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Abstract.
The long running time of isogeny-based cryptographic constructions has proved to
be a boon in disguise for one particular type of primitive called Verifiable Delay
Functions (VDFs). VDFs are characterised by sequential function evaluation but an
immediate output verification. In order to ensure secure use of VDFs in real-world
applications, it is important to determine the fastest implementation. Considering
the point of view of an attacker (say with unbounded resources), this paper aims to
achieve the fastest possible hardware implementation of isogeny-based VDFs. It is
the first work that implements the 2T -isogeny walk involved in the evaluation step
of an isogeny VDF. To meet our goal, we use redundant representations of integers
and introduce a new lookup table-based algorithm for modular reduction. We also
provide a survey of elliptic curve arithmetic to arrive at the most cost-effective curve
computations and propose an improvement of the point doubling algorithm for better
parallelism. The evaluation step of a VDF is defined to be sequential, which means
that there is limited scope for parallelism. Nevertheless, taking this constraint into
account our proposed design targets the highest levels of parallelism possible on an
architectural level of an isogeny VDF implementation. We provide detailed analysis
of all our arithmetic modules as well as estimates for their critical path delays and
area consumption. Our 28nm ASIC design computes a 4100 = 2200-isogeny in 7.1µs.
It is the first high-performance ASIC implementation for evaluation of isogeny VDFs.
Keywords: Verifiable delay functions, Isogeny, Redundant representation, ASIC

1 Introduction
The classic adage, “Good things come to those who wait” has been made palpable in
recent times by blockchains and cryptocurrencies: two of the most popular modern-day
technologies. Blockchains rely on cryptographic protocols for authorising and validating
digital exchanges, often aided by ’randomness’ in the form of desirable time delays to avoid
counterfeits. Considering block variables such as timestamps as a source of entropy or
randomness have shown to be vulnerable to bias because a block miner has the potential
to manipulate them. As an example, consider an on-chain lottery where the miner has
to guess if the next block hash is even or odd. While betting on even, if a miner is able
to generate a block comparatively ’faster’ than the others and finds out that it is odd,
they can discard it, thereby increasing the probability of getting an even hash the next
time and hence, winning the lottery. Verifiable Delay Functions (VDF) are cryptographic
primitives that came as a solution to mitigate such foul-play. They possess the ability
to run for a certain fixed amount of sequential time T but their result can be verified
rather quickly. In applications that need the generation of randomness beacons from public
sources like stock prices, VDFs can ensure security by adding enough delay to calculate
the beacon, thus preventing powerful seasoned traders to adjust the market for their gain.
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Thus, VDFs are useful only when they run for more than a specific time. Determining
the fastest implementation or identifying speed-ups are immensely important to set the
required security level of a VDF instance.

One of the earliest attempts at construction was to compute a T -long chain of a hash
function H (which would take T steps irrespective of amount of parallelism), however the
verification of the output, say, y = HT (x), takes the same order of time as the only way to
verify is to recompute the composition of the functions. So, although it is a delay function,
it is not efficiently verifiable. Constructing delay functions that were easily verifiable as
well as quantum-secure became an interesting open problem. After their introduction by
[BBBF18] research around VDFs intensified. Since by virtue of their construction, VDFs
need to be sequential, there is limited scope for algorithmic optimisation and parallel
computations. Thus, a VDF implementation on hardware has different aims and challenges
than the implementations of conventional cryptographic primitives. Like the authors of
[SHT22] mention, achieving the highest performance is the main goal in a VDF attack
implementation whereas area or power consumption does not hold much significance. The
reason is that knowledge of the time required for a VDF under a parameter set is the key
to also setting up security parameters and ensuring their standardised use in the public
domain. This paper is the first work towards realising such an implementation for isogeny
VDFs. Hence why, the attacker in this paper is assumed to be very powerful with almost
unlimited resources, e.g., government organizations.

Several forms of VDFs have been proposed so far, such as the ones based on computing
square roots in a modular field or the more recent by [Wes19] and [Pie18] on groups of
unknown order. In this paper, we particularly focus on a new type of VDF constructed
using isogenies on supersingular elliptic curves.

Isogenies came into limelight with the works [CLG09], who presented a collision-resistant
hash function based on deterministic walks in isogeny graphs of supersingular elliptic
curves. Soon they gained popularity in the cryptographic landscape because of their
resistance to quantum attacks and smaller key sizes. [FMPS19, CSRHT22] are some of
the recent works on isogeny-based VDFs. Isogeny VDFs are interesting because they can
be constructed by combining already existing cryptographic research on isogenies with
respect to efficiency and security [FMPS19].

In the literature there are several implementations (software and hardware) of VDFs
based on modular square roots, time-lock puzzles [MÖS22, SHT22] but when it comes
to isogeny-based VDFs, high-performance implementation works are scanty. A proof-
of-concept Sage implementation of the isogeny-based VDF [FMPS19] on an Intel Core
i7-8700 processor is provided by the authors of the paper. They choose a 1506-bit prime to
achieve 128-bit security. These results correspond to 2-isogeny computation and evaluation
during the execution of the VDF components. The following work [CSRHT22] leaves
it as an open area of research to decide concrete parameters for their isogeny-based
VDF construction. [BDF21] on the other hand, give a form of isogeny-based time delay
primitive which they refer to as Delay Encryption and discuss certain implementation-level
optimisations. Since their basic building blocks are closely related to [FMPS19]’s VDF
primitive, these optimisations, in theory, could apply to the VDF too. However, the authors
note that further investigations are required to test their practical advantages. Thus the
only performance results for isogeny VDFs are based on software implementations. It
would therefore come as no surprise that an optimised hardware implementation of isogeny
computation would easily beat the existing benchmarks. We however note that [SB23]
presents a design for a high-performance hardware accelerator that can aid isogeny-based
cryptographic primitives such as the SIKE key exchange scheme. It employs optimisations
within the curve arithmetic to improve performance. It is however worth mentioning
here that isogeny-based VDF schemes remain completely unaffected by the recent attacks
on SIDH/SIKE [CD22, Rob23, MMP+23] because the underlying supersingular isogeny
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problem remains secure. These schemes were broken because of their use of auxiliary
image points being computed through isogenies that leaked sensitive information.

1.1 Main Contributions
At the very outset, we present a survey of the different forms of elliptic curves as the
form we choose will play a crucial role in determining the extent of efficiency in our
implementation. An optimal curve would be the one that requires the least amount of
resource expenditure during elliptic curve arithmetic. We end our analysis by presenting a
fitting explanation for our choice of Montgomery curves and we also propose a slightly
different point-doubling algorithm, whose benefits we discuss in section 4.1.

As stated earlier, since the branch of isogeny-based VDFs is fairly recent, not much work
has been done towards determining the fastest implementation or providing performance
results corresponding to different sets of parameters. Our work is the first to address them
by providing an efficient and the fastest hardware implementation of the lT -isogeny walk.
Note that, hardware implementations of isogeny walks exist in the context of post-quantum
cryptography (PQC) [SB23]. However, an isogeny VDF implementation would greatly
differ from such a PQC implementation because of the vast difference in their respective
parameter sizes (1506 vs 434 bits for SIKE [JAC+22]) as well as their constraint conditions.

We analytically compare the execution times of the different isogeny strategies depending
on the number of parallel isogeny evaluation units, as explained in section 4.2. We settle at
the fastest strategy depending on the number (1 or k− 1) of the evaluation modules in the
context of our isogeny VDF. We find that using a redundant representation for integers
called the Carry-Save representation (CS) [Par00] and hence carry-save adders (CSA)
for all the isogeny modular arithmetic significantly decrease the latency of the hardware
architecture. Using CS representation for isogeny arithmetic also led us to design a new
method for modular reduction.

We design a highly parallelized hardware architecture to efficiently compute a 4k-
isogeny. In this paper, we compute a 4k = 2T -isogeny walk, using 4-isogenies as building
blocks instead of 2-isogenies for better performance. Although both of these computations
are mathematically equivalent, it is more efficient in terms of complexity and latency to
compute one 4-isogeny instead of two 2-isogenies as pointed out by [FJP14]. Our design is
also mostly parameterisable (it can accommodate varying parameter sets). It is therefore
capable of handling the large parameter sizes that a VDF implementation demands.

As a result, our implementation is capable of performing a lT (with l = 2) degree
isogeny with a much better throughput (10069 isog/ms) during evaluation than [FMPS19]
estimates (0.75 isog/ms in SW). Hence our choice of curves and strategies, algorithmic
optimisations, as well as our tweaks in the architecture design, helps us get significantly
closer towards achieving the fastest isogeny computation possible.

