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Abstract

In this paper we address the problem of recovery from failures without re-running entire elections when elec-
tions fail to verify. We consider the setting of dual voting protocols, where the cryptographic guarantees of
end-to-end verifiable voting (E2E-V) are combined with the simplicity of audit using voter-verified paper records
(VVPR). We first consider the design requirements of such a system and then suggest a protocol called Open-
Voting, which identifies a verifiable subset of error-free votes consistent with the VVPRs, and the polling booths
corresponding to the votes that fail to verify with possible reasons for the failures.

1 Introduction
Conducting large-scale public elections in a dispute-free manner is not an easy task. On the one hand, there are
end-to-end verifiable voting (E2E-V) systems [1, 11, 24, 8, 4] that provide cryptographic guarantees of correctness.
Although the guarantees are sound, these systems are not yet very popular in large public elections. As the German
Constitutional Court observes [18], depending solely on cryptographic guarantees is somewhat untenable as verifi-
cation of election results requires expert knowledge. Moreover, in case voter checks or universal verifications fail,
the E2E-V systems do not provide easy methods of recovery without necessitating complete re-election [6].

On the other hand, there are systems that rely on paper-audit trails to verify electronic tallies [25, 21, 16]. These
systems maintain reliable records of cleartext voter-marked paper ballots or voter-verified paper records (VVPRs)
alongside electronic vote records. They use electronic counting for efficiency and conduct easy-to-understand
statistical audits, called risk-limiting audits (RLAs), to demonstrate that the electronic winners match the winners
that would be declared by a full paper count. In case of conflict, the electronic outcome is suggested to be replaced
by the paper one. However, these systems require the electorate to trust that the paper records correctly represent
voter intent and are not corrupted in the custody chain from the time of voting to that of counting or auditing.

Dual voting approaches, where the voting protocols support simultaneous voting for both the cryptographic and
the VVPR-based systems [5, 13, 22, 17, 4, 12], combine the cryptographic guarantees of E2E-V systems with the
simplicity and adoptability of paper records. However, in most existing dual voting systems, one typically ends up
running two parallel and independent elections, only coupled loosely through simultaneous voting for both in the
polling booth. If the electronic and paper record systems are not tightly coupled, and demonstrably in one-to-one
correspondence, then it begs the questions: which ought be the legal definition of the vote, and, in case of a tally
mismatch, which should be trusted? Why? And how to recover from errors?

It appears that existing approaches either do not provide any recovery mechanism or recover by privileging
VVPR counts over electronic counts. In large public elections running simultaneously at multiple polling booths
per constituency, failures due to intended or unintended errors by different actors are expected. Polling officers may
upload wrong encrypted votes, backend servers may decrypt votes incorrectly, paper records may be tampered with
during the custody chain, and voters may put bogus votes in ballot boxes to discredit the election. Discarding the
entire election due to failures caused by some bad actors or completely trusting the VVPRs are both unsatisfactory
solutions.

*Work done while at IIT Delhi.
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In this paper, we study the problem of recoverability of a dual voting protocol from audit failures. We consider
large, multi-polling booth, first-past-the-post elections like the national elections in India. We observe that except
for backend failures, most of the other failures are due to localised corruption of individual polling booths. There-
fore, we propose to identify the offending polling booths and perform a local re-election — if at all required —
only at those polling booths. Errors — despite the best efforts to minimise them — are inevitable in large elections
and such localised recovery may considerably improve the election’s overall robustness and transparency.

However, recoverability has a natural tradeoff with vote secrecy. For example, a naive approach that simply
publishes and audits votes for each polling booth reveals voting statistics of each booth. In electoral contexts where
voters are assigned a specific polling booth according to their residential neighbourhoods, with only a few thousand
voters per booth, e.g., in India, revealing booth-level voting statistics poses a significant risk of localised targeting
and coercion [3]. Our approach minimises booth-level voting data exposure, disclosing only what is absolutely
necessary for recovery.

Main contributions. 1) We analyse the design requirements for a recoverable and secrecy-preserving dual voting
protocol (Section 2). 2) We formalise the notion of recoverability and secrecy in terms of the capability to verifi-
ably identify polling booths contributing to verification failures and extract a verifiable subset of error-free votes
in zero-knowledge (Section 3). 3) We propose a novel dual-voting protocol called OpenVoting that satisfies our
notions of recoverability and secrecy (Section 4).

Related work. Dual voting was introduced by Benaloh [5], following which multiple dual voting protocols
emerged [17, 13, 22, 4, 12]. Bernhard et al. [6] gives a comprehensive survey of the tradeoffs and open prob-
lems in E2E-V and RLA-based voting.

Rivest [23] proposed the notion of strong software independence that is similar to our notion of recoverability.
It demands that a detected change or error in an election outcome (due to a change or error in the software) can
be corrected without re-running the (entire) election. However, “correcting” errors without re-running even parts
of an election requires a ground truth, which is usually assumed to be the paper audit trail. Instead, we propose
partial recoverability via fault localisation, without completely trusting either paper or electronic votes. The notion
of accountability [15] is also related, but it is focused on assigning blame for failures and not on recovering from
them.

2 Design Requirements
In a typical dual voting protocol, the vote casting process produces a) a VVPR containing the voter’s vote in
cleartext and b) a voter receipt containing an encryption of the vote. The encrypted votes are published on a bulletin
board, typically by a polling officer, and are processed by a cryptographic backend to produce the electronic tally.
The backend typically consists of multiple independent servers which jointly compute the tally from the encrypted
inputs, provide a proof of correctness, and preserve vote secrecy unless a threshold number of servers are corrupted.
VVPRs counted together produce the paper tally.

Our high-level goal is to publicly verify whether both tallies represent true voter intents and whether all public
outputs are consistent with each other. If not, the aim of recovery is to identify booths contributing to the inconsis-
tencies, and segregate the outputs produced by other error-free booths, without leaking any additional information.
For this, the protocol design must fundamentally have the following features:

1. The backend must publish individual decrypted votes with matching identifiers with the VVPRs1, to narrow
down tally inconsistencies to individual vote mismatches.

