
Janus: Fast Privacy-Preserving Data Provenance For
TLS

Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, Sebastian Steinhorst
Technical University of Munich

Munich, Germany

Abstract—Web users can gather data from secure endpoints
and demonstrate the provenance of sensitive data to any third
party by using privacy-preserving TLS oracles. In practice,
privacy-preserving TLS oracles are practical in verifying private
data up to 1 kB in size selectively, which limits their applicability
to larger sensitive data sets. In this work, we introduce a new
oracle protocol for TLS, which reaches new scales in selectively
verifying the provenance of confidential web data. The novelty
of our work is a construction which combines an honest verifier
zero-knowledge proof system with a new secure validation phase
tailored to an asymmetric privacy setting between collaborative
TLS clients. Compared to previous works, our construction
proves non-algebraic TLS algorithms faster while retaining
equivalent security properties. Concerning TLS 1.3, we optimize
end-to-end performances and show how the garble-then-prove
paradigm can benefit from previously established authenticity
to employ semi-honest secure computations without authentic
garbling. Our performance improvements show that 8 kB of
sensitive TLS data can be verified in 6.7 seconds, outperforming
related works significantly. With that, we enable new boundaries
to verify the provenance of confidential documents of the web.

Index Terms—Data Provenance, Zero-knowledge Proofs, Se-
cure Two-party Computation, Transport Layer Security

I. INTRODUCTION

Motivation: In the current age of the Internet where
generative artificial intelligence (AI) boosts the spread of
misinformation as never before, industry leading companies
combat misinformation with new data provenance initiatives
to maintain a responsible and verifiable data economy [1], [2].
The goal of the initiatives is the establishment and integration
of data provenance solutions into today’s web, which lacks
support of verifiable data provenance. For instance, secure
channel protocols such as transport layer security (TLS) pro-
vide confidential and authenticated communication sessions
between two parties: a client and a server. However, if clients
present data of a TLS session to any third party (e.g. website),
then the third party cannot verify if the presented data origi-
nated from an authentic and correct TLS session (cf. top part
of Figure 1). Thus, the third party cannot verify the provenance
of the TLS data. In the eyes of the third party, TLS data counts
as authentic if the origin of the data can be verified. Further,
TLS data counts as correct if the third-party is able to verify
the integrity of presented TLS data against a valid TLS session.

To save a third party from individually verifying data
provenance, current approaches either require servers to attest
to TLS data via digital signatures [3], or employ TLS ora-
cles [4]–[6]. Data attestation through servers is an efficient

1. Capture TLS transcript
as proxy

3. Certify TLS data

Janus verifier

TLS Server

TLS data

TLS Client

TLS session

Trusts

Third-party

TLS Server

TLS data

TLS Client

TLS session

Trusts

Third-party

Today's web: No verifiable data provenance

Janus protocol: Fast verifiable data provenance of private data

Trusts

2. Challenge

Fig. 1. Illustration of TLS sessions in today’s web (top part) and TLS sessions
accompanied by a TLS oracle (bottom part). TLS sessions, per default, are
secure channels between two parties and prevent a third-party from verifying
the provenance of TLS data. In contrast, TLS oracles use a trusted verifier
to audit and certify the provenance of TLS data, making TLS data publicly
verifiable.

data provenance solution but requires server-side software
changes and access to a certification infrastructure. In contrast,
TLS oracles retain servers from the overheads of maintaining
a data provenance infrastructure and can be used to entirely
outsource the provision and verification of data provenance.
Due to the seamless integration into the web, TLS oracles
count as legacy-compatible as they do not introduce any
server-side changes. TLS oracles depend on a verifier to
examine the provenance of TLS data (cf. Janus verifier at
the bottom of Figure 1). To validate the provenance of TLS
data, the verifier captures the transcript of a TLS session and
challenges the TLS client with a proof computation. If a TLS
client can prove authenticity and correctness of secret TLS
session parameters against the captured TLS transcript at the
verifier, then the verifier certifies the TLS data of the client.
With the certificate, TLS clients are able to convince any third
party of data provenance if the third party trusts the verifier.

TLS oracles have originated in the context of blockchain
ecosystems, where TLS oracles originally solved the “oracle
problem” of importing trustworthy data feeds to isolated smart
contracts [4], [6], [7]. However, TLS oracles are generally

applicable in the Internet, which makes them a crucial tech-
nique to build user-centric and data-sovereign systems [8].
For instance, through TLS oracles, users are able to present
solvency checks without giving up control and privacy of
their data [9]. Further, data provenance systems enhance
electronic surveillance by providing verifiable accountability
of confidential web data [10] and can attest if a digital resource
originated from a generative AI website [11].

Challenges: Even though different solutions exist, TLS
oracles remain constrained in the amount of sensitive data
they can validate. This means that larger sensitive resources
such as confidential documents, images, or data sets lack
the support of verifiable data provenance. For instance, in
the work [6], clients are required to prove non-algebraic en-
cryption algorithms (e.g. AES128) in zero-knowledge succinct
non-interactive argument of knowledge (zkSNARK) proof
systems. But, current zkSNARK proof systems efficiently
verify security algorithms that leverage algebraic structures
(e.g. MiMC [12]). We measure that proving AES128 on 1
kB of sensitive TLS data using the zkSNARK proof system
Groth16 takes 29 seconds, where Groth16 introduces a trusted
setup security assumption. The work [5] leverages the structure
of TLS 1.3 stream ciphers and separates non-algebraic algo-
rithms from the computations performed by the zkSNARK
proof system. However, in [5], the client is required to know
the structure of TLS data in advance and cannot selectively
verify dedicated parts of TLS records. Similar to [5], the
work [13] shifts the computation of non-algebraic algorithms
into a pre-computation phase to improve end-to-end efficiency.
Our work addresses the above mentioned limitations with
two new contributions. The first contribution optimizes prove
computation times during the client challenge (cf. stage 2 in
Figure 1) and our second contribution optimizes end-to-end
performances of TLS 1.3 oracles.

Contributions: In contrast to the above mentioned works,
we leverage the fact that, at some point, TLS oracles intro-
duce an asymmetric privacy setting between collaboratively
acting parties; the TLS client and the verifier. We exploit the
asymmetric privacy setting to combine a honest verifier zero-
knowledge (HVZK) proof system with a new secure validation
phase. The new validation phase is unilaterally performed
by the client and establishes security guarantees equivalent
to related works (e.g. security against malicious adversaries).
The HVZK proof system [14] used in our work efficiently
evaluates non-algebraic algorithms and proves AES128 on 1
kB of sensitive data in 0.76 seconds. Our approach works
transparently and does not require the extra security assump-
tion of a trusted setup. With that, our work achieves a new
level of end-to-end efficiency and solves the main bottleneck
of current TLS oracles, which is the efficient evaluation of
non-algebraic algorithms without compromising on security
guarantees. Our first contribution is applicable to TLS oracles
that rely on the TLS versions 1.2 and 1.3.

Our second contribution is applicable to TLS 1.3 only and
and combines a specific operation mode of TLS 1.3 with the
three-party handshake (3PHS) [4], [6], where the verifier and

TLS client collaboratively operate a secret-shared TLS client.
We rely on the TLS 1.3 operation mode where the client
hello (CH) message contains a key share that successfully
complies with a server-supported cipher suite. Predicting a
server-supported cipher suite is an plausible assumption as the
TLS client can fetch server-supported TLS ciphers before the
establishment of a TLS session. We show that the effects of
running TLS 1.3 under such specific circumstances can be
used to securely authenticate TLS handshake secrets at the
verifier. With access to an authentic server handshake traffic
secret (SHTS), we optimize the garble-then-prove paradigm of
the work [15]. In the garble phase, instead of relying on semi-
honest two party computation (2PC) based on authenticated
garbling, we rely on semi-honest 2PC systems that do not
require authenticated garbling. Our construction is possible
because, in the prove phase, we detect malicious activities
by recomputing the the garble phase against the authenticity
guarantees provided by SHTS. As such, we can take advantage
of the performance benefits gained by deploying a more
lightweight semi-honest 2PC system.

Results: We compare our optimized proof computation
benchmarks for TLS 1.2 and TLS 1.3 oracles against our re-
implementations of the works [5], [6]. We use the transparent
zkSNARK proof system PlonkFRI in our re-implementations
to establish security assumptions equivalent to assumptions
achieved in this work. As such, we outperform the work [6]
by a factor of 382x and the work [5] by a factor of 152x. With
our optimized end-to-end performances for TLS 1.3 oracles,
we verify 8 kB of public TLS data in 0.58 seconds and verify
8 kB of sensitive TLS data 6.7 seconds.

In analogy to Roman mythology, we name our efficient
oracle solutions after the god of transitions, Janus. Because,
the Janus protocol guards the transition of larger web resources
into a representation where provenance can be verified. In
summary,

• We formalize the asymmetric privacy setting of TLS 1.2
and TLS 1.3 oracles. We show that in the asymmetric
privacy setting, maliciously secure proof systems can be
replaced with a construction that combines a HVZK proof
system with a new unilateral validation phase.

• We introduce a new TLS 1.3 oracle protocol called
Janus, which optimized end-to-end efficiency based on
an optimized garble-then-prove scheme while retaining
security properties equivalent to previous works.

• We analyse the security of our constructions (cf. Ap-
pendix C), provide performance benchmarks (cf. Sec-
tion VI), and open-source1 the implementation of our
secure computation building blocks.

II. PRELIMINARIES

This section highlights the key concepts of TLS which
data provenance solutions build upon. In addition, we explain
necessary cryptographic building blocks and provide extensive

1https://github.com/januspaper/submission1/tree/esp

https://github.com/januspaper/submission1/tree/esp

TABLE I
NOTATIONS AND FORMULAS OF TLS VARIABLES.

Variable Formula

H2 H(ClientHello||ServerHello)
H3 H(ClientHello||. . . ||ServerFinished)
H6 H(ClientHello||. . . ||ServerCert)
H7 H(ClientHello||. . . ||ServerCertVfy)
H9 H(ClientHello||. . . ||ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”
(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) (hkdf.exp(s,“key”,H(“ ”),len(k)),

hkdf.exp(s,“iv”,H(“ ”),len(iv)))

details of each cryptographic construction or protocol in the
Appendix B.

A. General Notations

The TLS notations of this work are introduced in Sec-
tion II-B, and closely follow the notations of the work [16].
Further, we denote vectors as bold characters x = [x1, . . . , xn],
where len(x) = n returns the length of the vector. Base
points of elliptic curves are represented by G ∈ EC(Fp),
where the finite field F is of a prime size p. For elliptic curve
elements, the operators ·,+ refer to the scalar multiplication
and addition of elliptic curve points P ∈ EC(Fp). The symbol
λ indicates the security parameter. For bits or bit strings, the
operators · represents the logical AND, and ⊕ represents the
logical XOR. Other operators describe a random assignment
of a variable with $←, the concatenation of strings with ||, and
the comparison of variables with ?

=. Concerning authenticated
encryption with associated data (AEAD) algorithms in the
Galois Counter Mode (GCM) mode, the symbol MH is a
Galois field (GF) multiplication which translates bit strings
into GF(2128) polynomials, multiplies the polynomials modulo
the field size, and translates the polynomial back to the bit
string representation.

B. Transport Layer Security

TLS is a standardized suite of cryptographic algorithms to
establish secure and authenticated communication channels
between two parties. TLS exists in different versions; TLS
1.2 and TLS 1.3. We focus on TLS 1.2 configured with
stream ciphers that perform authenticated encryption (e.g.
TLS_ECDHE_ECDSA_AES128_GCM_SHA256) in the same
way as protocols using TLS 1.3. Generally, TLS has two
phases, where the handshake phase derives cryptographic
parameters to secure data sent in the record phase. TLS relies
on the algorithms of hash-based message authentication code
(HMAC) and HMAC-based key derivation function (HKDF)
to securely derive cryptographic parameters and relies on dig-
ital signatures to authenticate parties (cf. ds.Sign, ds.Verify,
hkdf.ext, hkdf.exp, hmac in Figure 2). We provide further
details of TLS-specific security algorithms in the Appendix B
and present TLS-specific transcript hashes, labels, and key
derivation functions of traffic keys in Table I.

TLS Handshake between the client c and server s:

inputs: x $← Fp by c. (y $← Fp, skS , pkS) by s.
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to c and s.
1. c: X = x ·G; send X in mCH
2. s: Y = y ·G; send Y in mSH
3. b: dES = hkdf.exp(hkdf.ext(0,0),“derived” || H(“ ”))
4. b: DHE = x · y ·G; HS = hkdf.ext(dES, DHE)
5. b: SHTS = hkdf.exp(HS,“s hs traffic” || H2)
6. b: CHTS = hkdf.exp(HS,“c hs traffic” || H2)
7. b: (kCHTS, ivCHTS) = DeriveTK(CHTS)
8. b: (kSHTS, ivSHTS) = DeriveTK(SHTS)

9. b: fkS = hkdf.exp(SHTS, “finished” || “ ”)
10. s: SCV=ds.Sign(skS ,label11||H6); send SCV in mSCV
11. s: SF = hmac(fkS , H7); send SF in mSF

12. c: SF’ = hmac(fkS , H7); verify SF’ ?
= SF

13. c: ds.Verify(pkS , label11 || H6, SCV) ?
= 1

14. b: fkC = hkdf.exp(CHTS, “finished” || “ ”)
15. c: CF = hmac(fkC , H9); send CF in mCF

16. s: CF’ = hmac(fkC , H9); verify CF’ ?
= CF

17. b: dHS = hkdf.exp(HS,“derived” || H(“ ”))
18. b: MS = hkdf.ext(dHS, 0)
19. b: CATS = hkdf.exp(MS, “c ap traffic” || H3)
20. b: SATS = hkdf.exp(MS, “s ap traffic” || H3)
21. b: (kCATS, ivCATS) = DeriveTK(CATS)
22. b: (kSATS, ivSATS) = DeriveTK(SATS)

Fig. 2. TLS 1.3 specification of session secrets and keys. Characters at the
beginning of lines indicate if the server s, the client c, or both parties b call
the functions per line.

