
To attest or not to attest, this is the question
– Provable attestation in FIDO2

Nina Bindel1, Nicolas Gama1,
Sandra Guasch1, and Eyal Ronen2

1 SandboxAQ, Palo Alto, CA, USA, {first.second}@sandboxaq.com
2 Tel Aviv University, Tel Aviv, Israel, eyal.ronen@cs.tau.ac.il

Abstract. FIDO2 is currently the main initiative for passwordless au-
thentication in web servers. It mandates the use of secure hardware au-
thenticators to protect the authentication protocol’s secrets from com-
promise. However, to ensure that only secure authenticators are being
used, web servers need a method to attest their properties. The FIDO2
specifications allow for authenticators and web servers to choose between
different attestation modes to prove the characteristics of an authentica-
tor, however the properties of most these modes have not been analysed
in the context of FIDO2. In this work, we analyse the security and pri-
vacy properties of FIDO2 when different attestation modes included in
the standard are used, and show that they lack good balance between
security, privacy and revocation of corrupted devices. For example, the
basic attestation mode prevents remote servers from tracing user’s ac-
tions across different services while requiring reduced trust assumptions.
However in case one device is compromised, all the devices from the same
batch (e.g., of the same brand or model) need to be recalled, which can
be quite complex (and arguably impractical) in consumer scenarios. As
a consequence we suggest a new attestation mode based on the recently
proposed TokenWeaver, which provides more convenient mechanisms for
revoking a single token while maintaining user privacy.

Table of Contents

To attest or not to attest, this is the question – Provable attestation in
FIDO2 . 1

Nina Bindel, Nicolas Gama, Sandra Guasch, and Eyal Ronen
1 Introduction . 2

1.1 Attestation in FIDO2 . 3
1.2 Contributions . 4
1.3 Overview of the paper . 5

2 Background . 6
2.1 WebAuthn . 6
2.2 TokenWeaver and Post-Compromise Security 9

3 Definition of Extended Passwordless Authentication Protocols with
Attestation . 10

4 Security and Privacy Definition of ePlAA . 13
4.1 Threat Model . 13
4.2 Oracles . 14
4.3 Authenticator Groups . 16
4.4 Session Partnering . 17
4.5 Passwordless Authentication Experiment for ePlAA 17
4.6 Unlinkability Experiment for ePlAA . 18

5 WebAuthn and Different Attestations Modes as Instantiations of ePlAA 20
5.1 WebAuthn with Attestation as ePlAA . 21
5.2 Attestation Mode none and self . 23
5.3 Attestation Mode basic . 24
5.4 Attestation Mode attCA . 27

6 Simple TokenWeaver as a New Attestation Mode for WebAuthn 29
6.1 The smpTW att Mode . 30

7 Conclusion . 32

Appendices . 35
A Full Analysis of WebAuthn With none . 35
B Analysis of WebAuthn with self . 40
C Full Analysis of WebAuthn with basic . 40
D Full Analysis of WebAuthn With smpTW . 41

1 Introduction

For many years, using passwords as a single authentication mechanism has been
one of the biggest cause of security problems in the Internet. Weak passwords,
phishing, credential stuffing, and many other attack vectors can have devastating
results such as full compromise of accounts and sensitive data. To help prevent

Fig. 1: Message of flow of Fido2 with attestation (in teal).

such attacks, the Fast Identity Online (FIDO) Alliance proposes their FIDO
protocol for passwordless authentication [Allb].

The protocol uses a secure hardware device called an authenticator (e.g.,
security keys or certain smart phones) for authentication to a server. The au-
thenticators are able to securely generate and store secret credentials. The FIDO
protocol consists of two phases: a registration phase in which the authenticator
generates a credential key pair, and the public key is stored at the server, also
called Relying Party (RP) (see (3) in Figure 1); and authentication of the au-
thenticator on the RP using the registered credentials (see (4) in Figure 1). In
both phases the user verifies registration/authentication by entering a gesture
(e.g., entering a PIN or pressing a button).

The FIDO2 protocol is implemented using two sub-protocols: WebAuthn — a
protocol between authenticator, client (e.g., a browser), and RP in which the RP
sends a challenge, the authenticator responds with a signature, and the client acts
as an intermediary, and CTAP — a protocol between authenticator and client
that binds the client to the authenticator to restrict access to the authenticator.
FIDO2, and in particular WebAuthn, offers a plethora of different modes such as
enterprise mode (which allows identifying information), key storage modes (on
the authenticator, encrypted on the server, shared between different devices or
not, etc.), or different attestation modes.

1.1 Attestation in FIDO2

FIDO2 supports several attestation modes, that can enforce the use of approved
(or of ‘different levels certified’) secure authenticators. The goal of attestation is
to prevent users from using weak or uncertified authenticators that might put
the user, the user’s company, or the RP at risk.

At the same time, attestation should preserve the privacy of the user. More
concretely, a coalition of web servers should not be able to trace FIDO2 actions
to a particular authenticator, or to guess if the same authenticator is used for two
different accounts (except in enterprise mode). The different attestation modes

3

present in the standard achieve different notions of security and privacy that
imply a variety of nuances in the trust assumptions.

For instance, in the attestation CA (attCA) mode, the protocol relies on a
certificate authority (CA) that issues certificates for different attestation cre-
dentials (ideally one per registered credential key per RP) in a way that the
attestation keys cannot be linked to each other or the authenticator identifier.
However, we need to trust the CA to not reveal the link between the attestation
credential and authenticator, to not issue certificates for rogue authenticators,
and to be online and available whenever needed.

Another example is the attestation mode basic, where the issuer/manufacturer
hardcodes the same attestation key in a batch of at least 100,000 devices (i.e.,
from the same model or brand). As long as the private attestation key is not
leaked and accepted in the trust store of client and servers, this mode pro-
vides security against impersonation and unlinkability of user actions among
all the devices from the same batch. However, even secure authenticators may
be compromised. For example, [SRW22] presents an attack on FIDO2 authenti-
cator implemented inside Samsung’s TrustZone Trusted Execution Enviroment
(TEE). In basic mode, once one of the keys is leaked, security for all keys in the
same batch is lost. Which means that the attestation certificate would need to
be revoked on all the servers that trust it, and hardware authenticators would
need to be physically replaced. In summary, in this work, we ask the following
questions:

Can we provide a unified model that captures the security and privacy
properties of all attestation modes? Are there significant limitations to the

current FIDO2 attestation modes and can they be overcome?

1.2 Contributions

We can answer the questions above in the affirmative:

– We define a new class of Extended Passwordless Authentication Protocols
with Attestation (ePlAA) that allows to unify and prove the security and
privacy properties for all FIDO2 attestation modes.

– Based on our analysis of current modes, we suggest a new mode called
smpTW that improves upon the current basic mode by allowing it to re-
cover security even after an authenticator was compromised.

We analyse the publicly available FIDO2 attestation modes present in the
specification. To this end we unify and extend the models from [Bar+21; BCZ23;
HLW23] with the new class ePlAA. We then continue to formally define and
prove the different security and privacy definitions for each attestation mode and
compare them. We summarize the different properties and considered modes in
our and previous work in Table 1 and provide more details in Section 2.1.

In our unified analysis, we find that only WebAuthn with attestation mode
basic satisfies our desired definitions for authentication security and unlinkability
(none and self only satisfy weaker authentication security and attCA only weaker

4

Table 1: WebAuthn properties and considered attestation modes analysed in the
literature and this work.

BBCW [Bar+21] HLW [HLW23] BCZ [BCZ23] This work

Properties

Authentication Security ✓ ✓ ✓ ✓

Unlinkability ✗ ✓ ✗ ✓

PQ-readiness ✗ ✗ ✓ ✓

Post-compromise Security ✗ ✗ ✗ (✓)

Attestation modes

none ✗ ✗ ✓ ✓

self ✗ ✓ ✗ ✓

basic (✓) ✗ ✗ ✓

attCA ✗ ✗ ✗ ✓

smpTW ✗ ✗ ✗ ✓

Adversary type during the protocol phases

Certification - - - Active
Registration Active Active Passive Active
Authentication Active Active Active Active

unlinkability). Since basic attestation poses the risk of batch corruptions that
might lead to the replacement of the entire authenticator batch, we propose a new
attestation mode smpTW based on the (simple) TokenWeaver general attestation
scheme proposed in [CJR22]. smpTW is very similar to basic mode and satisfies
our desired definitions. However, in constrast to basic mode, it allows to recover
security even after an authenticator in the same batch was compromised.

Since we are considering potential future improvements to the FIDO2 stan-
dard, we analyse the existing schemes from a quantum-resistant perspective:
our security reductions between the authentication security and unlinkability of
WebAuthn and the collision resistance of hash functions, forgery resistance of sig-
natures, or semantic security of encryption primitives are valid against classical
(PPT) and quantum (QPT) polynomial-time adversaries, so that any instantia-
tion of the protocol using post-quantum primitive yields a post-quantum secure
passwordless authentication protocol. As efficient instantiations of PQ blind sig-
natures are not yet standardised, we opted for an attestation mode based on
simple TokenWeaver instead of the full TokenWeaver. Together with the work
in [BCZ23], our work contributes to a full-fledged post-quantum solution includ-
ing privacy-preserving secure attestation modes.

1.3 Overview of the paper

We first present background on WebAuthn with attestation, TokenWeaver, and
PCS in Section 2. In Section 3, we define extended Passwordless Authentica-
tion Protocols with Attestation (ePlAA) which is based on BCZ’s [BCZ23] ePlA

5

class— we add an initiation and certification phase to the existing registration
and authentication. We continue with the detailed definition of authentication
security and unlinkability in Section 4. Section 5 presents the analysis of exist-
ing FIDO2 attestation modes. We present our new attestation mode smpTW in
Section 6 and conclude in Section 7.

2 Background

We introduce needed background on WebAuthn, such as on its key and attesta-
tion modes, and prior security models, as well as on the attestation framework
TokenWeaver and post-compromis security.

Notation. We write x←$ X for x being the returned value of a probabilistic
algorithm X; we write x ← X if X is deterministic. Moreover, we denote the
security parameter by λ and the number of oracle queries to oracle O by qO.

In addition, we denote the signature scheme used for assertion signatures
(during the authentication phase) by Σ = (Σ.KG, Σ.Sign, Σ.Vfy) and use ΣA =
(ΣA.KG, ΣA.Sign, ΣA.Vfy) to denote the attestation signature scheme. In ad-
dition, symmetric and asymmetric encryption schemes are denoted as Es =
(Es.KG, Es.Encrypt, Es.Decrypt) and Ea = (Ea.KG, Ea.Encrypt, Ea.Decrypt), re-
spectively. We denote Λ = (CG,CVfy) the scheme for generating and verifying
digital certificates from issuer’s public keys. In addition to signature genera-
tion and verification, these operations also consist of other operations such as
adding/checking an expiration time or revocation mechanisms. We make use of
the standard definitions for existential unforgability under chosen-message at-
tack (euf-cma), indistinguishably under chosen-plaintext attack (ind-cpa), and
collision resistance (coll-res).

2.1 WebAuthn

The FIDO2 protocol aims at passwordless authentication of users and is run
between a Relying Party (RP), a client, and an authenticator owned by a user. In
addition, an issuer of attestation certificates might be involved, depending on the
attestation type used. A high-level message flow is depicted in Figure 1. FIDO2
specifies two subprotocols: WebAuthn and CTAP. As this paper is concerned
with attestation, we only focus on the WebAuthn protocol and omit the CTAP
protocol. The current stable version is WebAuthn 2 [W3C21] with an editor’s
draft available for WebAuthn 3 [W3C23]. Our results apply for both versions
and as such we will refer to WebAuthn for the remainder of the paper.

Key Modes. WebAuthn offers two key modes: resident and non-resident keys,
where the latter means that the keys are stored (symmetrically encrypted) at
the server as analysed in [HLW23]. Resident keys, in contrast, are stored either
locally or as an encrypted list at a trusted third party to enable key sharing
between different devices such as different phones that can be used as authenti-
cators.

6

Recently, passkeys [Alla] have emerged as a new concept of key management.
They are resident keys, which can be used from multiple devices as they can be
synchronised across devices registered by the same user in a given platform,
such as Google, Apple or Microsoft, or they can be used from a nearby device
(e.g., using Bluetooth). Passkeys that are migrated across devices are encrypted
end-to-end. To cover this new concept, this work focuses on resident keys.

Attestation Modes. During registration, the server sends a preferred attes-
tation conveyance mode (called attestation preferences) together with its chal-
lenge. This preference indicates whether the server is in fact not interested in
getting an attestation from the authenticator (preference none); if the client is al-
lowed to alter the authenticator’s attestation statement, e.g. to remove uniquely
identifying information (preference indirect); if the client should forward the au-
thenticator attestation without any changes (preference direct); or if the server
is allowed to request uniquely identifying information from authenticators (pref-
erence enterprise).

During registration, the server sends one of the following preferred attestation
conveyance mode (called attestation preferences) together with its challenge:

none: This preferences indicates that the server is not interested in getting an
attestation from the authenticator. Moreover, the client should remove poten-
tially identifying information. The authenticator should use attestation modes
none or self (see below) in this case.

indirect means that the server is interested in attestation but does not need
to come directly from the authenticator and instead indirectly from the client.
That means the client is allowed to alter the authenticator’s attestation state-
ment, e.g., remove uniquely identifying information.

direct indicates that the server is interested in authenticator attestation and
that it should be provided by the authenticator and forwarded by the client
without any changes. All attestation modes are allowed in this preferences, in
particular attestation mode none is still an option in case the authenticator
cannot provide attestation and if the server’s attestation policy allows it.

enterprise permits an RP to request uniquely identifying information from au-
thenticators during a registration.

We rule out none because we want to analyse different attestation modes,
indirect because we want to be able to consider a malicious client, and enterprise
because this work is concerned with the unlinkability of authenticators that is
clearly not given when uniquely identifying information is provided. Therefore,
we consider only the direct mode (without making this explicit in our abstraction
in Figure 7) in this work, including the analysis from Section 5. In mode direct,
WebAuthn allows the following attestations modes:

None: The default mode in the specifications is to use no attestation, i.e., no
signature is included in the authenticator’s response during registration.

