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Abstract

The National Cyber Security Centre (NCSC) is the government organisation responsible for
mitigating cyber security risks to the UK. Our work securing UK public- and private-sector
networks involves (amongst many other security measures) research into cryptographic design,
primarily to protect data requiring long-term security or data for which we have a particularly
low tolerance of risk to its transmission and storage. Our algorithms prioritise robustness over
other important considerations, such as performance, more highly than other designs.

We present GLEVIAN and VIGORNIAN: two AEAD modes with proofs of beyond-birthday
security, security against nonce misuse, and against the release of unverified plaintext – both of
the latter in strong notions of these security properties. We discuss our hierarchy of requirements
for AEAD modes, and the rationale for the design choices made.

GLEVIAN and VIGORNIAN demonstrate we can achieve significantly improved robustness
over GCM for use cases where some performance degradation is acceptable. We are not aware
of other designs offering exactly the security properties of GLEVIAN and VIGORNIAN, and are
publishing our designs to support the research that will inform the recently announced effort by
NIST to standardise new modes of operation. We believe our work could be of interest to those
with use cases similar to ours, and we offer suggestions for future research that might build on
the work in this paper.
Keywords: authenticated encryption, block cipher, mode of operation, requirements, robustness.
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1 Introduction
The mission of the National Cyber Security Centre (NCSC) is to make the UK the safest place to
live and work online. As part of our remit we act as the UK Government’s technical authority on
cryptography. We provide assessment of cryptography for UK Government use cases, in addition to
offering consultancy on cryptography across government and guidance in the public sphere.

We also conduct research into cryptographic design, principally for high-threat use cases in which
data might require very long-term security, or have some sensitivity to it that warrants a particularly
risk-averse approach to its handling. This research covers the design and implementation of cryp-
tography used to protect that data. For high-threat use cases we place great value on reducing the
likelihood that data is put at risk though misuse of cryptographic algorithms and protocols, since
NCSC often does not have direct oversight of the end-users of the cryptography we design. In de-
signing for these use cases we are usually able to make design trade-offs to prioritise robustness and
simplicity over other important considerations, such as performance.

In the last few years our symmetric cryptography research has included block cipher modes of oper-
ation for Authenticated Encryption with Associated Data (AEAD); henceforth, modes. We designed
new modes GLEVIAN and VIGORNIAN1 which offer security features that were not available in ex-
isting modes. They offer nonce-misuse resistance, security against the release of unverified plaintext
(RUP) and beyond-birthday security (when not misused) in the standard model.

Practical considerations around providing a near drop-in replacement for GCM also influenced
our designs; neither mode is tied to the use of a specific block cipher.

We discuss the properties we target and our rationale for their selection in detail in Section 2.
While complete modes in their own right, GLEVIAN and VIGORNIAN also serve as proof of concept
that it is possible to provide these desirable features with a practical and concrete design. We drew
heavily on prior academic work in our designs, which are a combination of components first described
by other cryptographers. GLEVIAN and VIGORNIAN are less efficient than GCM, but sufficiently
performant in our use cases, which include both extremely high-bandwidth datalinks and resource-
constrained devices.

The National Institute of Standards and Technology (NIST) recently announced their third work-
shop on block cipher modes of operation, to “discuss how NIST can best address the limitations of the
[modes] that are approved in the NIST Special Publication 800-38 Series” [NIS23]. We are publishing
GLEVIAN and VIGORNIAN, with security proofs for the properties we target, as a contribution to
the body of research that will support NIST’s future standardisation efforts. We believe our work
could be of interest to those who have use cases where robustness and beyond-birthday security are
high priorities. We also suggest some future research directions, which could lead to improved designs
that draw on our work.

1.1 Structure
In Section 2, we describe various desirable features a mode might have and offer our own perspective
on the relative importance of each design goal. We justify our opinions partly as a primary source
and partly by reference to the academic literature. We discuss some existing standardised and well-
studied robust unstandardised AEAD schemes, and the extent to which they meet our requirements.
In Section 3, we introduce GLEVIAN and VIGORNIAN, explain how they are a combination of
existing constructions from the academic literature and make our security claims. We then provide
detailed proofs of our security claims for GLEVIAN and VIGORNIAN in Section 4 and its supporting
appendices.

1.2 Acknowledgements
The author is grateful for research input from colleagues in the NCSC cryptography teams in writing
this document.

1The names GLEVIAN and VIGORNIAN have been chosen to resemble the Roman names for the cities of Gloucester
(Glevum) and Worcester (Vigornia), both close to Cheltenham where NCSC has a large presence; and to sound similar
to the names of musical modes.
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2 Requirements and Priorities
An AEAD scheme is a symmetric communication scheme in which traffic is confidential and authentic.
A block cipher mode of operation (or simply, mode) is a method for using a fixed-width block cipher
to process data, and for the purpose of this paper that will mean making an AEAD scheme that is
capable of processing variable-width message and AD inputs.

All AEAD designs involve trade-offs between the costs of security properties and efficiency. In this
section we will discuss how we balance these costs and features for our use cases. After introducing
some general themes, we will discuss more specific properties that a mode may (or may not) satisfy.
The general themes we consider are:

Security We take a conservative approach to the setting of security parameters; in particular we
carefully consider the security of AEAD deployments that use multiple keys at once, and which
process high quantities of data. For this reason, we aim to quantify the multi-user security of our
modes, and require beyond-birthday security.

Robustness We design for high-threat use cases and take a risk-averse approach to the design,
implementation, and deployment of cryptography. In complex deployments, it is challenging to
guarantee cryptography is always used as the designers intended, so we greatly value features that
make algorithms resilient to misuse; that is, they are secure by design. In particular, we value strong
notions of nonce-misuse resistance and security against the Release of Unverified Plaintext (RUP).

Compatibility Wide support for hardware-accelerated AES computations in common computing
platforms makes it desirable for our use cases to continue to support AES. However, to allow the
widest deployability and to future-proof the mode, we require a mode that works with any block
cipher that has an appropriate key and block size.

2.1 High priority requirements
2.1.1 Multi-user security

We are designing for systems made up of many users who are using a mode under different keys. We
require the system to be secure against an adversary willing to mount an attack that compromises
any one of those many users, even if the adversary has limited control over which user it compromises.
We also require security of the system to hold when these users are communicating high quantities of
data, for example on high-bandwidth links. Furthermore, algorithms can be in use for a long time,
and we assume data-rates tend to increase over time, so we make conservative assessments on how
much data is theoretically available to an adversary. This follows the approach of [BBM00], which
considers multi-user security in a public-key setting.

When applied to the real world a “user” in the sense of multi-user security is more likely to model
a key than a real person. Thus whenever a real-world user agrees or generates a new key, a new
cryptographic user is created in the language of multi-user security. We adopt this terminology in
the subsequent rationale and security proof. We are primarily concerned with systems where each
user is able to process data up to some fixed throughput limit and for a fixed amount of time and we
wish to protect against any one of these keys being compromised.

For this reason, to model multi-user security we prefer the approach of [BHT18] (but in the
standard model), modelling each user as having an independent query limit that represents the
amount of data they are able to process, instead of an overall global query limit for the entire system
as introduced by [BCK96]. Some examples of how per-key limits might arise are, due to limits on
key lifespan, bandwidth limitations or a restriction enforced by the cryptographic protocol.

2.1.2 Beyond-birthday security

We say that a mode has birthday security in parameter q if the advantage of adversaries against the
mode is bounded by O(q2/2n), where n is the block size of the underlying block cipher. If it has
a security bound that is better (that is, smaller) than birthday security, then we say the mode has
beyond-birthday security.

Following [BDJR97, Rog04b] we favour concrete security bounds that can be directly compared
to our risk tolerance, rather than asymptotic bounds. NIST Special Publication NIST SP 800-38B
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[Dwo05], highlights that adversaries may be willing to mount attacks even if their overall probability
of success is very small, and so our security results should have a significant safety margin. Since
security proofs for modes are often tight (in the sense that attacks often exist which almost match the
proven advantage bounds) we require conservative estimates for usage levels to ensure the long-term
security of a mode in this multi-user setting. In practice, most block ciphers have a block size of
n = 128 bits which means that modes with birthday security do not have a suitable advantage bound
for realistic high data cases. As a result, we require beyond-birthday security bounds.

Let us consider a hypothetical but realistic example system. It has K independent keys (users),
each capable of processing q packets of length ` blocks in their lifetime. Suppose the adversary can
perform t block cipher computations. A typical mode with birthday security in q and ` might have

an advantage bound of approximately (q`)2

2n
+ 2t−k, where the block size n is almost certainly 128

and k is the size of the block cipher’s key.2 By applying standard hybrid arguments, we obtain a
multi-user advantage bound of

K ·
(

(q`)2

2n
+ 2t−k

)
.

The first term will become large once there are many messages or users. For a concrete example,
taking K ≈ 220 users, each processing q ≈ 240 packets of length at most ` ≈ 216 blocks, the above
bound is approximately 24 + 220+t−k. This is greater than 1 and so gives no security assurance at
all. In this example a mode with beyond-birthday security in q might have a multi-user advantage
bound of

K ·
(
q`2

2n
+ 2t−k

)
≈ 2−36 + 220+t−k,

which might well be considered acceptable for suitable key lengths.

2.1.3 Robustness to nonce misuse via MRAE security

Legacy modes such as CBC typically require an Initialisation Vector (IV) that is unique and unpre-
dictable. However, experience has long shown that despite this requirement, protocol engineers are
sometimes seen to construct IVs from (for instance) the concatenation of known values, leading to
attacks such as BEAST [DR11], which affected SSL v3.0 and TLS v1.0. These attacks are serious,
having led to practical plaintext recovery attacks, and strongly suggest that where possible, requiring
an unpredictable IV is best avoided. In this paper, we call an IV that is required to be unique but
not unpredictable a nonce.

Even maintaining uniqueness of nonces can be hard, and there are examples of this being exploited
in practice; for instance, tricking a victim into repeating a nonce was the basis for the KRACK
attack [VP17] affecting almost all WPA2 implementations, which allowed an attacker to decrypt,
replay, and sometimes spoof arbitrary packets sent over WiFi.

Nonce reuse breaches the security assumptions of a nonce-based mode, generally causing the loss
of confidentiality and/or authenticity for the messages. For GCM, the situation is particularly severe,
as Joux’s “Forbidden attack” [Jou06] shows how an attacker can recover the authentication key itself,
allowing them to forge arbitrary future messages.

We believe the most appropriate modern notion for nonce-misuse resistance is Misuse-Resistant
AE (MRAE) security [RS06]. MRAE security describes a notion of the “best possible” nonce-based
security, requiring that if two encryptions are processed under the same nonce, the only thing that
an attacker can learn is whether the message and AD was identical between the two encryptions.
Since every bit of ciphertext must therefore necessarily depend on every bit of input, MRAE security
necessarily requires a two-pass encryption routine3. There have been several attempts to find an
alternative to the MRAE security notion to something that can be met by online (i.e. one pass)
encryption schemes (for an attempted classification, see for example [HRRV15, Fig. 11]). As [HRRV15]
argues, the resulting Online AE (OAE) security notions mostly offer weaker security guarantees than
would be obtained from using an MRAE scheme, making an MRAE scheme more suitable for our
use cases.

2The 2t−k term accounts for an adversary’s ability to attack the block cipher directly; care is required here as this
term is intuitive but unrealistic [BL12], and is provided for illustrative purposes only.

3But not necessarily decryption [Min20].
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2.1.4 Security against release of unverified plaintext, in a strong sense

The release of unverified plaintext (RUP) occurs when an implementation of the decryption function
of an AEAD scheme leaks information in the event of a decryption failure. Situations where this
could occur include when the candidate plaintext is created separately from the authentication check
(as in classic composition schemes like CCM or GCM) and immediately released to the user, or the
candidate plaintext is stored in an intermediate buffer that is not flushed, or the candidate plaintext is
written to an external buffer that other processes read before the cryptographic implementation later
clears it, or protocol designers choose not to transmit the tag in order to save bandwidth (in modes
where this does not prevent decryption). Such a mistake underpinned 2018’s EFAIL [PDM+18] attack
on OpenPGP and S/MIME when attackers were able to modify ciphertexts in a way that candidate
plaintext contained malicious code that was then read by follow-on processing, leading to a total loss
of confidentiality. A more subtle example is Lucky 13 [AP13], which affected TLS implementations
that performed a padding check on CBC-decrypted candidate plaintexts before cryptographically
authenticating them. Information about the result of the padding checks leaked via timing differences,
and this allowed a machine-in-the-middle attacker to recover plaintext.

There have been many attempts to define a RUP security target and they mostly differ on the
information that is leaked by a decryption failure. There is no single correct way to define this leakage
because the most suitable model depends on the nature of the AEAD mode, the implementation and
the user’s risk appetite. For example, AEZ [HKR15] was shown to have RUP security in a model
where on a decryption failure the putative plaintext is leaked. However, the same version of AEZ
was proven to be insecure in an alternative RUP model if a variable-width buffer is not correctly
cleared on decryption failure [BPS15, Appendix E]. Both models are valid and an implementation
might reasonably guard against one or both such instance of leakage; we describe the results here to
illustrate how reasonable models of leakage can lead to very different results.

We believe that a scheme labelled as RUP secure should prevent an attacker from learning any
information about previously processed inputs; such abilities are core to the EFAIL attack. Some
RUP security models, such as PA1 [ABL+14] and AE-RUP [CDD+19], do not prevent an attacker
learning about previously encrypted inputs – indeed, GCM is PA1-secure but would not prevent the
EFAIL attack. We therefore view PA1 and AE-RUP as insufficiently strong for our requirements.

The SAE notion [BPS15] generalises several models [BDPS14, ABL+14, HKR15] and aims to
describe the “best possible” for a leaking implementation: leakage does not reveal any information
about the key or plaintext. However, while we are satisfied it achieves this goal, SAE security still does
not necessarily prevent an attacker from exerting control over the candidate plaintext. For instance,
an encrypt-then-MAC scheme that decrypts ciphertext in place and on a decryption failure fails to
clear the ciphertext/plaintext buffer can be proved SAE secure, but does not prevent an attacker
from injecting potentially malicious data into a system. The ability of an attacker to exert control
over candidate plaintexts was also key to the EFAIL attack, and blocking this ability is also a high
priority of our RUP requirement. For this reason, we also view SAE security as an insufficiently
strong notion.

For our security target, we favour the extended RUPAE definition of [ADL17]4, which requires that
leakage is indistinguishable from random data of the correct length5. This security target addresses
our concerns about the previous notions outlined above.

In a related but weaker notion, we require that the tag is used as an input to the decryption
routine, in order to prevent users from deliberately omitting the authentication step. Note that this
weaker property follows as a consequence from extended RUPAE security, since anything other than
the correct tag in the decryption process will result in output that is indistinguishable from random
data.

2.1.5 Block cipher-agnostic

It is important that the mode is suitable for a range of block ciphers, including AES. We made this
case as ‘Compatibility’ in the introduction of Section 2.

4Though we drop the nonce restrictions.
5The RAE security notion of [HKR15], when used with a simulator that outputs random messages as in the proof of

AEZ, contains an equivalent notion of RUP, although their definition accounts for the possibility of a variable amount
of stretch.
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2.1.6 Have a simple security proof

Errors in published security proofs can have serious or catastrophic consequences (e.g. [CHJS13,
IIMP20]). Further, when proofs are correct, sometimes they use an inappropriate security model,
make unjustified assumptions, or are too complex for the wider community to reasonably verify (for
a summary of issues, see e.g. [KM19]). We therefore require a mode that offers sufficient security and
robustness while also offering a security proof that can be verified as easily as possible.

Much progress has been made towards formal verification of security proofs [BGHZ11, BLS20,
PM15, Bla06, Ber13, BGJZ07, AHR+21]. Such methods would add strong mitigation against errors
in security proofs, and we encourage research into verification of proofs in the development of new
standards for modes.

2.2 Medium priority requirements
2.2.1 Avoid ideal cipher assumptions

Some modes that simulate independent block ciphers by generating multiple keys (such as AES-GCM-
SIV [GLL17]) are proven secure in the ideal cipher model. For some block ciphers, we believe that the
ideal cipher model is a poor model of reality; for example related-key attacks on AES are well known
(e.g. [BKN09]). We believe that reducing to a single-user computational ±PRP distinguishing game6

where possible is preferable because it is a more realistic model and provides a more widely applicable
result. Results in the ideal cipher model also do not obviously apply to quantum adversaries (see
Section 2.2.2).

2.2.2 Security against quantum adversaries

When deploying new cryptographic algorithms intended to be secure for many years to come one must
anticipate future threats, including the possibility of an adversary with a cryptographically-relevant
quantum computer. Specifically, where modes have a classical proof of security in the standard model,
we would adopt the Q1 model (as notated in [KLLN16] and introduced in [Zha12]). Where modes
have a classical proof of security in the ideal cipher model, we would adopt the QROM model (as
introduced in [BDF+11]). In these models, the adversary has access to their own quantum computer
for offline computation, but can only interact with the honest users (and thus keys) through classical
interfaces.

Concrete, efficient, black-box security reductions in the standard model translate naturally to the
Q1 model since such reductions can be directly applied to quantum adversaries. The only required
change to the overall security argument is that the heuristic assumption on computational ±PRP
security of the underlying block cipher must now be made with respect to adversaries that perform
quantum (as opposed to classical) offline computation, with the reduction demonstrated in the main
security proof requiring little modification. Thus, when proofs are made in the standard model, we
have a measure of confidence in the quantum Q1 security of a scheme. By contrast, classical security
in the ideal cipher model does not so easily translate to security in the QROM.

Authors have suggested alternative security models to the Q1 and QROM models. For example,
[DFNS11,GHS16] suggest a “frozen smart-card” attack in which the adversary is given the ability to
make encryption queries in superposition. We believe that such adversarial models are unrealistic for
algorithms implemented in classical hardware.

2.2.3 Performance and circuit size

In our use cases, we find that computational performance requirements can often be treated as
secondary to security. Fundamentally, as long as a mode is sufficiently performant to be useful, we
are prepared to trade additional efficiencies for increased security, where security might be in terms
of any of the criteria listed in this section. This means we are content to make design decisions that
add security at some cost in performance – MRAE security is a prime example, since it necessitates
two passes over the data, and thus a buffer.

That said, we do not ignore performance, and have paid attention to implementation consid-
erations both in hardware and software through the design process for our proposed designs. For
example, although MRAE security requires two passes over the data, almost all block cipher calls

6For a full definition, see equation (3) of Section 4.1.
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within each pass can be parallelised in hardware. When performing symmetric encryption on general-
purpose computing devices such as CPUs, we note that hardware acceleration of AES via the AES-NI
instruction set, and of multiplication in the Galois field with 2n elements via PCLMULQDQ carryless
multiplication instructions, usually enables hardware acceleration of designs based on these opera-
tions.

2.2.4 Context commitment and discovery

Committing encryption [GH03] was not seriously considered in the design of AEAD schemes until
2017 [GLR17]. The core idea is that a ciphertext and tag should effectively be a commitment to
the “context” (i.e. the key, nonce, associated data, and message) that produced them. Context
discovery is a similar notion: if context commitment security of an AEAD scheme is analogous
to collision resistance of a hash function, then context discovery security is analogous to preimage
resistance [MLGR23]. A scheme achieving both might be considered closer to a universal cryptogram,
securely encapsulating all information, but currently standard AEAD security definitions offer no such
guarantee.

Real-world security vulnerabilities have been discovered caused by a lack of context commit-
ment security, such as the “invisible salamanders” vulnerability in Facebook’s message franking
scheme [DGRW18]; a vulnerability in Subscribe with Google allowing subscribers to deliver con-
tent that decrypts differently depending on which authorizer is used [ADG+22]; or a vulnerability in
Shadowsocks proxy servers that allows users to trial-authenticate a few thousand passwords at the
same time by submitting a single ciphertext query [LGR21]. Attacks tend to fall into two categories:
scenarios where the same ciphertext is sent to more than one user and the implicit assumption that
the decrypted plaintext will be the same for all users is violated; and online attacks on authentication
systems involving a low-entropy key are sped up by the ability to submit a ciphertext that decrypts
under many keys. In the majority of cases, it is assumed that one of the parties holding the symmetric
key is corrupted, or the key has low entropy.

There have been myriad definitions of commitment-based security properties that could be tar-
geted by AEAD schemes, each subtly different and each under different names (e.g. [FOR17,GLR17,
DGRW18,ADG+22,BH22]). The strongest notions [BH22,CR22,MLGR23] approximately coincide,
targeting commitment to the full context of nonce, associated data, and message, and appear most
appealing.

For now, we justify making context commitment and discovery a medium-priority requirement
(despite a strong emphasis on robustness) on the basis that the attacks listed above are not as
severe as the attacks listed in the nonce-misuse resistance and RUP sections above, and generally
require one party to already be corrupted or for the key to have low entropy. Moreover, proofs of
efficient constructions tend to require stronger security assumptions on the block cipher. As context
commitment is an topic of much active research we anticipate that any discovery of new and more
severe attacks could prompt us to change our position. We note that there is a generic transform
where context commitment and discovery security is achieved by appending a hash of the context to
the ciphertext, and this gives us some amount of confidence that we could adapt a design if necessary,
at the cost of additional stretch.

2.3 Low priority requirements
2.3.1 Wider classes of leakage resilience, side-channel mitigations

Modes can be at risk of leaking private information via timing variation or message lengths, especially
if messages are compressed. Examples include POODLE [MDK14] and Lucky 13 [AP13], and fixing
timing vulnerabilities after the fact is difficult [AP16, RPS18]. We therefore require modes whose
padding mechanisms do not leak information about the content of the padded data (other than its
length); and that can be implemented in a manner in which timing is independent of key and plaintext
– it only depends on input length.

There are other side-channels via which a mode could leak private information, such as power
consumption. We believe adding mitigations (such as masking) to the underlying block cipher and/or
to well-designed modes is usually possible without unworkable performance implications. For this
reason, beyond mitigating RUP, we do not consider side-channel or leakage mitigations further in
this paper, except to note that it is important that our mode designs do not exacerbate potential
risks, or make it difficult to add mitigations later.
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2.3.2 Graceful security degradation when usage limits exceeded

We previously commented that there are often attacks on modes that achieve advantage close to (or
at) the security bound. These attacks can range from a loss of confidentiality on one or a small
number of messages out of a potentially large collection, up to something much worse, akin to the
authentication key recovery attack on GCM, the former being more tolerable than the latter. In the
event that a mode processes enough data that these attacks become viable we hope that the design of
the mode is such that the loss of security is more tolerable; that security degrades gracefully, rather
than suddenly and totally. This is particularly important when using modes with birthday security
or block ciphers with small block sizes [BL16]. However, for the use cases we are targeting we expect
our users to be sufficiently risk-averse that they would always seek to remain well within provable
limits and in the absence of a wider block cipher believe this issue can be mitigated by designing
beyond-birthday secure modes. Therefore, we view this as a low priority requirement.

2.3.3 Support for private nonces

The CAESAR call for submissions [Ber14] considered private nonces, since sending nonces in plaintext
alongside ciphertext and tag may expose metadata that would have been better kept hidden, or
conversely may prevent the user from putting useful unique inputs into their nonce. A few works
have looked into the problem since (e.g. [BNT19]), but it is not clear what an optimal solution would
look like, or what the trade-offs would have to be. We leave this as an interesting goal to consider in
future, but as no major protocols currently require it we do not prioritise it for now.

2.4 Assessment
In this section we have described a number of goals and assigned a priority to each. We expect our
goals to be relevant to the wider community, although in some cases prioritised differently.

At high priority we require the mode to be beyond-birthday secure to allow the transmission of
high quantities of data. It should provide MRAE and RUP security. We require the mode to have
a simple, clear security proof that gives a conservative security margin even under many users. We
require the mode to be compatible both with AES and with alternative block ciphers with the same
block width.

At medium priority, we would like to avoid ideal cipher assumptions, and have a mode that is
also secure against quantum adversaries, to provide confidence moving into the post-quantum era.
Ideally, such a mode would have good performance characteristics and context commitment security.
We place lower priority on other desirable properties, such as wider classes of leakage resilience,
security degradation beyond the provable bound, and support for private nonces.

2.4.1 Representative candidates

To close our requirements discussion, let us briefly consider how some notable candidates compare to
our key priorities. We will introduce our proposed modes for comparison, and apologise for the many
promising schemes we do not consider here, or for any points of note we do not raise: this section is
intended to be representative rather than exhaustive. None of the designs discussed in this section,
including ours, achieve context commitment or discovery security.

GCM GCM [MV04] is widely adopted, widely standardised, and natively supports any block cipher
with a 128 bit block size. While the case of variable-length nonces is rather complex, when restricted
to 96-bit nonces GCM has a particularly clean security proof. In the form of AES-GCM, it is quite
possibly the most-used AEAD mode. Using only an AES encrypt engine and a Galois multiplier,
it can be implemented efficiently in hardware and most modern platforms comes with accelerators
for one or both of these instructions. Unfortunately, GCM is fragile, since nonce misuse leads to a
catastrophic loss of security [Jou06] and there is no RUP security [ABL+14].

OCB3 OCB3 [KR11] is the third member of the OCB family. It is a highly efficient mode, widely
available and simple to implement. It uses a generic block cipher and comes with a neat security proof
via the ΘCB tweakable construction, and then instantiates this with an XEX construction. This gives
it a clear security proof, up to the birthday bound. However it does not provide meaningful resistance
to misuse.
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ChaCha-Poly1305 ChaCha-Poly1305 [Ber08,Ber05,NL15] is another widely-used design, which is
highly efficient (especially in software) and available in several general purpose libraries. The mode
itself has a security proof in the standard model. Like GCM, ChaCha-Poly1305 is fragile against
misuse, though the impact of nonce misuse is slightly less severe. For our purposes, another issue is
that as an all-in-one stream cipher-based mode, it would be complicated to incorporate an alternative
block cipher design.

