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Abstract. The presumed hardness of the Shortest Vector Problem for
ideal lattices (Ideal-SVP) has been a fruitful assumption to understand
other assumptions on algebraic lattices and as a security foundation of
cryptosystems. Gentry [CRYPTO’10] proved that Ideal-SVP enjoys a
worst-case to average-case reduction, where the average-case distribution
is the uniform distribution over the set of inverses of prime ideals of small
algebraic norm (below dO(d) for cyclotomic fields, where d refers to the
field degree). De Boer et al. [CRYPTO’20] obtained another random
self-reducibility result for an average-case distribution involving integral

ideals of norm 2O(d2).
In this work, we show that Ideal-SVP for the uniform distribution over
inverses of small-norm prime ideals reduces to Ideal-SVP for the uniform
distribution over small-norm prime ideals. Combined with Gentry’s re-
duction, this leads to a worst-case to average-case reduction for the uni-
form distribution over the set of small-norm prime ideals. Using the
reduction from Pellet-Mary and Stehlé [ASIACRYPT’21], this notably
leads to the first distribution over NTRU instances with a polynomial
modulus whose hardness is supported by a worst-case lattice problem.

1 Introduction

Lattice-based cryptography is built upon on the hardness of a variety of com-
putational problems related to the shortest vector problem (SVP), consisting
in finding a shortest non-zero vector in a Euclidean lattice, possibly up to
some approximation factor. As generic lattices typically lead to poor perfor-
mance, cryptographic schemes often use so-called algebraic variants. The case of
ideal lattices has attracted particular attention since the introduction of Ring-
SIS [Mic02,LM06,PR06] and Ring-LWE [SSTX09,LPR10,PRS17]. These prob-
lems have both enabled the construction of very efficient cryptosystems, and are
known to be at least as hard as finding short non-zero vectors in ideal lattices.
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Let K = Q[X]/P (X) be a number field of degree d (i.e., P (X) ∈ Z[X] is an
irreducible polynomial of degree d) and let OK be its ring of integers. As K is
naturally a Hermitian vector space (via the canonical embedding σ : K → Cd),
any ideal in OK is a Euclidean lattice. Such ideals, with the associated lattice
structure, are ideal lattices. In this work, we focus on the id-HSVP problem
(ideal Hermite Shortest Vector Problem), an approximate version of SVP for
ideal lattices consisting in finding a non-zero-vector in the ideal lattice whose
norm is within a given factor of the root determinant. Note that id-HSVP and
SVP for ideal lattices are equivalent up to some small parameter losses.

In cryptographic applications, it is typically insufficient for a computational
problem to be hard in the worst case: one needs instances to be hard on average
for some distribution with non-trivial entropy. Such a guarantee can be provided
by proving worst-case to average-case reductions: if there is an algorithm which
performs well on random instances of problem A with non-negligible probability
(i.e., for the average case), then there is an algorithm which performs well for any
instance of problem B (i.e., for the worst case). When the two problems are the
same (up to the approximation factor), we may refer to this property as random
self-reducibility. Note that self-reducibility is associated not only to a problem,
but also to a distribution on the instances, and the choice of distribution may
be of critical importance.

The first random self-reducibility result for id-HSVP was proven by Gen-
try [Gen09a,Gen10], for supporting the security of the first fully homomorphic
encryption scheme [Gen09a,Gen09b]. Gentry proved that id-HSVP in the worst
case reduces to id-HSVP for the inverse of a uniformly chosen prime ideal among
those with algebraic norm in a prescribed interval [A,B]. Note that Gentry states
this result in terms of the Bounded Distance Decoding problem for the prime ide-
als themselves (not their inverses) – the two formulations are equivalent thanks
to Regev’s quantum reduction from SIVP in a lattice L to BDD in the dual
lattice L∨ [Reg05]. Gentry’s reduction enables interval boundaries A and B that

have a bounded ratio and can be chosen as small as ∆
O(1)
K · dO(d), where ∆K

and d respectively refer to the field discriminant and degree.5 A weaker result is
proved in [Gen10], but it can be boosted as detailed in [Gen09a]. This reduction
requires an ideal-factoring oracle (which can be implemented in quantum polyno-
mial time using Shor’s algorithm [Sho94]) but is otherwise polynomial-time, and

introduces a loss in the approximation factor that is bounded as ∆
O(1/d)
K · dO(1).

A different average-case distribution is considered in [BDPW20]. The space
of all ideal lattices, up to isometries, is itself an arithmetic-geometric object,
the Arakelov class group, and comes with a natural notion of “uniform dis-
tribution”. Mathematically, this distribution is convenient because of the rich
theory surrounding it. Computationally, one cannot work directly with it: first
because it is continuous, and second because we do not have a canonical way
of representing the isometry class of a lattice. Thanks to an appropriate round-
ing procedure, de Boer et al. [BDPW20] introduced a distribution on ideals of

5 For the sake of simplicity, we assume for the introduction that we are given a basis
of the ring of integers OK whose vectors have norms ≤ ∆

O(1/d)
K · dO(1)
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norm ∆
O(1)
K ·2O(d2) that mimics this continuous distribution and proved the self-

reducibility of id-HSVP for this distribution.6 This reduction is polynomial and

also incurs an approximation factor loss of ∆
O(1/d)
K · dO(1). Note that the ideals

of this distribution have much larger norms than those of Gentry’s reduction.
This unfortunately leads to cryptographic instances of larger sizes. In [PS21], the
authors observed that the algebraic norm reached by the reduction from de Boer
et al. can be decreased, but at the expense of a super-polynomial running-time.

The above discussion raises the following question:

Can we reduce id-HSVP in the worst-case to id-HSVP for uniform prime ideals

of norms bounded as ∆
O(1)
K · dO(d), in time polynomial in ∆

1/d
K and d?

Contributions. We describe a new quantum self-reduction for id-HSVP. We
prove that if W is a set of ideals and W−1 is the set of inverses of the ideals
of W, then solving id-HSVP for the uniform distribution over W−1 reduces to
solving id-HSVP for the uniform distribution overW and to solving id-HSVP for
a uniform ideal within those having their norms in a prescribed interval. Both the
cost of the reduction and the loss in the approximation factor are polynomially

bounded in the degree d and the root-discriminant ∆
1/d
K of the number field.