Self: The authenticator’s response is signed using the secret credential key dur-
ing registration (and authentication).

7

Basic: Attestation key pairs are shared by “batches” of at least 100,000 authen-
ticators for privacy reasons.

AttCA: An authenticator can generate multiple Attestation Identity Keys (AIKs)
and request certificates for each from one or more attestation CAs. For our
analysis we assume authenticators use a fresh AIK when registering to a server
in order to prevent trivial privacy attacks. In the ’Attestation CA’ mode, an
authenticator is based on a Trusted Platform Module (TPM) and holds an
authenticator-specific Endorsement Key (EK) which is used to securely com-
municate with a trusted third party, the Attestation CA. The authenticator
can generate multiple Attestation Identity Keys (AIKs), requesting certificates
for each from the Attestation CA to limit the exposure of the EK (which is a
global correlation handle) to Attestation CA(s). For our analysis, we assume
authenticators use can be requested for each authenticator-generated public key
credential individually, and conveyed to Relying Parties as attestation certifi-
cates. this is the case, as otherwise unlinkability can be broken trivially. From
a privacy perspective, the Attestation CA receives data that enables it to track
user behavior over several RPs.

AnonCA: This mode is similar to AttCA with the difference that certificates
are dynamically generated per-credential by a cloud-operated CA owned by
the (trusted) manufacturer. We do not consider this mode in this work as for
the little public information available it is the same setup as AttCA with the
assumption of a fresh AIK per server registration.

In the previous Webauthn 1, another attestation mode using (Elliptic Curve)
Direct Anonymous Attestation (DAA), based on [CDL16], was allowed which
seemed to offer an interesting compromise between security, privacy, and avail-
ability of the CA. It has been deprecated in WebAuthn 2 though.

WebAuthn as Passwordless Authentication Protocol. Recently, several
works have been set up to model security and privacy properties of WebAu-
thn (also of CTAP and of the combination of the two protocols in FIDO2) and
to reduce them provably to the security of the involved cryptographic primi-
tives. Barbosa, Boldyreva, Chen, and Warinschi (BBCW) [Bar+21] started this
line of research, defining the cryptographic class of Passwordless Authentica-
tion (PlA) and authentication security consisting of two subprotocols Register =
(rChall, rCom, rRsp, rVrfy) and Authenticate = (aChall, aCom, aRsp, aVrfy).

BBCW proved WebAuthn with attestation mode basic to be secure against
active adversaries during Register and Authenticate. However, they assume each
authenticator has a different attestation key (batch size equals 1). Hence, no pri-
vacy is preserved. Bindel, Cremers, and Zhao (BCZ) [BCZ23] extended BBCW’s
framework modeling various additional properties of FIDO2 (calling the result-
ing class extended PlA (ePlA)) with attestation mode none and analysed the
protocol’s readiness for the post-quantum transition. In parallel, Hanzlik, Loss,
and Wagner (HLW) [HLW23] extended BBCW’s framework in a different way,
adding non-resident keys under attestation mode self to the analysis. Moreover,

8

Authenticator T Client C RP S

Registration: mrch mrch ←$ rChall(S, tb, UV)

(mrcom,mrcl)←$ rCom(idS ,mrch, tb)

mrcom

(m,matt, att, rcT)←$ rRsp(T,mrcom)

mrrsp ← (m,matt, att)
mrrsp (mrrsp,mrcl)

(rcS , d)← rVrfy(S,mrcl,mrrsp)

Authentication: mach mach ←$ aChall(S, tb, UV)

(macom,macl)←$ aCom(idS ,mach, tb)

macom

marsp ←$ aRsp(T,macom)
marsp (marsp,macl)

(rcS , d)← aVrfy(S,macl,marsp)

Fig. 2: WebAuthn flow [BCZ23]; attestation values are highlighted in teal.

they are the first to define privacy formally (i.e., unlinkability of authenticators)
for FIDO2.

Returning to the details of WebAuthn as ePlA, during registration, the RP
first samples a challenge (in rChall) and sends it together with other information
(asmrch) to the client. The client then computes a command and a client message
(mrcom and mrcl, respectively, in rCom) and sends mrcom to the authenticator.
The authenticator samples a credential key pair and chooses the attestation
mode (states in att) and generates the attestation statement matt (potentially
including an attestation signature) depending on the attestation mode, packs the
information in mrrsp and sends it to the client. The client forwards it, together
with mrcl to the RP. The RP verifies the attestation statement (after checking
that att is in the set of its accepted attestation modes) and makes a decision d
whether it accepts the registration. We depict the flow of the WebAuthn protocol
between the authenticator, the client, and the relying party (RP) (i.e. without
the issuer) in Figure 2.

The authentication message flow is very similar to the registration one, the
biggest difference being the assertion signature is generated using the credential
secret key. We recall the formal abstraction of Authenticate as given in [BCZ23]
in Figure 3; we define Register including attestation in Figure 7, Section 5.

2.2 TokenWeaver and Post-Compromise Security

TokenWeaver [CJR22] is an attestation framework that is able to provide Post-
Compromise Security (PCS) [CGCG16] for Trusted Execution Environments
(TEEs) while still preserving the users’ privacy. The goal of PCS [CGCG16] is
to recover from a compromise of an honest party and regain lost security. If the
honest party performs a “healing” step, the attacker is “locked out” and the
compromised secrets are replaced with new ones unknown to the attacker.

9

aChall(πi
S , tb, UV): // 1. Server

1 πi
S .ch←$ {0, 1}≥λ

2 πi
S .tb← tb, πi

S .UV ← UV
3 mach ← (idS , πi

S .ch, πi
S .UP, πi

S .UV)
4 πi

S .stexe ← running
5 return mach

aRsp(πj
T , rcT ,macom): // 3. Authenticator

6 (id, h,UP,UV)← macom
7 if rcT [id] = ⊥: return (⊥, rcT)
8 if πj

T .suppUV = false and UV = true:
return (⊥, rcT)

9 rcT [id].n← rcT [id].n + 1
10 ad← (H(id), rcT [id].n,UP,UV)
11 σ ←$ rcT [id].Σ.Sign(rcT [id].sk, (ad, h))
12 marsp ← (rcT [id].cid, ad, σ, rcT [id].uid)

13 πj
T .agCon← (id, h, rcT [id].n,UV ,UP)

14 πj
T .sid← (H(id), rcT [id].cid, h, n)

15 πj
T .stexe ← accepted

16 return (marsp, rcT)

aCom(idS ,mach, tb): // 2. Client

17 (id, ch,UV)← mach
18 if id ̸= idS : return ⊥
19 macl ← (ch, tb)
20 UP ← true, h← H(macl)
21 macom ← (id, h,UP,UV)
22 return (macom,macl)

aVrfy(πi
S , rcS ,macl,marsp): // 4. Server

23 (ch, tb)← macl, (cid, ad, σ, uid)← marsp
24 (h, n,UP,UV)← ad
25 if rcS [cid] = ⊥: return (rcS , 0)
26 if πi

S .ch ̸= ch or πi
S .tb ̸= tb or h ̸=

H(idS) or UP ̸= true or UV ̸= πi
S .UV or

rcS [cid].Σ.Vfy(rcS [cid].pk, (ad,H(macl)), σ) = 0
or n ≤ rcS [cid].n: return (rcS , 0)

27 rcS [cid].n← n
28 πi

S .agCon← (idS ,H(macl), n,UV ,UP)
29 πi

S .sid← (h, cid,H(macl), n)
30 πi

S .stexe ← accepted
31 return (rcS , 1)

Fig. 3: Authentication of WebAuthn as described in [BCZ23] as instantiation of
ePlA = (Register,Authenticate).

In the context of FIDO2, the TEE is the authenticator. For example, in basic
mode, if an authenticator is compromised, we lose all security claims that rely
on the compromised attestation secret key. In TokenWeaver’s “healing” step,
the authenticator can be provisioned with a new attestation key. Upon such
a provision request, the authenticator either recovers or detects a compromise,
thus achieving PCS.

The full TokenWeaver solution is based on using ephemeral attestation sign-
ing keys, provisioned in a privacy preserving protocol based on blind signatures.
The authors also discussed a simplified Global Attestation Key variant. In the
FIDO2 context, this smpTW mode, is very similar to the basic mode, but pe-
riodically rotates a short-lived “batch” attestation key. PCS is achieved by the
provisioning protocol that is used by the device to get the next epoch’s attes-
tation key. smpTW allows the system to recover from or detect a compromise
when the previous global attestation key expires.

3 Definition of Extended Passwordless Authentication
Protocols with Attestation

To analyse the security (i.e., passwordless authentication and PCS) and privacy
(i.e., unlinkability) properties of WebAuthn with different attestation modes,
we follow the line of work started with [Bar+21]. Namely, they defined the
cryptographic primitive Passwordless Authentication (PlA) protocols and view
WebAuthn as an instantiation of PlA. [BCZ23] defined extended PlA (ePlA) to
give a more fine-grained analysis. In this section we present our new class of ePlA
with Attestation (ePlAA) that 1) unifies the classes used in [BCZ23; HLW23] to
the extend possible and 2) extends it by allowing different attestations modes.

10

We define ePlAA for four entities — authenticators T , clients C, servers S,
and issuers I each having a state to store information — by four phases, Initiate,
Certification, Register and Authenticate described as follows.

We assume that if an algorithm gets a specific entity as input (e.g., an au-
thenticator T) it also gets its state (e.g., stT) as input and potentially updates it
during the algorithm without making this explicit. The initial state of a server
for attestation type basic, for example, is empty and later updated (e.g., with
the initialisation context that includes the issuers public key pkI to verify the
authenticator’s attestation signature, see Figure 7).

Moreover, we associate every party with an ID, e.g., idT of authenticator T
that uniquely identifies the authenticator.

Initiate: is the initialisation of authenticators, servers, and issuers, resulting in
initialisation contexts icT , icS , and icI . In addition, the authenticators’ attes-
tation material attm is defined (see Section 4.3 for more details).

Certification: is the certification of an authenticator’s attestation key run be-
tween an authenticator T , a client C, and an issuer I and after a successful
run of Initiate. At the end, both T and I hold certification contexts, which are
relevant for subsequent registrations and authentications. Certification can be
decomposed into the following algorithms
mcgen ←$ cGen(T): The attestation key generation takes as input an authenti-

cator T , and outputs a generation3 message mcgen.
(mcrsp, ccI)←$ cRsp(I, idT ,mcgen): The certification response takes as input an

issuer I, a authenticator ID idT , and a generation message mcgen, and out-
puts a response message mcrsp and an issuer’s certification context ccI .

(ccT , d)← cVrfy(T, idI ,mcrsp): The certification verification takes as input an
authenticator T , a server identity idS , and a response message mcrsp, and
outputs a authenticator-associated certification context ccT and a decision
bit d ∈ {0, 1}.

Register: is a two-pass challenge-response protocol run between an authenticator
T , a client C, and a server S, and at most once per tuple (T, S) (i.e., not for
additional clients) and after a successful run of Certification between T and an
issuer. At the end, both T and S hold registration contexts, which are relevant
for subsequent authentications. Register can be decomposed as follows:
mrch ←$ rChall(S, tb,UV): The challenge generation takes as input a server S,
an authenticator binding state tb4, and a user verification condition UV ∈
{true, false} (which indicates whether user verification is required), and out-
puts a challenge message mrch.

(mrcom,mrcl)← rCom(idS ,mrch, tb): The client command algorithm takes as in-
put the intended server identity idS , a challenge message mrch, and an authen-
ticator binding state tb, and outputs a client message mrcl and a command
message mrcom.

3 The name is chosen since during many of the attestation modes, the attestation key
is generated on the authenticator during this step.

4 WebAuthn [W3C21, Sec 5.8] optionally uses token binding [Pop+18] to cryptograph-
ically bind the information provided by the authenticator to the TLS layer, as mod-
elled in [BCZ23].

11

(mrrsp, rcT , sid, agCon)←$ rRsp(T,mrcom): The registration response takes as in-
puts an authenticator T (and implicitly its initialisation and certification con-
text icT and cct that are included in stT) and a command message mrcom, and
outputs a response message mrrsp, an authenticator-associated registration
context rcT , a session id sid, and the agreed content from the authenticators’s
perspective agCon.

(rcS , d, sid, agCon)← rVrfy(S,mrcl,mrrsp): The registration verification takes as
inputs a server S, a client message mrcl, and a response message mrrsp, and
outputs a server-associated registration context rcS , a decision bit d, a session
id sid, and the agreed content from the server’s perspective to indicate whether
the registration request was accepted.

Authenticate: is a two-pass challenge-response protocol run between an authen-
ticator T , a client C, and a server S after a successful run of Register, in which
both T and S generated their registration contexts. S either accepts or rejects
the authentication attempt. Authenticate can be decomposed as follows:
mach ←$ aChall(S, tb,UV): The challenge generation takes as input a server
S, an authenticator binding state tb, and a user verification condition UV ∈
{true, false}, and outputs a challenge message mach.

(macl,macom)← aCom(idS ,mach, tb): the client command algorithm inputs the
intended server identity idS , a challenge message mach, and a binding state
tb, and outputs a client message macl and a command message macom.

(marsp, rcT)←$ aRsp(T,macom): The authentication response takes as inputs an
authenticator T (implicitly along with its associated contexts icT , ccT , and
rcT stored in the state stT) and a command message macom, and outputs a
response message marsp and the updated registration context rcT .

(rcS , d)← aVrfy(S,macl,marsp): The authentication verification takes as inputs
a server S (implicitly along with its associated registration contexts icS and
rcS stored stS), a client message macl, and a response message marsp, and
outputs the updated registration context rcS and a decision bit d indicating
whether the authentication request was accepted.

We assume all initialisation, certification, and registration contexts to be ini-
tialised with the empty set without making this explicit in the pseudo-codes.

