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Abstract. Picnic is a NIST PQC Round 3 Alternate signature candi-
date that builds upon symmetric primitives following the MPC-in-the-
head paradigm. Recently, researchers have been exploring more secure/-
efficient signature schemes from conservative one-way functions based on
AES, or new low-complexity one-way functions like Rain (CCS 2022) and
AIM (CCS 2023 and Round 1 Additional Signatures announced by NIST
PQC). The signature schemes based on Rain and AIM are currently
the most efficient among MPC-in-the-head-based schemes, making them
promising post-quantum digital signature candidates.
However, the exact hardness of these new one-way functions deserves fur-
ther study and scrutiny. This work presents algebraic attacks on Rain
and AIM for certain instances, where one-round Rain can be compro-
mised in 2n/2 for security parameter n ∈ {128, 192, 256}, and two-round
Rain can be broken in 2120.3, 2180.4, and 2243.1 encryptions, respectively.
Additionally, we demonstrate an attack on AIM-III (which aims at 192-bit
security) with a complexity of 2186.5 encryptions. These attacks exploit
the algebraic structure of the power function over fields with character-
istic 2, which provides potential insights into the algebraic structures of
some symmetric primitives and thus might be of independent interest.

Keywords: Algebraic Attacks · Power Mapping · Arithmetization
Oriented Primitives · Rain· AIM

1 Introduction

With significant advancements in quantum computing over the past decades, the
security threats of quantum computers are increasingly becoming a reality. As a



2 K. Zhang et al.

response, the cryptographic community is seeking post-quantum alternatives to
the widely deployed public-key cryptography algorithms, the most noteworthy
of which is NIST’s post-quantum cryptography (PQC) standardization process.7
This has motivated numerous novel designs as well as analyses of the underlying
hardness assumptions.

Towards post-quantum digital signatures, a popular approach is to employ
the MPC-in-the-Head (MPCitH) paradigm, proposed by Ishai et al [24]. In de-
tail, MPCitH provides a general construction of a zero-knowledge proof for an
NP relation by making a black-box use of any secure multi-party computa-
tion protocol for a related functionality. A major application of the MPCitH
paradigm is to construct post-quantum digital signatures, which are essentially
a non-interactive zero-knowledge proof of knowledge (NIZKPoK) that the in-
put of a specific one-way function (secret key of the signature) corresponds
to the one-way function’s output (public key of the signature). Note that the
message to be signed is involved in the challenge generation of NIZKPoK. The
NIZKPoK, when based on quantum-resistant one-way functions, gives rise to
promising candidates for post-quantum signatures. Chase et al. [7,25] pioneered
NIZKPoK-based signatures, and they designed the Picnic scheme that advanced
to the third round of the NIST PQC standardization process.

Subsequent improvements to MPCitH-based signatures follow two approaches.
The first approach [14,6,15] sticks to standard primitives such as the AES, and
focuses on improving the efficiency of the zero-knowledge proof. Concretely, such
designs instantiate the block cipher-based OWF H(k) = Ek(P ) (with P a pub-
lic constant) with AES.8 Since the performance of MPCitH-based signatures is
typically closely tied to the number of non-linear operations in the circuit of
the underlying one-way function, the large circuit size of AES constitutes the
bottleneck. Generally, symmetric primitives, which aim to minimize the cost re-
lated to the number of non-linear operations, are called arithmetization-oriented
symmetric primitives. With this in mind, the second approach is devoted to de-
signing efficient arithmetization-oriented block ciphers for H(k) = Ek(P ) or even
new one-way functions. In fact, Picnic already employed this idea and instan-
tiated H(k) = Ek(P ) with an MPC-friendly block cipher LowMC, which aims
to minimize the number of AND gates over F2. The idea was further extended
by Dobraunig et al. [20] and Kim et al. [26]. Dobraunig et al. proposed a novel
block cipher to instantiate H(k) = Ek(P ). More detailedly, Rain may be viewed
as an iterated Even-Mansour scheme with round permutation defined upon in-
versions in F2n and random matrices in Fn×n

2 , where n is the block size. Such
round permutations may also be viewed as generalizations of the AES S-box.
Kim et al. [26] made a step further and proposed a “tweakable” OWF AIM that
is built upon a novel construction and employs the Mersenne power function as
its S-box. Both Rain and AIM maintained to reduce the number of multiplica-
tions over F2n , and they enjoy the shortest signature size as well as comparable

7 https://csrc.nist.gov/projects/post-quantum-cryptography
8 The one-wayness of H(k) = Ek(P ) is equivalent to the key recovery security of E

with a single plaintext/ciphertext pair: see [20] for a proof.

https://csrc.nist.gov/projects/post-quantum-cryptography
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signing/verification time among MPCitH-based signatures (to the best of our
knowledge). In July 2023, AIMer has been submitted as one of the NIST PQC
Round 1 Additional Signatures in the category of Symmetric-based Signatures.9

We remark that the block cipher Rain is only intended to be used in the
OWF construction Hk = Ek(P ), the security of which is equivalent to the key
recovery security of E with a single plaintext/ciphertext pair. Therefore, classical
attacks involving multiple data, including statistical attacks like the differential
attack, are not immediately relevant in this setting.

The MPC-friendly primitive-based approach proves a huge success w.r.t. per-
formance: all of the aforementioned designs, i.e., (LowMC-based) Picnic, Rain-
based Rainier and AIM-based AIMer, managed to reduce multiplications (over
F2 or F2n) as well as the signature size (as mentioned). On the other hand,
classical cryptanalytic methods (e.g., differential and linear attacks) are mostly
inapplicable due to the limited available data. These have motivated investigat-
ing dedicated cryptanalytic methods and deepening the understanding of such
designs. For example, since proposed, LowMC has undergone quite some crypt-
analysis [18,19,38,38,28,5,30,32]. In this work we focus on Rain and AIM and
design novel algebraic attacks breaking the one-wayness of certain instances, as
elaborated below.

1.1 Our Contributions

Here we give an overview of our attacks and propose possible countermeasures.

Overview of the New Algebraic Attacks. Rain employs the same kind of
S-box as the AES, which is the multiplicative inverse function over F2n (with
zero mapped to zero). Our initial focus was to linearize this S-box. We progress
in this direction by discovering the following fact:

x254 = (x17)14 · x16

where x254 is the non-linear layer of AES and the formula is over F28 . For the
two terms of the formula:

– In the first term, 17 is a divisor of 255, meaning that x17 has only 255/17 = 15
possible choices for x ∈ F28\{0}.