The precise statement is provided in Theorem 5.1.
When specialized with W chosen as the set of prime ideals of algebraic

norm ∆
O(1)
K · dO(d), our reduction implies that solving id-HSVP for the inverse

of uniform primes ideals is no harder than solving it for uniform prime ideals

(still for those of algebraic norm ∆
O(1)
K · dO(d)). The success probability of this

reduction is proportional to the proportion of prime ideals among all integral
ideals of norm bounded by some A = poly(∆K). Combined with Gentry’s re-
duction [Gen09a], our work implies the random self-reducibility of id-HSVP for
the uniform distribution over prime ideals. As Gentry’s original reduction con-
siders the bounded distance decoding problem, we present an adaptation to the
shortest vector problem in Appendix C. Note that the polynomial dependency
in the proportion of prime ideals may have a considerable impact on the cost
of this reduction (there exists number fields for which the proportion of prime
ideals is exponentially small in the degree).

This new reduction, along with the Karp reduction of [PS21], gives a new

distribution over NTRU instances with modulus polynomial in d and∆
1/d
K whose

difficulty relies on the worst-case problem id-HSVP. To our knowledge this is the
first time a distribution over NTRU instance with polynomial modulus is based
on a worst-case problem, even though this distribution needs a factoring oracle
to be sampled from.

Technical overview. We now give an overview of the average-case to average-
case reduction for id-HSVP. Let W be a set of fractional ideals represented

6 The bound on the norm is obtained by combining Lemma 4.1 and Theorem 4.5
from [BDPW20].
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by their Hermite Normal Form. The goal of our reduction is to find (with
non-negligible probability) a short non-zero vector in a given uniform element
of W−1, given access to two oracles: OW which solves id-HSVP with non-
negligible probability for a uniform element of W, and OI which solves it with
non-negligible probability for a uniform integral ideal with norm between A

and 4A, for A = ∆
O(1/d)
K · dO(1). In everything that follows we assume that we

have a factoring oracle (for integers, or equivalently, for integral ideals). Such an
oracle can be instantiated in quantum polynomial time with Shor’s algorithm,
or in sub-exponential time with the number field sieve algorithm.

Before diving into our contribution, let us explain a key idea developed
in [Boe22, Chap. 6]. By ideal of norm 1, we mean a (replete) ideal7 of the
form I/N (I)1/d. The space of ideals of norm 1 has a natural notion of unifor-
mity. Let Br denote the ℓ∞ ball of radius r. In [Boe22, Th. 6.21], it is proved
that if J is sampled uniformly in the set of ideals of norm 1, and x is uniform
in Br ∩ J , then the integral ideal x · J−1 is almost uniform in the set of integral
ideals of norm less than rd.

Now, our reduction follows the following structure. We are given a uni-
form I ∈ W, and tasked with finding a short non-zero vector vI−1 ∈ I−1.

1. Find a short non-zero vector vI ∈ I with the oracle OW .
2. Generate a uniform norm-1 ideal I ′, together with a short non-zero vector

vI′ ∈ I ′. The ideal J = I ′ · I/N (I)1/d is also uniform in the space of ideals
of norm 1, and we can compute a short basis BJ of J thanks to the short
non-zero vectors vI and vI′ .

3. Sample x ∈ Br∩J ; this uses our knowledge of the good basis BJ . Hopefully,
the integral ideal b = x · J−1 is almost uniform in the set of integral ideals
of bounded norm.

4. Find a short non-zero vector vb ∈ b with the oracle OI .
5. Return the vector vI−1 = x−1 · vI′ · vb · N (I)−1/d ∈ I−1.

One can check that vI−1 ∈ I−1, but is it short? Its factors are short by construc-
tion, except possibly x−1. Indeed, the element x itself is bounded (it is in the
set Br), but its inverse may not be. To circumvent this issue, we would like to
replace the ℓ∞ ball Br with another shape X which contains only balanced vec-
tors (i.e., close to a vector of the form λ · (1, . . . , 1)), so that for any short x ∈ X,
we have that x−1 is small. We prove that the result of [Boe22] holds for general
sets X satisfying certain conditions. We consider a new shape BηA,B (see Fig-
ure 1 and Definition 4.1) that verifies the conditions, and contains only balanced
elements. Now, replacing Br with BηA,B in Step 3, we sample an element x such

that x−1 is small, hence all the factors of vI−1 are small, and vI−1 is indeed a
solution to id-HSVP in I−1.

While Step 3 constitutes the main difficulty of the reduction, and the tech-
nical core of our paper, let us briefly comment on Step 2. We need to sam-
ple a uniform norm-1 ideal I ′, together with a short non-zero vector vI′ ∈ I ′.

7 A replete ideal is a subset of KR := K ⊗Q R of the form α · I where I ⊆ OK is
an integral ideal of OK and α ∈ K×

R is invertible. More details can be found in the
preliminaries.
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Fig. 1. A plot of Bη
A,B intersected with the subspace K+

R := {x ∈ KR |σi(x) ∈
R>0 for all i}. Here we have (dR, dC) = (3, 0), A = 20, B = 40 and η = exp(1).

In [BDPW20], it is proven that if an ideal p is sampled uniformly in the set of
prime ideals with norm less than (dd · ∆K)c for some constant c, then, up to
a small Gaussian factor, the ideal p/N (p)1/d is close to uniform in the set of
norm-1 ideals. It is therefore sufficient to generate such a prime ideal p together
with a short element vp ∈ p. The technique is extracted from [Gen09a, Chap. 17],
and requires a factoring oracle. It first samples a small element x ∈ OK with the
Gaussian distribution. It then factors (x) = pe11 · . . . · p

ek
k and uniformly selects

one of the factors pi. Finalizing with a rejection sampling step, it can be proved
that the chosen p is almost uniform in the set of primes of norm ≲ N (x).