2. The encrypted votes must have voter and booth identifiers. The former enable matching with voter receipts; the
latter enable identifying booths in case of errors.

3. The decrypted votes and VVPRs and their identifiers must be unlinkable to encrypted votes, voter receipts or
voter identifiers to ensure vote secrecy. They should also be unlinkable to the booth identifiers to hide booth-level
voting statistics.

4. For the same reason, VVPRs should be revealed and counted only after aggregating them over all the polling
booths.

1Homomorphic tallying based backends [1, 4] report only the final tally and do not support this.
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Figure 1: A recoverable dual voting protocol design. The VVPR for a voter with identifier vidi voting at booth boothi contains
a ballot identifier bidi and cleartext vote vi. Her encrypted vote ci encrypts a value, e.g., (bidi, vi), that when decrypted can
be uniquely matched with the corresponding VVPR. Decrypted votes are published by backend servers M1, . . . ,Mm in a
permuted order under a secret shared permutation π such that (bid′i, v

′
i) = (bidπ(i), vπ(i)). Note that nc and nv denote the

number of encrypted votes and decrypted votes respectively.

Input-phase failures1,2

FI1 A receipt r against vid exists in R but no encrypted vote against vid exists in C
FI2 The encrypted vote c in C against vid does not match the receipt r in R against vid
Mixing-phase failures2,3

FM1 An encrypted vote c in C does not decrypt to any cleartext vote (bid, v) in V
FM2 A cleartext vote (bid, v) in V is not obtained by decrypting any encrypted vote c in C
FM3 Two encrypted votes in C decrypt to the same cleartext vote (bid, v) in V
Output-phase failures2

FO1 An (electronic) decrypted vote (bid, v) exists in V but no VVPR against bid exists in P
FO2 A VVPR (bid, v) exists in P but no decrypted vote against bid exists in V
FO3 The decrypted vote v against bid in V does not match the cleartext vote in the VVPR against bid in P
FO4 Two decrypted votes in V match with a single VVPR (bid, v) in P
FO5 Two VVPRs in P match with a single decrypted vote (bid, v) in V
Cast-as-intended failures
FC A receipt r obtained at a polling booth j does not encrypt the voter’s intended vote correctly

1A spurious encrypted vote against a vid in C without a receipt in R against that vid is not considered a failure, because some voters may not upload their receipts.
Also, we do not consider duplicated receipts and encrypted votes because vids are assumed to be unique identifiers.
2We only consider authentic entries in R, C, V and P . Failures where the authenticity of these items cannot be verified are considered equivalent to failures where
they are not even uploaded. Receipts and VVPRs are authenticated by official stamps and encrypted and decrypted votes by appropriate digital signatures.
3The case of a single encrypted vote in C decrypting to two different entries in V is not considered because this will result in duplicated entries in V , which can be
clearly attributed to backend failures and removed without any dispute.

Figure 2: Potential failures given public outputs (R,C, V, P ).

The encrypted and decrypted votes must be published on two public bulletin boards to enable voters to match their
receipts and public verification of the electronic tally. It will also be helpful to upload all VVPRs after scanning,
and as many voter receipts as possible, to two other bulletin boards for better transparency and public verifiability.
We depict such a design in Figure 1.

Note that the public outputs in Figure 1 are effectively claims endorsed by various entities as to what should
be the correct vote: receipts by voters, encrypted votes by polling officers, decrypted votes by the backend servers,
and VVPRs by the VVPR counting authorities. We group disputes between these claims into input-phase failures,
for mismatches between published voter receipts and encrypted votes, mixing-phase failures, for mismatches be-
tween encrypted votes and decrypted votes, and output-phase failures, for mismatches between decrypted votes and
VVPRs (see Figure 2). Further, we categorise claims of receipts not encrypting voter intents correctly as cast-as-
intended failures. Given these failures, recoverability requires an audit protocol that verifies whether the different
claims for a given vote are consistent, resolves disputes otherwise, and narrows down the affected votes when the
disputes are unresolvable.

To recover from input-phase failures, it is not sufficient if a statistically significant sample of voters from the
entire constituency verify their receipts, because in case of any failure, all the uploaded encrypted votes become un-
trustworthy. Thus, the population for sampling must be each polling booth. This does increase the voter verification
overhead, but offers better localisation of errors and recovery.

Recoverability from mixing-phase failures requires that in case the output list of decrypted votes is not correct,
individual failing entries — encrypted votes whose decryptions were not available in V and individual decrypted
votes that were not decrypted by any encrypted vote on C — should be verifiably identified by the backend servers.
And, this must be achieved without leaking any additional information.
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Recoverability from output-phase failures requires identifying which of the electronic vote and the VVPR rep-
resents the voter’s intent. This may be possible in some cases but not always. For example, if the voter’s receipt is
available on R, then the dispute can be resolved if one can verify in zero-knowledge that the receipt encrypted the
electronic vote and not the paper one, or vice versa.

In some cases, the disputes may not be resolvable at all. Consider case FO3 in Figure 2 and suppose the receipt is
not available. FO3 may be due to a) the polling officer uploading an encrypted vote not matching the voter’s receipt;
b) the voter dropping a bogus VVPR into the ballot box; c) a malicious agent altering the VVPRs post-polling; or d)
the backend servers not decrypting the uploaded encrypted vote correctly. Different cases point to failures in either
the electronic vote or the VVPR and it is not possible to identify the true voter intent. Thus, a conservative way
to recover from this situation is to identify the polling booth where the dispute may have originated and conduct
only a local re-election at this booth. This must be done without revealing polling booth statistics of at least the
uncorrupted polling booths.

The required action in all the above cases can be reduced to the backend proving in zero-knowledge that an
encrypted vote corresponds to one of a set of decrypted votes (a distributed ZKP of set-membership [2]), or that a
clear-text vote is a decryption of one of a set of encrypted votes (a distributed ZKP of reverse set-membership [2]).