– In the second term, the square function over F2n is linear, which means that
square function x2 can be represented by matrix multiplication as x2 = Mx
for an invertible matrix M ∈ F8×8

2 . Hence, the mapping x 7→ x16 can be
expressed as x 7→ M ′x for M ′ = M4.

Therefore, if we guess the value of x17 = α from 15 possible choices, we can
express x254 as x254 = α14 · x16 = M ′′x for some M ′′. This linearizes the non-
linear layer of AES, but unfortunately, no attacks better than the current state-
of-the-art has been found based on this fact.
9 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
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However, Rain also uses the multiplicative inverse function over F2n as its
non-linear layer. For an even n, we decompose it similarly to the AES as

x2n−2 = (x2n/2+1)2n/2−2 · x2n/2
.

As can be seen, d = 2n/2 + 1 is a divisor of 2n − 1. In other words, {xd : x ∈
F2n\{0}} is a subgroup of the multiplicative group F∗

2n of the finite field F2n .
Therefore xd has only |F∗

2n |/d = (2n − 1)/(2n/2 + 1) = 2n/2 − 1 possible choices.
Secondly, x 7→ x2n/2 is a linear function over F2. Guessing at most 2n/2 − 1
possible choices in a similar way, allows the adversary to linearize the non-linear
layer. Using this method, we can recover the key of one-round Rain in 2n/2

encryptions.
When we move to two-round Rain, this method will not work directly. In-

spired by [30], we introduce quadratic equations into our attack, and propose
a new method of deriving quadratic equations from two S-boxes in the form of
power mappings. More specifically, in the first step, by linearizing the S-box in
the first non-linear layer, we obtain independent linear equations, and free vari-
ables for the secret key bits. In the next step, we construct quadratic equations
from the second S-box. By substituting unknown variables with free variables
obtained in the previous step, we get a sufficient number of linearly independent
quadratic equations so that all free variables can be solved efficiently.

Our Attacks on Rain and AIM. We demonstrate that one-round Rain can be
compromised in 2n/2 number of encryptions, for n ∈ {128, 192, 256}, while two-
round Rain can be broken in 2120.3, 2180.4, and 2243.1 encryptions, respectively.
Furthermore, we also show an attack on full AIM-III (which aims at 192-bit se-
curity) with 2186.5 encryptions. Notably, all these attacks are conducted in the
one-way function setting, where the adversary has access to only one plaintext/-
ciphertext pair or one ciphertext in the case of AIM. Besides, the memory cost of
our attacks is negligible. Finally, we implement attacks on two-round Rain and
AIM-III, practically showing that there are sufficiently enough linearly indepen-
dent equations to solve unknown variables. Our implementation can be found
at

https://github.com/kzoacn/LargeSbox/.

At present, these attacks do not affect the security of the signature scheme which
uses three- or more-round Rain. Moreover, the security of AIM-I (which aims at
128-bit security) and AIM-V (which aims at 256-bit security) are not significantly
affected by our attack.

Our attack exploits the algebraic structure of the power function over the
binary Galois field, which is widely used in the design of symmetric primitives
suitable for MPCitH-based signature schemes. Therefore, our findings provide
new insights into the algebraic structures of these primitives, which might be of
independent interest.

Restoring the Security of AIM. Lastly, in Section 5.2 we discuss some coun-
termeasures that allow AIM to regain security. These include countermeasures

https://github.com/kzoacn/LargeSbox/
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avoiding the simultaneous linearization of two S-boxes, restricting of the order
n of extension field F2n to be odd, and increasing the number of rounds.

1.2 Related Work

Post-quantum signatures can be built upon other hardness assumptions as well,
including lattice assumptions (e.g., CRYSTALS-Dilithium [33] and Falcon [37]),
the intractability of Multivariate Quadratic (MQ) problems, etc. Some represen-
tative schemes such as SPHINCS+ [23] are solely based on cryptographic hash
functions (but rely on much stronger assumptions than the one-wayness of the
hash functions). We refer to [39] for a survey.

Since Rain is an instance of the iterated Even-Mansour scheme, we refer
to [13,21,36,16,17] for generic key recovery attacks. Though, with just one plain-
text/ciphertext pair, such generic attacks are either inapplicable (on two rounds)
or less efficient than ours (on one round).

During the submission of this work, Liu and Mahzoun proposed attacks on 2-
round Rain and full-round AIM [29]. Since the natural isomorphism between Fn

2
and F2n , both Rain and AIM defined over F2n , can be represented as relatively
low-degree polynomials over Fn

2 . They proposed highly refined techniques to solve
systems of low-degree equations, while we more focus on the essential property
of power mapping S-boxes in this work.

1.3 Paper organization

In Section 2, we define notations and give background information for the lin-
earization techniques used in this paper. We present our first attack on one-round
Rain in Section 3. In order to attack more rounds of Rain, we first propose a
general algebraic attack framework at the beginning of Section 4. Under this
framework, we achieve attacks on two-round Rain and the full rounds of AIM-
III. We discuss some countermeasures that allow AIM to reestablish security in
Section 5. We conclude this paper in Section 6.

2 Preliminaries

2.1 Notations

Let p be a prime number, and q = pn for a positive integer n. Let Fp denote a
finite field with p elements, and let Fq = Fpn denote a finite field with character-
istic p. The multiplicative group of Fq is denoted by F∗

q = Fq\{0}. We use [m]
to denote the set {0, 1, . . . , m − 1} for m ∈ N+. We use n as both the security
parameter and the block size, since for both Rain and AIM the block size equals
the security parameter. The size of a set S is denoted by |S|. The n-dim identity
matrix is denoted by I.
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2.2 Finite Field

Theorem 1 (e.g., Theorem 2.1.37 from [34]). The multiplicative group F∗
q

of a finite field Fq is cyclic.

Definition 1. A generator g of a multiplicative group F∗
q is called a primitive

element of the field Fq. It is denoted as F∗
q = 〈g〉.

Theorem 2. Let d be a divisor of |F∗
q | = pn − 1, and let X

def= {xd : x ∈ F∗
q}.

The size of X is |X| = |F∗
q |/d = (pn − 1)/d.

Theorem 2 tells us that for any appropriate d > 1 with d|(pn − 1), the power
function x 7→ xd maps inputs from F∗

q to a proper subset of F∗
q .

2.3 Linearized Polynomial

Definition 2 (linearized polynomial). A linearized polynomial is defined as
L(x) def=

∑
i∈[n] aix

pi , where ai ∈ Fpn for some prime p.

