages 334–345, Espoo, Finland, May 31 –
June 4, 1998. Springer, Heidelberg, Germany. (Cited on pages 2 and 10.)

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, 2003. (Cited on page 29.)

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science,
pages 479–508, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
(Cited on pages 1 and 2.)

[Zha19] Mark Zhandry. The magic of ELFs. Journal of Cryptology, 32(3):825–866, July 2019. (Cited on
pages 1 and 2.)

A Lazy-Sampling a Random Permutation
Lazy sampling of random functions is quite easy. For each new input x pick a fresh random response
y←$ {0, 1}λ, and store y in a table T [x] for value x to answer subsequent requests about x consistently. For
lazy-sampling a random permutation one often reads that, in this case, y needs to be chosen randomly from
{0, 1}λ \ {y | T [x] ̸= ⊥}. While mathematically precise, this leaves open how this actual sampling should
be carried out algorithmically. One option, if the number of previous queries q is sufficiently small, say,
q ≤ 2λ/2, is to sample y repeatedly till a fresh value is found. This, however, yields only a lazy sampler with
expected run time guarantees. Alternatively, one aborts after a sufficient number of attempts and needs to
account for the statistical failure error and the run time influence due to the repeated trials, especially
regarding the checks if y is actually fresh.

We present here a different method to lazy-sample a random permutation. The method is based on the
Fisher-Yates algorithm, described here in the more efficient version popularized by Durstenfeld [Dur64]
and Knuth [Knu98]. The idea of the Fisher-Yates algorithm is to start with an array A[] of the integers
A[0] = 0, A[1] = 1, A[2] = 2, . . . , A[N −1] = N −1 and to iterate through all array cells, each time swapping
the current value with one of the remaining cells: For i = 0, 1, 2, . . . , N − 1 pick j←$ {i, i + 1, . . . , N − 1} at
random and exchange the contents of A[i] and A[j]. Eventually one obtains the permutation by mapping
each value i to A[i]. It is easy to see that each value has a chance of 1

N to end up at each position r, since
it has a probability of ∏r−1

i=0
N−1−i

N−i = N−r
N of being not picked in the first r − 1 rounds, times 1

N−r of being
chosen in the r-th round.

35

Of course, in our case a random permutation over {0, 1}λ is too large to be generated at the outset,
such that we perform the new assignment on the fly. For this it is convenient to also keep track of the
swaps in a table S, but where we use a sparse book keeping of only assigning values S[j] ̸= ⊥ to cells which
have been involved in a swap (and setting S[j]← j only at the point in time where we access a previously
untouched cell).

Init()
S[], T []← ⊥ // of max. size 2λ

c← 0 // counter

return (S, T, c)

Lazy-Sample(x)
if T [x] ̸= ⊥ then return T [x]
j←$ {c, c + 1, . . . , 2λ − 1}
// swap values at c and j:

if S[j] = ⊥ then S[j]← j

if S[c] = ⊥ then S[c]← c

temp← S[c]; S[c]← S[j]; S[j]← temp
// Int2Strλ : {0, 1, 2, . . . , 2λ − 1} → {0, 1}λ canonically

T [x]← Int2Strλ(S[c])
c← c + 1
return T [x]

Note that we can store the tables S and T via common structures like search trees or skip lists with
logarithmic run time. That is, after q queries the sampling procedures needs at most O(log q) steps each to
check if T [x] ̸= ⊥ among the at most q non-empty entries in T . This is also true for table S since each
sampling sets at most two values in S, such that S contains at most 2q entries at this point. But then
checking that S[∗] ̸= ⊥ and swapping the values can be carried out in O(log q) steps as well.

At first glance it seems as if the random sampling j←$ {c, c+1, . . . , 2λ−1} suffers from similar problems
as for sampling a fresh y from {0, 1}λ \ {y | T [x] ̸= ⊥}. But note that the interval [c, 2λ − 1] is consecutive,
and it suffices to pick a random integer between 0 and 2λ− 1− c and add c to the sample. Sampling such a
random integer can be done, for instance, by choosing a 2λ-bit string once and reducing the corresponding
integer modulo 2λ − c. The outcome is statistically close to uniform on [0, 2λ − 1− c].

B Lossy Functions Imply Hard Statistical Zero-Knowledge Problems
We will show that HVPZK, the class of all problems with an honest-verifier perfect zero-knowledge proof,
contains hard problems if lossy functions exist. As HVPZK is contained in HVSZK (honest-verifier statistical
zero-knowledge) and as HVSZK = SZK, this means lossy functions imply hard problems in SZK.