1) Handshake Phase: Key Exchange and Key Derivation:
To establish a secure channel between a server and a client,
TLS relies on the Diffie-Hellman key exchange (DHKE) to
securely exchange cryptographic secrets between two parties
(cf. Figure 2, lines 1-4). For example, with TLS 1.3 configured
to use elliptic curve cryptography, parties protect secrets x, y
with an encrypted representation X,Y and exchange X,Y
via the CH and server hello (SH) messages mCH, mSH. With
access to X,Y , only the client and server can securely derive
the Diffie–Hellman ephemeral (DHE) key, where DHE =
x · y ·G = y ·X = x · Y holds. Both parties continue to use
DHE to derive traffic secrets. A special mode of TLS 1.3 is that
if mCH contains the client randomness and key share which
complies with a cipher suite supported at the server, then
the server immediately derives handshake and record phase
traffic secrets. In this mode, TLS 1.3 encrypts all server-side
handshake messages.

In contrast, TLS 1.2 exchanges the messages mCH, mSH in
plain and refers to the DHE value as the premaster secret.
TLS 1.2 uses the premaster secret together with the client and
server randomness to derive a master secret, which, in turn,
is used to derive traffic secrets. When TLS 1.2 is configured
to used AEAD based on stream ciphers, TLS 1.2 generates

...

...

+ +

+

...

... +

...+ +

+ +

Fig. 3. TLS 1.3 AEAD stream cipher in the GCM mode which encrypts a
plaintext pt = [pt1, . . . , ptl] to a ciphertext ct = [ct1, . . . , ctl] under key k
and authenticates the ciphertext ct and associated data AD with the tag t.

two application traffic keys to secure record phase traffic
(kCATS, kSATS). Otherwise, if TLS 1.2 uses a cipher block
chaining (CBC) mode to encrypt records, TLS 1.2 generates
additional message authentication code (MAC) keys. In this
work, we omit investigating TLS 1.2 in CBC mode as multiple
attacks on the CBC MAC-then-encrypt pattern have been
introduced [17]–[19]. Even though countermeasures exist, pro-
tecting records with the CBC MAC-then-encrypt pattern is not
recommended anymore [20]. Per default, TLS 1.3 generates
two keys to secure handshake phase traffic (kCHTS, kSHTS)
and generates two keys to secure record phase traffic (kSATS,
kCATS) Due to a key-independence property of TLS 1.3 [21],
disclosing an handshake traffic secret (e.g. SHTS) does not
compromise the security of record traffic secrets (e.g. server
application traffic secret (SATS)) as access to SHTS prevents
the reconstruction of handshake secret (HS) and HS is required
to compute SATS.

Authenticity: To mutually authenticate each other, both
parties exchange certificates and compute authentication pa-
rameters (cf. Figure 2, lines 9-16). Notice that in TLS, client-
side authentication is optional, which is why we omit client
certificates in Figure 2. But, we show the computations of
the server finished (SF) and client finished (CF) authentica-
tion values, because, to constitute a valid TLS session, both
parties must successfully exchange and verify the SF and CF
messages mSF,mCF. For server-side authentication, the server
computes the certificate verification value (e.g. SCV), which
binds a Public Key Infrastructure (PKI) X.509 certificate to the
TLS transcript via a digital signature [22]. Here, the signature
is computed with the server secret key skS and is verified with
the corresponding server public key pkS . The client obtains
the server public key pkS in the PKI certificate and aborts the
TLS session if the signature verification fails.

2) Record Phase: The TLS record phase requires parties
to protect data with an AEAD algorithm before data can be
exchanged. AEAD algorithms use stream ciphers to protect
data and depend on keys established in the handshake phase to
translate plaintext data pt into a confidential and authenticated
representation (ct, t), with ciphertext ct and authentication
tag t. Stream ciphers are characterized by pseudorandom
generators (advanced encryption standard (AES) in the GCM
mode), which incrementally output key streams or counter
blocks (CBs) (cf. Figure 3). CBs are combined with plaintext

AND

ORAND

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

Fig. 4. Example of a garbled circuit C expressing the function f of a secure
computation via boolean logic gates. Every circuit wire wL is encoded with
secret internal labels i, a secret and random signal bit σL, external labels
e=σL ⊕ i (where i, e, σ ∈ {0, 1}), and wire keys ki

L. Internal labels are
associated with input data bits and the lists T l−d map output labels to output
data bits.

data chunks to compute ciphertext data chunks. Subsequently,
AEAD ciphers compute an authenticated tag t on all cipher-
text chunks and associated data. We elaborate on TLS data
protection algorithms in the Appendix B4.

C. Cryptographic Building Blocks

This section provides an overview of the cryptographic fun-
damentals that support the Janus protocol beyond algorithms
of TLS. Formal descriptions of these cryptographic building
blocks can be found in the Appendix B.

1) Semi-honest 2PC with Garbled Circuits (GCs): Secure
2PC allows two mutually distrusting parties with private inputs
x, y to jointly compute a public function f(x, y) without
learning the counterparty’s private input [23], [24]. A 2PC
system based on boolean garbled circuits involves a party p1
with input x as the garbler and party p2 with input y as the
evaluator. Party p1 is supposed to generate the garbled circuit
G(C), where the boolean circuit C implements the logic of
the public function f (cf. Figure 4). To generate the garbled
circuit, p1 randomly samples wire keys k0

L,k1
L and a signal

bit σL at every wire wL. For the purpose of evaluating the
function f , wire keys ki

L encode binary data representations of
f using internal labels i. The purpose of signal bits is twofold.
Signal bits encrypt internal bits to external bits eL=σ ⊕ i
which can be shared with p2. With that, signal bits enable
the evaluator to discover valid entries of garbled tables G(C)
through external bits e [25]. Further, signal bits randomize
garbled truth tables G(C) to obfuscate truth table bit mappings.

Once wire keys, signal bits, and external labels exist, p1
computes the garbled table entries as follows. Per row of
table G(C) (cf. Figure 4), the bit tuples in the left column are
combinations of external labels which correspond to incoming
gate wires. The right column contains double encrypted wire
keys that correspond to outgoing gate wires. For gates yielding

output labels, garbled entries encrypt wire keys. For intermedi-
ate gates, garbled entries encrypt wire keys concatenated with
corresponding external labels.

After garbling a circuit, p1 shares G(C), T l−d, and, if
x=[1,0], (k1a, e=0) and (k0b , e=1) with p2. To obtain wire
keys that correspond to the input bits of y, p2 interacts with
p1 in two 1-out-of-2 Oblivious Transfer (OT) protocols (cf.
Section II-C2). The OT protocol requires p1 to share ky

e, k
y
d

with corresponding external values with p2. Further, the OT
scheme gives p2 access to the keys (k0c , e=0) and (k1d, e=0) if
y=[0,1], and prevents p1 from learning p2’s selection of wire
keys. With access to G(C), input wire keys and corresponding
external labels, p2 is able to evaluate the garbled circuit. To
evaluate the first output bit, p2 decrypts the third entry of table
G(C0,(1,2)AND) and obtains (k0e , e=0). With that, p2 continues to
decrypt the first entry of table G(C1,(0,1)AND) to obtain k0f (cf.
Figure 4). Last, p2 decodes k0f using the decoding table T 0

l−d to
obtain the first output bit 0. If required, p2 shares the obtained
2PC output back to p1.

2) Oblivious Transfer: Secure 2PC based on GCs depends
on the 1-out-of-2 OT1

2 sub protocol to secretly exchange input
parameters of the circuit [26]. The OT1

2 scheme involves two
parties where party p1 sends two messages m1,m2 to party p2
and does not learn which of the two messages mb is revealed
to party p2. Party p2 inputs a secret bit b which decides the
selection of the message mb. In this work, we make use of the
OT1

2 scheme defined in the work [26], which does not require
a trusted setup. The trusted setup procedure introduces a third
party which (i) takes over the generation of cryptographic
material and (ii) is trusted to delete the underlying random
parameters of the material.

3) 2PC with Malicious Adversaries: We consider the
work [27] to secure the semi-honest 2PC defined in Sec-
tion II-C1 against malicious adversaries. The dual-execution
mode in [27] runs two instances of the semi-honest 2PC,
where both parties p1 and p2 successively act as the garbler
and evaluator. We describe the intuition of behind maliciously
secure 2PC in the Appendix B5e.

4) Zero-knowledge based on Garbled Circuits: Proof sys-
tems allow a prover p to convince a verifier v of whether
or not a statement is true. In theory, proof systems rely on
a NP language L and the existence of an algorithm RL,
which decides in polynomial time if w is a valid proof for the
statement x ∈ L by evaluating RL(x,w)

?
= 1. The assumption

is that for any statement x ∈ L, there exist a valid witness w
and no witness exists for statements x /∈ L. Proof systems
work if the properties of completeness and soundness hold.
Privacy-preserving proof systems additionally require either
zero-knowledge or HVZK to hold [28], [29].

Completeness ensures that an honest prover convinces an
honest verifier by presenting a valid witness for a statement.
Soundness guarantees that a cheating prover cannot convince
a honest verifier by presenting an invalid witness for a state-
ment.

Zero-knowledge guarantees that a malicious verifier does not
learn anything except the validity of the statement.
HVZK holds if the zero-knowledge property can be shown
for a semi-honest verifier, who honestly follows the protocol
definition.

Interestingly, zero-knowledge is a subset of secure 2PC
and a zero-knowledge proof (ZKP) can be computed using
GC-based 2PC if only one party inputs private data. In this
work, we make use of the HVZK notion based on boolean
GCs [14]. In this setting, the garbler and constructor of the
GC acts as the verifier and is assumed to behave semi-honest.
The GC evaluates a function f , which yields {0, 1}. The
evaluator, as the prover, obtains the GC, input wire keys and
corresponding external labels but does not obtain the decoding
table. After the prover evaluates the GC and returns the wire
key which corresponds to a 1, the verifier is convinced of the
proof. Formal security proofs for completeness, soundness, and
HVZK of the garbled circuits proof system are provided in the
work [14].

5) Cryptographic Commitments: We formally define cryp-
tographic commitments with the following tuple of algorithms,
where

• c.Commit(m, rc) −→ (c) takes in a string m and commit
randomness rc

$← R and yields a commitment string c.
• c.Open(m, rc, c) −→ ({0, 1}) takes in a message string,

a commit randomness, and a commitment string and
outputs 1 only if c is a valid commitment string of the
tuple (m, rc).

The algorithms c.Commit, c.Open satisfy the proper-
ties of a secure commitment scheme, where computa-
tional binding ensures that after committing to m1, a
probabilistic polynomial time (PPT) adversary cannot find
c.Commit(m2, r2)==c.Commit(m1, r1), with (m1,m2) ∈
M, (r1, r2) ∈ R, and m2 ̸= m1. Further, anyone seeing c
learns nothing on m due to the property of statistical hiding,
where c.Commit(m1, rc) is statistically indistinguishable from
c.Commit(m2, rc) with (m1,m2) ∈M and rc ∈ R.

Commitment schemes are often used in protocols which rely
on ZKP cryptography. Using a ZKP to compute the c.Open
function allows a prover to convince the verifier from knowing
a valid commitment opening without revealing the witness.

6) Secret Sharing: We formally define a secret sharing
scheme with the following tuple of algorithms, where

• ss.Setup(λ) −→ (pp) takes in a security parameter and
returns public parameters and randomness r

$← R(λ).
• ss.Share(pp, r) −→ (r) takes in public parameters and

randomness and returns additive secret shares r=[r1,. . .,
rn], where

∑n
x=1 rx = r holds.

• ss.Reconstruct(r) −→ (r) takes in additive secret shares
and returns their sum.

Secret sharing involves a trusted dealer to break a secret
into shares with ss.Share. Shares are distributed to qualified
recipients which can reconstruct the secret by computing
individual shares back together with ss.Reconstruct [30]. In
this work, we consider secret sharing with an access structure

of t=n=2, where t out of n parties must add together secret
shares to reconstruct the secret [31].

III. SYSTEM MODEL

The system model defines system goals, system goals in
form of security and usability properties, and the threat model.

A. System Roles

Clients establish a TLS session with servers, query data
from servers, and present TLS data proofs to the proxy.
We assume that clients behave maliciously such that clients
arbitrarily deviate from the protocol specification in order to
learn TLS session secret shares of the proxy. Another goal of
malicious clients is to learn any information that contributes
to convincing the proxy of false statements on presented TLS
data. Clients honestly follow algorithms of the Janus protocol
if the algorithm protects private data of the client.
Servers participate in TLS sessions with clients and return
responses in the TLS record phase upon the reception of
compliant API queries. We assume honest servers which
follow the Janus protocol specification.
Verifiers act as proxies and take over the role of TLS oracle
verifier. Verifiers are configured at the client and route TLS
traffic between the client and the server. We assume malicious
verifiers deviating from the protocol specification with the
goal to learn TLS session secret shares or private session data
of clients. Verifiers honestly execute algorithms if algorithms
protect secret shares of verifiers.