We now have a reduction from id-HSVP for inverses of ideal of a set W,
to id-HSVP for ideals of W and id-HSVP for a uniform ideal of norm in some
interval [A, 4A] for A as small as ∆

O(1))
K · dO(d). This gives a trivial reduction

from id-HSVP for a uniform ideal to id-HSVP for an uniform prime ideal, with
a success probability decrease of a factor O(1/ρ̃A), where 1/ρ̃A is the proportion
of prime ideals among the set of all integral ideals of norm ≤ A. We can now
combine this last reduction with our main result (takingW to be the set of prime
ideals of norm in [A, 4A]) in order to reduce id-HSVP for inverses of prime ideals
to id-HSVP for prime ideals. This, combined with the worst-case to average-case
reduction of [Gen09a] gives a worst-case to average-case reduction for id-HSVP
where the average-case is the uniform distribution over prime ideals of norm
in [A, 4A].

Finally, note that a reduction from id-HSVP to NTRU was recently given
in [PS21]. It transforms an integral ideal I into an NTRU instance of modulus
polynomial larger than N (I)1/d. Our self-reduction (in contrast with the one
from [Gen09a]) applies to integral ideals and can be composed with the one
from [PS21]. The distribution of NTRU instances obtained by sampling a uni-
form prime ideal of norm in [A, 4A] and applying [PS21, Alg. 4.1] is at least as

difficult to solve as worst-case id-HSVP. By setting A = ∆
O(1)
K ·dO(d), we obtain
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an NTRU modulus bounded as ∆
O(1/d)
K ·dO(1). Note that “overstretched NTRU”

attacks [ABD16,CJL16,KF17] do not apply for this distribution as, among oth-
ers, they require a much larger modulus.

Related works on the hardness of id-HSVP. On the upper bound front,
it has been shown that id-HSVP is susceptible to better algorithms than the
generic HSVP. Cramer et al. [CDPR16] described an algorithm for id-HSVP in

cyclotomic fields for principal ideals with an approximation factor exp Õ(
√
d)

in quantum polynomial time. It was later generalized to all ideals [CDW17] of
cyclotomic fields and (with pre-processing) to all number fields [PHS19]. Note
that in the present work, all our reductions feature polynomial losses on the
approximation factor, and hence apply to id-HSVP for polynomial approxima-
tion factors, a regime that is not impacted by these algorithms. Still, families
of easy instances for id-HSVP have been identified even for polynomial approxi-
mation factors [PXWC21,PML21,BEP22], specifically ideals stabilized by many
field automorphisms. While these families are very sparse, their existence further
motivates the study of different distributions of id-HSVP instances.

2 Preliminaries

The notation ln will refer to the base-e logarithm. For any function f : X → R
and S ⊆ X with S countable, we define f(S) :=

∑
x∈S f(x).

We will let G(c, s) denote the continuous Gaussian distribution of center c
and of standard deviation s on some vector spaces that will always be specified.
We will use both the statistical distance and Rényi divergence between distri-
butions. Let D1, D2 be distributions over a countable set X. Their statistical
distance is SD(D1, D2) =

∑
x∈X |D1(x)−D2(x)|/2. For any event E ⊆ X, we

have D2(E) ≥ D1(E) − SD(D1, D2). If Supp(D1) ⊆ Supp(D2), their Rényi di-
vergence of infinite order is RD∞(D1 ∥ D2) = maxx∈Supp(D1) D1(x)/D2(x). For
any event E ⊆ Supp(D1), we have D2(E) ≥ D1(E)/RD∞(D1 ∥ D2).

When using oracles with a non-zero probability of failing, we assume without
loss of generality that either the oracle returns a valid result or ⊥ (as in our cases,
the validity of the output can always be checked efficiently).

2.1 Lattices

Let n ≥ 1. A lattice in Rn is a discrete additive subgroup of Rn of the form
L =

∑
1≤i≤k bi · Z for some linearly independent bi ∈ Rn that are said to form

a basis of L. A lattice is said to be full rank if any of its bases is full-rank in Rn.
If L is a lattice, we define its covering radius as µ(L) = infx∈Rn dist(x,L) and
its volume as vol(L) =

√
det(B ·BT ), where B = (b1∥ . . . ∥bk) (this quantity is

independent of the choice of basis (b1∥ . . . ∥bk) of L). For any basis (b1, . . . ,bk) ∈
Rn×k of a lattice, we define ∥B∥ = maxi ∥bi∥2 and let (b⋆

1, . . . ,b
⋆
k) denote its

Gram-Schmidt vectors.
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2.2 Algebraic number theory

We present here the number theoretic objects we will use throughout this work.
For an in-depth introduction to the field, the reader is referred to [Coh96,Neu13].
Let K be a number field of degree d ≥ 2 and discriminant ∆K . Let OK be its
ring of integers.

Ideals. An ideal a ⊆ OK is called an integral ideal. A fractional ideal of K is
a discrete subset of K of the form (x) = xa, where x ∈ K and a is an integral
ideal. Equivalently, a fractional ideal is a finitely generated OK-submodule of K.
A fractional ideal of the form x ·OK is called principal. In this work, we will take
the convention that gothic letters (such as a, b, p) correspond to integral ideals,
while upper-case letters (such as I, J) refer to ideals that are not necessarily
integral.

For any fractional ideals I, J , we define the product I · J as the ideal gen-
erated by all products a · b for a ∈ I, b ∈ J and the inverse I−1 as the ideal
I−1 = {x ∈ K,xI ⊆ OK}. An integral ideal p is said to be prime if there do
not exist a and b integral and distinct from p such that p = ab. These prop-
erties give the set of fractional ideals a group structure, the quotient group
of fractional ideals of K by principal ideals is the class group of K, it is de-
noted ClK and is finite. We define the algebraic norm of an integral ideal a by
N (a) = [OK : a]. We have N (ab) = N (a)N (b) for all integral ideals a and b.
If I is a fractional ideal, there exists an integer N such that N · I is integral, and
we define N (I) = N (N · I)/Nd (this is independent of the choice of N). The
multiplicativity property of the norm carries over to fractional ideals. For any
set W of fractional ideals we define W−1 =

{
I−1, I ∈ W

}
. For any 2 ≤ A ≤ B,

we define IA,B the set of integral ideal with norm in [A,B] and PA,B the set of
prime ideals with norm in [A,B].