Cast-as-intended failures may typically happen in two ways. First, ballots may be malformed. Protection against
this threat requires a separate audit of a statistically significant sample of ballots before vote casting. Recoverability
additionally requires ballot audits to be performed per polling booth. Second, ballots or receipts may be marked
incorrectly. In dual voting systems based on hand-marked ballots, the voter may mark the encrypted and the VVPR
parts differently, leading to failures. Although this is easily detected and invalidated during VVPR audit, fixing
accountability may be difficult and hence voters may do this deliberately to discredit the election. In systems based
on ballot marking devices (BMD), such voter errors are avoided but a dispute may be raised that the ballot marking
is not according to the voter’s choice. Such a dispute between a man and a machine is unresolvable and the only
recourse is to allow the voter to revote. This may however cause a deadlock, which can only be resolved through a
social process. Still, a BMD should be a preferred option for dual voting since it minimises voter-initiated errors.

3 Formalisation
We now formalise the requirements outlined in the previous section. Given a positive integer x, let [x] denote
the set {1, . . . , x}. We consider a dual-voting protocol involving α candidates, n voters (Vi)i∈[n], τ ballot gen-
erators (Gt)t∈[τ ], ℓ polling booths consisting of polling officers (Pj)j∈[ℓ], BMDs (Dj)j∈[ℓ] and physical ballot
boxes (Bj)j∈[ℓ], m backend servers (Mk)k∈[m], and an auditor A. We also assume existence of a public bulletin
board where lists R, C, V and P are published. We consider a protocol structure (Setup, BallotGen, Cast, Tally,
BallotAudit, ReceiptAudit, TallyAudit) where:

• Setup is a protocol involving (Gt)t∈[τ ], (Pj)j∈[ℓ] and (Mk)k∈[m] to generate public/private key pairs and other
public election parameters.

• BallotGen is a protocol involving (Gt)t∈[τ ] to securely print a sealed ballot given a booth identifier j ∈ [ℓ].

• Cast is the vote casting protocol involving Vi and Pj , Dj , Bj at booth j ∈ [ℓ] assigned to Vi. Vi’s input is its
intended vote v and a ballot b. The protocol outputs a voter receipt r, an encrypted vote c and a VVPR p such
that p gets dropped in ballot box Bj , Vi takes r home and Pj uploads c on C. The voter may or may not publish
r on R. The VVPR is published on P after aggregating VVPRs from all the booths.

• Tally is the vote processing/tallying protocol involving (Mk)k∈[m] where they take as input the encrypted votes
(ci)i∈[n] published on C, permute and decrypt them and publish a list (v′i)i∈[n] of decrypted votes on V .

• BallotAudit is a protocol involving A and Pj executed at each booth j to verify if ballots at booth j are well-
formed.

• ReceiptAudit is a protocol involvingA and the voters to verify that voter receipts at booth j match those uploaded
on list C.

• TallyAudit is a protocol involving A, (Mk)k∈[m] and (Gt)t∈[τ ] to verify whether the electronic and paper tallies
are correct and narrow down errors if not. It takes as input all published lists (R,C, V, P ) and lets A output a
tuple (J∗, V ∗) where J∗ denotes the set of booths that contributed potentially outcome-changing failures and
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V ∗ denotes the set of votes from booths not in J∗ (A may also be aborted). The expected usage of the (J∗, V ∗)
output is that in case of failures/disputes, the election could be rerun at the booths in J∗ and the rerun results could
be merged with the recovered partial tally from V ∗ to obtain the complete election tally. Results are announced
to the general public only after TallyAudit has finished.

Note that although the above audits are performed by different auditors (even voters) at different times and places,
we simplify by representing all the auditors by A.

Let ϵb denote the probability that BallotAudit passes at some booth j yet a receipt from the booth does not
encrypt the voter’s intent correctly, and ϵr denote the probability that ReceiptAudit passes for booth j yet a receipt
from the booth is not uploaded correctly. Further, let R∗ ⊆ R, C∗ ⊆ C and P ∗ ⊆ P respectively denote receipts,
encrypted votes and VVPRs from booths not in J∗. Finally, let failures in a tuple (R,C, V, P ) be as defined in
Figure 2 with the added condition that if a receipt or encrypted vote from a booth fails with input-phase or cast-as-
intended failures, then all receipts and encrypted votes from that booth are considered as failures.

Definition 1 models our notion of recoverability parametrised by probabilities ϵb and ϵr denoting the effective-
ness of ballot and receipt audits. The case when J∗ is empty denotes that no rerun is required at any booth, either
because the election ran completely correctly, or because the number of failures are small compared to the reported
winning margin. When non-empty, J∗ should exactly be the set of booths where re-run is required because of fail-
ures that may affect the final outcome and votes V ∗ must be consistent with receipts, encrypted votes and VVPRs
from booths not in J∗.

Note that the auditor is allowed to abort the TallyAudit protocol, since if the mix-servers and the ballot genera-
tors holding the election secrets do not cooperate, then recovery cannot happen. This is not an issue because unlike
polling booth failures, these failures are centralised and non-cooperation directly puts the blame on these entities.

Definition 1 (Recoverability). A voting protocol (Setup, BallotGen, Cast, Tally, BallotAudit, ReceiptAudit, TallyAudit)
is recoverable by the audit protocols if for all polynomially bounded adversaries corrupting (Gt)t∈[τ ], (Mk)k∈[m],
(Pj)j∈[ℓ], (Dj)j∈[ℓ] and (Bj)j∈[ℓ] such thatA outputs a tuple (J∗, V ∗) and does not abort, the following conditions
hold true with probability only negligibly smaller than 1− ℓ(ϵb + ϵr):

• if J∗ is empty, then the number of failures in (R∗, C∗, V ∗, P ∗) is less than the reported winning margin computed
from V ; and

• if J∗ is non-empty, then (R∗, C∗, V ∗, P ∗) does not contain any failures and J∗ is exactly the set of booths that
contributed some failing receipt in R, some failing encrypted vote in C, or some failing VVPR in P .

Definition 2 models that in the presence of the TallyAudit protocol, the standard vote secrecy guarantee is
maintained except that polling booth statistics of the booths contributing some failing items are revealed. This is
generally an unavoidable tradeoff.