AES-GCM-SIV AES-GCM-SIV [GLL17] trades some of the efficiencies of GCM and ChaCha-
Poly1305 for increased security. Specifically, it requires two passes over the data, and thus an inter-
mediate buffer, in exchange for MRAE security. On decryption, an intermediate buffer caches the
unverified candidate plaintext until the tag can be verified. Since XOR changes to ciphertext pass
through to XOR changes to the candidate plaintext, the scheme does not meet strong notions of
RUP security. AES-GCM-SIV has strong beyond-birthday security guarantees when nonces are not
misused [GLL17], although the proof of this is in the ideal cipher model. The mode can be used with
a generic block cipher, and is available as an RFC specification.

AEZ AEZ [HKR15] meets our targets for nonce-misuse and RUP (modulo earlier discussed concerns
around early-abort implementations). There is a clearly defined specification available for use, and
given the security goals targeted it is extremely efficient.

While the security proof assumes a standard cipher similar to AES (but with a tweak), the
proposed scheme only uses a reduced round version. This means that the mode relies on a less well
studied security assumption, and that replacing the internal block cipher with an AES-equivalent
would significantly slow down the mode. We would also favour fixing the tag length to avoid risk of
misimplementation or misuse, as the design is likely to be complicated to implement, especially in
hardware [HG16].

Romulus Romulus-M is a mode that was a finalist in the NIST lightweight cryptography compe-
tition [IKMP20]. It offers beyond-birthday security, nonce-misuse resistance, and promising perfor-
mance characteristics. It achieves partial RUP security through PA1 + INT-RUP. Romulus-T has
many of the same advantages as Romulus-M, and adds improved leakage resilience.

Both of these schemes are built around the SKINNY tweakable block cipher, which would be
complicated to replace with a generic (non-tweakable) block cipher. Furthermore, the security proof
is in the ideal cipher model [GIK+].

2.4.2 Our proposals: GLEVIAN and VIGORNIAN

In this paper we introduce GLEVIAN and VIGORNIAN, designed to satisfy our high-priority require-
ments. Both have native nonce-misuse resistance and RUP security, with a proof in the standard
model which we hope is easy to verify. Both are compatible with any modern block cipher, including
AES (VIGORNIAN also requires an implementation of Galois multiplication). Our mode achieves
beyond-birthday security when not misused, even when supporting many users.

We have made trade-offs in the design of GLEVIAN and VIGORNIAN, the most obvious of which
is in performance. Each mode can be computed in two passes and requires one internal buffer to store
the input (note that we show that this does not affect our RUP security). While computations within
each pass can be parallelised, GLEVIAN requires approximately three block cipher calls per block
of input and VIGORNIAN requires two Galois multiplication operations and one block cipher call.
Moreover, the overhead of the KDF is significant for short messages. This means that GLEVIAN
and VIGORNIAN require more internal primitive calls than the other schemes mentioned in this
comparison.
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3 GLEVIAN and VIGORNIAN
3.1 Description of GLEVIAN and VIGORNIAN
We present a schematic of GLEVIAN and VIGORNIAN encryption routines in (respectively) Figures
1 and 2. We expect that the diagrams are largely self-explanatory, but in Section 4.1.6 we provide a
key to the symbols and conventions used. In the remainder of this section we provide some explanatory
detail for the diagrams in Figures 1 and 2, while in Section 3.2 we explain the choices made in the
design of the modes.

GLEVIAN and VIGORNIAN are instantiated with an n-bit block cipher E with a k-bit key. The
user’s secret key is denoted by K in Figures 1 and 2; it is used to key an instance of E which we
denote E(K).

The encryption routines take as input a message M and associated data A, both of arbitrary
length, and a nonce whose length is (slightly) less than n bits. The outputs are a ciphertext C which
is the same length as M , and an n-bit tag T . Figures 1 and 2 show A,M and C as split into n-bit
blocks, including a final partial block as an example (although this may not exist).

The nonce N is used to produce per-nonce k-bit keys Klrw2,Kctr, and either an n-bit key KH1 and
a k-bit KH2 (in GLEVIAN); or an n-bit key KH in VIGORNIAN. These keys, excepting KH1 and
KH, are used to key block ciphers E(Klrw2), E(Kctr) and, in GLEVIAN, E(KH2). The per-nonce keys
are the outputs of the dash-boxed KDF function where the nonce is concatenated with a sequence
of counter values, which are then encrypted with E(K) as shown in the diagram; this component is
described further in Section 4.2.7. This component is the source of our requirement on the block size
of E - the block size must be large enough to encode the required counter values.

Encryption proceeds as follows. First, associated data A, plaintext M , and the n-bit all-zeroes
string 0n are processed by the LRW2 construction; that is, a keyed hash is applied to A and M to
produce an intermediate value which is then used in an XOR-encrypt-XOR encryption of 0n. For each
of A and M , if its final block is partial then the keyed hash pads them using 100 · · · 0 padding; if no
partial block exists then no padding occurs. The n-bit output of this LRW2 encryption is denoted I.
The hash constructions in GLEVIAN and VIGORNIAN, and their padding schemes, are described in
Sections 4.2.2 and 4.2.3, and the choice of hash construction is the only way in which the two modes
differ. The LRW2 construction is described in Section 4.2.4. This intermediate value I is used as the
IV for CTR mode encryption of the plaintext, producing ciphertext C; CTR mode is described more
fully in Section 4.2.1. The AD A, ciphertext C and intermediate value I are then processed by the
same LRW2 construction to produce the tag T . We do not describe decryption, which is performed
in the obvious manner. Decryption failure occurs if the LRW2 decryption of I does not equal 0n.

We note for both GLEVIAN and VIGORNIAN that encryption and decryption can be performed
in two passes over the data. The first pass computes I, and the second pass produces ciphertext and
LRW2-encrypts I to produce the tag. Each pass can be almost entirely parallelised.

3.2 Design decisions
In this section we offer a brief justification and overview of our design choices in GLEVIAN and
VIGORNIAN.

As discussed in Section 2, we desire multi-user beyond-birthday MRAE security and (under reason-
able leakage models) RUP security. We add beyond-birthday security via nonce-based key derivation,
as introduced by AES-GCM-SIV, to produce a per-nonce key for an underlying birthday-secure scheme
(in fact, we produce several keys to provide cryptographic separation between certain block ciphers).
Having used the nonce to produce a key for an underlying mode, there is no need to further process
the nonce; it suffices then to wrap a DAE7 scheme rather than AEAD scheme with nonce-based key
derivation. We select the XORP construction [Iwa06, IMV16] as a KDF because it is efficient, is well
studied with multiple independent proofs of beyond-birthday security [Iwa06, Pat10] and - as it can
be instantiated with the same block cipher as the rest of the mode - it obviates the need for extra
computational assumptions. The resulting AEAD mode is then beyond-birthday secure when used
and parameterised correctly because it encrypts only a small number of messages on any one nonce,
and because attackers can learn little information from rejected decryption queries. We do not achieve
fully beyond-birthday security under serious misuse or in the presence of RUP. Using nonce-based key
derivation has a security cost; it drastically increases the number of keyed instances of the underlying

7DAE [RS06] is similar to AEAD but does not feature a nonce input.
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Figure 1: The full schematic of the encryption routine of GLEVIAN AEAD mode. All the wires carry n bits, apart from in three places: any partial final
block of plaintext is not padded and produces a partial final block of ciphertext; the final block of associated data may be partial; and the nonce in the KDF is
n−

⌈
log
(
2 +

⌈ 3k
n

⌉)⌉
bits, with the low bits of the n-bit word reserved for concatenation with a counter. The counter in the KDF steps enough times to produce

three k-bit keys and one n-bit key, which imposes a condition on the block size that n ≥
⌈
log
(
2 +

⌈ 3k
n

⌉)⌉
- we remark that this will be satisfied by any realistic

block cipher. α is a primitive element of GF (2n) and when we write α · KH1 we mean to multiply these values as elements of GF (2n). Multiplication by α
corresponds to stepping an LFSR; for more detail, see Section 4.2.2.
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Figure 2: The full schematic of the encryption routine of VIGORNIAN AEAD mode. All the wires carry n bits, apart from in three places: any final partial
block of plaintext produces a partial final block of ciphertext; the final block of associated data may be partial; and the nonce in the KDF is n−
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bits, with the low bits of the n-bit word reserved for concatenation with a counter. The counter in the KDF steps enough times to produce two k-bit keys and
one n-bit key, which imposes a condition on the block size that n ≥ dlog(2 +

⌈ 2k
n

⌉
)e - we remark that this will be satisfied by any realistic block cipher. We write

⊗ for multiplication in GF (2n); for more detail, see Section 4.2.3.
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DAE scheme as each long-term key can spawn potentially many nonce-dependent short-term keys.
In our security proofs we account for this increase in the number of keyed instances of DAE schemes
and show that the mode remains secure for high data uses under a reasonable assumption on the
instantiating block cipher (as long as this block cipher has a sufficient size of key). Nonce-based key
derivation also comes with a performance cost, especially substantial on short messages.

Our choice of DAE scheme must offer both DAE security and RUP security under reasonable
leakage models, but only needs to attain birthday security in these models. We take a modular
approach to defining a DAE scheme, which we present in a top-down fashion here; each component
inherits security from its subcomponents. (In Section 4.2 we take a bottom-up approach and prove
each component in turn to be secure, from which the security of the entire DAE mode will follow.). We
use the Pad-then-Encrypt (PTE1) construction [RS06] which is a natural way to provide secure DAE
and must be instantiated with a secure wide-tweak wide-block cipher. We instantiate this wide-tweak
wide-block cipher with the Protected IV (PIV) construction [ST13], whose modular proof structure
aligns well with our modular approach. The PIV construction itself needs to be instantiated with two
subcomponents: (1) a nonce-based enciphering scheme, and (2) a wide-tweak narrow-block cipher.

For (1), we choose CTR mode which has well known security and efficiency properties. We have
chosen to enlarge CTR’s nonce space to be the entire width of the block cipher. This results in a
stronger nonce uniqueness requirement; we now require that PIV never calls CTR with a nonce that
is close to any other nonce, rather than simply requiring nonces be distinct. To prove that PIV meets
this stronger requirement we give a revised security proof for our instantiation of PIV with CTR in
Section 4.2.5. The simultaneous modifications to CTR and PIV improve the overall security bounds
for GLEVIAN and VIGORNIAN.

For (2), we choose the LRW2 construction [LRW02]. In turn, the LRW2 construction needs to
be instantiated with a hash that is ε-almost XOR universal. This choice is the difference between
GLEVIAN and VIGORNIAN.

For VIGORNIAN we choose a polynomial MAC heavily inspired by GCM’s GHASH component.
This choice of hash is motivated by three factors: firstly, we believe it to be performant on CPU;
secondly, it has well-studied security properties; and thirdly, it requires a comparatively small key,
which reduces the cost of the nonce-based KDF.

GLEVIAN’s hash is an alternative for VIGORNIAN’s hash that may be more performant on
some platforms (on platforms such as FPGAs the complexity of the Galois multiply operation in
VIGORNIAN’s hash can dominate resource usage). GLEVIAN’s hash is based on PMAC18 [Rog04a]
and does not require a Galois multiply operation. These advantages come at a cost; GLEVIAN’s hash
has a larger key than that of VIGORNIAN (thus making the nonce-based KDF more expensive), and
requires one block cipher call per block of input instead of one Galois multiply, which on some
platforms is likely a performance hit. Since we believe that each hash may have platforms where it is
the more performant, this document presents both.

We take a modular approach to the security proofs; the security of GLEVIAN and VIGORNIAN
can be established by studying each component in turn. We hope that if any choices of subcomponent
are found to be undesirable it should be easy to create a variant mode by replacing a subcomponent
and proving that it achieves the required security properties.

GLEVIAN and VIGORNIAN are both defined in terms of an unspecified block cipher of any size
of key and essentially any block size. However, one must be aware that, because of the nonce-based
key derivation step, GLEVIAN and VIGORNIAN do not achieve k bits of security from a block
cipher with a k-bit key. We are able to bound this loss of security in the detailed version of our main
theorems (Section 4.4) by giving results relative to an assumption on the ±PRP advantage of the
underlying block cipher. In particular, the security of GLEVIAN and VIGORNIAN does not rely on
the ideal cipher model.

3.3 Security results
In Section 4, we will prove some formal security theorems for GLEVIAN and VIGORNIAN, which
are our key results. To motivate our work, here we give simplified versions of them without proof, and
provide a brief discussion on their impact. In our two RUP theorems, we assume that any variable
length buffers leak, which has no impact on encryption (since the only variable length buffer is the
ciphertext) and for decryption means that invalid queries leak the putative plaintext.

8We remove the final block cipher call of PMAC1 to use just the ε-almost XOR universal subroutine
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For each result, let us assume we have an adversary with access to K independent users of
GLEVIAN or VIGORNIAN. To each user, they can make up to q encryption queries on each of R
distinct nonces, and f decryption (and, if applicable, leakage) queries under no constraint on nonces,
where each query is of length at most ` n-bit blocks, where length counts the total length of AD and
message or AD and ciphertext. We presume ` ≥ 1; that is, the adversary is not restricted to only
making empty queries.

For now, we assume the modes are instantiated with a secure block cipher with a key of size
k ≤ 2n. We require that the adversary does not have sufficient computational power to meaningfully
threaten the ±PRP security of this block cipher9, and we assume the blocksize n is at least 4 bits to
avoid some unrealistic corner cases in our bounding.

Theorem 31 (Simplified). Suppose GLEVIAN is instantiated with a perfectly secure block cipher,
and the implementation leaks variable length internal buffers. Then, the multi-user MRAE security
of GLEVIAN in the RUP model with nonce-misuse, µMRAE-RUP(GVN), satisfies

µMRAE-RUP(GVN) ≤ 1
22n−11K(R+ 2f)3 + 1

2n−5K(`+ 1)2(R+ 2f)(q + 2f)2.

Theorem 32 (Simplified). Suppose GLEVIAN is instantiated with a perfectly secure block cipher.
Then, the multi-user MRAE security of GLEVIAN with nonce-misuse, µMRAE(GVN), satisfies

µMRAE(GVN) ≤ 1
22n−11K(R+ 2f)3 + 1

2n−6K(`+ 1)2(q + 1)
(
Rq + f

)
.

Theorem 33 (Simplified). Suppose VIGORNIAN is instantiated with a perfectly secure block
cipher, and the implementation leaks variable length internal buffers. Then the multi-user MRAE
security of VIGORNIAN in the RUP model with nonce-misuse, µMRAE-RUP(VGN), satisfies

µMRAE-RUP(VGN) ≤ 1
22n−10K(R+ 2f)3 + 1

2n−1K(`+ 6)2(R+ 2f)(q + 2f)2.

Theorem 34 (Simplified). Suppose VIGORNIAN is instantiated with a perfectly secure block
cipher. Then, the multi-user MRAE security of VIGORNIAN with nonce-misuse, µMRAE(VGN),
satisfies

µMRAE(VGN) ≤ 1
22n−10K(R+ 2f)3 + 1

2n
KR(q + 1)2(`+ 10)2 + 1

2n−4K(q + 1)(`+ 4)f.

3.3.1 Discussion

At first the presence of q2/2n terms in our security bounds would seem to contradict our claims of
beyond-birthday security. However, q counts the number of encryption queries on any one nonce, with
the number of nonces given by R. Therefore when GLEVIAN and VIGORNIAN are used correctly,
q = 1, and our bounds provide meaningful security guarantees even as R exceeds 2n/2 as required
for beyond birthday security. The q2 terms merely describe how gracefully the security decays with
nonce misuse.

We account for decryption queries separately with f . Here, the advantage bounds without RUP
provide meaningful security even as f (and R + f) approach 22n/3 - that is, we achieve beyond
birthday security in this case. In the presence of RUP our bounds are not beyond-birthday, being
O(f3/2n). We discuss this in Section 4.2.8.

Our full theorems (Section 4.4) also contain unwieldy expressions for block cipher security in terms
of the ±PRP advantage of multiple adversaries. Ordinarily one might bound these by the maximum
advantage over all adversaries satisfying some computational constraint, but such bounds are known
to be surprisingly loose (demonstrated in [BL13]). We circumvent this looseness by ensuring that our
adversaries are always efficiently constructible, which we discuss further in Section 4.1.5. The result
is that our block cipher security terms can be more reasonably assumed to be negligible, at the cost
of less concise theorem statements.

9We will see in our main theorems, where we cost exactly a reduction to the ±PRP security of the block cipher,
that this requires the adversary’s computational power be bounded by t where t � 2k/K(Rq + 2f), and also that
K(Rq + 2f)� 2k/2.
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3.3.2 A representative instantiation

To see what this looks like in practice, consider the setting in Section 2.1.2. Here we have K ≈ 220

users, each processing approximately 240 packets (meaning Rq ≤ 240) of length at most ` ≈ 216 blocks.
We can instantiate our mode with a secure block cipher with n = 128 block size, and sufficiently large
keyspace. We shall now consider the advantage bounds for GLEVIAN in various scenarios; the bounds
for VIGORNIAN are similar but slightly lower (stronger), so that the GLEVIAN results hold there
too.

First we consider the case where the mode is used correctly: nonces are not repeated in encryption
queries (that is, q = 1) and unverified plaintext is not released. We allow the number of forgery
attempts f to match the number of encryption queries, Rq = 240. Using the simplified version of
Theorem 32:

µMRAE(GVN) ≤ 2−28.0.

This is a very low advantage which allows us to enjoy substantial confidence in the mode’s security
when used correctly.

Next, we consider the degradation of security when nonce repeats occur in encryption, while still
disallowing the release of unverified plaintext. For example, suppose each nonce is repeated q = 28

times (but the total number of encryption queries Rq remains fixed). The advantage bound rises
linearly with q:

µMRAE(GVN) ≤ 2−21.0.

This is still low, which illustrates considerable robustness to nonce misuse.
We now turn to the case that unverified plaintexts are released, using the simplified version of

Theorem 31. This bound is cubic in the number of RUP forgeries, so we do not expect it to offer
reassurance in the case that all 240 forgery attempts have their unverified plaintext released. However,
our primary question is how gracefully the security degrades.

For example, suppose we allow 28 RUP forgeries and 28 repeats of each nonce. Then,

µMRAE-RUP(GVN) ≤ 2−19.8.

This is still low, which illustrates graceful degradation of security in this scenario.
Now suppose we allow 28 RUP forgeries but disallow nonce repeats (and thus correspondingly

increase the permitted number of nonces, since we are holding Rq constant). Then,

µMRAE-RUP(GVN) ≤ 2−13.0.

This bound is actually higher (weaker) than in the case of nonce repeats. This seemingly paradoxical
behaviour arises from our modelling and may or may not reflect reality. Nonetheless, we can still be
sure of retaining a meaningful degree of security in the event of a moderate amount of RUP.

3.4 Future work
We leave several avenues unexplored with this mode. To further our hope that others might be able
to improve on our design, we list some possible improvements here.

Alternative block ciphers We are constrained by the block size of AES and its lack of tweak
input. If we were able to depart from our requirement for compatibility with AES (and alternatives),
we might be able to improve the design. Designing for a block cipher with block size 256 rather than
128 would allow us to achieve our desired data rates with a birthday-bound mode, without need for
the nonce-based key derivation construction and simplify the design and security proof significantly.
Designing for a block cipher with a tweak input might allow us to modify the design in various ways to
make it more efficient. Designing modes for a block cipher with a tweakey input [JNP14] would offer
even further flexibility, although perhaps at the cost of meeting the requirements in Sections 2.2.1
and 2.2.2 to a lesser extent.

17



Improvements in security bound While we achieve beyond-birthday security in the number
of encryption and decryption queries, our security bounds are still quadratic (i.e. birthday) in the
maximum message length `. A design that was beyond-birthday in ` would allow for significantly
higher usage limits.

Our beyond-birthday security bound only applies when the mode is not misused. When nonces
repeat, the security of the mode degrades to birthday, and there are obvious attacks to demonstrate
this bound is tight. Further, when RUP occurs the bound becomes worse than birthday, although we
know of no attack that matches the bound. Attempting to find a proof that sharpens the RUP bound,
or alternatively an attack that meets the bound might be an interesting avenue of future research.

Performance We do not offer significant optimisation advice in the description of our design.
Comprehensive performance comparisons (especially on FPGA) might reveal where our design has
strong or weak performance. We have not specified exactly how to implement VIGORNIAN’s polyno-
mial hash, and incorporating the ideas from the POLYVAL [GLL17] improvement to GHASH would
likely increase performance. Our performance on short messages is probably weaker than competing
designs; this may be an area in which can be improved.

Alternative security models Our design currently lacks context commitment and discovery se-
curity, and a design that added these features to the properties GLEVIAN and VIGORNIAN provide
could be could be very appealing, depending on how much it required compromise on other require-
ments. Similarly, additional leakage resilience or side channel resistance might feasibly make the
modes more attractive.
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4 Proofs of Security for GLEVIAN and VIGORNIAN
In this section we present our security proofs for GLEVIAN and VIGORNIAN modes. In Section 4.1
we give the necessary preliminaries for our security proof; we encourage the busy reader to read
Section 4.1.2 where we describe the notation we use throughout for distinguishing advantage. In
Section 4.2 we simultaneously define and give security results for the building blocks of GLEVIAN
and VIGORNIAN, starting from the lowest level components and building to a generic KDF-based
AEAD mode. When we assemble the security results in Section 4.2, we find that the security of
the AEAD mode depends on the multi-user security of the underlying DAE scheme. We give two
bounds on this multi-user security in Section 4.3: a loose bound in a permissive adversarial model,
and a strong (beyond-birthday) bound in a more restrictive model. Finally, in Section 4.4, we use
the building blocks of Section 4.2 and the results of Section 4.3 to give our main security theorems
for GLEVIAN and VIGORNIAN.

4.1 Preliminaries
Throughout this paper, we will typically use a standard collection of letters to denote different
parameters:

Letter Meaning

R
Number of different GLEVIAN or VIGORNIAN nonces
(per GLEVIAN or VIGORNIAN key )

q
Number of times each nonce is repeated
(per GLEVIAN or VIGORNIAN key)

q Alternatively, a generic restriction on the overall number of queries

f Number of forgery or leakage attempts per key (across all nonces)

Rq + 2f Total number of queries per GLEVIAN or VIGORNIAN key (implied)

K Total number of GLEVIAN or VIGORNIAN keys

K(Rq + 2f) Total number of GLEVIAN or VIGORNIAN queries (implied)

t Number of units of work that an adversary is restricted to

n Block size of the block cipher

k Key size of the block cipher

`
Maximum length of a query, in blocks.
The length of a query is carefully defined in Section 4.1.1

s`

Computational cost of simulating a call to GLEVIAN or VIGORNIAN with inputs
of length at most ` blocks, or the cost of a lookup into a table of size at most
R+ 2f , whichever is greater.

We will write Σ = {0, 1} to be the set containing two bits and Σn to be the set of n-bit words. We will
write Σ∗ to denote arbitrary-length bitstrings, and Σ≥n for bitstrings of length at least n. π(?, ?) is a
tweakable permutation if for all tweaks T , π(T, ?) is a permutation. We define and notate tweakable
functions similarly. If a function f : Σ∗ → Σ∗ is such that for all inputs X, the length in bits of f(X)
is exactly m bits greater than the length of X, then we say that f is a stretch-m function. Similarly,
we define a shrink-m function to be a function with stretch-(−m). If a function or permutation input
is drawn from Σn, then we call that input narrow; otherwise, if it is drawn from Σ∗ or Σ≥n, then we
call that input wide. It should be clear from context which of Σ∗ and Σ≥n is meant. For example
(after keys have been fixed and subcomponents instantiated), an efficient block cipher is typically
a narrow-block permutation, CTR mode is a narrow-tweak wide-block permutation, and the PIV
construction is a wide-tweak wide-block permutation. When we are assigning the value X to the
object Y , we will write Y ← X. When we are drawing randomly from a probability distribution S

or uniformly from a set S, we will write s $←− S (noting that this is a slight abuse of notation). We
will denote the range and domain of a function f as Ran(f) and Dom(f). The letter F (and G when
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two are required) will be used for a random function10.

Oracles and multi-user oracles We typically use script characters such as O,P to denote oracles.
Some oracles offer any or all of an encrypt, decrypt and leakage interface. We sometimes use + to
denote an encrypt interface, so +O is the encrypt interface to an oracle O. Similarly, we sometimes
use − to denote a decrypt interface, so −O is the decrypt interface to O. We will typically use the
symbol ∼ to denote the leakage interface to an oracle. We combine these symbols when an oracle
provides access to multiple interfaces, so ±O provides an encrypt and decrypt interface but no leakage
interface; while ±˜O provides all three of encrypt, decrypt and leakage interfaces. When the interfaces
offered by O are clear from context, we might just write O.

A multi-user oracle with K users is a collection of K independent11 copies of an oracle. We denote
a multi-user instance of O with K users as K × O. Every multi-user oracle K × O can be viewed
as a single-user oracle with K times as many interfaces. It will at times be convenient to take this
perspective when viewing multi-user oracles; we will do so throughout this document.

Sometimes an oracle or an interface O might be defined in terms of some other oracle P, meaning
that when O is queried, it makes zero or more queries to P in order to respond. We denote this
relationship O[P] and refer to P as a suboracle.

Computational and information-theoretic adversaries An adversary is an algorithm that
runs in a game. We typically denote adversaries by capital letters, e.g. A. In parts of this document,
we will not restrict the runtime of our adversaries (though we will insist that they terminate). Instead,
we will allow our adversaries to have unlimited computational resources. We will call these adversaries
information theoretic. In other parts, we will wish to only consider adversaries that have a bounded
runtime. In this case, we will call these adversaries computational. We do not impose a model of
computation on these adversaries and our results are largely agnostic of computational model. Where
the computational cost of a reduction is important we leave the cost symbolic. Oracle calls will cost
0 units of work.12

Games A game is an algorithm taking as input an adversary A and an oracle O. Typically, the
output of a game is a bit. Games are frequently used to define security notions, as we will see in the
next definitions. The distinguishing game Gdist is defined as follows.