Embedding and ideal lattices. The canonical embedding σ : K → Cd is defined as
x 7→ (σ1(x), . . . , σd(x)), where the σi’s are the complex embeddings ofK, ordered
so the dR ones with values in R come first, and σi = σdC+i for all dR < i ≤ dR+dC
(note that d = dR+2dC). We define KR = K⊗QR, which is a ring containing K.
The complex embeddings σi and the canonical embedding σ are extended to KR,
and we have that σ(KR) is the set of x ∈ Cd such that xi ∈ R for 1 ≤ i ≤ dR
and xdC+i = xi for dR < i ≤ dR + dC. This is a real vector space of dimension d
and a ring where addition and multiplication are performed coordinate-wise.
The canonical embedding allows us to view any element x of K (and of KR) as
a vector in Cd, and to define ∥x∥ = ∥σ(x)∥. The (absolute) algebraic norm of
x ∈ KR is defined as N (x) =

∏
1≤i≤d |σi(x)|. We have N (x · OK) = N (x).

We define K0
R the set of norm-1 elements of KR. A replete ideal is a subset

of KR of the form x · a, where a is an integral ideal and x ∈ K×R is invertible
(we exclude divisors of zero). With this notation, if a is principal, we call x · a
a principal replete ideal. Multiplication and inversion are extended to the set of
replete ideals by (x · a) · (y · b) = (xy) · (ab) and (x · a)−1 = x−1 · a−1. If we
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remove the zero ideal, then this set is a (multiplicative) group. We also extend
the algebraic norm to replete ideals by N (x · a) = N (x) · N (a).

Every non-zero replete ideal xa corresponds to a full-rank lattice σ(xa). By
abuse of notation, we identify xa and σ(xa). We have vol(xa) =

√
∆K · N (xa),

and the covering radius in ℓ∞ norm of xa is bounded from above by:

µ∞(xa) ≤ d · λ(∞)
d (xa) ≤ d · λ(∞)

1 (xa) · λ∞d (OK) ≤ d ·∆3/(2d)
K · N (xa)1/d, (1)

where we bounded λ1(xa) by ∆
1/(2d)
K · N (xa)1/d using Minkowski’s theorem

and λ∞d (OK) by∆
1/d
K using [BST+20, Th. 3.1] (adapted to the ℓ∞ norm in [Boe22,

Th. A.4]). For an (integral / fractional / replete) ideal, we call the corresponding
image an (integral / fractional / replete) ideal lattices (with respect to K). We
define idLat0 as the set of replete ideal lattices of norm 1. This is a compact
subgroup of idLat, and it admits a uniform distribution U(idLat0).

Lemma 2.1. Let J be a replete ideal, then

Pr
I←U(idLat0)

(
∃x ∈ K×R : J = I · (x)

)
=

1

|ClK |

Proof. For any replete ideal I = (x) ·a with a integral, we define [I] = [a] ∈ ClK .
The value of [I] does not depend on the choices of a and x. The function I 7→ [I]
for I ∈ idLat0 is a surjective morphism whose kernel is the set of principal replete
ideals of norm 1 in KR. The lemma states that if I is sampled from U(idLat0),
then the probability that it belongs to a fixed coset of ClK is |ClK |−1, which
follows directly from the fact that [·] is a surjective morphism. ⊓⊔

We define the logarithmic embedding of KR, by taking the natural logarithm
of every embedding of an element:

Ln : K×R −→ Ln(KR) = Rd

x 7−→ (ln |σi(x)|)i

The following lemma is a standard result on the logarithmic embedding. The
first statement is a rewriting of the equality Ln(x) = 0 and the second one is a
consequence of Dirichlet’s unit theorem.

Lemma 2.2. The function Ln has kernel
{
x ∈ K×R : ∀i, |xi| = 1

}
, whose inter-

section with OK is the set µK of roots of unity of K.

By relying on random walks in the Arakelov class group of K, de Boer et
al. [BDPW20] proposed an efficient algorithm to sample from U(idLat0). We give
here a simplified version of this result borrowed from [FPS22], for a single-step
random walk.

Lemma 2.3 ([FPS22, Le. 2.4]). Let A ≥ 2, and D the distribution over
idLat0 of

I = u · Exp(ζ) · p · N (p)−1/d,
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for p uniform in P0,A, u uniform in
{
x ∈ K×R : ∀i ≤ d, |xi| = 1

}
and ζ sampled

according to G(0, d−3/2) in span(Ln(O×K)) conditioned on ∥ζ∥ ≤ 1/d. Then there
exists an absolute constant c > 1 such that if A ≥ (dd ·∆K)c, then

SD(D,U(idLat0)) = 2−Ω(d).

Balanced elements. For the reductions presented in this article, it will sometimes
be convenient to use balanced elements of KR, i.e., elements whose ℓ∞ norm and
the one of their inverse are not far from the geometric mean of their coordinates:
in other terms they do not have an exceptionally small or large coordinate in
comparison to the others. This property is convenient as it implies that multiply-
ing an ideal by one of these elements will not change its geometry significantly,
in particular if x is balanced and v is small in the ideal x · I, then x−1 · v will be
small in I. The formal definition is as follows.

Definition 2.4. Let η > 1. An element x in KR is said to be η-balanced if

∥x∥∞ ≤ η · |N (x)|
1
d and ∥x−1∥∞ ≤ η · |N (x)|−

1
d .

Density of prime ideals. For any A ≥ 1, we let ρ̃A denote the inverse of the
proportion of prime ideals among all integral ideals of K of norm ≤ A, i.e.,

ρ̃A :=
|{a ⊂ OK | N (a) ≤ A}|

|{p ⊂ OK prime | N (p) ≤ A}|
.

In this article, we will be interested in ρ̃A for values of A of the order of poly(∆K).
Unfortunately, we are not aware of estimates for ρ̃A when A is this “small”.
However, it is known that when the number field K is fixed and A tends to
infinity, it holds that

ρ̃A ∼
A→∞

ρK · ln(A),

where ρK is the residue of the Dedekind zeta function at 1. This comes from
the fact that |{p ⊂ OK prime | N (p) ≤ A}| ∼ A/ ln(A) (see [BS96, Th. 8.7.4]),
and that |{a ⊂ OK | N (a) ≤ A}| ∼ ρK · A (see [Web08]). The quantity ρK is
known to be poly(log∆K) for some number fields such as cyclotomic fields (under
ERH, see [Boe22, Th. A.5]), but there also exist families of fields in which ρK
is exponential in the degree and ∆

1/(2d)
K (e.g., for some multi-quadratic number

fields).

