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Abstract

Latin squares are a classical and well-studied topic of discrete mathematics, and recently Takeuti and
Adachi (IACR ePrint, 2023) proposed (2, n)-threshold secret sharing based on mutually orthogonal Latin
squares (MOLS). Hence efficient constructions of as large sets of MOLS as possible are also important
from practical viewpoints. In this letter, we determine the maximum number of MOLS among a known
class of Latin squares defined by weighted sums. We also mention some known property of Latin squares
interpreted via the relation to secret sharing and a connection of Takeuti–Adachi’s scheme to Shamir’s
secret sharing scheme.
Keywords: Latin squares, upper bounds, secret sharing

1 Introduction
A Latin square of size v × v (where v ≥ 2) is a v × v square array of integers from 0 to v − 1 where each
row/column consists of every integer in the range [0, v−1] appearing only once. Latin squares are a classical
well-studied topic in discrete mathematics. One of the famous and efficient constructions of Latin squares is
one using weighted sums with fixed weights; here we call them weighted-sum Latin squares.

Recently, Takeuti and Adachi [10] proposed a (2, n)-threshold secret sharing scheme based on mutually
orthogonal Latin squares (MOLS). Secret sharing [5, 9] is a cryptographic technology to protect distributed
data storage against both steals and deletion of data. By their result, efficient constructions of as large sets
of MOLS as possible are important from not just theoretical but also practical viewpoints.

Let M(v) and MWS(v) denote, respectively, the maximum cardinalities of general MOLS and of MOLS
consisting of weighted-sum Latin squares only (MOWSLS, in short) of size v × v. A bound M(v) ≤ v − 1
for MOLS is well-known. On the other hand, for MOWSLS, it is obvious that MWS(v) ≤ M(v), and values
of MWS(v) are evaluated for small v’s by computer experiments in [7]. The main result of this letter is the
following that fully determines the value of MWS(v) for any v ≥ 2 (see Section 3.1 for the proof):

Theorem 1. Let p0 be the smallest prime factor of v ≥ 2. Then we have MWS(v) = p0 − 1.

Hence, the maximum cardinality v − 1 of MOLS is achievable by weighted-sum Latin squares when v is
a prime; while considering composite v’s instead of prime ones has no advantage in generating large sets of
MOWSLS.

We also mention some known properties of Latin squares and secret sharing, in connection to Takeuti–
Adachi’s secret sharing scheme. First, we mention in Section 3.2 that the known bound M(v) ≤ v − 1
is also deduced by applying a known lower bound for share sizes in secret sharing schemes to Takeuti–
Adachi’s scheme. Secondly, we point out in Section 4 that Takeuti–Adachi’s scheme using MOWSLS can be
interpreted as a “homogeneous version” of Shamir’s (t, n)-threshold secret sharing with t = 2, and mention
that the known protocols for converting shares of two secrets x, x′ in Shamir’s scheme into shares of x+ x′

and of xx′ [4] is extended to the case of Takeuti–Adachi’s scheme. We note that instantiations of Latin
squares for the use in Takeuti–Adachi’s scheme different from weighted-sum ones are searched by computer
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experiments in [8]. It is a future research topic to establish similar share conversion protocols based on
MOLS not of weighted-sum type.

2 Notations and Definitions
Throughout the letter, v denotes a fixed integer with v ≥ 2. Let [i, j] := {i, i + 1, . . . , j} for integers
i ≤ j. For a, n ∈ Z with n ≥ 1, let a mod n denote the remainder of a modulo n, taken from the range
0 ≤ a mod n ≤ n− 1, which is also regarded as an element of Z/nZ.

Let L = (L[x, y])x,y be an v × v array of integers L[x, y] ∈ [0, v − 1], with row index x and column index
y running over [0, v − 1]. We say that L is a Latin square (of size v × v) if for each row and each column,
the entries of L are all different (or equivalently, every number in [0, v − 1] appears at least once).
Definition 2. We say that two Latin squares L1 and L2 are orthogonal, denoted here by L1 ⊥ L2, if the v2

pairs (L1[x, y], L2[x, y]) ∈ [0, v − 1]2 are all different (or equivalently, every pair from [0, v − 1]2 appears at
least once).

The following definition and proposition (which is well-known; proved here for the sake of completeness)
are for a famous and efficient construction of Latin squares.
Definition 3. For a, b ∈ [0, v − 1], we define an v × v array La,b, which we call weighted-sum array, by

La,b[x, y] := a · x+ b · y mod v for x, y ∈ [0, v − 1] .

Proposition 4. A weighted-sum array La,b is a Latin square if and only if gcd(a, v) = 1 and gcd(b, v) = 1.
When this is satisfied, we call the La,b weighted-sum Latin square.
Proof. This follows by observing that for each c ∈ {a, b}, the values c · z mod v for z ∈ [0, v − 1] are all
different if and only if c ∈ (Z/vZ)×, i.e., gcd(c, v) = 1.