2 Mathematical background

2.1 Verifiable Delay Functions
Verifiable Delay Function or VDF is a mathematical function that takes T sequential steps
for its evaluation irrespective of the processing power, however, the verification of the
output of its evaluation is efficient and almost immediate. A VDF consists of the following
three algorithms.
1. Setup(λ, T )→ (ek, vk): It takes a certain security parameter λ and a delay parameter
T to set public parameters consisting of the evaluation key ek, and the verification key vk
for the next steps. It should have a runtime in poly(λ).
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2. Eval(ek, s)→ (a, π): This step involves the evaluation of the function on a given input s
using ek to produce an output, a = f(s), which is sequential in T but cannot be completed
in a time less than T . It may also produce a proof π.
3. Verify(vk, s, a, π)→ {true, false}: It is the verification of the output a in time poly(λ)
using vk and the proof π, that a is indeed the correct pre-image corresponding to the input s.

Some examples of VDFs in the literature are listed as follows:
Modular square roots: Given a prime p = 3 mod 4, compute a square root a =

√
s mod

p using the formula, a = s
p+1

4 . Clearly, evaluating the square root is sequential and the run
time increases logarithmically as p grows but the verification is done in a single step; just
check if a2 = s. However, the computation phase actually turns out to be parallelisable.
[DN93, LW17] are two well-known VDFs based on modular square roots.

Rivest-Shamir-Wagner time-lock puzzles, [RSW96]: Based on the RSA construc-
tion, it selects a modulus N = pq (p, q are prime) and sets the output to a = s2T mod N .
Unless someone knows the prime factorisation of N (which is secret), they would need to
go through all the sequential powering steps to achieve a. The knowledge of the Euler-ϕ
function for N, ϕ(N), will provide a shortcut to the evaluation, of course. It lacks efficient
verification because the factorisation of N has to be compromised.

Wesolowski’s and Pietrzak’s VDF: To overcome the problem of efficient verifica-
tion of time-lock puzzles, both [Wes19] and [Pie18] came up with their own versions of
VDFs. [Wes19] worked with groups of unknown orders and [Pie18] introduced a new
verification protocol for Rivest-Shamir-Wagner time-lock puzzles. Both these constructions,
however, rely on interactive verification protocols.

Univariate permutation polynomials (UPP): This approach uses permutation poly-
nomials of degree, say, T in a finite field Fp and bases the evaluation on inverting these
polynomials which is sequential in time. [BBBF18] based their initial VDF discussions on
such permutation polynomials.

VDFs using SNARGs: [BBBF18] and [DGMV20] independently designed a more
theoretical VDF based on succint non-interactive arguments or SNARGs. This concept
was however used in a slightly different VDF construction by [CSRHT22], which we
mention in section 2.4.2.

Since the already existing VDFs had certain shortcomings, a new branch of VDFs using
isogenies of supersingular elliptic curves has gained the attention of the cryptographic
community [FMPS19, CSRHT22].

2.2 Elliptic curves

An elliptic curve E defined over a field K with char ̸= 2, 3 is a smooth, projective algebraic
curve of genus 1 with a special point, the unique point O. The points of an elliptic curve
form a group under addition with O as the identity element. The standard normal form of
an elliptic curve is the Weirstrass form given by

Ew : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

with ai ∈ K. For fields of characteristic greater than 3, there is a short Weirstrass form

Esw : y2 = x3 + ax+ b (2)
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such that 4a3 + 27b2 ≠ 0. Every elliptic curve is defined uniquely up to K-isomorphism
(except for char ̸= 2, 3) through its j-invariant,

j(E) = 1728 4a3

4a3 + 27b2 .

Two frequently used forms of elliptic curve equations over the affine coordinates are the
Montgomery and the Edwards, given by the respective equations:

Em : by2 = x3 + ax2 + x (3)

and
Eed : x2 + y2 = 1 + dx2y2; d /∈ {0, 1} (4)

For faster computations during implementation, the affine coordinates (x, y) are often
replaced by projective coordinates, (X,Y, Z), Z ̸= 0. The forward mapping is given by
(x, y)→ (xZ, yZ,Z) Z ̸= 0 and the reverse mapping by (X,Y, Z)→ (X/Z, Y/Z).

Let Ea and Eb be two elliptic curves over Fp2 . An isogeny ϕ : Ea → Eb is defined as a
non-constant rational map which is also a group homomorphism from Ea(Fp2) to Eb(Fp2)
that preserves the identity O. Two elliptic curves are isogenous if their orders (number of
points over Fp2) are the same [Tat66]. The degree of an isogeny is its degree as a rational
map [Sil09]. An isogeny is separable if it induces a separable extension of function fields
[FMPS19]. When the degree of the isogeny, deg(ϕ) = l is coprime to p, the isogeny is
necessarily separable. An isogeny that is separable has a one-to-one correspondence with
its kernel, so this isogeny can be computed with the knowledge of its kernel using Velu’s
formula. For two isogenies ϕ : Ea → Eb and ψ : Eb → Ec, there exists a composite isogeny
ϕ ◦ ψ : Ea → Ec such that, deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ). If an isogeny ϕ has a degree
deg(ϕ) =

∏n
i=1 p

ki
i then it can be factored as a composition of ki isogenies of degree pi for

all i ∈ {1, 2, · · · , n}. For an l-isogeny ϕ : Ea → Eb, there is a unique l-isogeny ϕ̂ : Eb → Ea

such that ϕ ◦ ϕ̂ = [l] on Eb, and vice versa, where [l] denotes the multiplication-by-l map.

2.2.1 Elliptic curve arithmetic

Computing isogenies requires elliptic curve arithmetic operations such as point doubling
and then the actual rational map corresponding to the l-isogeny using Velu’s formula.
Arithmetic over affine coordinates (x, y) are usually traded with projective coordinates
(X,Y, Z). Efficient explicit formulae often work with the X and Z coordinates.

We discuss optimisation techniques with respect to point doubling and algorithms for
different elliptic curves later in Sec. 4.1. Here we briefly mention the expressions for Velu’s
formula on two popularly used elliptic curves: Montgomery and Edwards. Recall that
any separable isogeny can be identified by its kernel. Given the kernel G, Velu’s formula
gives a method to compute the corresponding separable l-isogeny. While discussing cost
estimations, we will denote multiplication by MUL and squaring by SQR.

There exist abundant discussions on efficient isogeny computations over Montgomery
curves, for example in [JAC+22]. Let (x4, y4) ∈ Em be a 4-torsion point with x4 ̸= ±1
that generates the kernel G = ⟨(x4, y4)⟩. Then the curve, Em′ : b′y2 = x3 + a′x2 + x
corresponding to the unique 4-isogeny, ϕ4 : Em → Em′ is such that (a′, b′) is defined by
the equation,

(a′, b′) =
(
4x4

4 − 2,−x4(x2
4 + 1) ·B/2

)
.

The 4-isogeny, ϕ4 : (xP , yP ) → (xϕ4(P ), yϕ4(P )) for a point P = (xP , yP ) /∈ G can be
described by the following two equations:

xϕ4(P ) = −(xPx
2
4 + xP − 2x4)xP (xPx4 − 1)2

(xP − x4)2(2xPx4 − x2
4 − 1)
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yϕ4(P ) = yP · −2x2
4(xP x4−1)(x4

P (x2
4+1)−4x3

P (x3
4+x4)+2x2

P (x4
4+5x2

4)−4xP (x3
4+x4)+x2

4+1)
(xP −x4)3(2xP x4−x2

4−1)2 .
In projective XZ-coordinates, we take a point P = (X4 : Y4) of order 4 on EA/C .

First, we compute (A+
24, C24) ∼ (A′ + 2C ′ : 4C ′) for projective parameters A′, C ′ of the

image curve EA′/C′ and constants (K1,K2,K3) ∈ (Fp2)3 such that the 4-isogeny image
curve coefficients as well as the image Q′ of a point Q = (X : Z) can be computed as per
algorithms in [JAC+22]. Both of these computations require a total of 6 MUL + 6 SQR.

In the context of Edwards curves, [KYK+20] describes an optimised 4-isogeny com-
putation in projective Y Z-coordinates. Let (d : 1) ∼ (D : C) in eqn. (4). Then the
curve coefficients D′, C ′ of the image curve E′

ed under the 4-isogeny ϕ4 with respect to the
4-torsion point P = (Y4 : Z4) is given by:

D′ = 8Y4 · Z4 · (Y 2
4 + Z2

4 )
C ′ = (Y4 + Z4)4.