2.3 Algorithmic problems

Representing field elements and ideals. We assume that we know a Z-basis BOK

of OK , and that it is LLL-reduced with respect to the geometry induced by σ
(in some cases, a much better basis could be known). We define δK := ∥BOK

∥.
Since BOK

is LLL-reduced, we have that δK ≤ 2d · λd(OK) = O(2d · ∆1/d
K )

from [BST+20, Th. 3.1], which implies that log δK = O(log∆K).
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Elements of K will be represented as vectors of Qd, corresponding to their
coordinates in the basis BK . Fractional ideals of K will be represented by a Z-
basis, i.e., d elements of K generating the ideal (each element being represented
as a vector of Qd as described above). The bases we obtain for a fractional ideal I
are in Qd×d, so they admit a Hermite Normal Form (HNF), which provides a
canonical representation for I. When replete ideals are used in algorithms, they
will be represented by an arbitrary basis with size polynomial in the log of their
norm and in log∆K (with a polynomial number of bits of precision).

Algorithmic problems in ideals. In this article, we will consider the Hermite
shortest vector problem in ideals, as well as related algorithmic problems.

Definition 2.5. Let γ ≥ 1.The ideal Hermite Shortest Vector Problem id-HSVPγ

asks, given as input a fractional ideal I represented by its HNF basis, to find a
non-zero element x ∈ I such that ∥x∥ ≤ γ · vol(I)1/d. For a finite set X of frac-
tional ideals, the average-case variant X-avg-id-HSVPγ asks to solve id-HSVPγ

when the input ideal I is uniformly sampled in X. The success probability of an
algorithm A when solving X-avg-id-HSVPγ is defined as

Pr
I←↩X

[
x ∈ I and ∥x∥ ≤ γ · vol(I)1/d | A(I) = x

]
,

where the randomness is taken over the choice of I and the possible internal
randomness of A.

The problem inv-HSVPγ is id-HSVPγ restricted to inverses of integral ideal
lattices.

The problems inv-HSVPγ and id-HSVPγ are equivalent under Karp reduc-
tions, without any loss in the approximation factor, as shown in the following
lemma (the other direction follows from the definition).

Lemma 2.6 (Folklore). For any γ ≥ 1, there is a Karp polynomial-time
reduction from id-HSVPγ to inv-HSVPγ .

Proof. Let I be a fractional ideal for which we want to solve the id-HSVPγ

problem. We will show that there exists x ∈ Q such that xI = a−1 is the
inverse of an integral ideal a ⊆ OK . If such an element x can be computed
efficiently, then the reduction simply computes x, then compute a−1 = xI and
runs the inv-HSVPγ solver on a−1 (which is a valid input for inv-HSVP). Since
multiplication by x ∈ Q consists in scaling the lattice corresponding to I, then a
solution to id-HSVPγ in xI provides a solution to id-HSVPγ in I (by multiplying
it by x−1). Note that the reduction preserves the approximation factor γ.

Let us then show that such an x exists and can be computed in polynomial
time. Write I = ab−1, with a, b ⊆ OK integral ideals, and define x = N (a)−1.
Note that such a, b and x can be computed in polynomial time from I (we do not
require that a and b are coprime, so the choice we make is not unique). Let us
show that for such x, it holds that (xI)−1 ⊆ OK is an integral ideal. By definition,
we have (xI)−1 = N (a) · a−1b. Since a is integral, it holds that N (a) · OK ⊆ a.
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Indeed, note that the groupOK/a has cardinalityN (a). Lagrange’s theorem then
gives that any element of OK/a has order dividing N (a), i.e., for any x ∈ OK ,
we have N (a) ·x ∈ a. We hence obtain that the ideal N (a) ·a−1 ⊆ OK is integral.
Since b is integral by construction, this proves that (xI)−1 is integral. ⊓⊔

2.4 Algorithms on ideals

We will often manipulate ideals and their basis. We will use the following results
on how to derive a short basis from a full-rank set of vectors.

Lemma 2.7 (Corollary of [MG02, Le. 7.1]). There exists a polynomial
time algorithm that takes as input a basis B of an n-dimensional lattice L and a
set of n linearly independent vectors s1, · · · , sn ∈ L and outputs a new basis C
of L such that ∥C⋆∥ ≤ maxi ∥s∗i ∥ and ∥C∥ ≤

√
n ·maxi ∥si∥.

We will use Lemma 2.7 to perform arithmetic over ideals while bounding the
sizes of the outputs.

Lemma 2.8. There exist polynomial-time algorithms InvertIdeal, Reduce-

Ideal and MultiplyIdeals with the following specifications.

• InvertIdeal takes as input an integral ideal a and outputs a basis B of a−1

such that ∥B⋆∥ ≤ δK and ∥B∥ ≤
√
d · δK .

• ReduceIdeal takes as input a basis B of an ideal I ⊂ KR and a vector
v ∈ I \ {0} and returns a basis BI of I such that ∥B⋆

I∥ ≤ δK · ∥v∥ and

∥BI∥ ≤
√
d · δK · ∥v∥.

• MultiplyIdeals takes as input bases BI and BJ of two ideals I, J ⊆ KR
and output BIJ a basis of I ·J such that ∥B⋆

IJ∥ ≤ ∥BI∥ ·∥BJ∥ and ∥BIJ∥ ≤√
d · ∥BI∥ · ∥BJ∥.

Proof. InvertIdeal starts by computing a basis B of a−1, which can be done in
polynomial time from a representation of a by generators. Then, the algorithm
runs the algorithm from Lemma 2.7 with input the basisB of a−1 and the vectors
of the known basis BOK

of OK (in the role of the short vectors si). Note that
since a is integral, we have that OK ⊆ a−1, and hence the vectors of BOK

are
indeed in a−1. Also, the euclidean norm of those vectors is bounded from above
by δK , by definition. We conclude by using Lemma 2.7.