Let L(x) be a linearized polynomial over a finite field Fp. The map x 7→ L(x)
is a linear map over Fp, i.e., for all a, b ∈ Fpn and c ∈ Fp, we have L(a +
b) = L(a) + L(b) and c · L(a) = L(c · a). Due to the existence of a vector
space isomorphism Fn

p
∼= Fpn , we can naturally view an element x ∈ Fpn as a

vector x̂ ∈ Fn
p . More specifically, there must exist a matrix M ∈ Fn×n

p such that
L(x) = Mx̂. For simplicity, we interchangeably view x as an element of Fpn or
a vector x ∈ Fn

p , so that we can write L(x) = Mx.
In the case of the bijective mapping F2n → F2n : x 7→ x2k , we can represent

it as Fn
2 → Fn

2 : x 7→ Mx for some invertible binary matrix M .

2.4 Linearization and Multivariate Quadratic Equations over Finite
Field

Linearization Attacks. Solving multivariate equations is regarded as an NP-
hard problem in general. However, in some special cases, multivariate polynomial
systems of equations over finite fields can be solved in polynomial time (see e.g.,
[27]). The core idea of linearization is to turn a system of non-linear equations
into a linear system by treating each monomial as a separate variable. In gen-
eral, the method generates polynomials of some degree, up to the point where
the number of equations exceeds the number of monomials so a solution can
be obtained by some linear algebra. In symmetric cryptography, it is usually
assumed that the attackers have access to sufficiently many equations to lin-
earize the system. Recall that the number of possible monomials in a degree d
polynomial in F[x1, . . . , xn], where |F| > d, is Bn,d =

(
n+d

d

)
. The linearization
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attack requires O(Bω
n,d) multiplications in F, where 2 < ω ≤ 3, O(Bn,d) data

complexity, and O(B2
n,d) memory complexity.

Multivariate Quadratic Equations over F2. In this paper, the main focus is
the quadratic multivariate equations. A set of multivariate quadratic equations
consists of equations of the form∑

i,j∈[n]

ai,jxixj +
∑
i∈[n]

bixi + c = 0,

where ai,j , bi, c ∈ F2 are constants, and x1, x2, . . . , xn are the unknown variables.
When applying the linearization technique to the quadratic case, it simply in-
volves replacing each quadratic term with a new separate variable. Suppose we
want to replace xixj with a new variable yk = xixj . Note that in F2, x2

i = xi

for any i always holds. Therefore the only possible quadratic terms are of the
form yk = xixj with i < j, which lead to n(n − 1)/2 instead of n(n + 1)/2 new
variables. Therefore, combined with the n variables xi’s, the total number of
variables will be m = n + n(n − 1)/2.

While there are more sophisticated methods available, such as relineariza-
tion [27] or XL [11], the linearization technique suffices for our attacks.

3 Preliminary Algebraic Attack on One-Round Rain

In this section, we present the algebraic attack on one-round Rain. We first start
with the specification of the target cipher.

3.1 Description of Rain

Rain is the one-way function designed for the signature scheme Rainier. Rain
is denoted as a keyed permutation Ek(P ) = C, where the input P and the
output C are public, and the secret key k is private. As a one-way function
used in the signature scheme, it is H(k) = Ek(P ). The keyed permutation is
a concatenation of r round functions Ri. For each round 1 ≤ i < r, the round
function Ri is defined by

Ri(x) = Mi(S(x + k + c(i)))

and the last round function is

Rr(x) = k + S(x + k + c(r)),

where c(i) ∈ Fn
2 is the round constant, and Mi ∈ Fn×n

2 is the linear layer matrix
used in the i-th round. Each Mi can be represented as a linearized polynomial
over F2n as defined in Definition 2. The details for the generation of the round
constants and matrices are referred to in the design paper [20]. The non-linear
layer of Rain is defined as S : F2n → F2n such that

S(x) = x2n−2 =
{

x−1, x 6= 0
0, x = 0
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A graphical overview of the construction with the round number r = 3 is shown
in Fig. 1.

x−1 M1 x−1 M2 x−1P

k ⊕ c(1) k ⊕ c(2) k ⊕ c(3) k

C

Fig. 1. Rain permutation with r = 3.

Parameter Sets. The block size of Rain is n ∈ {128, 192, 256}. Two variants
for each block size are recommended with the round number r = 3, 4, which are
used in the signature Rainierr-n. We denote the one-way function with the block
size n as Rain-n in our presentation, neglecting the number of rounds r.

The finite field and irreducible polynomials of Rain are defined as follows:

– For 128-bit security, the finite field is F2128 with irreducible polynomial
X128 + X7 + X2 + X + 1.

– For 192-bit security, the finite field is F2192 with irreducible polynomial
X192 + X7 + X2 + X + 1.

– For 256-bit security, the finite field is F2256 with irreducible polynomial
X256 + X10 + X5 + X2 + 1.

3.2 Attack on One-Round Rain

x−1 M1P

k ⊕ c(1) k

C

Fig. 2. Rain permutation with r = 1.

In this subsection, we describe our attacks on one-round Rain. Here, one
round of Rain means a regular round, i.e., it consists of the nonlinear operation
S-box, and the linear operation M1. The relation of the public input P and
public output C, and the secret key k can be expressed as

M1(P + k + c(1))−1 + k = C . (1)

To recover the key k is to find the root of Eq. (1).
Before giving the procedures of our attack, we first explain some observations

about the multiplicative inverse function (S-box) that the attack relies on.
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Proposition 1. For an even n, the multiplicative inverse function x−1 over F2n

can be linearized by guessing 2n/2 − 1 possible values for xd, where d = 2n/2 + 1.

Proof. For an even n, the multiplicative inverse function over F2n can be repre-
sented as

x2n−2 = (x2n/2+1)2n/2−2 · x2n/2
. (2)

Let d = 2n/2 + 1, s = 2n/2 − 2, and t = n/2, Eq. (2) can be simplified as

x2n−2 = (xd)s · x2t

. (3)

We proceed to performing an individual analysis of both terms within the sim-
plified expression in Eq. (3) as follows:

i) According to Theorem 2, d is a divisor of 2n − 1, xd takes only (2n − 1)/d =
2n/2 − 1 possible values.

ii) According to Section 2.3, x 7→ x2t is equivalent to x 7→ Mx for an invertible
matrix M .

It means that we can linearize the multiplicative inverse function over F2n (for
even n) by guessing 2n/2 − 1 possible values for xd.