Similar to [BCZ23; Bar+21], we model concurrent or sequential sessions of
a server S or issuer I, and sequential sessions of an authenticator T , using the
following notation. πi

S is the i-th instance of server sessions, i.e., S = {πi
S}i; πk

I

is the k-th instance of issuer sessions, i.e., I = {πk
I }k; and πj

T is the j-th instance

of either server-authenticator or issuer-authenticator sessions, i.e., T = {πj
T }j .

Extending the session variables defined in [BCZ23], the following variables
are used by our ePlAA protocol.

πk
I , π

j
T , π

i
S: k-th issuer, j-th authenticator, i-th server session.

πk
I .sid, π

j
T .sid, π

i
S .sid: Issuer, authenticator, and server session identifiers. The

session identifiers of two distinct sessions (between server/issuer and authenti-
cator) are expected to be the same.

πi
S .ch: Registration/authentication challenge, generated in rChall/aChall.

12

πj
T .stexe, π

i
S .stexe, π

k
I .stexe: Execution statuses being either {⊥, running, accepted}

and updated in respective algorithms.
πi
S .pkCP: List of accepted assertion signature schemes by S.

πi
S .attPol: Attestation policy of the server, e.g., which attestation modes and
algorithms are accepted.

πj
T .att: Attestation mode chosen by the authenticator. Implicitly, this includes
also the algorithm that is used for the attestation signature (if attestation
signatures are generated).

πj
T .suppUV: Variable indicating whether T supports user verification.

πk
I .agCon, π

i
S .agCon, π

j
T .agCon: The contents that are expected to be agreed in

session with the same session ID.

4 Security and Privacy Definition of ePlAA

We continue refining the security and privacy properties from [BCZ23; HLW23]
definitions to cover attestation for our new class ePlAA defined in the previous
section. We first describe our threat model(s) for the passwordless authentica-
tion and unlinkability of ePlAA. Next we define the oracles that are allowed to be
accessed during the two experiments, authenticator groups, and session partner-
ing, before we then formally define passwordless authentication security (PAuth)
and unlinkability (Unl) of ePlAA.

4.1 Threat Model

First of all, as common in this line of research, we do not model the user. Fol-
lowing [BCZ23], we assume that the users always provide the user presence or
user verification confirmation when it is required and leave the users implicit in
the authentication and unlinkability experiments. In addition, we assume that
there is only one set of credentials per server to be active at a time, as otherwise
the user needs to make a choice which credential to use, as implicitly assumed
in [BCZ23].

We continue describing assumptions on the four entities: authenticators,
servers, clients, and issuers. First, we assume the identifier idS of each server
S is unique and we consider that some selected authenticators can be corrupted
both in the authentication and unlinkability experiment. This is defined in more
detail in the experiments and in the different instantiations. In particular, we do
not assume authenticators to be “tamper-proof”, i.e., the adversary is allowed
to read locally stored contexts of authenticators, which means that they will
have access to the private keys corresponding to the credentials used to register
into a specific service, and to the attestation private key. Moreover, we assume
servers to be malicious in both experiments (with the exception of the win-
ning server during the authentication security). In addition, we allow malicious
clients for both experiments (with the exception of the two clients interacting
with the target authenticators in the unlinkability experiment). These excep-
tions correspond to the asterisks in Table 2 which summarizes our assumptions

13

Table 2: Assumptions for the passwordless authentication and unlinkability ex-
periments in each phase, with adversary types in the channels between the dif-
ferent participants. Entities which can be controlled by the adversary are high-
lighted in teal. (*) denotes some natural restrictions on the challenge entities
that decide on a win in the security and privacy experiments, which are further
specified in this section.

Phase
Passwordless Authentication Unlinkability
A type Entities A type Entities

Initialisation I-T None I, T Active I, T
Initialisation I-S Passive I, S Active I, S
Certification Active I, T ∗, C Active I, T ∗, C∗

Registration Active T ∗, C, S∗ Active T ∗, C∗, S
Authentication Active T ∗, C, S∗ Active T ∗, C∗, S

modeled. Regarding issuers, for the authentication experiment we assume the
issuer behaves properly, meaning it initializes authenticators honestly and cer-
tifies them according to their attestation material. For unlinkability we assume
malicious issuers and that existing issuers can be corrupted by an adversary.
This includes an issuer revealing information about the certificates issued to the
different authenticators in order to break their unlinkability.

After describing the threat model of the different involved entities, we turn
now to additional assumptions during the respective phases. The initialisation
phase does not need to be trusted during the unlinkability experiment. Therefore,
we allow the adversary to initialise authenticators and servers with any issuer. In
the case of the authentication experiment, we assume the communication channel
between issuer and authenticator to be authenticated and confidential. Hence, it
is considered trusted and we do not allow active or passive adversaries between
these two entities. Such a direct connection could be possible during manufac-
turing time. We do allow, however, the adversary to access the issuer’s public
key—denoted by giving access to icS . We assume further, an active adversary in
the certification phase (for both unlinkability and authentication experiments).
We make no security assumptions on the communication channels between au-
thenticator, client, and server in the authentication or registration phases for
both authentication and unlinkability.

4.2 Oracles

We describe all oracles (except RLeft, RRight, ALeft, ARight) used in the
unlinkability and authentication experiments in Figure 4.

During the game executions the adversary can create new servers and (ini-
tialised) authenticators through the oracles NewS and NewT, respectively. In
these two oracles, initiate functions Initiate(S) and Initiate(T) are called, respec-
tively. These functions run the respective initialisation operations for servers and

14

NewT(T, suppUV, (I, k)):

32 if suppUVT ̸= ⊥: return ⊥
33 if I /∈ LI : return ⊥ // only if in ExptPAuthePlAA()
34 Initiate (T, πk

I)
35 suppUVT ← suppUV
36 return

NewS(S, pkCP, attPol, (I, k)):

37 if pkCPS ̸= ⊥ and attPol ̸= ⊥: return ⊥
38 if I /∈ LI : return ⊥ // only if in ExptPAuthePlAA()
39 Initiate (S, πk

I)
40 pkCPS ← pkCP, attPolS ← attPol
41 return

Corrupt(T,G):

42 if T ∈ G: return ⊥
43 ∀i : Lfrsh ← Lfrsh \ {(Si, T)}
44 return {rcT [Si]}i, icT , ccT
CorruptI(I):

45 return icI , ccI
cGen(T, h):

46 if πk
I ̸= ⊥ or πh

T ̸= ⊥ or icT = ⊥: return ⊥
47 mcgen ←$ cGen(πh

T)
48 return mcgen

cResp((I, k),mcgen, idT):

49 if πk
I .stexe ̸= running: return ⊥

50 (mcrsp, ccI)←$ cRsp(πk
I , idT ,mcgen)

51 return mcrsp

cCompl((T, h),mrrsp):

52 πh
T .stexe ̸= running: return ⊥

53 (ccT , d)← cVrfy(T, idI ,mcrsp)
54 return d

rChall((S, i), tb, UV):

55 if pkCPS = ⊥ or attInfoS = ⊥ or πi
S ̸= ⊥:

return ⊥
56 πi

S .pkCP← pkCPS , πi
S .attInfo← attInfoS

57 mrch ←$ rChall(πi
S , tb, UV)

58 return mrch

rResp((T, j),mrcom):

59 if suppUVT = ⊥ or πj
T ̸= ⊥ or icT = ⊥ or

ccT = ⊥:
60 return ⊥
61 (mrrsp, rcT , sid, agCon)←$ rRsp(πj

T ,mrcom)

62 // set πj
T .sid ← sid, πj

T .agCon ← agCon in
rRsp

63 if πj
T .sid ∈ {SL, SR}: Lr

ch ← L
r
ch∪(T) // only

if in ExptPAuthePlAA()

64 Arc[π
j
T .sid]← T

65 return mrrsp

rCompl((S, i),mrcl,mrrsp):

66 if pkCPS = ⊥ or attInfoS = ⊥ or πi
S .stexe ̸=

running: return ⊥
67 (rcS , d, sid, agCon)←$ rVrfy(πi

S ,mrcl,mrrsp)
68 # πi

S .sid← sid, πi
S .agCon← agCon in rVrfy

69 if d = 1 and Arc[π
i
S .sid] ̸=⊥:

70 Lfrsh ← Lfrsh ∪ {(S,Arc[π
i
S .sid])}

71 Arc[π
i
S .sid]←⊥

72 return d

aChall((S, i), tb, UV):

73 if pkCPS = ⊥ or attInfoS = ⊥ or πi
S ̸= ⊥:

return ⊥
74 πi

S .pkCP← pkCPS , πi
S .attInfo← attInfoS

75 mach ←$ aChall(πi
S , tb, UV)

76 return mach

aResp((T, j),macom):

77 if suppUVT = ⊥ or πj
T ̸= ⊥: return ⊥

78 πj
T .suppUV← suppUVT

79 (marsp, rcT)← aRsp(πj
T ,macom)

80 if πj
T .sid ∈ {SL, SR}: La

ch ← L
a
ch∪(T) // only

if in ExptPAuthePlAA()
81 return marsp

aCompl((S, i),macl,marsp):

82 if πi
S = ⊥ or πi

S .stexe ̸= running : return ⊥
83 (rcS , d)← aVrfy(πi

S ,macl,marsp)
84 if d = 1 and inGroup(G,marsp, rcS) = 1 and

win-auth = 0:
85 win-auth← Win-auth(S, i)
86 return d

Fig. 4: Oracles for experiments defined in Figure 5 and 6; differences to the
definitions of [BCZ23; HLW23] are highlighted in teal.

authenticators that we define in the instantiations in Section 5. By invoking the
oracles rChall, rResp, and rCompl the adversary is able to actively inter-
fere during the registration of authenticators. Moreover, via the oracles aChall,
aResp and aCompl, it can actively interfere during authentication. It is im-
portant to note that we do not allow the adversary to initialize tokens and
servers with information from an issuer created by the adversary itself during
the authentication experiment as we assume the channel between issuer and au-
thenticator to be secure as described above. However, the adversary is allowed to
initialise authenticators and servers in the unlinkability experiment with infor-
mation from an issuer created by such an adversary. Furthermore, the adversary
can also query the Corrupt oracle to reveal an authenticator’s registration,

15

certification, and initialisation contexts. It is important to emphasize that our
Corrupt definition differs from [BCZ23] in three aspects: 1) it is independent
of the sever and as such it reveals all registration contexts of the authenticator,
2) it also reveals the initialisation and certification context of the authenticator
as a natural extension to cover attestation modes, 3) and additionally it receives
an authenticator group G which defines a set of authenticators that cannot be
corrupted. The definition of the group is defined per instantiation. More infor-
mation about authenticator groups is provided in Section 4.3. We additionally
give the adversary access to the CorruptI oracle to reveal the internal state
of an issuer contained in the initialization and certification contexts. Although
the adversary can already read and modify the information exchanged between
authenticator and issuer during the certification phase through the individual
certification oracles, with this corrupt issuer oracle the adversary will also get
access to any private keys or private configuration information an issuer may
keep. This oracle will only be available in the unlinkability experiment since, as
we mentioned in the previous section, we consider the issuer to be trusted in the
authentication experiment.

In addition, in a particular stage of the unlinkability experiment, A will be
given access to RLeft, RRight, ALeft, ARight oracles (defined in Figure 6),
which will run the algorithms in the registration and authentication phases with
two randomly assigned authenticators.

4.3 Authenticator Groups

We introduce a group of authenticators G as some set of authenticators that
share the same attestation material attm which is defined in Initiate and shared
by the authenticators with the server during Register. For example, a group may
describe a set of authenticators which have attestation keys that have been issued
by the same issuer, with the same validity period, or even the same attestation
keys. For a meaningful definition of unlinkability, we assume that there are at
least two authenticators per group.

We use a static group definition in the authentication security and unlinka-
bility experiments, meaning that the adversary chooses the group of the target
authenticator(s) in advance. However, this group could be defined dynamically
given the actions of the adversary during the execution of the experiment. We
claim that given that the execution of the protocol is independent of the group
chosen by the adversary, the security results are the same.

We additionally define a method inGroup(G,marsp, rcS), which receives as in-
put a group G, an authentication message responsemarsp and a server registration
context rcS . It outputs 1 if and only if marsp was created by an authenticator
that is in G.

In the next two subsections, we give the notions of secure passwordless au-
thentication and unlinkability in connection with a group of authenticators G.
More concretely, when proving the property of passwordless authentication, the
adversary is able to corrupt any authenticator but those in the same group as

16

the authenticator that is impersonated. In the unlinkability experiment, the ad-
versary tries to distinguish two authenticators which are in the same group.

Intuitively, our definitions of different groups correspond to the following
real-world scenarios. For example, an adversary may be restricted to corrupt
authenticators of different brand / different models than the one it tries to
impersonate. This corresponds to authenticators of different certification levels,
of which some may be easier or harder to compromise. The different certification
levels can be proven using attestation and as such, this oracle allows us to be
more fine-grained regarding the adversary ability to corrupt entities for different
attestation modes.

Section 5 includes a description of attm, and therefore of G, for each instan-
tiation using a different attestation mode.

4.4 Session Partnering

Partnering identifies authenticator, issuer, and server sessions that are suc-
cessfully communicating with each other as expected, and is encoded through
matching session identifiers. More precisely, we say a server (resp., issuer) ses-
sion πi

S (resp., πk
I) partners with an authenticator session πj

T if and only if

πi
S .sid = πj

T .sid ̸= ⊥ (resp., πk
I .sid = πj

T .sid ̸= ⊥). We say a server (resp., issuer)
session πi

S (resp., πk
I) partners with an authenticator T if it partners with one of

T ’s sessions. We say an authenticator T is the registration (resp., initialisation)
partner of a server S (resp., issuer I), if the registration context of T at S (resp.,
the initialisation or certification context at I) has been set, i.e., rcT [idS] ̸= ⊥
(resp., icT [idI] ̸= ⊥ or ccT [idI] ̸= ⊥).