B. System Goals

Session-authenticity guarantees that our TLS oracle attests
web traffic which originates from an authentic TLS session.
Authenticity is guaranteed if the proxy successfully verifies
the PKI certificate of the server.
Session-integrity guarantees that a malicious client and proxy
cannot deviate from the TLS specification if a TLS session
has been authenticated. This means that an adversary cannot
modify server-side or client-side TLS traffic in any TLS phase.
Notice that for client-side TLS traffic of the record phase, a
malicious client is able to send arbitrary queries to the server,
such that servers decide if queries conform with API handlers.
Session-confidentiality guarantees that the proxy neither
learns any entire TLS session secrets nor any record data
which has been exchanged between the client and the server.
Further, the notion guarantees that the proxy learns nothing
beyond the fact that a statement on TLS record data is true or
false.
MITM-resistance guarantees that the properties of session-
integrity, session-authenticity, and session-confidentiality hold
in a system setting, where adversaries are capable of mounting
machine-in-the-middle (MITM) attacks.
Legacy-compatibility holds if the TLS code stack running at
the server does not require any changes and achieves out-of-
the-box compatibility with our protocol.

C. Threat Model

We rely on a threat model with secure communication
channels (TLS security guarantees hold) and fresh randomness
per TLS session between all interacting system roles. This
means that the adversary cannot break the security guarantees
of TLS. Network traffic, even if it is intercepted via a MITM
attack by the adversary (e.g. the client), cannot be blocked
indefinitely. We assume up-to-date Domain Name System
(DNS) records at the verifier such that the verifier can resolve
and connect to correct Internet Protocol (IP) addresses of
servers. The IP address of a server cannot be compromised by
the adversary such that adversaries cannot request malicious
PKI certificates for a valid DNS mapping between a domain
and a server IP address. Servers share valid PKI certificates
for the authenticity verification in the TLS handshake phase.
Server impersonation attacks are infeasible because secret
keys, which correspond to exchanged PKI certificates, are
never leaked to adversaries. Our protocol imposes multiple
verification checks on the client and the verifier, where failing
verification leads to protocol aborts at the respective parties.
All system roles are computationally bounded and learn mes-
sage sizes of TLS transcript data. For employed ZKP systems,
we expect completeness, soundness, and HVZK to hold.

IV. OPTIMIZING PROOF COMPUTATIONS IN THE
ASYMMETRIC PRIVACY SETTING

The first subsection IV-A analyses (i) where TLS oracles
configured with to use AEAD algorithms introduce an asym-
metric privacy setting between the client and the proxy and
(ii) how semi-honest proof systems can be deployed to obtain
security against malicious adversaries. In subsection IV-B, we
propose a new unilateral validation phase which, combined
with an HVZK proof system, achieves security against mali-
cious adversaries (cf. Appendix C1).

A. How TLS Oracles Use Asymmetric Privacy

TLS oracles turn the two-party protocol of TLS into a
three-party protocol by introducing a verifier [4]. The verifier
ensures that the TLS data of the client preserves integrity
according to an authenticated TLS session via a verifiable
computation trace.

1) Three-party Handshake: To audit the integrity of TLS
data, the verifier and client establish a mutually vetting but col-
laborative TLS client. To construct a collaborative TLS client,
TLS oracles replace the TLS handshake with a 3PHS [4], [6].
In the 3PHS, every party injects a secret randomness such that
the DHE secret of the TLS handshake depends on three secrets
instead of two. As such, the DHE value, which is derived at the
server, can be jointly reconstructed if the client and verifier
add shared secrets together. The Appendix B1 presents the
cryptography of the 3PHS.

The consequence of the 3PHS is that the client depends
on the computational interaction with the verifier to proceed
in a TLS session with the server. At the same time, the
verifier is convinced that the client preserves computational
integrity according to the TLS specification if the joint TLS

ClientVerifier as ProxyServer

Three-party Handshake (3PHS)

ECTF

H
an

ds
ha

ke
R

ec
or

d

KDC KDC + Server Certificate Verify

A
sy

m
.

Pr
iv
ac

y

Client Challenge

Fig. 5. TLS 1.3 oracle adapted from the DECO protocol [6]. After the key
derivation computation (KDC), it holds that kSATS = kvSATS + kcSATS

and kCATS = kvCATS+kcCATS . Algorithms executed by two parties are
surrounded by red boxes and achieve security against malicious adversaries.

computations progress. Because, without access to the secret
share of the verifier, clients cannot derive and use full TLS
secrets and encryption keys that are required for the secure
session with the server. Further, introducing false session data
on the client-side leads to a session abort at the server.

2) Client-side Two-party Computation: With secret shared
TLS parameters, the client and verifier proceed according to
the TLS specification by using secure 2PC techniques [6], [32].
To achieve efficient secure 2PC [4]–[6], TLS oracles convert
secret-shared DHE values in form of elliptic curve (EC)
coordinates into bit-wise additive secret shares with the Elliptic
Curve to Field (ECTF) algorithm (cf. Appendix B5) [33].
Additive secret shares can be efficiently added together in
2PC circuits that are based on boolean GCs [6], [24], [27],
[34], [35]. After the ECTF conversion (cf. Figure 5), the
client and verifier perform the TLS key derivation and record
phase computations using maliciously secure 2PC based on
boolean GCs, which comes with optimized binary circuits for
the required computations [30], [36].

3) Key Committing AEAD for TLS Records: AEAD-
protected records in TLS require special attention as AES in
the GCM mode is not key committing [13], [37]–[39]. This
means that an adversary can perform commitment attacks [40].
For instance, the message franking attack finds two messages
m1 ̸= m2 and two keys k1 ̸= k2 such that encrypting
m1 under k1 and encrypting m2 under k2 yield the same
ciphertext ct and tag t [41]. This attack is problematic and
would allow the client to inject and prove arbitrary data as
TLS authentic during the client challenge. The attack fails
if the verifier receives all ctreq, ctresp before computing any
authentication tags t using 2PC (cf. Figure 5). Because, to
perform the message franking attack, the attacker requires
freedom in choosing a ciphertext block based on a linear

CHVZK(pt, kc ; kv, ct, iv, Kx, ϕ):
1. CB’ = AES128 GCM(kc + kv, iv)
2. ct’ = CB’ ⊕ pt
3. assert: ct’ ?

= ct; Kx
?
= fcom(kc + kv——, iv)

4. assert: 1 ?
=fϕ(pt)

5. return: true

Fig. 6. Circuit logic of the Janus protocol proof challenge. The semicolon ;
separates private inputs (left side) from public inputs (right side).

equation that involves access to authentication tags [41].
In addition and according to the proxy mode of the work [6],

we compute key commitment strings (KSATS, KCATS) on ap-
plication traffic keys. The commitments guarantee that, in the
client challenge, a ciphertext can only be decrypted under the
right key, and, with that, produce the right plaintext. Similar to
the general key commitment construction for AES GCM (cf.
Fcom(K,N) in [42]), we define the key commitment string based
on fcom (cf. formula 1), where H is a secure hash function (e.g.
SHA256). The key commitment string hides traffic keys with
the pseudorandomness generated by AES (32 bytes if AES128
is used) and urges fcom to evaluate the SHA256 compression
function twice.

Kx = fcom(kx, ivx) = H(kx||AESkx
(0)||AESkx

(ivx||1))
(1)

As such, the key commitment string of the server traffic key
KSATS computes as fcom(kSATS, ivSATS) and the key commit-
ment string of KCATS computes as fcom(kCATS, ivCATS).

4) Client Challenge in Asymmetric Privacy Setting: Once
the client has gathered enough TLS data to receive an at-
testation from the verifier, TLS oracles reveal TLS secret
shares of the verifier to the client (cf. Figure 5). When the
client obtains full access to session secrets, an asymmetric
privacy setting between the client and verifier is established
because the client is able to access TLS records by decrypting
exchanged ciphertext data. To prevent the client from mali-
ciously presenting arbitrary data as TLS data, TLS oracles
bind the client challenge against an irreversible condition,
which is formulated as follows: If the verifier has access to
an authenticated ciphertext and the client proves that TLS
data encrypts to the authenticated ciphertext under valid keys
of the TLS session, then clients cannot inject arbitrary data
and prove it as TLS authentic [6], [38]. Current TLS oracles
rely on maliciously secure proof systems to prove that TLS
data encrypts to authenticated ciphertext data [6], [13], [32].
However, in subsection IV-B, we show that proof computations
in an asymmetric privacy setting can be optimized.

B. HVZK and Asymmetric Privacy

This section formalizes asymmetric privacy and introduces
a new unilateral validation protocol that, combined with
an HVZK proof system in the asymmetric privacy setting,
achieves security against malicious adversaries. Last, we show
how our formal definitions apply to TLS.

Unilateral Secure Validation

Fig. 7. Unilateral validation protocol to assert correct garbling in the HVZK
proof system of the work [14].

1) Formalizing Asymmetric Privacy: In the scope of this
work, we formalize asymmetric privacy in a setting with
three parties; parties p1 and p2 and a trusted dealer d. Other
settings remain to be investigated as future work. We formalize
asymmetric privacy based on the on a maliciously secure 2PC
scheme Π2PC, a secure commitment scheme ΠCom, and a secret
sharing scheme ΠSS. We construct asymmetric privacy with
formalized algorithms defined in Section II-C.

To set up an asymmetric privacy setting between p1 and p2,
the dealer d calls ΠSS.Share and individually shares r1 with
p1 and r2 with p2. It holds that the secret shares r1+r2 sum to
r. We define two cases to commit a message string m into a
commitment string c using r. The first case requires p1 and p2
to execute a circuit C in the 2PC scheme Π2PC , where C calls
ΠSS.Reconstruct and ΠCom.Commit. In this case, p1 inputs
m and r1 and p2 inputs r2. After the commitment c has been
computed and shared, p2 releases the secret share r2 to p1,
and, with that, initiates the asymmetric privacy setting. In this
case, p1 can reconstruct r. With access to m and r, only p1
is capable of successfully evaluating ΠCom.Open.

In the second case, the trusted dealer computes and discloses
the commitment string c on a message string m with random-
ness r. If the trusted dealer performs the commitment, then the
dealer additionally shares the message string m with a party
(e.g. with p1). To set up the asymmetric privacy setting, p2
discloses the secret share r2 after receiving the commitment
string c from the dealer. In the second case, the dealer and
p1 have access to r and can prove a successful commitment
opening to p2.

2) HVZK and Selective-failure Attacks: We improve the
performance of proof computations in the asymmetric privacy
setting by deploying the HVZK proof challenge between p1
and p2. The party p1 has access to all TLS session secrets and
we assume p2 to act as a malicious garbler. The proof system
of the work [14] uses semi-honest 2PC based on boolean
garbled circuits to achieve the notion of HVZK and assumes
an honest verifier (cf. Section II-C4). However, in a setting
with a maliciously acting p2, semi-honest 2PC is susceptible
to selective failure attacks [34], which work as follows. If
a malicious p2 intentionally corrupts one or multiple rows of
the garbling tables, p2 can learn information on which row has
been evaluated by p1. From here, and with knowledge of the

row permutations, p2 is capable of deriving secret information
of p1’s inputs. In the following subsection, we introduce a
secure validation protocol performed by p1, which detects
malicious behavior of p2 before any secrecy leakage can occur.

3) Unilateral Secure Validation: The unilateral secure val-
idation is performed once p1 obtains all semi-honest 2PC
parameters of the HVZK proof system [14]. The set of 2PC
parameters comprise garbled tables G(CHVZK), wire keys k,
and external labels e (cf. Section II-C1). The party p2 shares
wire keys corresponding to the private inputs pt and k of p1
through the OT1

2 oblivious transfer protocol [26], and omits
sharing the output label decoding table T l−d. The garbler
p2 is convinced of the HVZK proof if p1 as the evaluator
returns the output wire key that corresponds the output bit 1.
The 2PC circuit CHVZK asserts if plaintext chunks encrypt to
authenticated ciphertext chunks under the secret shared TLS
session keys (cf. Figure 6). Inside CHVZK, the function fϕ
continues to assert plaintext data against a public statement ϕ
(e.g. ϕ={HPDF

?
= H(pt)}, where HPDF is a hash of a PDF

document with hash function H). The evaluation of the garbled
circuit CHVZK returns the output wire key corresponding to a
1 if the circuit returns true.

The prover p1 of the proof challenge is required to return
the output wire key back to p2 to complete the HVZK proof
protocol. Instead, our new secure validation phase enforces p1
to share a commitment ck of the output wire key. After sharing
the commitment ck, p2 discloses all garbling parameters of the
semi-honest 2PC computation with p1. Revealing all garbling
parameters allows p1 to verify if CHV ZK has been garbled
correctly by recomputing the garbled circuit. And, due to the
asymmetric privacy setting, p1 learns nothing new because all
TLS session secrets of p2 have already been shared with p1.
If p1 detects a malicious garbling of the circuit CHV ZK , then
p1 aborts the protocol. Otherwise, p1 shares the commitment
randomness of the commitment ck with p2 such that p2 can
verify if p1 could compute the correct output wire key before
the disclosure of the garbling parameters (cf. Figure 7).