Algorithm 1 Game Gdist, on input oracle O and adversary A
1: Initialise O
2: A makes queries to the oracles of O adaptively, in any order
3: b← A
4: return b

Since A always outputs a bit, Gdist also always outputs a bit. Since O is randomised, we will write
the output of Gdist as a random variable that takes bit values, and denote it as GA,O

dist . In fact, where
it is clear from context that the game in question is Gdist, we may even abbreviate this notation to
AO. We can write the probability that the game outputs 1 as P

[
GA,O

dist ⇒ 1
]
, or P

[
AO ⇒ 1

]
for short.

Throughout this paper we assume A has no access to the state of O, and may only interact with it
via the game, by making queries.

Lazy sampling At various points, we shall deal with games with lazily and eagerly sampling oracles.
An oracle is lazily sampled if its output values are determined when and only when they are needed
to answer an oracle call. An oracle is eagerly sampled if its values are entirely determined upfront,
and the game simply looks up the predetermined value at run time.

10That is, for domain X and codomain Y, F is a uniform random deviate drawn from YX . X ,Y will typically be
clear from context.

11By which we mean that the oracles do not share state and use independent random coins.
12While it may seem that oracle calls should cost 1 unit of work, making oracle calls free is a permissive change and

simplifies the statements of our results.
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AEAD and DAE schemes Throughout, we mostly follow the definitions established in [RS06].
We consider an authenticated encryption with associated data (AEAD) scheme to be a pair of maps
(Π,Π−1) with signatures

Π : K× N× A×M→ C× T Π−1 : K× N× A× C× T→ M ∪ {⊥}

where we refer to the elements of K, N, A, M, C and T as (resp.), keys, nonces, associated data
(or AD), messages, ciphertexts and tags, and where ⊥ is the special symbol meaning reject.13 By
contrast, a deterministic authenticated encryption (DAE) scheme (Π,Π−1) does not take a nonce
input, and thus has signature

Π : K× A×M→ C× T Π−1 : K× A× C× T→ M ∪ {⊥}

We write ΠK(. . .) to mean Π(K, . . .), and likewise for Π−1
K . For AEAD schemes, we require that

whenever (C, T ) = ΠK(N,A,M) we have Π−1
K (N,A,C, T ) = M , and for DAE schemes we require

similarly that decryption is the inverse of encryption. When we consider the leakage interface ∼Π of
an AEAD scheme, it has signature

∼Π : K× N× A× C× T→ M ∪ {>}

where> is the special symbol meaning accept. Whenever Π−1
K (N,A,C, T ) 6= ⊥ we have∼ΠK(N,A,C, T ) =

>. Similarly, we define the leakage interface of a DAE scheme by removing the nonce input.
In many cases we will simply write Π or ±Π to denote an AEAD or DAE scheme rather than

(Π,Π−1), where the decryption interface Π−1 can be either unspecified or is clear from context.
We will express the advantage of an adversary A against a scheme as its advantage in distinguishing

±Π from (F,⊥) where F is a tweakable random function of suitable signature and ⊥ is the oracle
that always returns the reject symbol. Looking ahead to Section 4.1.2 we introduce notation for an
adversary’s advantage; specifically for an AEAD scheme, for an adversary A we can then write its
advantage against Π as

∆
A

(
+Π, −Π
F, ⊥

)
. (1)

Following convention, we name this advantage according to a few conditions. If Π is an AEAD scheme
and A promises not to make two encryption queries with the same nonce, we call (1) authenticated
encryption (AE) advantage. If Π is an AEAD scheme and A may repeat nonces, we call (1) the
misuse-resistant authenticated encryption (MRAE) advantage. Finally, if Π is a DAE scheme, we
call (1) the deterministic authenticated encryption (DAE) advantage. Informally, we call a scheme
secure if a suitable subset of adversaries (such as those asking a limited number of queries and/or
with limited computational resources) have their advantage upper bounded by some sufficiently small
advantage. Our query notation (see Section 4.1.2) will make it clear whether an adversary is permitted
to repeat nonces or not. In general, in the proofs we shall be assuming that an adversary may repeat
nonces, apart from in arguments in Section 4.2.1 about the CTR subcomponent. Note that since
DAE schemes do not take nonce inputs, we do not need a corresponding notion of misuse-resistant
DAE.

When we wish to consider the robustness of an AEAD or DAE scheme to misimplementation
such as release of unverified plaintext we follow [ADL17] and consider the advantage of an adversary
in distinguishing ±˜Π from the tuple (F,⊥, G) where F,G are independent random functions, ⊥
always returns reject, and where ∼Π is the leakage interface for Π (which will always be specified in
context). The leakage oracle provides the adversary access to information that would be leaked from
a decryption query that would otherwise return ⊥. In the notation of Section 4.1.2 this is denoted

∆
A

(
±˜Π

F,⊥, G

)
recalling that we write ±˜Π for a scheme Π that provides access to an encryption, decryption and
leakage interface.

13Note that we frequently overload notation and also use ⊥ to be the oracle that always returns the reject symbol;
the meaning of ⊥ should always be clear from context.
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4.1.1 The length of adversary queries

When a query made by an adversary to an oracle, we calculate its length in a specific way. Except
when clear from context, length is always measured as an integer number of n-bit blocks. An input
with multiple terms (e.g. plaintext and associated data) is considered to have its length be the sum
of the rounded-up lengths of its individual terms.

4.1.2 Syntax for distinguishing games

In this section we extend the delta notation of [ABL+14,Bar17] for the distinguishing advantage of an
adversary between two oracles. For oracles O and P and an adversary A we write the distinguishing
advantage of A between O and P as

∆
A

(
O
P

)
=
∣∣∣P [GA,O

dist ⇒ 1
]
− P

[
GA,P

dist ⇒ 1
]∣∣∣ .

This notation naturally extends to express the distinguishing advantage of an adversary A between
a tuple of n oracles or interfaces (for instance O1,O2, . . . ,On or P1,P2, . . . ,Pn):

∆
A

(
O1,O2, . . . ,On

P1,P2, . . . ,Pn

)
=
∣∣∣P [GA,O1,O2,...,On

dist ⇒ 1
]
− P

[
GA,P1,P2,...,Pn

dist ⇒ 1
]∣∣∣ . (2)

We believe that this notation aids readability and is particularly suited to deterministic game-hopping
proofs. First, traditional notation has the limitation that oracles available to A are usually made
explicit only by the description of an accompanying security game. Here, all oracles can be made
explicit as in (2). Furthermore, as we shall see, constraints on the number of queries made to each
oracle can be made explicit without overly cluttering the notation, particularly when imposing fine-
grained restrictions on the number of queries allowed to each oracle. Traditionally such restrictions
are only included in a preamble to the given security result14. Our notation is thus arguably more
expressive whilst still remaining intuitive and compact.

We will often seek to rule out pointless queries, which we define below:

Definition 1 (Pointless query). An adversary’s query to an oracle is pointless if the answer to the
query is completely determined by the answer to the adversary’s previous queries.

For example, an adversary makes a pointless query if they repeat an encryption or decryption
query, or if they forward the output of an encryption interface directly to a decryption interface. We
will begin most of our proofs by seeking to rule out pointless queries. We shall do so by making use
of the following lemma:

Lemma 2 (Adversaries have no need to make pointless queries). Let A be an adversary, and O,P
be oracles. Suppose that A makes pointless queries. Then there is a derived adversary R(A) such
that R(A) makes no more queries than A, does not make pointless queries, and achieves the same
advantage as A - i.e.

∆
A

(
O
P

)
= ∆
R(A)

(
O
P

)
Proof. See Appendix A.1

An ideal primitive is a random variable that is uniform over the set of possible values it could
take. We reason about two types of ideal primitive:

• A (Tweakable) Random Permutation, or (T)RP is a uniform random variable sampled from
the set of (tweakable) permutations. We typically denote (T)RPs with Greek letters such as π
or Ψ.

• A (Tweakable) Random Function, or (T)RF is a uniform random variable sampled from the
set of (tweakable) function. We typically denote (T)RFs with Latin letters such as F or G.

14While our notation is capable of expressing these restrictions, we endeavour to also include them in our lemma and
theorem statements to assist the reader.
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Continuing with our conventions, we might describe ideal primitives as wide or narrow, or to have
stretch-m or be length-preserving. In each case, our descriptions will be aimed at unambiguously
describing the set of possible values that the ideal primitive can take as inputs and produce as
outputs. Lazily sampled implementations of TRPs and TRFs are jointly defined in Figure 18. In the
lazily sampled implementations, we extend the definition of the TRFs to have both an encrypt and
a decrypt interface. We say the encrypt and decrypt interfaces of a TRF are pseudoinverses of each
other (to remind the reader that a TRF with overwhelming probability does not have a true inverse).

4.1.3 Restrictions on adversaries

We will often consider adversaries that are restricted in some way. There are myriad ways in which
we might restrict an adversary’s query and computational powers, especially in the presence of multi-
user oracles. Throughout the paper we endeavour to reserve the symbols described in Table 1 to each
refer to a particular type of constraint.

Adversary

Restriction Example oracle(s) Meaning

q ±O The adversary may not make more than q queries in total,
to both interfaces of ±O.

q, f ±O The adversary may not make more than q queries to +O
and f queries to each of −O and (if present) ∼O.

q, f ±˜O The adversary may not make more than q queries to +O
and f queries to each of −O,∼O.

t ±O
±˜O

The adversary has computational cost upper bounded by
t units of work.

` ±O
±˜O

The adversary may not make any query of length greater
than ` blocks. Length is defined in Section 4.1.1.

R, q, f ±O
±˜O

The adversary’s queries to +O must contain at most R
unique nonces, and each nonce must be repeated at most
q times, for a total of at most Rq queries to +O. The
adversary may make at most f queries to each of −O and
(if present) ∼O. There is no restriction on the nonce used
in each forgery attempt or leakage query.

(R× q), f (R+ f)×±O
(R+ 2f)×±˜O

The example multi-user oracle consists of R + f indepen-
dent copies of the oracle ±O. The adversary must make
at most q queries to each of the first R copies of +O, and
no queries to the last f copies of +O. The adversary may
make at most f forgery attempts and (if present) leakage
queries, but each of those can be to any of the (R+ f) or
(R+ 2f) decrypt interfaces −O or leakage interfaces ∼O.

K × q K ×±O
K ×±˜O

The restriction described in the q row applies to the ad-
versary separately in each of the K oracles.

K × (q, f) K ×±O
K ×±˜O

The restriction described in the q, f row applies to the
adversary separately in each of the K oracles.

K × (R, q, f) K ×±O
K ×±˜O

The restriction described in the R, q, f row applies to the
adversary separately in each of the K oracles.

Table 1: Table of notations for adversarial restrictions.

Restrictions can be combined. As an example, consider the distinguishing advantage of an adver-
sary A between K independently keyed instances of some efficient block cipher E and K independent
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instances of an RP π where the computational cost15 of A is upper bounded by t and A makes at
most q queries to each of the K oracles. Then we adapt our notation to write the query restrictions
next to A and the computational restrictions underneath A, as in the following:

∆
A,K×q

t

(
K × (±E)
K × (±π)

)
In the presence of decryption and leakage interfaces we sometimes count queries to the decryption

and leakage interfaces separately to the encryption interface, as can be seen in Table 1. This allows
us to provide more nuanced security results such as Theorems 32 and 34.

To expand on Table 1, for a single-user oracle we write R, q, f to mean that an adversary’s
encryption queries must contain at most R unique nonces and no more than q encryption queries to
any one nonce. The adversary also may make f queries to the oracle’s decryption interface and f
queries to the oracle’s leakage interface, each under no nonce restriction. When encryption queries
model data encrypted by honest parties and observed by an adversary, this models the control that
honest users can exert over the amount of data they transmit and over the number of nonces they use.
On the other hand, when decryption queries represent an attacker maliciously interacting with the
system they are under no compulsion to respect nonce usage limits! We therefore draw a distinction
between the restrictions on nonces for encryption and decryption queries. Furthermore, when leakage
queries represent information leaked from an attacker’s malicious decryption query, we model this by
allowing an adversary one leakage query for each decryption query they make. This is a permissive
model as the reality we are trying to model is that for each (N,A,C, T ) an attacker submits they
observe either plaintext or leakage, while in our model an adversary is under no compulsion to replay
their decryption queries to the leakage interface. This model simplifies our notation and proofs and
inflates an adversary’s advantage by only a very small factor.

For a multi-user oracle with query restrictions (R× q), f we apply the same reasoning with a user
replacing the role of nonce. Note that in this case we always give the adversary access to R + f
oracles of the form ±O or (when a leakage interface is also present) R + 2f oracles of the form ±˜O.
This is the maximum number of distinct users they may ever query under their query restrictions -
one could read (for instance) (R + 2f) × (±˜O) as simply meaning sufficient copies of ±˜O to satisfy
the adversary’s query capabilities.

4.1.4 Standard results

Now we aim to reassure the reader that the syntax introduced in Section 4.1.2 is useful, by restating
a collection of standard results. Proofs of each appear in Appendix A.1.

Lemma 3 (Triangle inequality; ∆ has metric-like properties). For any adversary A and oracles
O1,O2,O3,

∆
A,q

(
O1
O3

)
≤ ∆

A,q

(
O1
O2

)
+ ∆

A,q

(
O2
O3

)

Lemma 4 (Replacing suboracles). Let O be an oracle making use of a suboracle, denoted π. Suppose
that a query to O generates at most r queries to π and suppose O does not access the internal state
of π. Let s be the computational cost of simulating a call to O given oracle access to π.

Let π1, π2 be two instantiations of π. Then there is a reduction R such that for any adversary A
making at most q queries,

∆
A,q

t

(
O[π1]
O[π2]

)
≤

∆
R(A),rq

t+sq

(
π1
π2

)
.

Corollary 5 (Replacing suboracles). Let O, π1, π2, r, s be as above, and let P be an oracle with the
same input and output types as O. Then there is a reduction R such that for any adversary A making
at most q queries

∆
A,q

t

(
O[π1]
P

)
≤

∆
R(A),rq

t+sq

(
π1
π2

)
+ ∆

A,q
t

(
O[π2]
P

)
.

15We leave the unit of work undefined; see Section 4.1.5
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Lemma 6 (Fundamental lemma of game-playing [BR06]). Let GA,O and HA,P be identical-until-bad,
in the sense of [BR06]. Then

|P(GA,O ⇒ 1)− P(HA,P ⇒ 1)| ≤ P[GA,Osets bad].

In particular, if G = H = Gdist, and A is an adversary, then

∆
A

(
O
P

)
≤ P[GA,O

dist sets bad].

Lemma 7 (Strong TPRP-TPRF switching lemma (adapted from [HR03])). Let π be a TRP with
domain Σn, and let F be a TRF with the same domain. Let A be an adversary that may make
pointless queries. Suppose A makes queries on at most R tweaks, and on each tweak makes at most
q queries, and that A makes at most f queries overall. Then

∆
A,q

(
±π
±F

)
≤ R · q(q − 1)

2n+1 ≤ R · q2

2n+1

and
∆

A,f

(
±π
±F

)
≤ f(f − 1)

2n+1 ≤ f2

2n+1 .

Lemma 8 (Multi-user advantage to single-user advantage - adapted from [BCK96, Lemma 3.2]). Let
O,P be oracles. Let A be an adversary making at most R× q queries to the multi-user oracles R×O
or R × P. Let s be the maximum computational cost of simulating either of O or P. Then there is
an explicit reduction R making at most q queries and with computational cost t+ (R− 1)qs such that

∆
A,R×q

t

(
R×O
R× P

)
= R ·

∆
R(A),q

t+(R−1)qs

(
O
P

)
.

Multi-user versions of the above results Each of these results can be adapted to the multi-user
setting, by viewing the multiple users’ oracles as one overall oracle to which each query specifies a user
and an input. They can also be adapted to each of the various types of adversary query restriction.
To save space, we do not present all adaptations, but rather assume the reader will infer them.

4.1.5 Block cipher security

Our main results (Section 4.4) provide explicit reductions from an adversary’s advantage against GLE-
VIAN and VIGORNIAN modes (in a variety of security games) when instantiated with an efficient
block cipher E , to an adversary’s advantage against E . These results are necessarily computational,
so that we may correctly account for the security we inherit from our use of a KDF to provide nonce-
dependent keys. We achieve this without recourse to the ideal cipher model (see Section 2 for a brief
discussion of the ideal cipher model).

If A is an adversary with run time16 bounded by t, then A’s advantage in distinguishing between
a block cipher E and an RP π is given by

∆
A
t

(
±E
±π

)
.

In particular, if we wish to secure GLEVIAN and VIGORNIAN modes against adversaries with
run time bounded by t (and some fixed query restrictions) then we will see (Section 4.4) that the
advantage of A is bounded by a function of their query restrictions, plus a computational ±PRP
security expression written as

∆
R(A)

t′

(
±E
±π

)
(3)

where R is the reduction implicit in the proofs in this document and t′ is some run time depending
on t and on the query restrictions placed on A; see Section 4.4 for details on calculating t′ in terms

16Recall that we elect not to specify a unit for run time.
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of t. Note that we do not specify a query limit; we implicitly grant the adversary 2n queries so that
they may exhaust the block cipher.

We expect GLEVIAN and VIGORNIAN to be instantiated with well-studied secure block ciphers
with appropriate key sizes. We also expect that for most practical applications the computational
constraints of the ±PRP advantage term (3) are small enough relative to the key size of the block
cipher that a very palatable assumption on the block cipher E renders an adversary’s advantage
against the entire GLEVIAN or VIGORNIAN system sufficiently small.

Bernstein and Lange [BL13] demonstrated that terms such as (3) can be surprisingly large when
quantified over all adversaries whose computational resources are bounded in various metrics. We
argue that these adversaries do not reduce our confidence in the security of GLEVIAN or VIGOR-
NIAN instances. Our security proof is constructive (that is, given an adversary attacking GLEVIAN
or VIGORNIAN instantiated with E in some security model we can efficiently construct an adversary
achieving high ±PRP advantage against E). As the PRP adversaries described in [BL13] are efficient
to run but are not efficient to find, our argument is essentially the same as the “human ignorance”
argument of Rogaway in [Rog06] and so we only describe it briefly here:

1. For a well-studied block cipher that is believed to be secure, we do not believe humans can
construct an efficient algorithm with high distinguishing advantage.

2. If a human constructs an efficient attack against GLEVIAN or VIGORNIAN when instantiated
with such a block cipher then they can also efficiently construct a distinguisher against the
block cipher, contradicting (1).

3. Thus no attack against GLEVIAN or VIGORNIAN can be constructed by humans.

4.1.6 Key to diagrams

We shall make extensive use of diagrams throughout the proofs to describe the components of GLE-
VIAN and VIGORNIAN. The diagrams will use the following symbols throughout the document:

• ‖ denotes concatenation

• (·) denotes multiplication in the Galois field GF (2n)

• ⊗ also denotes multiplication in the Galois field GF (2n) where a dot is not suitably clear (i.e.
because two lines are coming together)

• � denotes integer addition modulo 2n

• Trunc denotes truncation, where the amount to be truncated depends on the context

• Nodes labelled with split split the input into multiple output values in ways which are hopefully
clear from context.

The diagrams will additionally use the following colour and shape conventions throughout the
document:

• Functions shall have rounded corners; values shall have sharp corners

• Thick arrows shall denote ‘wide’ quantities which may be arbitrarily many bits, thin arrows
denote ‘narrow’ quantities that are exactly a single block in length

• Message or input values shall be blue

• Ciphertext or output values shall be yellow

• Associated data/header/tweak values shall be green

• Key values shall be pink

• Nonce/IV values shall be orange

• Block cipher functions shall be red

• Hash functions shall be cyan.
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4.2 Subcomponents of GLEVIAN and VIGORNIAN
Our security proofs for GLEVIAN and VIGORNIAN are inherently modular. We idealise each of the
components in turn, measuring or bounding the advantage cost in each case, to bound the overall
security of GLEVIAN and VIGORNIAN.

Most of our results are information theoretic. It is only when we introduce the key derivation
function in Section 4.2.8 that we switch to computational results.

Throughout this section, π will stand for an RP on n-bit blocks. When some component Π uses
an RP as a suboracle we might write Π[π], or when the dependence on π is clear from context, we
just write Π.

4.2.1 CTR

I � 0

πctr

X0

Y0

I � 1

πctr

X1

Y1

I � (x− 1)

πctr

Xx−1

Yx−1

I � x

πctr

Xpartial

Trunc

Ypartial

...

...

Figure 3: CounTeR mode, denoted CTR[πctr]. Diagram symbols and colour conventions are described
in Section 4.1.6. Encrypts an input X to an output Y of the same length, under nonce I. Encryption
begins by splitting the input into a sequence of blocks and an optional final partial block, as shown in
the diagram. Trunc denotes truncation, and is used to make the length of the final block of keystream
match the length of Upartial. The user must be extremely nonce-respecting, i.e. never send a pair of
nonces I1, I2, each to either oracle, such that |I1 � I2| ≤ ` where ` is the maximum allowable message
length in blocks. CTR is an involution, so decryption (not shown in the diagram) is identical to
encryption.

CounTeR mode (CTR) is described by the diagram in Figure 3. CTR[πctr] expands an n-bit
nonce I into a keystream using underlying RP πctr which is then used to process an input X into an
output Y . If the final block is incomplete, the keystream is truncated as required.

The CPA security of CTR is well known. We give the result in our syntax below.

Lemma 9 (±TPRF security of CTR). Let πctr be an RP, and let F be a length-preserving TRF.
Let ` be the maximum allowable message length in blocks. Let A be an adversary that is extremely
nonce-respecting, in the sense that A never queries any pair of (nonce, message) inputs (I,X) and
(I ′, X ′) to either oracle where the sequences I, I + 1, . . . , I + (` − 1) and I ′, I ′ + 1, . . . , I ′ + (` − 1)
overlap. Suppose that A can make at most q queries. Then we have that

∆
A,q,`

(
±CTR [πctr]
±F

)
≤ `2q2

2n+1 .

Proof. Apply Lemma 7 (PRP-PRF switch), then direct reasoning. Based on ideas in [BDJR97,
Theorem 13]. See Appendix A.2 for a detailed proof.

Remark 10. This is the only component for which we do not allow the adversary to repeat nonces.

4.2.2 GLEVIAN-HASH

Galois Fields Let GF (2n) be the Galois field of 2n elements. Throughout this section and Sec-
tion 4.2.3, we fix a primitive polynomial p ∈ GF (2)[x] of degree n, and we let α be a root of p.17

17To be precise, we assume a polynomial p has been fixed, but do not specify a concrete choice for p in this paper.
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U0

πH2

α2 ·KH1 α4 ·KH1

U1

πH2

. . .

. . .

. . .

α2h+2 ·KH1

Uu−1

πH2

α0 ·KH1

Upartial||10 . . . 0

πH2

V0

πH2

α3 ·KH1 α5 ·KH1

V1

πH2

. . .

. . .

. . .

α2m+3 ·KH1

Vv−1

πH2

α1 ·KH1

Vpartial||10 . . . 0

πH2

R

Figure 4: GVN-HASHKH [πH2], which maps input (U, V ) to output R. Diagram symbols and colour
conventions are described in Section 4.1.6. First, bitstrings U and V are split into a sequence of whole
blocks and an optional partial block, which, if it exists, is processed with 10∗ padding. α is chosen to
be a fixed primitive element of GF (2n), and we use (·) to denote multiplication in the Galois Field.

Then α is a primitive element and we can think of the elements of GF (2n) as polynomials in α of
degree less than n. Further, we may interchangeably view elements in the set Σn as elements of
GF (2n) by identifying bitstrings a0, . . . , an−1 ∈ Σn with elements

∑
aiα

i ∈ GF (2n). Multiplication
of bitstrings will therefore be viewed as multiplication in the Galois field GF (2n); following standard
conventions we shall denote this by any of ·, ⊗ or simply adjacent placement. Multiplication of an
n-long bitstring by α exactly corresponds to performing one step of a Linear Feedback Shift Register
(LFSR) whose feedback rule corresponds to the coefficients of p.

Definition of GLEVIAN-HASH GLEVIAN-HASH is based on PMAC1 [Rog04a]. GLEVIAN-
HASHKH1 [πH2] takes input (U, V ) ∈ (Σ∗)2 and computes output R, using an underlying secret
permutation πH2 and secret key KH1 ∈ GF (2n). GLEVIAN-HASH begins by splitting and padding
U and M into a sequence of blocks

pad(U,M) = (B0, B1, . . . , Bb−1).

The Bi are calculated as follows. First, U is split into a sequence of whole blocks U0, U1, . . . , Uu−1 and
an optional partial block Upartial. If it exists, Upartial is padded with 10∗ padding. Then, similarly, V is
split into a sequence of whole blocks V0, V1, . . . , Vv−1 and an optional partial block Vpartial. If it exists,
Vpartial is padded with 10∗ padding. We setB0, . . . , Bb−1 = U0, . . . , Uu−1, Upartial, V0, . . . , Vv−1, Vpartial.

Next, GLEVIAN-HASH assigns an index index(Bi) to each block Bi ∈ pad(U, V ). The index
function is chosen so that it injectively encodes whether Bi came from U or V , whether Bi came from
a whole or partial block, and, when Bi came from a whole block, the block number of that block.
The index function is as follows:

index(Bi) =


0 if Bi came from Upartial

1 if Bi came from Vpartial

2 + 2j if Bi came from whole block Uj

3 + 2j if Bi came from whole block Vj
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Given the pad and index functions, the output of GLEVIAN-HASH is defined to be

GVN-HASH [πH2](U, V ) =
⊕

B∈pad(U,V )

πH2

(
αindex(B) ·K ⊕B

)
where addition (denoted ⊕), multiplication, and exponentiation are done in GF (2n).