Definition 2 (Vote Secrecy with Recoverability). A voting protocol (Setup, BallotGen, Cast, Tally, BallotAudit,
ReceiptAudit, TallyAudit) protects vote secrecy with recoverability if no polynomially bounded adversary control-
ling the auditor A, (Pj)j∈[ℓ], (Dj)j∈[ℓ], (Gt)t∈[τ ]\{t∗} for some t∗ ∈ [τ ], (Mk)k∈[m]\{k∗} for some k∗ ∈ [m],
and (Vi)i∈[n]\{i0,i1} for some i0, i1 ∈ [n] can distinguish between the following two worlds except with negligible
probability:

• (World 0) Vi0 votes v0 at booth j0 and Vi1 votes v1 at booth j1, and

• (World 1) Vi0 votes v1 at booth j0 and Vi1 votes v0 at booth j1,

where v0, v1 are any two valid votes and for each failure from booth j0, the adversary must create an identical
failure (same failure type and affected vote) from booth j1.

4 The OpenVoting Protocol

4.1 Preliminaries
Notation. Let G1,G2,GT denote cyclic groups of prime order q (q ≫ α,m, n, ℓ) such that they admit an efficiently
computable bilinear map e : G1 ×G2 → GT . We assume that the n-Strong Diffie Hellman (SDH) assumption [7]
holds in (G1,G2), the decisional Diffie-Hellman (DDH) and the discrete logarithm (DL) assumptions hold in G1,
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and that generators g1, h1 ∈ G1 are chosen randomly (say as the output of a hash function) so that nobody knows
their mutual discrete logarithm.

Traceable Mixnets [2]. Traceable mixnets extend traditional mixnets [14] to enable the distributed ZKPs of set
membership mentioned in Section 2. Thus, we use them as our cryptographic backend. In traceable mixnets, the
backend servers, often also called mix-servers, can collectively prove answers to the following queries in zero-
knowledge:

• TraceIn: whether a ciphertext c (from the mixnet’s input ciphertext list) encrypts a value in a subset of output
plaintexts (denoted as (v′i)i∈I′ for some I ′ ⊆ [n]).

• TraceOut: whether a plaintext v (from the mixnet’s output plaintext list) is encrypted in one of a subset of input
ciphertexts (denoted as (ci)i∈I for some I ⊆ [n].).

There are also batched versions of these queries called BTraceIn and BTraceOut, which prove multiple TraceIn and
TraceOut queries together.

Formally, a traceable mixnet ΠTM is a protocol between a set of senders S1, . . . , Sn, a set of mix-servers
(Mk)k∈[m] and a querier Q and consists of algorithms/sub-protocols (Keygen,Enc,Mix,BTraceIn,BTraceOut)
where:

• Keygen is a distributed key generation protocol involving (Mk)k∈[m] that outputs a mixnet public key mpk and
secret keys msk(k) for each mix-serverMk.

• Enc is the encryption algorithm that a sender Si uses to create a ciphertext ci encrypting its secret input vi against
mpk.

• Mix is the mixing protocol involving (Mk)k∈[m] that takes as input the list of ciphertexts (ci)i∈[n] uploaded by
(Si)i∈[n] and outputs a list of permuted plaintexts (v′i)i∈[n] and a secret witness ω(k) for eachMk.

• BTraceIn is a protocol involving (Mk)k∈[m] and Q that takes as input (ci)i∈[n] and (v′i)i∈[n] and index sets
I, I ′ ⊆ [n] (eachMk additionally uses ω(k)). At the end of the protocol, Q either outputs the subset of ciphertexts
{ci}i∈I that encrypt some plaintext in {v′i}i∈I′ or aborts.

• BTraceOut is a protocol involving (Mk)k∈[m] and Q that takes exactly the same inputs as BTraceIn. In this case,
Q either outputs the subset of plaintexts {v′i}i∈I′ that are encrypted by some ciphertext in {ci}i∈I or aborts.

The soundness property of traceable mixnets states that an adversary controlling all (Mk)k∈[m] cannot make Q out-
put an incorrect set. Their secrecy property states that an adversary controlling (Mk)k∈[m]\{k∗} for some k∗ ∈ [m],
Q and (Si)i∈[n]\{i0,i1} for some i0, i1 ∈ [n] cannot distinguish between a world where (Si0 , Si1) respectively en-
crypt (v0, v1) and the world where they encrypt (v1, v0), if the BTraceIn and BTraceOut query outputs do not leak
this information, i.e., if in all BTraceIn queries, v0 ∈ {v′i}i∈I′ iff v1 ∈ {v′i}i∈I′ and in all BTraceOut queries,
i0 ∈ I iff i1 ∈ I .

An instantiation of traceable mixnets. [2] also provides a concrete instantiation of a traceable mixnet, which we
use. In this instantiation, mpk is of the form ((pkMk

)k∈[m], pkEG, pkPa), where pkMk
is the public key of any IND-

CPA secure encryption scheme E, and pkEG and pkPa are respectively public keys of Eth
EG, the threshold ElGamal

encryption scheme [10] with message space G1, and Eth
Pa, the threshold Paillier encryption scheme proposed in [9]

with message space ZN for an RSA modulus N . The secret key msk(k) for each Mk consists of the secret key
skMk

corresponding to pkMk
and the kth shares of the secret keys corresponding to pkEG and pkPa. Further, Enc

on input a value v ∈ Zq outputs a ciphertext of the form (ϵ, γ, (ev(k), er(k))k∈[m], ργ , ϵr), where

• ϵ← Eth
Pa.Enc(pkPa, v) is an encryption of v (interpreted as v ∈ ZN ) under Eth

Pa,

• γ = gv1h
r
1 is a Pedersen commitment [20] to v in G1 under randomness r ∈ Zq ,

• ev(k) ← E.Enc(pkMk
, v(k)) is an encryption of a secret share v(k) of v,

• er(k) ← E.Enc(pkMk
, r(k)) is an encryption of a secret share r(k) of r,
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Figure 3: Overview of the OpenVoting protocol: w represents the candidate index in the ballot and ẇ represents the
voter’s choice.