4) TLS Compatibility: Our formalization is compatible with
the typical TLS oracle setting with a single verifier. The
server takes over the role of the trusted dealer to set up
multiplicative secret shares between the client parties via the
3PHS. Subsequently, the ECTF protocol converts client secret
shares into an additive representation. The client and verifier
collaboratively commit to TLS session parameters by com-
puting key commitment strings. Upon capturing a ciphertext
ctx, the verifier participates in a joint 2PC computation of
the respective authentication tag tx. Access to authenticated
ciphertext chunks is a prerequisite for the asymmetric privacy
setting. Next, the verifier initiates the asymmetric privacy
setting by disclosing secret shares of TLS parameters to the
client if enough ciphertext data has been captured. From here
on, only the client is capable of computing valid proofs during
the client challenge, where valid proofs assert data provenance
of TLS data against ciphertext chunks and key commitment
strings.

CHCH'

KDC Capture

Verify SHTS

Server-side Handshake Transcript

ECTF

3PHS

SHTS

Verify SHTS

Fig. 8. Mutual SHTS verification between client parties. Red boxes indicate
values derived in maliciously secure TwoPC systems.

V. OPTIMIZING END-TO-END PERFORMANCE

The following subsections introduce a new and complete
TLS oracle protocol for TLS 1.3 named Janus. To construct the
protocol, we show how client parties can securely derive and
authenticate the TLS handshake secret SHTS in a malicious se-
curity setting (cf. Subsection V-A). Subsequently, we leverage
the authenticity guarantees of SHTS to deploy a garble-then-
prove computation scheme for TLS 1.3, which entirely relies
on semi-honest 2PC techniques. Our construction provides the
verifier with an conditional abort option which activates if the
client performs malicious activities.

A. Secure Authenticity of SHTS

Our protocol relies on a specific operation mode of TLS
1.3, where the client picks a server-supported cipher suite
and a suitable key share in the CH message. In this case, the
server immediately derives TLS session secrets and returns
authenticated handshake messages (cf. Figure 8). Notice that
before establishing the TLS 1.3 session, clients can query
servers to discover supported cipher suites. Upon receiving
the server handshake transcript, both the client and verifier
continue to derive shared session secrets via the 3PHS (cf.
Appendix B1). Next, the client and verifier translate shared EC
secrets of the 3PHS into additive secret shares s1, s2 through
the ECTF protocol (cf. Appendix B5b). In the end, the verifier
locally maintains s1 and the client locally keeps s2 and it holds
that s1 + s2 = DHE.

1) Mutual Validation of SHTS: To derive SHTS between
clients, the verifier garbles the circuit CSHTS (cf. Table II) in
a semi-honest 2PC system. The Janus protocol defines one
condition for the evaluation of CSHTS; Both client parties must
obtain the server handshake transcript before participating in
the 2PC computation of the circuit CSHTS (cf. Figure 8). The
condition prevents adversaries from forging the authenticity of
SHTS because to compute a valid server handshake transcript,
the adversary needs full access to (i) the server’s private key
corresponding to the X.509 PKI certificate of the server, and
to (ii) the session secrets DHE or SHTS. Our system model
assumes that the server’s private key cannot be compromised
and the 3PHS prevents full access to session secrets. The
only remaining attack left to the adversary to perform is a
replay attack using a previously established server handshake

TABLE II
SEMI-HONEST 2PC CIRCUITS USED BY THE Janus PROTOCOL.

Circuit Computation Trace

CSHTS DHE=s1+s2; DHE to SHTS
C(k,iv) DHE=s1+s2; DHE to (kcXATS, kvXATS, ivXATS)
CCB2+

(kcXATS, kvXATS, ivXATS) to CB2+

Ct (kcXATS, kvXATS, ivXATS, ct) to t
Copen DHE=s1+s2; DHE to SHTS; DHE to t; DHE to CB2+

transcript. The replayed transcript must comply with the SHTS
value derived in a maliciously secure 2PC system. However,
without knowledge of full handshake secrets, the adversary
remains incapable of predicting secret 2PC inputs that evaluate
to a SHTS collision (cf. Appendix C2).

Further and similar to the works [6], [38], we leverage the
fact that, during the handshake phase, the client can securely
disclose the SHTS parameter to the verifier. Even though the
verifier knows SHTS, the key independence property of TLS
1.3 prevents the verifier from learning the HS secret [21], as
HS is protected by hkdf.exp (cf. line 5 and 17 of Figure 2).
Without access to HS, the adversary cannot derive application
traffic keys from HS.

The validation of the SHTS parameter against the server
handshake transcript works as follows. With access to
SHTS, both client parties derive handshake traffic secrets
kSHTS, ivSHTS and decrypts server-side handshake messages.
With handshake messages in plain, client parties assert if (i)
the server certificate is valid, and (ii) the server successfully
agreed to the TLS session by verifying the SF message.
Notice that access to SHTS allows the computation of the SF
verification tag (cf. lines 9-12 in Figure 2). Once the verifier
completes the SHTS verification, the Janus protocol proceeds
with the garble-then-prove phase.

B. Garble-then-prove with Semi-honest 2PC

The garble-then-prove scheme of the Janus protocol is
closely related to the garble-then-prove paradigm introduced
in the work [15]. But, in the garble phase, we replace
2PC computations based on authenticated garbling with more
lightweight 2PC computations that do not require authenti-
cated garbling. Our construction detects malicious activities in
the prove phase, where we recompute and authenticate garbled
parameters against the authenticity guarantees provided by the
SHTS validation (cf. subsection V-A). We show the security
of the construction in the Appendix C3

1) Intuition of Garble-then-prove: The idea behind the
garble-then-prove paradigm is as follows. If a malicious client
acts as the garbler of the semi-honest 2PC system, then the
client is capable of maliciously garbling any circuit in the
garble phase. However, as TLS oracles eventually disclose
session secrets of the verifier to the client, the malicious
client learns nothing beyond what the honest client would have
learned. Access to the verifier’s secret shares before a protocol-
conform asymmetric privacy setting compromises the security
of the Janus protocol (e.g. enables message franking attacks).
However, the prove phase provides guaranteed detection of

CzkOpen(s2, pt ; s1, Iopen, ct, t, SHTS, ϕ):

1. SHTS’, CB’, t’ = Copen(s1, s2, Iopen, pt)
2. ct’ = CB’ ⊕ pt
3. assert: SHTS’ ?

=SHTS; ct’ ?
=ct; t’ ?

=t

4. assert: 1 ?
=fϕ(pt)

5. return: true

Fig. 9. 2PC circuit for the privacy-preserving client challenge. The circuits
assert if the client presents data which preserves session-integrity and session-
authenticity. The semicolon ; separates private inputs (left side) and public
inputs (right side). The function fϕ validates if input data complies with a
public statement ϕ.

cheating activities and allows the verifier to abort before any
data provenance attestation has occurred. To do so, the prove
phase recomputes and compares all 2PC computations of the
client against securely authenticated session parameters (cf.
subsection V-B3).

2) Garble Phase: In the garble phase, the client and verifier
collaboratively evaluate multiple 2PC circuits that implement
the TLS 1.3 specification. The set of circuits comprises key
derivation computations with C(k,iv), CB computations for
the encryption and decryption of requests or responses with
CCB2+

, and tag computations with Ct (cf. Table II). For the
encryption or decryption of requests or responses, the circuit
CCB2+ outputs counter blocks CBi with indices i > 1. To
prevent commitment attacks on response records, no block
CB2+ ever includes any CB0,CB1 blocks.

We expect parties to exchange 2PC outputs according to
our adapted TLS 1.3 oracle protocol (cf. Figure 5) with slight
changes. Computing key commitment strings is redundant
because the client challenge in the prove phase considers the
authenticated SHTS parameter as the commitment on session
keys.

3) Prove Phase: After the garbling phase, the verifier has
captured a record transcript with the parameters (ctreq , treq,
ctresp, tresp) and discloses secret-shared session parameters
to the client. With that, the asymmetric privacy setting is
established (cf. Section IV-B). The novelty of the Janus pro-
tocol is that it can consider the authenticated SHTS parameter
as a key commitment string. Thus, the HVZK 2PC circuit
CHVZK=CHVZK can be set to the CzkOpen algorithm, which
asserts if application traffic key computes to the authentic
SHTS parameter (cf. Figure 9). Further, to ensure that 2PC
outputs derived by the client have been garbled correctly, the
circuit CzkOpen authenticates ciphertext chunks as follows. A
record pair (ct, t) has been garbled correctly if the captured
authentication tag matches a recomputed authentication tag t
that maps to SHTS. In the prove phase, we require executing
the client challenge with an unilateral-validated HVZK proof
system to prevent the verifier from maliciously garbling the
circuit CzkOpen (cf. Section IV-B).

C. Additional Considerations

The following subsections complete the context of the Janus
protocol beyond its main contributions from subsections V-A

and V-B.
1) Janus Operation Modes: The Janus protocol can be

operated in two different modes, which introduce distinct ar-
rangements in the prove phase. Both operation modes depend
on a list of indices Iopen, which is selected by the client and
shared with the verifier in the beginning of the prove phase.
The list Iopen contains indices of counter blocks, ciphertext
chunks, and plaintext chunks. With Iopen, the client selectively
determines TLS data for the client challenge. The verifier uses
Iopen to identify public inputs (e.g. ciphertext substrings) for
the data provenance verification (cf. Figure 9).

Transparent Mode If the Janus protocol operates in the
transparent mode, the client shares TLS plaintext chunks
pt together with the list of indices Iopen with the verifier.
The verifier checks if the AEAD encryption of presented
plaintext yields the captured ciphertext transcripts and if an
TLS computation trace from the encryption key to SHTS
exists. To prevent the verifier from learning TLS encryption
keys, the transparent mode requires an adapted circuit CtpOpen.
CtpOpen works as CzkOpen with the exception that the plaintext
is used as a public input parameter. Further, the assertion
1

?
= fϕ(pt) can be computed out-of-circuit.
Privacy-preserving Mode If the Janus protocol operates

in the privacy-preserving mode, the client does not share
pt. Instead, the client shares Iopen and proves knowledge of
authentic plaintext data via the HVZK proof system. To do
so, the client evaluates the 2PC circuit CzkOpen and applies the
unilateral secure validation.

Example: We assume that TLS is configured to use AES
in the GCM mode. Further, we assume that the TLS data of
interest for the validation according to fϕ is contained in ct3
of the response (ct, t). In this case, the index i=3 is included in
the list Iopen. With Iopen, the zkOpen circuit is able to compute
the right CB2+index, and consider CB5=AES(k, iv|| . . . 5) for
the computation of ct5’=CB5 ⊕ pt5. If the assertions against
public inputs succeed (e.g. ct′5 ?= ct5), and CB5 has been
derived with secrets that match a verified SHTS, then the data
inside pt5 preserves session-integrity and session-authenticity.

2) Processing Multiple Records: Concerning the collab-
orative processing of multiple records in the record phase,
we differentiate computations with respect to the following
dependencies:

Requests are independent of responses. If no request
depends on the contents of a response, then the circuit CCB2+

is only called for the compilation of request ciphertexts.
Response CBs can be locally computed by the client once
the asymmetric privacy setting enforces the disclosure of full
session secrets to the client.

Requests depend on responses. If a request of number
n > 1 depends on the contents of responses ct=[ct1, . . . , ctl],
where each response ctm has an index m < n, then the client
and verifier perform l executions of the circuit CCB2+

. The
evaluation of l circuits CCB2+ yields l vectors of encrypted
counter blocks CB2+ to the client. With l vectors of CB2+,
the client is capable of accessing the contents of the responses
ct=[ct1, . . . , ctl] to construct the n-th request. To preserve

MITM-resistance and prevent commitment attacks, it must
hold that the verifier intercepts the pair (ct, t) before the circuit
CCB2+ outputs the corresponding CB2+ of response ct.

3) Optimized HVZK Circuit to Verify AEAD Tags: The
computation of authentication tags in the HVZK 2PC circuits
can be reduced to two executions of AES, which yield the
counter blocks as CBt=[CB0,CB1] (cf. Figure 3). Deriving
the counter blocks CBt in-circuit is sufficient because the
2PC invocations of AES hide the TLS application traffic keys.
As such, the verifier takes CBt, ciphertext chunks ct, and
additional data AD and recomputes the rest final computations
of the tag t out of circuit. This optimization disposes the
algebraic GF operations during tag computations, which are
expensive to compute using boolean logic gates.

4) Data Attestation: If the client challenge succeeds suc-
cessfully, the verifier attest to TLS data validated in the HVZK
proof system. The attestation of the verifier depends on the
Janus protocol operation modes. If Janus operates in the
transparent mode, then the verifier hashes verified TLS data
of the client and signs the hash. The certification parameter
pcert=(t, ϕ, pk, σ) of the transparent attestation includes a
signature σ=ds.Sign(sk,[ϕ, t]) computed at time t. The verifier
overwrites the statement ϕ = H(pt) to the hash of verified data
such that every third party can evaluate presented TLS data
against ϕ and against arbitrary statements. If Janus operates in
the privacy-preserving mode, the structure of pcert remains the
same except that the statement ϕ expresses data compliance
constraints as a string. The privacy-preserving attestation con-
vinces any third party of the fact that the verifier successfully
validated TLS data provenance against the statement ϕ at time
t. The certificate pcert enables verifiable data provenance of
TLS data as pcert can be verified by any third party who trusts
the verifier.

VI. PERFORMANCE EVALUATION

The evaluation describes the software stack and measures
the impacts of our two contributions; The first contribution
improves proof computation times for TLS 1.2/1.3 oracles.
The second contribution improves the end-to-end performance
of TLS 1.3 oracles. We provide micro benchmarks on a circuit
level in the Appendix A.