Due to this property, in what follows we focus on the case where gcd(a, v) = 1 and gcd(b, v) = 1.
We also consider the following kind of Latin squares. Here LT denotes the transpose of a Latin square

L, i.e., LT[x, y] = L[y, x]. Note that (La,b)
T = Lb,a.

Definition 5. We say that a Latin square L is self-transpose-orthogonal if L ⊥ LT.

3 On Upper Bounds for Mutually Orthogonal Sets
A sequence of Latin squares L1, . . . , L` satisfying that Li ⊥ Lj for any i 6= j is called mutually orthogonal
Latin squares (MOLS). We abbreviate mutually orthogonal weighted-sum Latin squares (i.e., every Li is
a weighted-sum Latin square) as MOWSLS. We discuss about the maximum values of ` for MOLS and
MOWSLS, denoted by M(v) and MWS(v).

3.1 The Case of Weighted-Sum Latin Squares
Let P = P (v) denote the set of all prime factors of v. Then the condition stated in Proposition 4 is equivalent
to that gcd(a, p) = 1 and gcd(b, p) = 1 for every p ∈ P (v).

For a weighted-sum Latin square L = La,b, we define

λ[p] = λL[p] = λa,b[p] :=
b

a
mod p ∈ (Fp)

×

for any p ∈ P (v), and define
λ = λL = λa,b := (λa,b[p])p∈P (v) .

Note that for any tuple η = (ηp)p∈P (v) ∈
∏

p∈P (v)(Fp)
×, there is a weighted-sum Latin square L with λL = η;

take an integer b ∈ [0, v−1] satisfying ηp = b mod p for every p ∈ P (v) by using Chinese Remainder Theorem
(note that now gcd(b, v) = 1) and set a := 1. The following is the key property to prove our main result:
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Theorem 6. For two weighted-sum Latin squares L1 = La1,b1 and L2 = La2,b2 , we have L1 ⊥ L2 if and
only if λL1

[p] 6= λL2
[p] for every p ∈ P (v).

Proof. First, we suppose that the latter condition does not hold, i.e., λL1
[p] = λL2

[p] for some p ∈ P (v), and
show that L1 6⊥ L2. Fix an integer η ∈ [0, v − 1] with λL1

[p] = λL2
[p] = η mod p. Then for each µ ∈ {1, 2},

we have
η · aµ ≡ bµ (mod p) ,

therefore, by putting v′ := v/p ∈ Z, we have

ηv′ · aµ ≡ v′ · bµ (mod v) .

Note that 1 ≤ v′ ≤ v − 1. Now we have

Lµ[0, v
′]− Lµ[ηv

′ mod v, 0] ≡ v′ · bµ − ηv′ · aµ ≡ 0 (mod v) ,

therefore
(L1[0, v

′], L2[0, v
′]) = (L1[ηv

′ mod v, 0], L2[ηv
′ mod v, 0]) .

This implies that L1 6⊥ L2, as desired.
Now the remaining task is to show that the latter condition in the statement is not satisfied if L1 6⊥

L2. By the assumption, we have (L1[x, y], L2[x, y]) = (L1[u,w], L2[u,w]) for some different pair of indices
(x, y) 6= (u,w). Then for each µ ∈ {1, 2}, we have

aµ · x+ bµ · y ≡ aµ · u+ bµ · w (mod v) .

Put ∆a := x− u and ∆b := w − y, which are independent of µ. Then we have

aµ ·∆a ≡ bµ ·∆b (mod v) . (1)

This and the property gcd(aµ, v) = gcd(bµ, v) = 1 imply

d := gcd(∆a, v) = gcd(aµ ·∆a, v) = gcd(bµ ·∆b, v) = gcd(∆b, v)

which is also independent of µ. Put ∆′
a := ∆a/d ∈ Z and ∆′

b := ∆b/d ∈ Z. Then both ∆′
a and ∆′

b are
coprime to v′ := v/d. Now by Eq.(1), we have

aµ ·∆′
a ≡ bµ ·∆′

b (mod v′) ,

therefore (by noticing that both ∆′
b and aµ are invertible modulo v′) we have

bµ
aµ

≡ ∆′
a

∆′
b

(mod v′) .

The right-hand side is independent of µ, therefore we have

b1
a1

≡ b2
a2

(mod v′) .