4.5 Passwordless Authentication Experiment for ePlAA

Aiming at similar security properties as [BCZ23], we say an ePlAA provides
passwordless authentication (PAuth) if servers accept authentication responses
if and only if they were generated by a unique honest partnered authentication
session. The winning conditions are the same as in [BCZ23] except that we
add that the adversary can also win by exploiting the certification (i.e., the
attestation). Moreover, our definition depends on the choice of an authenticator
group G. The resulting experiment is given in Figure 5.

We call a server session a test session if it accepts a response message coming
from an authenticator in G. An ePlAA is secure if for every test session πi

S (i.e.,
with πi

S .stexe = accepted and with inGroup(G,marsp, rcS) = 1), such that none of
the following four winning conditions hold:

1. the non-⊥ session identifiers of two authenticator sessions collide.
2. the non-⊥ session identifiers of two server sessions collide.
3. All the tokens that registered to the server S are fresh (not corrupted), yet,

none of them has a partnering session5

5 We have rephrased the respective condition in [BCZ23] which said “any registration
partner of S” to avoid ambiguities. The meaning, however, has been maintained.

17

ExptPAuthePlAA(A,G):

1 Lfrsh ← ∅, win-auth← 0, Arc ← ∅
2 N > 0, for k = 1..N : Ik ← Initiate(I), LI ← {I1..Ik}
3 ()←$ AO,I1..Ik

(
1λ

)
//A can use different issuers to initialize authenticators and servers

4 return win-auth

Win-auth(S, i):

5 if ∃(T1, j1), (T2, j2) such that (T1, j1) ̸= (T2, j2) and π
j1
T1

.sid = π
j2
T2

.sid ̸= ⊥ : return 1

6 if ∃(S1, i1), (S2, i2) such that (S1, i1) ̸= (S2, i2) and π
i1
S1

.sid = π
i2
S2

.sid ̸= ⊥ : return 1

7 if ∀T such that rcT [idS] ̸= ⊥, (¬∃j such that πi
S .sid = πj

T .sid, and (S, T) ∈ Lfrsh) : return 1

8 if ∃(S′, i′), (T ′, j′) such that πi′
S′ .sid = πj′

T ′ .sid ̸= ⊥ and (S′, T ′) ∈ Lfrsh and πi′
S′ .agCon ̸=

πj′

T ′ .agCon and (if G ̸= {} then T ′ ∈ G): return 1
9 return 0

Fig. 5: Security experiment for ePlAA Protocols ePlAA =
(Initiate,Certification,Register,Authenticate), with oracles O defined in Fig-
ure 4; differences to [BCZ23] are highlighted in teal.

4. the agreed contents of a pair of partnered server session πi′

S′ and authenticator

session πj′

T ′ are distinct and Corrupt(T ′,G) has not been queried.

Finally, we define authentication security for ePlAA.

Definition 1 (PAuth for ePlAA). Let Compl ∈ {PPT,QPT}. Let ePlAA =
(Initiate,Certification,Register,Authenticate) be an Extended Passwordless Au-
thentication Protocol with Attestation. We say that for any group G of authenti-
cators sharing the same attestation material attm, ePlAA provides secure pass-
wordless authentication, or PAuth for short, if for all Compl adversaries A the
advantage

AdvPAuthePlAA(A,G) := Pr
[
ExptPAuthePlAA(A,G) = 1

]
in winning the game ExptPAuthePlAA defined in Figure 5 is negligible in the security
parameter λ. During the game ExptPAuthePlAA, A has access to the following ora-
cles: cGen, cResp, cCompl, rChall, rResp, rCompl, aChall, aResp,
aCompl, NewT, NewS, and Corrupt (see Figure 4).

4.6 Unlinkability Experiment for ePlAA

The first formal definition of privacy in FIDO2, together with an analysis of
attestation mode self has been given in [HLW23]. Privacy (or more precisely
unlinkability) essentially means that different registrations of the same authen-
ticator can not be linked, either in one server or across several servers. On the
other hand, a server may be able to link several authentication sessions to the
same authenticator in terms of being related to the same registration event,
however different servers may not be able to link different authentication ses-
sions to the same device. Data that is exchanged outside of the protocol is out

18

of the scope of the definition (e.g., metadata that could be used to link inter-
actions of the authenticator(s)). [HLW23] defines three types of unlinkability:
strong, medium, and weak. We adapt their definition to the case of residential
credentials, mostly to rule out trivial attacks and to focus on the unlinkability
properties of different attestation modes, and resulting in a definition closest to
the medium unlinkability in [HLW23].

We additionally use the notion of group unlinkability, meaning that a pro-
tocol provides unlinkability as long as the adversary is restricted to try to link
authenticators of the same group G (see Section 4.3). Similarly to the authenti-
cation experiment where we use the Corrupt oracle that receives a group G as
input, the definition of group may change for each one of the attestation modes.

In [CJR22], the authors propose a new attestation protocol named Token-
Weaver that promises higher privacy guarantees and as such is interesting as an
additional attestation mode in FIDO2. Therefore, our extension of the unlinka-
bility definition from [HLW23] to cover different attestation modes, is designed
to also apply to TokenWeaver.

We define in Figure 6 the unlinkability experiment consisting of three phases:

Phase 1. The Adversary A1 gets as input the group G and a set of issuers
initialised by the experiment, and is allowed to interact with the oracles defined
in Figure 4. Its output is stored in st1.

Phase 2. The Adversary A2 gets as input st1 and group G and chooses two
target authenticators T0, T1 ∈ G and two target servers SL, SR. The challenger
runs InitRL, initialising the oracles RLeft,ALeft,RRight,ARight, where
SL, SR have been assigned to R/ALeft and R/ARight respectively and T0

and T1 have been randomly assigned to either R/ALeft or R/ARight using
a bit b. Additionally, A2 provides an output st2.

Phase 3. The Adversary A3 receives the output st2 of the previous adversary
and is allowed to interact with all the oracles defined so far, except creating
new authenticators with NewT or certify / re-certify the chosen authenticators
T0 and T1 through oracles cGen, cResp, and cCompl (see Figure 6). This is
to ensure that 1) when we define unlinkability with respect to a group G, both
authenticators remain in this group through the next phases of the experiment,
and 2) that the whole set of authenticators participating in the experiment is
stable. Oracles R/ALeft and R/ARight are oracles through which the ad-
versary can query either authenticator T0 or T1 to run the algorithms meant to
be run by the authenticator in the registration (RLeft, RRight) and authen-
tication (ALeft, ARight) phases of the ePlAA protocol. Finally, A3 outputs

a bit b̂.

Following [HLW23], we define a number of lists using our notation to rule
out trivial attacks in the experiments:

Lr
ch: all authenticators for which the rResp oracle was called to register with
servers SL or SR.
La
ch: all authenticators for which the aResp oracle was called to authenticate
with servers SL or SR.

19

Lr
lr: authenticators ∈ {T0, T1} for which the RLeft or RRight oracles were
called to register with servers SL or SR.
La
lr: authenticators ∈ {T0, T1} for which the ALeft or ARight oracles were
called to authenticate with servers SL or SR.

The experiment outputs 1 if

1. b̂ = b and Sunl∗ = (Lr
ch ∩ La

lr) ∪ (Lr
lr ∩ La

ch) is empty,
2. A has not corrupted the authenticators T0 and T1 (therefore, A has not

gotten access to any credentials stored in such authenticators as part of the
registration with servers SL or SR), and

3. T0 and T1 belong to the same group G of authenticators sharing the same
attestation information.

The main differences between this experiment, depicted in Figure 6, and the
one in [HLW23] are highlighted in teal. Essentially, the changes arise since we
consider attestation modes and residential (instead of non-residential) keys. More
concretely, 1) we allow the adversary A1 to create and corrupt authenticators
(with restrictions reflected through Lfrsh); 2) we add initialization and certifica-
tion phases involving an issuer; 3) we consider authenticator groups G defined
through shared attestation information; 4) as mentioned above, we consider the
medium unlinkability notion from [HLW23], as our experiment conditions imply
that the set La

lr ∪La
ch is empty. Still the experiment allows us to analyse unlink-

ability in terms of servers not being able to link different registrations to the
same authenticator.

Definition 2 (Group unlinkability for ePlAA). Let Compl ∈ {PPT,QPT}.
Let ePlAA = (Initiate,Certification,Register,Authenticate) be an Extended Pass-
wordless Authentication Protocol with Attestation. We say that for any group
G of authenticators sharing the same attestation material attm, ePlAA provides
group unlinkability (Unl), if for all Compl adversaries A the advantage

AdvUnlePlAA(A,G) := Pr
[
ExptUnlePlAA(A,G) = 1

]
in winning the game ExptUnlePlAA defined in Figure 6 by trying to distinguish au-
thenticators in the same group G is negligible in the security parameter λ. Dur-
ing ExptUnlePlAA, A has access to the following oracles: cGen, cResp, cCompl,
rChall, rResp, rCompl, aChall, aResp, aCompl, NewT, NewS, Corrupt,
and CorruptI (see Figure 4).

5 WebAuthn and Different Attestations Modes as
Instantiations of ePlAA

In this section we explain how we abstract WebAuthn with different attestation
modes as ePlAA, and provide the different attestation modes and their analysis
regarding their unlinkability and passwordless authentication.

20

ExptUnlePlAA(A,G) #A = (A1,A2,A3):

10 Lfrsh ← ∅, Lr
ch ← ∅, L

a
ch ← ∅, L

r
lr ← ∅, L

a
lr ← ∅, Win-priv← 0,

11 N > 0, for k = 1..N : Ik ← Initiate(I)
12 st1 ←$ A1

O,I1..Ik
(
1λ,G

)
Phase 1

13 (T0, T1, SL, SR, st2)←$ A2(st1,G) # Phase 2
14 InitRL(T0, T1, SL, SR)
15 O′ ← (O \ {NewT, cGen(T0/1, ·), cResp(·, idT0/1

), cCompl(T0/1, ·)})

16 b̂←$ A3
O′,Left,Right,I1..Ik (st2,G) # Phase 3

17 return Win-priv(b, b̂)

Win-priv(b, b̂):

18 Sunl∗ = (Lr
ch ∩ L

a
lr) ∪ (Lr

lr ∩ L
a
ch)

19 if b = b̂ and Sunl∗ = ∅ and (SL, Tb), (SR, Tb−1), (SR, Tb), (SL, Tb−1) ∈ Lfrsh and Tb, Tb−1 ∈ G
: return 1

20 return 0

InitRL(T0, T1, SL, SR):

21 if suppUVT0
= ⊥ or suppUVT1

= ⊥ or ccT0
= ⊥ or ccT1

= ⊥: return ⊥ # We let A create

and certify new authenticators in Phase 1
22 b←$ {0, 1}
23 Initialise oracles R/ALeftTb,SL

and R/ARightTb−1,SR

24 Lfrsh ← Lfrsh ∪ {(SL, T0), (SL, T1), (SR, T0), (SR, T1)} # for privacy add all four combinations
25 return
R/ALeftTb,SL

(m):

26 S ← Extract(m) # Obtains from m the
server it is intended for

27 if S ̸= SL: return ⊥
28 j ←$ 0, while πj

Tb
̸= ⊥:

j ← j + 1 # find next new token session
29 return rResp′((Tb, j),m) # in RLeft
30 return aResp′((Tb, j),m) # in ALeft

R/ARightTb−1,SR
(m):

31 S ← Extract(m) # Obtains from m the
server it is intended for

32 if S ̸= SR: return ⊥
33 j ←$ 0, while πj

Tb−1
̸= ⊥:

j ← j + 1 # find next new token session
34 return rResp′((Tb−1, j),m) # in RLeft
35 return aResp′((Tb−1, j),m) # in ALeft

rResp′((T, j),mrcom):

36 if πj
T ̸= ⊥: return ⊥

37 (mrrsp, rcT)←$ rRsp(πj
T ,mrcom)

38 Lr
lr ← L

r
lr ∪ T

39 return mrrsp

aResp′((T, j),macom):

40 if πj
T ̸= ⊥: return ⊥

41 πj
T .suppUV← suppUVT

42 (marsp, rcT)←$ aRsp(πj
T ,macom)

43 La
lr ← L

a
lr ∪ T

44 return marsp

Fig. 6: Group unlinkability experiment for ePlAA Protocols ePlAA =
(Initiate,Certification,Register,Authenticate), with oracles O defined in Figure 4
and Compl ∈ {PPT,QPT}. Differences to [HLW23] are highlighted in teal.

5.1 WebAuthn with Attestation as ePlAA

It is important to recall that we do not consider the RP’s preference enterprise
(which would signal to the authenticator to include uniquely identifying infor-
mation), and we (only) consider mode direct (i.e., the RP is interested in at-
testation directly from the authenticator and unaltered by the client, see Sec-
tion 2.1). Therefore, when adding attestation to the abstraction of [BCZ23],
only the authenticator’s response (rRsp) and the RP’s verification (rVrfy) change
during Register = (rChall, rCom, rRsp, rVrfy), see Figure 7. In addition, Initiate
and Certification change when instantiating WebAuthn with different attesta-
tion modes and is therefore described in the following subsections. Authenticate,
however, stays the same for all attestation modes and is depicted in Figure 3.

