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Abstract

Non-interactive delegation schemes enable producing succinct proofs (that can be efficiently
verified) that a machine M transitions from c1 to c2 in a certain number of deterministic steps.
We here consider the problem of efficiently merging such proofs: given a proof Π1 that M
transitions from c1 to c2, and a proof Π2 that M transitions from c2 to c3, can these proofs
be efficiently merged into a single short proof (of roughly the same size as the original proofs)
that M transitions from c1 to c3? To date, the only known constructions of such a mergeable
delegation scheme rely on strong non-falsifiable “knowledge extraction” assumptions. In this
work, we present a provably secure construction based on the standard LWE assumption.

As an application of mergeable delegation, we obtain a construction of incrementally verifi-
able computation (IVC) (with polylogarithmic length proofs) for any (unbounded) polynomial
number of steps based on LWE; as far as we know, this is the first such construction based
on any falsifiable (as opposed to knowledge-extraction) assumption. The central building block
that we rely on, and construct based on LWE, is a rate-1 batch argument (BARG): this is a
non-interactive argument for NP that enables proving k NP statements x1, ..., xk with commu-
nication/verifier complexity m + o(m), where m is the length of one witness. Rate-1 BARGs
are particularly useful as they can be recursively composed a super-constant number of times.
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1 Introduction
Consider some very long computation spanning over multiple generations of humans. Is there a way for the
current generation to ensure that the current state of the computation is correct? The notion of incrementally
verifiable computation (IVC), proposed by Valiant [Val08], addresses exactly this problem.

An IVC scheme for a machineM and time bound T consists of a key generation algorithm, and algorithms
for updating and verifying proofs. The key-generation algorithm takes a security parameter λ and outputs a
public key that is used to prove and verify statements of the form (cf, cf′, t) claiming that M starting from
configuration cf reaches configuration cf′ after t steps. To prove a statement (cf0, cft, t) we start from from
the trivial statement (cf0, cf0, 0) and the empty proof Π0 = E which is always accepted. We then apply
the proof updating algorithm t times. The update algorithm takes an accepting proof Πi for the statement
(cf0, cfi, i) were i < T and produces an accepting proof Πi+1 for the next statement (cf0, cfi+1, i + 1).1

The computational soundness requirement states that no polynomial-size attacker can find an accepting
proof of a false statement with t ≤ T . For the IVC to be useful, we additionally need the scheme to satisfy an
efficiency requirement: the proof for a statement x = (cf, cf′, t) is of length poly(λ, log T ) (that is, essentially
independent of T ) and the time to update and verify proofs is |x| · poly(λ, log T ). One may also consider
weakly-efficient IVC where the proof length, as well as update and verification times are only required to be
sublinear (as opposed to poly-logarithmic) in T .

The notion of IVC can be seen as a strengthening of non-interactive delegation of computation (also
known as SNARGs for P). In delegation we require the same proof length and verification time requirements
as IVC. A delegation proof for a statement x = (cf, cf′, t) can be generated in time |x| · poly(λ, T ). However,
in contrast to IVC, delegation proofs may not be updated.

IVC, on top of being a fascinating notion in its own right, has several applications to delegation:

• Delegating computation with transferable intermediate proofs: Consider a client that out-
sourcing a long computation to an untrusted server. Using delegation, the client can make sure that
final result is correct. However, if the the server does not perform the computation correctly, the client
may only realize this once the computation is over. Instead, using IVC, the client can ask the server to
provide the current state of the computation together with a proof of correctness at any point during
the computation. If at some point the client detects cheating, or if the cloud is unable to continue the
computation, the client can hire another server to continue the verifiable computation from its most
recent verified state

• Time and Space-preserving delegation: While delegation schemes enable fast verification, the
prover typically has significant computational overhead. In particular, in existing solutions based
on standard assumption [KPY19, CJJ21, WW22] both the time and the space of the prover grow
polynomially with running time of the original computation. This is the case even if the original
computation requires small space. Ideally we would like a delegation scheme that preserves both
the time and space complexity of the original computation up to quasi-linear overhead. While such
efficient arguments have been the focus of recent work, existing solutions either have heuristic security
[BC12, BCCT13, BHR+21], or are restricted to the designated-verifier setting [HR18].2 An IVC
directly enables proving the correctness of a time-T space-S computation in time T · poly(λ, log T )
and space poly(λ, S, log T ).

As we shall discuss below, however, known construction of IVC are either based on heuristics, non-
falsifiable assumptions (so-called knowledge-extraction assumptions) or only achieve weak efficiency.

1We typically require the update algorithm to work for any accepting proof, even adversarially generated ones.
This means that given any accepting proof for some partial computation, we are not only guaranteed that the current
state is correct, but also that we can continue to update the state and its proof.

2In designated-verifier delegation, the public key is generated together with a secret key that is required to verify
proofs.
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IVC from proof merging. Valiant’s original work proposed an approach for constructing IVC based
on proof merging: Assume that we are given a proof Π1 for the statement (cf, cf′, t1) and another proof Π2
for the statement (cf′, cf′′, t2). Can we efficiently (in time that is independent of t1, t2) “merge” them into a
single proof for the statement (cf, cf′′, t1 + t2) that is roughly the same length as each of the original proofs?
As observed by Valiant, proofs of length poly(λ, log T ) that can be recursively merged log T times imply
IVC. The idea is to incrementally construct a proof for each step of the computation as it is executed and
merge the proofs into a single proof in the form of a binary tree. (Or, if the computation time t is not a
power of two, into at most log t proofs.)

IVC under non-falsifiable assumptions. Valiant showed how to instantiate this approach and
construct IVC and mergeable proofs, albeit, under a highly non-standard assumption: the existence succinct
non-interactive arguments of knowledge for NP (SNARKs) such that for any attacker A of size ≤ λlog T

there exists a knowledge extractor of linear size |A| ·poly(λ). All known SNARK constructions are based on
non-falsifiable so-called extractability/knowledge assumptions or heuristic assumptions such as Fiat-Shamir
and are subject to strong limitations [BCPR14, BP15]. Currently, we do not know of any candidate SNARK
construction with an explicit extractor, let alone a linear one.

To relax the knowledge extraction assumption, Bitansky et al. [BCCT13] showed that by merging proofs
according to a tree of fan-out λ instead of a binary tree, we can reduce the depth of the “merge tree” to
logλ T instead of log T . This gives IVC for any bound T = poly(λ) based on SNARKs with a polynomial-
size (as opposed to linear-size) knowledge extractor. Assuming SNARKs with sub-exponential security, their
construction gives IVC for T = λo(log λ). A recent line of work [BCMS20, BCL+21, BDFG21] obtained IVC
without relying directly on SNARKs, however, the assumptions underlying their constructions are known to
imply SNARKS. Accordingly, they suffer from the same drawbacks and are subject to the same limitations
as previous IVC constructions.

Weakly-efficient IVC under falsifiable assumptions. The work of Kalai, Paneth and Yang
(KPY) [KPY19] provides the first non-trivial IVC scheme from a falsifiable assumptions on bilinear groups.
Their scheme, however, only satisfies weak efficiency with proofs of length 2

√
O(log T ·log λ). Their IVC is based

on a weak form a proof merging where many proofs are merged in one shot, and the merged proof is longer
than the original proof by a factor of poly(λ). To achieve sub-linear proof size, proofs must be merged in a
tree of fan-out > λ.

Summarizing, to date, known IVC constructions require either non-falsifiable knowledge-extraction as-
sumptions or heuristics, while weakly-efficient IVC is known under falsifiable assumptions. The state of the
art thus leaves open the following question:

Is IVC possible under standard/falsifiable hardness assumptions?
In this work, we resolve this question by presenting an IVC scheme assuming polynomial hardness of the
LWE assumption.

1.1 Our results
Our main result is a new delegation scheme that enables merging poly(λ) many proofs into a single proof, by
recursively merging pairs of proofs in a binary tree of depth O(log(λ)). Our delegation scheme is for RAM
computations (which implies delegation also for Turing machines).

Theorem 1.1 (Mergeable Delegation from LWE). Assuming the LWE assumption holds, there exists a
mergeable delegation scheme for RAM computations.

Previously, proof systems that can be merged with such efficiently were only known based on non-
falsifiable extractability/knowledge assumptions or heuristics. Following [Val08], any such a mergeable del-
egation scheme can be turned into an IVC scheme. This yields the first IVC scheme under any falsifiable
assumption.
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Theorem 1.2. [IVC from LWE] Assuming the LWE assumption holds, there exists an IVC for any time
bound T = poly(λ).

More generally, for any T = T (λ), we get IVC for bound T (λ) under the T -hardness of LWE. This gives
the first IVC scheme with for quasi-polynomial (or larger) time bound T under any assumption other than
Valiant’s SNARKs with linear-size knowledge extractor. In particular, by setting λ = polylog(T ) and relying
on the sub-exponential hardness of LWE we can get IVC with proofs of length polylog T .

Finally, as observed above, any IVC scheme directly implies a time- and space-preserving delegation
scheme, and as such we also get the first space-preserving delegation scheme under falsifiable assumptions.

Theorem 1.3 (Time and Space-Preserving Delegation from LWE). For any T = T (λ), as assuming the
LWE problem is hard for algorithms of size poly(T ), there exists an non-interactive delegation scheme where
proving a time-T space-S computation, the prover requires time T · poly(λ), and space poly(λ, S, log T ).

In fact, our theorem is stronger than stated. By directly using our the construction of Theorem 1.2 that
works in the RAM model, we get time and space preserving delegation for RAM programs and, furthermore,
the space complexity of the prover becomes linear, i.e. S · poly(λ, log T ).

Rate-1 batch arguments for NP. Our main tool in constructing mergeable delegation scheme is a
new non-interactive argument for conjunctions of NP statements. Given k NP statements with witnesses
of length m we can give a computationally sound proof of length m + O(m/λ) + poly(λ, log k) for their
conjunction. This is a strengthening of the notion of batch arguments for NP [BHK17] where the proof
is of length poly(λ, m, log k). Therefore, our arguments can be viewed as batch arguments with rate (the
ratio between the witness length and the proof length) approaching 1. In contrast to plain batch arguments,
where we must batch together many NP statements to achieve non-trivial efficiency, rate-1 batch arguments
are useful even for two statements. Another important feature of rate-1 batch arguments is that they can
be composed together recursively for a super-constant number of times without blowing up the proof size.

We note that in adaptive setting where the NP statements can be chosen by the adversary as a function
of the public key, batch arguments (with any non-trivial rate) satisfying the standard notion of knowledge
soundness are subject to strong limitations [BHK17]. Therefore, our arguments satisfy the relaxed notion of
somewhere argument of knowledge for adaptively chosen statements introduced in [CJJ21]. This notion is
sufficient for our application to mergeable arguments. (See the technical overview for more details.)

We show how to leverage the rate-1 FHE construction of Brakerski et al. [BDGM19] together with the
recent construction of (plain) batch arguments of Choudhuri, Jain and Jin [CJJ21] (both based on LWE) to
construct rate-1 batch arguments.

Theorem 1.4. Assuming the LWE assumption holds, there exist rate-1 batch arguments for NP.