The evaluation of the 4-isogeny ϕ4 via the image (Y ′ : Z ′) of the point P = (Y : Z) on
Eed is given by the relations:

Y ′ = (Z2 · Y 2
4 + Y 2 · Z2

4 ) · Y · Z · (Y4 + Z4)2

Z ′ = (Z2 · Y 2
4 + Y 2 · Z2

4 )4 + 2Y 2 · Z2 · Y4 · Z4 · (Y 2
4 + Z2

4 ).

2.3 Supersingular isogenies
An isogeny from an elliptic curve E to itself (or the zero map) is called an endomorphism.
The set of all endomorphisms of E, denoted by End(E) forms a ring under addition and
composition. If End(E) is isomorphic to an order of a quadratic imaginary field, E is
called ordinary. Otherwise, if End(E) is isomorphic to a maximal order in a quaternion
algebra then the curve is called supersingular. We work with supersingular elliptic curves
in this paper. Any supersingular elliptic curve over a field of characteristic p is isomorphic
to a supersingular elliptic curve over Fp2 . A supersingular l-isogeny graph has as vertices
the supersingular j-invariants in Fp2 and its edges are the l-isogenies. The Supersingular
l-Isogeny Problem is a ‘hard’ problem that states the following, ‘given a prime p and two
supersingular elliptic curves E and E′ over Fp2 , find a path from E to E′ in the l-isogeny
graph’.

2.3.1 Strategies for computing isogenies

Figure 1: Computation structure for ϕ = ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0

Ever since the SIDH protocol was first proposed, a lot of work has been done to optimise
the computation of smooth large-degree isogeny [FJP14, JAC+22] with different strategies.
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Computing a large degree lk isogeny ϕ is very inefficient, instead we always split it into
multiple l-isogenies: ϕ = ϕk−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 ◦ ϕ0. An example is provided in Fig. 1 for
k = 6 and l = 4, there, computing the isogeny means starting from S0 to reach S5 (thus
having ϕ). To compute any of the ϕi for i ∈ [0 : 5], we must first find one point in the
kernel: [45−i] · Si. In order to get ϕ, we must compute a point in the kernel of all the
different ϕi for i ∈ [0 : 5], which means reaching all the points at the bottom of the graph in
Fig. 1. There are two main operations in isogeny "arithmetic": point quadrupling (or two
point doubling) and 4-isogenies with l = 4. The different strategies refer to the different
sequences of point doubling and 4-isogenies used to compute ϕ. There are strategies that
are more efficient than others, we will present three of them.

The "basic" strategy: this strategy is straightforward. For a 46-isogeny of a point S0
of order 46, first we start from S0 by computing point doubling (DBL) operations until
we reach a point of order 4, which is [45] · S0. We then use Vélu’s formula for a 4 degree
isogeny on the point of order of 4 to get the isogeny ϕ0 and the image of S0 through the
isogeny: S1 = ϕ0(S0). Then, we repeat this process on S1 but this time we only compute
[44] · S1 here as S1 is now of order 45. We will repeat this process until we reach S5, which
is the image of S0 through a 46-isogeny. In Fig. 2, the left figure shows the path to take
for this strategy in the case of a 46-isogeny.

The Full Evaluation strategy: we will mention one where we switch point doubling
for 4-isogeny evaluation, 4-iso-e. First, we start by computing R1 = [4] · S0 using two
DBL. We repeat this process until we reach R5 = [4] ·R4 = [45] · S0. We then proceed to
compute a 4-isogeny using R4 and compute the image of all the elements of the sequence
of point (Ri)i∈[0,4] through this isogeny ϕ0 (with R0 = S0). We repeat this process again
by using a point in the kernel that we already have computed: ϕ0(R4) to generate the
next isogeny ϕ1. The reason is that ϕ0(R4) is a point of order of 4: R4 = [44] · S0 has an
order of 8, so ϕ(R4) has an order of 8− 4 = 4. We repeat this process until we reach the
point S5. This strategy trades two DBL operations for a 4-iso-e compared to the basic
strategy. It also has another significant advantage: it can be heavily parallelised. All of
the isogeny evaluations through the same isogeny ϕi can be computed in parallel.

The Optimized strategy: first introduced by [FJP14, JAC+22], this strategy is done by
finding an optimum computation strategy. Those strategies, as shown in the right figure
of Fig 2, are well-balanced strategies because they tend to have a similar cost of DBL and
4-iso-e. Those strategies also avoid going through some of the internal points (eg. ϕ0(R1))
in the isogeny tree which lowers the complexity: every node not reached in the graph is
one less DBL or 4-iso-e. First, a linear representation of the strategy is generated (usually
hard-coded in the implementation). In Fig. 2, the representation of an optimum strategy
used is [3, 1, 1, 1, 1]. We first compute T1 = [43] · S0, T2 = [41] · T1, T3 = [41] · T2. The
order of T3 is 4, so we use this point to compute the first isogeny ϕ0. We then evaluate all
the point in (Ti)i∈[0,2] through ϕ0. Like in the Full Evaluation strategy, ϕ0(T2) is already
of order 4, meaning we can already compute ϕ1. This step is repeated to get ϕ2 and to
compute S3. Then we calculate T4 = [4] · S3 and T5 = [4] · T4, and finish computing ϕ
by getting ϕ3 from T4 and ϕ4 from ϕ3(T5). We are able to reach S5 using 14 DBL and 9
4-iso-e, which is lower than with the other strategy: compared to 30 DBL and 5 4-iso-e for
the basic one; 10 DBL and 15 4-iso-e for the second strategy.

2.4 Isogeny-based VDFs
Unlike other VDFs that rely on ad-hoc assumptions for proving their security, isogeny-
based VDFs enjoy the property of being cryptographically secure due to the underlying
supersingular isogeny ’hard problem’. Supersingular isogeny VDFs make use of the fact that
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Figure 2: Three isogeny computation strategies

computing lT -isogenies involves a series of sequential steps whereas the verification using
bilinear pairings is instant. There are two constructions of isogeny VDFs, one [FMPS19]
introduced in 2019 and the other [CSRHT22] in 2021. While both involve computing
isogeny walks during the evaluation, the methods used for verification differ greatly.

To begin with, we give a brief description of the VDF instances discussed in [FMPS19].
They are non-interactive, and by virtue of their design, the proof is empty, meaning that
no additional resources are consumed in obtaining the proof; it is a part of the output
itself. They need a trusted setup to establish all public parameters. The evaluation is a
T -sequential walk on a l-isogeny graph of a supersingular curve E. The verification uses
the output isogeny to evaluate a Weil (or a Tate) pairing. The Weil pairing eN is a form
of bilinear pairing over supersingular elliptic curves E and E′, eN : E[N ]×E′[N ]→ µN

where N is a prime, E[N ] and E′[N ] are the subgroups of order N containing points in E
and E′ respectively of order N , and µN = {x ∈ K : xN = 1}.

2.4.1 VDF over Fp

Consider a prime p such that p+ 1 contains a large prime factor N , and a supersingular
elliptic curve E over Fp. The choice of the starting degree l has two options: l = 2 only if
p = 7 mod 8, or, l is a small prime such that ( −p

l ) = 1. For a supersingular elliptic curve
E over Fp, let E[N ] be its subgroup of N -torsion points and eN be the Weil pairing defined
over E[N ]. By virtue of its construction [FMPS19], |E(Fp)| = p+ 1 and E has a unique
cyclic subgroup of order N . Let X2 = E[N ] ∩E(Fp). Define a map v : E → Ẽ, such that,
(x, y)→ (u2x, u3y), where u ∈ Fp2 \Fp and Ẽ is a quadratic twist of E over Fp2 . Ẽ has the
same order p+ 1 and hence also contains a unique cyclic subgroup X̃ = Ẽ[N ]∩ Ẽ[Fp]. The
isogenous image curve E′ has the same group structure as E and so contains cyclic groups,
Y1 = v−1(E′[N ]∩E′[Fp]) and Y2 = E′[N ]∩E′[Fp], with Ẽ′ = v(E′) as the quadratic twist
of E′. The three main steps of the VDF are given below.

• Setup(λ, T): For a security parameter λ, choose primes N and p with the properties
stated above. Next, choose a supersingular elliptic curve E over Fp and a suitable
degree l of the isogeny to compute the lT -isogeny ϕ : E → E′ and its dual ϕ̂. Also
compute ϕ(P ) for a choice of generator P of v−1(Ẽ[N ] ∩ ˜E[Fp]). The output is the
pair, (ek, vk) = (ϕ, (E,E′, P, ϕ(P ))).

• Evaluation(ek, Q ∈ Y2): For Q ∈ Y2, compute ϕ̂(Q).