For ReduceIdeal, note that the set v ·BOK
is a free subset of I whose vectors

have norms ≤ ∥v∥ · δK . We can then define ReduceIdeal as the application of
Lemma 2.7 with input B, v ·BOK

.

Let BI = (b
(I)
i )i,BJ = (b

(J)
i )i be the inputs to MultiplyIdeals. Then the

set (b
(I)
i · b(J)j )i,j generates IJ and has size d2, this implies that there exists a

Q-free family (ri)i=1,...d inside it, which can be found in polynomial time and
verifies maxi ∥ri∥ ≤ ∥BI∥ · ∥BJ∥. Further, a basis B of IJ can be found in
polynomial time. We then apply Lemma 2.7 with input B, (ri)i. ⊓⊔
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For I = OK , the following lemma states that one can quantumly and effi-
ciently sample a random prime ideal together with a short element in it, hence
the name. We give a proof based on [PS21] but note that a similar statement
was already given as [Gen09a, Th. 16.3.4, Le. 17.2.1] (see also [Gen10, Se. 3.3]).

Lemma 2.9 (Adapted from [PS21, Lemma C.1]). There exists an algo-
rithm SampleWithTrap that on input integers 2 ≤ A < B, a real ε ∈ (0, 1) and
a basis BI of a fractional ideal I, samples a pair (p, w) such that

1. the distribution of p is within statistical distance ε from the uniform distri-
bution over PA,B;

2. the element w belongs to I · p \ {0};
3. we have ∥w∥ ≤ 2

√
4d+ ln(24B/ε) · s with s = max (ssample, ssmooth) and

• ssample =
√
d · ∥B⋆

I∥.
• ssmooth = (∆K ·B · N (I))

1/d ·
√
ln(24B/ε).

Furthermore, if the algorithm is given access to an oracle factoring integral ideals
of norm smaller than (2

√
4d+ ln(24B/ε) · s)d ·N (I)−1, then the algorithm runs

in expected time polynomial in B/|PA,B |, B/A, log∆K , logB, log(1/ε) and in the
size of I.

The proof is available in Appendix A. Note that we will use this result with
ε = exp(−d) in order to simplify computations and subsequently omit this input.

Factoring ideals. Factoring an integral ideal a in OK can be done by factoring
the algebraic norm N (a) of a over the integers; computing, for all the prime
factors p | N (a), the set of prime ideals whose norm is a power of p (there
are at most d of those); and testing for each of these prime if they divide a.
Factoring N (a) can be performed quantumly in time polynomial in logN (a)
(using Shor’s algorithm [Sho94]). Computing the set of prime ideals of norm a
given prime integer p can be performed classically in time polynomial in log p
and log∆K using Buchmann-Lenstra’s algorithm [BL94], described in details
in [Coh96, Sec. 6.2.5]. Finally, testing whether a prime ideal p divides a can be
done in time polynomial in the bit-sizes of p and a. Overall, factoring ideals
can be done in quantum-polynomial time (using Shor’s algorithm) or in classical
sub-exponential time (using the Number Field Sieve).

2.5 Worst-case to average-case reduction for inverse of primes

In [Gen09a, Ch. 16 & 17], Gentry described a self-reduction for a variant of
the bounded distance decoding problem, from worst-case ideals to prime ideals
taken uniformly at random with their norm in some interval [A,B] (for a suitable
choice of A and B). This reduction can be adapted to the shortest vector problem
(instead of the bounded distance decoding problem), but it requires to take the
inverse of the ideals, implying that the average-case distribution we obtain is
over the inverses of prime ideals uniformly chosen in the interval [A,B]. Below,
we state the result of Gentry’s reduction adapted to SVP, and provide a proof
in Appendix C for the sake of completeness.
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Theorem 2.10 (Adapted from [Gen09a, Ch. 16 & 17]). There exist some

C1,K = poly(∆
1/d
K , log∆K , δK) and C2,K = poly(log∆K , δK) such that the fol-

lowing holds. Let γavg ∈ [1, 2d], A ≥ Cd
1,K · γd

avg satisfying A ≤ (∆K)d
O(1)

and

γ = A1/d · C2,K . Then

id-HSVPγ reduces to P−1A,4A-avg-id-HSVPγavg
.

The reduction is probabilistic and, assuming it has access to an oracle factoring
integral ideals whose norms have bit-size poly(log∆K), it runs in expected time
polynomial in its input size, log∆K and 1/δ, where δ is the success probability
of the P−1A,4A-avg-id-HSVPγavg oracle.8

3 Self-Reducibility of id-HSVP to Inverses

LetW be a set of fractional ideals. In this section, we provide a framework for re-
ducing id-HSVP for the uniform distribution overW to id-HSVP for the uniform
distribution overW−1 = {I−1 : I ∈ W}. The reduction, provided in Theorem 3.4
relies on three oracles (beyond the one for id-HSVP for U(W)). The first one
factors integral ideals, and can be instantiated with a quantum polynomial-time
algorithm. The second one samples from I ∩X, where I is an arbitrary norm-
1 replete ideal and X is a well-chosen set: this oracle will be instantiated in
Section 4. The last one finds short non-zero vectors in integral ideals uniformly
distributed within those having their norms in a prescribed interval. Overall,
this will lead to a quantum polynomial-time reduction from W−1-avg-id-HSVP
to W-avg-id-HSVP and IA,4A-avg-id-HSVP for a well-chosen A.

The reduction is built in several steps. First, we show how to map a uni-
form norm-1 replete ideal to an integral ideal uniform among those with norms
in [A, 4A], using a new approach introduced in [Boe22, Sec. 6]. This is parame-
trized by a set X that will be instantiated in Section 4. The second step gives
a way to randomize an arbitrary ideal to an integral ideal uniform among those
with norms in [A, 4A], along with a hint that allows to map a short vector of the
resulting ideal to a short vector in the inverse of the input ideal. Finally, this
allows to describe the reduction.