On the Hardness Assumptions. Although above, we have stated our results based on LWE, as we
explain in more detail below, all our results only rely on the existence of two primitives: (1) somewhere-
extractable hash functions (SEH) [HW15, CJJ21], and (2) standard batch arguments (i.e., not necessarily
rate-1).3 As noted above, these primitives are implied by LWE [HW15, CJJ21], which concludes the above
theorems. We remark that future works [KLVW23] show how to also instantiate primitives (1) and (2) using
other assumptions (e.g., DLIN or subexponential DDH); by relying on these results, we thus get all the above
results also from those assumptions.

1.2 Technical Overview
We first elaborate on the construction of rate-1 batch arguments which is our main technical contribution.
In Section 1.2.2 we describe the construction of mergeable proofs and IVC from from rate-1 batch batch
arguments.

3We rely also on RAM delegation, however, as shown in [CJJ21], this primitive is implied by (1) and (2).
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1.2.1 Rate-1 batch arguments
Our construction is based on standard batch arguments with arbitrary rate. Recall that a batch argument
proves the conjunction of k NP statements x1, . . . xk with a proof of length poly(λ, m, log k) where m is the
size of one witness. In fact, we rely on a stronger notion known as batch arguments for the index language
[CJJ21] were each statements xi is simply the index i. In more detail, in a batch argument for the index
language the prover and verifier are given the NP verification machine M that takes the statement i ∈ [k]
and a witness wi. The prover is also given witnesses w1, . . . , wk such thatM(i, wi) accepts for every i ∈ [k].
The batch argument verifier runs in time |M| · poly(λ, m, log k).4

The notion of soundness we require is somewhere argument of knowledge for adaptively chosen statements
[CJJ21]. Roughly speaking, the requirement is that we can generate a programmed public key for the
statement i together with a corresponding secret key such that the programmed public key is indistinguishable
from an honestly generated public key (in particular, it hides i). Moreover, for every efficient adversary, if,
given the programmed public key, the adversary produces an NP verification machine M together with an
accepting proof Π, then, given the secret key, we can extract a witness w from Π such that M(i, w) = 1
with overwhelming probability. Batch arguments for the index language satisfing somewhere argument of
knowledge for adaptively chosen statements were constructed in [CJJ21] based on the hardness of LWE.

Our approach. To construct rate-1 batch arguments, our high-level idea is as follows. Given an NP
verification machine M, and given witnesses w1, . . . , wk ∈ {0, 1}m, we splits each statement i ∈ [k] into
n ≤ m statements, each with a short witness. We then prove all k ·n statements together with a single batch
argument. In more detail, we define a new NP verification machine M̃ for k · n statements indexed by pairs
(i, j) ∈ [k] × [n] such that the witness w̃i

j for the statement (i, j) is of length poly(λ) (independent of m).
Therefore, a batch argument for M̃ has proof of length poly(λ, log k).

To split the statement i ∈ [k], we first split the witness wi into n blocks wi = (wi
1, . . . , wi

n) each of length
ℓ = m/n. Then, we emulate the execution of M(i, wi) in a sequence of n intervals implemented by RAM
machines Ri

1, . . . ,Ri
n executed sequentially, with each machine starting from the final configuration of the

previously executed machine. For every j ∈ [n], the machine Ri
j has the witness block wi

j hard-coded. For
j < n the machine Ri

j writes wi
j to memory and terminates. The final machine Ri

n writes the final witness
block wi

n to memory and then, once the entire witness wi is in memory, it emulates M(i, wi) and accepts
if and only if M accepts. Let cfi

0 be the starting configuration of Ri
1 and for j ∈ [n], let cfi

j be the final
configuration of Ri

j .

Shrinking the sub-statements with RAM delegation. Note that we cannot simply include
the configuration cfi

j as part of the witness w̃i
j since it is too long (recall that w̃i

j should be of length
poly(λ) independent of m). Therefore, we instead verify the computation of each interval using a delegation
scheme for RAM machines. Such delegation scheme allows us to verify that the machine Ri

j transitions
from configuration cfi

j−1 to cfi
j without knowing the (potentially long) configurations. Instead, to verify the

delegation proof we only need to know the short digests hi
j−1, hi

j of cfi
j−1, cfi

j respectively. The length of the
delegation proof is poly(λ) and the verification time is |Ri

j | ·poly(λ). The soundness of the delegation scheme
states that an efficient adversary cannot produce configurations cfi

j−1, cfi
j together with digests hi

j−1, h̃i
j and

an accepting proof Πi
j such that Ri

j transitions from cfi
j−1 to cfi

j−1 and hi
j−1 is the digest of cfi

j−1, but h̃i
j is

not the digest of cfi
j .

We proceed to describe a simplified version of the NP verification machine M̃ and witness w̃i
j : For every

(i, j) ∈ [k] × [0, n] we compute the digest hi
j of the configuration cfi

j as above, and generate a delegation
proof Πi

j that the machine Ri
j transitions from cfi

j−1 to cfi
j . We then compute a hash tree over the k · (n+1)

pairs
{

yi
j = (wi

j , hi
j)

}
(we set wi

0 = ⊥) and hard-code the root h of the tree into M̃. The witness w̃i
j contains

4Batch arguments for the index language imply standard batch arguments by considering a verification machine
M that has the instances x1, . . . xk hard-coded in it.
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the pairs yi
j−i, yi

j , their authentication paths to h, and the delegation proof Πi
j . To verify w̃i

j , the machine
M̃ checks that the authentication paths are valid and that the delegation proof for the machine Ri

j (with
wi

j hard-coded) and the digests hi
j−1, hi

j is accepting. If j = 1 (resp. j = n), M̃ also checks that hi
0 (resp.

hi
n) is the digest of the starting (resp. accepting) configuration.5

Towards somewhere argument of knowledge. If we simply use the underlying batch argument
for M̃ as a batch argument for M we cannot prove that it satisfies the somewhere argument of knowledge
property. Recall that to prove somewhere argument of knowledge we must be able to program the public
key and extract a complete witness wi for M(i) from any accepting proof. However, the underlying batch
argument for M̃ only lets us extract one short witness w̃i

j . We may try to execute the adversary with different
public keys and extract w̃i

j for each j ∈ [n]. However, since the adversary may choose M̃ adaptively, it may
contain a different root h in each execution and, therefore, the extracted witness blocks may not be consistent.

To resolve this, we add to the proof a separate mechanism for extracting wi based on the notion of
somewhere extractable hashing [HW15, CJJ21]. A somewhere extractable hash is a collision resistant hash
that can shrinks k blocks y1, . . . , yk into a single root h and supports local opening. Additionally, in a
somewhere extractable hash we can generate a programmed hash key for any index i (that is indistinguishable
from an honestly generated key) together with a corresponding secret key that can be used to efficiently
extract the block yi from the root h. In fact, even if the root h is generated adversarially, as long as there
exists a valid authentication path from yi to h, we can extract yi from h.

We modify the construction of M̃ as follows: Instead of computing a hash tree directly over the k ·n pairs{
yi

j = (wi
j , hi

j)
}

, we compute the hash in two stages. First, for every j ∈ [n], we use a somewhere extractable
hash to compute a hash tree over the k pairs y1

j , . . . , yk
j and obtain a root hj . Then we compute a (standard)

hash tree over the n roots h1, . . . , hn and hard-code the root h into M̃. The witness w̃i
j is unchanged except

that we replace the direct authentication path from yi
j to h with two paths: one from yi

j to hj and one from
hj to h (and similarly for yi

j−i).
The final batch argument for M consist of the underlying batch argument for M̃ together with the the

n roots {hj}. To verify, the batch argument for M, we check that the underlying batch argument for M̃ is
accepting and that the root h hard-codded in M̃ is indeed the hash of h1, . . . , hn.

To get a rate-1 proof, the somewhere extractable hash we use must also have good rate. We observe
that instantiating the hash construction of [HW15] based on FHE, with the rate-1 FHE of [BDGM19] gives
a somewhere extractable hash where each root hj is of length ℓ + O(ℓ/λ) (assuming that the block length ℓ
is a sufficiently large polynomial in λ) and therefore the length of all n roots together is m + O(m/λ).

Ensuring consistency. Our final step is to modify the NP verification machine M̃ to check that
the witness encoded in the machines Ri

1, . . . ,Ri
n is the same witness extracted from the roots h1, . . . , hn.

Otherwise, there is no guarantee that the extracted witness is a valid. The idea is to change the way we
compute the root h hard-codded in M̃. Instead of computing a hash tree directly over the k · n pairs{

yi
j = (wi

j , hi
j)

}
, we compute a hash tree over the n roots h1, . . . , hn (recall that each hj is itself the root of a

hash tree over the the k pairs
{

yi
j

}
using a somewhere extractable hash) and set h to be its root. Moreover,

instead of a direct authentication path from yi
j to h, we give two paths: one from yi

j to hj and one from hj

to h. Finally, to verify the batch argument for M, we check that the underlying batch argument for M̃ is
accepting and that the root h hard-codded in M̃ is indeed the hash of h1, . . . , hn.

The proof of security. We argue that our final construction satisfies the somewhere argument knowl-
edge property: To extract a witness for the statement i ∈ [k], we program the somewhere extractable hash
key and for every j ∈ [n], we extract ȳi

j = (w̄i
j , h̄i

j) from the root hj . We condition on the event that the
batch argument proof forM is accepting and we show that the extracted witness w̄i = (w̄i

1, . . . , w̄i
n) must be

valid with overwhelming probability. To this end, we emulate the machines Ri
1, . . . ,Ri

n with the hard-coded
5Assume WLOG that Ri

n clears its memory before accepting and, therefore, it has a unique accepting configuration.
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witness blocks w̄i
1, . . . , w̄i

n and obtain the configurations c̄fi

0, . . . , c̄fi

n. We say that the digest h̄i
j extracted

from hj is “good” if it is indeed the digest of c̄fi

j . Below we argue that for every j ∈ [n], h̄i
j is good with

overwhelming probability. However, before proving that, we show that assuming all digests h̄i
j are good, the

witness w̄i must be valid.
To show that w̄i is valid, consider an experiment where we program the public key of the underlying

batch argument and extract the witness w̃i
n. Since the programmed public key is indistinguishable from the

real key (even when extracting from the somewhere extractable hash) we still have that h̄i
n is good with

overwhelming probability. Recall the witness w̃i
n contains the pair yi

n = (wi
n, hi

n) and its authentication path
to h. We have that with overwhelming probability M̃ accepts w̃i

j and, therefore, the authentication path is
valid and hi

n is the digest of the accepting configuration of Ri
n. By collision resistance and the extraction

guarantee of the somewhere extractable hash, we have that h̄i
n = hi

n. Since h̄i
n is good and, again, using

collision resistance, we have that c̄fi

n must be the accepting configuration of Ri
n and, thus, w̄i is valid.