21

rChall(πi
S , tb, UV): // 1. Server

45 πi
S .ch←$ {0, 1}≥λ, πi

S .tb← tb
46 πi

S .UV ← UV , πi
S .uid←$ {0, 1}≤4λ

47 mrch ← (idS , πi
S .ch, πi

S .uid, πi
S .pkCP, πi

S .UV)
48 πi

S .stexe ← running
49 return mrch

rRsp(πj
T ,mrcom): // 3. Authenticator

50 (id, uid, h, pkCP,UP,UV)← mrcom
51 if at least one algorithm in pkCP is supported
52 Σ ← pkCP[i] with smallest i possible
53 else return (⊥,⊥)
54 if πj

T .suppUV = false and UV = true: return
(⊥,⊥)

55 (pk, sk)←$ Σ.KG(), cid←$ {0, 1}≥λ, n← 0
56 m← (H(id), n, cid, pk,Σ,UP,UV)
57 att← attT
58 if att = none:
59 matt ← {}
60 elseif att = self:
61 sA ← Σ.Sign(sk, (m,h))
62 matt ← (Σ, sA)
63 elseif att = basic or att = attCA or att =

smpTW:
64 (ak, certvk)← ccT
65 sA ←$ ΣA.Sign(ak, (m,h))
66 matt ← (ΣA, sA, certvk)
67 else
68 return (⊥,⊥)
69 mrrsp ← (m,matt, att)
70 rcT [id]← (uid, cid, sk, n,Σ)
71 πj

T .agCon ← (id, h, cid, n, pkCP, pk,Σ,UV ,
UP, ΣA, att)

72 πj
T .sid← (H(id), cid, n)

73 πj
T .stexe ← accepted

74 return (mrrsp, rcT)

rCom(idS ,mrch, tb): // 2. Client

75 (id, ch, uid, pkCP,UV)← mrch
76 if id ̸= idS : return ⊥
77 mrcl ← (ch, tb)
78 UP ← true, h← H(mrcl)
79 mrcom ← (id, uid, h, pkCP,UP,UV)
80 return (mrcom,mrcl)

rVrfy(πi
S ,mrcl,mrrsp): // 4. Server

81 pkI ← icS
82 (ch, tb)← mrcl, (m,matt, att)← mrrsp, b← 0
83 if att /∈ πi

S .attPol:
84 return (⊥, 0)
85 (h, n, cid, pk,Σ,UP,UV)← m
86 if att = none:
87 b← 1
88 elseif att = self:
89 (Σ, sA)← matt
90 b← Σ.Vfy(vk, (m,H(idS)))
91 elseif att = basic or att = attCA or att =

smpTW:
92 (ΣA, sA, certvk)← matt
93 b ← [ΣA.Vfy(vk, (m,H(idS))) and

Λ.CVfy(certvk, pkI)]
94 else
95 return (⊥, 0)
96 if h ̸= H(idS) or n ̸= 0 or ch ̸= πi

S .ch or

tb ̸= πi
S .tb or Σ ̸∈ πi

S .pkCP or UP ̸= true or

UV ̸= πi
S .UV or b ̸= 1: return (⊥, 0)

97 rcS [cid]← (πi
S .uid, pk, n,Σ)

98 πi
S .agCon ← (idS ,H(mrcl), cid, n, π

i
S .pkCP, pk,

Σ,UV ,UP, ΣA, att)
99 πi

S .sid← (H(id), cid, n)
100 πi

S .stexe ← accepted
101 return (rcS , 1)

Fig. 7: Registration of authenticators using different attestation modes of We-
bAuthn as ePlAA = (Initiate,Certification,Register,Authenticate), with Initiate
and Certification as described in the figures of the respective attestation modes
and Authenticate as in Figure 3; operations needed for attestation are in teal.

We denote the attestation certificate generated (using CG) by the issuer over
the public attestation key vk with certvk. Certification verification is denoted by
CVfy using the issuer’s public key pkI .

According to the specifications, during the authenticator’s response, it pro-
ceeds to create the credential key pair and decides which attestation mode to
use. Depending on the attestation, the authenticator proceeds differently as out-
lined in Figure 7. In all cases it generates an attestation statement matt, which
is included in mrrsp together with the chosen attestation mode att.

From the specifications, it is however, not clear how the attestation mode
is chosen. To analyse the unlinkability and authentication properties, we as-
sume that during Initiate, the manufacturer defines the attestation mode attT ∈
{none, self, basic,attCA, smpTW} on each authenticator, depending on its soft-
and hardware capabilities. It is important to emphasize that this does not nec-
essarily reflect all the attestation modes that an authenticator can support. For
example, all authenticators can support attestation modes none and self, even
if attT = basic. It is still reasonable to assume that the authenticator always

22

tries the most advanced attestation, as the authenticator only gets the RP’s
attestation preference direct, but no further instructions. This is different for
RP preference none, as specifications define that in this case the authenticator
uses only self or none. Since in our analysis self and none do not have different
properties regarding Definition 1 and Definition 2, we decided to refrain from
modelling this detail to keep it simpler.

It is interesting to note that while all authenticators should be able to use self
attestation, it might be desirable not to. More concretely, while the advantage of
self is that the authenticator ‘proves’ the ownership of the secret credential key,
the gain of an adversary registering a public credential key without knowledge of
the secret key is rather low. Therefore, the advantage of this extra guarantee is
unclear. In addition, the attestation signature (in particular, when considering
the potential larger PQ signatures) poses an overhead. Therefore, manufacturers
might choose none over self. Indeed, none is the default attestation mode.

Moving on with the description of Figure 7, in rVrfy the RP checks whether
att is allowed under its policies (attPol). If yes, it proceeds depending on the
attestation mode. Otherwise, it rejects the registration attempt, updates rcS ,
outputs d = 0, and notifies the user (out-of-band) that the authenticator does
not meet the RPs requirements.

5.2 Attestation Mode none and self

For the attestation modes none and self, there is essentially no attestation. As
such there is no attestation key pair, and therefore essentially no certification.
This is shown in Figure 8.

Instead, an ‘empty’ attestation signature (in case of none) or a signature
generated using the secret credential key (in case of self) is sent. As such, self
attestation proves the knowledge of the credential secret key.

Given that the attestation material attm is empty for these attestation modes,
the group G is empty too. For the passwordless authentication experiment, this
means that the adversary can corrupt any authenticator (however test sessions

Initiate
Initiate(I): // 1. Issuer

102 icI ← {}
103 return
Initiate(S, πk

I): // 2. Server

104 icS ← {}
105 return
Initiate(T, πk

I): // 3. Authenticator

106 attT ← none or self
107 attm ← {}
108 icT ← icT ∪ {attT , attm}
109 return

Certification
cGen(πj

T): // 1. Token

110 return mcgen ← {}
cRsp(πk

I , idT ,mcgen): // 2. Issuer

111 return (mcrsp, ccI)← ({}, {})
cVrfy(πj

T , idI ,mcrsp): // 3. Authenticator

112 return (ccT , d)← (icT , 1)

Fig. 8: Initialisation and certification of WebAuthn with attestation none and
self as an ePlAA = (Initiate,Certification,Register,Authenticate); Register and
Authenticate as in Figure 7 and 3, respectively.

23

Reg((S, i), (T, j), tb, UV):

113 if pkCPS = ⊥ or attInfoS = ⊥ or suppUVT = ⊥ or πi
S ̸= ⊥ or πj

T ̸= ⊥ or rcT [S] ̸= ⊥ or
icT = ⊥ or ccT = ⊥: return ⊥

114 πi
S .pkCP← pkCPS , πi

S .attInfo← attInfoS , πj
T .suppUV← suppUVT

115 mrch ←$ rChall(πi
S , tb, UV)

116 (mrcom,mrcl)← rCom(idS ,mrch, tb)
117 (mrrsp, rcT , sid, agCon)←$ rRsp(πj

T ,mrcom)

118 (rcS , d, sid, agCon)←$ rVrfy(πi
S ,mrcl,mrrsp)

119 Lfrsh ← Lfrsh ∪ {(S, T)}
120 if S ∈ {SL, SR}: Lr

ch ← L
r
ch ∪ (T) // only if in ExptUnlePlAA()

121 return (mrch,mrcl,mrcom,mrrsp, d)

Fig. 9: Oracle description of Reg; differences to [BCZ23] are highlighted in teal.

that originate from a call to this oracle are excluded from the winning condi-
tions). During the unlinkability experiment the adversary can choose any two
authenticators.

Since attestation modes none and self do not give any security assurance
during Register, trust on first use has been assumed in [BCZ23]. In Definition 1
of PAuth, we, however, allow an active adversary. This definition can not be
satisfied by WebAuthn with attestation mode none or self. Therefore, we define
a weaker variant of PAuth (called PAuth-w), assuming a passive adversary as
in [BCZ23].

The difference between PAuth and PAuth-w is that instead of accessing the
oracles rChall, rResp, and rCompl, the adversary is only allowed access to an
oracle Reg given in Figure 9. By invoking the Reg oracle, A is able to eavesdrop
on honest registrations between servers and authenticators of its choice. From
the definition of PAuth and PAuth-w it is clear that protocols providing PAuth,
also provide PAuth-w.

We can prove WebAuthn with attestation types none or self to be PAuth-w
secure and provide the theorem and proof in Appendix A. This theorem is es-
sentially the same as [BCZ23, Theorem 1] adapted to our ePlAA class definition.

Likewise, we prove in Appendix A that WebAuthn with none or self is un-
linkable. The proof idea is simply that since there is no attestation, there is also
no information provided that can be used to link the tokens.

5.3 Attestation Mode basic

In the basic attestation mode, the authenticator’s attestation key pair is shared
with at least 99,999 other authenticators [W3C21, Sec 14.4.1], forming a batch
(e.g., all devices from a specific model). The secret attestation key is embedded
in the authenticator, together with a certificate for the public attestation key.
Therefore, essentially there is no Certification and most operations are done dur-
ing Initiate as shown in Figure 10, e.g., the attestation key is generated and put
on all hardware authenticators of a batch during Initiate.

We define the attestation material attm as consisting of the certificate of the
respective batch attestation public key certB , and the issuer’s public key vkI .
This means that in the passwordless authentication experiment the adversary

24

Initiate
Initiate(I): // 1. Issuer

122 (skI , vkI)←$ Λ.KG()
//Issuer’s key pair

123 Define batches of at least 100 000
authenticators each

124 D = [·] // Batch data
125 For every batch B:
126 (akB , vkB)←$ ΣA.KG()

// Batch key pair
127 certB ← Λ.CG(skI , vkB)

// Certificate of vkB
128 D[B]← {akB , certvkB

, vkI}
129 icI ← {skI , vkI , D}
130 return

Initiate(S, πk
I): // 2. Server

131 icS ← icS ∪ {vkI}
132 return

Initiate(T, πk
I): // 3. Authenticator

133 attT ← basic
134 Find batch B with idT ∈ B:
135 {akB , certvkB

, vkI} ← D[B]
136 attm ← {certB , vkI}

// Attestation material
137 icT ← icT ∪ {attT , akB , attm}
138 return

Certification
cGen(πj

T): // 1. Authenticator

139 return mcgen ← {}
cRsp(πk

I , idT ,mcgen): // 2. Issuer

140 return (mcrsp, ccI)← ({}, {})
cVrfy(πj

T , idI ,mcrsp): // 3. Authenticator

141 {attT , akB , attm} ← icT
142 {certB , vkI} ← attm
143 if ΣA.KVfy(certB , akB) = 1: // Verification

of attestation certificate
144 return (ccT , d)← (icT , 1)
145 else : return (ccT , d)← (⊥, 0)

Fig. 10: Initialisation and certification of WebAuthn with attestation mode
basic as ePlAA = (Initiate,Certification,Register,Authenticate); Register and
Authenticate as in Figure 7 and 3, respectively.

won’t be able to corrupt authenticators from the same batch as the one for which
a successful authentication needs to happen according to the winning conditions.
In the unlinkability experiment, the adversary will try to distinguish between two
authenticators from the same batch.

During rRsp (see Figure 7), data is signed using the secret attestation key ak
and sent together with mrrsp and the certificate certvk. During rVrfy, the server
will check that the attestation type matches those supported by the server, and
verify the attestation signature and the attestation certificate. We assume (see
Figure 10), the issuer public key is shared out of band with the server in advance.

Passwordless Authentication. An adversary making a Corrupt query for
an authenticator of the same batch as the winning authenticator, would be able
to generate attestation signatures. To exclude this attack, we allow the adver-
sary to corrupt only authenticators of other batches than the test session. More
concretely, we define the authenticator group G as the batch of the winning
authenticator. This enables us to allow malicious adversaries also during reg-
istration, formalised in the next theorem. It is important to emphasize that
while restricting authenticator corruptions to the group limits the adversary’s
power, the statement is still a significant improvement over previous analysis
that needed to assume an honest registration.

Theorem 1 (PAuth of WebAuthn with basic). Let WebAuthn with attesta-
tion mode basic be an instantiation of an ePlAA ePlAA = (Initiate,Certification,
Register,Authenticate) as in Figure 10, 7, and 3. Let 2λ1 and 2λ2 be the sizes
of the value spaces for credential id cid and the challenge nonce sampled during

25

authentication respectively. Moreover, Let G be a group of authenticators sharing
the same attestation materials attm, i.e., the same batch. Assume that the under-
lying function H is ϵcoll-resH -collision resistant, and the signature schemes Σ,ΣA

are ϵeuf-cma
Σ -euf-cma and ϵeuf-cma

ΣA
-euf-cma secure against PPT/QPT adversaries.

For any PPT/QPT adversary A against PAuth of ePlAA for a test session π, it
holds that

AdvauthWebAuthn-basic(A,G) ≤
(
qrResp

2

)
2−λ1 +

(
qaChall

2

)
2−λ2

+ϵcoll-resH + 2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
).

Proof sketch. The main part of the proof is very similar to that for the mode
none (cf. Appendix A), which is based on the analysis in [BCZ23]. Namely, we
first assume that credential ids cid and random challenges ch are unique, and that
hash functions with different inputs produce different outputs. Assuming unique
identifiers and collision-resistant hash functions, we can rule out an adversary
winning via conditions 1 and 2. A needs to forge a valid authentication message
marsp without the collaboration of an authenticator in order to win with condition
3. For that, either A forges the assertion signature (i.e., it needs to be able to
break the euf-cma security of the assertion signature scheme), or it registers a
different credential during the registration phase (i.e., it needs to forge a valid
registration messagemrrsp). Given thatA is not allowed to corrupt authenticators
of the same group, which share the same attestation key that signs such message,
A would need to break the euf-cma security of the attestation signature scheme.
Similarly, A may win by forging the attestation signature via condition 4.

Unlinkability. Analysing the unlinkability of WebAuthn with attestation mode
basic is similar to the mode none (cf. Appendix A) as well, except that for basic
the adversary is restricted to choose authenticators T0 and T1 from the group G
(i.e., the same batch B containing at least two authenticators). We provide the
formal statement next.