3.1 From a uniform norm-1 ideal to a uniform integral ideal

In this subsection, we present a way to sample uniformly among integral ideals
whose norms belong to a prescribed interval. Given a compact set X verifying
certain properties, our sampler takes as input a uniform ideal I ∈ idLat0, sam-
ples a point uniformly in I ∩X and output (x) · I−1 ⊆ OK . It holds that if X is
well-designed, then the output distribution is close to the uniform distribution

8 The choice of 4A for the upper bound on the norm of the ideals is not a strict
requirement of this theorem. We instantiated the theorem with this value in order
to simplify its statement.
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over the set of integral ideals in terms of Rényi divergence. Our sampler gener-
alizes [Boe22, Th. 6.9], where the set X is assumed to be the ℓ∞ ball. This new
degree of freedom will allow us (in Section 4) to choose a set X whose points are
balanced, which will be essential for the proof of Theorem 5.1. Note that we do
not use the Arakelov ray divisor formalism to state our results: those of [Boe22,
Sec. 6] are stated with respect to a modulus m ⊆ OK and here we take m = OK .

Definition 3.1. Let X ⊂ KR. We say that X is compact and invariant by
complex rotations if the following hold:

• σ(X) is a compact subset of Cd;
• for any ζ = (ζ1, . . . , ζd) ∈ σ(KR) with |ζ1| = · · · = |ζd| = 1, it holds that
σ−1(ζ) ·X = {σ−1(ζ) · x |x ∈ X} ⊆ X.

We consider the IdealRound algorithm (Algorithm 3.1), whose output dis-
tribution generalizes the distribution presented in [Boe22, Th. 6.9]. It is parame-
trized by an arbitrary compact set X ⊂ KR, takes as input a norm-1 replete ideal
(i.e., an element of idLat0) and returns an integral ideal. We define DIdeal(X) as
the distribution IdealRoundX(U(idLat0)). For the moment, we are not interested
in the efficiency of IdealRoundX , but only in the relationship between DIdeal(X)
and the uniform distribution over ideals with norms belonging to an interval.
This is the purpose of the following result.

Algorithm 3.1 IdealRound

Input: I ∈ idLat0.
Parameter: X ⊂ KR compact.
Output: An integral ideal a.
1: Sample x← U(I

⋂
X).

2: Return a = (x) · I−1.

Lemma 3.2. For any t ∈ R, let Ht = {x ∈ LnKR |
∑

i xi = t}. Let X be a
compact subset of KR invariant by complex rotations (as per Definition 3.1) and
B > A > 2. Assume that:

• There exist some real numbers C ≥ 1 and C ′ > 0 such that we have |I ∩X| ∈
C ′ · [1, C] for any I ∈ idLat0;
• there exists C ′′ ∈ R such that for any t ∈ [ln(A), ln(B)] we have

vol
(
Ln(X)

⋂
Ht

)
= C ′′;

• for any t /∈ [ln(A), ln(B)], we have vol(Ln(X) ∩Ht) = 0.

Then the support of DIdeal(X) is contained in IA,B and

RD∞(U(IA,B) ∥ DIdeal(X)) ≤ C.
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We now comment the conditions of Lemma 3.2. The second and third condi-
tions state that, when embedded in Ln(KR) the set Ln(X) should be contained
between the two hyperplanes Hlog(A) and Hlog(B), and that between those hy-
perplanes, the slices Ln(X)∩Ht should have constant volume. Those conditions
will yield the bounds on the norm of the output ideal. The first condition states
that for any norm-1 replete ideal I, the number of points in X ∩ I should be
non-zero and almost independent of I. Conditions 1 and 2 will imply the near-
uniformity of the output distribution. The proof below is adapted from [Boe22,
Th. 6.9].

Proof. Fix an integral ideal b and a norm-1 replete ideal I. We are going to
compute bounds on

pI,b = Pr
x

(
(x) · I−1 = b

)
= Pr

x
((x) = I · b) = Pr

x
(x generates I · b) ,

where the randomness is over x ← U(I ∩ X). For an ideal J , we define GJ =
{x ∈ KR : (x) = J} as the set of generators of J (if J is not principal, it is the
empty set). Note that GI·b = {x ∈ KR : (x) = I · b} ⊆ I. We have

pI,b =
|GI·b ∩X|
|I ∩X|

∈
∣∣∣GI·b

⋂
X
∣∣∣ · C ′−1 · [C−1, 1],

where the inclusion follows from the first assumption of the lemma. For any I
that is not in the class of b−1 modulo principal ideals, we have that GI·b is
empty, since I · b is not principal. Let [b−1]0 be the set of all norm-1 replete
ideals of the form (α) · b−1 for some α ∈ KR (i.e., the coset of b−1 in idLat0

modulo principal ideals). Let I0 = N (b)1/d · b−1, which belongs to [b−1]0. There
is a bijection between K0

R/O
×
K and [b−1]0 given by u 7→ (u) · I0. This implies

that

E
I←U(idLat0)

(∣∣∣GI·b
⋂

X
∣∣∣) = Pr

I←U(idLat0)
(I ∈ [b−1]0) · E

u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣)

=
1

|ClK |
· E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) ,

where u← U(K0
R/O

×
K) and the second equality comes from Lemma 2.1. Let µK

be the set of roots of unity in K. Using the fact that the Ln function is |µK |-
to-1 when its input is restricted to generators of a principal replete ideal I, and
that X is invariant by complex rotations, we have:

∀I ∈ idLat0 :
∣∣∣GI

⋂
X
∣∣∣ = |µK | ·

∣∣∣Ln(GI)
⋂

Ln(X)
∣∣∣.

In our context, this implies that for any u ∈ K0
R,∣∣∣GN (b)1/d·(u)

⋂
X
∣∣∣ =|µK | ·

∣∣∣Ln(X)
⋂{

Ln(x) : x = v · u · N (b)1/d, v ∈ O×K
}∣∣∣

=|µK | ·
∣∣∣Ln(X)

⋂
(ΛK + Ln(u) + Ln(N (b)1/d))

∣∣∣
=|µK | ·

∣∣∣(Ln(X)− Ln(N (b)1/d))
⋂

(ΛK + Ln(u))
∣∣∣,
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where ΛK = LnO×K . Note that ΛK is full rank in H0, and that Ln(u) ∈ H0

for any u ∈ K0
R. Moreover, the vector Ln(u) is uniform in H0/ΛK when u is

uniform in K0
R/O

×
K . We are hence considering a uniform lattice shift and, for

any measurable set S ⊆ H0, we have:

E
u

(∣∣(ΛK + Ln(u))
⋂
S
∣∣) =

Vol(S)
Vol(ΛK)

.