It remains to argue that for every j ∈ [n], h̄i
j is good with overwhelming probability. For j = 0, h̄i

0
is good by definition. If for some j > 1, h̄i

j−1 is good but h̄i
j is not with noticeable probability, then we

break the soundness of the delegation scheme as follows. First, we program the public key of the underlying
batch argument and extract the witness w̃i

j . Since the programmed public key is indistinguishable from
the real key (even when extracting from the somewhere extractable hash) we still have that h̄i

j−1 is good
but h̄i

j is not with noticeable probability. Recall the witness w̃i
j contains the pairs yi

j−i = (wi
j−1, hi

j−1) and
yi

j = (wi
j , hi

j), their authentication paths to h, and the delegation proof Πi
j . We have that M̃ accepts w̃i

j with
overwhelming probability and, therefore, the authentication paths and the delegation proof are all valid. By
collision resistance and the extraction guarantee of the somewhere extractable hash we have that ȳi

j−1 = yi
j−1

and ȳi
j = yi

j , thus to break the soundness of the delegation scheme for the machine Ri
j with w̄i

j hard-coded,
we produce the configurations c̄fi

j−1, c̄fi

j , the digests h̄i
j−1, h̄i

j and the proof Πi
j .

1.2.2 Mergeable proofs and IVC
We overview our construction of mergeable delegation for RAM machines based on rate-1 batch arguments.
Recall that in delegation for a RAM machines, we can verify that a RAM machine R transitions from
configuration cf to cf′ in t steps without knowing the (potentially long) configurations. Instead, the verifier
is only given access to the short digests h, h′ of cf, cf′ respectively. Soundness states that an efficient adversary
cannot produce (cf, cf′, t) such thatR transitions from cf to cf′ in t steps, together with a “hashed statement”
(h, h′, t) and an accepting proof Π such that h is indeed the digest of cf, but h′ is not the digest of cf′. We
note that delegation for RAM implies delegation for Turing machines since the verifier can compute the
digests of the configurations in the statement itself.

The high-level idea behind out construction is as follows. Given two accepting proofs Π1, Π2 under some
public key pk for the hashed statements x1 = (h, h′, t1) and x2 = (h′, h′′, t2) respectively, we merge them into
a single proof Π for (h, h′′, t1 + t2). The proof Π contains both statements x1, x2 as well as a batch argument
for the following NP verification machineM with k = 2. The machineM has the hashed statements x1, x2,
the public key pk and the code of the RAM machine R hard-coded. Given an index i ∈ [2] and a witness Πi,
the machineM checks that the original delegation verifier given the public key pk, the RAM machine R and
the hashed statement xi accepts the proof Πi. We verify a merged proof Π for a hashed statement (h, h′, t)
as follows. The proof Π contains a pair of instances x1, x2 where xi = (hi, h′i, ti) and a batch argument proof.
We first verify that the hashed statements are indeed of the correct form. That is, (h1, h′2, t1 + t2) = (h, h′, t)
and h′1 = h2. Then, we accept if and only if the batch argument proof for the machine M hard-coded with
the hashed statements x1, x2 (as well as pk and R) is accepting.

The proof of security. To argue the soundness of the merged proof, consider an adversary that cheats
with noticeable probability ϵ. That is, the adversary outputs a true statement (cf, cf′′, t), a hashed statement
(h, h′′, t) and an accepting merged proof Π such that h is the digest of cf, but h′′ is not the digest of cf′′. Let
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x1, x2 be the hashed statements contained in the proof. If the proof is accepting these statements must be
of the form x1 = (h, h′, t1) and x2 = (h′, h′′, t2) where t1 + t2 = t. Let cf′ be the configuration that follows t1
steps after cf and let h̃′ be its digest. Conditioned on the adversary cheating, we have that either h′ = h̃′ or
h′ ̸= h̃′ must hold with probability at least 1/2. Say that the adversary cheats and h′ ̸= h̃′ with probability
≥ ϵ/2 (the proof in the other case is similar). To break the underlying delegation scheme we run the
adversary with a programmed public key and extract the witness Π1 for i = 1. Since the programmed public
key is indistinguishable from an honestly generated one, the event that the adversary cheats and h̃′ ̸= h̃′
still occurs with roughly the same probability ≥ ϵ/2. By the somewhere argument of knowledge property, if
the batch argument proof in Π is accepting, then M(1, Π1) accepts with all but negligible probability and,
therefore, Π1 is an accepting proof for the hashed statement x1. To break the the underlying delegation
scheme we output the true statement (cf, cf′, t1), the hashed statement x1 = (h, h′, t1) where h′ ̸= h̃′ and
the accepting proof Π1. Similarly, if h̃′ = h̃′ with probability at least ϵ/2, we program the batch argument
public key, extract the witness Π2. To break the underlying delegation scheme we output the true statement
(cf′, cf′′, t2), the hashed statement x2 = (h′, h′′, t1) where h′ = h̃′ and the accepting proof Π2.

Recursive merging. Since we are using rate-1 batch arguments, we can marge proofs recursively with
the proof length the proof growing from m to m + O(m/λ) + poly(λ) in each level. Therefore, we can
recursively merge proofs O(λ) times while keeping the length of the merged proofs bounded by poly(λ).
However, to prove soundness of recursively merged proofs we apply the argument above inductively, halving
the adversary’s advantage with each level. Therefore, to ensure that the advantage remains noticeable we
must bound the depth of nested proofs to be logarithmic or, more generally, log T assuming T -hardness.
This allows us to marge T proofs and, therefore, it is sufficient for constructing IVC for bound T .

IVC from mergeable delegation. The construction of IVC from mergeable delegation follows the
outline of [Val08]. The high-level idea is as follows. Given a statement (cf, cf′, t) we split it into d ≤ log t
consecutive statements

{
(cfi, cfi+1, ti = 2ℓi) ∈ TM

}
i∈[d−1] such that (cf1, cfd) = (cf, cf′) and for every i,

ℓi > ℓi+1. The proof Π for (cf, cf′, t) consist of one mergeable delegation proof for each of the d segments,
where the proof for the i-th segment is of level ℓi. To increment the proof Π by one step we create a new
level-0 proof for the statement (cf′, cf′′, 1) and append it to Π. If Π contains two proofs of the same level ℓ
we merge them into a single proof of level ℓ + 1 (note that such proofs will always be for two consecutive
statements) . We repeat this merging operation until Π no longer contains two proof of the same level and
it is a valid proof for the statement (cf, cf′′, t + 1).

2 Preliminaries
For a deterministic Turing machineM, let UM be the language that contains (x, t) if and only if the machine
M accepts x in t steps. A deterministic RAM machine R with a word size of λ has random access to memory
of size 2λ bits and a local state of size O(λ). At every step, the machine reads or writes a single memory bit
and updates its state. For a Turing or RAM machineM, we refer to the machine’s state and the content of
its memory/tapes at a given timestep as its configuration. Let TM be the language that contains (cf, cf′, t)
if and only if the machine M starting from configuration cf transitions to configuration cf′ in t steps.

2.1 Incrementally Verifiable Computation
In this section we define incrementally verifiable computation scheme for deterministic Turing machines.
The definition is adapted from [KPY19].

An incrementally verifiable computation scheme for deterministic Turing machines consists of algorithms
(G, U, V) with the following syntax:

G: The randomized setup algorithm takes as input a security parameter λ ∈ N. It outputs a public key pk.
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U: The deterministic update algorithm takes as input the public key pk, a machineM, a statement (cf, cf′, t)
and a proof Π. It outputs a proof Π′.

V: The deterministic verifier algorithm takes as input the public key pk, a machineM, a statement (cf, cf′, t)
and a proof Π. It outputs an acceptance bit.

Definition 2.1. A T (·)-secure incrementally verifiable computation scheme for deterministic Turing ma-
chines satisfies the following requirements:

Incremental Completeness. For every λ ∈ N and machine M:

• For every configuration cf:

Pr
[

pk← G(λ) : V(pk,M, (cf, cf, 0), E) = 1
]

= 1 .

• For every t < 2λ, pair of statements x, x′ ∈ TM of the form x = (cf, cf′, t) and x′ = (cf, cf′′, t+1)
and a proof Π:

Pr
[

pk← G(λ)
Π′ ← U(pk,M, x, Π) : V(pk,M, x, Π) = 1

V(pk,M, x′, Π′) = 0

]
= 0 .

Efficiency. In the incremental completeness experiments above:

• The generation algorithm runs in time poly(λ).
• The verifier algorithm runs in time (|M|+ |x|) · poly(λ).
• The update algorithm runs in time poly(λ, |M|, |x|).

T (·)-Soundness. For every poly(T (λ))-size adversary Adv, there exists a negligible function µ such that for
every λ ∈ N:

Pr

 pk← G(λ)
(M, x = (cf, cf′, t), Π)← Adv(pk) :

t ≤ T (λ)
V(pk,M, x, Π) = 1
x /∈ TM

 ≤ µ(T (λ)) .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

2.2 RAM delegation
In this section, we define non-interactive delegation for RAM. The definition is a strengthening of the
definition in [KPY19] (see discussion following Theorem 2.3). In a RAM delegation scheme, the prover
convinces the verifier of a statement of the form (cf, cf′, t) ∈ TR. Since the configurations might be long, the
verifier only needs to know a hashed down version of the statement (h, h′, t) where h, h′ are short digests of
cf, cf′ respectively.

A non-interactive delegation scheme for RAM consists of algorithms (G, H, P, V) with the following syntax:

G: The randomized setup algorithm takes as input a security parameter λ ∈ N. It outputs a public key pk.

H: The deterministic digest algorithm takes as input the public key pk and a configuration cf ∈ {0, 1}∗. It
outputs a digest h.

P: The deterministic prover algorithm takes as input the public key pk, a RAM machine R and a statement
(cf, cf′, t). It outputs a proof Π.

V: The deterministic verifier algorithm takes as input the public key pk, a RAM machine R, a hashed
statement (h, h′, t) and a proof Π. It outputs an acceptance bit.
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Definition 2.2. A T (·)-secure non-interactive delegation scheme for RAM satisfies the following require-
ments.

Completeness. For every λ ∈ N, RAM machine R, t ∈ [2λ] and statement (cf, cf′, t) ∈ TR we have that:

Pr


pk← G(λ)
h← H(pk, cf)
h′ ← H(pk, cf′)
Π← P(pk,R, (cf, cf′, t))

: V(pk,R, (h, h′, t), Π) = 1

 = 1 .

Efficiency. In the completeness experiment above:

• The generation algorithm runs in time poly(λ).
• The digest algorithm on cf runs in time |cf| · poly(λ) and outputs a digest of length poly(λ).
• The prover algorithm runs run in time |R| · poly(λ, t) and outputs a proof of length poly(λ).
• The verifier algorithm runs in time |R| · poly(λ).6

T (·)-Collision Resistance. For every poly(T (λ))-size adversary Adv, there exists a negligible function µ
such that for every λ ∈ N:

Pr
[

pk← G(λ)
(cf, cf′)← Adv(pk) : cf ̸= cf′

H(pk, cf) = H(pk, cf′)

]
≤ µ(T (λ)) .

T (·)-Soundness. For every poly(T (λ))-size adversary Adv, there exists a negligible function µ such that for
every λ ∈ N:

Pr

 pk← G(λ)
(R, cf, cf′, h, h′, t, Π)← Adv(pk) :

t ≤ T (λ)
V(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H(pk, cf)
h′ ̸= H(pk, cf′)

 ≤ µ(T (λ)) .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

Theorem 2.3 ([CJJ21]). Assuming the LWE problem is T (·)-hard, there exists a T (·)-secure non-interactive
delegation scheme for RAM.