Theorem 2 (Unl of WebAuthn with basic). Let WebAuthn with attestation
mode basic be an instantiation of an ePlAA ePlAA = (Initiate,Certification,Register,
Authenticate) as in Figure 10, 7, and 3. Let G be the group of authenticators in
the same batch B. Then for a PPT/QPT adversary A it holds

AdvUnlWebAuthn-basic(A,G) = 0.

Proof sketch. Given that A is restricted to select two authenticators of the same
batch, the attestation key used to sign the registration message and the certifi-
cate created by the issuer will be the same for both authenticators. Therefore,
no information is provided to the adversary that can be used to distinguish T0

and T1. This is true even if the adversary corrupts issuers or if it provides in-
valid information to the authenticators or servers during initialization as the
registration will fail.

26

Initiate
Initiate(I): // 1. Issuer

146 (skI , vkI)←$ KG()
// Issuer’s signing/verification key pair

147 (dkI , ekI)←$ KG()
// Issuer’s decryption/encryption key pair

148 icI ← {(skI , vkI), (dkI , ekI)}
149 return

Initiate(T, πk
I): // 2. Authenticator

150 (dkT , ekT)←$ KG() // Endorsement key
151 certT ← CG(skI , ekT)

// Endorsement certificate
152 attm ← {vkI} // Attestation material
153 icT ← icT ∪ {dkT , ekT , certT , ekI}
154 return

Initiate(S, πk
I): // 2. Server

155 icS ← icS ∪ {vkI}
156 return

Certification
cGen(πj

T): // 1. Authenticator

157 (ak, vk)←$ Σ.KG() // Attestation key/AIK
158 σvk ←$ Σ.Sign(ak, vk)
159 k1 ←$ Es.KG // Symmetric Key
160 c← Es.Encrypt(k1, (vk, σvk, certT))
161 k ← Ea.Encrypt(ekI , k1)
162 mcgen ← {c, k}
163 return mcgen

cRsp(πk
I , idT ,mcgen): // 2. Issuer

164 k1 ← Ea.Decrypt(dkI , k)
165 (vk, σvk, certT)← Es.Decrypt(k1, c)
166 if Σ.Vfy(vk, vk, σvk) = 0 or

Λ.CVfy(vkI , certT) = 0 : return ⊥
167 certvk ← CG(skI , vk)
168 k2 ←$ Es.KG() // Symmetric Key
169 c← Es.Encrypt(k2, (certvk,H(vk)))
170 k ← Ea.Encrypt(ekT , k2)

// with ekT from certT
171 return (mcrsp, ccI)← ({c, k}, {(T, certvk)})
cVrfy(πj

T , idI ,mcrsp): // 3. Authenticator

172 k2 ← Ea.Decrypt(dkT , k)
173 (certvk, h)← Es.Decrypt(k2, c)
174 if h ̸= H(vk): return ⊥
175 ccT ← ccT ∪ (ak, certvk)
176 return (ccT , 1)

Fig. 11: Initialisation and certification of WebAuthn with attestation attCA as an
ePlAA = (Initiate,Certification,Register,Authenticate); Register and Authenticate
as in Figure 7 and 3, respectively.

5.4 Attestation Mode attCA

For attestation mode attCA, it is assumed that the authenticator is based on
a trusted platform module (TPM) that holds a specific endorsement key (EK)
[W3C21; Gro11]. This key is used to authenticate subsequent communications
with the attestation CA. A TPM may create multiple attestation identity key
(AIK) pairs and asks the issuer for a certificate for each AIK. The Initiate and
Certification phases of this attestation mode are depicted in Figure 11.

The attestation material attm is defined as the issuer’s public key vkI . In the
passwordless authentication experiment, the adversary is not allowed to corrupt
authenticators with AIKs certified by the same issuer; in the unlinkability exper-
iment, the adversary will have to try to distinguish between two authenticators
with AIKs certified by the same issuer.

Passwordless Authentication. The authentication security analysis of We-
bauthn with attCA given formally in the next theorem is very similar to using
attestation mode basic. The main difference is that the adversary can also try
to win the experiment by forging the certificate of the endorsement key.

Theorem 3 (PAuth of WebAuthn with attCA). Let WebAuthn with attesta-
tion mode attCA be an instantiation of an ePlAA ePlAA = (Initiate,Certification,
Register,Authenticate) as in Figure 11, 7, and 3. Let 2λ1 and 2λ2 be the sizes

27

of the value spaces for credential id cid and the challenge nonce sampled during
authentication, respectively. Moreover, Let G be a group of authenticators shar-
ing the same attestation materials attm (i.e., authenticators with attestation and
endorsement keys certified by the same issuer signing keypair). Assume that the
underlying function H is ϵcoll-resH -collision resistant, the signature schemes Σ,ΣA

are ϵeuf-cma
Σ -euf-cma and ϵeuf-cma

ΣA
-euf-cma secure, and the certificate generation

scheme Λ is also ϵeuf-cma
ΣΛ

-euf-cma secure against PPT/QPT adversaries. For any
PPT/QPT adversary A against PAuth of ePlAA for a test session π, it holds that

AdvPAuth-wWebAuthn-attCA(A,G) ≤
(
qrResp

2

)
2−λ1 +

(
qaChall

2

)
2−λ2

+ϵcoll-resH + 2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
)+2qcGen · ϵeuf-cma

ΣΛ
.

Proof sketch. The proof is very similar to the proof of Theorem 1 with the
addition that the adversary can also win via conditions 3 and 4 as follows. The
adversary could forge a valid certificate certT (i.e., it breaks the euf-cma security
of the certificate generation scheme) for an endorsement key pair by its own
choice. Moreover, it generates an AIK and asks the issuer to certify the AIK.
The issuer will generate the certificate for the public AIK, and encrypts it under
the adversary-chosen endorsement key.

Unlinkability. Different from the other attestation modes, during WebAuthn
with attCA the issuer is trusted. In particular, issuers keep track of authenticators
and their attestation certificates. As such, an adversary corrupting an issuer via
CorruptI can trivially win the Unl experiment. Therefore, we do not give access
to CorruptI, defining a weaker unlinkability notion (called Unl-w). From the
definition of Unl and Unl-w it is clear that protocols providing Unl, also provide
Unl-w.

Under the assumptions defined for Unl-w, analysing the unlinkability of We-
bAuthn with attestation mode attCA is the same as in the previous modes. The
authenticator group G essentially corresponds to all authenticators with attes-
tation certificates generated by the same issuer. As such A has to choose two
authenticators with attestation keys certified with the same issuer key pair (i.e.,
∀T ∈ G, (akT , certvkT) are such that Λ.CVfy(vkI , certvkT) = 1). When calling
to the registration oracles, these authenticators provide attestation signatures
generated with different attestation keys. They can, however, be verified with
the same issuer public key vkI . This way, there is no additional information
provided to A that provides an advantage for winning the game.

Theorem 4 (Unl-w of WebAuthn with attCA). Let WebAuthn with attesta-
tion mode attCA be an instantiation of an ePlAA ePlAA = (Initiate,Certification,
Register,Authenticate) as in Figure 11, 7, and 3. Let G be the group of authen-
ticators where ∀T ∈ G, (akT , certvkT) are such that Λ.CVfy(vkI , certvkT) = 1.
Then for a PPT/QPT adversary A it holds

AdvUnl-wWebAuthn-attCA(A,G) = 0.

28

Initiate
Initiate(I): // 1. Issuer

177 (dkI , ekI)←$ Ea.KG()
// Issuer’s decryption/encryption key pair

178 icI ← (dkI , ekI)
179 icI .LT [idT]← {}
180 return
Initiate(S, πk

I): // 2. Server

181 icS , ccS ← {}, {}
182 return
Initiate(T, πk

I): // 3. Authenticator

183 attT ← SmpTW
184 tT ←$ {0, 1}≥λ

//Token sampled by the authenticator
185 icI .LT [idT]← tT
186 icT ← {attT , tT , icI .ekI}
187 return
Update
Update(πk

I , P): // 1. Issuer for Period P

188 (skI,P , vkI,P)←$ Λ.KG
//Issuer’s period key pair

189 Define batches of at least 100 000 tokens each
190 DP = [·] //Batch data for Period P
191 For every batch B:
192 (akB,P , vkB,P)←$ ΣA.KG()

//Batch key pair
193 certB,P ← Λ.CG(skI,P , vkB,P)

// Certificate of vkB,P
194 DP [B]← {akB,P , certvkB,P

, vkI,P }
195 ccI ← {skI,P , vkI,P , DP }
196 return
Update(πi

S , P, πk
I): // 2. Server for Period P

197 ccS,P ← ccS,P ∪ {ccI .vkI,P }
198 return
Update(πj

T , P, πk
I): // 3. Authenticator for P

199 return

Certification
cGen(πj

T): // 1. Authenticator

200 tT , ekI ← icT
201 k1 ←$ Es.KG // Symmetric Key
202 ccT .k2 ←$ Es.KG // Symmetric Key
203 c← Es.Encrypt(k1, (tT , k2, idT))
204 k ← Ea.Encrypt(ekI , k1)
205 return mcgen ← (c, k)

cRsp(πk
I , idT ,mcgen): // 2. Issuer

206 dkI ,LT ← icI , DP ← ccI
207 k1 ← Ea.Decrypt(dkI , k)
208 (trecv, k2, id

′
T)← Es.Decrypt(k1, c)

209 tT ← LT [id′T]
210 if tT = ⊥ or trecv ̸= tT : return ⊥
211 Find batch B with idT ∈ B:
212 {akB,P , certvkB,P

, vkI,P } ← DP [B]

213 attm ← {certB,P , vkI,P } //attestation
material

214 tT ←$ {0, 1}≥λ

//New token sampled by the issuer
215 icI .LT [id′T]← tT
216 c← Es.Encrypt(k2, (akB,P , attm, tT))
217 mcrsp ← (c)
218 return (mcrsp, ccI)

cVrfy(T, idI ,mcrsp): // 3. Authenticator

219 c← mcrsp, k2 ← ccT
220 (akB,P , attm, tT)← Es.Decrypt(k2, c)
221 {certB,P , vkI,P } ← attm
222 if ΣA.KVfy(certB,P , akB,P) = 1 and

Λ.CVfy(certB,P , pkI):// Verify keypair
223 ccT ← (akB,P , attm, tT)
224 return (ccT , 1)
225 else : return (ccT , 0)

Fig. 12: Initialisation and certification of WebAuthn with the new attestation
type smpTW.

Proof sketch. The proof follows from the proof of Theorem 8 with the change
that no access is given to CorruptI.

6 Simple TokenWeaver as a New Attestation Mode for
WebAuthn

WebAuthn with attestation mode basic is currently the only mode that provides
both PAuth and Unl. One limitation is that Unl is limited for authenticators
in the same (large) batch. The requirement for large batch size leads to a more
significant limitation—PAuth is preserved as long asno other authenticator in the
batch has been corrupted. Compromising a single authenticator means that we
lose PAuth for any server that supports the batch’s attestation key. The only way
to recover security is to revoke the entire batch of at least 100,000 authenticators!
In this section, we propose a new attestation mode called smpTW that is able
to overcome this limitation.

29

OUpdateI(I, P):
226 if icI = ⊥: return ⊥
227 Update(I, P)

OUpdateS(S, I, P):
228 if ccI = ⊥ or icI = ⊥: return ⊥
229 Update(S, P)

Fig. 13: Description of new oracles to run Update for issuers and servers.

6.1 The smpTW att Mode

WebAuthn with smpTW is very similar to WebAuthn with attestation mode
basic, but with an added mechanism that allows for periodic provisioning of new
attestation keys to achieve PCS. smpTW is described in Figure 12.

As in basic, the same attestation keys and certificates are provided to a batch
of authenticators, who will use them to sign the messages during registration in a
remote web server. However, unlike basic, in smpTW the attestation keys are only
valid for a limited time period. During Initiate, the authenticator is provisioned
only with a secret one-time token, and the issuer’s public encryption key.

For each period, the Update algorithms are called to generate the new period’s
attestation keys for all batches, and provision the servers with the new public
keys. The new attestation keys are provisioned to the authenticators during
Certification. Communication during Certification is protected using symmetric
keys generated by the authenticator and sent to the issuer encrypted under its
public key. During Certification, the authenticator “spends” its one-time token
in exchange for a new valid token and the next period’s attestation keys.

This periodic certification protocol allows for the security of the entire batch
to “heal” after an authenticator from the batch and its attestation keys were
compromised. If a compromised authenticator runs the Certification algorithms
before the adversary it will “lock” the adversary out (as the token can only be
used once) and security will be recovered. If the adversary runs Certification first,
the user will learn that it was compromised as they are “locked out”. The user
can then ask the issuer to revoke the compromised authenticator and security
will be recovered after the next period’s Update. We combine this new mode,
with a requirement for periodic re-registration of authenticators by the remote
servers to fully “heal” and achieve PCS for the authentication process. For a full
discussing of the PCS property we refer to [CJR22].

smpTW is based on the TokenWeaver general attestation scheme proposed
in [CJR22]. While the original scheme allows for instant revocation of attestation
keys of specific users and might allow for faster detection or recovery from com-
promises, smpTW is simpler to implement and—contrary to TokenWeaver—it is
based on cryptographic primitives with post-quantum variants that are currently
being standardized.