• Verification(vk, Q, ϕ̂(Q)): Verify, ϕ̂(Q) ∈ X2 and, eN (P, ϕ̂(Q)) = eN (ϕ(P ), Q).
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2.4.2 Other forms of isogeny VDFs

A construction for VDF over Fp2 follows a similar construction as the one over Fp. The
primes N , p are chosen as before, along with a supersingular elliptic curve E/Fp regarded
as a curve over Fp2 . A small prime l is chosen as the base isogeny degree. The sets X1,
X2 and the quadratic twist Ẽ also have the same definitions as the previous construction.
ϕ is the cyclic lT -isogeny. One out of the (l + 1)T −1 choices for the dual ϕ̂ over Fp2 is
chosen through a random non-backtracking walk in the l-isogeny graph. Define the sets,
Y1 = ϕ(X1) and Y2 = ϕ(X2). However, there is no known efficient way to sample from
Y2 or Y1, indeed the image curve is generally defined over Fp2 and it has therefore no
Fp-twists [FMPS19]. To overcome this problem, instead of a bijection [FMPS19] takes into
account the N − to− 1 trace map defined as, Tr : E/Fp2 → E/Fp, P 7→ P + π(P ), where
π is the Frobenius endomorphism on E/Fp. So for P ∈ X1 and R ∈ E[N ] the following
equation holds: eN (P, Tr(R)) = eN (P,R)2. The VDF is defined as f : E′[N ]→ X2 such
that, Q 7→ (Tr ◦ ϕ̂)(Q). Hence, in the evaluation step, one needs to compute (Tr ◦ ϕ̂)(Q).
Verification involves checking if the following equality is true: (Tr ◦ ϕ̂)(Q) ∈ X2 and,
eN (P, (Tr ◦ ϕ̂)(Q)) = eN (ϕ(P ), Q)2.

Although the use of bilinear pairings means that the aforementioned VDFs are not
entirely quantum secure, they can still possess what [FMPS19] call ‘quantum annoyance’.
[CSRHT22] proposed a quantum-safe version in 2022 by addressing most of the short-
comings of the previous construction by [FMPS19]. The Setup involves selecting a delay
parameter T and a prime p such that p = poly(T ) and p2 ≡ 9 mod 16. Since the isogeny
walk in the evaluation step is computed only as a function of the j-invariants of the
two previous curves, the setup only considers two specific vertices in the 2-isogeny graph
corresponding to j−1 = 1728 and j0 = 287496 respectively. Evaluation is computing an
isogeny walk-in Fp2 of length T on a 2-isogeny graph wherein the exact path is determined
by an input string s. Since bilinear pairings can be solved using quantum algorithms for
solving discrete logarithms, [CSRHT22] replaced them with SNARGs for the verification.

In this paper, we focus on [FMPS19] because their methods of isogeny computation
have been extensively studied in the context of elliptic curve cryptography. There exists
many implementation works [FJP14, SB23, CLN16] related to isogeny walk computations.
[CSRHT22] however presents a theoretical approach where they evaluate the j-invariants
and no actual implementation of their methods exist.

2.5 Carry-save representation
The redundant binary representation (RBR) is a binary numeral system that uses more
than the minimum amount of bits required to represent an integer. Let a be a positive
integer, we define that minimum as m = ⌈log2 a⌉. The most common forms of RBRs are
the carry-save (CS) and the redundant signed-digit representation (RSD) [Par00]. In the
CS representation, an integer a is viewed as the sum of two positive integers:

a = a0 + a1, with a0 =
m−1∑
i=0

ai,0 · 2i and a1 =
m−1∑
i=0

ai,1 · 2i.

The most interesting property of RBR is its ability to perform addition (and subtraction)
without using any carry chain propagation. This makes addition constant time regardless
of the bit size, thus it becomes significantly faster in RBR than in standard representation
as the bit size grows [SKN08, MÖS22, SHT22]. In CS representation, addition is done
using a long array of one-bit full adders (FA) called carry-save adders (CSA). These enable
us to turn a three integers addition into one in CS format (so two integers). So, the
addition of two large bit numbers a and b in CS (which is represented by four integers
a0, a1, b0, b1 with a = a0 + a1 and b = b0 + b1) is done using two arrays of full adders, see
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FA

FA

FA FA

FA 0FA

Figure 3: Addition of two numbers in CS representation

Fig. 3. This method for adders is very efficient in terms of hardware, as the critical path
of addition is only two full adders [RM19].

As an example, we want to add a = 12 and b = 11. We can initiate a0 = 10, a1 = 2
and b0 = 0, b1 = 11 (or any other combinations). Following Fig. 3, we will add, using a
CSA, a0, a1 and b0, the output will be 4 and 8. We then add our two outputs 4,8 and b1
together in another CSA, the output will be c = 16 and s = 7. We never recombine the
two CS outputs c and s together, because the only way to compute it is to use a multi-bit
adder. Those are very expensive, for example, the "classic" ripple-carry adder has a very
long carry-chain propagation, making the delay proportional to m-FA, the size of our data.
This severely increases the critical path, meaning we would have to in either add more
clock cycles thus increasing the latency of our design or lower the frequency (with the
same effect). Therefore, when using CS representation, we cannot use any large multi-bit
adder to perform any operations.

3 Challenges in our VDF implementation
1. In Sec. 2.2, we discussed elliptic curve arithmetic over its different forms. The

first challenge in our isogeny VDF implementation is to choose the right form of
elliptic curve that needs the least point doubling and isogeny computations and an
appropriate base isogeny degree. The reason why the choice of curve is one of the
deciding factors is stated as follows: there exist transformation maps between all
forms of elliptic curves. So in theory, an attacker can port the evaluation isogeny
to the optimal curve-form to gain speedup. This threat model is valid since the
transformation is just a one-time operation done at the beginning and at the end
of the VDF evaluation. The worst is that this step can be very efficient: switching
from a Montgomery curve to an Edward curve in projective coordinates takes only
two additions as explained in [KYK+18, MS16]. We show how we narrow down our
search to the starting isogeny degree as 4 and then finally settle for the best curve in
Sec. 4.1.

2. Most isogeny implementations in the literature [JAC+22, SB23] use the Optimized
strategy as mentioned in Sec. 2.3.1 but is it also the best strategy for our VDF
acceleration? This question is studied in Sec. 4.2.

3. [FMPS19]’s construction (given in 2.4.1) uses a 1506-bit prime to achieve 128-bit
security. It is highly imperative that we apply carefully-chosen design strategies so
as to achieve a fast and efficient implementation.
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4. Various prior works have used CS form to speed up certain operations or algorithms
[Pur83, MMM03, SHT22]. One such optimisation was also used on elliptic curve
cryptography [RM19], only to speed up the Montgomery multiplication. No previous
work has tried a full CS form for isogeny-based cryptography. We observe that using
CSAs in practice for an isogeny hardware design brings up challenges that have not
been previously addressed, such as:

• Checking the sign. It is well-known that identifying the sign of an integer with
utmost certainty in CS representation is not straightforward. Most previous
works on CSA have avoided this issue by converting it back to standard rep-
resentation [SHT22]. Only [KH98] has tried to address this and has managed
to narrow down the uncertainty range, which unfortunately, is not enough for
isogeny-based cryptography. This problem is addressed in Sec. 4.3.1.

• Modular addition and subtraction. Various works have addressed the issue
of how to do a Montgomery reduction in CS representation [RM19, MÖS22],
which is useful following a squaring or multiplication. It is not efficient to use
such an algorithm after addition or subtraction. We address the issues with
reduction in Sec. 4.3.2 and those with modular subtraction in Sec. 5.2.

4 Algorithmic optimisations
In this section, we explain our solutions for overcoming all the aforementioned challenges
one-by-one. We also describe our algorithmic and design optimisations to achieve a
massively parallel hardware accelerator for isogeny-based VDF evaluation.

4.1 Choice of curve and isogeny
We first present a table (Table 1) outlining the various choices of elliptic curves and
the cost estimations for point doubling. MUL, SQR and ADD represent the number of
multiplication, squaring and addition operations respectively.

A Montgomery curve in affine coordinates is given by Eqn. (3). Let P = (x, y) be a
point in Em whose order is not a multiple of 2. Then, the point [2] · P is given by the
equation:

[2] · P =
(

(x2 − 1)2

4x(x2 + ax+ 1) ,
(x2 − 1)(x4 + 2ax3 + 6x2 + 2ax+ 1)

8x2(x2 + ax+ 1)2

)
.