We remark that the notion of RAM delegation considered in [CJJ21] is slightly weaker than the notion
in Definition 2.2. We explain how to modify the [CJJ21] construction to obtain our notion:

• In [CJJ21], the RAM machine R is fixed while in our notion the prover and verifier are given the
description of R. We can realize this by using the scheme of [CJJ21] for the universal machine and
encoding the description of R as part of the machine’s configuration.

• In [CJJ21], the setup algorithm is given the time t for the statement proven while in our notion the
prover and verifier are given t as part of the statement. We can realize this by using λ copies the
scheme of [CJJ21]: for every i ∈ [λ] we generate a public key for time 2i. To prove a statement with
time t, we divide the t execution steps into at most λ segments, each of length that is a power of two.
The proof contains each of the segments and its proof under one of the public keys.

• While [CJJ21] only argue polynomial security of their scheme, it is straightforward to extend their
proof to show T (·)-security under the T (·)-hardness of LWE.

6The definition only bounds the verification time of honestly generated proofs. We can assume WLOG that the
same bound holds also for maliciously generated proofs by capping the verifier execution time.
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2.3 Tree Hash
A tree hash consist of algorithms (G, H, V) with the following syntax:

G: The randomized generation algorithm takes as input the security parameter λ. It outputs a public key
pk.

H: The deterministic hashing algorithm takes as input the public key pk and messages x1, . . . , xk ∈ {0, 1}ℓ.
It outputs a hash h and opening Π1, . . . , Πk.

V: The deterministic verification algorithm takes as input the public key pk, a hash h, a message x ∈ {0, 1}ℓ,
an index i ∈ [k] and a proof Π. It outputs an acceptance bit.

Definition 2.4. A T (·)-secure tree hash satisfies the following requirements:

Completeness. For every λ ∈ N, k ≤ 2λ, messages x1, . . . , xk ∈ {0, 1}ℓ and index i ∈ [k]:

Pr
[

pk← G(λ)
(h, (Π1, . . . , Πk))← H(pk, (x1, . . . , xk)) : V(pk, h, xi, i, Πi) = 1

]
= 1 .

Efficiency. In the completeness experiment above:

• The generation algorithm runs in time poly(λ).
• The hashing algorithm runs in polynomial time in its input length and outputs a hash of length

poly(λ).
• The verification algorithm runs in time ℓ · poly(λ).

T (·)-Collision Resistance. For every poly(T (λ))-size adversary Adv there exists a negligible function µ
such that for every λ ∈ N:

Pr

 pk← G(λ)
(h, x, x′, i, Π, Π′)← Adv(pk) :

x ̸= x′

V(pk, h, x, i, Π) = 1
V(pk, h, x′, i, Π′) = 1

 ≤ µ(T (λ)) .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

Theorem 2.5 ([Mer87, Ajt96, GGH11]). Assuming the LWE problem is T (·)-hard, there exists a T (·)-secure
tree hash.

2.4 Somewhere Extractable Hash
In this section, we define somewhere extractable hash. The definition is a strengthening of the definition in
[CJJ21] restricted to the case when the set of “binding coordinates” is of size 1. We explicitly define the hash
to operate on long strings (rather than on bits as in [CJJ21]) to enable rate-1 constructions. A somewhere
extractable hash consist of algorithms (G, T, H, V, E) with the following syntax:

G: The randomized generation algorithm takes as input the security parameter λ. It outputs a public key
pk.

T: The randomized trapdoor generation algorithm takes as input the security parameter λ and an index
i ∈ N. It outputs a public key pk and a secret key sk.

H: The deterministic hashing algorithm takes as input the public key pk and messages x1, . . . , xk ∈ {0, 1}ℓ.
It outputs a hash h and openings Π1, . . . , Πk.

V: The deterministic verification algorithm takes as input the public key pk, a hash h, a message x ∈ {0, 1}ℓ,
an index i ∈ [k] and a proof Π. It outputs an acceptance bit.
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E: The deterministic extraction algorithm takes as input the secret key sk and a hash h. It outputs a message
x ∈ {0, 1}ℓ.

Definition 2.6. A T (·)-secure somewhere extractable hash satisfies the following requirements:

Completeness. For every λ ∈ N, k ≤ 2λ, messages x1, . . . , xk ∈ {0, 1}ℓ and index i ∈ [k]:

Pr
[

pk← G(λ)
(h, (Π1, . . . , Πk))← H(pk, (x1, . . . , xk)) : V(pk, h, xi, i, Πi) = 1

]
= 1 .

Efficiency. In the completeness experiment above:

• The generation, trapdoor generation and verification algorithms run in time ℓ · poly(λ).7

• The hashing and extraction algorithms run in polynomial time in their input length.
• We defined the additive overhead, α(λ, ℓ), of the scheme as |h| − ℓ.

T (·)-Key Indistinguishability. For every poly(T (λ))-size adversary Adv there exists a negligible function
µ such that for every λ ∈ N and index i ≤ 2λ:∣∣∣∣ Pr [pk← G(λ) : Adv(pk) = 1]

−Pr [(pk, sk)← T(λ, i) : Adv(pk) = 1]

∣∣∣∣ ≤ µ(T (λ)) .

Extraction. For every λ ∈ N, hash h, message x ∈ {0, 1}ℓ, index i ∈ [2λ] and opening Π:

Pr
[

(pk, sk)← T(λ, i)
x∗ ← E(sk, h) : V(pk, h, x, i, Π) = 1

x ̸= x∗

]
= 0 .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

Under the hardness of the LWE problem, we can construct a rate-1 somewhere extractable hash by
instantiating the construction of [HW15] based on rate-1 FHE [BDGM19].

Theorem 2.7. Assuming the LWE problem is T (·)-hard, there exists a T (·)-secure somewhere-extractable
hash with additive overhead α(λ, ℓ) = ℓ

λ + poly(λ).

Proof sketch. As shown in [BDGM19], assuming the LWE problem is T (·)-hard, there exists an FHE scheme
that enables encrypting a message of length ℓ = poly(λ) (for sufficiently large ℓ) into a ciphertext of length
ℓ + ℓ

λ . We next observe that the construction of somewhere extractable hash from [HW15, CJJ21] the hash
value is simply an FHE ciphertext encrypting one of the message hashed. If employing the rate-1 FHE from
[BDGM19], the construction will satisfy the desired additive overhead requirement.

2.5 Batch Arguments
In this section, we define non-interactive batch arguments for the index language. The definition is a
strengthening of the definition in [CJJ21] (see discussion following Theorem 2.9).

A non-interactive batch argument for the index language consist of algorithms (G, T, P, V, E) with the
following syntax:
G: The randomized generation algorithm takes as input the security parameter λ and the witness length m.

It outputs a public key pk.
T: The randomized trapdoor generation algorithm takes as input the security parameter λ, the witness

length m and an index i ∈ N. It outputs a public key pk and a secret key sk.
7The definition only bounds the verification time of honestly generated hash and opening. We can assume WLOG

that the same bound holds also for maliciously generated hash and opening by capping the verifier execution time.
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P: The deterministic prover algorithm takes as input the public key pk, a machine M and witnesses
w1, . . . , wk ∈ {0, 1}m. It outputs a proof Π.

V: The deterministic verifier algorithm takes as input the public key pk, a machine M, and a proof Π. It
outputs an acceptance bit.

E: The deterministic extraction algorithm takes as input the secret key sk and a proof Π. It outputs a
witness w ∈ {0, 1}m.

If the generation and trapdoor generation algorithms do not require m, we say that the batch argument
has unbounded witness length and omit m from the algorithms input.

Definition 2.8. A T (·)-secure non-interactive batch argument for the index language satisfies the following
requirements:

Completeness. For every λ ∈ N, k, m, t ≤ 2λ, machine M and witnesses w1, . . . , wk ∈ {0, 1}m such that
for every i ∈ [k]: ((i, wi), t) ∈ UM we have that:

Pr
[

pk← G(λ, m)
Π← P(pk,M, (w1, . . . , wk)) : V(pk,M, Π) = 1

]
= 1 .

Efficiency. In the completeness experiment above:

• The generation and trapdoor generation algorithms run in time poly(λ, m), or poly(λ) if the
argument has unbounded witness length.

• The prover algorithm runs in time |M| ·poly(λ, m, k, t) and outputs a proof of length poly(λ, m).
• The verification algorithm runs in time |M| · poly(λ, m).8

• The extraction algorithm runs in polynomial time in its input length.
• We defined the additive overhead, α(λ, ℓ), of the scheme as |Π| −m.

T (·)-Key Indistinguishability. For every poly(T (λ))-size adversary Adv and polynomial m(λ) there exists
a negligible function µ such that for every λ ∈ N and index i ≤ 2λ:∣∣∣∣ Pr [pk← G(λ, m) : Adv(pk) = 1]

−Pr [(pk, sk)← T(λ, m, i) : Adv(pk) = 1]

∣∣∣∣ ≤ µ(T (λ)) .

T (·)-Somewhere Argument of Knowledge. For every poly(T (λ))-size adversary Adv and polynomials
k(λ), m(λ), t(λ) there exists a negligible function µ such that for every λ ∈ N and index i ∈ [k]:

Pr

 (pk, sk)← T(λ, m, i)
(M, Π)← Adv(pk)
w ← E(sk, Π)

: V(pk,M, Π) = 1
((i, w), t) /∈ UM

 ≤ µ(T (λ)) .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

Theorem 2.9 ([CJJ21]). Assuming the LWE problem is T (·)-hard, there exist a T (·)-secure non-interactive
batch argument for the index language.

We remark that the notion of batch arguments defined in [CJJ21] is slightly different than the notion in
Definition 2.8. We explain how to modify the [CJJ21] construction to obtain our notion:

8The definition only bounds the verification time of honestly generated proofs. We can assume WLOG that the
same bound holds also for maliciously generated proofs by capping the verifier execution time.
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• In [CJJ21], the prover and verifier are given a circuit implementing the NP verification procedure and
the setup algorithm is given the size of this circuit. In our notion, the NP verification procedure is
given by a Turing machine and the setup algorithm is not given a bound on the size or running time
of the machine but only the witness length m. As discussed in [CJJ21, Section 6], this can be realized
by combining the notion of [CJJ21] with a RAM delegation scheme satisfying Definition 2.2. Such a
RAM delegation scheme is also known under the LWE assumption (see Theorem 2.3).

• In [CJJ21], the setup algorithm is given the number of statements k while in our notion the the
number of statements is not fixed ahead of time. We can realize this by using λ copies the scheme of
[CJJ21]: for every i ∈ [λ], we generate a public key for 2i statements. To prove k statements, divide
the statements into at most λ groups, each of size that is a power of two. The final proof contains, for
each group, a proof under one of the public keys. Here we use the fact that in the batch arguments of
[CJJ21], the setup time is poly-logarithmic in the number of statements.

• While [CJJ21] only argue polynomial security of their scheme, it is straightforward to extend their
proof to show T (·)-security under the T (·)-hardness of LWE.

3 Rate-1 Batch Arguments
In this section, we prove Theorem 3.1 giving batch arguments with unbounded witness length and small
additive overhead.

Theorem 3.1. Assume the existence of:

• A T (·)-secure non-interactive batch argument for the index language.

• A T (·)-secure somewhere extractable hash with additive overhead α(λ, ℓ) = ℓ
λ + poly(λ).

• A T (·)-secure non-interactive delegation scheme for RAM.