• ργ ← NIZKPK{(v, r) : γ = gv1h
r
1} is a noninteractive ZKP of knowledge of the opening of γ, and

• ϵr ← Eth
Pa.Enc(pkPa, r) is an encryption of r (interpreted as r ∈ ZN ) under Eth

Pa.

In our protocol, the encrypted votes are encryptions under Enc, where we instantiate scheme E with the (non-
threshold) Paillier encryption scheme [19]. We need it for its following homomorphic property: given two Paillier
ciphertexts c1, c2 encrypting messages m1,m2 ∈ Zq respectively (m1,m2 interpreted as messages in ZN ), the
ciphertext c1c2 encrypts the message m1 + m2 mod N = m1 + m2 if N > 2q. We also require a public-key
digital signature scheme ΠS := (Keygen, Sign, Ver) with the usual existential unforgeability property under chosen
message attacks (EUF-CMA).

4.2 The Proposed Protocol
Figure 3 depicts the high-level OpenVoting protocol. Two ballot generators (G1 and G2) jointly generate sealed
ballots to protect voter-vote association from both. Voters use the sealed ballots and a BMD to cast their votes.
Each ballot contains two halves. The BMD prints the voter’s choice on both halves without learning the vote. The
left half becomes the VVPR and is deposited by the voter in a physical ballot box, while the right half becomes
the voter receipt. Polling officers scan the voter receipts and upload the encrypted votes to C. The encrypted
votes are processed by a traceable mixnet backend to produce decrypted votes V . Voters can verify their receipts
against the encrypted votes, and VVPRs can be matched with the decrypted votes. The tally audit process uses the
traceable mixnet’s querying mechanism to identify polling booths contributing to failures without leaking additional
information. Results are announced only after this audit step. Now we describe the sub-protocols of OpenVoting in
detail.

4.2.1 Setup

During the Setup protocol, G1 and G2 generate public/private keys pkG1
, skG1

and pkG2
, skG2

under ΠS. Polling
officers (Pj)j∈[ℓ] also generate public/private keys (pkPj

, skPj
)j∈[ℓ] under ΠS. Mix-servers (Mk)k∈[m] jointly run

the ΠTM.Keygen protocol of the traceable mixnet to generate the mixnet public key mpk and individual secret keys
(msk(k))k∈[m] for each (Mk)k∈[m]. An official candidate list (cand0, . . . , candα−1) is created such that canda
denotes the ath candidate.
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4.2.2 Ballot Design

Our ballot (Figure 3 - left) customises the Scratch & Vote ballot [1] for dual voting and BMD support. It consists
of two halves connected by a perforated line. The left half serves as the VVPR, while the right half serves as the
voter receipt. These halves are unlinkable after the vote is cast.

The left half includes a randomly drawn ballot identifier bid from Zq . It displays a circular rotation of the official
candidate list. For each w ∈ {0, . . . , α− 1}, row w corresponds to the candidate candbid+w mod α. For example, if
the official candidate list is (“Alice”, “Bob”, “Carol”), and bid = 302, the candidate printed on row w = 1 would be
cand302+1 mod 3 = cand0 (i.e., “Alice”). The right half contains corresponding encryptions cw obtained by running
the ΠTM.Enc algorithm on input v̄w = bid + w, except that they do not include the ργw component; this is added
during the Tally protocol. We call values v̄w ∈ Zq the extended votes and values vw := v̄w mod α ∈ [α] the raw
votes. The randomnesses rw used in creating encryption cw are kept secret and placed under a detachable scratch
surface on the ballot.

Both halves feature a designated gray area at the top. During the Cast protocol, the BMD prints the voter-
selected w in this gray area on both halves. Additionally, the right half includes a polling booth identifier j for the
designated polling booth of the ballot, while the left half contains its commitment γbooth = gjhrbooth . Randomness

rbooth
$←− Zq is also put under a separate scratch surface. The commitment γbooth is revealed when the polling booth

of a disputed VVPR needs to be identified in the TallyAudit protocol.
Due to the size of encryptions cw (around 20 KB each [2]), they may not fit within standard QR codes on the

paper ballot. However, conceptually, the actual encryptions could be stored in a backend server, with only a binding
hash printed on the ballot. For simplicity, we ignore this complication.

4.2.3 Ballot Generation

During the BallotGen protocol, a ballot is jointly generated by G1 and G2 to hide the voter-vote association from
any one of them (see Figure 4). G1, who selects the ballot secrets, does not learn the encryptions printed on the
receipt half and cannot match voters to their ballot secrets, while G2, who creates the receipt half, does not know
the ballot secrets.
G2 knows the destination booth j but keeps it hidden from G1 to hide booth-level voting statistics. It generates

a commitment γbooth for j and shares it with G1 (lines 1-2), who prints it on the left half of the ballot. G1 generates
a secret ballot identifier bid and signs it (lines 2-3), computes v̄w = bid + w for each w and accordingly prints
candidate names on the left half and randomnesses rw under a scratch surface on the right half (lines 6,10). It then
sends the partially printed ballot to G2, keeping the left half hidden. This can be done, e.g., by folding the ballot
along the perforation line, sealing it and letting G2 print its contents on the back side of the right half. It also sends
encryptions of each v̄w under ΠTM.Enc, except the ργw components, to G2 (lines 7-9,12).
G2 re-randomises the obtained commitments/encryptions and homomorphically computes fresh shares of v̄w

and the commitment randomnesses using the additive homomorphism of E in Zq (lines 13-19). It then prints these
re-randomised encryptions on the right half of the received ballot and signs them. The re-randomisation ensures
that G1 cannot identify the ballot corresponding to a voter from their receipt. The commitment randomness rbooth
of γbooth is printed on another scratch surface on the right half.

4.2.4 Vote Casting

The Cast protocol for voter Vi at booth j is as follows (Figure 3 - center):

• Ballot pick-up and eligibility verification: Vi picks up a random sealed ballot from a set of ballots kept at the
polling booth. The polling officer Pj verifies Vi’s eligibility in the presence of polling agents and allows Vi to
proceed to a private room containing a BMD Dj .