A. Implementation

We implemented the 3PHS by modifying the Golang cryp-
to/tls standard library2 and configured the NIST P-256 el-
liptic curve for the elliptic curve Diffie–Hellman exchange
(ECDHE). Our proof of concept implementation configures
either TLS version with a cipher suite relying on AES128
in the GCM mode and SHA256 as the hash function. We
implement the ECTF conversion algorithm in Golang using
the Paillier cryptosystem [43]. For a coherent implementation
of the Janus protocol in Golang, we chose the mpc library [44]
to access a semi-honest 2PC system based on garbled circuits
and we chose the gnark framework [45] to implement ZKP

2https://pkg.go.dev/crypto/tls

25 27 29 211 213

Size of Data Chunks (B)

20

23

26

29

P
ro

ve
E

x
ec

u
ti

on
T

im
es

(s
)

DecoZk

PageSignerZk

HVZK-zkOpen

GtpTp

HVZK-tpOpen

Fig. 10. Prove computations benchmarks of the client challenge. Solid and
dotted lines indicate prove computations where TLS data privacy holds. Solid
or dotted lines originate from proof systems with a transparent or trusted setup
assumption. Dash-dotted lines indicate prove computations in which clients
disclose TLS data. Lines closer to the bottom right corner are better and prove
more data in less time.

circuits of related works. We adjusted the mpc library to output
single wire labels if we execute 2PC circuits in the context of
the HVZK proof systems and we wrote all 2PC circuits in the
mpc-specific multi-party computation language (MPCL). We
open-source our secure computation circuits here3.

B. Performance

All performance benchmarks have been averaged over ten
executions and have been collected on a MacBook Pro con-
figured with the Apple M1 Pro chip and 32 GB of random
access memory (RAM).

1) Optimized Proof Computations for TLS 1.2 and TLS 1.3:
To gain a fair comparison between related works [4], [6] and
the optimization introduced in this work, we re-implemented
privacy-preserving client challenges of related works with
our software stack (cf. Section VI-A). For Deco [6], the
zkSNARK circuit to prove private data (DecoZk) depends
on the AES128 computation in the GCM mode. Our results
show that DecoZk scales linearly with respect to the size of
the opened plaintext data (cf. Figure 10). For a comparable
setup with the same security assumptions, we evaluate the ZKP
proofs on DecoZk using the plonkFRI proof system. This way,
DecoZk does not rely on the assumption of a trusted setup. To
recap, we manage to deploy the HVZK proof system in the
asymmetric privacy setting, where the HVZK proof system
and the unilateral validation do not require a trusted setup.
We open source our AES128 GCM circuit implementation4

as the first AES implementation in the ZKP framework gnark.
Our AES implementation performs slightly worse compared to
benchmarks found in the work [6]. This behavior is expected
because our AES implementation uses a naive s-box lookup,
which related implementations optimize [46]. Thus, compared
to DecoZk configured with the plonkFRI proof system, our
HVZK proof computation of the circuit CzkOpen is 382x faster
at the data point where x-axis = 24 bytes (cf. Figure 10).

For the re-implementation of the zkSNARK circuit de-
scribed by the work [5], we computed a zkSNARK friendly

3https://github.com/januspaper/submission1/tree/esp
4https://github.com/Consensys/gnark/pull/719

https://pkg.go.dev/crypto/tls
https://github.com/januspaper/submission1/tree/esp
https://github.com/Consensys/gnark/pull/719

TABLE III
END-TO-END BENCHMARKS OF THE Janus PROTOCOL AND TLS 1.3 AS THE BASELINE. FOR THE LAN SETTING, WE ASSUME A ROUND-TRIP-TIME

RTT=0 MS AND A TRANSMISSION RATE Rt=1 GBPS. VALUES MARKED WITH ” TAKE ON THE VALUE OF THE PREVIOUS ROW.

Communication (kb) Execution LAN (s)
Protocol Offline Handshake Record Post-record Offline Handshake Record Post-record
TLS 1.3 - 1.94 16.28 - - 0.016 0.001 -
Janustransparent 305.17 (MB) 113.8 984 583 1.99 0.51 1.04 0.46
Janusprivate 406.29 (MB) ” ” 2 (MB) 2.63 ” ” 2.08

commitment on the 2PC output wire labels of the circuit
CCB2+ . With the mpc framework [44], where the circuit
encryption function encrypts 128-bit wire keys, committing
to 16 bytes of private TLS data requires a commitment
on 2 kilo bytes of wire keys at the circuit output. With
computational resources of the MacBook Pro, we were able
to evaluate a zkSNARK-friendly MiMC commitment in the
gnark framework on a maximum of 128 bytes (cf. PageSign-
erZk in Figure 10). Thus, compared to proof computations of
private TLS data according to the Pagesigner protocol [5], our
optimization achieves an improvement factor of 152x at the
data point where x-axis = 27 bytes (cf. Figure 10).

Last, we compare an HVZK proof evaluation of the circuit
CtpOpen against the benchmarks presented in the work [15],
which authenticates TLS data transparently. Compared to
the garble-then-prove approach based on semi-honest 2PC
using authenticated garbling [15], we verify transparent data
presentations 2.3x faster at the data point where x-axis = 211

bytes.
2) Optimized End-to-end Performance: We present end-

to-end performance benchmarks in Table III and evaluate a
typical API traffic transcript which encompasses a 256 byte
query and a 2 kB response. In the evaluation scenario, only
client application traffic secrets are derived because in the
case of a single response, the client can compute response
CBs after obtaining the session secrets of the proxy. The
end-to-end times build upon the micro benchmarks of 2PC
subcircuits which are presented in the Appendix A. The TLS
1.3 baseline serves as a reference. Additionally, we measure
321 milliseconds for the integrated 3PHS and a proceeding
ECTF conversion. The out-of-circuit verification of SHTS
and the server certificate verification take 9.26 milliseconds
in total. Pre-processing of TLS parameters for the client
challenge takes 4.47 milliseconds.

The resulting end-to-end benchmarks show that the compu-
tation overhead of the Janus protocol mainly affects the record
phase. We explain this trend with the semi-honest 2PC of the
circuit Ct which depends on algebraic operations introduced
by the polynomial over GF(128). Concerning private TLS
data proofs, our post-record execution timings establish new
standards for privacy-preserving TLS oracles. Our end-to-end
benchmarks in the local area network (LAN) setting serve as
a comparison baseline for future works.

VII. DISCUSSION

The discussion presents related works and summarizes
remaining limitations and future work directions.

A. Related Works

The garble-then-prove paradigm of the work [15] introduces
semi-honest 2PC based on authenticated garbling to improve
efficiency of TLS oracles. In contrast, we show that in TLS
1.3 SHTS authenticity when the verifier and client securely
evaluate the circuit CSHTS. With access to an authentic SHTS
parameter, the verifier can check the correctness of semi-
honest 2PC computations of the garble phase in the subsequent
prove phase. Thus, our work is able to deploy semi-honest 2PC
system for the computations in the garble phase. Additionally,
we show how a HVZK proof system based on semi-honest
2PC can be made maliciously secure. To do so, we introduce
a new unilateral validation phase for the client. The related
work [15] derives a Pedersen commitment from the semi-
honest 2PC based on authenticated garbling, which is sup-
posed to be opened in zkSNARK proof systems. In contrast,
we evaluate the client challenge in a HVZK system which
efficiently evaluates non-algebraic algorithms.

The work [13] leverages the structure of AEAD stream
ciphers and demands clients to commit to stream cipher CBs
via a pad commitment. Concerning the commitment to AEAD
stream ciphers CBs, the ZKP computation involves the com-
putation of TLS legacy algorithms (e.g., AES128), which are
of non-algebraic structure. The related work [13] notices that
legacy algorithms contribute to over 40% of ZKP computation
times and improves the efficiency of their protocol by putting
the proof computation of the pad commitment into a pre-
processing phase. Our work, on the contrary, directly computes
the stream ciphers in the dedicated HVZK proof system based
on boolean garbled circuits, which efficiently verify non-
algebraic structures.

The works [4], [5] decouple the maliciously secure 2PC
evaluation of response CBs through CCB2+ , where the client
obtains output wire keys and shares a commitment of CB
wire keys with the verifier. With the commitment, the veri-
fier discloses the wire key decoding table as well as secret
shares with the client. The client is now able to verify
the correctness of CCB2+ , access response data, and select a
transparent data opening. Optionally, clients can prove TLS
data in a ZKP circuit which (i) takes in private output wire
keys, (ii) computes CBs with the decoding table as public
input, and (iii) authenticates TLS data by XORing a plaintext
with CBs to the intercepted ciphertext. This approach has the
following limitation. The wire key possession before obtaining
a decoding table prevent the client from accessing response
data such that the client remains with two options. With

knowledge of the plaintext structure, the client commits to
a selection of output encodings, which correspond to the CBs
of interest for the privacy-preserving data opening. Without
knowledge of the plaintext structure, the client uses a merkle
tree commitment structure to commit to all output encodings
and selectively opens CBs in the ZKP circuit via merkle tree
inclusion proofs [5]. Due to frequent updates, API data is
unlikely to remain static over a longer period of time such that
the scenario of not knowing plaintext structures prevails. And,
the introduction of the merkle tree increases the complexity
of privacy-preserving proofs, which scale with the amount
of commitments. Our work, in contrast, allows clients to
selectively prove plaintext data during the client challenge.

B. Limitations & Future Work

The current version of the Janus protocol is tailored to
the conditions found in TLS 1.3. Researching how to de-
rive authentic handshake parameters in a malicious setting
for TLS 1.2 remains future work. Due to the fact that the
related works [5], [15], [32] withhold benchmarks of privacy-
preserving client challenges, we evaluate and compare proof
computations against our re-implementations (cf. Figure 10).
Another limitation is that our implementation computes record
authentication tags using general-purpose 2PC systems even
though the work [5] proposes an optimized alternative to
compute authentication tags with secure 2PC. Further, recent
enhancements of the Multiplicative to Additive (MtA) algo-
rithm have been proposed [47] which improves the efficiency
of ECTF.

We expect that the underlying paradigm of the Janus
protocol can be similarly applied to TLS 1.2. To recap, with
the paradigm of our protocol, we develop a secure mutual
verification of a handshake secret that is authenticated by
the server. Similar to how our work uses the authenticity
of SHTS, the authenticity of a TLS 1.2 handshake secret
could be leveraged to employ the garble-then-prove scheme
that relies on semi-honest 2PC only. However, the following
differences must be considered. Securely deriving a parameter
to bind the server authenticity differs in the context of TLS
1.2 because the server-side handshake messages are not imme-
diately derived and communicated. Additionally, TLS 1.2 can
employ encryption protocols which count as key-committing
(e.g. AES in the CBC-HMAC mode) [13]. This factor could
be leveraged to establish a maliciously secure authentication of
server parameters. Further, investigating TLS 1.2 cipher suites
with stronger security guarantees with regard to optimizing
HVZK computations is an interesting direction of future work.

VIII. CONCLUSION

In this work, we reconsider the selection of secure compu-
tation techniques in TLS oracles by putting an emphasis on
the asymmetric privacy setting and the conditions found in
TLS 1.3. Concerning the asymmetric privacy setting of TLS
1.2 and TLS 1.3 oracles, we show that a HVZK proof system
can be deployed if the client performs a unilateral validation
of the verifier. Further, for TLS 1.3 oracles, we show that

the authenticity of the SHTS secret can be mutually verified
in a malicious adversary setting. We leverage the authenticity
guarantees of SHTS to replace the 2PC system in the garble-
then-prove paradigm with a lightweight 2PC system which
does not require authenticated garbling. Our contributions
improve the efficiency of the client challenge and establish
new end-to-end benchmarks for TLS 1.3 oracles.

IX. ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany in the
programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-
life, project identification number: 16KISK002. This work has
received funding from The Bavarian State Ministry for the
Economy, Media, Energy and Technology, within the R&D
program ”Information and Communication Technology”, man-
aged by VDI/VDE Innovation + Technik GmbH.

REFERENCES

[1] L. Rosenthol, “C2pa: the world’s first industry standard for content
provenance,” in Applications of Digital Image Processing XLV, vol.
12226. SPIE, 2022, p. 122260P.

[2] S. Longpre, R. Mahari, A. Chen, N. Obeng-Marnu, D. Sileo, W. Bran-
non, N. Muennighoff, N. Khazam, J. Kabbara, K. Perisetla et al., “The
data provenance initiative: A large scale audit of dataset licensing &
attribution in ai,” arXiv preprint arXiv:2310.16787, 2023.

[3] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun, “Tls-
n: Non-repudiation over tls enabling-ubiquitous content signing for
disintermediation,” Cryptology ePrint Archive, 2017.

[4] “Tlsnotary–a mechanism for independently audited https sessions.”
https://github.com/tlsnotary/how it works/blob/master/how it works.
md, 2014.

[5] “Pagesigner: One-click website auditing.” https://old.tlsnotary.org/how
it works, 2023.

[6] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco: Lib-
erating web data using decentralized oracles for tls,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1919–1938.

[7] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security,
2016, pp. 270–282.

[8] J. Ernstberger, J. Lauinger, F. Elsheimy, L. Zhou, S. Steinhorst,
R. Canetti, A. Miller, A. Gervais, and D. Song, “Sok: Data sovereignty,”
Cryptology ePrint Archive, 2023.