Then there exist a T (·)-secure non-interactive batch argument for the index language with unbounded witness
length and with additive overhead α(λ, m) = 3m

λ + poly(λ).

Construction. We construct a T (·)-secure, non-interactive batch argument (G′BA, T′BA, P′BA, V′BA, E′BA)
with additive overhead 3m

λ + poly(λ) using the following building blocks:

• A T (·)-secure non-interactive batch argument for the index language (GBA, TBA, PBA, VBA, EBA).

• A T (·)-secure somewhere extractable hash (GEH, TEH, HEH, VEH, EEH) with additive overhead ℓ
λ +Q1(λ)

for some polynomial Q1.

• A T (·)-secure non-interactive delegation scheme for RAM (GDL, HDL, PDL, VDL).

• A T (·)-secure tree hash (GTH, HTH, VTH) with hash of length Q2(λ) for some polynomial Q2.

We are given an NP verification machineM and a sequence of witnesses (w1, . . . , wk), each of length m.
Let t be the running time ofM on each witness. We first split each witness wi into n blocks wi = (wi

1, . . . , wi
n)

where each block is of length ℓ = m/n. For every i ∈ [k], we define a computation checking that ((i, wi), t) ∈
UM. The computation is made of a sequence of n intervals implemented by RAM machines Ri

1, . . . ,Ri
n. We

run the machines sequentially on the same memory, that is, each machine starts from the final configuration
of the previous one. For every j ∈ [n], the machine Ri

j has the witness block wi
j hard-coded. For j < n the

machine Ri
j writes wi

j to memory and terminates. The final machine Ri
n writes the final witness block wi

n

to memory and then, once the entire witness wi is in memory, it emulates M(i, wi) for t steps and accepts
if and only if M accepts. Let cfi

0 be the starting configuration of Ri
1 and for j ∈ [n], let cfi

j be the final
configuration of Ri

j . Using a RAM delegation scheme we compute the digest hi
j of the configuration cfi

j and
generate a proof Πi

j that the machine Ri
j indeed transitions from cfi

j−1 to cfi
j . Therefore, given the witness
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wi and the digests
{

hi
j

}
j

we can verify that ((i, wi), t) ∈ UM by checking that hi
0 and hi

n indeed are the
digests of the correct starting and accepting configurations respectively, and that all the proofs

{
Πi

j

}
i,j

are
accepting.

The next step is to prove that all proofs are accepting using a single batch argument. To this end, we
use the witness blocks and the digests to define a collection of NP statements and hash them down. In more
details, we first use a somewhere extractable hash to compute for every j ∈ [n], the hash hj of the k pairs{

wi
j , hi

j)
}

i
. Then, we further hash the n hash values {hj}j to a single hash h using a tree hash. We can now

define the NP verification machine M′ for which we provide the batch argument. The machine M′ given
index (i, j) accepts a witness that contains (a) valid openings of h to hj−1 and hj , (b) valid openings of hj−1
and hj to (wi

j , hi
j)) and (wi

j , hi
j)) respectively, and (c) an accepting proof Πi

j for the RAM machine Ri
j (recall

that the machine Ri
j can be computed from wi

j) and the digests (hi
j−1, hi

j). The final proof consist of the
hash values {hj}j and the batch argument proof for M′.

We proceed with a formal description of the construction.

The machine Ri
j. For i ∈ [k], j ∈ [n], a string x ∈ {0, 1}ℓ and a machine M, let Ri

j [x,M] be the
following RAM machine:

• Writes x to memory starting at location (j − 1) · ℓ + 1.

• If j = n:

– Emulate M on input (i, wi) where wi is the given in the first m = n · ℓ memory locations.
– Empty the memory and accept if and only if M accepts.

Let ti
j = (ℓ + |M| + t) · poly(λ) be the running time of the machine Ri

j [x,M]. Let cfi
start be the starting

configuration of Ri
1[x,M] and let cfi

accept be the accepting configuration of Ri
n with empty memory.

The machine M′. Given a public key pk = (pkTH, pkEH, pkDL), a machine M and hash value h, let
M′[pk,M, h] be the machine on input an index i′ and a witness w′:

w′ = ((xb, hb
DL, Πb

EH, hb
EH, Πb

TH)b∈{0,1} , ΠDL) ,

proceeds as follows:

• Let i ∈ [k], j ∈ [n] be such that i′ = (i− 1) · n + j.

• For b ∈ {0, 1}, check that VTH(pkTH, h, hb
EH, j − b, Πb

TH) = 1.

• For b ∈ {0, 1}, check that VEH(pkEH, hb
EH, (xb, hb

DL), i, Πb
EH) = 1.

• Check that VDL(pkDL,Ri
j [x0,M], h1

DL, h0
DL, ti

j , ΠDL) = 1.

• If j = 1 check that h1
DL = HDL(pkDL, cfi

start).

• If j = n check that h0
DL = HDL(pkDL, cfi

accept).

• Accept if and only if all checks pass.

Let m′ = ℓ · poly(λ) be the length of the witness w′.
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The batch argument algorithms.
G′BA: Given as input the security parameter λ the generation algorithm is as follows:

• Set ℓ = λ · (Q1(λ) + Q2(λ)).
• Set pkBA ← GBA(λ, m′).
• Set pkTH ← GTH(λ).
• Set pkEH ← GEH(λ).
• Set pkDL ← GDL(λ).
• Output pk = (pkBA, pkTH, pkEH, pkDL).

T′BA: Given as input the security parameter λ and an index i, the trapdoor generation algorithm is as follows:

• Set ℓ = λ · (Q1(λ) + Q2(λ)).
• Set pkBA ← GBA(λ, m′).
• Set pkTH ← GTH(λ).
• Set (pkEH, sk)← TEH(λ, i).
• Set pkDL ← GDL(λ).
• Output (pk = (pkBA, pkTH, pkEH, pkDL) , sk).

P′BA: Given as input the public key pk, a machine M and witnesses w1, . . . , wk ∈ {0, 1}m, the prover
algorithm is as follows:

• Let pk = (pkBA, pkTH, pkEH, pkDL).
• Set n = m

ℓ .
• For i ∈ [k] let wi = (wi

1, . . . , wi
n) where each wi

j is of length ℓ.
• For i ∈ [k] set wi

0 = 0ℓ.
• For i ∈ [k] set cfi

0 = cfi
start.

• For i ∈ [k] and j ∈ [n] compute the final configuration cfi
j of Ri

j [wi
j ,M] when starting from

configuration cfi
j−1.

• For i ∈ [k] and j ∈ [n] set Π̃i
j ← P(pkDL,R, cfi

j−1, cfi
j , ti

j).

• For i ∈ [k] and j ∈ [0, n] set hi
j ← HDL(pkDL, cfi

j).
• For j ∈ [0, n] set (hj , (Π1

j , . . . , Πk
j ))← HEH(pkEH, ((w1

j , h1
j ), . . . , (wk

j , hk
j ))).

• Set (h, (Π0, . . . , Πn))← HTH(pkEH, (h0, . . . , hn)).
• For i ∈ [k] and j ∈ [n] set w′(i−1)·n+j = ((wj−b, hi

j−b, Πi
j−b, hj−b, Πj−b)b∈{0,1} , Π̃i

j).
• Set ΠBA ← PBA(pkBA,M′[(pkTH, pkEH, pkDL),M, h], (w′1, . . . , w′k·n)).
• Output Π = ((h0, . . . , hn) , ΠBA).

V′BA: Given as input the public key pk, a machine M and a proof Π, the verifier algorithm is as follows:

• Let pk = (pkBA, pkTH, pkEH, pkDL).
• Let Π = ((h0, . . . , hn) , ΠBA).
• Set (h, (Π0, . . . , Πn))← HEH(pkEH, (h0, . . . , hn)).
• Output the same as VBA(pkBA,M′[(pkTH, pkEH, pkDL),M, h], ΠBA).

E′BA: Given as input the secret key sk and a proof Π, the extraction algorithm is as follows:
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• Let Π = ((h0, . . . , hn) , ΠBA).
• For j ∈ [n], set (wj , h′j)← EEH(sk, hj)
• Output w = (w1, . . . , wn).

The completeness and efficiency requirement follow directly from the completeness and efficiency of the
building blocks. The key indistinguishability requirement follows directly from the key indistinguishability
of the somewhere extractable hash. We focus on proving that the construction has low additive overhead
and that satisfies the somewhere argument of knowledge requirement.

Additive overhead. Next we analyze the additive overhead of the batch argument. The proof Π consists
of n + 1 hash values h0, . . . , hn and a batch argument ΠBA. Using the additive overhead of the somewhere
extractable hash and since ℓ = λ · (Q1(λ) + Q2(λ)), we get that each hash hj of string of length ℓ + Q2(λ) is
of length:

(ℓ + Q2(λ))(1 + 1
λ

) + Q1(λ) ≤ ℓ + 3(Q1(λ) + Q2(λ)) .

The length of the batch argument ΠBA is poly(λ, m′) = poly(λ, ℓ). Overall we have that:

|Π| = (n + 1) · (ℓ + 3(Q1(λ) + Q2(λ))) + poly(λ, ℓ) = m + 3m

λ
+ poly(λ, ℓ) .

Somewhere argument of knowledge. Fix a poly(T (λ))-size adversary Adv and polynomials k, m, t.
For λ ∈ N, i ∈ [k], let EXP be the experiment of the somewhere argument of knowledge requirement: (pk, sk)← T′BA(λ, i)

(M, Π)← Adv(pk)
w ← E′BA(sk, Π)


Assume towards contradiction that there exists a polynomial P such that for infinitely many λ ∈ N,

there exists i ∈ [k] such that:

Pr
EXP

[
V′BA(pk,M, Π) = 1
((i, w), t) /∈ UM

]
≥ 1

P (T (λ)) .

Fix any sufficiently large λ and i such that the above holds. Recall that in the experiment EXP:

• pk = (pkBA, pkTH, pkEH, pkDL).

• Π = ((h0, . . . , hn) , ΠBA).

• w = (wi
1, . . . , wi

n) where (wj , hi
j)← EEH(sk, hj).

On a high-level, our proof strategy is as follows. We first use w to recompute the digests ĥi
0, . . . , ĥi

n following
the honest prover algorithm. Then, we compare these honest digests to the digests hi

0, . . . , hi
n extracted.

If all the extracted digests are honest, but w is not a valid witness, then the final extracted digest hi
n

corresponds to a rejecting configuration. Therefore, hi
n must be different from hi

accept, the digest of the
accepting configuration cfi

accept, or we find a digest collision. If this event occurs with noticeable probability
over the the choice of the public key then, by the key indistinguishability requirement of the batch argument,
it must also occur with noticeable probability if we program the batch argument public key and extract the
witness for the final block of w. The extracted witness contains the opening of the digest h̄i

n and if the
witness is valid, this opening is accepting and we can use the collision resistance of the tree hash and
somewhere extractable hash to show that h̄i

n = hi
n. However, since M′ explicitly checks that h̄i

n = cfi
accept,

the witness cannot be valid, contradicting the somewhere argument of knowledge property of the batch
argument. Similarly, if the first extracted digest hi

0 is not honest, we can reach a contradiction since M′
explicitly checks that h̄i

0 is the digest of the starting configuration.
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It is left to deal with the case that hi
0 is honest but hi

n is not. Therefore, there must be an index j
such that, with noticeable probability over the choice of the public key, the digest hi

j−1 is honest, but the
subsequent digest hi

j is not. Therefore, by the key indistinguishability requirement of the batch argument,
this event must also occur with noticeable probability if we program the batch argument public key and
extract the witness for the j-th block of w. The extracted witness contains openings of the witness block w̄i

j ,
and the two digests h̄i

j−1, h̄i
j . If the witness is valid, all opening are accepting, and we can use the collision

resistance of the tree hash and somewhere extractable hash to show that (w̄i
j , h̄i

j−1, h̄i
j) = (wi

j , hi
j−1, hi

j). The
extracted witness also contains a RAM delegation proof that Ri

j hard-coded with wi
j indeed transitions from

hi
j−1 to hi

j . Since hi
j−1 is honest but hi

j is not, we reach a contradiction to the soundness of the delegation
scheme.