For the security and privacy analysis of this attestation mode, we intro-
duce in Figure 13 two new oracles to support the new Update algorithms. In
Appendix D, we provide the full analysis of the PAuth and Unl properties of
smpTW and we prove the following theorems:

30

Theorem 5 (PAuth Security of WebAuthn with smpTW). Let Compl ∈
{PPT,QPT}. Let WebAuthn with attestation mode smpTW be an instantiation
of an ePlAA ePlAA = (Initiate,Update∗,Certification,Register,Authenticate) as
in Figure 12, 7, and 3. Let 2λ1 , 2λ2 and 2λ3 be the sizes of the value spaces
for credential id cid, the challenge nonce sampled during authentication, and
tokens tT used during certification, respectively. Moreover, let G be a group of
authenticators sharing the same attestation materials attm (i.e., the same batch).
Assume that the underlying function H is ϵcoll-resH -collision resistant, and the sig-

nature schemes Σ and ΣA and the encryption schemes Eaand Es are ϵeuf-cma
Σ -

and ϵeuf-cma
ΣA

-euf-cma secure, and ϵind-cpaEa - and ϵind-cpaEs -ind-cpa secure, respectively,
against Compl adversaries. For any Compl adversary A against PAuth of ePlAA
for a test session π, it holds that

AdvPAuthWebAuthn-simpleTW(A,G) ≤
(
qrResp

2

)
2−λ1 +

(
qaChall

2

)
2−λ2 + ϵcoll-resH

+2qrResp·(ϵeuf-cma
Σ + ϵeuf-cma

ΣA
) + 2qcResp · (ϵind-cpaEa + 2−λ3)

+2qcGen·(ϵind-cpaEa + ϵind-cpaEs).

Proof sketch. The proof is based on the one for the mode basic (cf. Ap-
pendix C), which is based on the analysis in [BCZ23]. The main idea is that for
winning via conditions 3 or 4, A needs to be able to register a new public key, for
which it will need to break either the euf-cma security of the assertion signature
scheme or of the attestation signature scheme. Alternatively, A may try to get
a valid attestation key pair to register the public key. In the proof, we restrict
A to not being able to corrupt authenticators from the batch B which form the
group G, and for it being able to either impersonate an authenticator from that
group in front of an issuer, or learn the attestation key pair the issuer sends to an
honest authenticator from that group during the Update phase, A needs to break
the security of the encryption schemes used for securing the communications be-
tween issuer and authenticators. A winning via conditions 1 and 2 is ruled out
by initial assumptions regarding unique identifiers and collission-resistant hash
functions.

Theorem 6 (Unl of WebAuthn with smpTW). Let Compl ∈ {PPT,QPT}.
Let WebAuthn with attestation mode smpTW be an instantiation of an ePlAA
ePlAA = (Initiate,Update,Certification,Register,Authenticate) as in Figure 12, 7,
and 3. Let G be the group of authenticators in the same batch B. Then,

AdvUnlWebAuthn-smpTW(A,G) = 0.

Proof sketch. Note that in the unlinkability experiment the adversary is re-
stricted to choose two authenticators from the same group G, and after that
the adversary is not allowed to query any certification oracles (at least for such
authenticators). Then, unless we reach the next epoch and the attestation / is-
suer public key certificates expire before the target tokens are registered in the
target servers, the behaviour of the experiment is exactly the same as in basic

31

mode. Otherwise, in case these certificates expired, the registration in the target
servers would fail equally for the target authenticators, and therefore there isn’t
any additional advantage for A. In case A runs the OUpdateI and OUpdateS
oracles from Figure 13 in phase 3, registration in the target servers would fail as
well for both target authenticators and A wouldn’t get an additional advantage.

7 Conclusion

As summarised in Table 3, the four different attestation modes provide different
(group) security and privacy guarantees. It turns out that none and self are
the most privacy preserving attestation modes as they satisfy Unl under no
restrictions to the authenticator group (as attm is empty). However, Webauthn
with attestation modes none or self is not PAuth secure. It can provide the weaker
notion PAuth-w where there is no active adversary during Register.

attCA on the other hand, provides passwordless authentication security PAuth
(if no authenticator certified by the same issuer as the winning authenticator has
been corrupted) but relies strongly on the trust of the issuer and as such only
satisfies the weaker notion Unl-w where issuers are not allowed to be corrupted.

Lastly, basic is the only current WebAuthn attestation mode that provides
both PAuth and Unl. However, PAuth is preserved only if no other authenticator
in the batch has been corrupted. Given the large batch size of 100,000 or more,
this poses both a security risk and an inconvenience in case one authenticator
is compromised and the entire batch has to be replaced. Our proposal for a new
attestation mode smpTW, which also satisfies both PAuth and Unl, overcomes
this limitation by providing a healing mechanism.

All the modes analysed rely on cryptographic primitives that already have
PQ standardization candidates selected by NIST [NIS] and are thus ”PQ ready.”
However, future work is required to design efficient instantiations with PQ secure
primitives that take into account the increase in size and computational cost
required by these new primitives.

Table 3: Summary of authentication security and unlinkability proven.
Attestation mode PAuth-w PAuth Unl-w Unl attm

none ✓ ✗ ✓ ✓ {}
self ✓ ✗ ✓ ✓ {}
basic ✓ ✓ ✓ ✓ certB
attCA ✓ ✓ ✓ ✗ vkI
smpTW ✓ ✓ ✓ ✓ certB,P , vkI,P

32

Acknowledgments

Icons in Figure 1 from flaticon with premium account. The fourth author is partly
supported by ISF grant no. 1807/23 and the Len Blavatnik and the Blavatnik
Family Foundation.

33

https://www.flaticon.com/

References

[Alla] F. Alliance. Passkeys FAQ. Last checked February 2023. url: https:
//fidoalliance.org/passkeys/#faq (cit. on p. 7).

[Allb] F. Alliance. What is FIDO? Last checked April 2023. url: https:
//fidoalliance.org/what-is-fido/ (cit. on p. 3).

[Bar+21] M. Barbosa, A. Boldyreva, S. Chen, and B. Warinschi. “Provable
Security Analysis of FIDO2”. In: Advances in Cryptology, 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part III. Ed. by T. Malkin
and C. Peikert. Vol. 12827. Lecture Notes in Computer Science.
Springer, 2021, pp. 125–156. doi: 10.1007/978-3-030-84252-9\ 5.
url: https://doi.org/10.1007/978-3-030-84252-9\ 5 (cit. on pp. 4,
5, 8, 10, 12).

[BCZ23] N. Bindel, C. Cremers, and M. Zhao. “FIDO2, CTAP 2.1, and
WebAuthn 2: Provable Security and Post-Quantum Instantiation”.
In: 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023. IEEE, 2023, pp. 1471–1490.
doi: 10.1109/SP46215.2023.10179454. url: https://doi.org/10.
1109/SP46215.2023.10179454 (cit. on pp. 4, 5, 8–13, 15–18, 21, 24,
26, 31, 35, 36).

[CDL16] J. Camenisch, M. Drijvers, and A. Lehmann. “Universally Compos-
able Direct Anonymous Attestation”. In: Public-Key Cryptography
- PKC 2016 - 19th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9,
2016, Proceedings, Part II. Ed. by C. Cheng, K. Chung, G. Per-
siano, and B. Yang. Vol. 9615. Lecture Notes in Computer Science.
Springer, 2016, pp. 234–264. doi: 10.1007/978-3-662-49387-8\ 10.
url: https://doi.org/10.1007/978-3-662-49387-8\ 10 (cit. on p. 8).

[CGCG16] K. Cohn-Gordon, C. Cremers, and L. Garratt. “On post-compromise
security”. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF). IEEE. 2016, pp. 164–178 (cit. on p. 9).

[CJR22] C. Cremers, C. Jacomme, and E. Ronen. “TokenWeaver: Privacy
Preserving and Post-Compromise Secure Attestation”. In: IACR
Cryptol. ePrint Arch. (2022), p. 1691. url: https://eprint.iacr.org/
2022/1691 (cit. on pp. 5, 9, 19, 30).

[Gro11] T. I. W. Group. A CMC Profile for AIK Certificate Enrollment,
Version 1.0, Revision 7. 2011. url: https://trustedcomputinggroup.
org/wp-content/uploads/IWG CMC Profile Cert Enrollment v1
r7.pdf (cit. on p. 27).

[HLW23] L. Hanzlik, J. Loss, and B. Wagner. “Token meets Wallet: Formaliz-
ing Privacy and Revocation for FIDO2”. In: 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023. IEEE, 2023, pp. 1491–1508. doi: 10.1109/SP46215.
2023 . 10179373. url: https : / /doi . org / 10 . 1109/SP46215 . 2023 .
10179373 (cit. on pp. 4–6, 8, 10, 13, 15, 18–21, 39).

34

https://fidoalliance.org/passkeys/#faq
https://fidoalliance.org/passkeys/#faq
https://fidoalliance.org/what-is-fido/
https://fidoalliance.org/what-is-fido/
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1109/SP46215.2023.10179454
https://doi.org/10.1109/SP46215.2023.10179454
https://doi.org/10.1109/SP46215.2023.10179454
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-662-49387-8_10
https://eprint.iacr.org/2022/1691
https://eprint.iacr.org/2022/1691
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
https://doi.org/10.1109/SP46215.2023.10179373
https://doi.org/10.1109/SP46215.2023.10179373
https://doi.org/10.1109/SP46215.2023.10179373
https://doi.org/10.1109/SP46215.2023.10179373

[NIS] NIST. Selected Algorithms 2022. Last checked April 2023. url:
https : / / csrc . nist . gov /Projects / post - quantum - cryptography /
selected-algorithms-2022 (cit. on p. 32).

[Pop+18] A. Popov, M. Nystroem, D. Balfanz, and J. Hodges. The Token
Binding Protocol Version 1.0. 2018. url: https://www.rfc-editor.
org/rfc/rfc8471#section-1 (cit. on p. 11).

[SRW22] A. Shakevsky, E. Ronen, and A. Wool. “Trust Dies in Darkness:
Shedding Light on Samsung’s TrustZone Keymaster Design”. In:
31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 251–268. isbn: 978-1-
939133-31-1. url: https://www.usenix.org/conference/usenixsecurity22/
presentation/shakevsky (cit. on p. 4).

[W3C21] W3C. Web Authentication: An API for accessing Public Key Cre-
dentials Level 2. 2021. url: https://www.w3.org/TR/webauthn-2/
(cit. on pp. 6, 11, 24, 27).

[W3C23] W3C. Web Authentication: An API for accessing Public Key Cre-
dentials Level 3. 2023. url: https://w3c.github.io/webauthn/ (cit.
on p. 6).

A Full Analysis of WebAuthn With none

For completeness we give the definition of PAuth-w next and depict the differ-
ences in oracle access in Table 4.

Definition 3 (PAuth-w for ePlAA). Let Compl ∈ {PPT,QPT}. Let ePlAA =
(Initiate,Certification,Register,Authenticate) be an Extended Passwordless Au-
thentication Protocol with Attestation. We say that for any group G of authenti-
cators sharing the same attestation material attm, ePlAA provides weak secure
passwordless authentication, or PAuth-w for short, if for all Compl adversaries
A the advantage

AdvPAuth-wePlAA (A,G) := Pr
[
ExptPAuthePlAA(A,G) = 1

]
in winning the game ExptPAuthePlAA defined in Figure 5 is negligible in the security
parameter λ. During the experiment ExptPAuthePlAA, A has access to the following
oracles: cGen, cResp, cCompl, Reg, aChall, aResp, aCompl, NewT,
NewS, and Corrupt.

We provide the security statement for WebAuthn with attestation type none
that also applies to all other attestation types next. This theorem is essentially
the same as [BCZ23, Theorem 1] adapted to our ePlAA class definition.

Theorem 7 (PAuth-w of WebAuthn with none). Let WebAuthn with attes-
tation mode none be an instantiation of an ePlAA ePlAA = (Initiate,Certification,
Register,Authenticate) as in Figure 8, 7, and 3. Let 2λ1 and 2λ2 be the sizes of the

35

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.rfc-editor.org/rfc/rfc8471#section-1
https://www.rfc-editor.org/rfc/rfc8471#section-1
https://www.usenix.org/conference/usenixsecurity22/presentation/shakevsky
https://www.usenix.org/conference/usenixsecurity22/presentation/shakevsky
https://www.w3.org/TR/webauthn-2/
https://w3c.github.io/webauthn/

Phase
Oracle access

PAuth PAuth-w Unl Unl-w

Initiate icS
Initiate (T)
Initiate (S)

Certification
cGen
cResp
cCompl

Register
rChall

Reg
rChall

rResp rResp
rCompl rCompl

Authenticate
aChall
aResp
aCompl

All phases

NewT
NewS

Corrupt
CorruptI

Table 4: Oracle accesses given to the adversary in the Passwordless Authentica-
tion and Unlinkability experiments.

value spaces for credential id cid and challenge, respectively. Let G be an empty
group. Assume that the underlying function H is ϵcoll-resH -collision resistant, and

the signature scheme Σ is ϵeuf-cma
Σ -euf-cma secure against PPT/QPT adversaries.

For any PPT/QPT adversary A against PAuth of ePlAA for a test session π, it
holds that

AdvPAuth-wWebAuthn-none(A,G) ≤
(
qReg

2

)
2−λ1 +

(
qaChall

2

)
2−λ2

+ϵcoll-resH + 2qRegϵ
euf-cma
Σ .

Proof. We prove the theorem through a sequence of games, following [BCZ23]
closely. In particular Games 0 to 3 are the same. Let Advi denote the advantage
of the PPT/QPT Adversary A in winning Game i.

Game 0. This game is identical to the original experiment, therefore

Adv0 = AdvPAuth-wWebAuthn-none(A). (1)

Game 1. The game aborts and the adversary wins if there exist two credential
identifiers cid that collide with each other.

Otherwise, given an honest authenticator and an authenticator corrupted by
the adversary with the same cid, the adversary will be able to register a credential
in a server slot that collides with the honest authenticator credential (winning
condition 4) and potentially authenticate as the honest authenticator.

It is important to note that credential identifiers are only created during
the calls to the Reg oracle, which an adversary can query qReg times. There

36

is a maximum of
(
qReg

2

)
pairs of cid which are sampled from the set {0, 1}≤λ1 .

Therefore,

Adv0 − Adv1 =

(
qReg

2

)
2−λ1 . (2)

Game 2. This game aborts and the adversary wins if there are two random
challenge nonces during the authentication that collide.