• Vote casting: Vi feeds the top gray region of the ballot to Dj and presses a button on the onscreen display to
select w corresponding to her preferred candidate. We denote the voter’s chosen w as ẇ. Dj can only access
the top gray region for printing and cannot read any part of the ballot (it should not have any attached scanner or
camera). Dj prints ẇ on both the left and the right halves of this gray region.

Vi needs to verify that indeed her intended choice is printed on both the halves. If satisfied, Vi separates the left
half of the marked ballot (the VVPR), folds it and drops it into a physical ballot box Bj kept near Pj such that
Pj can verify that the voter dropped an official VVPR. The right half (the receipt) is given to Pj for scanning. If
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1 G2: rbooth
$←− Zq; γbooth ← gj1h

rbooth
1

2 G2: send γbooth to G1
3 G1: bid

$←− Zq

4 σbid ← ΠS.Sign(skG1 , bid)
5 for w ∈ {0, . . . , α− 1}:
6 v̄w ← bid+ w; rw

$←− Zq; γw ← gv̄w1 hrw
1

7 ϵv̄w ← Eth
Pa.Enc(pkPa, v̄w); ϵrw ← Eth

Pa.Enc(pkPa, rw) // interpret vw, rw as elements of ZN

8 (v̄
(k)
w )k∈[m] ← Share(m,m)(v̄w); (r

(k)
w )k∈[m] ← Share(m,m)(rw)

9 (ev
(k)
w )k∈[m] ← (E.Enc(pkMk

, v̄
(k)
wi ))k∈[m]; (er

(k)
wi )k∈[m] ← (E.Enc(pkMk

, r
(k)
wi ))k∈[m]

10 print ballot’s left half (candv̄w mod α on row w) and (rw)w∈{0,...,α−1} under a scratch surface as per Fig. 3 - left
11 send the ballot to G2 with its left half sealed
12 send (ϵv̄w , γw, (ev

(k)
w , er

(k)
w )k∈[m], ϵrw)w∈{0,...,α−1} to G2 electronically

13 G2: for w ∈ {0, . . . , α− 1}:
14 r′w

$←− Zq; γ′
w ← γwh

r′w
1

15 ϵ′v̄w ← Eth
Pa.REnc(pkPa, ϵv̄w); ϵ

′
rw ← Eth

Pa.REnc(pkPa, ϵrw) // Eth
Pa.REnc(pkPa, ϵ) = ϵEth

Pa.Enc(pkPa, 0)

16 (v′
(k)
w )k∈[m] ← Share(m,m)(0); (r′

(k)
w )k∈[m] ← Share(m,m)(r

′
w)

17 (ev′
(k)
w )k∈[m] ← (ev

(k)
w · E.Enc(pkMk

, v′
(k)
w ))k∈[m]

18 (er′
(k)
w )k∈[m] ← (er

(k)
w · E.Enc(pkMk

, r′
(k)
w ))k∈[m]

19 cw := (ϵ′v̄w , γ
′
w, (ev

′(k)
w , er′

(k)
w )k∈[m], ϵ

′
rw)

20 σc ← ΠS.Sign(skG2
, H((cw)w∈{0,...,α−1})), where H is a hash function

21 print ballot’s right half and rbooth under another scratch surface as per Fig. 3 - left
22 store (j, rbooth) indexed by γbooth

Figure 4: The BallotGen protocol for generating a ballot for booth j known only to G2.

not satisfied, Vi shreds the marked ballot and raises a dispute. In this case, Vi is allowed to re-vote. Note that the
vote casting phase can also completely avoid the BMD and require the voter to hand-mark the two ballot halves,
but this design is prone to more voter errors (see Section 2).

• Receipt scanning: Pj checks that the scratch surface on Vi’s receipt is intact, i.e., the ballot secrets are not
compromised, and shreds the scratch region in front of Vi. From the scanned receipt, Pj extracts cẇ and uploads
(vidi, j, cẇ) to C, along with σvidi ← ΠS.Sign(skPj , (vidi, j, cẇ)). Pj also affixes vidi to Vi’s receipt, stamps it
for authenticity, and returns it to Vi.

Chain voting and randomisation attacks. With minor modifications, these sophisticated coercion attacks can also
be handled. For chain voting, Pj can stamp a serial number on the receipt half of the sealed ballot after identity
verification to prevent the use of rogue ballots. This number is matched before accepting the voter’s receipt. Under
a randomisation attack, voters may be asked to choose a fixed ẇ, thereby randomising their votes. To counter this,
voters should be allowed to choose their ballots in a private room. The ballot cover should contain a detachable
slip showing the candidate order, allowing coerced voters to choose a ballot so that they can vote for their preferred
candidate while producing the ẇ satisfying the coercer. Before proceeding to Pj , the voter should detach the slip.

4.2.5 Vote Tallying

Post polling, (Mk)k∈[m] process the tuples {(vidi, ji, ci)}n−1
i=0 uploaded on C by (Pj)j∈[ℓ], where ci denotes cẇ

for the ith voter (Figure 3 - right). (Mk)k∈[m] proceed as per Figure 5 where they first add the ργi components to
the encryptions ci by engaging in a distributed NIZK proof of knowledge (lines 2-9) and then processing (ci)i∈[n]

through the traceable mixnet’s Mix protocol (line 13). At the end, the permuted extended votes (v̄′i)i∈[n] are obtained
from which the raw votes are computed (line 14). Both extended and raw votes are published on V .

The VVPRs from each polling booth’s ballot box are collected and mixed in a central facility. VVPRs are
revealed to the public only after this mixing phase and post audit, to avoid leaking polling booth-level voting
statistics. A VVPR containing ballot identifier bid and voter choice ẇ can be matched with the corresponding
decrypted vote by computing bid + ẇ, finding it on V and checking if the corresponding raw vote matches the
candidate name printed on the ẇth row on the VVPR.
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1 (Mk)k∈[m]: for i ∈ [n]:
2 v̄

(k)
i ← E.Dec(skMk

, ev
(k)
i ) // decryption under E

3 r
(k)
i ← E.Dec(skMk

, ev
(k)
i )

4 // Generate a distributed NIZK PoK ργi
of the opening of γi using shares (v̄(k)i , r

(k)
i )k∈[m]

5 r
(k)
vi , r

(k)
ri

$←− Zq; a(k)i ← g
r(k)
vi

1 h
r(k)
ri

1 ; publish a
(k)
i .