GLEVIAN-HASH is an ε-AXU2 hash A random variable on the space of functions from
arbitrary-length bitstrings to n-long bitstrings with the ε-almost 2-XOR-universal, or ε-AXU2 prop-
erty [CW79, Rog99], is a family of functions where it is hard for an adversary to construct two
messages whose outputs have a known difference, without knowledge of the key or the ability to
query the function in advance. The ε-AXU2 property is a slight generalisation of collision resistance
and XOR-universal hashing that codifies the security requirement we place on the GLEVIAN-HASH
construction.

Definition 11 (ε-AXU2 property). Let H be a random variable on the space of functions from
bitstrings of length at most ` (as defined in Section 4.1.1) to Σn. Let ε be a small real number. Then
we say that H has the ε-AXU2 property if for all messages u 6= v and output differences d,

P [H(u)⊕H(v) = d] ≤ ε,

where the probability is taken over the choice of H. We shall subsequently say that for a hash function
H, “H is an ε-AXU2 for ε = . . .” if it has been sampled in this way.

We will often consider ` a variable (rather than a constant as in definition 11). When we do
so, we extend definition 11 in the natural way. When doing so, we write ε = ε` to make clear any
dependence of ε on `.

Lemma 12 (GLEVIAN-HASH has the ε-AXU2 property). Let πH2 be an RP, and let KH1 be a
uniform random variable over GF (2n). Let (U, V ) 6= (U ′, V ′) be a pair of inputs, each of total block
length at most ` ≥ 1 blocks (where lengths are as defined in Section 4.1.1). Let d be an arbitrary
output difference. Then

P[GVN-HASHKH1 [πH2](U, V )⊕GVN-HASHKH1 [πH2](U ′, V ′) = d] ≤ 5`2

2n+1 .

where the probability is taken over the choice of πH2 and KH1.

Proof. Adapted from [Rog04a, Corollary 17]. See Appendix A.3.

4.2.3 VIGORNIAN-HASH

VIGORNIAN-HASH is a polynomial hash taking two inputs U and V and is modelled closely on the
well-known GHASH hash function of GCM. Polynomial hashes are described further in [Saa12,dB93,
Tay94,BJKS94]. We differ from GHASH in that (for performance reasons applicable to our context)
we include the encoded bit-length of the first input U directly after its contents, instead of waiting
until the end of the second input V ; also, we leave unspecified the block size n and the generating
polynomial for the field GF (2n). In the common case n = 128, the field-generating polynomial of
GHASH would be a reasonable choice; alternatively, performance improvement might be possible by
incorporating the ideas of AES-GCM-SIV’s POLYVAL construction.

Definition of VIGORNIAN-HASH VIGORNIAN-HASH is a polynomial hash that computes
output R from input (U, V ) ∈ (Σ∗)2 and secret key KH ∈ GF (2n). VIGORNIAN-HASHKH begins
by splitting and padding U and V into a sequence of blocks

pad(U, V ) = (B0, B1, . . . , Bb−1).

The Bi are calculated as follows. First, U is split into a sequence of whole n-bit blocks U0, U1, . . . , Uu−1
and an optional partial final block Upartial. If Upartial exists it is 0∗ padded. We then append a final
block len(U) which encodes the bit-length of U . V is similarly split into a sequence of whole blocks
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U1

KH

. . .

. . .

Uu−1

KH

U0

KH

Upartial||0∗

KH
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KH

V1

KH

. . .

. . .

Vv−1

KH

V0

KH

Vpartial||0∗

KH

len(V )

KH

R

Figure 5: VIGORNIAN-HASH maps input (U, V ) to output R under key KH. Diagram symbols and
colour conventions are described in Section 4.1.6. First, bitstrings U and V are split into a sequence
of blocks. The final partial block of U (resp. V ), if it exists, is padded with zeroes, and then an
encoding of its bit-length is appended as shown in the diagram.

V0, V1, . . . , Vv−1 and an optional partial final block Vpartial with 0∗ padding and a terminating block
len(V ) encoding the bit-length of V . We then define the output of pad(U, V ) by

Bb−1, Bb−2, . . . , B0 = U0, U1, . . . , len(U), V0, V1, . . . , len(V ).

We interpret each Bi as an element of GF (2n) and set polyU,V ∈ GF (2n)[x] as

polyU,V (x) =
∑

0≤i≤b

Bi · xi+1.

Finally, VGN-HASHKH(U, V ) = polyU,V (KH).

Lemma 13 (VIGORNIAN-HASH has the ε-AXU2 property). Let KH be a uniform random variable
over GF (2n). Let (U, V ) 6= (U ′, V ′) be a pair of inputs, each of total length at most ` ≥ 1 blocks
(where lengths are as defined in Section 4.1). Let d be an arbitrary output difference. Then

P[VGN-HASHKH(U, V )⊕VGN-HASHKH(U ′, V ′) = d] ≤ (`+ 2)
2n

,

where the probability is taken over the choice of KH.

Proof. See Appendix A.4.

4.2.4 Wide-tweak narrow-block cipher construction via LRW2

The LRW2 [LRW02] construction is described by the diagram in Figure 6. In the encrypt direction,
M is an n-bit input, C is an n-bit output, and the tweak is T which is an arbitrary number of bits
wide. As usual, πlrw2 is an RP. Let H be an ε-AXU2, and suppose H is independent of πlrw2. Given
these components, the encryption of message M with tweak T under the LRW2 construction is given
by

LRW2 [πlrw2,H](T,M) = H(T )⊕ πlrw2 (H(T )⊕M) .
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M

πlrw2

C

HT

N

B

C

π−1
lrw2

M

HT

B

N

Figure 6: Diagram of the LRW2 [πlrw2,H] construction in the encrypt (left) and decrypt (right)
directions. Diagram symbols and colour conventions are described in Section 4.1.6. LRW2[πlrw2,H]
encrypts M to C under tweak T as shown in the diagram. N and B label intermediate values as they
appear in Figure 7. H is an ε-AXU2 hash function which is independent of πlrw2.

The decryption of C under tweak T is defined analogously. Later, we will instantiate H with
GLEVIAN-HASH or VIGORNIAN-HASH.

One should have in mind H being instantiated with one of H = GVN-HASH KH1 [πH2] or H =
VGN-HASHKH , where the randomness is over the choice of key KH1 and block cipher πH2 in
GLEVIAN-HASH, or just over the choice of key KH in VIGORNIAN-HASH.

In Figure 7 we present pseudocode that simultaneously defines a lazily sampled implementation
of LRW2 and an ideal wide-tweak narrow-block cipher. We present this code here as the analysis of
LRW2 will turn out to be critical in achieving our strongest bounds (in Section 4.3.2), and in particular
we will require two technical lemmas (Lemmas 14 and 15) that refer specifically to the pseudocode
of Figure 7. These results could reasonably be skipped on a first reading and referred back to during
the proof of Theorem 27. We then give our generic ±TPRP security result in Lemma 16.

In Lemmas 14, 15 and 16 we consider LRW2 instantiated with a hash H that has the ε-AXU2
property for some ε = ε`, where we make the likely dependence of ε` on ` explicit. The proofs of
these lemmas are all in Appendix A.5.

Lemma 14 (Bound on probability that adversary sets bad on query i to LRW2). Let A be an
adversary asking queries with tweaks of length at most ` blocks, and let badi be the event that the code
of Figure 7 reaches line 5 or 9 (i.e. the lines that set bad to true) on their ith query (beginning the
count from 0). Then

P [badi] ≤ 2iε`

Lemma 15 (Bound on probability that adversary has set bad after q queries to LRW2). Let A be
an adversary asking queries of with tweaks of length at most ` blocks. The probability that bad is set
after q queries to ±O1 as defined in Figure 7 is bounded by

P [bad] ≤ q(q − 1)ε`

More generally, in the event that the adversary has access to R copies of ±O1 with q queries to each,
the probability that bad is set is bounded by

P [bad] ≤ Rq(q − 1)ε`

Lemma 16 (±TPRP security of LRW2 ). Let πlrw2 be an RP, and let H be ε-AXU2 for some ε = ε`.
Then provided πlrw2 and H are independent, the distinguishing advantage between LRW2 and a TRP
Π with message space Σn and tweak space Σ∗ against an adversary A making at most q queries where
each tweak has length at most ` blocks is bounded by

∆
A,q

(
±LRW2 [πlrw2,H]

±Π

)
≤ q(q − 1)ε`.

Proof. Inspired by [LRW02, Theorem 2] and [Min07, Theorem 1]. See Appendix A.5.
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Algorithm 2 O1(T,M) O2(T,M)

1: C
$←− Σn \ Im (Π(T, ·))

2: N ←M ⊕H(T )
3: B ← C ⊕H(T )
4: if N ∈ Dom(πlrw2) then
5: bad← true
6: B ← πlrw2(N)

7: C ← H(T )⊕B
8: else if B ∈ Im(πlrw2) then
9: bad← true

10: B
$←− Σn \ Im(πlrw2)

11: C ← H(T )⊕B
12: end if
13: πlrw2(N)← B
14: Π(T,M)← C
15: return C

Algorithm 3 O−1
1 (T,M) O−1

2 (T,M)

1: M
$←− Σn \Dom (Π(T, ·))

2: N ←M ⊕H(T )
3: B ← C ⊕H(T )
4: if B ∈ Im(πlrw2) then
5: bad← true
6: N ← π−1

lrw2(B)

7: M ← H(T )⊕N
8: else if N ∈ Dom(πlrw2) then
9: bad← true

10: N
$←− Σn \Dom(πlrw2)

11: M ← H(T )⊕N
12: end if
13: πlrw2(N)← B
14: Π(T,M)← C
15: return M

Figure 7: Pseudocode jointly defining the LRW2 [H, πlrw2] construction and a TRP Π using lazy
sampling. O1, which does not include the boxed statements, implements a TRP. O2, which includes
the boxed statements, implements LRW2 (see Lemma 39). Given a query of the form (T,M), LRW2
encrypts M to C using tweak T . The shared state of Ox and O−1

x is initialised so that bad is set to
false and πlrw2 and Π are the empty map. For brevity, we do not include caching logic to deal with
pointless queries.

4.2.5 Wide-tweak wide-block cipher construction via PIV

The Protected-IV (PIV) construction from [ST13] is described by the diagram in Figure 8. PIV [B, C]
is a wide-tweak wide-block cipher, built from a wide-tweak, narrow-block TPRP B and a narrow-nonce
based wide-block TPRF C that is not necessarily nonce misuse resistant. Input U is the (arbitrary
length) tweak, and X = XL‖XR is a bitstring, where |XR| = n and XL has an arbitrary length.

Theorem 1 of [ST13] establishes a bound on the ±TPRP security of the PIV construction18 In
our version we instantiate C with CTR. As we have defined it, CTR is only secure against extremely
nonce-respecting adversaries, by which we mean adversaries that never query with either oracle a
nonce within ` of a nonce that was previously used. We provide an adaptation of the security proof
for PIV from [ST13].

Lemma 17 (±TPRP security of PIV). Let A be an adversary that makes at most q queries, where
the length after padding of X, Y and U on each query is at most ` blocks. Let Ψ be a wide-tweak
wide-block TRP, Π be a wide-tweak, narrow-block TRP, and H be a narrow-nonce wide-block TRF.
Then we can exhibit a reduction R(A) and extremely nonce-respecting reductions S(A) and T (A),
such that R(A) makes at most 2q queries to B with tweaks of length at most ` blocks, S(A) and T (A)
each make at most q queries of length `− 1 blocks to C, and

∆
A,q,`

(
±PIV [±B,±C]

±Ψ

)
≤ ∆
R(A),2q

(
±B
±Π

)
+ ∆
S(A),q,`−1

(
±C
±H

)
+ ∆
T (A),q,`−1

(
±C
±H

)
+ (`+ 9)q2

2n+1 .

where R(A) asks queries with tweaks of length at most ` blocks.

Proof. An adapted version of [ST13, Theorem 1]. See Appendix A.6.
18 Note that there is a minor bug in the proof as originally presented at ASIACRYPT. The event where an attacker

collides inputs to the first and second calls to F is not captured in the bound, allowing for something resembling a slide
attack. We patch the proof at the same time as adding the modifications described.
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YL YR

B−1

U

C−1

B−1

U

XRXL

(b) PIV Decryption

Figure 8: The encryption and decryption routines of the PIV construction. Diagram symbols and
colour conventions are described in Section 4.1.6. PIV [B, C] encrypts input X = XL‖XR of minimum
length n bits to output Y = YL‖YR (of the same length) under tweak U . Subcomponent C should
have nonce-respecting ±TPRF security. Subcomponent B should have ±TPRP security. Decryption
(not shown in this diagram) is defined in the obvious way.

Finally, we instantiate subcomponents B and C with LRW2 and CTR respectively to form our
component WTBC - that is, we set

WTBC = PIV[LRW2,CTR].

This construction is pictured in Figure 9. We sometimes make the dependence on the ε-AXU2
component H and the block cipher πlrw2 in LRW2 and on the block cipher πctr in CTR explicit
by writing WTBC [H, πlrw, πctr]. We derive a bound on the ±TPRP security of WTBC in the next
lemma.

Corollary 18 (±TPRP security of WTBC ). Let A be an adversary that makes at most q queries,
where the length after padding of encryption and decryption queries, and of each tweak, is at most `
blocks. Let Ψ be a wide-tweak wide-block TRP, let LRW2 be instantiated with an RP πlrw2, let H be
ε-AXU2 for some ε = ε` and let CTR be instantiated with RP πctr. Then

∆
A,q,`

(
±WTBC
±Ψ

)
≤ 4q2ε` + (`+ 2)2q2

2n
.

Proof. We apply Lemma 17 (±TPRP security of PIV), and then Lemmas 9 (TPRF security of CTR)
and 16 (±TPRP security of LRW2 ). See Appendix A.6.
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(XL)partial
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Figure 9: Diagram of the encryption routine for the WTBC[H, πctr, πlrw2] =
PIV[CTR[πctr],LRW2[πlrw2,H]] construction. Diagram symbols and colour conventions are
described in Section 4.1.6. Decryption (not shown in this diagram)is handled by running encryption
in reverse. WTBC stands for Wide Tweakable Block Cipher. WTBC encrypts input X = XL‖XR

of minimum length n bits to output Y = YL‖YR (of the same length) under tweak U .
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M Check = 0n

split

(b) Decryption

Figure 10: Block diagrams of the encryption/decryption routines for the PTE1 [Ψ] construction.
Diagram symbols and colour conventions are described in Section 4.1.6. PTE1 stands for Pad-Then-
Encrypt, and implements DAE. Subcomponent Ψ should be a TPRP.

4.2.6 LD-DAE construction via PTE1

Algorithm 4
PTE1 [Ψ](A,M)

1: X ←M ‖0n

2: C ← Ψ(A,X)
3: return C

Algorithm 5
PTE1 [Ψ]−1(A,C, T )

1: Y ← C ‖T
2: X ← Ψ−1(A, Y )
3: (M ‖ check zero)← parse(X)
4: if check zero = 0n then
5: return M
6: else
7: return ⊥
8: end if

Algorithm 6 ∼PTE1 [Ψ](A,C, T )
1: Y ← C ‖T
2: X ← Ψ−1(A, Y )
3: (M ‖ check zero)← parse(X)
4: if check zero = 0n then
5: return >
6: else
7: return M
8: end if

Figure 11: Pseudocode for the PTE1 [Ψ] construction (encrypt, decrypt, and leakage interfaces).
Encrypts message M and associated data A to ciphertext C. Ψ is a wide-tweak wide-block cipher.

The pad-then-encipher (PTE1) construction [RS06] for DAE is pictured in Figures 10a and 10b, with
pseudocode appearing in Figure 11. PTE1 encrypts by “padding” (in our case, appending a block of
zeroes) a plaintext, and then “enciphering” it. PTE1 differs from the encode-then-encipher construc-
tion [BR00] because it contains an associated data input but not a nonce input, thus implementing
DAE rather than AEAD. PTE1 encrypts associated data A and message M (each of arbitrary length)
to ciphertext C (of the same bit-length as M) and tag T (of bit-length n). 0n is a bitstring consisting
of n zeroes, and split denotes the splitting of a bitstring of bit-length m+ n into one of bit-length m
and one of bit-length n. The “Check= 0n” redundancy check is intended to provide authentication.
If the check fails, PTE1 implementations should return the reject symbol ⊥ and nothing else.

However, we do still prove that PTE1 is DAE secure even when unverified plaintexts are released.
Recall that in the RUP model, the attacker has access to a third “leakage” oracle, which models the
fact that real-world decryption implementations may release unverified plaintext. We use the defini-
tion of DAE from [RS06, Definition 1], and the notion of extended RUPAE security from [ADL17].
Recall that we justify this choice of RUP model in Section 2.

Lemma 19 (DAE security of PTE1 [Ψ] in the RUP model follows from ±TPRP security of Ψ). Let
A be an adversary making at most q queries each consisting of at most ` blocks. Let Ψ be a (not
necessarily ideal) wide block cipher, and let Π be an ideal TRP. Let PTE1 provide an encrypt, decrypt
and leakage interface as defined in Figure 11. Let F be a wide-tweak wide-block stretch-n TRF and
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Figure 12: Block diagrams of the encryption routine for the LD-DAE[H, πctr, πlrw2] =
PTE1 [WTBC[H, πctr, πlrw2]] construction. Diagram symbols and colour conventions are described
in Section 4.1.6. In the proof of Theorem 27, notation is abused and the component in this diagram
would instead be denoted the LD-DAE[LRW2] construction. LD-DAE stands for Low-Data DAE,
and implements authenticated encryption. Our presentation omits a nonce input. LD-DAE encrypts
associated data A and message M (each of arbitrary length) to ciphertext C (of the same length as
M) and tag T (of length n). 0n is a bitstring consisting of n zeroes. Decryption implementations
should output ⊥ (if the “Check= 0n” fails) or M (if the “Check= 0n” succeeds).
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let G be a wide-tweak wide-block shrink-n TRF. Then there is a reduction R such that

∆
A,q,`

(
±˜ PTE1 [Ψ]
F,⊥, G

)
≤ ∆
R(A),q,`+1

(
±Ψ
±Π

)
+ q2

2n
.

Proof. The main ideas and structure of this proof can be found in [RS06, Theorem 11]. We adapt
them to our RUP model and present our own proof in Appendix A.7.

LD-DAE (Low-Data Deterministic Authenticated Encryption, Figure 12) is a DAE component
built from the PTE1 construction. That is,

LD-DAE = PTE1 [WTBC ].

When we wish to make clear the dependence of LD-DAE on the ε-AXU2 component H and the block
ciphers πlrw2 and πctr used in Wide-TBC, we write

LD-DAE [H, πlrw2, πctr] = PTE1[WTBC [H, πlrw2, πctr]].

We conclude that, when instantiated with genuine RPs and either GLEVIAN-HASH or VIGORNIAN-
HASH, LD-DAE inherits RUP security from the PTE1 construction. We could have designed an
AEAD scheme from LD-DAE by prepending a nonce to the associated data input. We do not
directly propose this on account of its birthday security level.

Lemma 20 (DAE security of LD-DAE in the RUP model). Let πlrw2, πctr be ideal block ciphers and
let H be an ε-AXU2 for some ε = ε`. Write LD-DAE for LD-DAE [H, πlrw2, πctr] and let its leakage
interface be as defined in Algorithm 6 (that is, when ∼LD-DAE is queried with (A,C, T ) it returns
all but the last n bits of WTBC−1(A,C‖T ) whenever LD-DAE−1(A,C, T ) = ⊥).

Let F be a wide-tweak wide-block stretch-n TRF and let G be a wide-tweak wide-block shrink-n
TRF. Let A be an adversary making at most q queries each consisting of at most ` ≥ 1 blocks.

Then
∆

A,q,`

(
±˜ LD-DAE
F,⊥, G

)
≤ q2

(
4ε` + (`+ 4)2

2n

)
Proof. Combine Lemma 19 (PTE1 construction) and Corollary 18 (±TPRP security of WTBC ). See
Appendix A.7.

4.2.7 KDF via XORP

We convert our birthday-secure DAE scheme LD-DAE to a beyond-birthday secure AEAD scheme by
employing the nonce-based key derivation technique of [GLL17]. We instantiate this with the XORPw

construction introduced in [Iwa06] and named in [IMV16, Equation (1)] as a KDF. Our instantiation
of XORPw uses a block cipher πxorp to map an (n− dlog(w+ 1)e)-bit block pseudorandomly onto w
n-bit output blocks by

XORPw[πxorp](N) = (πxorp(N‖0)⊕ πxorp(N‖1), . . . , πxorp(N‖0)⊕ πxorp(N‖w)) .

This is illustrated in Figure 13.
Note that this means we have a condition on the width of the block cipher. In order for XORP

to generate enough key material, we require enough different inputs to the block cipher to generate
at least w+ 1 distinct outputs, i.e. that n ≥ dlog(w+ 1)e. For GLEVIAN and VIGORNIAN, we will

need w = 1 +
⌈

3k
n

⌉
and w = 1 +

⌈
2k
n

⌉
respectively. In practice, however, this will not be a problem

for any conventional block cipher, therefore subsequently we shall assume that n and w always satisfy
this inequality.

In order to achieve beyond-birthday security for our extension of LD-DAE we will need XORPw

to achieve beyond-birthday security in the number of queries (although not in w, which should be
considered fixed). Both Patarin [Pat10, Theorem 6] and Iwata [Iwa06, Theorem 1] have studied
bounds on the security of XORP and found it to achieve beyond-birthday security. We appreciated
the commentary on Patarin’s proof in [IMV16], but ultimately chose to verify Iwata’s less strong
bound which still attains adequate beyond-birthday security.
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Figure 13: The XORP[πxorp] construction takes (n−dlog(w+1)e)-bit input N , and produces wn-bit
output keys0, . . . , keysw−1. Diagram symbols and colour conventions are described in Section 4.1.6.
(‖) denotes concatenation of (n− dlog(w + 1)e)-bit N with a dlog(w + 1)e-bit counter; in particular
note that the nonce goes first.

Lemma 21 (Security of XORP construction - Iwata 2006). Let A be an adversary making at most
q queries and let F be an RF. Then

∆
A,q

(
XORPw[πxorp]

F

)
≤ (w + 1)4q3

22n+1 + w(w + 1)q
2n+1 .

Proof. See [Iwa06, Theorem 1].

4.2.8 Nonce-based key derivation and the HD-AEAD construction

In this section we use the Nonce-based Key Derivation (NKD) paradigm introduced by [GL17] to
extend a birthday secure DAE mode to a beyond-birthday secure AEAD mode with the use of a
beyond birthday secure KDF. Our security results in this section are necessarily computational as we
will use the KDF to provide key material for block cipher(s) in the DAE mode.

We then apply the NKD paradigm to the LD-DAE mode and the XORP KDF. We call the
resulting mode HD-AEAD, for High-Data AEAD. GLEVIAN and VIGORNIAN are instantiations of
HD-AEAD using different hashes.

Nonce-based key derivation and the HD-AEAD construction NKD is described by the
diagram in Figure 16 and fully defined in Figure 14.

Algorithm 7 NKD [Π,K](N,A,M)
1: keys← K(N)
2: return Πkeys(A,M)

Algorithm 8 NKD [Π,K]−1(N,A,C, T )
1: keys← K(N)
2: return Π−1

keys(A,C, T )

Figure 14: Pseudocode for the NKD [Π,K] construction (encrypt and decrypt directions), which is
built from a KDF scheme K and a DAE scheme Π that is initialised with uniformly chosen keys. The
mode runs in two steps: in the first step, it performs a nonce-based key derivation to produce keys.
In the second step, the algorithm calls ±Π.
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Algorithm 9 ∼NKD [Π,K](N,A,C, T )
1: keys← K(N)
2: return ∼Πkeys(A,C, T )

Figure 15: Pseudocode for an example leakage oracle for NKD which forwards the leakage of Π
without allowing K to leak (other leakage oracles could be considered).

N

K

keys

M

Πkeys

split

C T

A

Step 1: KDF

Figure 16: The NKD[Π,K] construction implements nonce-based AEAD. Diagram symbols and
colour conventions are described in Section 4.1.6. Named for Nonce-based Key Derivation, in the
first step the nonce is processed by the KDF K to derive per-nonce key material keys. In the second
step, associated data A and message M are processed by DAE scheme Π under keys keys, to produce
ciphertext C (of the same length as M) and tag T . Decryption (not shown in the diagram) has the
same first step, but the second step is run in reverse.

We show that the security of NKD [Π,K] decomposes into the security of many copies of the
underlying DAE scheme Π, and the security of the KDF K. One should keep in mind that Π will
often be efficient and, in particular, take a small amount of key material - for example, a series of
block cipher keys, as is the case in GLEVIAN and VIGORNIAN. This necessitates consideration
of computationally bounded adversaries throughout this section; we make this clear in our lemma
statements.

Recall throughout this section that a query restriction of (R, q, f) for an adversary means that
adversary may make at most Rq encryption queries using at most R unique nonces and no more than
q queries on any given nonce; f decryption queries with free choice of nonce; and f leakage queries
with free choice of nonce, if a leakage oracle is available. The related but distinct query restriction
of (R × q, f) for an adversary querying a multi-user oracle (R + f) × ±O or (R + 2f) × ±˜O means
that adversary may make at most q encryption queries to each of R distinct oracles in the multi-user
oracle; and at most f decryption and leakage queries, each of which can be to any of the R + f or
R+ 2f oracles (depending on whether a leakage interface is available).

Lemma 22 (NKD security reduces to security of the KDF and the underlying DAE scheme). Let Π
be a stretch-n DAE scheme with key space Σk for some k. Let K be a (not necessarily ideal) KDF
scheme with codomain Σk. Let the leakage interface of Π be arbitrary and for any KDF K′ let the
leakage interface of NKD [Π,K′] queried with (N,A,C, T ) return ∼ΠK′(N)(A,C, T ) as in Algorithm 9.

Let F, F ′ be wide-tweak wide-block stretch-n TRFs and let G,G′ be wide-tweak wide-block shrink-n
TRFs. Let H be an RF with codomain Σk. Let A be an adversary with computational cost bounded
by t and with query constraints (R, q, f). Let sΠ,` be the maximum computational cost of simulating
a call to any of the interfaces of Π with inputs of length at most ` blocks and let sT be the cost of a
lookup into a table of size at most R+ 2f .