Based on Proposition 1, we give the detailed steps of our attack as follows:

1. Enumerate an element α from the set D = {xd : x ∈ F∗
2n}, then let the value

of (P + k + c(1))d be α.
2. Compute (P + k + c(1))−1 = αs · (P + k + c(1))2t = Mk + b for a matrix

M ∈ Fn×n
2 and a vector b ∈ Fn

2 .
3. Substitute (P + k + c(1))−1 in Eq. (1) with Mk + b and obtain M ′k + b′ = 0,

where M ′ = M1M + I and b′ = M1b + C.
4. Use Gaussian elimination to solve M ′k+b′ = 0 and obtain k∗ as the solution

for k.
5. Check if k∗ is the correct key by checking if R1(k∗, P ) + k∗ = C. If not, we

repeat Step 1.

Enumerating α. Let g be a generator of F∗
2n . According to Theorem 1, g

generates the entire F∗
2n , i.e., any element x ∈ F∗

2n can be represented as x = gi

for 0 ≤ i ≤ 2n −1. It follows that D = {xd : x ∈ F∗
2n} = {gi·d : i = 0, 1, . . . , (2n −

1)/d − 1}. Therefore, we can generate the desired set D by enumerating i ∈
{0, 1, . . . , (2n − 1)/d − 1} and compute gi·d.

Complexity Analysis. There are (|F2n | − 1)/d possible choices of α. For each
guess, it takes O(n3) time to solve the linear equations. Therefore, the time
complexity of this attack is Tbit = (2n − 1)/d · n3 in terms of bit operations.
To convert the time complexity in a number of encryptions, we re-calculate it
as T = Tbit/n3. This is a useful conversion because it allows us to directly
compare the complexity of this attack to that of a brute force attack, which has
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Table 1. Results for one-round Rain. n is the block size and the security parameter,
r is the number of rounds attacked, d is the divisor we use to determine the guess of
α (= xd), t determines the linear term in the decomposition of 2n − 2, and T is the
time complexity of the attack.

Scheme n r d t T

Rain-128 128 1 264 + 1 64 264

Rain-192 192 1 296 + 1 96 296

Rain-256 256 1 2128 + 1 128 2128

a complexity of exactly 2n. The memory complexity of our approach is negligible
since we only need to store the equations.

Parameter Sets of Our Attack. The detailed parameters of our attack on
one-round Rain are given in Table 1.

Toy Example. We provide a concrete example for the attack on one-round
Rain, which can be found in Appendix A.1.

4 Algebraic Attack Framework and Its Application to
Two-Round Rain and Full AIM-III

In the attack on one-round Rain, we use a linearization technique to handle the
non-linear S-box. With a carefully chosen divisor d of n, we guess the value of
xd and then decompose x−1 as a product of (xd)s and x2t , where the former is
a constant and the latter is linear.

In order to attack more rounds of Rain, our initial attempt was to straight-
forwardly linearize more than one S-box using this method. We note that the
complexity of the linearization of one S-box in such a way is roughly (|F2n |−1)/d,
so the larger the divisor d is, the smaller the complexity is. However, the largest
possible divisor d that can be used to linearize x−1 is 2n/2 +1, therefore the cost
of this technique is at least (|F2n |−1)/d ≈ 2n/2 for each S-box. Consequently, the
unfavorable ramification for linearizing more than one S-box is that the overall
complexity will not be superior to the brute force. Therefore, we must explore
alternative techniques to tackle the two-round Rain.

4.1 Algebraic Attack Framework

We devote ourselves to the algebraic attacks on more than one round of Rain,
i.e., more than one S-box. The efficiency of algebraic cryptanalysis heavily de-
pends on the number of variables, the number of equations, and the degrees for
the system of equations. Numerous efforts have been undertaken to investigate
the number of linearly independent quadratic equations obtained from power
functions over F2n [8,10,35,22]. For instance, it has been pointed out that for
the inverse mapping which is the S-box employed in Rain, this number is 5n
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[8,10]; for the power mapping with the exponentiation as a Mersenne number
such as x2e−1, this number is 3n [35]. The security of Rain and AIM against
attacks exploiting algebraic properties such as Gröbner basis attack, is carefully
evaluated by representing primitives in equations over both F2 and F2n of the
highest degree to ensure the algebraic analysis infeasible.

In this subsection, we further leverage Proposition 1, and propose a new
method of deriving quadratic equations from two S-boxes in the form of power
mappings. More specifically, in the first step, by linearizing the S-box in the first
non-linear layer, we obtain independent linear equations, and free variables for
the secret key bits. In the next step, we construct quadratic equations from the
second S-box. By substituting unknown variables with free variables obtained in
the previous step, we get a sufficient number of linearly independent quadratic
equations, enabling us to solve all free variables.

In the following, we describe details on how to construct linear equations and
quadratic equations from the S-boxes of power mappings.

Deriving Linear Equations from xd. Recall that d is one divisor of 2n − 1.
We observe that for such a d, we can obtain linearly independent equations from
xd = α. For example, let the field be F28 . If we guess x5 = 1, then we can
obtain the equation x16 + x = 0 because x16 = (x5)3 · x = x. Representing the
map x 7→ x16 as a matrix multiplication x 7→ Mx, we can find that 4 out of 8
equations from Mx+x = 0 are linearly independent, which can be used to solve
for x.

Suppose d · s1 + 2t1 = d · s2 + 2t2 , by guessing xd = α, we can obtain one
linear equation αs1 · x2t1 + αs2 · x2t2 = 0 because (xd)s1 · x2t1 = (xd)s2 · x2t2 .
The number of linearly independent equations (denoted by γ) can be found by
experiment.

Deriving Quadratic Equations from xd. We notice that when guessing
x5 = 1, we obtain the quadratic equation x4 · x + 1 = 0. More generally, we can
obtain quadratic equations from expressions of the form xd as follows.

Suppose d · s1 + 2t1 + 2t2 = d · s2 + 2t3 + 2t4 , we have quadratic equations
αs1 ·x2t1 ·x2t2 +αs2 ·x2t3 ·x2t4 = 0 because (xd)s1 ·x2t1 ·x2t2 = (xd)s2 ·x2t3 ·x2t4 .

Deriving Equations for the S-boxes. The S-boxes in both Rain and AIM
are power functions of the form S(x) = xh. These functions can be leveraged in
two ways to exploit their algebraic structures.

The first method involves linearizing xh by making a guess for xd and using
the expression xh = (xd)s · x2t . The output of the S-box can be denoted as y,
and this technique can be used to simplify the algebraic representation of S(x).

The second method involves representing both S-boxes as quadratic equa-
tions. Subsequent subsections will provide more details on this approach.