Using the equivalent projective coordinates, (A : B : C) ∼ (a : b : 1) in P2(Fp2), Eqn. (3)
will take the following form:

EA/C : By2 = Cx3 +Ax2 + Cx. (5)

Table 1: Operation count comparison

Curve shape Point doubling
MUL SQR ADD

Edwards-XZ 2 6 6
Montgomery-XZ 4 2 4
Weierstrass 6 3 6
Jacobi 3 4 8
Hessian 3 6 3
Twisted Hessian 3 6 3
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Next, to simplify Eqn. 5, consider (A : C) ∼ (a : 1) ∈ P1(Fp2) such that one can define
(A+

24 : C24) ∼ (A+2C : 4C). Alg. 2 shows the point doubling in projective XZ-coordinates
starting with the point (Xp : Zp) and using the representation (A+

24 : C24). This algorithm
is a slightly modified version of the original point doubling algorithm given in Alg. 1 and
provides more opportunities for parallelism in hardware.

Algorithm 1 Original point doubling on
Montgomery curves
Input: Xp, Zp, A24, C24, P (X,Z) a point

on the curves Ea

Output: X[2]·P , Z[2]·P with [2] · P
1: t0 ← Xp − Zp

2: t1 ← Xp + Zp

3: t0 ← t20
4: t1 ← t21
5: Z[2]·P ← C24 · t0
6: X[2]·P ← Z[2]·P · t1
7: t1 ← t1 − t0
8: t0 ← A24 · t1
9: Z[2]·P ← Z[2]·P + t0

10: Z[2]·P ← Z[2]·P · t1
11: return (X[2]·P , Z[2]·P )

Algorithm 2 Modified point doubling on
Montgomery curves
Input: Xp, Zp, A24, C24, P (X : Z) a point

on the curve EA/C

Output: X[2]·P , Z[2]·P with [2] · P
1: t0 ← Xp − Zp

2: t1 ← Xp + Zp

3: t0 ← t20
4: t1 ← t21
5: Z[2]·P ← C24 · t0
6: t2 ← t1 − t0 ▷ Modification starts.
7: X[2]·P ← Z[2]·P · t1
8: t0 ← A24 · t2
9: Z[2]·P ← Z[2]·P + t0

10: Z[2]·P ← Z[2]·P · t2
11: return (X[2]·P , Z[2]·P )

Start

End

Start

End

Figure 4: Flow diagram for the Alg. 1 and Alg. 2

The point doubling formula for a point P = (x, y) on an Edwards curve (given by
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Eqn. 4) over the affine coordinates is given in Eqn. 6:

[2] · P =
( 2xy
x2 + y2 ,

y2 − x2

2− x2 − y2

)
. (6)

The first obvious replacement in Eqn. (6) can be done using Eqn. (4). We replace x2

with 1−y2

1−dy2 in Eqn. (6). In projective coordinates, for a point P = (Y : Z), the second
coordinate of Eqn. 6 can be written as:

y2 − x2

2− x2 − y2 = y2(1− dy2)− (1− y2)
2(1− dy2)− (1− y2)− y2(1− dy2)

= − 1 + 2y2 + dy4

1− 2dy2 + dy4

= − Z4 + dY 4 − 2Y 2 · Z2

Z4 − 2dY 2 · Z2 + dY 4 .

Simplifying the above equation gives us the following two relations:

Y[2]P = −(Z2 − Y 2)2 − dY 4 + Y 4

Z[2]P = (Z2 − dY 2)2 − d2Y 4 + dY 4.

Notice from Table 1 that point doubling over Edwards curve involves the least number
of multiplications. For comparison purposes let us assume that during implementation
the relationship 1 SQR = 1/2 MUL holds. Then, the total cost of multiplications and
squaring over both Montgomery and Edwards turns out to be the same, but additions
make Edwards curves less efficient. In other estimations one squaring operation is assumed
to be more than half of a multiplication, as shown in [KYK+20] (one SQR is one MUL).
The Montgomery curves have significant advantages over others due to the lowest amount
of multiplication and squaring. Hence, we have selected Montgomery curves.

Selection of 4-isogenies: We have selected 4-isogenies for our design. The reason for
using 4-isogenies instead of 2 or 8-isogenies is that 4-isogenies offer superior efficiency.
Table 2 presents the costs for the different operations needed to compute large power-of-
two isogenies using Montgomery curves in projective coordinates. The most expensive
operations in this table are multiplication and squaring, with the former being slightly
more expensive than the latter (see Sec 5.3.1). For our VDF, 4-isogenies necessitate
6 multiplications and 2 squaring compared to the 8 multiplications required by two 2-
isogenies. It is evident from Table 5 that both point-doubling and 4-isogenies have similar
critical paths, unlike 2-isogenies which have a shorter path. Our hardware design (see
Sec.5) is able to compute both one point-doubling and one 4-isogeny in one clock cycle
for a frequency set by the longest critical path: the frequency in any hardware platform
is defined as the inverse of the longest critical path in the design. Replacing 4-isogenies
with 2-isogenies in our design will need twice the latency to compute one 4-isogeny (since,
one 4-isogeny = two 2-isogenies). We will also not get any frequency increase, as the
critical path will anyway be set by the point-doubling operation. This makes 4-isogenies
twice as fast as 2-isogenies, hence it is a must-have feature in our VDF implementation.
8-isogenies are never considered for computation as the cost of computing a larger base
degree isogenies scales very badly. This conclusion is supported by both [EKA22, CLN16],
albeit with another argument (squaring has one less field multiplication than multiplication
in Fp2) as both target a different application: post-quantum cryptography.

4.2 Choice of computational strategy
In Sec. 2, we presented three different strategies to compute an lk-isogeny. In this section,
we present the cost of these strategies in terms of the number of DBL, 4-iso-c and 4-iso-e
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Table 2: Cost comparison between 2-iso and 4-iso from [EKA22]
Operation Add+Sub Multiplication Squaring

Point doubling 4 4 2
Compute 2-iso 1 0 2

Evaluation 2-iso 6 4 0
Point Quadrupling 8 8 4

Compute 4-iso 5 0 4
Evaluation 4-iso 6 6 2

Table 3: Cost of the different strategies for a 4k-isogeny
Strategy # of DBL # of 4-iso computation # of 4-iso evaluation

Basic (k − 1) · k k k − 1
Full Eval. 2 · (k − 1) k (k − 1) · k/2
Optimized ≈ ⌊1.4 · k · log(k)⌋ k ≈ ⌊1.3 · (k − 2) · log(k − 2)⌋

operations for l = 4. The basic strategy costs 2 · (k− 1) + 2 · (k− 2) + · · ·+ 2 · 2 = k · (k− 1)
DBL and k 4-iso-c and (k − 1) 4-iso-e computations. So, the complexity is O(k2) for
DBL and O(k) for 4-iso-e. The Full Evaluation strategy costs 2(k − 1) DBL, k 4-iso-c
and (k − 1)k/2 4-iso-e. Thus, the complexity is O(k) for DBL and O(k2) for 4-iso-e. This
method also has a parallelization advantage: all the 4-isogeny evaluations (for the same
4-isogeny) can be computed simultaneously (see Sec. 2.3.1). The Optimized strategy costs
≈ ⌊1.4 · k · log(k)⌋ DBL, k 4-iso-c and ≈ ⌊1.3 · (k − 2) · log(k − 2)⌋ 4-iso-e. The complexity
is O(k · log k) for DBL and 4-iso-e.

Table 3 summarises the isogeny strategies and their costs. It clearly shows that using
the Optimized strategy has the least amount of computation, thus the lowest latency.
However, to compute the fastest possible isogeny implementation for our VDF, we must
consider a hardware platform’s ability to compute operations in parallel. With multiple
isogeny evaluation modules, we can compute point evaluation in parallel, which in some
strategies (the second and third) decreases the latency. Table 4 summarises the latency
of all three presented strategies depending on the number of isogeny evaluation modules
instantiated. The optimized strategy is still the fastest even with multiple evaluation
modules, except with k−1 modules, where the Full Evaluation strategy beats the optimized
one. This means that there is a threshold on the number of point evaluation modules
instantiated (that depend on k) after which the Full Evaluation strategy becomes the
fastest. That threshold is not always available: if k is really large, it would be impractical
to instantiate k 4-iso-e modules. To conclude, adding more 4-iso-e modules in parallel will
decrease the latency of the 4k-isogeny. Past a certain number of them, the full Evaluation
strategy will be faster than the Optimized one, only if k is small enough such that all of
them can be instantiated. In all other cases, the Optimized strategy is the best choice.

This conclusion is validated by previous works on improving isogeny strategy [CVOJRH20,
CFGR22]. This analysis is not novel as the full Evaluation strategy is considered one of
the basic isogeny computation strategies. It is never used in practice due to high area
consumption. Nevertheless, in the context of an isogeny VDF we need this parallel isogeny
evaluation to obtain the smallest latency for the evaluation step.