6 ci ← H(γi∥
∏

k∈[m] a
(k)
i ); z(k)v̄i ← r

(k)
vi − v̄

(k)
i ci; z

(k)
ri ← r

(k)
ri − r

(k)
i ci; publish z

(k)
v̄i , z

(k)
ri .

7 ργi := (ai, ci, (zv̄i , zri))← (
∏

k∈[m] a
(k)
i , H(γi∥

∏
k∈[m] a

(k)
i ), (

∑
k∈[m] z

(k)
v̄i ,

∑
k∈[m] z

(k)
ri )).

8 // ργi can be verified by checking if ci
?
= H(γi∥ai) and γci

i g
zv̄i
1 h

zri
1

?
= ai.

9 update ci by inserting ργi into it
10 endfor
11 // Mixing protocol to generate permuted extended votes
12 // EachMk gets secret input msk(k) and secret output ω(k) (see Section ??)
13 (Mk)k∈[m]: (v̄′i)i∈[n], (Mk[[ω

(k)]])k∈[m] ← ΠTM.Mix(mpk, (ci)i∈[n], (Mk[[msk(k)]])k∈[m])
14 (v′i)i∈[n] ← (v̄′i mod α)j∈[n]

15 publish (v̄′i)i∈[n], (v′i)i∈[n] to V ;Mk stores ω(k)

Figure 5: The Tally protocol involving (Mk)k∈[m] on input mpk, (ci)i∈[n] and Mk’s input msk(k) containing
skMk

.

4.2.6 Ballot and Receipt Audits

In the BallotAudit protocol, a statistically significant number of ballots at each polling booth must be audited to
keep the probability ϵb of a cast-as-intended failure (see Section 3) small. Ballot audits can happen before, during
or after polling, and even be initiated by voters. When auditing a ballot, its sealed cover is opened and secrets under
its scratch surfaces are revealed. For each w = 0 . . . α − 1, it is checked that encryption cw is created correctly
on message bid + w using rw and the candidate name printed at row w is candbid+w mod α, where bid is looked
up from the left half and rw from the scratch surface. Further, it is checked that γbooth

?
= gj1h

rbooth
1 , where j is the

audited booth’s identifier and rbooth is obtained from the scratch surface, and that signatures by G1,G2 verify. Since
the secrets of audited ballots are revealed, audited ballots cannot be used for vote casting and must be spoiled.

Similarly, in the ReceiptAudit protocol, a statistically significant number of voter receipts from each polling
booth must be checked for their existence on list C to keep ϵr small. All audited receipts should be uploaded to R
to aid audit and recovery.

4.2.7 Tally Audit

Our tally audit protocol (see Figure 6) depends on BTraceIn and BTraceOut queries of a traceable mixnet (see
Section ??). Given (R,C, V, P ), first, all input-phase failures are marked (lines 1-3). Here, as per the discussion
in Section 2, we mark all receipts/encrypted votes from a booth as failed if any one of them fails and the encrypted
votes as failed if the ballot audit at that booth failed. For marking mixing phase failures on C and V , we run the
BTraceIn/BTraceOut queries against the complete set of entries on V and C respectively (lines 4-5). Output-phase
failures are marked by comparing the VVPRs with the decrypted extended votes (lines 6-7).

If the total number of failures is less than the winning margin, then J∗ = ∅ and V ∗ = V are reported, signalling
that no rerun is required (lines 9-10). Otherwise, polling booths contributing all the failing items are identified:
for receipts and encrypted votes, the booth identifiers directly exist on R and C (line 12); for VVPRs without an
electronic entry, they are identified by asking G2 to open the opening of γbooth printed on the VVPR (line 13); for
decrypted votes, a BTraceOut query against the set of ciphertexts cast at a booth j is run for all booths j ∈ [ℓ] (lines
14-18). The set of all such booths is reported in J∗ (line 19). The decrypted votes V ∗ contributed by the good
booths are obtained by running another BTraceOut query against the entries on C contributed by booths outside of
J∗ (line 21).

4.2.8 Recovery

The suggested recovery is to rerun the election only on booths in J∗ and later merge this tally with the tally reported
in V ∗. However, if J∗ is small, one can also consider rerunning on a few randomly selected good booths too, to
avoid specialised targeting of the booths in J∗. Further, the general approach of TraceIn/TraceOut queries can also
support other recovery options for dual voting systems. For example, one can immmediately recover from case
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1 JFC ← {j ∈ [ℓ] | BallotAudit fails at booth j}
2 RFI ← {r ∈ R | r fails against C under FI1,FI2}; RFI ← {(vid, j, c) ∈ R | (vid′, j, c′) ∈ RFI}
3 CFI ← {c ∈ C | c fails against R under FI2}; CFI ← {(vid, j, c) ∈ C | (vid′, j, c′) ∈ CFI ∨ j ∈ JFC}
4 CFM ← {ci}i∈[nc] \ BTraceIn(mpk, (ci)i∈[nc], (v̄

′
i)i∈[nv], [nc], [nv], (Mk[[msk(k), ω(k)]])k∈[m],A[[]])

5 VFM ← {v′i}i∈[nv] \ BTraceOut(mpk, (ci)i∈[nc], (v̄
′
i)i∈[nv], [nc], [nv], (Mk[[msk(k), ω(k)]])k∈[m],A[[]])

6 VFO ← {v̄ ∈ V | v̄ fails against P under FO1,FO3,FO4}
7 PFO ← {p ∈ P | p fails against V under FO2,FO3,FO5}
8 RF ← RFI; CF ← CFI ∪ CFM; VF ← VFM ∪ VFO; PF ← PFO
9 if |RF|+ |CF|+ |VF|+ |PF| < winning margin calculated from V :

