
Fully Homomorphic Encryption: A
Mathematical Introduction

Sara Logsdon
University of Georgia
sara.logsdon@uga.edu

September 18, 2023

Abstract
This paper offers a mathematical introduction to fully homomor-

phic encryption, a concept that enables computation on encrypted
data. We trace the historical development of FHE, describe Fully Ho-
momorphic Encryption over the Torus (TFHE) and how it performs
certain mathematical operations, and explore bootstrapping and the
possibility for adjusting computational depth. This paper equips read-
ers with a brief understanding of FHE’s evolution and the essential
mechanisms facilitating practical implementation.

1 Introduction
Fully homomorphic encryption (FHE) enables computation of arbitrary func-
tions over encrypted data without decrypting the data. That is, given encryp-
tions E(m1),…, E(mt), one can compute f(m1,…,mt), without compromising
the privacy of the data.

This means the opportunity for finding the average red blood cell count of
cancer patients without compromising the patients’ privacy, or inputting pri-
vate queries to a search engine, or searching for a server to retrieve only files
that satisfy some Boolean constraint, without the server having to decrypt
any of the files.

1

Sara Logsdon

A partially homomorphic encryption scheme only works for a family of
functions. When the homomorphic encryption scheme only allows a limited
amount of leveling of operations, we call it somewhat homomorphic, and
when we can choose the computational depth (that is, the amount of levels
of operations allowed), we all the scheme leveled fully homomorphic. Finally,
when the homomorphic encryption scheme works for all families of functions
for unlimited computational depth, we call it fully homomorphic.

Craig Gentry was the first to develop a fully homomorphic encryption
scheme. He first published ”Fully Homomorphic Encryption Using Ideal Lat-
tices”[1], then published a simpler version allowing FHE over the integers,
and finally developed the first scheme which was able to include bootstrap-
ping, a special technique used to allow leveled homomorphic operations.

After this first generation, Brakerski was able to develop an FHE scheme
based on the Learning With Errors (LWE) problem, a well-known crypto-
graphic assumption. This paper was also able to increase efficiency through
modulus reduction. Later, Gentry used modulus reduction to develop (Lev-
eled) FHE without Bootstrapping. This second generation also included
Fully Homomorphic SIMD Operations and FHE with Polylog Overhead.

Since then, researchers have developed FHE schemes which speed up
bootstrapping significantly, and in ”Homomorphic Encryption for Arithmetic
of Approximate Numbers” [2], the CKKS scheme, which operates on floating
point numbers, allowing for operation on neural networks, helped efficiency
immensely. Chimeric FHE (i.e. TFHE) allows for switching between different
FHE schemes through bootstrapping.

2 Fully Homomorphic Encryption over the
Torus (TFHE)

A fully homomorphic scheme, TFHE[3] was initially proposed as an improve-
ment of the scheme FHEW[4]. The security is based on the LWE problem.
TFHE is special because it proposes a special bootstrapping which is very
fast and able to evaluate a function at the same time as it reduces the noise.

2.1 TFHE Ciphertexts
TFHE uses three types of ciphertexts: LWE, Ring LWE (RLWE), and Ring
Gentry-Sahai-Waters (RGSW). GLWE (General LWE) refers to both LWE

2

Sara Logsdon

and RLWE ciphertexts. We will focus solely on GLWE as the other ci-
phertexts work similarly. In GLWE, the secret key is a list of k random
polynomials from R := Z[X]/(XN + 1), which contains integer polynomials
up to degree N − 1:

S⃗ = (S0, ..., Sk − 1) ∈ Rk

The original TFHE samples secret keys from uniform binary distributions.
To encrypt messages, let 0 ≤ p, q ∈ Z such that p ≤ q and define ∆ = q/p. In
TFHE, p and q are often chosen to be powers of two. We call q the ciphertext
modulus, p the plaintext modulus, and ∆ the scaling factor.

Consider a message M ∈ Rp, where Rp := (Z/pZ)[X]/(XN+1). A GLWE
ciphertext encrypting the message M under the secret key S⃗ is a tuple:

(A0, ..., Ak − 1, B) ∈ GLWE⃗S,σ(∆M) ⊆ Rk+1
q ,

where the elements Ai, 0 ≤ 1 ≤ k − 1 are sampled uniformly random from
Rq, B =

∑k=1
i=0 Ai · Si +∆M +E ∈ Rq, and E ∈ Rq has coefficients sampled

from a Gaussian distribution χσ. We call the vector (A0, ..., Ak−1) the mask
and B the body. The polynomial ∆M is called an encoding of M .