[9] D. Malkhi. (2023) Exploring proof of solvency and liability verification
systems. [Online]. Available: https://blog.chain.link/proof-of-solvency/

[10] J. Frankle, S. Park, D. Shaar, S. Goldwasser, and D. Weitzner, “Practical
accountability of secret processes,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 657–674.

[11] K. Balan, S. Agarwal, S. Jenni, A. Parsons, A. Gilbert, and J. Collo-
mosse, “Ekila: Synthetic media provenance and attribution for generative
art,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 913–922.

[12] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc:
Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2016,
pp. 191–219.

[13] C. Zhang, Z. DeStefano, A. Arun, J. Bonneau, P. Grubbs, and
M. Walfish, “Zombie: Middleboxes that don’t snoop,” Cryptology ePrint
Archive, 2023.

[14] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 955–966.

[15] X. Xie, K. Yang, X. Wang, and Y. Yu, “Lightweight authentication of
web data via garble-then-prove,” Cryptology ePrint Archive, 2023.

https://github.com/tlsnotary/how_it_works/ blob/master/how_it_works.md
https://github.com/tlsnotary/how_it_works/ blob/master/how_it_works.md
https://old.tlsnotary.org/how_it_works
https://old.tlsnotary.org/how_it_works
https://blog.chain.link/proof-of-solvency/

[16] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the tls 1.3 handshake protocol,” Journal of Cryptology,
vol. 34, no. 4, pp. 1–69, 2021.

[17] J. Len, P. Grubbs, and T. Ristenpart, “Partitioning oracle attacks,” in 30th
USENIX security symposium (USENIX Security 21), 2021, pp. 195–212.

[18] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls
and dtls record protocols,” in 2013 IEEE symposium on security and
privacy. IEEE, 2013, pp. 526–540.

[19] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Lucky 13 strikes
back,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, 2015, pp. 85–96.

[20] Y. Sheffer, R. Holz, and P. Saint-Andre, “Recommendations for secure
use of transport layer security (tls) and datagram transport layer security
(dtls),” Tech. Rep., 2015.

[21] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the tls 1.3 handshake protocol candidates,” in Proceedings
of the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 1197–1210.

[22] C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet x. 509 public
key infrastructure certificate management protocol (cmp),” Tech. Rep.,
2005.

[23] Y. Lindell, “Secure multiparty computation for privacy preserving data
mining,” in Encyclopedia of Data Warehousing and Mining. IGI global,
2005, pp. 1005–1009.

[24] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th annual
symposium on foundations of computer science (Sfcs 1986). IEEE,
1986, pp. 162–167.

[25] Y. Huang, “Practical secure two-party computation,” dated: Aug, 2012.
[26] T. Chou and C. Orlandi, “The simplest protocol for oblivious trans-

fer,” in Progress in Cryptology–LATINCRYPT 2015: 4th International
Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings 4. Springer,
2015, pp. 40–58.

[27] Y. Huang, J. Katz, and D. Evans, “Quid-pro-quo-tocols: Strengthening
semi-honest protocols with dual execution,” in 2012 IEEE Symposium
on Security and Privacy. IEEE, 2012, pp. 272–284.

[28] A. Nitulescu, “zk-snarks: a gentle introduction,” 2020.
[29] J. Thaler et al., “Proofs, arguments, and zero-knowledge,” Foundations

and Trends® in Privacy and Security, vol. 4, no. 2–4, pp. 117–660,
2022.

[30] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General
purpose compilers for secure multi-party computation,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019, pp. 1220–1237.

[31] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[32] S. Celi, A. Davidson, H. Haddadi, G. Pestana, and J. Rowell, “Distefano:
Decentralized infrastructure for sharing trusted encrypted facts and
nothing more,” Cryptology ePrint Archive, 2023.

[33] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast
trustless setup,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 1179–1194.

[34] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in Proceedings of
the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 21–37.

[35] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 1504–1517.

[36] C. Hazay, P. Scholl, and E. Soria-Vazquez, “Low cost constant round
mpc combining bmr and oblivious transfer,” Journal of cryptology,
vol. 33, no. 4, pp. 1732–1786, 2020.

[37] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing
authenticated encryption,” in Annual International Cryptology Confer-
ence. Springer, 2017, pp. 66–97.

[38] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish, “{Zero-
Knowledge} middleboxes,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 4255–4272.

[39] S. Gueron, “Key committing aeads,” Cryptology ePrint Archive, 2020.
[40] S. Menda, J. Len, P. Grubbs, and T. Ristenpart, “Context discovery

and commitment attacks: How to break ccm, eax, siv, and more,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2023, pp. 379–407.

[41] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, “Fast message
franking: From invisible salamanders to encryptment,” in Advances
in Cryptology–CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part I 38. Springer, 2018, pp. 155–186.

[42] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg,
“How to abuse and fix authenticated encryption without key commit-
ment,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3291–3308.

[43] D. Amyot, “Paillier cryptosystem implemented in Go,” https://github.
com/didiercrunch/paillier, 2023.

[44] M. Rossi, “Secure Multi-Party Computation (MPC) with Go,” https:
//github.com/markkurossi/mpc, 2023.

[45] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie,
“Consensys/gnark: v0.8.0,” Feb. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.5819104

[46] A. Kosba, C. Papamanthou, and E. Shi, “xjsnark: A framework for
efficient verifiable computation,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 944–961.

[47] H. Xue, M. H. Au, M. Liu, K. Y. Chan, H. Cui, X. Xie, T. H. Yuen, and
C. Zhang, “Efficient multiplicative-to-additive function from joye-libert
cryptosystem and its application to threshold ecdsa,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 2974–2988.

[48] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology—EUROCRYPT’99: Inter-
national Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18.
Springer, 1999, pp. 223–238.

[49] C. Reitwiessner, “zksnarks in a nutshell,” Ethereum blog, vol. 6, pp.
1–15, 2016.

[50] A. R. Block, A. Garreta, J. Katz, J. Thaler, P. R. Tiwari, and M. Zajac,
“Fiat-shamir security of fri and related snarks,” Cryptology ePrint
Archive, 2023.

[51] J. Lu and J. Kim, “Attacking 44 rounds of the shacal-2 block cipher using
related-key rectangle cryptanalysis,” IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, vol. 91,
no. 9, pp. 2588–2596, 2008.

APPENDIX

A. Extended Performance Evaluation

The following subsection provides additional micro bench-
marks.

1) Benchmarking 2PC Circuits: We present micro bench-
marks of secure computation building blocks in Table IV.
The table compares circuit complexities, execution times, and
communication overhead of 2PC circuits, where execution
times and communication overhead is further divided into
offline and online benchmarks. The 2PC circuits CXHTS and
Ck,iv derive session secrets in milliseconds and compute CBs
via the circuit CX

CB2+
for a 2 kB record in 164.9 milliseconds.

An interesting fact to notice is that the AEAD tag circuit Ctag
is efficient for small request sizes and scales sufficiently but
not ideally for larger request sizes. The overhead in the circuit
Ctag is introduced by the algebraic structure of the Galois field
polynomials in GF(2128), which, as an algebraic structure, is
in conflict with the binary representation of computation in
boolean GCs. The related works [5], [32] propose a scalable
OT-based computation of the AEAD tag, which we consider
as future work to improve our implementation.

Concerning data opening times, we can see that the trans-
parent mode with the circuit CtpOpen is more efficient compared
to the privacy-preserving mode with the circuit CzkOpen. This
behavior is expected because, the 2PC circuit of the transparent
mode does not include the ciphertext, SHTS, and CBtag

https://github.com/didiercrunch/paillier
https://github.com/didiercrunch/paillier
https://github.com/markkurossi/mpc
https://github.com/markkurossi/mpc
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104

TABLE IV
SECURE COMPUTATION BENCHMARKS SEPARATED INTO OFFLINE/ONLINE EXECUTION AND COMMUNICATION VALUES. WE SEPARATE THE HANDSHAKE,

RECORD, AND POST-RECORD PHASES WITH DASHED LINES.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

ECTF - - 212.96 ms - 1.861 kB
CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB

Ckm1 ,iv 10.34 723.96 ms 484.82 ms 108.08 MB 356 kB
C256 B

ECB2+
/ C2 kB

ECB2+
1.16 / 9.18 67.78 / 578.76 ms 67.6 / 164.9 ms 10.12 / 86.02 MB 116 / 566 kB

C256 B
tag / C2 kB

tag 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

C256 B q, 2 kB r
tpOpen 12.69 0.89 s 0.46 s 126.01 MB 583 kB

C256 B q, 2 kB r
zkOpen / fϕ 12.73 / 17.15 0.89 / 1.13 s 2.04 / 2.08 s 127.02 / 168.03 MB 2.13 / 2 MB

verification inside the circuit (cf. Figure 9). As a consequence,
the data communicated in the OT scheme of the transparent
mode is about half the size of the privacy-preserving mode.
The effect is further visible in the online communication cost,
where the transparent mode communicates 3x less data than
the privacy-preserving opening mode. As another reference
benchmark (cf. fϕ of the last row in Table IV), we evaluate the
verification of a confidential document hash H(f) in the cir-
cuit CzkOpen. To do so, we set the function fϕ=H(f)

?
= H(pt)

to a hash check on the 2 kB response data, with H=SHA256.
Concerning online execution times, the extra hash evaluation
yields a negligible overhead for the client but increases the
communication overhead by a factor of 1.3x.

B. Cryptographic Building Blocks

We describe algorithmic constructions by introducing se-
curity properties and provide concise tuples of algorithms to
explain input to output parameter mappings. For cryptographic
protocols, we describe the inputs and outputs which are
provided and obtained by involved parties. Additionally, we
mention the security properties of exchanged parameters.

1) Three-party Handshake: In the 3PHS (cf. Figure 11),
each party picks a secret randomness (s, v, p) and computes
its encrypted representation (S, V , P). By sharing V +P = X
with the server in the CH, the server derives the session secret
Zs = s · X , which corresponds to the TLS 1.3 secret DHE.
When the server shares S in the SH, both the proxy and client
derive their shared session secrets Zv and Zp respectively such
that Zs = Zv + Zp holds. In the end, neither the client nor
the verifier have full access to the DHE secret of the TLS
handshake phase. The 3PHS works for both TLS versions but
in Figure 11, we show a TLS 1.3-specific configuration based
on the ECDHE, where the parameters (e.g. Zp) are EC points
structured as P = (x, y).

2) Digital Signatures: A digital signature scheme is defined
by the following tuple of algorithms, where

• ds.Setup(1λ) −→ (sk, pk) takes in a security parameter λ
and outputs a public key cryptography key pair (sk, pk).

• ds.Sign(sk, m) −→ (σ) takes in a secret key sk and
message m and outputs a signature σ.

Client / ProverProxy / VerifierServer

Fig. 11. Illustration of the 3PHS and exchanged cryptographic parameters
between the server, the proxy, and the client. The gray box at the bottom
indicates the relationship between shared client-side secrets Zv and Zp, which
corresponds to the session secret Zs of the server.

• ds.Verify(pk, m, σ) −→ {0, 1} takes in the public key pk,
a message m, and a signature σ. The algorithm outputs
a 1 or 0 if or if not the signature verification succeeds.

By generating a signature σ on a fixed size message m with
secret key sk, any party with access to the public key pk is able
to verify message authenticity. Digital signatures guarantee
that only the party in control of the secret key is capable of
generating a valid signature on a message.

3) Keyed-hash or Hash-based Key Derivation Function: A
HKDF function converts parameters with insufficient random-
ness into suitable keying material for encryption or authenti-
cation algorithms. The HKDF scheme is defined by a tuple of
algorithms, where

• hkdf.ext(ssalt, kikm) −→ (kpr) takes in a string ssalt, input
key material kikm, and returns a pseudorandom key kpr.

• hkdf.exp(kpr, sinfo, l) −→ (kokm) takes in a pseudorandom
key kpr, a string sinfo and a length parameter l and returns
output key material kokm of length l.

Both functions hkdf.ext and hkdf.exp internally use the hmac
algorithm (cf. Formula 2), which takes in a key k, a bit string
m, and generates a string which is indistinguishable from
uniform random strings. The hmac algorithm requires a hash

function H with input size b (e.g. b=64 if H=SHA256).

hmac(k,m) =H((k′ ⊕ opad)||H((k′ ⊕ ipad)||m))

with k′ = H(k), if len(k) > b

and k′ = k, else
(2)

4) Authenticated Encryption: AEAD provides communica-
tion channels with confidentiality and integrity. This means,
exchanged communication records can only be read by parties
with the encryption key and modifications of encrypted data
can be detected. An AEAD encryption scheme is defined by
the following tuple of algorithms, where

• aead.Setup(1λ) −→ (ppaead) takes in the security param-
eter λ and outputs public parameters ppaead of a stream
cipher scheme E and authentication scheme A.

• aead.Seal(ppaead, pt, k, aD) −→ (ct, t) takes in ppaead, a
plaintext pt, a key k, and additional data aD. The output
is a ciphertext-tag pair (ct, t), where ct = E(pt) and
t = A(pt, k, aD, ct) authenticates ct.

• aead.Open(ppaead, ct, t, k, aD) −→ {pt, ∅} takes in
ppaead, a ciphertext ct, a tag t, a key k, and additional
data aD. The algorithm returns the plaintext pt upon
successful decryption and validation of the ciphertext-tag
pair, otherwise it returns an empty set ∅.