For our design, we present two cases one with only one isogeny evaluation core, where
we have selected an optimized strategy. The second case features k− 1 evaluation modules,
where we use the Full Evaluation strategy.

4.3 CS representation for a fast design
The solution to challenge 3 (see Sec. 3) lies in the use of a carry-save representation
for integers as working with large parameters is made easy with CS representation, see
Sec. 2.5. In challenge 4, we presented two issues with using CS representation in isogeny
cryptography: modular reduction and sign checking. We define m as the bit-size of our
prime p.
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Table 4: Latency (in cc) of different strategies for a 4k-isogeny with different parallelization
levels of 4-iso-e module

Strategy 1× 4-iso-e 2× 4-iso-e k× 4-iso-e
Basic (k − 1) · (k + 2) (k − 1) · (k + 2) (k − 1) · (k + 2)

Full Eval. even (k − 1)(k + 6)/2 3 · (k − 1) + k(k + 2)/4 4 · (k − 2)
Full Eval. odd (k − 1)(k + 6)/2 3 · (k − 1) + (k + 1)2/4 4 · (k − 2)

Optimized ≈ ⌊2.53 · k · log(k)⌋ ≈ ⌊1.95 · k · log(k)⌋ ≈ ⌊1.47 · k · log(k)⌋

For modular reduction, we use two different algorithms. The first one is an adaptation
of the Montgomery algorithm for CS representation proposed by [MÖS22]. This algorithm
takes a (2m + 2)-bit integer a in CS form and returns an (m + 1)-bit integer b in CS
form, where b ≡ a · R−1 mod p, b < 2p, R = 2m+3. This algorithm uses m · (3m + 7)
logical-AND gates combined with three adder trees. This algorithm is very efficient in
reducing the output following a multiplication or a squaring but has two shortcomings
for our VDF implementation: the first is that it is highly inefficient to use to reduce after
an addition or subtraction. The second one is that the output is one bit longer than the
input: p is m-bit long, so we want the output of our reduction to be of the same size and
not (m+ 1)-bit as discussed in Sec. 4.3.2. This other algorithm will be primarily used the
modular reduction following an addition and a subtraction.

4.3.1 The sign issue in CS representation

To perform modular operations in CS representation, we need to perform reduction modulo
p. In normal integer representation, the addition or subtraction of a and b, the modular
reduction becomes an inequality test (a+ b > p) or (a− b < 0) followed by a conditional
addition or subtraction of p, to put the result in the range [0, p− 1]. While addition (or
subtraction) is very easy in CS, testing the two aforementioned inequalities is impossible
without implementing a large degree adder. To test a+b > p, we compute a+b−p and check
for an overflow (i.e., if the m+1 th bit of the output is 1 or 0). To correctly do this, we need
to add the carry and the save of d = a+ b−p, which will result in using a large-sized adder.
We have to combine the two "shares", as it is not possible to guarantee the presence of an
overflown just by looking at the two shares: as an example, let us consider p = 61 prime, and
two integers a = 40 and b = 24 with CS form a : a0 = 32(0b00100000), a1 = 8(0b0001000)
and b : b0 = 16(0b0010000), b1 = 8(0b0001000). When performing a modular addition in
normal representation, we compute d = a + b − p = 40 + 24 − 61 = 3. We change the
subtraction of p by an addition by its two’s complement −p = p̄ + 1: in our example,
−p = 61 XOR 127+1 = 67. So d = a+b−p = 40+24+67 = 131 = 3 mod 64. In CS, e =
a+ b−p = 32(0b00100000)+8(0b0001000)+16(0b0010000)+8(0b0001000)+67(0b1000011)
will represented by e0 and e1 with e = e0 +e1, e0 = 56(0b0111000) and e1 = 75(0b1001011).
We still have e0 + e1 = 131 = 3 mod 64. We then need to select the correct output. This
is done easily in normal representation by checking the m+ 1-bit of e, with e [m+ 1] = 1
meaning an overflow, so the correct output is a+ b. Instead, if e [m+ 1] = 0, then there is
no overflow and the correct output is a+ b− p. Here a+ b = 64 > p = 61, so we should
choose a+ b−p as our output (and not a+ b). How does one check this in CS form without
adding the carry and the save together?

The answer is we cannot, as the above example shows. Checking m + 1 bits of an
integer in CS representation is not enough: the sign of the integer cannot be determined
by just checking the MSb. As carry propagation from the lower bits can change the result
of our test as we see in our example: e = 131 = 56(0b0111000) + 75(0b1001011). The
fourth bit creates a carry that will propagate until it reaches the MSb and will change
it from 1 to 0, making this integer positive. Hence, correctly guessing the sign requires
adding the carry and the save together, which will essentially defeat the purpose of using
CS representation.
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4.3.2 CS modular reduction for addition and subtraction

In this section, we present a new approach to perform a modular reduction in CS represen-
tation, see Alg. 3. Let i ∈ N, this approach takes a (m+ i)-bit integer in CS form and
reduces it modulo p to a m-bit integer in CS representation. First, we take the i+ 1 most
significant bits of our inputs and add them together with a (i+ 1)-bit ripple-carry adder.
The (i+ 1)-bit output of the previous adder: M then goes into a lookup table that stores
M · 2m−1 mod p for M ∈ [0 : 2i+1− 1]. In the last step, we add M · 2m−1 and the (m− 1)
remaining bits from our input together via a carry-save adder. Thanks to this, we can
guarantee that the output will be m-bit long. In Fig 5 two of the three inputs are m−1 bits,
meaning that in the CSA, the operations on the m-bit will always be the addition of three
bits, with two of them set to 0. A full adder has two outputs: the carry and the save. The
save bit will be set by the m-bit of the third input (M · 2m−1), while the carry bit is always
set at 0. This ensures that our outputs are both m-bit long. Fig. 6 shows the architecture
diagram of our new reduction. Using the same example as Sec.4.3.1, we have e = e0 + e1 =
56(0b0111000) + 75(0b1001011) that we want to reduce mod p = 61 to 6-bit CS form. First
we generate M = 1(0b01) + 2(0b10) = 3, and S = 3 · 25 mod 61 = 6. We then add in a
CSA: 24(0b11000) + 11(0b1011) + 35(0b100011) = 22(0b10110) + 48(0b110000) = 70 = 9
mod 61.

Algorithm 3 Reduction Algorithm in CS form
Input: a in CS form a = a0 + a1, where a0 and a1 are m + i-bit integers. i is a small

integer. p is an m-bit prime.
Output: b in CS form: b = b0 + b1 ≡ a mod p with b0, b1 m-bit long integers

1: M ← a0[m+ i− 1 : m− 1] + a1[m+ i− 1 : m− 1] ▷ Using an i-bit adder
2: S ← (M · 2m−1) mod p ▷ Using an LUT table
3: b0, b1 ← a0[m− 1 : 0] + a1[m− 1 : 0] + S ▷ Using a CSA
4: return b0, b1

Our approach can perform a reduction (mod p) as well as a reduction in the bit size of
the two carry-save shares simultaneously. This is very useful in the following two cases:
addition or subtraction, as we are dealing with m+ 1-bit (i = 2) integers in CS form. The
lookup table will be small: 2i+1 − 1 = 23 − 1 = 7 possible values. The second advantage is
that the adder for M will be small too, meaning a very small increase in the critical path.
In the case of i = 2, a 2-bit ripple-carry adder can be done using one full adder and a half
adder.

The other feature of this algorithm is that it allows to set the output size at m-bit long
after a Montgomery reduction. As p is m-bit long, we would want to keep working with
m-bit long integers for the two parts of the CS representation. The output of a square

Figure 5: The last CSA addition of our modular reduction
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Figure 6: Architecture diagram for a small reduction

(it also applies to multiplication) of an integer a in CS form will be a 2m+ 2-bit integer
again in CS form: a2 = (a0 + a1)2 = a2

0 + a2
1 + 2 · a0 · a1, as both a0 and a1 are m-bit

long, so a2
0, a2

1 will be 2m-bit long and 2 · a0 · a1 will be 2m+ 1. The addition of all three
is 2m+ 2-bit long. The Montgomery algorithm [MÖS22] only reduces a 2m+ 2-bit long
integer into a m+ 1-bit integer, our small reduction unit can further reduce it to an m-bit
integer modulo p. Indeed, our reduction unit is very efficient in hardware design as all
three of its components (ripple-carry adder, CSA adder and LUT) are very well suited for
hardware platforms.

Modular addition is done by combining a normal CSA addition and this new reduction
algorithm to reduce each output back into m bits modulo p. This means we don’t use full
modular arithmetic in this design, instead, we allow each share of an integer (c and s in
CS form) to take values in the range [0 : 2m − 1]. So, d = d0 + d1 is in range [0 : 2m+1 − 2].