Attack Framework. To summarize, our attacks on Rain and AIM follow a
similar framework, which can be outlined as follows:

1. Guess the value of xd, where x and d are carefully chosen bases and expo-
nents, respectively.
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2. Derive a sufficient number of linear and quadratic equations over F2 from xd

and the internal relations of Rain/AIM.
3. Solve the equations using linearization techniques and Gaussian elimination.

Under the new general algebraic attack framework, we will demonstrate the
effectiveness of our attacks by applying it to two-round Rain and full rounds of
AIM-III in the following subsections.

4.2 Attack on Two-Round Rain

x−1 M1 x−1 M2P

k ⊕ c(1) k ⊕ c(2) k

C

Fig. 3. Rain permutation with r = 2.

The structure of the two-round Rain is illustrated in Fig. 3. Once more, by
two-round Rain we mean two regular rounds of the Rain permutation.

For an even value n, an (partially) integer factorization of 2n − 1 can be
obtained by repeatedly applying the squared difference formula:

2n − 1 = (2n/2 + 1) · (2n/4 + 1) · · · (2n/2t

− 1),

where t is the maximum i such that 2i is a divisor of n. In our parameter sets for
the attack on two-round Rain cipher, the divisor d is always of the form 2w + 1,
where w is a positive integer.

Linearization of the First S-box. The first step in our attack involves guess-
ing the value of (P + k + c(1))d = α, which linearizes the expression of the first
S-box by (P +k+c(1))−1 = ((P +k+c(1))d)s ·(P +k+c(1))2t = αs ·(P +k+c(1))2t ,
because the first term is constant and the second one is linear. We then obtain γ
linearly independent equations about the variables {ki}i∈[n] from the equation
(P +k+c(1))22w = (P +k+c(1))(2w+1)(2w−1) ·(P +k+c(1)) = α2w−1 ·(P +k+c(1)).
Based on experimental evidence, the value of γ is always n − 2w. Consequently,
each variable {ki}i∈[n] can be expressed as a linear combination of n − γ = 2w

free variables v ≜ {vi}i∈[2w]. The degree of freedom in this case is |v| = 2w.

Deriving Quadratic Equations from the Second S-box. We can express
the input of the second S-box as a linear combination of v. Similarly, the output
of the second S-box, which can be obtained by computing M−1

2 (k+C) backward,
can also be expressed as a linear combination of v. For convenience, we denote
the input and the output of the second S-box as L1(v) and L2(v), respectively.
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It is well-known that one can find overdefined quadratic equations from the mul-
tiplicative inverse function over F2n [12]. Thus we can then derive 3n quadratic
equations:

L1(v) · L2(v) = 1, L2
1(v) · L2(v) = L1(v), L1(v) · L2

2(v) = L2(v). (4)

After substituting the variables {ki}i∈[n] with |v| new free variables vi, we
obtain 3n quadratic equations. Let m denote the number of linearly independent
quadratic equations. If we choose the parameters appropriately such that m =
|v|+ |v|(|v|−1)/2, we can solve these equations using the linearization technique.

The Cost of Expressing Quadratic Equations by Free Variables. We
first discuss the number of terms in the multiplication of two polynomials modulo
an irreducible polynomial.

Let a(x) =
∑

i∈[n] aix
i and b(x) =

∑
i∈[n] bix

i be two polynomials, where
the coefficients ai, bi are defined over some field F, and x is called the indeter-
minate. If we consider the polynomials as abstract entities only, which are never
evaluated, then the product a(x) · b(x) =

∑
i∈[n],j∈[n] aibjxi+j has exactly n2

terms. However, when applying modular reduction operations by an irreducible
polynomial, the number of terms in the product may increase, which makes it
difficult to provide a formula to calculate the exact number of terms. In Rain,
the irreducible polynomials for the three security parameters are fixed (they are
exactly the same for AIM), so we can compute the exact terms of the multipli-
cation modulo the corresponding irreducible polynomials. Our computed results
for the number of terms in the modulo multiplication over the three finite fields
F2n , n ∈ {128, 192, 256}, are presented in Table 2. Based on our findings, we are
able to safely assume that the number of terms after applying modulo operations
will not exceed 3n2.

Table 2. Number of terms in multiplication modulo irreducible polynomials for Rain
and AIM.

Finite Field n n2 #Terms

F2128 128 16, 384 40, 832
F2192 192 36, 864 91, 936
F2256 256 65, 536 163, 580

Let us backtrack to the phase of deriving quadratic equations for the sec-
ond S-box. We observe that we can rewrite the quadratic equations in Eq. (4)
uniformly as

L1(v) · L2(v) = L3(v)
where Li(v) (i = 1, 2, 3) is a set of linear functions of free variables v. This means
that the maximum number of terms that we will need to represent using new
free variables is 3n2|v|2 + n|v|. In the following complexity estimation, the cost
of this step will be estimated as O(n2|v|2). However, we will provide a discussion



14 K. Zhang et al.

on the impact of the hidden constant in the big O notation on the complexity
of our attack.

Complexity Analysis. There are (|F2n | − 1)/d possible choices for the guess
of α. For each guess, it takes O(n3) time to find the free variables. Then it
costs O(n2|v|2) time to express the 3n quadratic equations in terms of the free
variables. Finally, we find and solve m linearly independent quadratic equations
in O(m3) time. The total time complexity is counted as Tbit = (2n − 1)/d ·
max{n3, n2|v|2, m3}. To express the complexity in terms of the number of en-
cryptions, we divide by n3 to obtain T = Tbit/n3. Since our approach only
requires storing the equations, the memory complexity can be omitted.

Parameter Sets of Our Attacks. Our detailed results on all three versions
of two-round Rain are listed in Table 3. We note that parameter s is involved
in the equation 2n − 2 = d · s + 2t, thus can easily be obtained by checking
(2n −2−2t) mod d = 0. Due to its excessive length and it is not directly involved
in the formula for the computation of complexity, we omit s from Table 3.

Table 3. Results for two-round Rain. n denotes both the block size and the security
parameter, r is the number of algorithmic rounds, d = 2w + 1 represents a divisor of
2n − 1, t is defined by d · s + 2t = 2n − 2, |v| denotes the number of free variables,
m denotes the number of variables in linearized quadratic equations, and T is the
recalculated time complexity of our attack.