Observe that every time a message is encoded, new noise is sampled. We
denote the set of GLWE encrypions of the same encoding ∆M under the se-
cret key S⃗, with Gaussian noise with standard deviation σ, GLWE⃗S,σ(∆M).

Now we can decrypt a ciphertext (A0, ..., Ak − 1, B) ∈ GLWE⃗S,σ(∆M)

encrypted under the secret key S⃗ = (S0, ..., Sk−1) ∈ Rk by computing:

1. B −
∑k=1

i=0 Ai · Si = ∆M + E ∈ Rq

2. M = (∆M + E)/∆.

If every coefficient ei of E is |ei| < ∆/2, then the second step of the
decryption returns M as expected. Otherwise the decryption is incorrect.

When we instantiate GLWE with k = n ∈ Z and N = 1 we get LWE.
When we instantiate GLWE with k = 1 and N a power of 2 we get RLWE.
It is also worth noting that this scheme allows for public key encryption too,
though we will not go into that in this paper.

2.2 Performing Operations
1. Homomorphic addition:

Consider a message M ∈ Rp encrypted by a GLWE ciphertext C under

3

Sara Logsdon

the secret key S⃗. We can add this to another GLWE ciphertext C ′

encrypting another message M ′ under the same secret key, and the
result will be a new GLWE ciphertext encrypting the sum M + M ′

under the secret key S⃗, with noise that grew a bit:

C(+) = C + C ′ = (A0 + A′
0, ..., Ak−1 + A′

k−1, B +B′)

∈ GLWE⃗S,σ′(∆(M +M ′) ⊆ Rk+1
q

2. Homomorphic constant addition:
We can add a constant Σ ∈ Rp to a GLWE encryption of a message M
by homomorphically adding the trivial ciphertext (0, ..., 0,∆Σ) ∈ Rk+1

q .
The result is a GLWE encryption of M + Σ.

3. Homomorphic multiplication by a small constant:
Consider a small constant polynomial

Λ =
N−1∑
i=0

ΛiX
i ∈ R.

We can multiply the polynomial Λ to every comoponent of the GLWE
ciphertext in Rq and the result will be a new GLWE ciphertext en-
crypting the product Λ

.
= M ∈ Rp under the same secret key with

noise that grew a bit.

4. Homomorphic multiplication by a large constant:
Consider a large constant γ ∈ Zq. If we multiply a message by this
constant as we did for the small constant, the noise grows too much
and compromises the result. Instead, we take the large constant and
decompose it into a small base β:

γ = γ1
q

β1
+ γ2

q

β2
+ ...+ γl

q

βl
,

where the decomposed elements γ1, ..., γl are in Zβ, so they are small.
Denote Decompβ,l(γ) = (γ1, ..., γl).
We multiply this decomposition by the GLev encryption of M instead
of the GLWE encryption of M which, by definition, encrypts M times
different powers of the decomposition base:

⟨Decompβ,l(γ), C̄⟩ =
l∑

j=1

γj
.
= Cj ∈

4

Sara Logsdon

GLWE⃗S,σ(
q

βl
M)) = GLev⃗ β,l

S,σ′(M) ⊆ Rl(k+1)
q ,

where σ′ is the new standard deviation of the noise.

5. Homomorphic multiplication by a large polynomial:
This operation follows the same pattern. We decompose the polynomial
into smaller polynomials, then perform a polynomial inner product
with GLev. That is:

Decompβ,l(Λ) = (Λ(1), ...,Λ(l)),

where Λ(j) =
∑N−1

i=0 Λi,j
.
= X i, with Λi,j ∈ β such that:

Λ = Λ(1) q

β1
+ Λ(2) q

β2
+ ...+ Λ(l) q

βl

Key Switching is a homomorphic operation largely used in all the RLWE-
based schemes, and it is used to switch the secret key to a new one. To
switch the key we will cancel the secret key S⃗ and re-encrypt under a new
secret key S⃗ ′. We compute

B −
k−1∑
i=0

Ai
.
= Si = ∆M + E ∈ Rq

but instead of just using the elements Si, we will encrypt them under the
new secret key S⃗ ′. Then the ciphertext will be the GLev encryptions of Si

under S⃗ ′. Denote
KSKi ∈

GLWE⃗
S′,σ(

q

β1
Si)× ...×GLWE⃗

S′,σ(
q

βl
Si)

= GLevβ,lS′,σ⃗(Si) ⊆ Rl(k+1)
q

The key switching is performed as follows:

C ′ = (0, ..., 0, B)−
k−1∑
i=0

⟨Decompβ,l(Ai), KSKi⟩

∈ GLWE⃗
S′,σ′(∆M) ⊆ Rk+1

q

5

Sara Logsdon

The secret key has switched but the message is the same.