10 J∗ ← ∅; V ∗ ← V
11 else:
12 badboothsr ← {j | (vid, j, c) ∈ RF}; badboothsc ← {j | (vid, j, c) ∈ CF}
13 badboothsp ← {j | G2 supplies (j, rbooth) to A for γbooth printed on some p ∈ PF s.t. γbooth = gj1h

rbooth
1 }

14 badboothsv ← ∅
15 for j in [ℓ]:
16 // Ij denotes indices of booth j’s entries in C; I ′VF

denotes indices of VF entries on V

17 VFj
← BTraceOut(mpk, (ci)i∈[nc], (v

′
i)i∈[nv], Ij , I

′
VF
, (Mk[[msk(k), ω(k)]])k∈[m],A[[]])

18 if VFj
̸= ∅: badboothsv ← badboothsv ∪ {j}

19 J∗ ← badboothsr ∪ badboothsc ∪ badboothsp ∪ badboothsv
20 // Igoodbooths denotes indices of booths outside J∗ in C; I ′V \VF

denotes indices of entries outside VF on V

21 V ∗ ← BTraceOut(mpk, (ci)i∈[nc], (v
′
i)i∈[nv], Igoodbooths, I

′
V \VF

, (Mk[[msk(k), ω(k)]])k∈[m],A[[]])
22 return J∗, V ∗

Figure 6: The TallyAudit protocol involving A, (Mk)k∈[m] and G2 with public input (R,C, V, P ), each Mk’s
input its mixnet secret key msk(k) and witness ω(k) output by the traceable mixnet during the Tally protocol, and
G2’s input being (j, rbooth) stored indexed by γbooth at the end of the BallotGen protocol.

FO3 if a TraceOut query is run for the decrypted vote against the set of encrypted votes that successfully matched
with voter receipts. If the answer is yes, then it provides solid evidence that the VVPR is wrong, without leaking
any additional information. A similar query run for the VVPR provides solid evidence that the electronic vote was
wrong. Of course, what queries to allow must be carefully decided depending on the situation to best optimise the
recoverability-secrecy tradeoff.

5 Security Analysis
Theorem 1. Under the DL assumption in G1, the n-SDH assumption in (G1,G2) [7] and the EUF-CMA security
of ΠS, the OpenVoting protocol is recoverable as per Definition 1.

Proof (Sketch). We focus on the event that for each booth, BallotAudit passing implies that all receipts correctly
captured voter intents and ReceiptAudit passing implies that all receipts were correctly uploaded. This event
happens with probability 1− ℓ(ϵb + ϵr).

Let J∗, V ∗ be A’s output in the TallyAudit protocol. From Figure 6, we consider the two cases: first when the
branch on line 8 is taken and the second when it is not taken. In the first case, J∗ = ∅ and thus we must show that
the number of failures in (R∗, C∗, V ∗, P ∗) is less than the winning margin, where R∗ = R, C∗ = C and P ∗ = P
for J∗ = ∅ and V ∗ = V by line 10. By the condition on line 9, the number of reported failures is less than the
winning margin. By the soundness of ΠTM under the stated assumptions [2], sets CFM and VFM correctly represent
the set of true failures. This, combined with the definitions of RFI, CFI, VFO and PFO, implies that the number of
real failures in (R∗, C∗, V ∗, P ∗) is less than the winning margin.

In the second case, J∗ is, as required, exactly the non-empty set of booths that contributed some failing item
in RF, CF (by the definitions on line 12), PF (by line 13 and the computational binding of Pedersen commitments
under the DL assumption in G1) or VFO (by lines 14-18 and the soundness property of ΠTM; note that VFM entries
in VF are mix-server errors and, as required, are not reported here). Finally, by line 21 and the soundness of ΠTM,
V ∗ is exactly the set of votes decrypted from encrypted votes sent by booths outside J∗. Thus, by the definitions
of R∗, C∗ and P ∗, (R∗, C∗, V ∗, P ∗) does not contain any failures.

Theorem 2. Under the DDH assumption in G1 and the DCR assumption [19], the OpenVoting protocol satisfies
vote secrecy with recoverability as per Definition 2 in the random oracle model.
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Proof (Sketch). If the adversary corrupts G2 but not G1, then it does not learn the ballot secrets of ballots used by
Vi0 and Vi1 by the perfect hiding of Pedersen commitments under the DDH assumption and the IND-CPA security
of Paillier schemes E and Eth

Pa under the DCR assumption (see Figure 4). Post-printing, ballots get sealed and are
opened only by the voter during vote casting, where the adversary-controlled BMD does not see any information
about the ballot used. The receipts and the tallying protocol does not reveal any information to the corrupted mix-
servers by the secrecy property of ΠTM under the stated assumptions [2]. VVPRs are collected after mixing and
the ballot identifiers used therein cannot be linked to the identifiers of Vi0 and Vi1 . Finally, during the TallyAudit
protocol, it is required that if the adversary causes a failure in either the receipt, encrypted vote or VVPR contributed
by Vi0 ’s booth j0 then it should also cause a failure in Vi1 ’s booth j1. Thus, sets RFI to PFO in Figure 6 do not help
it distinguish between the two worlds. Outputs VFj

do not help because for each failure in booth j0, the adversary
is required to create an identical failure in booth j1. Further, the partial tally V ∗ includes either both v0, v1 or none
of them. The secrecy property of ΠTM ensures that no additional information beyond the query outputs is revealed.

If the adversary corrupts G1 but not G2, then it obtains ballot secrets but it cannot identify which of Vi0 or Vi1
used which ballot. The rest of the proof is similar.

6 Conclusion and Future Work
We have introduced and formalised the notion of recoverability and secrecy for dual voting protocols and suggested
a protocol that achieves this notion. Based on existing reports for the underlying traceable mixnet construction,
the total time taken by the recovery process remains within a few hours for n = 10000 ciphertexts, which can be
optimised further using the construction’s high degree of task parallelism [2].

Although we have shown our protocol’s recoverability properties, the potential non-termination of the revoting
process during vote casting seems like an inherent limitation of BMD protocols and designing voting frontends that
overcome this limitation yet remain usable and minimise voter errors appears to be a challenging open problem.
Further, although we have focused on recoverability for first-past-the-post voting where exact winning margins are
computable, extending to other more complex voting rules also appears to be an interesting avenue for future work.
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