Scheme n r d t w |v| m T

Rain-128 128 2 28 + 1 8 8 16 136 2120.3

Rain-192 192 2 216 + 1 16 16 32 528 2180.4

Rain-256 256 2 216 + 1 16 16 32 528 2243.1

The Hidden Constant Factor in Big O and the Impacts. In the estimation
of the time complexity of our attack, we omit the constant factor behind the big
O notations and consider the most dominant part only. We argue that such
estimation is proper both in theory and in practice.

In the step of expressing the quadratic equations with new free variables,
the maximum number of terms that we will need to represent is 3n2|v|2 + n|v|.
Therefore, to express three sets of equations as free variables in the Rain, the
cost will be

3 × (3n2|v|2 + n|v|) = 9n2|v|2 + 3n|v| ≤ 10n2|v|2. (5)

The steps of deriving free variables and solving quadratic equations are basi-
cally the execution of Gaussian elimination. We estimate the concrete bit com-
plexity as n3 and m3, respectively. However, we point out they can be solved
in O(nω) and O(mω) time respectively by using more sophisticated methods,
such as the Strassen algorithm [40] (ω ≈ 2.807) or Coppersmith-Winograd al-
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gorithm [9] (ω ≈ 2.376). In recent algebraic attacks, both ω = 2.37 and 2.8 are
used [1,31].

On the one hand, the constant in Eq. (5) is just an upper bound which is
quite loose. Besides, the constants are affected by many factors, such as the algo-
rithm, the implementation, and the computing architecture. So it is meaningful
to estimate the time complexity by ignoring constants and focusing on the most
dominant part.

Toy Example. We provide a concrete example for the attack on two-round
Rain, which can be found in Appendix A.2.

Negligible Failure Probability. It is worth pointing out that the equation
y = x|F|−2 can be represented as xy = 1 only when x 6= 0. Fortunately, this
probability is exponentially small. In particular, in the context of an MPC-in-
the-head-based signature scheme such as [14,6,15,20,26], the input of the S-box
must be non-zero, or else it would be rejected and re-sample again. Therefore,
this issue is minor and can be safely ignored.

On Three- or More-Round Rain. At present, our attack strategy is not
effective for three or more rounds of Rain. Following the strategy of our attack
for reduced rounds of Rain, we linearize the S-box in the first round as before.
In order to express the relation between the S-boxes in the second and the last
round, the introduction of new variables is required. As a result, the resulting
equations become too complex to be solved efficiently because the number of
unknown variables increases significantly.

4.3 Description of AIM

Let x, y be the input and output respectively. Let ℓ be the number of S-boxes
of the first layer. Let e1, . . . , eℓ, e∗ ∈ N be some constant. The S-boxes of AIM
are exponentiation by Mersenne numbers, denoted as Mer[e] : F2n → F2n . More
precisely, it is

Mer[e](x) = x2e−1.

As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n is defined by

Mer[e1, . . . , eℓ](x) = Mer[e1](x)|| . . . ||Mer[eℓ](x).

The affine layer, denoted as Lin, is multiplication by an n × ℓn random binary
matrix Aiv followed by an addition of a random constant biv ∈ F2n . Both Aiv
and biv are generated by an extendable output function (XOF) with a (public)
initial vector iv.

Overall, the AIMiv : F2n → F2n function is defined by

AIMiv(x) = Mer[e∗] ◦ Lin[iv] ◦ Mer[e1, · · · , eℓ](x) ⊕ x.

A graphical overview of the construction is shown in Fig. 4.

Parameter Sets. The recommended sets of parameters of AIM are listed in
Table 4. As a one-way function used in signature schemes, y and iv are public, x
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Mer[e1]

Mer[e2]

Mer[e3]

Lin Mer[e∗]x y

XOF[iv]

Fig. 4. The AIM-based one-way function with ℓ = 3.

is private. The irreducible polynomials for extension fields F2128 , F2192 and F2256

are the same as those used in Rain.

Table 4. Recommended sets of parameters of AIM.

Scheme n ℓ e1 e2 e3 e∗

AIM-I 128 2 3 27 - 5
AIM-III 192 2 5 29 - 7
AIM-V 256 3 3 53 7 5

4.4 Attack on AIM-III

We discovered a flaw in the design of AIM: the inputs of the S-boxes in the
first nonlinear layer are identical, with no offset. This makes it possible for an
attacker to linearize all the S-boxes in the first nonlinear layer at the same time.
For AIM-III (the 192-bit version), we are able to exploit this flaw to mount a
non-trivial attack.

In AIM-III, the first nonlinear layer comprises two S-boxes, namely x2e1 −1

and x2e2 −1, where e1 = 5 and e2 = 29. By guessing the value of xd = α for
d = 45, we can linearize these S-boxes using x2ei −1 = (xd)si · x2ti

, i ∈ {1, 2}.
(Note that x2e1 −1 = x2e1 −1+|F2n |−1)

The subsequent steps of the attack are similar to those used for the two-round
Rain. We can obtain γ = 180 linearly independent equations involving variables
{xi}i∈[n] from the equations x212 = (x45)91 · x = α91 · x. Thus, we can express
each {xi}i∈[n] as a linear combination of n − γ = 12 free variables, denoted as
v ≜ {vi}i∈[12]. Consequently, the degree of freedom is |v| = 12.

The input of the second non-linear layer can be expressed as a linear com-
bination of the free variables v. Similarly, the output of the second non-linear
layer, obtained by computing x + y in the backward pass, can also be expressed
as a linear combination of v. Let us denote the input and output of the second
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non-linear layer as L1(v) and L2(v) respectively. Then, we can write n quadratic
equations:

L1(v) · L2(v) = L1(v)2e∗

To solve the system of n quadratic equations, we can substitute the variables
{xi} with |v| new free variables {vi}. This results in n quadratic equations in
the variables vi. Let the number of linearly independent quadratic equations be
denoted by m. We have found that m = |v| + |v|(|v| − 1)/2. Hence, we can use
linearization techniques to solve these equations.

Complexity Analysis. The analysis is almost identical to the one for the
attack on two-round Rain. The only difference for AIM resides in the cost of ex-
pressing the quadratic equations arising from the second S-box by free variables.
Following the analysis method for Rain in Section 4, we conclude that the new
cost of expressing the quadratic equations is 3n2|v|2 + n|v| ≤ 4n2|v|2.

Parameter Sets of Our Attack. Our results on AIM are listed in Table 5.
We omit the parameter si due to its excessive length. We note that si is related
to the equation 2ei − 1 = d · si + 2ti , where (2ei − 1 − 2ti) mod d = 0, can be
easily verified.