Moreover, the assumption (x, y) 6= (u,w) implies that at least one of ∆a and ∆b is not a multiple of v,
therefore we have d < v. This implies that v′ > 1, and by taking any prime factor p of v′, we have p ∈ P (v)
and

b1
a1

≡ b2
a2

(mod p) ,

i.e., λL1 [p] = λL2 [p]. Hence the latter condition in the statement does not hold, as desired.
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By Theorem 6, members of any MOWSLS must have different values of λ[p0] ∈ (Fp0
)× where p0 :=

minP (v), therefore MWS(v) ≤ |(Fp0
)×| = p0−1; while L1,b for b ∈ [1, p0−1] form MOWSLS with cardinality

p0 − 1. This proves Theorem 1 in the introduction.
Theorem 6 also yields the following corollary:

Corollary 7. Let L = La,b be a weighted-sum Latin square. Then all the following conditions are equivalent:

1. L is self-transpose-orthogonal.

2. λL[p] 6= ±1 in Fp for every p ∈ P (v).

3. gcd(a+ b, v) = 1 and gcd(a− b, v) = 1.

Proof. By Theorem 6, we have La,b ⊥ Lb,a if and only if λL[p] 6= λL[p]
−1, i.e., λL[p] 6= ±1 in Fp, for every

p ∈ P (v). This is also equivalent to that b2 6≡ a2 (mod p), i.e., a2 − b2 = (a + b)(a − b) 6≡ 0 (mod p), for
every p ∈ P (v). The last condition means that gcd(a ± b, p) = 1 for every p ∈ P (v), which is equivalent to
gcd(a± b, v) = 1.

By this result, when we restrict MOWSLS further to self-transpose-orthogonal ones, two values ±1 are
excluded from the values of λ[p], therefore the maximum cardinality decreases to p0 − 3 (such a set does not
exist when p0 ≤ 3).

3.2 The General Case
Takeuti and Adachi [10] proposed the following construction of a (perfectly secure) (t, n)-threshold secret
sharing ((t, n)-SS, in short) scheme with parameter t = 2, which uses n− 1 MOLS L1, . . . , Ln−1 of size v× v
as public parameters:

Share Generation Given a secret x ∈ [0, v−1] to be shared, the algorithm chooses y ∈ [0, v−1] uniformly
at random, and computes zi := Li[x, y] for each i ∈ [1, n − 1]. Then zi is the share of x for party Pi,
and y is the share of x for party Pn.

Secret Reconstruction When a pair of shares zi and y from parties Pi (i 6= n) and Pn is given, the
algorithm outputs the unique index x′ with Li[x

′, y] = zi. When a pair of shares zi and zj from
parties Pi and Pj (i, j 6= n) is given, the algorithm determines the unique pair of indices (x′, y′) with
(Li[x

′, y′], Lj [x
′, y′]) = (zi, zj) and outputs x′.

On the other hand, the following lower bound for the size of share spaces of (t, n)-SS schemes is known (it
is known as an unpublished work by J. Kilian and N. Nisan, 1990; see e.g., the fourth paragraph of Section
1.2.3 of [3]):

Proposition 8. For i ∈ [1, n], let Si be the set of possible shares for i-th party in a (t, n)-SS scheme with
2 ≤ t ≤ n− 1. Then

∑n
i=1 log2 |Si|/n ≥ log2(n− t+ 2).

By applying Proposition 8 to Takeuti–Adachi’s (2, n)-SS scheme where Si = [0, v − 1], it follows that
log2 v ≥ log2 n, i.e., v ≥ n. Then, any MOLS of cardinality M(v) gives a (2, n)-SS scheme with n = M(v)+1
and therefore satisfies that M(v) + 1 ≤ v. This yields a known upper bound M(v) ≤ v− 1 mentioned in the
introduction.

4 Relation to Secure Multiparty Computation
In the research area of secure multiparty computation (MPC) in cryptography, several methods of computing
shares of the addition/multiplication of two secrets from given shares of each secret in various secret sharing
schemes have been proposed in the literature, e.g., [1, 2, 4]. Here we describe such a method for Takeuti–
Adachi’s (2, n)-SS scheme in Section 3.2 with n ≥ 3 when using MOWSLS where v is a prime and the set
[0, v − 1] is identified with Fv = Z/vZ. Then we explain a relation to Shamir’s secret sharing [9].

Let (z1, . . . , zn−1, y) and (z′1, . . . , z
′
n−1, y

′) be tuples of shares of secrets x and x′, respectively.
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4.1 Computing the Addition
By the construction of shares, we have

zi = ai · x+ bi · y and z′i = ai · x′ + bi · y′ (2)

for each i ∈ [1, n− 1] (where the equalities are considered in Fv). Therefore we have

zi + z′i = ai · (x+ x′) + bi · (y + y′) .

This means that (z1 + z′1, . . . , zn−1 + z′n−1, y + y′), which can be obtained by local addition of each party’s
shares, forms a tuple of shares for secret x+ x′.

4.2 Computing the Multiplication
First, for any i ∈ [1, n− 1], from Eq.(2), we have

ziz
′
i = ai

2 · xx′ + aibi · (xy′ + x′y) + bi
2 · yy′ . (3)

Note that the same relation also holds for i = n when we put zn := y, z′n := y′, an := 0, and bn := 1.