Then there are efficiently constructible reductions R,S such that

∆
A,R,q,f,`

t

(
±˜ NKD [Π,K]

F,⊥, G

)
≤

∆
R(A),R+2f

t+(Rq+2f)sΠ,`

(
K
H

)
+

∆
S(A),(R×q),f,`
t+(Rq+2f)sT

(
(R+ 2f)×

(
±˜Π
)

(R+ 2f)× (F ′,⊥, G′)

)
Proof. See Appendix A.8.
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HD-AEAD We now define the HD-AEAD (High-Data AEAD) component with respect to an
efficient block cipher E and a keyed hash H (which one should think of as the ε-AXU2 hash in the
LRW2 construction), which we denote HD-AEAD [H, E ].

We require that H uses at most one block cipher subcomponent (for example, GLEVIAN-HASH
uses one, while VIGORNIAN-HASH uses none). We will typically leave the block cipher in H as
implicit, on the understanding that HD-AEAD [H, E ] makes E available to H if required; however,
where relevant we will make the block cipher available to H explicit by writing H[E ] or H[π], even in
the case that H does not depend on a block cipher.

HD-AEAD inherits its key space from the key space of E . For such a key K, define

HD-AEAD [H, E ]K = NKD
[
LD-DAE [H, E ],XORPw[E(K)]

]
where we write XORPw[E(K)] for XORP instantiated with E with key K and LD-DAE [H, E ] for
LD-DAE that has been instantiated with all RPs π(·) (including any RPs in the as-yet uninstantiated
hash component) replaced by block ciphers E(K(·)) that are keyed by the output of XORP. That is,
for an efficient block cipher E we write

LD-DAE [H, E ] = LD-DAE[H(KH), E(Klrw2), E(Kctr)]

where each of KH,Klrw2,Kctr are outputs of XORP and we write E(K) to mean E with key K. We
write H(KH) to mean H implicitly instantiated with block cipher E and key material KH, which con-
tains all the key material required by H. For example, when H is instantiated with GLEVIAN-HASH
then KH will consist of an n-bit key and a k-bit key, while if H is instantiated with VIGORNIAN-
HASH then KH will just be an n-bit key.

HD-AEAD is described in full by the diagram in Figure 17. The security of HD-AEAD reduces
immediately to the security of LD-DAE by applying existing lemmas about the security of XORP
and of NKD.

Lemma 23 (MRAE security of HD-AEAD from DAE security of LD-DAE). Let E be an effi-
cient block cipher and let π, πH2, πlrw2, πctr be an RP. Let the leakage interface of LD-DAE be
arbitrary and let ∼HD-AEAD [H, E ] when queried with (N,A,C, T ) be as in Algorithm 9, that is,
it returns ∼LD-DAE [H[E ](KH), E(Klrw2), E(Kctr)](A,C, T ) where KH,Klrw2,Kctr are the output of
XORPw[E ](N).

Let F, F ′ be wide-tweak wide-block stretch-n TRFs and let G,G′ be wide-tweak wide-block shrink-n
TRFs.

Let A be an adversary with computational cost bounded by t and with query constraints (R, q, f).
Let s` be the computational cost of simulating a call to ±˜ HD-AEAD [H[E ], E ] with inputs of length at
most ` blocks, or the cost of a lookup into a table of size at most R+ 2f , whichever is greater.

Then there are efficiently constructible reductions R,S1, . . . ,S4 such that

∆
A,R,q,f,`

t

(
±˜ HD-AEAD [H[E ], E ]

F,⊥, G

)
≤ (R+ 2f)

4∑
i=1

∆
Si(A)

t+3(Rq+2f)s`

(
±E
±π

)
(4)

+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1 (5)

+ ∆
R(A),(R×q),f,`

(
(R+ 2f)×

(
±˜ LD-DAE [H[πH2], πlrw2, πctr]

)
(R+ 2f)× (F ′,⊥, G′)

)
Note that in the computational advantage term here we do not give query constraints and implic-
itly allow the adversaries 2n queries; meanwhile, in the information theoretic term we do not give
computational constraints and implicitly allow the adversary unbounded computation.

Proof. Based on the ideas of [GL17], but in the computational model. See Appendix A.8

Remark 24. Lemma 23 is the source of the multiple block cipher adversaries in our main theorems.
As per Section 3.3.1, we endeavour to render all of our adversaries efficiently constructible so that we
can argue that the resulting ±PRP advantage terms are as small as possible, at the expense of more
unwieldy theorem statements.
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Step 1: KDF

Figure 17: Block diagrams of the encryption routine for the HD-AEAD K [E ] =
NKD[XORP[EK ],LD-DAE] construction. Diagram symbols and colour conventions are described
in Section 4.1.6. HD-AEAD stands for High-Data AEAD, and implements authenticated encryption.
In the first step the n−dlog2(w + 1)e-bit nonce N is processed by the XORP KDF to derive per-nonce
key material. In the second step, associated data A and message M are processed by LD-DAE using
the derived keys, to produce ciphertext C (of the same length as M) and tag T . Decryption (not
shown in the diagram) has the same first step, but the second step is run in reverse. Decryption
implementations should output ⊥ (if the “Check= 0n” fails) or M (if the “Check= 0n” succeeds).
Note that w is adjusted as needed so that the KDF XORP produces as much output as is needed for
various block ciphers and H.
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Given parameter choices R, q, f , one can choose a block cipher with a sufficient size key k and
make a reasonable security assumption to render terms (4) and (5) negligible. Therefore, to complete
our overall advantage bound on HD-AEAD we are left with the problem of establishing a bound on
the remaining term:

∆
R(A),(R×q),f,`

(
(R+ 2f)× (±˜ LD-DAE )

(R+ 2f)× (F,⊥, G)

)
(6)

We explore this in the following section, for different choices of ∼LD-DAE .

4.3 Building the main theorems - multi-user concentrated forgeries case
for LD-DAE

In the previous section, we saw that to complete our overall advantage bound on HD-AEAD we are
left with the problem of establishing a bound on the remaining term (6), which we call the multi-
user, concentrated forgeries term. The name is intended to reflect that in this term, R(A) is free to
concentrate all its decryption queries against a single oracle, or spread them over different oracles
– or somewhere in between. We offer two bounds on this term. In the first bound, we allow the
adversary access to a leakage interface (i.e. work in the RUP model) and the bound will be cubic
in the total number of queries. This will not be a suitable bound for more than a relatively small
number of queries, yet it will offer reassurance that the security of HD-AEAD degrades gracefully in
the RUP model. In the second bound we do not allow the adversary access to a leakage interface
and we obtain a bound linear in (R+ f). This demonstrates that our mode retains beyond-birthday
security when handling decryption queries correctly.

4.3.1 Loose bound in the RUP model

For the first bound on term (6), we will be in the RUP security model. There is a natural choice for
the leakage interface of HD-AEAD: as in Algorithm 9, it inherits its leakage interface from that of
LD-DAE and PTE1 as described in Algorithm 6, which can be interpreted as releasing putative or
unverified plaintext.

In this model, an adversary that submits all f leakage queries under a single nonce can observe
birthday effects in the leaked plaintext. There is therefore no prospect of a bound on (6) in the RUP
model that is linear in f . We provide a straightforward but loose security bound where we effectively
model the adversary as having f forgery attempts and leakage queries against each of the (R + 2f)
decryption and leakage oracles, and thus more than f2 in total. This simple approach allows us to
apply Lemma 8 (multi-user to single-user) to find a loose bound.

Lemma 25 (Simple bound on concentrated forgery game in the RUP model). Let Π be a (not
necessarily ideal) DAE scheme with arbitrary leakage, let F be a wide-tweak wide-block stretch-n TRF
and let G be a wide-tweak wide-block shrink-n TRF.

Let A be an adversary with computational cost bounded by t and making at most (R×q), f queries.
Let sΠ,` be the computational cost of simulating a call to Π with inputs of length at most ` blocks.
Then there is an efficiently constructible reduction R such that

∆
A,(R×q),f,`

t

(
(R+ 2f)× (±˜Π)

(R+ 2f)× (F,⊥, G)

)
≤ (R+ 2f) ·

∆
R(A),q+2f,`

t+(Rq+2f)sΠ,`

(
±˜Π

F,⊥, G

)
Proof. Relax query restrictions to (R+ 2f)× (q + 2f), `, then apply Lemma 8 (Multi-user to single-
user advantage). Note that as A makes at most Rq+ 2f queries, R must simulate (at most) Rq+ 2f
calls to Π.

Corollary 26 (Security of HD-AEAD in the RUP model). Let E be an efficient block cipher, let H
be a keyed hash that uses at most one block cipher subcomponent and that has the ε-AXU2 property
for some ε = ε`.

Let the leakage interface of HD-AEAD [H, E ] be defined as in Algorithms 6 and 9 (that is, when
∼HD-AEAD [H, E ] is queried with (N,A,C, T ), it returns all but the last n bits of WTBC−1(A,C‖T )
whenever LD-DAE−1(A,C, T ) = ⊥).
Let F be a wide-tweak wide-block stretch-n TRF and let G be a wide-tweak wide-block shrink-n TRF.
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Let A be an adversary making at most (R, q, f) queries each consisting of at most ` blocks and suppose
that ` ≥ 1.
Let s` be the computational cost of simulating a call to ±˜ HD-AEAD [H[E ], E ] with inputs of length at
most ` blocks, or the cost of a lookup into a table of size at most R+ 2f , whichever is greater.

Then there are efficiently constructible adversaries R1, . . . ,R4 such that

∆
A,R,q,f,`

t

(
±˜ HD-AEAD [H, E ]

F,⊥, G

)
≤ (R+ 2f)

4∑
i=1

∆
Ri(A)

t+3(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ (R+ 2f)(q + 2f)2 ·
(

4ε` + (`+ 4)2

2n

)
Proof.

Apply Lemma 23
(MRAE security of HD-AEAD

from DAE security of LD-DAE)︷ ︸︸ ︷
∆

A,R,q,f,`
t

(
±˜ HD-AEAD [H[E ], E ]

F,⊥, G

)
≤ (R+ 2f)

4∑
i=1

∆
Si(A)

t+3(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ ∆
R(A),(R×q),f,`

(
(R+ 2f)×

(
±˜ LD-DAE [H[π], πlrw2, πctr]

)
(R+ 2f)× (F ′,⊥, G′)

)
(7)

where π, πlrw2, πctr are TRPs and F ′, G′ are TRFs arising from the application of Lemma 23. Apply
Lemma 25 (Simple bound on concentrated forgery game in the RUP model) to term (7):

(7) ≤

Apply Lemma 20
(DAE security of LD-DAE in the RUP model)

with q + 2f queries︷ ︸︸ ︷
(R+ 2f) · ∆

R(A),q+2f,`

(
±˜ LD-DAE [H[π], πlrw2, πctr]

F ′,⊥, G′
)

≤ (R+ 2f)(q + 2f)2
(

4ε` + (`+ 4)2

2n

)
This suffices to prove the result.

Note that for either of GLEVIAN and VIGORNIAN, ε` never exceeds 5(`+1)2

2n and so this bound
gives us reassurance that HD-AEAD retains some security in the RUP model. However, this bound
will not be adequate for all use cases. In the next section, we drop the RUP model and our wasteful
f2 modelling to show that the MRAE security of HD-AEAD is linear in R+ f .

4.3.2 Beyond-birthday bound in the non-RUP model

In the previous section we established a loose bound on the multi-user, concentrated forgeries term
(6). This bound was loose because we made the simplifying assumption that the adversary may
make f forgery attempts to each of its decrypt oracles. This simplifying assumption arose because we
could not rule out that its forgery attempts could be targeted towards one or more somehow “weak”
users using information gleaned from encryption queries. However, in the absence of RUP we do not
believe that such adaptively forging adversaries are significantly more powerful than ones who do
not exercise their adaptive power. Such an adversary would be learning something of the state of an
oracle from its encryption queries, which is essentially prohibited by CPA security. Instead, we expect
that forgery attempts without RUP will contribute at most linearly to the adversary’s advantage (for
a justification of why, see e.g. [RS06, Proposition 8]). In this section, we will develop this belief into
a concrete argument which will conclude with Theorem 27. Crucially, there is no R2, Rf , or f2 term
in our bound. We expect that in many practical applications R and f will be quite large, while q and
` will be comparatively small, and so Theorem 27 results in a powerful (beyond-birthday) bound.
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Regrettably, this proof is less modular than other proofs so far in this paper on account of the
tighter reasoning. We hope that anyone looking to adapt this style of proof to their own designs will
be able to produce a similar result by following similar reasoning.

Theorem 27 (Multi-user DAE security of LD-DAE ). Let πlrw2, πctr be ideal block ciphers and let H
be an ε-AXU2 for some ε = ε`. Write LD-DAE for LD-DAE [H, πlrw2, πctr]. Let F be a wide-tweak
wide-block stretch-n TRF. Let A be an adversary with query constraints (R × f), q, f , where each
query is of length at most ` ≥ 1 blocks. Then

∆
A,(R×q),f,`

(
(R+ f)× (±LD-DAE)

(R+ f)× (F,⊥)

)
≤ 1

2n
(q + 1)

(
Rq(`+ 4)2 + 16f

)
+ 12(Rq + f)(q + 1)ε`.

Theorem 27 allows us to give a bound for the MRAE security of HD-AEAD. Before proving this
theorem, we shall explore the consequences with a corollary and then give some supporting lemmas.

Corollary 28 (MRAE security of HD-AEAD in the non-RUP model). Let E be an efficient block
cipher and suppose that HD-AEAD does not leak quantities such as unverified plaintext. Let F be a
wide-tweak wide-block stretch-n TRF.

Let A be an adversary with query constraints (R, q, f) and let `, q ≥ 1. Let s` be the computational
cost of simulating a call to ±˜ HD-AEAD [H[E ], E ] with inputs of length at most ` blocks, or the cost
of a lookup into a table of size at most R+ 2f , whichever is greater. Then

∆
A,R,q,f,`

t

(
±HD-AEAD K

F,⊥

)
≤ (R+ 2f)

4∑
i=1

∆
Ri(A)

t+3(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 1
2n

(q + 1)
(
Rq(`+ 4)2 + 16f

)
+ 12(Rq + f)(q + 1)ε`.

Proof. Combine Theorem 27 and Lemma 23 (MRAE security of HD-AEAD from DAE security of
LD-DAE).

Second, we shall need some preliminary lemmas about the probability of forgery.

Lemma 29 (Decryption queries at the end). Let A be an adversary playing Gdist between two multi-
user worlds of the form (R + f) × (±O) and (R + f) × (+P,⊥). Suppose that ±O can be eagerly
sampled, i.e. the output of each query is independent of previous query inputs. Then there exists an
adversary R(A) which has the same query constraints as A, which is about as efficient to run and has
advantage at least as large as A, and which makes all its encryption queries before any decryption
queries.

Proof. See Appendix A.9.

Note that R(A) will not necessarily be efficiently constructible from A. Therefore, we are careful
to use R only when reasoning about information-theoretic adversaries and games. In particular, we
will never use this lemma as part of a chain of reductions that produces an efficiently constructible
block cipher adversary from an efficiently constructible AEAD adversary.

Lemma 30 (Gdist as the probability of forgery). Let A be an adversary playing Gdist between two
multi-user worlds of the form (R+ f)× (±O) and (R+ f)× (+O,⊥). Suppose that A makes all its
encryption queries before its decryption queries. Then

∆
A

(
(R+ f)×

(
+O, −O

)
(R+ f)×

(
+O, ⊥

)) ≤ P[A(R+f)×(±O) forges].

Proof. See Appendix A.9.

Finally, we now come to prove this section’s main theorem.
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Proof of Theorem 27. We first apply Lemma 29 (Decryption queries at the end), creating a reduction
R(A) which makes all of its encryption queries before its decryption queries.

Note that since no leakage interface is present, the adversary accesses not (R + 2f) but only
(R+ f) oracles.

We apply the triangle inequality, decomposing into auth and priv terms:

∆
R(A),(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (F,⊥)

)
≤ ∆
R(A),(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (+ LD-DAE ,⊥)

)
(8)

+ ∆
R(A),(R×q),f,`

(
(R+ f)× (+ LD-DAE ,⊥)

(R+ f)× (F,⊥)

)
(9)

1. Privacy term

Term (9) can be bounded easily, because it does not require us to reason about concentrated
decryption queries. Let S1(A) be the adversary that forwards R(A)’s encryption queries to its en-
cryption oracle, and answers A’s decryption queries with ⊥. Note that since S1(A) makes only
encryption queries, it accesses only R oracles rather than (R + f). Then S1(A) achieves the same
advantage as R(A) does in term (9):

(9) = ∆
S1(A),(R×q),`

(
R× (+ LD-DAE )

R× F

)
Apply Lemma 8 (Multi-user to single-user advantage), and let S2(A) be the adversary derived from
R(A) which plays the single user game:

≤ R · ∆
S2(A),q,`

(
+ LD-DAE

F

)
Apply Lemma 20 (DAE security of LD-DAE in the RUP model):

≤ R
(

4q2ε` + (`+ 4)2q2

2n

)
. (10)

2. Authenticity term

We now bound term (8),

∆
R(A),(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (+ LD-DAE ,⊥)

)
By Lemma 30, distinguishing the oracles in term (8) will amount to submitting a successful

decryption query. One can see from the definition of LD-DAE as a pad-then-encipher scheme that
the success of a decryption attempt is closely entwined with the wide-tweak narrow-block cipher
component, which in LD-DAE is instantiated with LRW2[πlrw2,H]. It will become necessary to
consider an idealised version of LD-DAE where this entire LRW2 component is replaced by an ideal
wide-tweak narrow-block cipher Π. We abuse notation in this section of the proof to write

LD-DAE [LRW2 ] = PTE1 [PIV[LRW2 ,CTR ]]
LD-DAE [Π] = PTE1 [PIV[Π,CTR ]] .

Here we have left implicit the dependence of LRW2 and CTR on their subcomponents πlrw2,H and
πctr (respectively). In this section of the proof we also consider changes to the encrypt and decrypt
interfaces that occur independently; to make this clear, we will make explicit the dependence of the
encrypt and decrypt interface of LD-DAE [·] on the encrypt and decrypt interface (respectively) of
its subcomponent. For example, for LD-DAE [LRW2] we write

±LD-DAE [LRW2] = (+ LD-DAE [+ LRW2 ],−LD-DAE [−LRW2])
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Finally, we recall the lazily sampled simultaneous implementation of LRW2 and an ideal wide-tweak
narrow-block cipher Π in Figure 7. We will refer to this implementation as we complete the proof.

In this notation we can now write term (8) as:

∆
R(A),(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (+ LD-DAE ,⊥)

)
(11)

= ∆
R(A),(R×q),f,`

(
(R+ f)×

(
+ LD-DAE [+ LRW2 ], −LD-DAE [−LRW2 ]

)
(R+ f)×

(
+ LD-DAE [+ LRW2 ], ⊥

))
Note further that we can define a lazily sampled oracle (+Π,−LRW2 ) that is implemented according
to the pseudocode in Figure 7 that excludes the boxed statements when answering encrypt queries but
includes them when answering decrypt queries. Note that there is no corresponding eager sampling
implementation of (+Π,−LRW2 ). We are careful to make sure this does not affect the proof.
Applying the triangle inequality yields:

≤ ∆
R(A),(R×q),f,`

(
(R+ f)×

(
+ LD-DAE [+ LRW2 ], −LD-DAE [−LRW2 ]

)
(R+ f)×

(
+ LD-DAE [+Π], −LD-DAE [−LRW2 ]

)) (12)

+ ∆
R(A),(R×q),f,`

(
(R+ f)×

(
+ LD-DAE [+Π], −LD-DAE [−LRW2 ]

)
(R+ f)×

(
+ LD-DAE [+Π], ⊥

))
+ ∆
R(A),(R×q),f,`

(
(R+ f)×

(
+ LD-DAE [+Π], ⊥

)
(R+ f)×

(
+ LD-DAE [+ LRW2 ], ⊥

)) (13)

Let bad be as defined by the implementation of Π in Figure 7, and let badenc (resp. baddec) be the
event that bad is set on an encryption (resp. decryption) query. Each of terms (12) and (13) compares
oracles which are identical-until-badenc, and so the term is bounded by P(badenc). Noting that each
query to LD-DAE results in two queries to LRW2 with tweaks of length at most ` blocks, and noting
that R(A) makes all encryption queries before any decryption queries, we can replace suboracles and
apply the multi-user case of Lemma 15 (Probability of badenc) to find that each of terms (12) and
(13) is bounded by R(2q)(2q − 1)ε`. So our three terms are bounded by:

≤ 2R(2q)(2q − 1)ε` (14)

+ ∆
R(A),(R×q),f,`

(
(R+ f)×

(
+ LD-DAE [+Π], −LD-DAE [−LRW2 ]

)
(R+ f)×

(
+ LD-DAE [+Π], ⊥

)) (15)

2.(a) Idealised encryption oracles
It remains to bound term (15). Recall that R(A) makes all of its encryption queries before its
decryption queries. So, applying Lemma 30 (Gdist as the probability of forgery), we can rewrite this
as R(A)’s probability of forging:

(15) = P
[
R(A)(R+f)×(+ LD-DAE [+Π],−LD-DAE [−LRW2 ]) forges

]
For neatness we shall omit the exponent in R(A)(R+f)×(+ LD-DAE [+Π],−LD-DAE [−LRW2 ]) until it be-
comes relevant again.

≤ P
[
R(A) forges | R(A) sets badenc

]
+ P [R(A) sets badenc]

We bound the probability thatR(A) sets badenc with Lemma 15 (Bound on probability that adversary
has set bad after q queries to LRW2):

≤ P
[
R(A) forges | R(A) sets badenc

]
+R(2q)(2q − 1)ε`
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2.(a)(i) Forgery without badenc

It remains to bound the first term. Recalling that R(A) makes f forgery attempts, we apply a union
bound:

P
[
R(A) forges | R(A) sets badenc

]
= P

 ∨
1≤j≤f

R(A) forges on attempt j | R(A) sets badenc


≤
∑

1≤j≤f

P
[
R(A) forges on attempt j | R(A) sets badenc

]
(16)

We now show that the success or failure of a forgery attempt of R(A) depends only on the contents
of the forgery attempt. Recall that R(A) makes all of its encryption queries before its decryption
queries; we say R(A) runs an encryption phase followed by a decryption phase. Conditioned on
badenc, the internal state of the −LRW2 oracle is consistent at the start of the decryption phase,
in the sense that it could have been reached by a lazily sampled implementation of + LRW2 in the
encryption phase. Since ±LRW2 is eagerly sampleable, we can switch to an eager perspective at
this stage. Therefore the probability R(A) successfully forges on its J th query depends only on the
contents of the current forgery attempt and on the transcript of the encryption phase. In particular,
the order of the forgery attempts does not matter.

Let T (A) be the adversary that behaves as follows. T (A) runs R(A), forwarding encryption
queries to its oracle but storing and rejecting all forgery attempts. When R(A) has terminated, T (A)
uniformly chooses a random 1 ≤ J ≤ f , and submits R(A)’s J th forgery attempt. T (A) outputs 1 if
and only if it forges. Note that by construction, T (A) makes all of its encryption queries before its
decryption query (which we’ll use later). Therefore, by the reasoning in the previous paragraph, we
can say that

P
[
R(A) forges on attempt j | R(A) sets badenc

]
= P

[
T (A) forges | T (A) sets badenc, T (A) chooses J = j

]
Therefore the sum we were evaluating is:

(16) =
∑

1≤j≤f

P
[
T (A) forges | T (A) sets badenc, T (A) chooses J = j

]
= f ·

∑
1≤j≤f

P
[
T (A) forges | T (A) sets badenc, T (A) chooses J = j

]
P [T (A) chooses J = j]

= f · P
[
T (A) forges | T (A) sets badenc

]
For any eventsX,Y with P [Y ] ≤ 1

2 , note that P
[
X | Y

]
≤ 2·P [X]. In our case, P [T (A) sets badenc] =

R(2q)(2q − 1)ε` as seen previously, while our theorem bound is vacuous unless this is at most 1
2 .

Therefore we can bound our term by

≤ 2f · P [T (A) forges]

Since T (A) only makes a single forgery attempt, we only need to consider a single oracle to which no
encryption queries were made:

= 2f ·
(
P
[
T (A)((R+1)×±LD-DAE [+Π,−LRW2 ]) forges

]
− P

[
T (A)((R+1)×±LD-DAE [±Π]) forges

])
+ 2f · P

[
T (A)((R+1)×±LD-DAE [±Π]) forges

]
≤ 2f · ∆

T (A),(R×q),1,l

(
(R+ 1) × ±LD-DAE [+Π,−LRW2 ]
(R+ 1) × ±LD-DAE [±Π]

)
(17)

+ 2f · P
[
T (A)((R+1)×±LD-DAE [±Π]) forges

]
(18)
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First, we bound term (17), by analysing the multi-user world directly. Recall that T (A) makes all
of its encryption queries before it makes its decryption query. Therefore the two worlds are identical-
until-baddec. So we apply Lemma 6 (Fundamental lemma of game-playing) to bound term (17) by
P [baddec].

During each query to LD-DAE[±O], the ±O oracle is called twice. So during the decryption
query, the adversary makes queries number 2q and 2q + 1 to −O. Lemma 14 (Bound on probability
that adversary sets bad on query i to LRW2) shows that P [baddec] ≤ 2iε` on query i. So P [baddec] ≤
4(q + 1)ε`. It follows that term (17) is bounded by

8f(q + 1)ε`. (19)

2.(a)(i)(A) Forging with forgeries deferred
We bound (18) using the following claim:
Claim:

P
[
T (A)((R+1)×±LD-DAE [±Π]) forges

]
≤ 8(q + 1)

2n
(20)

Proof of Claim: Consider the following game which we call the “TBC game” (Tweakable Block
Cipher game). In the encryption phase of the TBC game, the adversary may make (R× 2q) queries
to (R×(+Π)) (where here if R = 0, we take q = 0). In the decryption phase, the adversary may make
2 decryption queries to any oracle in ((R + 1) × (−Π)) (note, not forgery attempts - the adversary
gets to actually see the output of these decryption queries). The adversary wins the TBC game if
they either

1. obtain a Π−1 output of zero

2. obtain a Π−1 output that matches an output of the corresponding Π oracle from the encryption
phase.