5 Hardware architecture
In this section, we present a highly parallelized hardware architecture for implementing
the evaluation step of isogeny-based VDFs and provide its critical path analysis. This
accelerator is designed to quest for the fastest implementation possible in an attack scenario
using massive resources.

5.1 Overall design
For the overall cryptoprocessor, we choose an instruction set architecture (ISA) framework.
The main idea behind isogeny VDFs evaluation is the sequential computation of a large-
degree isogeny and two isomorphism transformations, with the main operation being the
computation of a large-degree isogeny. The fastest way to compute a large degree isogeny,
given by [FJP14], is to use an isogeny computing strategy and perform a sequence of elliptic
curves arithmetic operations: point doubling, 4-isogeny curve and 4-isogeny evaluation (as
we choose l = 2). Most of these operations must be done sequentially and thus cannot
be parallelised, as discussed in Sec. 4.2. Hereafter we will refer to the operations point
doubling as DBL, 4-isogeny curve computation as 4-iso-c and 4-isogeny evaluation as
4-iso-e respectively. All three operations also consist of a sequence of modular additions,
subtractions, multiplications, and squaring on Fp or Fp2 .

The main goal of our work is to provide the fastest implementation of the VDF
evaluation step, which in this case is a 4k-degree isogeny evaluation. A powerful attacker
with the fastest evaluation will be able to cheat if the parameters of the VDF are not
large enough for an expected delay. A fast accelerator naturally demands that we unroll
as many arithmetic operations as possible within the sequential VDF evaluation algorithm.
Most hardware implementations of isogeny-based post-quantum cryptography in the
literature [SB23, KAK+20] use a serialized core that is only capable of one modular
operation at a time. However, we noticed that the higher-order operations (DBL, 4-iso-c
and 4-iso-e) require a dozen modular operations. Implying it was possible to unroll those
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Figure 7: Architecture diagram. 4-iso-c/e stand for isogeny computation/evaluation.

operations: instead of having an arithmetic module that computes modular arithmetic,
we have modules that compute higher-order elliptic curves arithmetic (and 4-isogeny).
Going one step higher in function hierarchy is not a viable option since the complexity of
computing isogenies grows exponentially with their size. So, DBL, 4-iso-c and 4-iso-e are
the highest order of functions that we have in our design.

The high-level block diagram of the cryptoprocessor architecture is shown in Fig. 7
and focuses on performing a 4k degree isogeny in the shortest amount of time. Our
cryptoprocessor consists of five modules: one register bank, one control unit, DBL, 4-
iso-c and 4-iso-e. We translate the large-degree isogeny computation into a sequence of
instructions using the three units. The sequence itself will depend on the number of parallel
4-iso-e modules present in the design following Sec. 4.2. The register bank acts as our
system memory that stores all inputs and data during the protocol. It consists of registers
and multiplexers, we choose these over BRAMs to keep clock cycles as low as possible
during memory access. The control unit generates signals during the protocol to control
the memory management and the operations selections.

5.2 Design of arithmetic in CS representation
This section covers how we perform modular arithmetic in CS representation and how we
designed our modular subtraction. We cannot use multi-bit adders to perform additions in
CS representation (see Sec. 2.5), so instead, additions are done using one-bit Full Adders
via carry-save adders (CSA). The addition of two large bit numbers a and b in CS (which
is represented by four integers a0, a1, b0, b1 such as a = a0 + a1 and b = b0 + b1) is done
using two arrays of Full Adders, see Fig. 3. This is very efficient in terms of timing
since the critical path of addition consists of only of two Full Adders. Accumulations are
done in CS representation by a large adder tree circuit called Wallace tree [Wal64], or its
more compact variant, the Dadda tree [Dad65]. The Dadda tree minimises the number of
operands needed to reduce an adder tree but has the same latency as the Wallace tree.
The multiplication, in CS representation, is split into two phases. First, we compute the
partial products using m2 logical-AND gates into a large adder tree. As our inputs are
in CS form, we need to multiply all the parts together, leading to four different adder
trees: c = a · b = a0 · b0 + a0 · b1 + a1 · b0 + a1 · b1. In the second phase, initially, we
reduce individual partial products using four Wallace or Dadda adder trees. A CSA tree
then combines all the reduced partial products in CS representation. The squaring in CS
representation is as in [MÖS22], by using (m+ 1) · (2m+ 3) logical AND gates.

A modular subtraction is quite complicated to perform in CS representation. We
decided to use the classic two’s complement method to compute the subtraction since it
works well with CS representation. To turn a CS integer into its two’s complement we only
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have to change both the carry and the save. Another advantage is that the addition by one
(in the two’s complement) is not problematic at all as we do not need any multi-bit adder to
compute it. Instead, we can use a simple CSA for it. Let a, b ∈ N in CS form, to compute
c = a−b = a0 +a1−b0−b1 = a0 +a1 + b̄0 +1+ b̄1 +1 = a0 +a1 + b̄0 + b̄1 +2. The notations
b̄0 and b̄1 represent bit-wise negation of b0 and b1. The rest is a simple accumulation done
with CSAs of all five integers. The biggest issue with subtraction is the reduction. As
mentioned in Sec. 4.3.1, it is not possible to determine with certainty the sign of an integer
in carry-save. This is even more problematic in the case of a modular subtraction than
addition, due to overflow (when b > a), thus we cannot directly apply our new algorithm 3
for the modular subtraction as our new algorithm cannot deal with the overflow that will
appear in subtraction. The solution here is to make sure there is no overflow, since we
cannot handle them efficiently. We preemptively add 3p before the subtraction to avoid
dealing with overflows and negative numbers: 3p− b > 0, we can safely add with a and
then compute a partial reduction to have both output (c and s) as m bit integers. Thus,
our modular subtraction compute c = a− b mod p = a0 + a1 + b̄0 + b̄1 + 3 · p+ 2, and
accumulates all integers with CSAs.

5.3 Elliptic Curves Units

Figure 8: Computation flow for point doubling

This section describes our design decisions for the three modules: DBL, 4-iso-c
and 4-iso-e. Fig. 8 describes the computation flow diagram of the DBL module, which
computes the elliptic curve point doubling following the formula given in Sec. 4.1. We have
slightly modified the order of the operations in the point-doubling algorithm to allow more
parallelism while also reducing the critical path, see Alg. 2. Due to all of these adaptations,
we are able to perform this whole computation in one clock cycle.

Figure 9: Computation flow for 4-isogeny curve

Fig. 9 presents the computation flow diagram for the 4-iso-c module. Given a point of
order 4, it computes the image curve of a degree 4-isogeny. This module parallelizes the
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steps in the 4-iso-curve algorithm given in [JAC+22] as much as possible to reduce the
critical path. We managed to compute this step in one clock cycle.

Figure 10: Computation flow for 4-isogeny evaluation

We present in Fig 10 the computation flow diagram of the 4-iso-e module. It computes
the image of a point through the 4-isogeny calculated before (4-iso-curve algorithm)
following the 4-iso-eval algorithm in [JAC+22]. We are able to compute this algorithm in
one cycle.

5.3.1 Critical path analysis

Here, we estimate the delay δ of every arithmetic and elliptic curve function in our design.
We will denote τF A as the delay of a Full Adder, τHA as the delay of a Half Adder, τAND

as the delay of an AND gate, τXOR as the delay of an XOR gate and τMUX as the delay
of a multiplexer. We will also note for s ∈ N, f(s) ≈ ⌊ ln s

ln 3/2⌋. We present the estimation
of the delay for the arithmetic operations:
Normal addition (ADD): δadd ≈ 2 · τF A, see Fig. 3.
Normal subtraction (SUB): δsub ≈ τXOR + 3 · τF A. We perform subtraction using the
2’s complements method. Which adds an extra XOR operation before the addition. We
need three CSA in succession to add six integers to add together, leading to an extra delay
of three Full Adders.
Normal Multiplication (MUL): δmul ≈ τAND + (f(m) + 4) · τF A. The delay is one
AND-gate to compute the partial products. To reduce these partial products into CS form,
we use a large adder tree that has a delay of f(m) Full Adders and four extra Full Adders.
Normal squaring (SQR): δsqr ≈ τAND + (f(m) + 2) · τF A, from [MÖS22].
New Reduction of i-bit: δnre ≈ (i+ 1) · τF A + τHA + τMUX . The initial adder used to
compute M , increases the critical path i FA and one HA (i-bit adders). The next step is
the LUT table, which is equivalent to a multiplexer in terms of delay.
Montgomery Reduction: δmre ≈ 3 · τAND + (f(m+ 3) +f(m) + 7) · τF A + τXOR + τHA +
τMUX . From the Montgomery algorithm in [MÖS22], we have calculated the delay for it.