Lemma 9. In the setting above, for any three distinct indices i, j, k ∈ {1, . . . , n}, we haveai
2 aj

2 ak
2

aibi ajbj akbk
bi

2 bj
2 bk

2

Ci;j,k

Cj;k,i

Ck;i,j

 =

1
0
0

 , (4)

where, for distinct indices α, β, γ ∈ [1, n],

Cα;β,γ :=
bβbγ

(aαbβ − aβbα)(aαbγ − aγbα)
∈ Fv . (5)

Proof. Let A denote the 3×3 matrix in Eq.(4). By dividing each column of A by bi
2, bj2, and bk

2, respectively,
we obtain a Vandermonde-type matrix(ai/bi)

2 (aj/bj)
2 (ak/bk)

2

ai/bi aj/bj ak/bk
1 1 1

 .

Therefore we have
det(A)

bi2bj2bk2
=

(
ai
bi

− aj
bj

)(
ai
bi

− ak
bk

)(
aj
bj

− ak
bk

)
which is non-zero by the orthogonality of Latin squares and Theorem 6. Hence

det(A) = (aibj − ajbi)(aibk − akbi)(ajbk − akbj) .

Now Cramer’s rule to solve the system of linear equations (4) yields the values of Ci;j,k, Cj;k,i, and Ck;i,j as
follows:

Ci;j,k = det(A)−1 det

(
ajbj akbk
bj

2 bk
2

)
= det(A)−1bjbk(ajbk − akbj) ,

Cj;k,i = −det(A)−1 det

(
aibi akbk
bi

2 bk
2

)
= −det(A)−1bkbi(aibk − akbi) ,

Ck;i,j = det(A)−1 det

(
aibi ajbj
bi

2 bj
2

)
= det(A)−1bibj(aibj − ajbi) .

They are equal to the values as in Eq.(5).
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Now we obtain the following protocol for multiplication of shared secrets, where i0, i1, i2 ∈ [1, n] are any
three distinct and publicly known indices:

1. For each µ ∈ {0, 1, 2}, party Piµ sets (α, β, γ) := (iµ, iµ+1 mod 3, iµ+2 mod 3), and computes

Xµ :=

{
Cα;β,γ · ziµz′iµ if iµ 6= n ,

Cα;β,γ · yy′ if iµ = n ,

where the coefficient Cα;β,γ is as defined in Lemma 9 (with an := 0 and bn := 1). Then Piµ generates
shares Z

〈µ〉
1 , . . . , Z

〈µ〉
n−1, Y

〈µ〉 of Xµ (by the same (2, n)-SS scheme), and sends Z
〈µ〉
` to party Pk for

k ∈ [1, n− 1] and Y 〈µ〉 to party Pn.

2. Each party generates a new share by adding the three shares received in the previous step.

By Eq.(3) and the additive property of the shares explained in Section 4.1, the new share generated by the
protocol is (by putting zn := y and z′n := y′ as above) a share of

X0 +X1 +X2 =
(
xx′ xy′ + x′y yy′

) ai0
2 ai1

2 ai2
2

ai0bi0 ai1bi1 ai2bi2
bi0

2 bi1
2 bi2

2

Ci0;i1,i2

Ci1;i2,i0

Ci2;i0,i1


=

(
xx′ xy′ + x′y yy′

)1
0
0

 = xx′

as desired, where we used Lemma 9 at the second equality.

4.3 Relation to Shamir’s Secret Sharing
In the case where a1 = · · · = an−1 = 1, given a secret x and party Pn’s share y of x, we consider a polynomial
f(T ) := yT + x ∈ Fv[T ] of degree at most one. Then the share zi of x for party Pi (i 6= n) is given by

zi = ai · x+ bi · y = y · bi + x = f(bi) ,

and the share for party Pn is the coefficient y of f(T ) at the highest degree, while the secret is x = f(0).
This is the same situation as “the point at infinity” variant of Shamir’s (2, n)-SS scheme described in Section
11.7 of [6]. On the other hand, for general a1, . . . , an−1, by taking homogenization f(T1, T0) = yT1 + xT0

of f(T ), Pi’s share zi (i 6= n) is equal to ai · x + bi · y = f(bi, ai) (corresponding to a non-infinity point
[bi : ai] in the projective line P1(Fv)), and Pn’s share y is also equal to F (1, 0) (corresponding to the point
at infinity [1 : 0] ∈ P1(Fv)). Hence Takeuti–Adachi’s (2, n)-SS scheme using MOWSLS and the protocols
in Sections 4.1 and 4.2 can be seen as a “homogeneous version” of Shamir’s scheme and the corresponding
MPC protocols [4].
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