Pointless queries are not allowed, so note in both cases, the adversary does not win the TBC game
if the input to the ‘winning’ decryption query is the output of an encryption query with the same
tweak.

Consider the adversary U(A) which plays the TBC game by running T (A), then submitting all
the queries to (R + 1) × (±Π) required to simulate the queries to (R + 1) × (±LD-DAE [±Π]). We
will show that U(A) wins whenever T (A) does and so

P
[
T (A)((R+1)×±LD-DAE [±Π]) forges

]
≤ P

[
U(A)((R+1)×±Π) wins the TBC game

]
.

Suppose that T (A) produces a forgery A, C, T with derived plaintext M , and suppose that the
intermediate value Π−1((A,C), T ) = I. Since T (A) produces a valid forgery, Π−1((A,M), I) = 0.
We have the following possibilities:

Case 1 ((A,M), I) is not the output of any of U(A)’s encryption queries. Then U(A) wins the TBC
game by the first criterion.

Case 2 ((A,M), I) is the output of one of U(A)’s encryption queries. This case subdivides further:

Case 2a ((A,M), I) = ((A∗,M∗), I∗), where ((A∗,M∗), I∗) are the associated data, message,
and intermediate value for one of T ’s encryption queries. Then T (A)’s forgery attempt
was the decryption of one of its own previous encryption queries, and hence T (A)’s forgery
is pointless and thus invalid.

Case 2b ((A,M), I) = ((A∗, C∗), T ∗), where ((A∗, C∗), T ∗) are the associated data, ciphertext,
and tag for one of T (A)’s encryption queries. In this case, U(A) wins the TBC game by
the second criterion.

We shall now consider the probability that U(A) can win the TBC game. Each of U(A)’s two
decryption queries has at most 2q+ 1 targets which would result in a win of the TBC game: at most
2q from previous encryption queries to that same Π oracle, and 1 from zero. Since Π is a TRP, we
have that for a given tweak, there will be no collisions between distinct decryption inputs. Therefore
of the 2n possible output values, up to 2q + 1 of them may already have been ‘reserved’ by previous
queries (recall that pointless queries are not allowed): 2q from the previous encryption queries and
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1 from a previous decryption query. Therefore the probability that the adversary can win the TBC
game after two decryption queries is at most 2(2q + 1)

2n − (2q + 1) .

Suppose for now that 2q + 1 ≤ 1
22n. Then

P
[
T (A)((R+1)×±LD-DAE [±Π]) forges

]
≤ 2(2q + 1)

2n − (2q + 1) ≤
2(2q + 1)

1
22n

= 4(2q + 1)
2n

(21)

On the other hand, if 2q + 1 > 1
22n then the RHS of inequality (21) is greater than 1 and so, since

it bounds a probability, it is vacuously true. Hence inequality (21) holds for all q. To conclude the
proof of inequality (20), observe that 4(2q + 1) < 8(q + 1). �

3. Summary
Collecting terms (10), (14), (19), and (20) (with an extra factor of 2f , as in (18)), we have shown
that

∆
A,(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (F,⊥)

)
≤R

(
4q2ε` + (`+ 4)2q2

2n

)
+ 2R(2q)(2q − 1)ε`

+ 8f(q + 1)ε`

+ 16f(q + 1)
2n

Simplifying:

∆
A,(R×q),f,`

(
(R+ f)× (±LD-DAE )

(R+ f)× (F,⊥)

)
≤ 1

2n

(
R(`+ 4)2q2 + 16f(q + 1)

)
+

(
R(4q2 + 8q2) + 8f(q + 1)

)
ε`

≤ 1
2n

(q + 1)
(
Rq(`+ 4)2 + 16f

)
+

(
12Rq2 + 8f(q + 1)

)
ε`

≤ 1
2n

(q + 1)
(
Rq(`+ 4)2 + 16f

)
+ 12

(
Rq + f

)
(q + 1)ε`,

which concludes the theorem.

4.4 GLEVIAN and VIGORNIAN - main security theorems
We define our proposed modes GLEVIAN and VIGORNIAN to be HD-AEAD instantiated with
H =GLEVIAN-HASH and H =VIGORNIAN-HASH. This is illustrated in Figures 1 and 2. When
E is an efficient block cipher we write k for its keysize (so it has a keyspace of size 2k). Thus,
for GLEVIAN, we can calculate the amount of key material output required from XORP to be
w = 1 +

⌈ 3k
n

⌉
blocks, and for VIGORNIAN, we require w = 1 +

⌈ 2k
n

⌉
blocks.

Using the lemmas we have built up we can finally prove the bounds on their security, approxima-
tions of which we quoted in Section 3. In each case we give a bound on multi-user MRAE security;
that is, the adversaries in these theorems have access to K independent oracles (which one might
think of as users with independent keys), and to each oracle they can make encryption queries on
up to R distinct nonces, making up to q queries on each nonce; and up to f decryption (and, if
applicable, leakage) queries under no constraint on nonces.

Throughout this section we use some standard primitives: we write E for an efficient block cipher
on n-bit blocks and with key space Σk; and we write F for a wide-tweak wide-block stretch-n TRF,
G for a wide-tweak wide-block shrink-n TRF, and ⊥ for the oracle that always returns ⊥. We shall
also assume that the block cipher is wide enough (i.e. satisfies n ≥ dlog(w + 1)e) as specified in
Section 4.2.7. We also assume that ` ≥ 1.

Theorem 31 (Multi-user MRAE security of GLEVIAN in the RUP model). Let the leakage interface
of GLEVIAN be defined as in Algorithms 6 and 9 (that is, when ∼GVN is queried with (N,A,C, T ),
it returns all but the last n bits of WTBC−1(A,C‖T ) whenever GVN−1(N,A,C, T ) = ⊥). Let A be
an adversary with computational resource bounded by t and with query constraints K×(R, q, f) where
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each query consists of at most ` blocks. Let s` be the computational cost of simulating ±˜ GVN[E ] on
a query of at most ` blocks (which we presume to be more expensive than the cost of simulating a call
to F or ⊥).

Then there are efficiently constructible adversaries R1(A), . . . ,R4(A) such that

µMRAE-RUP(GVN)

:= ∆
A,K×(R,q,f),`

t

(
K × (±˜ GVN[E ])
K × (F,⊥, G)

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 11
2n

(`+ 1)2(R+ 2f)(q + 2f)2

)
,

where the constant w = 1 +
⌈ 3k

n

⌉
is likely to be w ≤ 7 in practice.

Proof. Apply Lemma 8 (Multi-user to single-user advantage), noting that A makes at most K(Rq+f)
queries and simulating responses to any of them costs at most s`. Then apply Corollary 26 (Security
of HD-AEAD in the RUP model). Recall that GVN[E ] = HD-AEAD[GVN-HASH [E ], E ], where
GLEVIAN-HASH is an ε-AXU2 with ε = 5`2

2n+1 (by Lemma 12). Thus,

µMRAE-RUP(GVN)

:= ∆
A,K×(R q,f),`

t

(
K ×

(
±˜ GVN[E ]

)
K × (F,⊥, G)

)
≤ K ·

∆
A,R,q,f,`

t+K(Rq+2f)s`

(
±˜ GVN[E ]
F,⊥, G

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

(R+ 2f)(q + 2f)2 ·
(

4 5`2

2n+1 + (`+ 4)2

2n

))
.

which suffices to prove the result, noting that 10`2 +(`+4)2−11(`+1)2 = −14`+5 < 0 for ` ≥ 1.

Theorem 32 (Multi-user MRAE security of GLEVIAN in the non-RUP model). Let A be an adver-
sary with computational resource bounded by t and with query constraints K × (R, q, f) where each
query consists of at most ` n-bit blocks. Let s` be the computational cost of simulating ±GVN[E ] on
a query of at most ` blocks (which we presume to be more expensive than the cost of simulating a call
to F or ⊥).

Then, there are efficiently constructible adversaries R1(A), . . . ,R4(A) such that

µMRAE(GVN)

:= ∆
A,K×(R,q,f),`

t

(
K × (±GVN[E ])
K × (F,⊥)

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+
46(q + 1)

(
Rq + f

)
(`+ 1)2

2n

 .

where the constant w = 1 +
⌈ 3k

n

⌉
is likely to be w ≤ 7 in practice.

Proof. Apply Lemma 8 (Multi-user to single-user), noting that A makes at most K(Rq + f) queries
and simulating responses to any of them costs at most s`. Then apply Corollary 28 (Security of
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HD-AEAD in the non-RUP model). Recall that GVN[E ] = HD-AEAD[GVN-HASH [E ], E ], where
GLEVIAN-HASH is an ε-AXU2 with ε = 5`2

2n+1 (by Lemma 12).

µMRAE(GVN)

:= ∆
A,K×(R q,f),`

t

(
K × (±GVN[E ])
K × (F,⊥)

)
≤ K ·

∆
A,R,q,f,`

t+K(Rq+2f)s`

(
±GVN[E ]
F,⊥

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 1
2n

(q + 1)
(
Rq(`+ 4)2 + 16f

)
+ 12(Rq + f)(q + 1) 5`2

2n+1

)

≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 1
2n

(q + 1)
(
Rq + f

)(
16(`+ 4)2 + 125`2

2

))

≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+
46(q + 1)

(
Rq + f

)
(`+ 1)2

2n


as required.

Theorem 33 (Multi-user MRAE security of VIGORNIAN in the RUP model). Let the leakage
interface of VIGORNIAN be defined as in Algorithms 6 and 9 (that is, when ∼VGN is queried with
(N,A,C, T ), it returns all but the last n bits of WTBC−1(A,C‖T ) whenever VGN−1(N,A,C, T ) =
⊥). Let A be an adversary with computational resource bounded by t and with query constraints
K × (R, q, f) where each query consists of at most ` blocks. Let s` be the computational cost of
simulating ±˜ VGN[E ] on a query of at most ` blocks (which we presume to be more expensive than
the cost of simulating a call to F or ⊥).

Then, there are efficiently constructible adversaries R1(A), . . . ,R4(A) such that

µMRAE-RUP(VGN)

:= ∆
A,K×(R,q,f),`

t

(
K × (±˜ VGN[E ])
K × (F,⊥, G)

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 1
2n

(`+ 6)2(R+ 2f)(q + 2f)2

)
.

where the constant w = 1 +
⌈ 2k

n

⌉
is likely to be w ≤ 5 in practice.

Proof. Apply Lemma 8 (Multi-user to single-user), noting that A makes at most K(Rq+ 2f) queries
and simulating responses to any of them costs at most s`. Then apply Corollary 26 (Security
of HD-AEAD in the RUP model). Recall that VGN[E ] = HD-AEAD[VGN-HASH [E ], E ], where
VIGORNIAN-HASH is an ε-AXU2 with ε = (`+2)

2n (by Lemma 13), and where for VIGORNIAN we
require w = 1 +

⌈ 2k
n

⌉
blocks of output from XORP. Then,

µMRAE-RUP(VGN)
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:= ∆
A,K×(R q,f),`

t

(
K ×

(
±˜ VGN[E ]

)
K × (F,⊥, G)

)
≤ K ·

∆
A,R,q,f,`

t+K(Rq+2f)s`

(
±˜ VGN[E ]
F,⊥, G

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+(R+ 2f)(q + 2f)2 ·
(

4(`+ 2)
2n

+ (`+ 4)2

2n

))
,

which suffices to prove the result, noting that 4(`+ 2) + (`+ 4)2 < (`+ 6)2.

Theorem 34 (Multi-user MRAE security of VIGORNIAN in the non-RUP model). Let A be an
adversary with computational resource bounded by t and with query constraints K × (R, q, f) where
each query consists of at most ` n-bit blocks. Let s` be the computational cost of simulating ±VGN[E ]
on a query of at most ` blocks (which we presume to be more expensive than the cost of simulating a
call to F or ⊥). Then, there are efficiently constructible adversaries R1(A), . . . ,R4(A) such that

µMRAE(VGN)

:= ∆
A,K×(R,q,f),`

t

(
K × (±VGN )
K × (F,⊥)

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1

+ 1
2n
R(q + 1)2(`+ 10)2 + 12

2n
f(q + 1)(`+ 4)

)
,

where the constant w = 1 +
⌈ 2k

n

⌉
is likely to be w ≤ 5 in practice.

Proof. Apply Lemma 8 (Multi-user to single-user), noting that A makes at most K(Rq + f) queries
and simulating responses to any of them costs at most s`. Then apply Corollary 28 (Security of
HD-AEAD in the non-RUP model). Recall that VGN[E ] = HD-AEAD[VGN-HASH [E ], E ], where
VIGORNIAN-HASH is an ε-AXU2 with ε = (`+2)

2n (by Lemma 13). Then,

µMRAE(VGN)

:= ∆
A,K×(R q,f),`

t

(
K × (±VGN[E ])
K × (F,⊥)

)
≤ K ·

∆
A,R,q,f,`

t+K(Rq+f)s`

(
±VGN[E ]
F,⊥

)
≤ K ·

(
(R+ 2f)

4∑
i=1

∆
Ri(A)

t+(K+3)(Rq+2f)s`

(
±E
±π

)
+ (w + 1)4(R+ 2f)3
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+ 1
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(
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+ 1
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R(q + 1)2(`+ 10)2 + 12

2n
f(q + 1)(`+ 4)

)
,

as required, noting that (` + 4)2 + 12(` + 2) = `2 + 20` + 40 < `2 + 20` + 100 = (` + 10)2 and
16 + 12(`+ 2) = 12`+ 40 < 12(`+ 4).
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5 Conclusion
In this paper, we discuss various features offered by block cipher modes of operation, and their relative
importance to high-threat deployments of cryptography. We justify that multi-user security, beyond-
birthday security, nonce misuse resistance, and robustness to the release of unverified plaintext are
some of the most important properties.

We introduce a further requirement that our mode is block cipher agnostic and compatible with
AES. We assign a medium priority to proofs in the standard model, security against quantum adver-
saries, performance, and context commitment and discovery security.

We demonstrate two modes of operation, GLEVIAN (Figure 1) and VIGORNIAN (Figure 2),
that fulfill all of our most important requirements. Full security proofs are given in the standard
model, for which the main theorems can be found in Sections 3.3 (simplified) and 4.4 (in full).

We encourage further research on whether our efficiency tradeoffs could be improved, or how to
satisfy additional security properties, without compromising on our high-priority requirements.
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A Additional proofs
A.1 Proofs of preliminary lemmas
This appendix gives supporting proofs for the results in Section 4.1.4.

Lemma 2 (Adversaries have no need to make pointless queries). Let A be an adversary, and O,P
be oracles. Suppose that A makes pointless queries. Then there is a derived adversary R(A) such
that R(A) makes no more queries than A, does not make pointless queries, and achieves the same
advantage as A - i.e.

∆
A

(
O
P

)
= ∆
R(A)

(
O
P

)
Proof. Let A be an adversary that achieves some distinguishing advantage between O and P. We
define the derived adversary R(A) as follows. R(A) runs A. Each time A makes a query, R(A)
intercepts that query. If it is pointless, R(A) answers A directly without interacting with the challenge
oracle. If it is not pointless, then R(A) forwards it to the challenge oracle. R(A) then returns the
value which A outputs. R(A) therefore achieves the same distinguishing advantage as A, without
making pointless queries.

Lemma 3 (Triangle inequality; ∆ has metric-like properties). For any adversary A and oracles
O1,O2,O3,

∆
A,q

(
O1
O3

)
≤ ∆

A,q

(
O1
O2

)
+ ∆

A,q

(
O2
O3

)
Proof.

∆
A,q

(
O1
O3

)
=
∣∣P [AO1 ⇒ 1

]
− P

[
AO3 ⇒ 1

]∣∣
=
∣∣(P [AO1 ⇒ 1

]
− P

[
AO2 ⇒ 1

])
+
(
P
[
AO2 ⇒ 1

]
− P

[
AO3 ⇒ 1

])∣∣
≤
∣∣(P [AO1 ⇒ 1

]
− P

[
AO2 ⇒ 1

])∣∣+
∣∣(P [AO2 ⇒ 1

]
− P

[
AO3 ⇒ 1

])∣∣
= ∆

A,q

(
O1
O2

)
+ ∆

A,q

(
O2
O3

)
.

Lemma 4 (Replacing suboracles). Let O be an oracle making use of a suboracle, denoted π. Suppose
that a query to O generates at most r queries to π and suppose O does not access the internal state
of π. Let s be the computational cost of simulating a call to O given oracle access to π.

Let π1, π2 be two instantiations of π. Then there is a reduction R such that for any adversary A
making at most q queries,

∆
A,q

t

(
O[π1]
O[π2]

)
≤

∆
R(A),rq

t+sq

(
π1
π2

)
.

Proof. The reduction R constructs the adversary B = R(A) from A as follows. B is initialised with
access to an oracle π, and it hopes to distinguish whether π = π1 or π = π2. B runs A. Whenever
A emits a query, B simulates O[π] using its oracle π as the suboracle of O and uses the result to
answer A. When A emits its guess as to whether it was interacting with O[π1] or O[π2], B emits the
corresponding guess about whether it was interacting with π1 or π2. B has the same advantage as A,
since B guesses correctly iff A does. Since A makes at most q queries, and for each query A makes, B
makes at most r corresponding queries, B must make at most rq queries. Further, since A runs in at
most t units of work and with at most q queries, we have that B runs in at most t+ sq units of work
as required, since each time A makes an oracle call (costing zero units of work), B must simulate it
for s unit of work.

Corollary 5 (Replacing suboracles). Let O, π1, π2, r, s be as above, and let P be an oracle with the
same input and output types as O. Then there is a reduction R such that for any adversary A making
at most q queries

∆
A,q

t

(
O[π1]
P

)
≤

∆
R(A),rq

t+sq

(
π1
π2

)
+ ∆

A,q
t

(
O[π2]
P

)
.
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Proof. We start with the LHS, and apply Lemma 3 (Triangle inequality):

∆
A,q

t

(
O[π1]
P

)
≤ ∆

A,q
t

(
O[π1]
O[π2]

)
+ ∆

A,q
t

(
O[π2]
P

)
Then apply Lemma 4 (Replacing suboracles) to the first term:

≤
∆

R(A),rq
t+sq

(
π1
π2

)
+ ∆

A,q
t

(
O[π2]
P

)
.

Lemma 6 (Fundamental lemma of game-playing [BR06]). Let GA,O and HA,P be identical-until-bad,
in the sense of [BR06]. Then

|P(GA,O ⇒ 1)− P(HA,P ⇒ 1)| ≤ P[GA,Osets bad].

In particular, if G = H = Gdist, and A is an adversary, then

∆
A

(
O
P

)
≤ P[GA,O

dist sets bad].

Proof. See [BR06, Lemma 2].

Algorithm 10 TRF(T,X) TRP(T,X)

1: Y
$←− Σn

2: if X ∈ DomL(T,·) then
3: Y

$←− {Y : (T,X, Y ) ∈ L}
4: else if Y ∈ RanL(T,·) then
5: bad← true
6: Y

$←− Σn \ RanL(T,·)

7: end if
8: L ← L ∪ {(T,X, Y )}
9: return Y

Algorithm 11 TRF−1(T, Y ) TRP−1(T, Y )

1: X
$←− Σn

2: if Y ∈ RanL(T,·) then
3: X

$←− {X : (T,X, Y ) ∈ L}
4: else if X ∈ DomL(T,·) then
5: bad← true
6: X

$←− Σn \DomL(T,·)

7: end if
8: L ← L ∪ {(T,X, Y )}
9: return X

Figure 18: Pseudocode for a ±TRP (boxed statements included) and for a ±TRF (boxed statements
excluded). Caching logic is explicitly included in both cases. ±TRPs and ±TRFs are identical-until-
bad, and we exploit this in Lemma 7 (Strong TPRP-TPRF switch) to show that they are birthday
indistinguishable. L is initialised to the empty set. We define RanL(T,·) = {Y : (T,X, Y ) ∈ L} and
DomL(T,·) = {X : (T,X, Y ) ∈ L}.

Lemma 7 (Strong TPRP-TPRF switching lemma (adapted from [HR03])). Let π be a TRP with
domain Σn, and let F be a TRF with the same domain. Let A be an adversary that may make
pointless queries. Suppose A makes queries on at most R tweaks, and on each tweak makes at most
q queries, and that A makes at most f queries overall. Then

∆
A,q

(
±π
±F

)
≤ R · q(q − 1)

2n+1 ≤ R · q2

2n+1

and
∆

A,f

(
±π
±F

)
≤ f(f − 1)

2n+1 ≤ f2

2n+1 .

Proof. As before, we appeal to Lemma 2 (Adversaries have no need to make pointless queries) and
WLOG only consider adversaries that do not make pointless queries. Consider Figure 18. When
boxed statements are not included, the pseudocode implements F and F−1 via lazy sampling. When
boxed statements are included, the pseudocode implements π and π−1. Therefore ±F and ±π are
identical-until-bad. Examining the probability of setting bad on each query gives the result.
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Lemma 8 (Multi-user advantage to single-user advantage - adapted from [BCK96, Lemma 3.2]). Let
O,P be oracles. Let A be an adversary making at most R× q queries to the multi-user oracles R×O
or R × P. Let s be the maximum computational cost of simulating either of O or P. Then there is
an explicit reduction R making at most q queries and with computational cost t+ (R− 1)qs such that

∆
A,R×q

t

(
R×O
R× P

)
= R ·

∆
R(A),q

t+(R−1)qs

(
O
P

)
.

Proof. R(A) does the following. R(A) is given access to a single oracle X , which is either an instance
of O or P. First, R(A) chooses an index 1 ≤ I ≤ R uniformly at random. R(A) runs A on oracles
(X1, . . .Xr) that R(A) simulates as

Xj =


Pj j < I

X j = I

Oj j > I

where each Oj and Pj are simulated independent copies of the oracles O and P. When A terminates
by outputting a bit, R(A) forwards this bit as its own output. R(A) runs in at most t + (R − 1)qs
units of work. This is because R(A) simulates the q queries A makes to each of the oracles in Xj ,
each taking s units of work whenever j 6= I. Also, R(A) makes at most p queries to X . By the law
of total probability, the advantage of R(A) is bounded by the mean advantage of A against several
different constructions:

∆
R(A),q

t+(R−1)qs
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O
P

)
=

∣∣P [R(A)O ⇒ 1
]
− P

[
R(A)P ⇒ 1

]∣∣
=

∣∣∣∣∣∑
i

P
[
R(A)O ⇒ 1

∣∣ I = i
]
P [I = i] − P

[
R(A)P ⇒ 1

∣∣ I = i
]
P [I = i]

∣∣∣∣∣
= 1

R

∣∣∣∣∣∑
i

P
[
R(A)O ⇒ 1

∣∣ I = i
]
− P

[
R(A)P ⇒ 1

∣∣ I = i
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= 1
R

∣∣∣∣ P[AO1,O2,...,OR ⇒ 1]− P[AP1,O2,...,OR ⇒ 1]

+ P[AP1,O2,...,OR ⇒ 1]− P[AP1,P2,...,OR ⇒ 1]

+ . . .

+ P[AP1,P2,...,OR ⇒ 1]− P[AP1,P2,...,PR ⇒ 1]
∣∣∣∣

= 1
R

∣∣∣∣ P[AO1,O2,...,OR ⇒ 1]− P[AP1,P2,...,PR ⇒ 1]
∣∣∣∣

= 1
R

∆
A,R×q

t

(
R×O
R× P

)
Multiplying both sides by R gives the result.

A.2 Security of CTR mode
This appendix gives supporting proofs for the results in Section 4.2.1.

Lemma 9 (±TPRF security of CTR). Let πctr be an RP, and let F be a length-preserving TRF.
Let ` be the maximum allowable message length in blocks. Let A be an adversary that is extremely
nonce-respecting, in the sense that A never queries any pair of (nonce, message) inputs (I,X) and
(I ′, X ′) to either oracle where the sequences I, I + 1, . . . , I + (` − 1) and I ′, I ′ + 1, . . . , I ′ + (` − 1)
overlap. Suppose that A can make at most q queries. Then we have that

∆
A,q,`

(
±CTR [πctr]
±F

)
≤ `2q2

2n+1 .

63



Proof. First, we apply Corollary 5 (replacing suboracles) to swap πctr for an RF, G.

∆
A,q,`

(
±CTR [+πctr]

±F

)
≤ ∆
R(A),`q

(
+πctr

+G

)
+ ∆

A,q,`

(
±CTR [+G]
±F

)
The first term is bounded by Lemma 7 (TPRP-TPRF switching lemma):

≤ `2q2

2n+1 + ∆
A,q,`

(
±CTR [+G]
±F

)
It remains to show that

∆
A,`

(
±CTR [+G]
±F

)
= 0.

Since A is extremely nonce respecting, each input to +G is unique. So the output of each query to
+G is a fresh uniform random value. So, each oracle output of ±CTR is the (possibly truncated)
concatenation of fresh uniform random values, and so must itself be fresh uniform random. Thus,
when answering extremely nonce-respecting queries ±CTR [+G] exactly simulates a random function,
and so the advantage must be zero as required.

A.3 GLEVIAN-HASH has the ε-AXU2 property
This appendix gives supporting proofs for the results in Section 4.2.2. Throughout this section, let
KH1 be a uniform random variable over GF (2n), let πH2 be an RP on Σn, let F be an RF on Σn and
⊕ denotes addition in GF (2n). Further, let (U, V ) 6= (U ′, V ′) be a pair of arbitrary unequal inputs.
In all lemmas except19 Lemma 12, let (U, V ) have total integer-block length at most ` < 2n− 1 (that
is, the sum of the integer-block lengths of U and V is at most `, following the convention laid out in
Section 4.1.1), so that pad(U, V ) has length at most ` blocks, and likewise for (U ′, V ′). Let d ∈ Σn

be an arbitrary output difference.
In this appendix, we show that GLEVIAN-HASH has the ε-AXU2 property with ε = 5`2/2n+1.