We proceed with the formal proof. We first define the digests ĥi
1, . . . , ĥi

n that result from the execution
of the machines Ri

1, . . . ,Ri
n on w, just as the honest prover does:

• Let ĉf
i

0 = cfi
start be the starting configuration of Ri

1[wi
1,M].

• For j ∈ [n], compute the final configuration ĉf
i

j of Ri
j [wi

j ,M] when starting from configuration ĉf
i

j−1.

• For j ∈ [0, n], set ĥi
j ← HDL(pkDL, ĉf

i

j).

By the definition of the machines Ri
1, . . . ,Ri

n, we have that if ((i, w), t) /∈ UM then ĉf
i

n ̸= cfi
accept since cfi

accept
is an accepting configuration of Ri

n. Therefore:

Pr
EXP

[
V′BA(pk,M, Π) = 1
ĉf

i

n ̸= cfi
accept

]
≥ 1

P (T (λ)) .

Let hi
accept = HDL(pkDL, cfi

accept). By the collision resistance requirement of the delegation scheme we have
that:

Pr
EXP

[
V′BA(pk,M, Π) = 1
ĥi

n ̸= hi
accept

]
≥ 1

2P (T (λ)) .

Let A1, . . . , An be the following events:
• A1 is the event that hi

1 ̸= ĥi
1.

• For j ∈ [2, n− 1], Aj is the event that hi
j−1 = ĥi

j−1 and hi
j ̸= ĥi

j .

• An is the event that hi
n−1 = ĥi

n−1.
Since one of these events must occur, there exists j ∈ [n] such that:

Pr
EXP

[
V′BA(pk,M, Π) = 1
Aj ∧ ĥi

n ̸= hi
accept

]
≥ 1

2n · P (T (λ)) .

Fix such j. Let EXP′ be the experiment that is defined like EXP except that we use the trapdoor
generation algorithm of the batch argument and extract a witness w′ for block (i, j):

• Set (pkBA, skBA)← TBA(λ, m′, (i− 1) · n + j).
• Set w′ ← EBA(skBA, ΠBA).
• Let w′ = ((w̄i

j−b, h̄i
j−b, Π̄i

j−b, h̄j−b, Π̄j−b)b∈{0,1} , Π̃i
j).

Since the event Aj can be tested in polynomial time, without knowing skBA, it follows from the key
indistinguishability requirement of the underlying batch argument that:

Pr
EXP′

[
V′BA(pk,M, Π) = 1
Aj ∧ ĥi

n ̸= hi
accept

]
≥ 1

3n · P (T (λ)) .
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Let (h, (Π0, . . . , Πn))← HEH(pk′EH, (h0, . . . , hn)) be the hash computed by V′BA. Since V′BA only accepts if
VBA accepts ΠBA, it follows from the somewhere argument of knowledge requirement of the underlying batch
argument that:

Pr
EXP′

[ ((i− 1) · n + j, w′) ∈ UM′[(pkTH,pk′
EH,pkDL),M,h]

Aj ∧ ĥi
n ̸= hi

accept

]
≥ 1

4n · P (T (λ)) .

Let hi
start = HDL(pkDL, cfi

start). By the definition of M′:

Pr
EXP′



∀b ∈ {0, 1} : VTH(pkTH, h, h̄j−b, j − b, Π̄j−b) = 1
∀b ∈ {0, 1} : VEH(pk′EH, h̄j−b, (w̄i

j−b, h̄i
j−b), i, Π̄i

j−b) = 1
VDL(pkDL,Ri

j [w̄i
j ,M], h̄i

j−1, h̄i
j , ti

j , Π̃i
j) = 1

j = 1 → h̄i
j−1 = hi

start
j = n → h̄i

j = hi
accept

Aj ∧ ĥi
n ̸= hi

accept


≥ 1

4n · P (T (λ)) .

Since hi
start = ĥi

0 we have that:

Pr
EXP′



∀b ∈ {0, 1} : VTH(pkTH, h, h̄j−b, j − b, Π̄j−b) = 1
∀b ∈ {0, 1} : VEH(pk′EH, h̄j−b, (w̄i

j−b, h̄i
j−b), i, Π̄i

j−b) = 1
VDL(pkDL,Ri

j [w̄i
j ,M], h̄i

j−1, h̄i
j , ti

j , Π̃i
j) = 1

j = 1 → h̄i
j−1 = ĥi

0
j = n → h̄i

j ̸= ĥi
n

Aj


≥ 1

4n · P (T (λ)) .

By the collision resistance requirement of the tree hash we have that there exists a negligible function µ
such that for every b ∈ {0, 1}:

Pr
EXP′

[
VTH(pkTH, h, h̄j−b, j − b, Π̄j−b) = 1
h̄j−b ̸= hj−b

]
≤ µ(T (λ)) .

Therefore:

Pr
EXP′


∀b ∈ {0, 1} : VEH(pk′EH, hj−b, (w̄i

j−b, h̄i
j−b), i, Π̄i

j−b) = 1
VDL(pkDL,Ri

j [w̄i
j ,M], h̄i

j−1, h̄i
j , ti

j , Π̃i
j) = 1

j = 1 → h̄i
j−1 = ĥi

0
j = n → h̄i

j ̸= ĥi
n

Aj

 ≥
1

5n · P (T (λ)) .

By the extraction requirement of the somewhere extractable hash, we have that there exists a negligible
function µ such that for every b ∈ {0, 1}:

Pr
EXP′

[
VEH(pk′EH, hj−b, (w̄i

j−b, h̄i
j−b), i, Π̄i

j−b) = 1
(w̄i

j−b, h̄i
j−b) ̸= EEH(sk, hj−b)

]
≤ µ(T (λ)) .

Therefore, since we set (wj−b, hi
j−b)← EEH(sk, hj−b) we have that:

Pr
EXP′


VDL(pkDL,Ri

j [wi
j ,M], hi

j−1, hi
j , ti

j , Π̃i
j) = 1

j = 1 → hi
j−1 = ĥi

0
j = n → hi

j ̸= ĥi
n

Aj

 ≥ 1
6n · P (T (λ)) .
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By the definition of the event Aj :

Pr
EXP′

[
VDL(pkDL,Ri

j [wi
j ,M], hi

j−1, hi
j , ti

j , Π̃i
j) = 1

hi
j−1 = ĥi

j−1 ∧ hi
j ̸= ĥi

j

]
≥ 1

6n · P (T (λ)) .

Let Adv′ be the adversary that given as input the delegation public key pkDL emulates the experiment
EXP′ using pkDL and outputs:

(Ri
j [wi

j ,M], ĉf
i

j−1, ĉf
i

j , hi
j−1, hi

j , Π̃i
j) .

We have that:

Pr
pkDL←GDL(λ)

Adv′(pkDL)


V(pkDL,Ri

j [wi
j ,M], hi

j−1, hi
j , ti

j , Π̃i
j) = 1

(ĉf
i

j−1, ĉf
i

j , ti
j) ∈ TRi

j
[wi

j
,M]

hi
j−1 = ĥi

j−1 = HDL(pkDL, ĉf
i

j−1)
hi

j ̸= ĥi
j = HDL(pkDL, ĉf

i

j)

 ≥ 1
6n · P (T (λ)) ,

contradicting the soundness requirement of the RAM delegation scheme.

Upgrading batch arguments without using rate-1 SHE. We note that we are crucially relying
on the rate-1 property of the somewhere extractable hash. We, however, observe (as a result that will not
be relevant in the sequel but may be of independent interest) that even if we just have a “plain” somewhere
extractable hash, essentially the same construction but with a different parametrization can still be used to
upgrade a batch argument to satisfy a stronger efficiency requirement (albeit not the rate-1 requirement).
In particular, we now give a variant of Theorem 3.1 that uses any somewhere extractable hash (regardless of
its additive overhead) to transform any batch argument into one with unbounded witness length and where
the proof length is m ·poly(λ) where m is the witness length (yet, with no guarantee on its additive overhead
as in given by Theorem 3.1). This is in contrast to previous constructions of batch arguments [CJJ21] where
the length of the public key grows with m and the proof length is poly(λ, m).

Theorem 3.2. Assume the existence of:

• A T (·)-secure non-interactive batch argument for the index language.

• A T (·)-secure somewhere extractable hash.

• A T (·)-secure non-interactive delegation scheme for RAM.

Then there exists a T (·)-secure non-interactive batch argument for the index language with unbounded witness
length and proof of length m · poly(λ).

The proof of Theorem 3.2 uses the same construction as in the proof of Theorem 3.1 except that we
divide the witness into n = m blocks, each of length ℓ = 1.

4 Mergeable Delegation
A mergeable delegation scheme for RAM is a non-interactive delegation scheme for RAM that is equipped
with an additional merging algorithm M. Given the proofs for two statements (cf1, cf2, t1), (cf2, cf3, t2) ∈ TR
the merging algorithm efficiently generates a proof for the combined statement (cf1, cf3, t1 + t2) ∈ TR. What
makes this notion non-trivial is the compactness requirement which states that the the merged proof is not
much longer than (the longer one of) the original proofs. In essence, merging compresses two proofs into a
single proof of roughly the same size.

Our notion of mergeable delegation allows proofs to be merged recursively. In more detail, for each proof
we maintain a level, where newly generated proofs are of level 0 and merging two proofs of level i results in
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a proof of level i + 1. Similarly to the notion of levelled-FHE, We restrict attention to schemes that support
an a-priori bounded number of levels, say λ.

Formally, a mergeable non-interactive delegation scheme for RAM is a non-interactive delegation scheme
for RAM (G, H, P, V) augmented with algorithms (M, L) with the following syntax:

M: The deterministic merging algorithm takes as input a public key pk, a RAM machine R and a pair of
hashed statements and proofs ((hi, h′i, ti), Πi)i∈[2]. It outputs a new proof Π.

L: The deterministic level algorithm takes as input a proof Π, it outputs a level ℓ ∈ N.

Definition 4.1. A T (·)-secure non-interactive delegation scheme for RAM is mergeable if it satisfies the
following requirements:

Completeness with Level 0. For every λ ∈ N, t ≤ 2λ, RAM machine R and statement (cf, cf′, t) ∈ TR
we have that:

Pr


pk← G(λ)
h← H(pk, cf)
h′ ← H(pk, cf′)
Π← P(pk,R, (cf, cf′, t))

: V(pk,R, (h, h′, t), Π) = 1
L(Π) = 0

 = 1 .