5) Secure Two-party Computation: Secure 2PC allows two
mutually distrusting parties with private inputs x1, x2 to
jointly compute a public function f(x1, x2) without learning
the private input of the counterparty. With that, secure 2PC
counts as a special case of multi-party computation (MPC),
with m = 2 parties and the adversary corrupting t = 1
parties [23]. The adversarial behavior model in 2PC protocols
divides adversaries into semi-honest and malicious adversaries.
Semi-honest adversaries honestly follow the protocol specifi-
cation, whereas malicious adversaries arbitrarily deviate. In the
following, we introduce secure 2PC protocols which are used
in this work, and briefly introduce cryptographic constructions
which are used to instantiate the secure 2PC protocols.

a) MtA Conversion based on Homomorphic Encryption:
The secure 2PC MtA protocol converts multiplicative shares
x, y into additive shares α, β such that α+β = x ·y = r yield
the same result r. The MtA protocol exists in a vector form,
which maps two vectors x, y, with a product r = x · y, to two
scalar values α, β, where the sum r = α + β is equal to the
product r. The functionality of the vector MtA scheme can be
instantiated based on Paillier additive Homomorphic Encryp-
tion (HE) [48]. Additive HE allows parties to locally compute
additions and scalar multiplications on encrypted values. With
the functionality provided by the Paillier cryptosystem, we
define the vector MtA protocol, as specified in the work [33],
with the following tuple of algorithms, where

• mta.Setup(1λ) −→ (skP ,pkP) takes in the security param-
eter λ and outputs a Paillier key pair (skP ,pkP).

• mta.Enc(x,skP) −→ (c1) takes in a vector of field ele-
ments x=[x1, . . . , xl] and a private key skP and outputs
a vector of ciphertexts c1=[EskP

(x1), . . . , EskP
(xl)].

• mta.Eval(c1,y,pkP) −→ (c2,β) takes in the vector of
ciphertexts c1=[c11, . . . , c1l], a vector of field elements
y=[y1, . . . , yl], and a public key pkP . The output is a
tuple of a ciphertext c2 = c1y1

1 · . . . · c1yl

l ·EpkP
(β′) and

the share β = −β′, where β′ $← Zp.
• mta.Dec(c2,skP)−→ (α) takes as input a ciphertext c2 and

a private key skP and outputs the share α=DskP
(c2).

The tuple of algorithms is supposed to be executed in the
order where party p1 first calls mta.Setup and mta.Enc. The
function Ek(z) is a Paillier encryption of message z under
key k. After p1 shares the public key pkP and the vector
of ciphertexts c1 with party p2, then p2 calls mta.Eval and
shares the ciphertext c2 with p1. Last, p1 calls mta.Dec, where
Dk(z) is a Paillier decryption of message z under key k. If the
algorithms are executed in the described order, then party p1
inputs private multiplicative shares in the vector x and obtains
the additive share α. Party p2 inputs the private vector of
multiplicative shares y and obtains the additive share β. In
the end, the relation x · y = α+β holds, and neither the party
p1 nor the party p2 learn anything about the private inputs of
the counterparty.

b) ECTF Conversion: The ECTF algorithm is a secure
2PC protocol and converts multiplicative shares of two EC x-
coordinates into additive shares [4], [6]. Figure 12 shows the
computation sequence of the ECTF protocol which makes use
the vector MtA algorithm defined in Section B5a. By running
the ECTF protocol, two parties p1 and p2, with EC points P1,
P2 as respective private inputs, mutually obtain additive shares
s1 and s2, which sum to the x-coordinate of the EC points sum
P1+P2. TLS oracles use the ECTF protocol to transform the
client-side EC secret shares Zv and Zp into additive shares sv
and sp [4], [6]. Since the relation sv + sp = x for (x, y) =
Zs holds, it becomes possible to follow the TLS specification
by using secure 2PC based on boolean garbled circuits with
bitwise additive shares as input.

c) Oblivious Transfer: Secure 2PC based on boolean
GCs depends on the 1-out-of-2 OT1

2 sub protocol to secretly
exchange input parameters of the circuit [26]. The OT1

2 in-
volves two parties where party p1 sends two messages m1,m2

to party p2 and does not learn which of the two messages mb

is revealed to party p2. Party p2 inputs a secret bit b which
decides the selection of the message mb. An OT scheme is
defined by a tuple of algorithms, where

• ot.Setup(1λ) −→ (ppOT) takes as input a security pa-
rameter λ and outputs public parameters ppOT of a
hash function H and encryption schemes, where E1/D1

encrypts/decrypts based on modular exponentiation and
E2/D2 encrypts/decrypts with a block cipher.

• ot.TransferX(ppOT) −→ (X) takes in ppOT, samples x
$←

Zp, and outputs an encrypted secret X = E1(x).
• ot.TransferY(ppOT, X , b) −→ (Y , kD) takes in ppOT, a

cipher X , a bit b, and samples y
$← Zp. The output is a

decryption key kD = Xy and a cipher Y encrypting as
Y = E1(y) if b ?

= 0, or as Y = X · E1(y) if b ?
= 1.

ECTF between two parties p1 and p2.

inputs: P1 = (x1, y1) by p1, P2 = (x2, y2) by p2.
outputs: s1 to p1, s2 to p2.

p1: (sk,pk)=mta.Setup(1λ); send pk to p2
p1: ρ1

$← Zp; c1=mta.Enc([−x1,ρ1], sk);
send c1 to p2

p2: ρ2
$← Zp;(c2,β)=mta.Eval(c1,[ρ2,x2],pk);

δ2=x2 · ρ2+β; send (c2,δ2) to p1
p1: α=mta.Dec(c2,sk);δ1=−x1 · ρ1+α;δ=δ1+δ2;

η1=ρ1 · δ−1; c1=mta.Enc([−y1,η1],sk);
send (c1,δ1) to p2

p2: δ=δ1+δ2; η2=ρ2 · δ−1;
(c2, β)=mta.Eval(c1,[η2,y2],pk); λ2=y2 · η2+β;
send c2 to p1

p1: α=mta.Dec(c2,sk); λ1=−y1 · η1 + α;
c1=mta.Enc([λ1],sk); send c1 to p2

p2: (c2,β)=mta.Eval(c1, [λ2], pk); s2 = 2 · β + λ2
2 − x2;

send c2 to p1
p1: α=mta.Dec(c2,sk); s1 = 2 · α+ λ2

1 − x1

Fig. 12. The ECTF algorithm converts multiplicative shares in form of EC
point x-coordinates from points P1, P2 ∈ EC(Fp) to additive shares s1, s2 ∈
Fp. It holds that s1 + s2 = x, where x is the coordinate of the EC point
P1 + P2.

• ot.Encrypt(ppOT, X , Y , m1, m2, x) −→ (Z) takes in ppOT,
Y , and derives k1 = H(Y x), k2 = H((YX)x). The output
is a vector of ciphers Z = [E2(m1, k1), E2(m2, k2)].

• ot.Decrypt(ppOT, Z, kD, b) −→ (mb) takes in ppOT, key
kD, the bit b, and a vector of ciphers Z = [Z1, Z2]. The
output is the message mb = D2(Zb, kD).

In the OT1
2 protocol, party p1 calls ot.Setup and ot.TransferX,

and sends the public parameters and cipher X to p2. Party
p2 calls ot.TransferY, locally keeps the decryption key and
shares the cipher Y with p1. Now, p1 shares the output of
ot.Encrypt with p2, who obtains mb by calling ot.Decrypt.

d) Semi-honest 2PC with Garbled Circuits: We define
secure 2PC based on boolean garbled circuits by extending
our OT definition of Section B5c with the tuple of algorithms,
where

• gc.Setup(1λ) −→ (ppGC) takes in the security parameter λ
and outputs public parameters ppGC.

• gc.Garble(ppGC, CG, din) −→ (kg
in, e, G(C), Tk-d, Td-k)

takes as input ppGC, a boolean circuit CG, the input bit
string din, and randomly samples signal bits and wire keys
σ,k $← Zn. Every wire receives two wire keys where the
internal labels map wire keys to the numbers 0 and 1.
Based on the signal bits and internal labels, every wire
receives two external labels. The output consists of input
wire keys kin, the garbled tables G(C), input and output
decoding tables Td-k, Tk-d, and external labels e.

• gc.Evaluate(ppGC, kg
in, ke

in, e, G(C)) −→ (kout) takes in
public parameters, input wire keys, external labels, and
the garbled circuit tables and outputs output wire keys.

On a high-level, a 2PC system based on boolean garbled
circuits involve a party p1 as the garbler and party p2 as
the evaluator. Party p1 calls gc.Setup and gc.Garble. Sub-
sequently, p1 sends e, kg

in, G(C), and Tk-d to p2. If the
semi-honest 2PC system is used in the context of an HVZK
proof system, then p1 does not share Tk-d. Next, to obtain
the remaining input labels ke

in of the evaluator p2, p1 and
p2 interact with the OT1

2 scheme defined in Section B5c.
Initially both parties call the transfer functions. Next, p1
sends input wire keys encrypted by ot.Encrypt as messages
(m1=k̂ein, m2=k̂¬e

in) to p2. Party p2 obtains labels kein by calling
ot.Decrypt. Then, p2 calls gc.Evaluate and if Tk-d has been
shared, decodes output wire keys to obtain the output data bit
string dout.

e) Maliciously Secure TwoPC based on dual-execution:
We consider running the semi-honest 2PC protocol based on
boolean garbled circuits [24] to instantiate the maliciously
secure 2PC scheme of the work [27]. Again, the 2PC dual-
execution protocol runs two instances of the semi-honest 2PC,
where both parties p1 and p2 successively act as the garbler
and evaluator. Before any 2PC output is shared with the
counterparty, the protocol runs a secure validation phase on
obtained outputs. The idea of the mutual output verification
is as follows. If p1, as the evaluator, obtains output wire keys
kx and output bits b from a correctly garbled circuit of p2,
then p1 knows which output labels ky according to b p2 must
evaluate on a correctly garbled circuit of p1. Thus, if p1 shares
a commitment in form of a hash H(ky||kx) with p2 after the
first circuit evaluation, and p2 returns the same hash H(ky||kx)
after the second circuit evaluation, then p1 is convinced of a
correct garbling by p2. Because, if p2 incorrectly garbles a
circuit, then p1 obtains the bits b’. And, if p1 correctly garbles
a circuit, p2 obtains correct bits b. The incorrect bits b’ lead
p1 to a selection of labels k’x and k’y and the correct bits
b lead p2 to a correct selection of ky ̸= k’y . Since p2 does
not know which output keys p1 evaluates, p2 cannot predict
any keys k’x,k’y which lead to the hash that is expected by
p1. To communicate the output of a maliciously secure 2PC
to a single party, only the first garbler is required to share the
output decoding table with the counterparty.

6) Zero-knowledge Proof Systems: In practice, zero-
knowledge proof systems are implemented by a tuple of
algorithms, where

• zk.Setup(1λ, C) −→ (CRSC) takes in a security parameter
and algorithm, and yields a common reference string,

• zk.Prove(CRSC , x, w) −→ (π) consumes the CRS, public
input x, and the private witness w and outputs a proof π.

• zk.Verify(CRSC , x, π) −→ {0, 1} yields true (1) or false
(0) upon verifying the proof π against public input x.

The tuple of algorithms achieves the properties of a zero-
knowledge proof systems. If zero-knowledge proof frame-
works depend on cryptographic constructions that require a
trusted setup (e.g. use pairings or KZG commitments), the
zk.Setup function must be called by a trusted third party. For
transparent instantiations of zero-knowledge proof frameworks
(e.g. based on FRI commitments), the zk.Setup function can

be called by either party. The function zk.Prove and zk.Verify
are called by the prover and verifier respectively.

a) Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge: A zkSNARK proof system is a zero-knowledge
proof system, where the four properties of succinctness, non-
interactivity, computational sound arguments, and witness
knowledge hold [49]. Succinctness guarantees that the proof
system provides short proof sizes and fast verification times
even for lengthy computations. If non-interactivity holds (e.g.,
via the Fiat-Shamir security [50]), then the prover is able to
convince the verifier by sending a single message. Computa-
tional sound arguments guarantee soundness in the zkSNARK
system if provers are computationally bounded. Last, the
knowledge property ensures that provers must know a witness
in order to construct a proof.

C. Security Analysis

The security analysis concerns the deployment of the HVZK
proof system and the unilateral validation in the asymmetric
privacy setting. Further, we show that the Janus protocol is
secure against malicious adversaries during the mutual authen-
tication of the SHTS parameter. The security analysis relies
on our threat and system model (cf. Section III) and uses our
formalized cryptographic building blocks (cf. Sections II-C,
Appendix B)

1) Construction 1: The first construction creates a mali-
ciously secure evaluation of the HVZK proof system in the
asymmetric privacy setting. The proof system leverages semi-
honest 2PC based on boolean garbled circuit [14] and is com-
bined with a unilateral validation phase. To show the security
of the construction, we first define the security guarantees of
the asymmetric privacy setting and conclude that the unilateral
validation protocol patches remaining vulnerabilities.