We begin with a lemma that will allow us to swap the RP π for an RF F without significantly
affecting ε.

Lemma 35 (GLEVIAN-HASH behaves similarly when instantiated with similar subcomponents).
Let Π,Ψ be arbitrary oracles. There exists an adversary A such that A makes at most ` queries and

|P [GVN-HASHKH1 [Π](U, V ) ⊕ GVN-HASHKH1 [Π](U ′, V ′) = d]

− P [GVN-HASHKH1 [Ψ](U, V ) ⊕ GVN-HASHKH1 [Ψ](U ′, V ′) = d]| = ∆
A,`

(
Π
Ψ

)
. (22)

where the probability is taken over Π,Ψ and KH1.

Proof. Define A to be an adversary that acts on challenge oracle O as follows. A generates a random
KH1, and then uses O and KH1 to calculate whether

GVN-HASHKH1 [O](U, V ) ⊕ GVN-HASHKH1 [O](U ′, V ′) = d

and outputs 1 if so, and 0 otherwise. Then the advantage that A achieves is exactly the LHS of
equality (22), as required.

Next, we show that the probability of the RP ever processing the same input block at different
indices is negligible, owing to the masking by αiKH1.

Lemma 36 (Block cipher inputs collide with small probability). Let coll be the event that a pair of
blocks with different indices result in a repeated input to GLEVIAN-HASH’s subcomponent; that is,
define the event coll as follows:

coll =
⋃

B,B′∈pad(U,V )∪pad(U ′,V ′)
index(B) 6=index(B′)

[
αindex(B)KH1 ⊕B = αindex(B′)KH1 ⊕B′

]

Then
P[coll] ≤ 2`(2`− 1)

2n+1 .

where the probability is taken over KH1.
19Lemma 12 is vacuously true if ` ≥ 2n − 1, and so we may drop the requirement there.
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Proof. By a union bound

P [coll] ≤
∑

B,B′∈pad(U,V )∪pad(U ′,V ′)
index(B)6=index(B′)

P
[
αindex(B)KH1 ⊕B = αindex(B′)KH1 ⊕B′

]
.

For each B,B′, we have that index(B) 6= index(B′). Since α is a primitive element, we must have
that αindex(B) 6= αindex(B′). So we can re-arrange:

=
∑

B,B′∈pad(U,V )∪pad(U ′,V ′)
index(B)6=index(B′)

P
[
KH1 = B ⊕B′

αindex(B) ⊕ αindex(B′)

]

=
∑

B,B′∈pad(U,V )∪pad(U ′,V ′)
index(B)6=index(B′)

2−n

≤ (2`)(2`− 1)
2 · 1

2n

noting that pad(U, V ) ∪ pad(U ′, V ′) consists of at most 2` blocks.

Lemma 37 (Conditioned on coll, GLEVIAN-HASH with the RF F has the ε-AXU2 property). Let
coll be defined as in Lemma 36. Then

P
[
GVN-HASHKH1 [F ](U, V )⊕GVN-HASHKH1 [F ](U ′, V ′) = d | coll

]
= 1

2n

where the probability is taken over F and KH1.

Proof. Recall that

GVN-HASHKH1 [F ](U, V )⊕GVN-HASHKH1 [F ](U ′, V ′) =
∑

B∈pad(U,V )∪pad(U ′,V ′)

F
(
αindex(B)KH1 ⊕B

)
.

The output of this summation will be uniformly distributed unless we can partition the sum into
pairs where in each pair the inputs to F are equal, in which case the sum will be zero. Since
(U, V ) 6= (U ′, V ′), any such pairing cannot happen solely between blocks of the same index. Unless
coll occurs, this pairing up cannot happen between blocks of different indices.

Lemma 12 (GLEVIAN-HASH has the ε-AXU2 property). Let πH2 be an RP, and let KH1 be a
uniform random variable over GF (2n). Let (U, V ) 6= (U ′, V ′) be a pair of inputs, each of total block
length at most ` ≥ 1 blocks (where lengths are as defined in Section 4.1.1). Let d be an arbitrary
output difference. Then

P[GVN-HASHKH1 [πH2](U, V )⊕GVN-HASHKH1 [πH2](U ′, V ′) = d] ≤ 5`2

2n+1 .

where the probability is taken over the choice of πH2 and KH1.

Proof. By Lemma 35 (GLEVIAN-HASH behaves similarly when instantiated with similar subcom-
ponents), we have that (introducing the adversary A defined by that lemma):

P[GVN-HASHKH1 [πH2](U, V )⊕GVN-HASHKH1 [πH2](U ′, V ′) = d] ≤

P[GVN-HASHKH1 [F ](U, V )⊕GVN-HASHKH1 [F ](U ′, V ′) = d] + ∆
A,`

(
πH2
F

)
We then apply Lemma 7 (Strong TPRP-TPRF switch) to the second term, and the law of total
probability to the first term, to obtain:

≤ P [GVN-HASHKH1 [F ](U, V )⊕GVN-HASHKH1 [F ](U ′, V ′) = d | coll]P [coll]
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+ P
[
GVN-HASHKH1 [F ](U, V )⊕GVN-HASHKH1 [F ](U ′, V ′) = d | coll

]
P
[
coll
]

+ `(`− 1)
2n+1

The first term is at most P [coll] which is bounded by Lemma 36. The second is bounded by Lemma
37, so we obtain:

≤ 2`(2`− 1)
2n+1 + 1

2n
+ `(`− 1)

2n+1 = 5`2 − 3`+ 2
2n+1 ≤ 5`2

2n+1 since ` ≥ 1.

A.4 VIGORNIAN-HASH has the ε-AXU2 property
This appendix gives supporting proofs for the results in Section 4.2.3.

Lemma 38 ((U, V ) is uniquely encoded by polynomial polyU,V (x)). Let U, V, U ′, V ′ be bitstrings of
length less than 2n, and suppose that polyU,V (x) = polyU ′,V ′(x). Then (U, V ) = (U ′, V ′).

Proof. Let U, V, U ′, V ′ be bitstrings, and suppose that polyU,V (x) = polyU ′,V ′(x). Then polyU,V (x)
and polyU ′,V ′(x) are equal in their x1 coefficient, which is defined to be len(V ) and len(V ′) respec-
tively, and so we may conclude that len(V ) = len(V ′). Call this value v. Further, polyU,V (x) and
polyU ′,V ′(x) are equal in their x2+dv/ne coefficient, which is defined to be len(U) and len(U ′) respec-
tively, and so we may conclude that len(U) = len(U ′). Call this value u. Now we have that V is
encoded in the coefficients of x2, . . . , x1+dv/ne of polyU,V (x), and similarly V ′ is encoded in the same
coefficients of polyU ′,V ′(x). Since this encoding is injective for bitstrings V and V ′ of the same length,
we may conclude that V = V ′. Similarly, we may conclude that U = U ′.

Lemma 13 (VIGORNIAN-HASH has the ε-AXU2 property). Let KH be a uniform random variable
over GF (2n). Let (U, V ) 6= (U ′, V ′) be a pair of inputs, each of total length at most ` ≥ 1 blocks
(where lengths are as defined in Section 4.1). Let d be an arbitrary output difference. Then

P[VGN-HASHKH(U, V )⊕VGN-HASHKH(U ′, V ′) = d] ≤ (`+ 2)
2n

,

where the probability is taken over the choice of KH.

Proof. By Lemma 38, we may conclude polyU,V (x) 6= polyU ′,V ′(x).
VGN-HASHKH(U, V )⊕VGN-HASHKH(U ′, V ′) = d if and only if KH is a root of the polynomial

g(x) = polyU,V (x) + polyU ′,V ′(x) + d.
Note that len(pad(U, V )) = len(U)+ len(V )+2. Consequently the degree of g(x) is at most `+2.
Since neither polyU,V (x) nor polyU ′,V ′(x) has a constant term, we may conclude the degree of g(x)

is greater than zero, and so it has at most `+ 2 roots. Therefore

P[VGN-HASHKH(U, V )⊕VGN-HASHKH(U ′, V ′) = d] ≤ `+ 2
2n

as required.

A.5 Security of the LRW2 construction
This appendix gives supporting proofs for the results in Section 4.2.4. Appealing to Lemma 2 (Ad-
versaries have no need to make pointless queries), in this section WLOG we only consider adversaries
that do not make pointless queries. Further, we count queries starting from number 0.

The LRW2 construction was originally proved secure in [LRW02, Theorem 2]. Our proof incorpo-
rates ideas from the original as well as competing work from Minematsu [Min07]. Our proof achieves
the stronger of the two bounds from the competing works. Further, we aim to make our proof as
simple as possible. We work from the pseudocode in Figure 7, which demonstrate identical-until-bad
implementations of LRW2 and a TRP.
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Algorithm 12 O1(T,M) O2(T,M)

1: C
$←− Σn \ Im (Π(T, ·))

2: N ←M ⊕H(T )
3: B ← C ⊕H(T )
4: if N ∈ Dom(πlrw2) then
5: bad← true
6: B ← πlrw2(N)

7: C ← H(T )⊕B
8: else if B ∈ Im(πlrw2) then
9: bad← true

10: B
$←− Σn \ Im(πlrw2)

11: C ← H(T )⊕B
12: end if
13: πlrw2(N)← B
14: Π(T,M)← C
15: return C

Algorithm 13 O−1
1 (T,M) O−1

2 (T,M)

1: M
$←− Σn \Dom (Π(T, ·))

2: N ←M ⊕H(T )
3: B ← C ⊕H(T )
4: if B ∈ Im(πlrw2) then
5: bad← true
6: N ← π−1

lrw2(B)

7: M ← H(T )⊕N
8: else if N ∈ Dom(πlrw2) then
9: bad← true

10: N
$←− Σn \Dom(πlrw2)

11: M ← H(T )⊕N
12: end if
13: πlrw2(N)← B
14: Π(T,M)← C
15: return M

Figure 7: Pseudocode jointly defining the LRW2 [H, πlrw2] construction and a TRP Π using lazy
sampling. O1, which does not include the boxed statements, implements a TRP. O2, which includes
the boxed statements, implements LRW2 (see Lemma 39). Given a query of the form (T,M), LRW2
encrypts M to C using tweak T . The shared state of Ox and O−1

x is initialised so that bad is set to
false and πlrw2 and Π are the empty map. For brevity, we do not include caching logic to deal with
pointless queries.

Lemma 39 (LRW2 pseudocode is correct). Including boxed statements, and assuming pointless
queries are not made, the algorithms in Figure 7 correctly simulate the ±LRW2 [πlrw2,H] construc-
tion.

Proof. We argue that the following invariants are preserved on every query:

1. The cache πlrw2 exactly implements an RP via lazy sampling

2. For all T , Im(Π(T, ·)) ⊆ Im(πlrw2) +H(T )

3. For all T , Dom(Π(T, ·)) ⊆ Dom(πlrw2) +H(T )

The algorithms in Figure 7 answer queries in such a way that C = H(T ) ⊕ πlrw2 (H(T )⊕M) as
specified by the LRW2[πlrw2,H] construction, and so invariant (1) is sufficient to prove the lemma.
For encryption queries, we use invariant (2) to support our argument that invariant (1) is preserved.
For decryption queries, we use invariant (3) to support our argument that invariant (1) is preserved.

WLOG, we show that making a query to the encrypt interface preserves invariants (1), (2), and
(3). The decrypt argument is similar. Suppose the encrypt interface has been queried with (T,M),
and invariants (1), (2), and (3) hold. Suppose further that M /∈ Dom(Π(T, ·)), i.e. (T,M) is not a
pointless query. Let N,B, and C be as calculated in the encryption algorithm of Figure 7.

Firstly, we show that invariant (2) is preserved. On each encryption query, the output C will
be the only addition to the set Im(Π(T, ·)). Therefore we must show that C ∈ Im(πlrw2) + H(T ).
But this is the case, because C = B +H(T ), and note that B ∈ Im(πlrw2) because B = πlrw2(N).
Invariant (3) is preserved by a similar argument.

Finally, we show that invariant (1) is preserved. If N ∈ Dom(πlrw2), then invariant (1) is preserved
since πlrw2 is not updated. By contrast, if N /∈ Dom(πlrw2), then the algorithm (once simplified)
performs the following steps to calculate B:

(a) Samples B ←$ Σn \ Im(Π(T, ·)) +H(T ),

(b) If B ∈ Im(πlrw2), resamples B ←$ Σn \ Im(πlrw2)
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To show invariant (1), we must show that this is consistent with lazy-sampling πlrw2 as an RP; i.e.
we must show that it is equivalent to directly sampling B ←$ Σn \ Im(πlrw2). Since step (b) correctly
resamples any values that were sampled from Im(πlrw2) in step (a), it remains only to show that all
values of Σn \ Im(πlrw2) are possible outcomes of step (a), i.e. to show that

Σn \ Im(πlrw2) ⊆ (Σn \ Im(Π(T, ·))) +H(T ).

But this exactly follows from invariant (2); we have that

Im(Π(T, ·)) ⊆ Im(πlrw2) +H(T )

and so
Im(Π(T, ·) +H(T )) ⊆ Im(πlrw2)

and so
Σn \ Im(πlrw2) ⊆ Σn \ Im(Π(T, ·) +H(T ))

and so
Σn \ Im(πlrw2) ⊆ (Σn \ Im(Π(T, ·))) +H(T ).

as required.

Lemma 14 (Bound on probability that adversary sets bad on query i to LRW2). Let A be an
adversary asking queries with tweaks of length at most ` blocks, and let badi be the event that the code
of Figure 7 reaches line 5 or 9 (i.e. the lines that set bad to true) on their ith query (beginning the
count from 0). Then

P [badi] ≤ 2iε`

Proof. In O1, since πlrw2 and H are independent, oracle outputs do not depend on H, and so the
calculation of badi and all interaction with H can be deferred until the end. Once all queries have
been made, the badi is triggered exactly when there is a repeated N or B. That is, for badi to be set
we need H(Ti)⊕H(Tj) ∈ {Mi +Mj , Ci + Cj} for some j < i. But since H is ε-AXU2, this happens
with probability (over H) at most 2ε` for each j, and thus (by a union bound) with overall probability
at most 2iε` overall.

Lemma 15 (Bound on probability that adversary has set bad after q queries to LRW2). Let A be
an adversary asking queries of with tweaks of length at most ` blocks. The probability that bad is set
after q queries to ±O1 as defined in Figure 7 is bounded by

P [bad] ≤ q(q − 1)ε`

More generally, in the event that the adversary has access to R copies of ±O1 with q queries to each,
the probability that bad is set is bounded by

P [bad] ≤ Rq(q − 1)ε`

Proof. For the single oracle case, we apply a union bound, and then Lemma 14 (Bound on probability
that adversary sets bad on query i to LRW2).

P [bad]

≤
∑

i

P [badi]

≤
∑

i

2iε`

= q(q − 1)ε`

For the multiple oracle case, we apply a union bound in turn to this equation.

Lemma 16 (±TPRP security of LRW2 ). Let πlrw2 be an RP, and let H be ε-AXU2 for some ε = ε`.
Then provided πlrw2 and H are independent, the distinguishing advantage between LRW2 and a TRP
Π with message space Σn and tweak space Σ∗ against an adversary A making at most q queries where
each tweak has length at most ` blocks is bounded by

∆
A,q

(
±LRW2 [πlrw2,H]

±Π

)
≤ q(q − 1)ε`.
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Proof. Consider identical-until-bad oracles ±O1 and ±O2 as defined in Figure 7. Since O1 does not
include the boxed statements, lines 2-12 have no effect on the output values of ±O1, or on the Π
cache. Thus O1 precisely implements a ±TRP via lazy sampling. Conversely, Lemma 39 shows that
±O2 exactly implements ±LRW2 [πlrw2,H].

Directly from the definition of Ox, we have that O1 and O2 are identical-until-bad, since boxed
lines only occur on lines directly following bad← true.

Thus we can invoke Lemma 6 (Fundamental lemma of game-playing) and then Lemma 15 (Bound
on probability that adversary has set bad after q queries to LRW2) to find that

∆
A,q

(
±LRW2 [πlrw2,H]

±Π

)
≤ P [bad]
= q(q − 1)ε`

A.6 Security of PIV construction
This appendix gives supporting proofs for the results in Section 4.2.5. Appealing to Lemma 2 (Ad-
versaries have no need to make pointless queries), throughout this section we assume WLOG that A
does not make pointless queries. Note that we continue to assume A does not make pointless queries
even as we progress the proof and modify the game that A is playing in ways that mean such queries
no longer seem pointless. This does not affect the correctness of the proof.

Lemma 40. Let A be an adversary with query constraint q, where the length after padding of X or
Y on each query is at most ` blocks. Let Ψ be a TRP and F be a TRF, both wide-tweak wide-block;
let Π be a TRP and G be a TRF, both wide-tweak narrow-block. Then there is an explicit reduction
R such that R(A) is a (possibly nonce-disrespecting) adversary making at most 2q queries to B, with
the tweak of each query of length at most `, and

∆
A,q,`

(
±PIV [±B,±C]

±Ψ

)
≤ ∆
R(A),2q,`

(
±B
±Π

)
+ ∆

A,q,`

(
±PIV [±G,±C]

±F

)
+ 5q2

2n+1 .

Proof.

Apply Lemma 3, Triangle,
swapping ±Ψ to ±F︷ ︸︸ ︷

∆
A,q,`

(
±PIV [±B,±C]

±Ψ

)

≤ ∆
A,q,`

(
±PIV [±B,±C]

±F

)
+

Apply Lemma 7,
TPRP-TPRF︷ ︸︸ ︷
∆

A,q,`

(
±F
±Ψ

)

≤

Apply Corollary 5,
Replacing suboracles︷ ︸︸ ︷

∆
A,q,`

(
±PIV [±B,±C]

±F

)
+ q2

2n+1

≤ ∆
R(A),2q,`

(
±B
±Π

)
+

Apply Corollary 5,
Replacing suboracles︷ ︸︸ ︷

∆
A,q,`

(
±PIV [±Π,±C]

±F

)
+ q2

2n+1

≤ ∆
R(A),2q,`

(
±B
±Π

)
+

Apply Lemma 7,
TPRP-TPRF︷ ︸︸ ︷
∆

S(A),2q,`

(
±Π
±G

)
+ ∆

A,q,`

(
±PIV [±G,±C]

±F

)
+ q2

2n+1

≤ ∆
R(A),2q,`

(
±B
±Π

)
+ (2q)2

2n+1 + ∆
A,q,`

(
±PIV [±G,±C]

±F

)
+ q2

2n+1
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Collecting terms completes the proof.

To conclude the security of the PIV construction, it remains to find a bound on

∆
A,q,`

(
±PIV [±G,±C]

±F

)
.

Note that it is not possible to immediately substitute C for an ideal primitive in the same way as
we did for B, because our PIV security lemma will only require C to be secure against extremely
nonce respecting adversaries - that is, adversaries that never query with a nonce within ` of a nonce
previously sent to any oracle.

±TPRF security of PIV construction We use the techniques of lazy sampling and game-hopping
to approach this task. We define a chain of oracles.

The first of these, O1, implements the ±PIV [±G,±C] exactly. In the definition of O1, each
query results in two calls to ±G. Lazy sampling code (including caching code) for ±G has been
inlined, using bad events to ensure correctness. Note that our code may send pointless queries to C
(which we assume will have its own caching mechanism). Caching code for the overall construction
is not included; it is not necessary because A does not make pointless queries. Our code is given in
Algorithms 14 and 15.
O2, defined in the same Algorithms, differs from the real PIV in O1 in that it (a) doesn’t cache

queries to G; and (b) enforces that C is never queried with neighbouring nonces. Note that O2 respects
C’s nonce requirement, since line 15 ensures that all nonces passed to C are not within ` of any other
nonce. We define O3 to be equal to O2 except with C replaced by a TRF H.

Lemma 41. Let A be an adversary with query constraint q. Let F be a wide-tweak wide-block TRF,
and let H be a narrow-tweak wide-block TRF. Then there exists an efficient and extremely nonce-
respecting reduction S such that

∆
A,q,`

(
±PIV [±G,±C]

±F

)
≤ P[A±O2 sets bad] + ∆

S(A),q,`

(
±C
±H

)
.

Proof.

Apply Lemma 3, Triangle︷ ︸︸ ︷
∆

A,q,`

(
±PIV [±G,±C]

±F

)

≤

zero by
direct simulation︷ ︸︸ ︷

∆
A,q,`

(
±PIV [±G,±C]

±O1

)
+ ∆

A,q,`

(
±O1
±O2

)
+ ∆

A,q,`

(
±O2
±O3

)
+ ∆

A,q,`

(
±O3
±F

)

≤ 0 +

Apply identical until
bad = bad1 ∪ bad2 ∪ bad3︷ ︸︸ ︷

∆
A,q,`

(
±O1
±O2

)
+ ∆

A,q,`

(
±O2
±O3

)
+ ∆

A,q,`

(
±O3
±F

)

≤ 0 + P[A±O2 sets bad] +

Apply Lemma 4,
Replacing
suboracles︷ ︸︸ ︷

∆
A,q,`

(
±O2
±O3

)
+ ∆

A,q,`

(
±O3
±F

)
Note that our invocation of Lemma 4 in this step introduces a reduction S(A) which is extremely
nonce-respecting.

≤ 0 + P[A±O2 sets bad] + ∆
S(A),q,`

(
±C
H

)
+

Zero by
equivalence
of oracles︷ ︸︸ ︷

∆
A,q,`

(
±O3
±F

)
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Algorithm 14 O (U,X) :
1: j ← j + 1
2: (XL, XR)← X
3:
4: T ← (U,XL)
5: IV

$←− Σn

6: if (T,XR) ∈ domG then
7: bad1 ← true
8: IV

$←− {IV : (T,XR, IV ) ∈ G}
9: end if

10: G← G ∪ {(T,XR, IV )}
11:
12: Nj ← IV
13: if Nj ∈ ∪i<j {Ni + k : −` < k < `} then
14: bad2 ← true
15: Nj

$←− Σn \
⋃

i<j
{Ni + k : −` < k < `}

16: end if
17: YL ← C (Nj , XL)
18:
19: T ′ ← (U, YL)
20: YR

$←− Σn

21: if (T ′, IV ) ∈ domG then
22: bad3 ← true
23: YR

$←− {YR : (T ′, IV, YR) ∈ G}
24: end if
25: G← G ∪ {(T ′, IV, YR)}
26: return YL ‖ YR

Algorithm 15 O−1 (U, Y ) :
1: j ← j + 1
2: (YL, YR)← Y
3:
4: T ← (U, YL)
5: IV

$←− Σn

6: if (T, YR) ∈ rangeG then
7: bad1 ← true
8: IV

$←− {IV : (T, IV, YR) ∈ G}
9: end if

10: G← G ∪ {(T, IV, YR)}
11:
12: Nj ← IV
13: if Nj ∈ ∪i<j {Ni + k : −` < k < `} then
14: bad2 ← true
15: Nj

$←− Σn \
⋃

i<j
{Ni + k : −` < k < `}

16: end if
17: XL ← C−1 (Nj , YL)
18:
19: T ′ ← (U,XL)
20: XR

$←− Σn

21: if (T ′, IV ) ∈ rangeG then
22: bad3 ← true
23: XR

$←− {XR : (T ′, XR, IV )}
24: end if
25: G← G ∪ {(T ′, XR, IV )}
26: return XL ‖ XR

Figure 19: Pseudocode definitions of O1 (implements ±PIV [±G,±C]) and O2 (implements an inter-
mediate oracle) and O3. O1 includes the boxed statements but not dashed boxed statements, and
vice versa for O2. We define O3 (implements ±F ) to be equal to O2 except with C replaced with a
TRF H. j is initialised to 0, and G is initialised to empty. Note that when Nj is sampled on line 15,
this set can be empty, but only when q(2` + 1) > 2n. At that point our advantage bound is ≥ 1
anyway, so this does not affect the result.

Since A does not make pointless queries, queries to F in the fourth term always result in responses
that are freshly sampled uniform random values; meanwhile ±O3 also always outputs freshly sampled
uniform random values, and so it is a perfect implementation of F .

≤ 0 + P[A±O2 sets bad] + ∆
S(A),q,`

(
±C
±H

)
+ 0

It remains to find a bound on P[A±O2 sets bad]. On the face of it, bounding P[A±O2 sets bad]
seems difficult because we have no guarantee that C does not perform pathological behaviour that
enables A to learn how to set bad. However, P[A±O3 sets bad] is much easier to bound, as C has
been replaced by a TRF. Further, accounting for the amount this probability may differ from the one
needed is also possible, as we can reduce the difference to the security of C. Made concrete,

Lemma 42. Let A be an adversary. Then there is some reduction T such that T (A) is extremely
nonce-respecting and

P[A±O2 sets bad] ≤ ∆
T (A),q,`

(
±C
±H

)
+ P[A±O3 sets bad].
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Proof. First, observe that

P[A±O2 sets bad] ≤
∣∣P[A±O2 sets bad]− P[A±O3 sets bad]

∣∣+ P[A±O3 sets bad].

We define T (A) as follows: T (A) runs A and simulates A’s ±O2 or 3 oracles, forwarding any queries
to C or H to its challenge oracles, and emits 1 iff bad is set. T (A)’s advantage in distinguishing ±C
and ±H is exactly the difference in the probabilities that A sets bad in oracles 2 and 3, and so

∣∣P[A±O2 sets bad]− P[A±O3 sets bad]
∣∣ = ∆

T (A),q,`

(
±C
±H

)
Moreover, we note that by definition of O2, T (A) is extremely nonce respecting as required.

Note that since T (A) is an extremely nonce respecting adversary for C, when C = CTR we will
have that Lemma 9 (CTR security) applies. Next, we need the following result.