There are also other operations known as external product, which we can
describe as like a key switching where we do not switch the key, and internal
product, which is similar but less efficient than external product. We will
not go in depth into these operations here.

3 Computational Depth
As mentioned before, each operation increases the noise, and when the noise
gets too large (i.e. when we do not have that every coefficient ei of E is
|ei| < ∆/2’), the decryption fails. Craig Gentry proposed a technique called
bootstrapping which essentially sends a new key inside the current encrypted
message, encrypts the message with the new key, then decrypt the old key.
The point is that bootstrapping ”resets the noise.”

Bootstrapping of TFHE takes as input an LWE ciphertext, a polynomial
in Rq, and a bootstrapping key BK. Bootstrapping consists of three steps:
modulus switching, blind rotation, and sample extraction.

Modulus switching means switching the ciphertext modulus to a new one.
In TFHE, it is mainly used on LWE ciphertexts. Using the same definitions
for p, q, and ∆ as mentioned previously, we choose another positive integer
ω. To switch the modulus from q to ω, let ãi =

ω
.
=a1
q

∈ Zω. This results in a
new LWE ciphertext c̃. That is, we switch the modulo of the LWE ciphertext
c, giving

c̃ = (ã0, ..., ˜an−1, ãn = b) ∈ LWE⃗
S,σ(∆̃m) ⊆ Zn+1

ω

Blind rotation is the core of the bootstrapping. We take the polynomial
V , encrypted as a trivial GLWE ciphertext , and use the output LWE ci-
phertext of modulus switching c̃ and the bootstrapping key BK to give a new
GLWE encryption of V ·X∆m+e under a new GLWE secret key S⃗ ′.

Sample extraction then takes as input a GLWE ciphertext, encrypting a
polynomial message, and extracts the encryption of one of the coefficients
of the message as a LWE ciphertext. This operation does not increase the
noise. That is, we take the constant coefficient of GLWE output of the blind
rotation as a LWE encryption of fm, under the extracted LWE secret key s⃗′

[5].
Bootstrapping is important because it allows for the possibility of leveled

FHE, a special type of FHE which allows the user to choose a parameter

6

Sara Logsdon

for computational depth, the maximal number of consecutive operations for
which an homomorphic encryption scheme remains functional. This could
be useful because bootstrapping is extremely expensive [6], and we do not
always need infinite computational depth.

4 Conclusion
The ability to perform arbitrary computations on encrypted data without
the need for decryption opens up a wide range of possibilities for enhancing
data privacy and security in an increasingly interconnected and data-driven
world. Its potential impact on industries such as healthcare, finance, and
cloud computing is profound, enabling organizations to confidently leverage
the power of the cloud while preserving the confidentiality of their sensitive
information.

However, it is important to acknowledge that FHE is not without its lim-
itations. Its computational overhead poses significant challenges that must
be addressed to make it practical for everyday use. Ongoing research and
innovation in the field are actively working to overcome these obstacles.

5 References
[1] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09.
Bethesda, MD, USA: Association for Computing Machinery, 2009, pp. 169–178. isbn:
9781605585062. doi: 10.1145/1536414.1536440. url: https://doi.org/10.1145/
1536414.1536440.

[2] Jung Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate Num-
bers”. In: Nov. 2017, pp. 409–437. isbn: 978-3-319-70693-1. doi: 10.1007/978-3-
319-70694-8_15.

[3] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over the Torus”.
In: Journal of Cryptology 33.1 (Apr. 2019), pp. 34–91. doi: 10.1007/s00145-019-
09319-x. url: https://doi.org/10.1007/s00145-019-09319-x.

[4] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic Encryption
in less than a second. Cryptology ePrint Archive, Paper 2014/816. https://eprint.
iacr.org/2014/816. 2014. url: https://eprint.iacr.org/2014/816.

[5] TFHE Deep Dive - Part I - Ciphertext types — zama.ai. https://www.zama.ai/
post/tfhe-deep-dive-part-1. [Accessed 28-Apr-2023].

7

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://www.zama.ai/post/tfhe-deep-dive-part-1
https://www.zama.ai/post/tfhe-deep-dive-part-1

Sara Logsdon

[6] Ahmad Al Badawi and Yuriy Polyakov. Demystifying Bootstrapping in Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Paper 2023/149. https://eprint.
iacr.org/2023/149. 2023. url: https://eprint.iacr.org/2023/149.

8

https://eprint.iacr.org/2023/149
https://eprint.iacr.org/2023/149
https://eprint.iacr.org/2023/149

	Introduction
	Fully Homomorphic Encryption over the Torus (TFHE)
	TFHE Ciphertexts
	Performing Operations

	Computational Depth
	Conclusion
	References