Completeness of Merge. For every λ ∈ N, public key pk, ℓ < λ, RAM machine R and a pair of
hashed statements and proofs (xi = (hi, h′i, ti), Πi)i∈[2] such that h′1 = h2 and for every i ∈ [2],
V(pk,R, xi, Πi) = 1 and L(Πi) = ℓ we have that:

Pr
[

Π← M(pk,R, (xi, Πi)i∈[2]) : V(pk,R, (h1, h′2, t1 + t2), Π) = 1
L(Π) = ℓ + 1

]
= 1 .

Efficiency. In the completeness experiments above:

• The merging algorithm runs in time poly(λ, |R|) and outputs a proof of length poly(λ).
• The level algorithm runs in time poly(λ).

T (·)-Soundness for Bounded Level Proofs. For every poly(T (λ))-size adversary Adv there exists a neg-
ligible function µ such that for every λ ∈ N:

Pr


pk← G(λ)
(R, cf, cf′, h, h′, t, Π)← Adv(pk) :

t ≤ T (λ)
L(Π) ≤ log T (λ)
V(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H(pk, cf)
h′ ̸= H(pk, cf′)

 ≤ µ(T (λ)) .

We say that the scheme is polynomially secure if it is T (·)-secure for every polynomial T .

We make some remarks on Definition 4.1:

• The completeness with level 0 requirement is exactly the same as the plain completeness requirement
of delegation except that we require that freshly created proofs are of level 0.

• The soundness for bounded levels requirement is exactly the same as the plain soundness requirement
except that we restrict the level of the proof to be O(log T (λ)).

• We only require completeness of merge for a pair of proofs at the same level and up to level λ.
Therefore, constructing a proof of level ℓ requires merging 2ℓ proofs in a full binary tree (some of these
proof may be for 0 computation steps).
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Theorem 4.2. Assume the existence of:

• A T (·)-secure non-interactive batch arguments for the index language with unbounded witness length
and additive overhead α(λ, m) = O(m)

λ + poly(λ).

• A T (·)-secure non-interactive delegation scheme for RAM.

Then there exists a T (·)-secure mergeable non-interactive delegation scheme for RAM.

Construction. We construct a mergeable non-interactive delegation scheme (G′DL, H′DL, P′DL, V′DL, M′DL, L′DL)
using the following building blocks:

• A T (·)-secure non-interactive batch argument for the index language (GBA, TBA, PBA, VBA, EBA) with
unbounded witness length and additive overhead α(λ, m) = O(m)

λ + poly(λ).

• A T (·)-secure non-interactive delegation scheme for RAM (GDL, HDL, PDL, VDL).

We proceed with a formal description of the construction. We start by defining a verification procedure
for proofs of each level. The level-0 verification algorithm V0 is simply the verifier VDL of the underlying
delegation scheme. For ℓ ∈ [λ], the level-ℓ verification algorithm Vℓ is given as input the public key pk =
(pk0, . . . , pkℓ), a RAM machine R, a hashed statement x = (h, h′, t) and a proof Π. It proceeds as follows:

• Let Π = (x1 = (h1, h′1, t1), x2 = (h2, h′2, t2), Π′).

• If h′1 ̸= h2 or (h1, h′2, t1 + t2) ̸= (h, h′, t) then reject.

• Let Mℓ =Mℓ[pk,R, (x1, x2)] be the machine that on (i, Π̃) outputs Vℓ−1((pk0, . . . , pkℓ−1),R, xi, Π̃).

• Output VBA(pkℓ,Mℓ, Π′)

The delegation scheme algorithms.
G′DL: Given as input a security parameter λ ∈ N, the setup algorithm is as follows:

• Set pk0 ← GDL(λ).
• For ℓ ∈ [λ], set pki ← GBA(λ).
• Output pk = (pk0, . . . , pkλ).

H′DL: Given as input the public key pk = (pk0, . . . , pkλ) and a configuration cf ∈ {0, 1}∗, the digest algorithm
outputs HDL(pk0, cf).

P′DL: Given as input the public key pk, a RAM machine R, and a statement (cf, cf′, t) the prover algorithm
is as follows:

• Let pk = (pk0, . . . , pkλ).
• Set Π← PDL(pk0,R, (cf, cf′, t)).
• Output (0, Π)

V′DL: Given as input the public key pk = (pk0, . . . , pkλ), a RAM machine R, a hashed statement x and a
proof Π = (ℓ, Π′) the verifier algorithm outputs Vℓ((pk0, . . . , pkℓ),R, x, Π′).

M′DL: Given as input a public key pk, a RAM machine R and a pair of hashed statements and proofs
(xi = (hi, h′i, ti), Πi)i∈[2], the merging algorithm is as follows:

• Let pk = (pk0, . . . , pkλ).
• For i ∈ [2], let Πi = (ℓi, Π′i).
• If ℓ1 ̸= ℓ2 then reject.

23



• Set ℓ = ℓ1 + 1
• LetMℓ =Mℓ[pk,R, (x1, x2)] be the machine that on (i, Π̃) outputs Vℓ−1((pk0, . . . , pkℓ−1),R, xi, Π̃).
• Set Π← PBA(pkℓ,Mℓ, (Π′1, Π′2))
• Output (ℓ, (x1, x2, Π))

L′DL: Given as input a proof Π = (ℓ, Π′), the level algorithm outputs ℓ.

Analysis. The completeness requirements follow directly from the completeness requirement of the build-
ing blocks. The collision resistance requirement follows directly from the collision resistance requirement of
the underlying delegation scheme. We focus on proving that the efficiency and soundness requirements.

Efficiency. The efficiency of the level algorithm follows directly from the construction. The efficiency of
the generation, digest and prover algorithms follow directly from the efficiency requirement of the underlying
delegation scheme. It remain to bound the running time of the verifier and merging algorithms and length
of the merged proofs.

Let mℓ denote the length of level-ℓ proofs. By the efficiency requirement of the underlying delegation
scheme, we have that m0 = poly(λ). Recall that to create level-ℓ proofs, the merging algorithms creates
a batch argument proof with witness of length mℓ−1 and appends to it the hashed statements that are of
length poly(λ). Since the batch argument has additive overhead α(λ, m) = O(m)

λ + poly(λ), we have that
mℓ ≤ mℓ−1 + O(mℓ−1)

λ + poly(λ). Overall, we have that mℓ ≤ ℓ · poly(λ) · (1 + 1
λ )O(ℓ). Therefore, for every

ℓ ≤ λ, we have that mℓ = poly(λ).
The verifier algorithm runs the algorithm Vℓ for some level ℓ ≤ λ, and Vℓ runs the batch argument

verifier algorithm VBA with the machine Mℓ. The machine Mℓ is of size |R| + poly(λ) and it is taking
as witnesses level-(ℓ − 1) merged proofs of length mℓ−1 = poly(λ). Therefore, the running time of verifier
algorithm is |R| · poly(λ).

The merging algorithm runs the batch argument prover algorithm PBA with the machine Mℓ. The
machine Mℓ is of size |R| + poly(λ) and it is taking as witnesses level-(ℓ − 1) merged proofs of length
mℓ−1 = poly(λ). The machine Mℓ runs the algorithm Vℓ−1 and therefore it runs in time |R| · poly(λ).
Therefore, the running time of merging algorithm is poly(λ, |R|).

Soundness for bounded level proofs. For an adversary Adv, Let EXPAdv be the experiment of the
soundness requirement: {

pk = (pk0, . . . , pkλ)← G′DL(λ)
(R, cf, cf′, h, h′, t, Π)← Adv(pk)

}
The main step of the proof is given by the following lemma that transforms a cheating prover for level

ℓ > 0 into a cheating prover for level ℓ− 1.

Claim 4.3. For every poly(T (λ))-size adversary Adv, there exists an adversary Adv′ of size |Adv|+poly(T (λ))
and a negligible function µ such that for every λ ∈ N and ℓ ∈ [λ]:

Pr
EXPAdv′


t ≤ T (λ)
L′DL(Π) = ℓ− 1
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

 ≥
1
2 · Pr

EXPAdv


t ≤ T (λ)
L′DL(Π) = ℓ
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

− µ(T (λ)) .

Before proving Claim 4.3, we use it to complete the soundness proof. Fix an poly(T (λ))-size adversary
Adv and let d = log T (λ). In what follows we construct a sequence of cheating prover for decreasing levels
from d down to 0. Let Adv0 = Adv and for every i ∈ [d] let Advi be the adversary given by Claim 4.3 for
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Advi−1. Let T̄ (λ) = poly(T (λ)) denote the size of Advd. By Claim 4.3, for every adversary Adv∗ of size at
most T̄ there exists a negligible function µ∗ for which the claim holds. By considering the adversary with
maximal advantage, there exists a single negligible function µ such that Claim 4.3 holds for every adversary
of size at most T̄ and, in particular, for every Advi.

Assume toward contradiction that there exists a polynomial P such that for infinitely many λ ∈ N:

Pr
EXPAdv


t ≤ T (λ)
L′DL(Π) ≤ d
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

 ≥
1

P (T (λ)) .

Therefore, for infinitely many λ ∈ N there exists a level ℓ ∈ [0, d] such that:

Pr
EXPAdv


t ≤ T (λ)
L′DL(Π) = ℓ
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

 ≥
1

d · P (T (λ)) .

By ℓ applications of Claim 4.3, for infinitely many λ ∈ N:

Pr
EXPAdvℓ


t ≤ T (λ)
L′DL(Π) = 0
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

 ≥
1

T (λ) · d · P (T (λ)) − d · µ(T (λ)) .

Recall that a proof Π of level 0 is simply a proof of the underlying delegation scheme under pk0. Since
given pk0, we can sample the rest of the public key pk1, . . . , pkλ ourselves, we reach a contradiction to the
soundness of the underlying delegation scheme.

Proof of Claim 4.3. Fix a poly(T (λ))-size adversary Adv. For every λ and ℓ ∈ [λ] let ϵ denote the probability:

ϵ = Pr
EXPAdv


t ≤ T (λ)
L′DL(Π) = ℓ
V′DL(pk,R, (h, h′, t), Π) = 1
(cf, cf′, t) ∈ TR
h = H′DL(pk, cf)
h′ ̸= H′DL(pk, cf′)

 .

If L′DL(Π) = ℓ > 0 and V′DL accepts then by the construction of Vℓ:

• Π is of the form (ℓ, (x1, x2, Π′)) where xi = (hi, h′i, ti).

• h′1 = h2 and (h1, h′2, t1 + t2) = (h, h′, t)

• VBA(pkℓ,Mℓ[pk,R, (x1, x2)], Π′) = 1

Let cf′′ be the unique configuration such that (cf, cf′′, t1) ∈ TR and (cf′′, cf′, t2) ∈ TR. Note that cf′′

can be computed from cf in time poly(T (λ)). Let h′′ = H′DL(pk, cf′′) and let (c̃f1, c̃f′1) = (cf, cf′′) and
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(c̃f2, c̃f′2) = (cf′′, cf′). Whether h′′ = h′1 or h′′ ̸= h′1, we have that:

Pr
EXPAdv



t ≤ T (·)
L′DL(Π) = ℓ
∃i ∈ [2] :

(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)

VBA(pkℓ,Mℓ[pk,R, (x1, x2)], Π′) = 1


≥ ϵ .