Otherwise the adversary could reuse a response marsp from a honest authenti-
cator to impersonate it when authenticating to the server (winning condition 3).
Even if the server could potentially detect such reuse due to the increment on
the counter n, A could block the authentication response of the honest authen-
ticator in order to make this control ineffective. Alternatively, in case the server
sent the same nonce to both an honest and a corrupt authenticator, the corrupt
authenticator could end up registering as the honest one.

The nonce is sampled by the server in the aChall oracle, which can be
queried by the adversary up to qaChall times. Similarly to case 1, there are(
qaChall

2

)
pairs of challenges sampled from the set {0, 1}≤λ2 . Therefore,

Adv1 − Adv2 =

(
qaChall

2

)
2−λ2 . (3)

Game 3. Game 3 is the final game over which we perform the analysis. The
game aborts and the adversary wins if there exist two hash values that collide
on different inputs.

There are several situations where an adversary could take advantage of
finding hash collisions. One is during registration. Namely, an adversary that
finds a collision in H(id) can potentially make an authenticator register and
later authenticate to server S′ with idS′ ̸= idS (winning conditions 2 and 3).
During authentication, an adversary that finds a collision in H(macl) = H(ch, tb)
could reuse the authentication response of an honest authenticator in order to
impersonate it in future requests (winning condition 3).

Let’s denote ϵcoll-resH the probability that an adversary finds a hash collision.
Hence,it holds that

Adv2 − Adv3 = ϵcoll-resH . (4)

Next we analyse the probability that A wins in the last game. It is important
to note that A can only win if one of the four winning conditions hold.
Case 1. The session identifier for the authenticator session πj1

T1
.sid for any pair

(T, j) includes the credential identifier cid which we make sure in Game 1 that will
be unique per each registration context. This means that two session identifiers
using different registration contexts won’t be equal. Furthermore, the session
identifier also depends on a counter n, which is equal to 0 during registration,
and will be incremented by the authenticator by 1 before a new session identifier
is set during authentication. Therefore, two authenticator sessions using the same
registration context won’t share the same sid. Hence, Advcase13 = 0.
Case 2. The session identifier for the server session πi

S .sid for any pair (S, i)
includes H(id). We assume that each server has a unique identity id and in

37

Game 3 we assumed there is no collision of two hashes for different inputs,
meaning two different servers can’t have the same session id. Within the same
server, the session id for registration is clearly distinguishable from those for
authentication due to the presence of H(macl) in the latter, which depends
on the challenge. Given that we ensure in Game 2 that all challenges ch are
unique and in Game 3 no collision of hashes with different inputs occur, no
session identifiers of different sessions of the same server can be identical. Hence,
Advcase23 = 0.
Case 3. In case 3 there is an authenticator T that registers with the server
S and hence the authenticator registration context rcT [idS] is set. When the
server runs the aCompl oracle in order to process the authentication response,
it verifies the signature over the information sent by the authenticator using the
corresponding public key pk associated to a given credential id cid. Then, part of
this information is used to compute the session id πi

S .sid. We note that in order
for the authenticator not to have a matching session id, the information must
not have been produced by any of the authenticator sessions. Given that the
authenticator was not corrupted, the adversary didn’t have access to the private
key sk. Therefore, an adversary that wins this game can be used to break the
euf-cma security of the signature scheme. The adversary has to target a specific
session where the authenticator creates a key pair during registration, hence this
attack can be potentially be done qReg times. Therefore,

Advcase33 = qRegϵ
euf-cma
Σ . (5)

Another potential strategy to be followed by the adversary would be to reg-
ister another public key pk’ on the server under the same credential id cid. Given
that credential identifiers cid are unique and that the adversary does not have
access to the individual registration oracles, this strategy is impossible.
Case 4. Note that by case 1 and case 2, we make sure that if an authentica-
tor and a server share the same session identifier, they are each other’s part-
ners. In the registration phase, the adversary is limited to a Reg query where
πi
S .agCon = πj

T .agCon by definition. In the authentication phase, by case 3 we
have to consider that a server will partner with an authenticator if and only
if T is the registration partner of S, except with probability Advcase33 (and in
this case agCon in authenticator and server may not match!). Assuming they are
registration partners, similarly to case 3, we see that πi

S .agCon contains infor-
mation that was presumably digitally signed by the authenticator and verified
by the server. For it not to match, the adversary has been able to forge a valid
signature under pk and hence it can be used to break the euf-cma security of
the signature scheme, which can be done with probability at most qRegϵ

euf-cma
Σ .

Therefore,
Advcase43 ≤ Advcase33 + Advcase33 ≤ 2qRegϵ

euf-cma
Σ . (6)

By combining all cases it follows that

Adv3 ≤ 2qRegϵ
euf-cma
Σ , (7)

which proves the theorem statement.

38

□

As in the case of the PAuth security analysis, we prove unlinkability related
to the notion of a group G which contains all the authenticators participating in
the experiment.

Theorem 8 (Unl of WebAuthn with none). Let WebAuthn with attestation
mode none be an instantiation of an ePlAA ePlAA = (Initiate,Certification,Register,
Authenticate) as in Figure 8, 7, and 3. Let G be the group of all authenticators
participating in the experiment. Then for a PPT/QPT adversary A it holds that

AdvUnlWebAuthn-none(A,G) = 0.

Proof. We first look at the unlinkability proof in [HLW23] for the key wrapping
mode kwrPA. The main difference between kwrPA and the key derivation mode
(kdfPA) is that in the latter the authenticator will provide a successful answer
even if queried with a credential id cid that wasn’t registered in a server, which
is not the case in our scenario with resident credentials. The proof is given as a
sequence of games, gradually removing the information about authenticators Tb

and Tb−1 from the oracles R/ALeft and R/ARight, such that at the end the
information the adversary receives is independent of the decision bit b.

In Game 1 the challenger tries to guess the authenticators T0 and T1, and
the adversary will select and replace them by T ∗0 , T

∗
1 .

In Game 2 the two authenticators guessed by the challenger, which will be
used in the R/ALeft and R/ARight oracles, behave in the following way.
Credential ids cid are generated at random, cid ←$ {0, 1}≥λ; when RLeft or
RRight oracles are called, the credential keypair (pk, sk) is created and an entry
is stored in a map L0 or L1—depending on the authenticator we are using—
indexed by cid. Later on, during authentication, the authenticator will look for
the corresponding entry given the cid, to retrieve the credentials to answer the
challenge.

In Game 3, the map used by the authenticator Tb is split in 2: Lb to be used
exclusively with the rResp and aResp oracles, and L′b to be used only with
oracles R/ALeft.

Game 4 does the same for the authenticator Tb−1. At this point, the infor-
mation the adversary receives is independent of the bit b.

We next turn to the specifics of the attestation mode none. First, we define
that for the attestation mode none, the group G from which the adversary can
choose authenticators is the entire authenticator set T of authenticators partic-
ipating in the experiment. Then, we use the games explained above with our
instantiation, starting with Game 0 where Adv0 = AdvUnlWebAuthn-none(A,G).

Note that our instantiation matches the scenario depicted in Game 2, but
instead of indexing the maps L0, L1 by cid, they are indexed by idS . Hence,
Adv0 − Adv2 = 0.

Then, given our condition of Sunl∗ = ∅ to rule out trivial attacks, it is evident
that the map entries used in the rResp and aResp oracles for Tb do not match

39

those used inR/ALeft, and the same applies for Tb−1 andR/ARight, meaning
that Adv2 − Adv3 = 0 and Adv3 − Adv4 = 0. Finally,

Adv4 = AdvUnlWebAuthn-none(A,G) = 0.

With resident credentials and attestation mode none, the amount of informa-
tion from the authenticator that a potential adversary receives are credential IDs
and public keys which are different per server/relying party, and provided they
are fully independent, they can’t be used to link authenticator registrations.

□

B Analysis of WebAuthn with self

The attestation mode self is very similar to none in terms of security and pri-
vacy guarantees; the attestation material attm is empty. As for none, there is
no attestation key pair, instead, the credential private key is used to generate
the attestation signature. As such, self attestation proves the knowledge of the
credential secret key. However, it does not give any additional benefits against a
PAuth adversary, and Theorem 7 applies. Likewise, there is no additional advan-
tage for the Unl adversary as the credential keys are independent of each other
and Theorem 8 applies.

C Full Analysis of WebAuthn with basic

We give the proof for Theorem 1 next.

Proof. We give the proof through a sequence of games. Games 0-3 are the same
as those for mode none (cf. Appendix A). We summarise that

AdvauthWebAuthn-basic(A,G)− Adv3 =

(
qrResp

2

)
2−λ1 +

(
qaChall

2

)
2−λ2 + ϵcoll-resH .

It is important to note that we use qrResp instead of qReg here, due to the
fact that the adversary is given access to oracles for the individual registration
algorithms in this mode.

Then we look at the probability of A winning the last game, for which A
has exactly the same options in case 1 and case 2 as in mode none. Therefore,
Advcase13 = Advcase23 = 0. For cases 3 and 4, the adversary can follow strategies
in addition to the ones described in mode none outlined next.
Case 3. During registration, A can register another public key pk′ for which the
corresponding sk′ is also known by the adversary. This requires forging a valid
input message mrrsp that will be accepted by the oracle rCompl. Given that we
restrict the adversary to corrupt authenticators from other batches through the
definition of G (which won’t share the same attestation key pair), the only way
to succeed is to break the euf-cma security of the attestation signature scheme

40

ΣA used during registration which can be done with probability at most ϵeuf-cma
ΣA

.
Therefore,

Advcase33 = qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
).

Case 4. In the registration phase, for agCon values not to match between au-
thenticator and server, the adversary can follow the new strategy of forging a
valid message mrrsp which, given the collision-resistance property of the hash
function stated in Game 3, and the restriction of not corrupting authenticators
from the same batch, requires the adversary to break the euf-cma security of
ΣA. Therefore,

Advcase43 ≤Advcase33 + Advcase33 ≤ 2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
).

By combining all cases where adversary wins we have that:

Adv3 ≤ 2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
).

which proves the theorem statement. □

D Full Analysis of WebAuthn With smpTW

As in basic, we define the attestation material attm as the certificate of the re-
spective batch attestation public key certB,P , and the issuer’s public key vkI,P .
In the authentication security experiment the adversary won’t be able to cor-
rupt authenticators from the same batch as the one for which it may get a
successful authentication to win. Moreover, for simplicity we assume batches are
constant across periods and that there isn’t any authenticator in group G that
was compromised in a previous period. Although we don’t include this in the ex-
periment, this can be considered realistic given the PCS property of the scheme.
In the unlinkability experiment, the adversary will try to distinguish between
two authenticators from the same batch.

Next we provide the proof of Theorem 5.

Proof. We base the proof for this mode on the proof for basic (cf. Appendix C).
The main difference between the two modes is that in basic the attestation keys
are set in the authenticator during initialization, while in smpTW these are sent
from the issuer to the authenticator over an insecure channel controlled by A
when running the certification algorithms. We also take into account the two new
oracles from Figure 13. Following the authentication security proof for basic, at
the end of Game 3 we have that:

AdvPAuthWebAuthn-simpleTW(A,G)− Adv3 =

(
qrResp

2

)
2−λ1 +

(
qaChall

2

)
2−λ2 + ϵcoll-resH .

Then we review the strategies for winning in cases 1-4. In smpTW, the ad-
versary has two new additional strategies to win in Case 3 by updating the

41

credential public key pk and forging a valid input message mrrsp. In both strate-
gies, A gets a valid attestation keypair assigned to the batch B of authenticators
which form the group G: a) A recovers (akB,P , attm) from mcrsp during a honest
interaction between an authenticator T ∈ G and an issuer I, or b) A imper-
sonates an authenticator T ∈ G and runs cGen to get an attestation key pair,
which requires A to guess a valid token tT corresponding to idT .

An adversary that wins according to strategy a) plays against the ind-cpa
property of the encryption scheme Ea (actually ind-cpa is a stronger notion since
it does not allow recovering a single bit, while A needs to recover the whole
message), which can be broken with probability at most ϵind-cpaEa , or against ind-cpa
of the encryption scheme Es, which can be broken with probability at most
ϵind-cpaEs . Strategy b) can be successful with probability 2−n, where n is the length
of tokens tT . Therefore:

Advcase33 =qrResp(ϵ
euf-cma
Σ + ϵeuf-cma

ΣA
) + qcResp(ϵ

ind-cpa
Ea + 2−λ3) + qcGen(ϵ

ind-cpa
Ea + ϵind-cpaEs).

Similarly, we add the same 2 strategies for winning in case 4, resulting in

Advcase43 =Advcase33 + Advcase33 = 2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
)

+2qcResp · (ϵind-cpaEa + 2−λ3) + 2qcGen · (ϵind-cpaEa + ϵind-cpaEs).

By combining all cases where adversary wins we have that:

Adv3 ≤2qrResp · (ϵeuf-cma
Σ + ϵeuf-cma

ΣA
) + 2qcResp · (ϵind-cpaEa + 2−λ3)

+ 2qcGen · (ϵind-cpaEa + ϵind-cpaEs).

□

42

	To attest or not to attest, this is the question – Provable attestation in FIDO2
	Introduction
	Attestation in FIDO2
	Contributions
	Overview of the paper

	Background
	WebAuthn
	TokenWeaver and Post-Compromise Security

	Definition of Extended Passwordless Authentication Protocols with Attestation
	Security and Privacy Definition of ePlAA
	Threat Model
	Oracles
	Authenticator Groups
	Session Partnering
	Passwordless Authentication Experiment for ePlAA
	Unlinkability Experiment for ePlAA

	WebAuthn and Different Attestations Modes as Instantiations of ePlAA
	WebAuthn with Attestation as ePlAA
	Attestation Mode none and self
	Attestation Mode basic
	Attestation Mode attCA

	Simple TokenWeaver as a New Attestation Mode for WebAuthn
	The smpTWatt Mode

	Conclusion

	Appendices
	Full Analysis of WebAuthn With none
	Analysis of WebAuthn with self
	Full Analysis of WebAuthn with basic
	Full Analysis of WebAuthn With smpTW