Table 5. Results for AIM. n denotes both the block size and the security parameter,
d = 2w + 1 represents a divisor of 2n − 1, ti is defined by d · si + 2ti = 2ei − 1 for
i = 1, 2, |v| denotes the number of free variables, m denotes the number of variables in
linearized quadratic equations, and T is the recalculated time complexity of our attack.

Scheme n d t1 t2 |v| m T

AIM-I 128 5 1 1 4 10 2125.7

AIM-III 192 45 8 8 12 78 2186.5

AIM-V 256 3 0 0 2 3 2254.4

On AIM-I and AIM-V We also analyzed the security of AIM-I and AIM-V
using a similar technique for Rain. We found that only d = 3 or d = 5 is
a suitable choice of the divisor of 2n − 1. By substituting these parameters
into the complexity formula, we obtain complexity estimations for AIM-I and
AIM-V as 2125.7 and 2254.4 encryptions respectively. These complexities are only
about 3 ∼ 5 times better than a brute-force attack, which is not considered as
significant, so we do not take them as our contribution.

5 Implementation and Final Remarks

5.1 Experimental Verification of our Attacks

We implement attacks on two-round Rain and AIM-III described in Section 4. As
mentioned earlier, our attacks require a sufficient number of linearly independent
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linear equations and quadratic equations. However, providing an explicit formula
for determining the number of linearly independent equations from the equation
xd = α is challenging. Therefore, we resort to programming to determine these
equations. Our implementation can be found at

https://github.com/kzoacn/LargeSbox/.

In our code, we randomly sample an instance for either Rain or AIM, which
includes round constants and linear layers. We then randomly pick α ∈ {xd : x ∈
F∗

2n} and determine the number of linearly independent linear equations in this
instance. Next, we identify the free variables and substitute them into the final
quadratic equations. Finally, we verify that the number of linearly independent
quadratic equations is sufficient to solve all the unknown variables.

We also estimate the complexity concretely. Both of our approach and brute
force follow the Guess-and-Determine framework, which allowed us to estimate
the complexity by multiplying the duration of each trial by the total number
of trials. The experimental outcomes align well with the theoretical predictions.
However, it is worth pointing out that creating fair comparisons is challenging
due to the impact of engineering optimizations on concrete complexity.10

5.2 Restoring the Security of AIM

Preventing the Simultaneous Linearization of Multiple S-boxes. Our
attack on full AIM-III depends on that we can linearize both the S-boxes in
the first non-linear layer simultaneously. Based on this, for the AIM cipher, we
can easily recommend implementing a patch to enhance its resistance against
our attack. The proposed patch involves incorporating offsets for each S-box in
the first non-linear layer, for instance, XORing a random constant ci before the
operation of the S-box Mer[ei], as illustrated in Fig. 5. The constant ci’s might
be generated by an XOF, which is of low cost. By applying this patch, our attack
is effectively mitigated as we can no longer linearize the S-boxes in the first layer
simultaneously. We are not aware of attacks arising from involving extra random
constants before the S-boxes in the setting of a single plaintext/ciphertext pair.
Moreover, this patch can be seamlessly integrated into the MPC-in-the-head
paradigm with minimal additional cost.

Restricting n to be Odd. We are aware that our attack highly relies on a
foundational fact that the power function in Rain and AIM can be represented
as (xd)s · x2t , where d is a divisor of 2n − 1. Recall that for an even n, 2n − 1
has a special factorization 2n − 1 = (2n/2 + 1) · (2n/4 + 1) · · · (2n/2t − 1), where t
is the maximal value of i such that 2i divides n. However, this factorization can

10 We refer interested readers to a faster implementation utilizing SIMD instructions
for Rain (https://github.com/IAIK/rainier-signatures).

https://github.com/kzoacn/LargeSbox/
https://github.com/IAIK/rainier-signatures)
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Mer[e1]

Mer[e2]

Mer[e3]

Lin Mer[e∗]

c1

c2

c3

x y

XOF[iv]

Fig. 5. Fixed AIM one way function with ℓ = 3.

not be applied to an odd n. Therefore, the easiest way to prevent our attack is
simply restricting n to an odd number.

Increasing the Number of Rounds. A third alternative is to increase the
number of rounds used in AIM, which can be achieved by appending more S-
box operations after Mer[e∗], such that the solving complexity of the system of
equations is high enough to make the scheme secure against our attack. However,
the main disadvantage of this approach is the loss of efficiency because applying
more S-boxes would result in a higher number of multiplications, which might
be detrimental for the signature schemes that are built upon AIM.

5.3 Rain

As has been emphasized earlier, our attacks do not affect the security of the
signature scheme Rainier which uses three or more rounds of Rain. However,
we point out that for an even n, the essential decomposition of the multiplicative
inverse function always holds. With a divisor d of 2n − 1, {xd : x ∈ F2n\{0}}
is a subgroup of the multiplicative group F∗

2n of the finite field F2n . Therefore
xd has only |F∗

2n |/d possible choices. Linearization of one round S-box can easily
be accomplished. This might potentially be combined with other techniques, to
threaten the security of Rain.

5.4 On Other Relevant Symmetric Primitives

Rain shares the similarity to MiMC [2], Jarvis [4] and instances of Vision [3],
using a single large S-box covering the entire permutation state. While we have
not discovered more novel attacks on the aforementioned ciphers based on the
observation in this paper, we anticipate that it will contribute valuable insights
to the understanding of these symmetric primitives.



20 K. Zhang et al.

6 Conclusion

In the past years, there have been remarkable advances in MPC-friendly sym-
metric primitive-based signatures. Constructing non-linear layers (S-boxes) by
power mappings has proven advantageous in such signature schemes, exemplified
by the efficiency of Rainier and AIMer compared to signature schemes based
on other symmetric primitive-based ciphers. However, since our attacks on Rain
and AIM only exploit properties of power mappings over F2n , which are actually
independent of the choice of linear layers, one should be careful with using power
mappings as the only non-linear components. We stress that we do not mean to
suggest that power mappings should be avoided as a base structure for symmet-
ric primitives, since several of the proposed schemes have useful properties in
relevant use cases, in particular over Fp where p is a very large prime. Rather,
we emphasize that more thorough cryptanalysis is needed to ensure that the
proposed primitives are secure, and hope to see more work in this direction.
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A Toy Examples of Attacks on Reduced-Round Rain

In this section, we concretely present toy examples for one-round Rain and two-
round Rain, which would help the readers understand our attacks via examples.
We choose the field F24 with irreducible polynomial f(x) = x4 + x + 1.