We will now present our estimations of the delay of our three hardware modules:
Point doubling: δDBL ≈ 12·τAND +5·τXOR +(3·(f(m+3)+2·f(m))+50)·τF A +6·τHA +
6 · τMUX . From the Alg. 2 and Fig. 8, the critical path in that module is the following
instruction: SUB → SQR → SUB → MUL → ADD → MUL. So two multiplication,
one squaring, one addition, two subtractions, three reductions and three Montgomery
Reduction.
4-iso-c: δ4-iso-c ≈ 8 ·τAND +2 ·(2 ·f(m)+f(m+3)+11) ·τF A +2 ·τXOR +3 ·τHA +3 ·τMUX .
The critical path, given in Fig. 9, is one modular addition and two modular squaring.
4-iso-e: δ4-ido-e ≈ 12·τAND +6·τXOR+(3·(f(m+3)+2·f(m))+52)·τF A+6·τHA+6·τMUX .
The critical path, given in Fig. 9, is 3 modular subtractions, 2 multiplications, 1 squaring
and 3 Montgomery reductions.
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Table 5: Critical path delay of the different modules.
Module without FA m = 89 (FA) m = 1506 (FA)

DBL 12 · τAND + 5 · τXOR + 6 · τHA + 6 · τMUX 102 · τF A 212 · τF A

4-iso-c 8 · τAND + 2 · τXOR + 3 · τHA + 3 · τMUX 82 · τF A 130 · τF A

4-iso-e 12 · τAND + 6 · τXOR + 6 · τHA + 6 · τMUX 105 · τF A 214 · τF A

6 Results
In this section, we provide the implementation results of the proposed design and present
an analysis of the results. The proposed arithmetic units are coded using Verilog RTL
and they are fully parameterized, meaning that the bit width of the datapath can be set
before the implementation. All units are implemented with a 28nm ASIC library using
the Cadence Genus tool. We evaluate our design for several bit widths (m = log2(p)) and
this provides us a general trend of area, performance, and the critical path depending on
the prime p.

Table 5 presents the critical path delay for all the modules presented in Sec. 5 for a
field prime, p, of size m = {89, 1506} (m = 89 is a toy example here). Since we adopt CS
representation, a change in the bit size of p only affects the CS adder tree depth. Thus, as
shown in Table 5, increasing the bit size of p only adds full adders to the critical path of
our design involving CS adder trees, and the critical path of the remaining part of the
design is not affected by the bit width of p. Fig. 11a shows a logarithmic relationship
between the number of full adders (FA) in the critical path and the bit size of the prime.

Table 6 shows the critical path delay and area of different bit sizes (m) reported by
the Cadence Genus tool for every arithmetic unit that is used as a sub-module by three
main modules, DBL, 4-iso-c and 4-iso-e. As we increase the bit size, there was a significant
increase in the synthesis time of the design. We therefore report actual critical path and
area results for addition, subtraction, multiplication, squaring, and reduction units up
to 511-bit. Then, we use the results for eight different bit sizes (m = 40 to m = 511)
to extrapolate the results for m = 1506. The extrapolation curve is shown in Fig. 11b.
From section 5.3.1, the critical path of our design is defined by the 4-iso-e unit and it is
characterized by: 3 modular subtractions, 2 multiplications, 1 squaring, and 3 Montgomery
reductions. Following section 5.3.1 and Table 6, we calculate the critical path of our design
as ≈ 3 ·0.4+(1+3) ·0.8+3 ·1.35 = 8.45ns. Note that the result of our overall design includes
delay information of addition, subtraction, multiplication, squaring and reduction units
reported by the tool, excluding memory and the cost of routing and connecting different
units. Thus, this result presents a lower bound on delay value for ASIC implementation.

Table 7 presents the latency and timing results of our design for different k values.
With one evaluation unit, we use the optimized strategy, while with k− 1 evaluation units,
we use the full-evaluation strategy. This highlights the effect of parallel isogeny evaluation
units, we gain a speedup of around 60%.

CS vs non-redundant representation: In non-redundant representation, a ripple-carry
adder performs a 1506-bit addition using 1506 full adders with critical path δ1506−add =
1506 · τF A. It is possible to use more sophisticated adder architectures like carry-lookahead
adder (CLA) or carry-select adder to reduce the critical path; however, their critical path
still will be longer compared to redundant CS representation. For example, a 1506-bit
adder with 8-bit CLA has a critical path of ≈ τ8−CLA · 1506

8 while carry-save adder has a
critical path of only τF A. The addition with CS representation is ≈ 1500× faster than
ripple-carry adder-based addition. Multiplication implementations with non-redundant
representation follow a divide-and-conquer approach [ZZO+23] where small multipliers are
used to generate partial products before adding them together. For high performance, the
small multiplications can be computed in parallel by using multiple small multipliers and
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Table 6: Area cost of the arithmetic modules. Results in bracket are extrapolated.
Size Critical path (ns)/Area (mm2)
(m) Fp Add. Fp Sub. Fp Sqr. Fp Mult. Fp Red.
40 0.18/0.001 0.22/0.002 0.40/0.033 0.40/0.070 0.70/0.058
89 0.18/0.004 0.22/0.004 0.50/0.133 0.50/0.320 0.85/0.210
136 0.18/0.007 0.22/0.007 0.60/0.310 0.60/0.702 0.90/0.558
173 0.18/0.008 0.22/0.009 0.70/0.549 0.70/1.148 1.00/0.864
212 0.18/0.010 0.22/0.011 0.70/0.822 0.70/1.453 1.04/1.387
256 0.19/0.012 0.23/0.011 0.70/1.258 0.70/2.184 1.06/1.909
397 0.20/0.014 0.23/0.017 0.70/2.938 0.70/6.682 1.25/3.902
511 0.21/0.020 0.23/0.023 0.70/5.271 0.70/11.80 1.25/6.742
1506 0.30/0.034 0.40/0.093 (0.80/49) (0.80/85) (1.35/52)

Table 7: Timing results for isogeny VDF. Clock frequency is 118 MHz.

k
1× Eval. unit (k − 1)× Eval. unit

Latency (in cc) Latency (in ms) Latency (in cc) Latency (in ms)
100 1316 0.01119 836 0.00710
1000 19861 0.16882 11874 0.10093
10000 262855 2.23427 149224 1.26840
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the additions of partial products can be performed using CSA and one 3012-bit addition.
For an 8-bit small multiplier (the choice of 8-bit is from [ZZO+23]), the critical path
of a 1506-bit multiplier is δ1506−mul ≈ τ8-mul + (log1.5(1506/16)) · τF A + τ3012-add. For
the multiplication, the delay of the non-redundant 8-bit multiplier is hard to estimate
due to different possible design approaches; however, it will always be longer than the
delay of partial product multiplier in CS form, one AND-gate [MÖS22]. The depth of
the CSA adder tree (in the reduction of the partial products) is lower in non-redundant
representation compared to the CS form; thus, it has a lower critical path for adder
tree implementation. However, the large integer (3012-bit) addition at the end of the
non-redundant representation negates any advantages it had, making CS form significantly
faster. The 1506-bit multiplier with CS form can have a speedup of up to ≈ 3000×
compared to a non-redundant multiplier (note that the speedup value might be lower
depending on how the design approaches).
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7 Conclusion
Isogeny-based VDF constructions are becoming popular because of their well-studied
cryptographic properties. Apart from conceptual isogeny VDF constructions and their
unoptimised software implementations, no efficient implementation suitable enough for
setting realistic security parameters exists. This paper is the first work and realises a
parallel hardware implementation of isogeny-based VDFs for ASIC platform. Our design
is made with the highest level of parallelism possible within the sequential constraints of
a VDF evaluation. It aims at accelerating large-degree isogeny computations, which is
the core operation of isogeny VDF evaluation. Our design performs full elliptic curves
arithmetic operations in one clock cycle (a task that takes a processor dozens of instructions)
at a decent clock frequency. In a 28nm technology, our design achieves 118 MHz clock
frequency.

The VDF scheme described in [CSRHT22] uses another type of evaluation step where
it only computes the co-domain curves and not the isogeny walk. However, we can still
apply our work on [CSRHT22] VDF by adding a module that computes the j-invariant
for elliptic curves. Our work can help to answer the open question that remains from
an attacker’s perceptive: does using co-domain curves instead of isogeny walks provide
an evaluation time advantage? This serves as an interesting future research direction to
explore. We hope that our work can be used in standardising isogeny VDFs for real-world
applications.
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