Lemma 43. Let A be an adversary that makes at most q queries of length at most `. Then

P[A±O3 sets bad] ≤ (`+ 4)q2

2n+1 .

Proof. The bound is vacuously true unless 1 ≤ q ≤ 2n−1, which we assume WLOG. By a union
bound,

P[A±O3 sets bad] ≤
∑

j

P[A±O3 sets bad on query j] ≤
∑

j

∑
i

P[A±O3 sets badi on query j].

We will deal with each summand separately. For simplicity, we consider an adversary that is making
an encryption query; the case where A makes a decryption query is symmetric.

P[A±O3 sets bad1 on query j]. First, we consider the probability that A sets bad1 on query j. In
order to trigger bad1, A must make a query that specifies an X and U value such that T = (U,XL)
and (T,XR) ∈ domG.

Entries to dom(G(T, ·)) must have originated from one of four possible lines of the pseudocode
for O3. Firstly, on lines 10 of the encrypt algorithm and 25 of the decrypt algorithm, A can choose
values which are added to dom(G(T, ·)). However, A cannot trigger bad1 by querying one of these
values, because doing so would involve making a pointless query. Secondly, on lines 25 of the encrypt
algorithm and 10 of the decrypt algorithm, an IV is added to dom(G(T, ·)). When interacting
with O3, A has no information about the IV values because all outputs are uniform random and
independent of the IV s (because C has been replaced with a TRF), and because the IV s are chosen
uniformly at random. Therefore A’s queries can be considered independent of the IV s. On query j,
once T is fixed, from the adversary’s perspective there are at least 2n − j possibilities for XR that
might trigger bad1, of which at most j actually will (depending on what the IV was), and so A’s
probability of triggering bad1 is at most

j

2n − j
.

P[A±O3 sets bad2 on query j]. On line 12 we have that Nj ← IV , which was uniformly chosen
from 2n values. Since query i has length at most ` blocks, there are at most 2` − 1 possible choices
for Nj that would cause it to overlap with the choice for Ni. Thus the if statement is entered with
probability at most

1
2n

∑
i<j

(2`− 1) = j(2`− 1)
2n+1 .

P[A±O3 sets bad3 on query j]. bad3 is set only if IV , which is chosen uniformly from 2n values,
is one of at most 2j values. So we have the probability that bad3 is set on 2j values is at most

2j
2n
.
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Pulling these subresults together,

P[A±O3 sets bad] ≤
q−1∑
j=0

(
j

2n − j
+ j(2`− 1)

2n+1 + 2j
2n

)
(note that j < q ≤ 2n−1, so j

2n−j ≤
j

2n−1 )

≤
q−1∑
j=0

(
j

2n−1 + j(2`− 1)
2n+1 + j

2n−1

)

=
q−1∑
j=0

j

2n+1 (4 + 2`− 1 + 4)

= (2`+ 7)
2n+1

q−1∑
j=0

j ≤ (2`+ 8)
2n+1

q(q − 1)
2

≤ (`+ 4)q2

2n+1 .

Finally, we may now bring together our bound on the security of PIV mode, concluding Appendix
A.6 and proving Lemma 17:

Lemma 17 (±TPRP security of PIV). Let A be an adversary that makes at most q queries, where
the length after padding of X, Y and U on each query is at most ` blocks. Let Ψ be a wide-tweak
wide-block TRP, Π be a wide-tweak, narrow-block TRP, and H be a narrow-nonce wide-block TRF.
Then we can exhibit a reduction R(A) and extremely nonce-respecting reductions S(A) and T (A),
such that R(A) makes at most 2q queries to B with tweaks of length at most ` blocks, S(A) and T (A)
each make at most q queries of length `− 1 blocks to C, and

∆
A,q,`

(
±PIV [±B,±C]

±Ψ

)
≤ ∆
R(A),2q

(
±B
±Π

)
+ ∆
S(A),q,`−1

(
±C
±H

)
+ ∆
T (A),q,`−1

(
±C
±H

)
+ (`+ 9)q2

2n+1 .

where R(A) asks queries with tweaks of length at most ` blocks.

Proof.

Apply Lemma 40︷ ︸︸ ︷
∆

A,q,`

(
±PIV [±B,±C]

±Ψ

)

≤ ∆
R(A),2q

(
±B
±Π

)
+

Apply Lemma 41︷ ︸︸ ︷
∆

A,q,`

(
±PIV [±G,±C]

±F

)
+ 5q2

2n+1

≤ ∆
R(A),2q

(
±B
±Π

)
+

Apply Lemma 42︷ ︸︸ ︷
P[A±O2 sets bad] + ∆

S(A),q,`

(
±C
±H

)
+ 5q2

2n+1

≤ ∆
R(A),2q

(
±B
±Π

)
+

 ∆
T (A),q,`

(
±C
±H

)
+

Apply Lemma 43︷ ︸︸ ︷
P[A±O3 sets bad]

+ ∆
S(A),q,`

(
±C
±H

)
+ 5q2

2n+1

≤ ∆
R(A),2q

(
±B
±Π

)
+ ∆
S(A),q,`

(
±C
±H

)
+ ∆
T (A),q,`

(
±C
±H

)
+ (`+ 4)q2

2n+1 + 5q2

2n+1

≤ ∆
R(A),2q

(
±B
±Π

)
+ ∆
S(A),q,`

(
±C
±H

)
+ ∆
T (A),q,`

(
±C
±H

)
+ (`+ 9)q2

2n+1 .

Corollary 18 (±TPRP security of WTBC ). Let A be an adversary that makes at most q queries,
where the length after padding of encryption and decryption queries, and of each tweak, is at most `
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blocks. Let Ψ be a wide-tweak wide-block TRP, let LRW2 be instantiated with an RP πlrw2, let H be
ε-AXU2 for some ε = ε` and let CTR be instantiated with RP πctr. Then

∆
A,q,`

(
±WTBC
±Ψ

)
≤ 4q2ε` + (`+ 2)2q2

2n
.

Proof. We apply Lemma 17 (±TPRP security of PIV), and instantiate the various components. Let
A be an adversary. Let Π be a wide-tweak, narrow-block TRP, and H be a narrow-nonce wide-block
TRF. Then there is a reduction R and extremely nonce-respecting reductions S and T , such that

Expand definition︷ ︸︸ ︷
∆

A,q,`

(
±WTBC
±Ψ

)

=

Apply Lemma 17, ±TPRP security of PIV︷ ︸︸ ︷
∆

A,q,`

(
±PIV [±LRW2 [πlrw2,H],CTR [πctr]]

±Ψ

)

≤

Apply Lemma 16, ±TPRP security of LRW2︷ ︸︸ ︷
∆

R(A),2q,`

(
±LRW2 [πlrw2,H]

±Π

)
+

Apply Lemma 9, ±TPRF security of CTR︷ ︸︸ ︷
∆

S(A),q,`−1

(
CTR [πctr]
±H

)
+ ∆
T (A),q,`−1

(
CTR [πctr]
±H

)
+(`+ 9)q2

2n+1

≤ 2q(2q − 1)ε` + 2(`− 1)2q2

2n+1 + (`+ 9)q2

2n+1 = 2q(2q − 1)ε` +

Apply that ` ≥ 1︷ ︸︸ ︷
(2`2 − 3`+ 11)q2

2n+1

≤ 4q2ε` + 2(`+ 2)2q2

2n+1

which suffices.

A.7 Security of PTE1 construction
This appendix gives supporting proofs for the results in Section 4.2.6.

Lemma 19 (DAE security of PTE1 [Ψ] in the RUP model follows from ±TPRP security of Ψ). Let
A be an adversary making at most q queries each consisting of at most ` blocks. Let Ψ be a (not
necessarily ideal) wide block cipher, and let Π be an ideal TRP. Let PTE1 provide an encrypt, decrypt
and leakage interface as defined in Figure 11. Let F be a wide-tweak wide-block stretch-n TRF and
let G be a wide-tweak wide-block shrink-n TRF. Then there is a reduction R such that

∆
A,q,`

(
±˜ PTE1 [Ψ]
F,⊥, G

)
≤ ∆
R(A),q,`+1

(
±Ψ
±Π

)
+ q2

2n
.

Proof. In the following, H is a wide-tweak wide-block TRF (with no stretch).

Triangle inequality︷ ︸︸ ︷
∆

A,q,`

(
±˜ PTE1[Ψ]
F,⊥, G

)
≤

Lemma 4 (Replacing suboracles)︷ ︸︸ ︷
∆

A,q,`

(
±˜ PTE1[Ψ]
±˜ PTE1[H]

)
+ ∆

A,q,`

(
±˜ PTE1[H]
F,⊥, G

)

≤

Triangle inequality︷ ︸︸ ︷
∆

R(A),q,`+1

(
±Ψ
±H

)
+ ∆

A,q,`

(
±˜ PTE1[H]
F,⊥, G

)

≤ ∆
R(A),q,`+1

(
±Ψ
±Π

)
+

Lemma 7 (TPRP-TPRF switch)︷ ︸︸ ︷
∆

R(A),q,`+1

(
±Π
±H

)
+

Direct reasoning︷ ︸︸ ︷
∆

A,q,`

(
±˜ PTE1[H]
F,⊥, G

)
≤ ∆
R(A),q,`+1

(
±Ψ
±Π

)
+ q(q − 1)

2n+1 + q

2n
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To arrive at the final line, we note that as R(A) simulates PTE1 for A it always asks queries of at
least n bits in length, and we observe that the only way to distinguish ±˜ PTE1[H] from (F,⊥, G)
is to make a successful decryption query, which occurs independently with probability 2−n on each
query.

The last two terms are bounded by q2

2n , so the advantage is at most

∆
R(A),q,`+1

(
±Ψ
±Π

)
+ q2

2n

as required.

Lemma 20 (DAE security of LD-DAE in the RUP model). Let πlrw2, πctr be ideal block ciphers and
let H be an ε-AXU2 for some ε = ε`. Write LD-DAE for LD-DAE [H, πlrw2, πctr] and let its leakage
interface be as defined in Algorithm 6 (that is, when ∼LD-DAE is queried with (A,C, T ) it returns
all but the last n bits of WTBC−1(A,C‖T ) whenever LD-DAE−1(A,C, T ) = ⊥).

Let F be a wide-tweak wide-block stretch-n TRF and let G be a wide-tweak wide-block shrink-n
TRF. Let A be an adversary making at most q queries each consisting of at most ` ≥ 1 blocks.

Then
∆

A,q,`

(
±˜ LD-DAE
F,⊥, G

)
≤ q2

(
4ε` + (`+ 4)2

2n

)
Proof. Let Π be an ideal wide-tweak, wide-block cipher. Recalling that LD-DAE = PTE1 [WTBC ],

Apply definition of LD-DAE︷ ︸︸ ︷
∆

A,q,`

(
±˜ LD-DAE
F,⊥, G

)
=

Apply Lemma 19 (PTE1 security)︷ ︸︸ ︷
∆

A,q,`

(
±˜ PTE1 [WTBC ]

F,⊥, G

)
≤

Apply Corollary 18,
±TPRP security of WTBC︷ ︸︸ ︷

∆
R(A),q,`+1

(
±WTBC
±Π

)
+ q2

2n

≤
(

4q2ε` + (`+ 2)2q2

2n

)
+ q2

2n

≤ 4q2ε` + (`+ 4)2q2

2n

A.8 Security of NKD construction
This appendix gives supporting proofs for the results in Section 4.2.8. Throughout this appendix,
recall from Section 4.1.2 that an adversary making (R, q, f) or (R × q, f) queries against a possibly
multi-user oracle that provides an encrypt, decrypt and leakage interface can make Rq + 2f queries
in total, consisting of q encryption queries to each of either R nonces or users; f decryption queries
to any combination of nonces/users; and f leakage queries to any combination of nonces/users.

Lemma 44 (NKD with an ideal KDF is identical to copies of the underlying DAE scheme). Let
Π be a (not necessarily ideal) stretch-n DAE scheme with key space Σk for some k. Let F, F ′ be
wide-tweak wide-block stretch-n TRFs, G,G′ be wide-tweak wide-block shrink-n TRFs, and H be an
RF with codomain Σk. Let the leakage interface of Π be arbitrary and let the leakage interface of
NKD [Π, H] queried with (N,A,C, T ) return ∼ΠG(N)(A,C, T ) as defined in Algorithm 9.

Let A be an adversary with computational resource bounded by t and with query constraints
(R, q, f). Then there is a reduction R with computational resource bounded by (Rq+ 2f)sT where sT

is the cost of a lookup into a table of size at most R+ 2f , such that

∆
A,R,q,f,`

t

(
±˜ NKD [Π, H]

F,⊥, G

)
=

∆
R(A),(R×q),f,`
t+(Rq+2f)sT

(
(R+ 2f)×

(
±˜Π
)

(R+ 2f)× (F ′,⊥, G′)

)
Proof. R(A) runs A and for each query A makes, R(A) looks up whether it is under a fresh nonce (at
a cost of sT ). If it is not thenR(A) forwards the query to the same oracle as it used the last time it saw
the nonce. Otherwise, R(A) forwards the query to a fresh oracle and stores the association between
this nonce and the new oracle. In either case, R(A) simulates the oracles on the LHS perfectly for A
as each novel nonce on the LHS generates a uniform random key in Σk, which is the same as using a
fresh oracle in the multi-user oracle on the RHS. A uses at most R+ 2f distinct nonces in its queries
and so R(A) requires access to at most R+ 2f oracles within the multi-user oracle on the RHS, and
R(A) must perform exactly one lookup for each query that A makes.
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Lemma 22 (NKD security reduces to security of the KDF and the underlying DAE scheme). Let Π
be a stretch-n DAE scheme with key space Σk for some k. Let K be a (not necessarily ideal) KDF
scheme with codomain Σk. Let the leakage interface of Π be arbitrary and for any KDF K′ let the
leakage interface of NKD [Π,K′] queried with (N,A,C, T ) return ∼ΠK′(N)(A,C, T ) as in Algorithm 9.

Let F, F ′ be wide-tweak wide-block stretch-n TRFs and let G,G′ be wide-tweak wide-block shrink-n
TRFs. Let H be an RF with codomain Σk. Let A be an adversary with computational cost bounded
by t and with query constraints (R, q, f). Let sΠ,` be the maximum computational cost of simulating
a call to any of the interfaces of Π with inputs of length at most ` blocks and let sT be the cost of a
lookup into a table of size at most R+ 2f .

Then there are efficiently constructible reductions R,S such that

∆
A,R,q,f,`

t

(
±˜ NKD [Π,K]

F,⊥, G

)
≤

∆
R(A),R+2f

t+(Rq+2f)sΠ,`

(
K
H

)
+

∆
S(A),(R×q),f,`
t+(Rq+2f)sT

(
(R+ 2f)×

(
±˜Π
)

(R+ 2f)× (F ′,⊥, G′)

)
Proof. Beginning with the security of NKD, apply the triangle inequality to isolate the KDF; then
apply Lemma 4 (Replacing suboracles) with reduction R. The cost per query of this reduction is no
more than sΠ,`.

∆
A,R,q,f,`

t

(
±˜ NKD [Π,K]

F,⊥, G

)
≤

Apply Lemma 4 (Replacing suboracles)︷ ︸︸ ︷
∆

A,R,q,f,`
t

(
±˜ NKD [Π,K]
±˜ NKD [Π, H]

)
+ ∆

A,R,q,f,`
t

(
±˜ NKD [Π, H]

F,⊥, G

)
≤

∆
R(A),R+2f

t+(Rq+2f)sΠ,`

(
K
H

)
+ ∆

A,R,q,f,`
t

(
±˜ NKD [Π, H]

F,⊥, G

)
Now apply Lemma 44 (NKD with an RF is identical to copies of Π) to the second term, where S is
the reduction in that lemma, to obtain the result.

Lemma 23 (MRAE security of HD-AEAD from DAE security of LD-DAE). Let E be an effi-
cient block cipher and let π, πH2, πlrw2, πctr be an RP. Let the leakage interface of LD-DAE be
arbitrary and let ∼HD-AEAD [H, E ] when queried with (N,A,C, T ) be as in Algorithm 9, that is,
it returns ∼LD-DAE [H[E ](KH), E(Klrw2), E(Kctr)](A,C, T ) where KH,Klrw2,Kctr are the output of
XORPw[E ](N).

Let F, F ′ be wide-tweak wide-block stretch-n TRFs and let G,G′ be wide-tweak wide-block shrink-n
TRFs.

Let A be an adversary with computational cost bounded by t and with query constraints (R, q, f).
Let s` be the computational cost of simulating a call to ±˜ HD-AEAD [H[E ], E ] with inputs of length at
most ` blocks, or the cost of a lookup into a table of size at most R+ 2f , whichever is greater.

Then there are efficiently constructible reductions R,S1, . . . ,S4 such that

∆
A,R,q,f,`

t

(
±˜ HD-AEAD [H[E ], E ]

F,⊥, G

)
≤ (R+ 2f)

4∑
i=1

∆
Si(A)

t+3(Rq+2f)s`

(
±E
±π

)
(4)

+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1 (5)

+ ∆
R(A),(R×q),f,`

(
(R+ 2f)×

(
±˜ LD-DAE [H[πH2], πlrw2, πctr]

)
(R+ 2f)× (F ′,⊥, G′)

)
Note that in the computational advantage term here we do not give query constraints and implic-
itly allow the adversaries 2n queries; meanwhile, in the information theoretic term we do not give
computational constraints and implicitly allow the adversary unbounded computation.

Proof. Beginning with the MRAE security of HD-AEAD we unpack the definition of HD-AEAD and
apply Lemma 22 (NKD security). H, R1,R2 are the RF and reductions in that lemma and by
supposition (Rq + 2f)s` upper bounds the computational cost of those reductions.

Apply Definition︷ ︸︸ ︷
∆

A,R,q,f,`
t

(
±˜ HD-AEAD [H, E ]

F,⊥, G

)
(23)
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=

Apply Lemma 22 (NKD security)︷ ︸︸ ︷
∆

A,R,q,f,`
t

(
±˜ NKD [LD-DAE [H, E ],XORPw[E(K)]]

F,⊥, G

)
≤

∆
R1(A),R+2f
t+(Rq+2f)s`

(
XORPw[E(K)]

H

)

+

Apply Lemma 3 (Triangle inequality)︷ ︸︸ ︷
∆

R2(A),(R×q),f,`
t+(Rq+2f)s`

(
(R+ 2f)× (±˜ LD-DAE

[
H[E ](KH), E(Klrw2), E(Kctr)

]
)

(R+ 2f)× (F ′,⊥, G′)

)
≤

∆
R1(A),R+2f
t+(Rq+2f)s`

(
XORPw[E(K)]

H

)
(24)

+
∆

R2(A),(R×q),f,`
t+(Rq+2f)s`

(
(R+ 2f)× (±˜ LD-DAE

[
H[E ](KH), E(Klrw2), E(Kctr)

]
)

(R+ 2f)× (±˜ LD-DAE [H[π], πlrw2, πctr])

)
(25)

+ ∆
R2(A),(R×q),f,`

(
(R+ 2f)×

(
±˜ LD-DAE [H[π], πlrw2, πctr]

)
(R+ 2f)× (F ′,⊥, G′)

)
. (26)

We decompose the first two terms into expressions in terms of block cipher security (the last term,
being information theoretic, admits no such decomposition). Recall from Section 4.1.5 that when
describing the ±PRP advantage against a single-user block cipher oracle we sometimes omit the
adversary’s query limit, in which case we implicitly allow the adversary access to all 2n input-output
pairs (a permissive change).

For term (24), we use Corollary 5 (Replacing suboracles) and Lemma 21 (XORP security) where
πxorp is an RP. We can then efficiently construct an adversary that we denote Sxorp such that

∆
R1(A),R+2f
t+(Rq+2f)s`

(
XORPw[E(K)]

H

)
≤

∆
Sxorp(A)

t+(R(q+1)+4f)s`

(
E(K)
πxorp

)
+ (w + 1)4(R+ 2f)3

22n+1 + w(w + 1)(R+ 2f)
2n+1 .

(27)
Now decompose term (25) by Lemma 3 (Triangle inequality) and apply Lemma 4 (Replacing

suboracles) to each of πH2, πlrw2 and πctr followed by Lemma 8 (Multi-user to single-user). We
abuse notation slightly and write E(KH) for the block cipher component of H[E ] when H is keyed
by KH; this is an abuse as we also use KH to mean all the key material required for H, which
might be strictly more key material than required by E . For concreteness, we denote the replacing-
suboracles reductions (into which we subsume R2) by SH ,Slrw2,Sctr, in (25). We likewise denote
the multi-user to single-user reductions TH , Tlrw2, Tctr in (25) (where we subsume the corresponding
replacing suboracles reduction). When computing computational bounds for the multi-user to single-
user reductions below, note that we can simply count the queries R2(A) makes to each LD-DAE
oracle; if R2(A) makes Rq+2f LD-DAE queries (recall that an adversary can make f queries to each
of the decrypt and leakage interfaces) then the computational cost of satisfying the block cipher calls
must be no more than (Rq + 2f)s`, as s` incorporates the cost of the underlying block ciphers.

For (25) we then have:

(25) ≤

Apply Lemma 4 (Replacing Suboracles)︷ ︸︸ ︷
∆

R2(A),(R×q),f,`
t+(Rq+2f)s`

(
(R+ 2f)× (±˜ LD-DAE

[
H[E ](KH), E(Klrw2), E(Kctr)

]
)

(R+ 2f)× (±˜ LD-DAE
[
H[π], E(Klrw2), E(Kctr)

]
)

)

+

Apply Lemma 4 (Replacing Suboracles)︷ ︸︸ ︷
∆

R2(A),(R×q),f,`
t+(Rq+2f)s`

(
(R+ 2f)× (±˜ LD-DAE

[
H[π], E(Klrw2), E(Kctr)

]
)

(R+ 2f)× (±˜ LD-DAE
[
H[π], πlrw2, E(Kctr)

]
)

)

+

Apply Lemma 4 (Replacing Suboracles)︷ ︸︸ ︷
∆

R2(A),(R×q),f,`
t+(Rq+2f)s`

(
(R+ 2f)× (±˜ LD-DAE

[
H[π], πlrw2, E(Kctr)

]
)

(R+ 2f)× (±˜ LD-DAE [H[π], πlrw2, πctr])

)

≤

Apply Lemma 8 (Multi-user to single-user)︷ ︸︸ ︷
∆

SH(A)
t+2(Rq+2f)s`

(
(R+ 2f)×±E(KH)
(R+ 2f)×±πH2

)
+

Apply Lemma 8 (Multi-user to single-user)︷ ︸︸ ︷
∆

Slrw2(A)
t+2(Rq+2f)s`

(
(R+ 2f)×±E(Klrw2)
(R+ 2f)×±πlrw2

)
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+

Apply Lemma 8 (Multi-user to single-user)︷ ︸︸ ︷
∆

Sctr(A)
t+2(Rq+2f)s`

(
(R+ 2f)×±E(Kctr)

(R+ 2f)×±πctr

)
≤ (R+ 2f) ·

∆
TH(A)

t+3(Rq+2f)s`

(
±E(KH)
±πH2

)
+ (R+ 2f) ·

∆
Tlrw2(A)

t+3(Rq+2f)s`

(
±E(Klrw2)
±πctr

)
(28)

+ (R+ 2f) ·
∆

Tctr(A)
t+3(Rq+2f)s`

(
±E(Kctr)
±πctr

)
. (29)

Note that each of the ±PRP adversaries in the decompositions of the XORP terms, (25) are trying
to distinguish an instance of E with an independent uniform key from an independent RP; they are
all playing the same game. Also note that the maximum computational cost among these ±PRP
adversaries is t+ 3(Rq + 2f)s`. Thus we have shown that

(23) ≤ (27) + (28) + (29) + (26)

Writing R = R2 and the four reductions to ±PRP adversaries as S1, . . . ,S4 completes the proof.

A.9 Security of HD-AEAD construction
This appendix gives supporting proofs for the results in Section 4.3.2.

Lemma 29 (Decryption queries at the end). Let A be an adversary playing Gdist between two multi-
user worlds of the form (R + f) × (±O) and (R + f) × (+P,⊥). Suppose that ±O can be eagerly
sampled, i.e. the output of each query is independent of previous query inputs. Then there exists an
adversary R(A) which has the same query constraints as A, which is about as efficient to run and has
advantage at least as large as A, and which makes all its encryption queries before any decryption
queries.

Proof. For b ∈ {0, 1}, construct the adversary Rb(A) as follows: Rb(A) runs A, forwards the encryp-
tion queries to +O, but returns ⊥ for decryption queries. When A has finished running, Rb(A) sends
all of its decryption queries to −O. If Rb(A) successfully forges, it outputs b; otherwise, it outputs
whatever A returns. Note that Rb(A) successfully forges if and only if A successfully forges, since
±O is eagerly sampleable.

We set R(A) to one of R0(A),R1(A), choosing the one with maximal advantage. Then R(A) will
have an advantage at least as big as A’s.

Note that in the previous lemma, although each Rb(A) is efficiently constructible by a human,
the choice of R(A) may not be.

Lemma 30 (Gdist as the probability of forgery). Let A be an adversary playing Gdist between two
multi-user worlds of the form (R+ f)× (±O) and (R+ f)× (+O,⊥). Suppose that A makes all its
encryption queries before its decryption queries. Then

∆
A

(
(R+ f)×

(
+O, −O

)
(R+ f)×

(
+O, ⊥

)) ≤ P[A(R+f)×(±O) forges].

Proof. Since A makes all of its encryption queries before all of its decryption queries, the results of
all of the encryption queries must be the same, regardless of the behaviour of ±O. Therefore the
two oracles are identical-until-bad, where bad is the event that A forges. Therefore by Lemma 6
(Fundamental lemma of game-playing), A’s advantage in the distinguishing game is at most the
probability of bad. (Note that we do need the caveat that A makes all of its encryption queries before
its decryption queries, in case calls to −O affect the state of +O.)
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