Theorem 1. If three parties p0, p1, and p2 with access to
• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a secret sharing scheme Πss with p0 as the trusted dealer
• a secure channel sc0-1 between p0 and p1
• a secure channel sc1-2 between p1 and p2
• a secure channel sc0-2 between p0 and p2
• a maliciously secure 2PC scheme Π2PC between p1 and
p2

perform the sequence of computations

1) p0 calls [r1, r2]= Πss.Share(r), with r
$← R(λ)

2) p0 shares r1 using sc0−1 and r2 using sc0−2

3) either p0 calls c=Πcom.Commit(m, r) with bit strings
m, c and shares m, c using sc0−1 and c using sc0−2, or
Π2PC evaluates Πcom.Commit(m, r1+r2) where p1 has
m

4) p2 shares r2 using sc1−2

under the assumptions that
• the TLS 3PHS implements Πss and the sequence of

computations (1) and (2)
• p0 discards calling Πcom.Open
• p0 cannot be compromised by the adversary

• p1 never discloses the secret share r1
• the security of the schemes Π2PC , Π3PHS , etc. holds

(e.g. 3PHS relies on the discrete logarithm hardness to
find a from aG, with random a

$← EC(Fp) and base
point G ∈ EC(Fp))

we say that asymmetric privacy holds between p1 and p2 such
that only p1 can call Πcom.Open.

Proof 1.1: The security of the 3PHS keeps secret shares
confidential. Without access to the initially shared secret
shares, the adversary A cannot compute the commitment
string c. Further, the security of the commitment scheme
prevents the adversary from finding a collision of c. When
computing the commitment through a maliciously secure 2PC
system, then A cannot learn any information on the inputs
of the counterparty. Since all parties use secure channels to
communicate parameters, A learns nothing of communicated
parameters. Thus, A cannot find any m or reconstruct r which
prevents A from calling Πcom.Open.

Theorem 2. If two parties p1 and p2 with access to

• a HVZK proof system ΠHVZK using a semi-honest 2PC
system Πsh2PC

• two secure commitment scheme Π1
com,Π2

com

• an asymmetric privacy setting Πasym using Π2
com

• a 2PC circuit Copen implementing Π2
com.Open

• a secure channel sc1-2 between p1 and p2
• a unilateral validation Πuv using Π2

com

perform the sequence of computations

1) ΠHVZK.Setup: p2 calls p=Πsh2PC.Garble(Copen)
2) ΠHVZK.Setup: p2 shares {p \ Tk−d} using sc1-2

3) ΠHVZK.Prove: p1 calls k=Πsh2PC.Evaluate
4) Πuv: p1 calls c=Π1

com.Commit(k,r) with r
$← R(λ)

5) Πuv: p1 shares c using sc1-2

6) Πuv: p2 shares {p} using sc1-2

7) Πuv: p1 recomputes Copen to verify {p}
8) Πuv: p1 shares r using sc1-2

9) ΠHVZK.Verify: p2 calls Π1
com.Open(c,r)

under the assumptions that

• in Πsh2PC p1 acts as the evaluator and p2 acts as the
garbler

• Πasym gives p1 access to Π2
com.Commit

we say that after running Πasym, composition of ΠHVZK and
Πuv as Πcomp establishes security against malicious adver-
saries.

Proof 1.2: The security of Πsh2PC allows the adversary A
to maliciously garble the circuit Copen. However, if A receives
c upon disclosure of {p \ Tk−d}, the hiding property of
Πcom prevents A from learning any secret information on
the 2PC inputs of p1. Further, p1 detects a cheating A at the
sequence number (7) and aborts the protocol before disclosing
r to A. Further, Πsh2PC prevents A from predicting a k that
corresponds to a 1. If A uses Π1

com to commit garbage, then
p2 aborts at the sequence number (9).

Notice. We define Πcomp(Πsh2PC=arg1, Copen=arg2,
Π2

com=arg3) as an construction that takes as input a semi-
honest 2PC system which is executed in the context of the
HVZK proof system. The HVZK proof system evaluates
a 2PC circuit as the second argument. The third argument
is a commitment scheme which establishes the asymmetric
privacy setting.

2) Construction 2: The second construction provides the
verifier with a secure authenticity verification of the TLS 1.3
SHTS secret in a setting with malicious adversaries. To do
so, the construction combines the effects of a specific TLS
1.3 operation mode with the TLS 3PHS and a secure 2PC
computation of the session secret SHTS. This combination
introduces an unsolvable challenge to the adversary which
prevents the adversary from forging the authenticity of SHTS.

Theorem 3. If three parties p0, p1, and p2 with access to
• a secure channel sc0-1 between p0 and p1
• a secure channel sc0-2 between p0 and p2
• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a maliciously secure 2PC scheme Π2PC between p1 and
p2

• a secret sharing scheme Πss with p0 as the trusted dealer
• a secure AEAD scheme ΠAEAD
• a secure signature scheme Πσ where p0 maintains the

private key sk

perform the sequence of computations

1) p0 calls [r1, r2]= Πss.Share(r), with r
$← R(λ)

2) p0 shares r1 using sc0−1 and r2 using sc0−2

3) p2 samples t
$← R(λ) and discloses t

4) p0 calls c=Πcom.Commit(t, r), with bit strings c
5) p0 calls σ=Πσ .Sign(sk, t)
6) p0 calls s=ΠAEAD.Seal(c,σ) and discloses s
7) Π2PC evaluates Πcom.Commit(t, r1+r2)
8) p2 calls σ=ΠAEAD.Open(c,s) and checks Πσ .Verify(pk,t,

σ)
under the assumptions that

• the TLS 3PHS implements Πss and the sequence of
computations (1) and (2)

• p0 cannot be compromised by the adversary
• pk, and t are public
• p0 never discloses sk
• p2 only performs step (7) if a s has been captured

we say that an PPT adversary has negligible probability with
respect to λ in forging c such that p2 accepts step (8) and that
c is authentic.

Proof 2.1: Again, Π3PHS and Π2PC keep the secret shares
confidential. Thus, the adversary A can only access c at step
(7). With c, the adversary can forge a new transcript s but
cannot change a s which has already been captured by p2.
Thus, the challenge for A is to predict a valid c’ at a point in
time where c remains hidden. Predicting a correct c requires A
either to find a collision for c which the secure commitment
prevents. Or, A correctly guesses the secret share r2 which

evaluates to a correct c before a s is captured by p2. In the
case of a correct guess, A can replay a σ’ on previous t’ and
encrypt σ’ under the right c such that p2 accepts. However,
guessing r2 or r1 has negligible probability in λ.

3) Construction 3: The third construction reduces the secu-
rity requirements of cryptographic constructions in the garble-
then-prove paradigm [15]. Specifically, we show that the exis-
tence of a computation trace to an authenticated commitment
string to allows to replace a semi-honest 2PC system based
on authenticated garbling with a semi-honest 2PC system that
does not require authenticated garbling. Our garble-then-prove
paradigm leverages the efficient proof system construction in
the asymmetric privacy setting in the prove phase. Further it
requires commitment authenticity through SHTS. Thus, for
this construction, we use our definitions of Πcomp and Πauth
(cf. proof 1.1, 1.2, and 2.1 of Appendix C).

Theorem 4. If two parties p1 and p2 with access to

• a garble-then-prove scheme Πg-t-p using two semi-honest
2PC system Π1

sh2PC , Π2
sh2PC

• a composition scheme Πcomp

• a secure commitment scheme Πcom

• an authenticated commitment scheme Πauth using Πcom

• a 2PC circuit Copen implementing Πcom.Open
• a 2PC circuit Ckdc+record implementing the TLS 1.3 spec-

ification
• a 2PC circuit Cϕ implementing a data compliance check

against a statement ϕ

perform the sequence of computations

1) Πg-t-p.Garble: p1 calls Π1
sh2PC.Garble(Ckdc+record)

2) Πg-t-p.Garble: p2 calls Π1
sh2PC.Evaluate(Ckdc+record)

3) Πg-t-p.Prove: Πcomp(Π2
sh2PC , (Ckdc+record + Copen + Cϕ) ,

Πcom)

under the assumptions that

• in Π1
sh2PC p2 acts as the evaluator and p1 acts as the

garbler
• in Π2

sh2PC p1 acts as the evaluator and p2 acts as the
garbler

• Πauth initially authenticates Πcom

we say that malicious security holds for the garble-then-prove
paradigm with a semi-honest 2PC system in the garble phase.

Proof 3.1: The adversary A is able to maliciously garble
Π1

sh2PC and obtain secrets from p2. However, due to the
asymmetric privacy setting established during the prove phase,
A learns nothing beyond what A would have learned during
the prove phase. And, a malicious garbling of A is recorded
at p2 because p2 obtains all outputs of 2PC circuits executed
in the garble phase. Thus, once the construction proceeds to
step (3), and A has cheated, p2 is able to detect it in step
(9) of the Πcomp construction and can abort the protocol. This
conditional abort option prevents A from obtaining a false
provenance attestation of TLS data.

...

...

64
 b

yt
es

32
 b

yt
es

Fig. 13. Merkle-Damgård structure of the SHA256 hash function. Values
marked in red indicate private input whereas blue background indicates
public input. To protect a secret key, the prover must compute the first
f (grey background) in-circuit. All remaining intermediate hash values f
(white background) can be computed out-of-circuit by the verifier and checked
against the public input hash value h.

D. HVZK Circuit Optimization

The TLS key derivation can be optimized by leverag-
ing security guarantees provided by the Merkle-Damgård
structure. The Merkle-Damgård structure is used to com-
press input data to a fixed size output in hash algorithms
(e.g. SHA256). If TLS is configured with the cipher suite
TLS_AES_128_GCM_SHA256, then the Merkle-Damgård
repetitively appears during the TLS key derivation function
hkdf.extr and hkdf.exp because the key derivation functions
internally call hmac. The hmacalgorithm calls SHA256 and
with that the Merkle-Damgård structure.

1) Merkle-Damgård Structure: In a scenario where hmac
is called in TLS 1.3 and TLS 1.3 is configured with
TLS_AES_128_GCM_SHA256, the concatenation of the in-
ner hash H((K ′ ⊕ ipad)||m) (32 bytes) and K ′ ⊕ opad
(64 bytes) yields a 96 byte output, which in turn, is the input
to the outer hash function (cf. Formula 2). The input to the
inner hash function is of size 64 + len(m) bytes. Thus, both
hash input sizes in HMAC are above 64 bytes. If the hash
input of SHA256 is above 64 bytes, SHA256 applies the
Merkle-Damgård structure which repeats calls to an internal
compression blockcipher f to reduce the input to a fixed sized
output. The compressing blockcipher SHACAL-2 of SHA256
uses 64 computation rounds to hide its input and has not been
broken [51]. Thus depending on whether the inner or outer
hash is computed, the first call of the one-way compression
blockcipher inside SHA256 already hides inputs (K ⊕ ipad)
or (K⊕ opad) of size 64 bytes and with that, hides the secret
K of the prover [6]. As a result, the output of the compressing
blockcipher in SHA256 can be used as public input to reduce
the HVZK circuit complexity.

Figure 13 shows the case which applies in a ZKP circuit to
compute the HMAC inner hash Hinner = H((K ′⊕ipad)||m),
where e.g. m =H2 is publicly known input. If m is publicly
known by the verifier, the prover can compute the grey f
and disclose it to the verifier, which computes the remaining
part of the hash out of circuit. The same optimization of
SHA256 is feasible when computing the outer hash Houter =
H((K ′⊕opad)||Hinner). Thus, proving HMAC in a ZKP takes
two evaluations of the SHACAL-2 compression function f if
the message input m is publicly known.

In the key derivation in TLS 1.3, successive SHA256 calls
generate public intermediate values which allow intermediate

proceedings of the TLS specification out of circuit. Generated
intermediate values, which have been computed out of circuit,
can be fed back into the HVZK circuit if the computation
of secret parameters proceeds. Thus, all intermediate values
which can be generated, computed on out of circuit, and fed
back into the circuit as public input, optimize the HVZK
circuit.

	Introduction
	Preliminaries
	General Notations
	Transport Layer Security
	Handshake Phase
	Record Phase

	Cryptographic Building Blocks
	Semi-honest 2PC with gcs
	Oblivious Transfer
	2PC with Malicious Adversaries
	Zero-knowledge based on Garbled Circuits
	Cryptographic Commitments
	Secret Sharing

	System Model
	System Roles
	System Goals
	Threat Model

	Optimizing Proof Computations in the Asymmetric Privacy Setting
	How TLS Oracles Use Asymmetric Privacy
	Three-party Handshake
	Client-side Two-party Computation
	Key Committing AEAD for TLS Records
	Client Challenge in Asymmetric Privacy Setting

	HVZK and Asymmetric Privacy
	Formalizing Asymmetric Privacy
	HVZK and Selective-failure Attacks
	Unilateral Secure Validation
	TLS Compatibility

	Optimizing End-to-end Performance
	Secure Authenticity of shts
	Mutual Validation of SHTS

	Garble-then-prove with Semi-honest twopc
	Intuition of Garble-then-prove
	Garble Phase
	Prove Phase

	Additional Considerations
	Janus Operation Modes
	Processing Multiple Records
	Optimized HVZK Circuit to Verify AEAD Tags
	Data Attestation

	Performance Evaluation
	Implementation
	Performance
	Optimized Proof Computations for TLS 1.2 and TLS 1.3
	Optimized End-to-end Performance

	Discussion
	Related Works
	Limitations & Future Work

	Conclusion
	Acknowledgements
	References
	Appendix
	Extended Performance Evaluation
	Benchmarking twopc Circuits

	Cryptographic Building Blocks
	Three-party Handshake
	Digital Signatures
	Keyed-hash or Hash-based Key Derivation Function
	Authenticated Encryption
	Secure Two-party Computation
	Zero-knowledge Proof Systems

	Security Analysis
	Construction 1
	Construction 2
	Construction 3

	HVZK Circuit Optimization
	Merkle-Damgård Structure