Proposition B.1 Let (Gen, Eval) be an ω-lossy function for ω ≥ 1. Then the language

L =
{

(1λ, pk)
∣∣∣ pk ∈ [Geninj(1λ)]

}
is in HVPZK\BPP. In particular, with the distribution D(1λ) picking a random bit b←$ {0, 1} and returning
pk←$ Geninj(1λ) if b = 0 resp. pk←$ Genloss(1λ) if b = 1, we get a hard-on-average problem in HVPZK.

Proof. Note that injective public keys pk ∈ [Geninj(1λ)] cannot lie in the support of lossy keys [Genloss(1λ)],
because the function cannot be injective and lossy at the same time. Hence, if the language L was in BPP,
then one could the decision algorithm to decide with error at most 1/3 if a given public key pk is injective
or lossy. This, however, contradicts the indistinguishability of keys of the lossy function. This translates
accordingly to the defined distribution D for the hard-on-average problem.

36

Next, we present our honest-verifier perfect zero-knowledge protocol for L. The input to both parties, the
prover and the verifier, is (1λ, pk). The verifier picks a random x←$ {0, 1}λ and computes y ← Eval(pk, x)
and sends y to the prover. The prover searches for the preimage x∗ of y under pk and returns x∗. The
verifier accepts if and only if x = x∗.

For (1λ, pk) ∈ L the key in injective such that the prover finds the correct preimage x∗ = x, making
the verifier accept. For a lossy key pk, however, there are at least two potential preimages for y, each one
equally like. Hence, a malicious prover can make the verifier accept with probability at most 1/2. The
simulator for the honest verifier works as follows: It samples x←$ {0, 1}λ and computes y ← Eval(pk, x) as
the verifier would. Then it pretends that the prover returns x. Note that this view is identical distributed
to an actual protocol run between the prover and the verifier (for an injective key). □

C Deferred Proofs

C.1 Proof for Lemma 3.7

Proof. Let us start with one-wayness. It is well-known that a random oracle is exponentially one-way in a
distributional sense, i.e., over the choice of the random oracle (see e.g. [MF21] for a full proof):

∀A,∀λ : PrO,A[A wins] ≤ poly(λ)2−λ

Let us fix one adversary A. Using the Markov inequality, we get

∀λ : PrO
[
PrA[A wins] ≥ λ2poly(λ)2−λ

]
≤ 1

λ2 .

As the sum over all 1
λ2 converges, we can use the Borell-Cantelli lemma to show there only exists a

zero-measure of random oracles such that the adversary is successful for infinitely many security parameters.
Using the fact that there are only countable many adversaries, the set of random oracles for which some
adversary is successful infinitely often is also a zero-measure. Therefore, every random oracle except for
this zero-measure set of oracles is one-way.

Similarly to one-wayness, we know that a truncated random oracle is an exponentially-secure collision
resistant hash function (as long as the output is still long enough; see [MF21] again for a full proof).
Then, by a similar argument, we know that every random oracle except for a zero-measure can be used to
construct a collision-resistant hash function.

Finally, let us show the result for one-way product functions. One-way product functions are a set of
functions f1, . . . , fk such that any adversary trying to invert f1(x1), . . . , fk(xk) for independent, uniform xi

will have a success probability of at most 2−kn · poly(n). In their paper, Holmgren and Lombardi [HL18] do
not give an implementation from a random oracle, but it is quite clear one-way product functions can be
built relative to a random oracle (with overwhelming probability). For this, note that OWPF can be seen
as the combination of two properties: First, every fi is exponentially-hard to invert, and second, inverting
multiple fi’s is as hard as inverting them independently. Assuming every fi equals the random oracle,
we’ve already shown the first property. The second property follows from the fact that for two different
values x1, x2, O(x1) is completely independent of O(x2), so as long as all inputs are different, inverting all
fi at once does not yield any advantage over inverting them independently. Therefore, OWPF can be built
from random oracles (with overwhelming probability). Using Borel-Cantelli again yields the proof. □

37

	Introduction
	Our Contributions
	Our Techniques
	Related Work

	Technical Overview
	No (E)LFs in Oraclecrypt
	No Key Agreement from (E)LFs

	Preliminaries
	Lossy Functions
	Notions of Black-box Constructions and Oracle Separations
	Oraclecrypt

	On the Impossibility of Building (E)LFs in Oraclecrypt
	Introducing the Oracles
	Approximating the Set of Heavy Queries
	Distinguishing Lossiness from Injectivity
	Fixing an Oracle

	On the Impossibility of Building Key Agreement Protocols from (Extremely) Lossy Functions
	Lossy Function Oracle
	Key Exchange
	ELFs

	Relationship of Lossy Functions to Statistical Zero-Knowledge
	Lazy-Sampling a Random Permutation
	Lossy Functions Imply Hard Statistical Zero-Knowledge Problems
	Deferred Proofs
	Proof for Lemma 3.7