Notation. For an element a0 + a1x + a2x2 + a3x3 of field F24 , ai ∈ F2, we may
express it in several equivalent forms:

1. Polynomial representation, i.e. a0 + a1x + a2x2 + a3x3.
2. Binary representation, i.e. a0a1a2a3.
3. Vector of F2, i.e. (a0, a1, a2, a3)

Concretely, 1 + x + x3 is equivalent to 1101 or (1, 1, 0, 1). And 1 is equivalent
to 1000 or (1, 0, 0, 0). We also use the notation (1, 1, 0, 1)2 = (1 + x + x3)2 =
1 + x3 = (1, 0, 0, 1)

Power Function. We first show the square function over F24 is linear.

(a0 + a1x + a2x2 + a3x3)2 mod f(x)
= (a0 + a1x2 + a2x4 + a3x6) mod f(x)
= a0 + a1x2 + a2(x + 1) + a3(x3 + x2)
= (a0 + a2) + a2x + (a1 + a3)x2 + a3x3
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So we can use the notation (a0, a1, a2, a3)2 = (a0 + a2, a2, a1 + a3, a3). Simi-
larly, we can have (a0, a1, a2, a3)4 = (a0 + a1 + a2 + a3, a1 + a3, a2 + a3, a3).

Parameter Sets. We choose P = 0000, c(1) = 0010, c(2) = 0001, k = 0100 and

M1 =


1 0 1 0
0 1 0 0
0 0 1 0
1 0 0 1

 , M2 =


1 1 0 0
0 0 1 0
0 1 0 0
1 0 0 1

 , M−1
2 =


1 0 1 0
0 0 1 0
0 1 0 0
1 0 1 1

 .

For convenience, we precompute some values and list them on Table 6. Let
d = 3. As you can see, xd, x 6= 0 takes only 15/3 = 5 possible choices.

Table 6. Table for F24 .

x x−1 M1(x) M2(x) x3

0000 0000 0000 0000 0000
1000 1000 1001 1001 1000
0100 1001 0100 1010 0001
1100 0111 1101 0011 1111
0010 1011 1010 0100 0011
1010 1101 0011 1101 0101
0110 1110 1110 1110 1000
1110 0110 0111 0111 1000
0001 1111 0001 0001 0101
1001 0100 1000 1000 1111
0101 0011 0101 1011 1111
1101 1010 1100 0010 0011
0011 0101 1011 0101 0001
1011 0010 0010 1100 0101
0111 1100 1111 1111 0001
1111 0001 0110 0110 0011

A.1 One-Round Rain

x−1 M1P

k ⊕ c(1) k

C

Fig. 6. Rain permutation with r = 1.
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The encryption of one-round Rain is :

P = 0000 ⊕k⊕c(1)

−−−−−→ 0110 x−1

−−→ 1110 M1(·)−−−→ 0111 ⊕k−−→ 0011 = C. (6)

We guess the value of (P + k + c(1))3 over (24 − 1)/3 = 5 possible choices.
Suppose we guess (P + k + c(1))3 = 1. The following steps will be repeated
for each guess, here we only show the execution for the correct guess which is
(P + k + c(1))3 = 1. So we have

(P + k + c(1))−1 = (P + k + c(1))14

= (P + k + c(1))3·4 · (P + k + c(1))2

= (P + k + c(1))2

= (k0, k1, k2 + 1, k3)2

= (k0 + k2 + 1, k2 + 1, k1 + k3, k3) (7)
M1(·)−−−→ (k0 + k1 + k2 + k3 + 1, k2 + 1, k1 + k3, k0 + k2 + k3 + 1)

⊕k−−→ (k1 + k2 + k3 + 1, k1 + k2 + 1, k1 + k2 + k3, k0 + k2 + 1)
= (0, 0, 1, 1)
= C

By solving the linear equations, we can obtain two candidate keys k∗ = 0100
and k∗∗ = 0010. Given the public input P and output C, it is easy to check by
executing the one-round encryption in Eq. (6) that k∗ is the correct key.

A.2 Two-Round Rain

x−1 M1 x−1 M2P

k ⊕ c(1) k ⊕ c(2) k

C

Fig. 7. Rain permutation with r = 2.

We follow the notations and the parameter choices as in the attack on one-
round Rain. The encryption of two-round Rain is :

P = 0000 ⊕k⊕c(1)

−−−−−→ 0110 x−1

−−→ 1110 M1(·)−−−→ 0111
⊕k⊕c(2)

−−−−−→ 0010 x−1

−−→ 1011 M2(·)−−−→ 1100 ⊕k−−→ 1000 = C.
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– We linearize the first S-box by guessing (P +k +c(1))3 = 1 as in the previous
attack on one-round. Then we have the following linear equations:

0 = (P + k + c(1))4 + (P + k + c(1))
= (k0, k1, k2 + 1, k3)4 + (k0, k1, k2 + 1, k3)
= (k0 + k1 + k2 + k3 + 1, k1 + k3, k2 + k3 + 1, k3) + (k0, k1, k2 + 1, k3)
= (k1 + k2 + k3 + 1, k3, k3, 0)

This gives us two linearly independent equations:{
k1 + k2 = 1

k3 = 0

Consequently, we can decide on two free variables k0, k2 and two basic vari-
ables k1 = k2 + 1, k3 = 0.

– Next, we compute the input of the second S-box M1(P +k + c(1))−1. Substi-
tuting M1 as we choose and substituting the expression of (P + k + c(1))−1

as in Eq. (7), we get the following

M1(P + k + c(1))−1 = (k0 + k1 + k2 + k3 + 1, k2 + 1, k1 + k3, k0 + k2 + k3 + 1)
⊕k⊕c(2)

−−−−−→ (k1 + k2 + k3 + 1, k1 + k2 + 1, k1 + k2 + k3, k0 + k2)
using free vars.−−−−−−−−−−→ (0, 0, 1, k0 + k2)

Backward, represent the output of the second S-box and we have

M−1
2 (k + C) = (k0 + k2 + 1, k2, k1, k0 + k2 + k3 + 1)

using free vars.−−−−−−−−−−→ (k0 + k2 + 1, k2, k2 + 1, k0 + k2 + 1)

Because the multiplication of the input and the output of the second S-box
equals 1, thus we can write down the following quadratic equations:

(0, 0, 1, k0 + k2) · (k0 + k2 + 1, k2, k2 + 1, k0 + k2 + 1) = 1
→ (k0k2 + 1, k2, k0k2 + k0, k2) = 1

By solving the linear equation, we can obtain a candidate key k∗ = 0100.
Given the public input P and the output C, it is easy to check that k∗ is
the correct key by executing two-round Rain encryption.
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