Fix i ∈ [2] such that:

Pr
EXPAdv



ti ≤ T (λ)
L′DL(Π) = ℓ

(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)
VBA(pkℓ,Mℓ[pk,R, (x1, x2)], Π′) = 1

 ≥
ϵ

2 .

Let EXP′Adv be the experiment that is defined like EXPAdv except that we use the trapdoor generation
algorithm of the batch argument to sample pkℓ and extract a witness Πi from the proof:

• (pkℓ, skℓ)← GBA(λ, i)

• Set Πi ← EBA(skℓ, Π′).

By the key indistinguishability requirement of the batch argument, we have that:

Pr
EXP′

Adv



ti ≤ T (λ)
L′DL(Π) = ℓ

(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)
VBA(pkℓ,Mℓ[pk,R, (x1, x2)], Π′) = 1

 ≥
ϵ

2 − negl(T (λ)) .

By the somewhere argument of knowledge requirement of the batch argument we have that:

Pr
EXP′

Adv



ti ≤ T (λ)
L′DL(Π) = ℓ

(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)
Mℓ[pk,R, (x1, x2)](i, Πi) = 1

 ≥
ϵ

2 − negl(T (λ)) .

By the definition of Mℓ and V′DL:

Pr
EXP′

Adv



ti ≤ T (λ)
L′DL(Π) = ℓ

(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)
V′DL(pk,R, xi, (ℓ− 1, Πi)) = Vℓ−1(pk,R, xi, Πi) = 1

 ≥
ϵ

2 − negl(T (λ)) .
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Let Adv′ be the adversary that, given pk = (pk0, . . . , pkλ), emulates the experiment EXP′ using the public
key:

pk′ = (pk0, . . . , pkℓ−1, pk′ℓ, . . . , pk′λ)

where pk′ℓ, . . . , pk′λ are sampled as in EXP′. Adv′ outputs (R, c̃fi, c̃f′i, hi, h′i, ti, Π = (ℓ−1, Πi)). We have that:

Pr
EXPAdv′



ti ≤ T (λ)
L′DL(Π) = ℓ− 1
V′DL(pk′,R, xi = (hi, h′i, ti), Π) = 1
(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk, c̃fi)
h′i ̸= H′DL(pk, c̃f′i)

 ≥
ϵ

2 − negl(T (λ)) .

Since pk and pk′ agree on the first ℓ public keys (pk′0, . . . , pk′ℓ−1) and since Vℓ−1 only takes the first ℓ public
keys, we have that:

Pr
EXPAdv′



ti ≤ T (λ)
L′DL(Π) = ℓ− 1
V′DL(pk,R, (hi, h′i, ti), Π) = 1
(c̃fi, c̃f′i, ti) ∈ TR
hi = H′DL(pk′, c̃fi)
h′i ̸= H′DL(pk′, c̃f′i)

 ≥
ϵ

2 − negl(T (λ)) ,

as required.

4.1 Incrementally Verifiable Computation
In this section, we use mergeable delegation to construct incrementally verifiable computation. The con-
struction follows the outline in [Val08].

Theorem 4.4. If there exists a T (·)-secure mergeable non-interactive delegation scheme for RAM then there
exists a T (·)-secure incrementally verifiable computation scheme for for deterministic Turing machines.

Construction. We construct a an incrementally verifiable computation scheme (GIVC, PIVC, VIVC, UIVC)
using a mergeable non-interactive delegation scheme for RAM (GDL, HDL, PDL, VDL, MDL, LDL). The outline
of the construction is as follows. Given a statement (cf, cf′, t) ∈ TM, we split it into d ≤ log t consecutive
statements

{
(cfi, cfi+1, ti = 2ℓi) ∈ TM

}
i∈[d−1] such that (cf1, cfd) = (cf, cf′) and for every i, ℓi > ℓi+1. The

proof for (cf, cf′, t) consist of one mergeable delegation proof for each of the d segments, where the proof
for the i-th segment is of level ℓi. To increment such proofs by one step, we create a level-0 proof for the
statement (cf′, cf′′, 1) ∈ TM and append it to the proof. We then repeatedly merge pairs of proofs of the
same level until we get a valid proof.

We proceed with a formal description of the construction. For a Turing machine M, let R[M] denote
the RAM machine that emulates M. That is, TM = TR[M] (we assume for simplicity and without loss of
generality that each step of M is emulated by a single step of R[M]).
GIVC: Given as input a security parameter λ ∈ N, the setup algorithm samples pk← GDL(λ) and outputs pk.
PIVC: Given as input the public key pk, a machine M, and a statement (cf, cf′, t), the prover algorithm is

as follows:

• Set Π0 = ∅.
• Set cf0 = cf.
• For i = 1 to t:

– Set Πi ← UIVC(pk,M, (cf, cfi−1, i− 1), Πi−1).
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– Let cfi be the configuration such that (cfi−1, cfi, 1) ∈ TM.
• Output Πt.

VIVC: Given as input the public key pk, a machine M, a statement (cf, cf′, t) and a proof Π, the verifier
algorithm is as follows:

• If cf = cf′, t = 0 and Π = ∅, then accept.
• Let ℓ1, . . . , ℓd ∈ [0, λ] be the distinct indexes such that t =

∑
i∈[d] 2ℓi in decreasing order (i.e.,

the indexes of the 1s in the λ-ary decomposition of t).
• Let Π = {(xi = (hi, h′i, ti), Πi)}i∈[d] and reject if Π is not of this form.

• Check that (HDL(pk, cf), HDL(pk, cf′)) = (h1, h′d).
• For every i ∈ [d− 1], check that h′i = hi+1.
• For every i ∈ [d], check that ti = 2ℓi .
• For every i ∈ [d], check that LDL(Πi) = ℓi.
• For every i ∈ [d], check that V(pk,R[M], (hi, h′i, ti), Πi) accepts.
• Accept if and only if all checks pass.

UIVC: Given as input a public key pk, a machine M, a statement (cf, cf′, t), and a proof Π, the update
algorithm is as follows:

• Let cf′′ be the configuration such that (cf′, cf′′, 1) ∈ TM.
• Set x∗ ← (HDL(pk, cf′), HDL(pk, cf′′), 1).
• Set Π∗ ← P(pk,R, x∗).
• Add (x∗, Π∗) to Π.
• While there exist {(xi = (hi, h′i, ti), Πi)}i∈[2] ⊆ Π such that h′1 = h2 and t1 = t2:

– Remove (x1, Π1) and (x2, Π2) from Π.
– Set x∗ ← (h1, h′2, t1 + t2).
– Set Π∗ ← M(pk,R, (xi, Πi)i∈[2]).
– Add (x∗, Π∗) to Π.

• Output Π.

Analysis. The incremental completeness and efficiency requirements follow by construction and by the
completeness and efficiency requirements of the underlying mergeable delegation scheme. We focus on
proving that the soundness requirement.

Fix a poly(T (λ))-size adversary Adv. Let EXPAdv be the experiment of the soundness requirement: For
λ ∈ N, let EXP be the experiment of the soundness requirement:{

pk← GIVC(λ)
(M, x = (cf, cf′, t), Π)← Adv(pk)

}
Assume towards contradiction that there exists a polynomial P such that for infinitely many λ ∈ N:

Pr
EXP

 t ≤ T (λ)
VIVC(pk,M, x, Π) = 1
x /∈ TM

 ≥ 1
P (T (λ)) .

Fix any sufficiently large λ such that the above holds. In the above experiment, let ℓ1, . . . , ℓd ∈ [0, λ]
denote the distinct indexes such that t =

∑
i∈[d] 2ℓi in decreasing order. Let c̄f0 = cf and for i ∈ [d], let c̄fi be
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the configuration such that (c̄fi−1, c̄fi, ℓi) ∈ TM. Note that c̄f0, . . . , c̄fd can be computed in time poly(T (λ))
given M and cf. Since (c̄f0, c̄fd, t) ∈ TM, it follows that if x /∈ TM then c̄fd ̸= cf′. That is:

Pr
EXP

 t ≤ T (λ)
VIVC(pk,M, x, Π) = 1
c̄fd ̸= cf′

 ≥ 1
P (T (λ)) .

For i ∈ [0, d], let h̄i = HDL(pk, cfi). By the collision resistance requirement of the delegation scheme, we
have that, for sufficiently large λ,

Pr
EXP

 t ≤ T (λ)
VIVC(pk,M, x, Π) = 1
h̄d ̸= HDL(pk, cf′)

 ≥ 1
2 · P (T (λ)) .

If VIVC(pk,M, x, Π) accepts, then Π is of the form
{

(xi = (hi, h′i, 2ℓi), Πi)
}

i∈[d] and:

• (HDL(pk, cf), HDL(pk, cf′)) = (h1, h′d).
• ∀i ∈ [d− 1] : h′i = hi+1.
• ∀i ∈ [d] : LDL(Πi) = ℓi.
• ∀i ∈ [d] : VDL(pk,R[M], (hi, h′i, 2ℓi), Πi) = 1.

Pr
EXP


t ≤ T (λ)
h̄0 = h1
h̄d ̸= h′d
∀i ∈ [d− 1] : h′i = hi+1
∀i ∈ [d] : LDL(Πi) = ℓi

∀i ∈ [d] : VDL(pk,R[M], (hi, h′i, 2ℓi), Πi) = 1

 ≥
1

2 · P (T (λ)) .

Denoting h′0 = h1, we have that:

Pr
EXP


t ≤ T (λ)
h̄0 = h′0
h̄d ̸= h′d
∀i ∈ [d] : h′i−1 = hi

∀i ∈ [d] : LDL(Πi) = ℓi

∀i ∈ [d] : VDL(pk,R[M], (hi, h′i, 2ℓi), Πi) = 1

 ≥
1

2 · P (T (λ)) .

If h̄0 = h′0 but h̄d ̸= h′d, then there must exist some i ∈ [d] such that h̄i−1 = h′i−1 but h̄i ̸= h′i. Therefore,
there exists i ∈ [d] such that:

Pr
EXP


t ≤ T (λ)
h̄i−1 = h′i−1 = hi

h̄i ̸= h′i
LDL(Πi) = ℓi

VDL(pk,R[M], (hi, h′i, 2ℓi), Πi) = 1

 ≥ 1
2 · λ · P (T (λ)) .

Let Adv′ be an adversary that given pk emulates emulates EXP using pk and outputs:

(R[M], c̄fi−1, c̄fi, hi, h′i, 2ℓi , Πi) .

It follows that:

Pr
pk←GDL(λ)

Adv′(pk)



2ℓi ≤ T (λ)
LDL(Πi) ≤ log T (λ)
VDL(pk,R[M], (hi, h′i, 2ℓi), Πi) = 1
(c̄fi−1, c̄fi, ℓi) ∈ TM
hi = HDL(pk, c̄fi−1)
h′ ̸= HDL(pk, c̄fi)

 ≥
1

2 · λ · P (T (λ)) .
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contradicting the soundness for bounded level proofs requirement of the delegation scheme.

30



References
[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Gary L.

Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108. ACM, 1996.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
255–272. Springer, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM, 2013.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data without succinct arguments. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 681–710. Springer, 2021.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof
composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-
19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2020.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 505–514. ACM, 2014.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data
from additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 649–680. Springer, 2021.
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