Applying this to the set S = (Ln(X)− Ln(N (b)1/d)) ∩H0, we obtain

E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) = |µK | ·

Vol((Ln(X)− Ln(N (b)1/d))
⋂

H0)

Vol(ΛK)
.

Observe that by definition of Ht for t ∈ R, it holds that

(Ln(X)− Ln(N (b)1/d))
⋂

H0 =
(
Ln(X)

⋂
HlnN (b)

)
− Ln(N (b)1/d).

Since shifting by Ln(N (b)1/d) does not change the volume, we obtain

E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) = |µK | ·

Vol(Ln(X)
⋂

HlnN (b))

Vol(ΛK)
.

Recall from the second and third assumptions that

Vol
(
Ln(X)

⋂
HlnN (b)

)
=

{
C ′′ if lnN (b) ∈ [lnA, lnB],

0 otherwise.

Let p = C ′′ · |µK |/(C ′ · |ClK | ·Vol(ΛK)). Combining everything, this proves that

pb := E
I←U(idLat0)

(pb,I) ∈

{
p · [C−1, 1] if N (b) ∈ [A,B],

{0} otherwise.

Observe that pb is equal to DIdeal(X)(b), the probability of the ideal b for
the distribution DIdeal(X). The equation above then means that DIdeal(X) out-
puts ideals with norm in [A,B] with probability essentially equal to p (up to
a factor C), and other ideals with probability 0. We quantify this using the
Rényi divergence. As 1 =

∑
b∈IA,B

pb ∈ p · |IA,B | · [C−1, 1], we have that p ∈
|IA,B |−1 · [1, C], and hence:

∀b ∈ IA,B :
pb

U(IA,B)(b)
∈ [C−1, C],

hence RD∞(U(IA,B) ∥ DIdeal(X)) ≤ C, which complete the proof. ⊓⊔

3.2 From an arbitrary ideal to a uniform integral ideal

Below, we give an algorithm, RandomizeIdealA,X (see Algorithm 3.2), which on
input an arbitrary ideal I, returns a uniform integral ideal b and a short non-zero
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vector y ∈ b−1 · I−1. The algorithm is parametrized by an integer A and a set X
satisfying the conditions of Lemma 3.2. RandomizeIdealA,X starts by sampling

a uniform norm-1 ideal J , i.e., with distribution equal to U(idLat0), along with a
small element vJ in it, using the SampleWithTrap algorithm. Since U(idLat0) is
the Haar distribution on a compact group, the ideal I ′ = J · (I/N (I)1/d) is also
uniform. We then use IdealRound to map U(idLat0) to the uniform distribution
over integral ideals with norms in [A, 4A]. In more details, a uniform point x in

I ′ ∩X is sampled and Lemma 3.2 implies that b := x · I ′−1 is almost uniform,
and vJ · x−1 is a small element in b−1 · N (I)1/d · I−1 if x is balanced. We note
that Steps 7 and 8 below are exactly the IdealRound algorithm applied to the
ideal I ′. However, we cannot call this algorithm in a blackbox way, as we need
to know the intermediate value x for Step 9 of the algorithm.

Algorithm 3.2 RandomizeIdeal

Input: A basis BI of an ideal I.
Parameters: A integer and X ⊂ KR \ {0} compact.
Oracles: F for factoring integral ideals, S for sampling from U(I ∩X) for I ∈ idLat0.
Output: b an integral ideal, y ∈ b−1 · I−1 \ {0}.
1: Sample (q, vq)← SampleWithTrapA,4A(BOK ), using F .
2: Sample ζ ← G(0, d−3/2) in span(Ln(O×

K)) conditioned on ∥ζ∥ ≤ 1/d .
3: Sample u uniform in

{
x ∈ K×

R : ∀i ≤ d, |xi| = 1
}
.

4: Let J = u · Exp(ζ) · N (q)−1/d · q and vJ = u · exp(ζ) · N (q)−1/d · vq.
5: Compute BJ = ReduceIdeal(J, vJ).
6: Let I ′ = J · I · N (I)−1/d and BI′ = MultiplyIdeals(BJ , N (I)−1/d ·BI).
7: Sample x← U(I ′ ∩X), using S.
8: Let b = x · I ′−1

.
9: Let y = x−1 · N (I)−1/d · vJ .
10: Return (b, y).

Lemma 3.3. Let A ≥ max(δdK , dd∆c
K) for c as in Lemma 2.3. Let X be a com-

pact subset of KR \{0} whose elements are η-balanced for some η > 1 and satisfy
the assumptions of Lemma 3.2 for A and B = 4A. Assume that |P0,A|/|P0,4A| ≤
c′ for some c′ < 1. On input a basis BI of an ideal I, RandomizeIdealA,X runs
in time polynomial in logA, log∆K , A/|PA,4A| and the size of its input, and
returns (b, y) satisfying

b ∈ IA,4A,

y ∈ b−1I−1 \ {0},

∥y∥ ≤ 85 · d · η ·∆1/d
K · N (Ib)−1/d.

Finally, if D and U respectively denote the distribution of b and the uniform
distribution over IA,4A, then the following holds for any event E ⊆ IA,4A:

D(E) ≥ U(E)

Θ(1)
− 2−Ω(d).
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D1
SD=2−Ω(d)

←−−−−−−→D2
RD∞=O(1)−−−−−−−→D3

SD=2−Ω(d)

←−−−−−−→D4

IdealRound(·) ↓ ↓ ↓ ↓

D =D̃1
SD=2−Ω(d)

←−−−−−−→D̃2
RD∞=O(1)−−−−−−−→D̃3

SD=2−Ω(d)

←−−−−−−→D̃4
RD∞=O(1)−−−−−−−→ U(IA,4A)

Fig. 2. Relations between the distributions of the proof of Lemma 3.3.

Proof. We first bound the Euclidean norms of the variables occurring during the
execution of the algorithm. By Lemma 2.9 and the assumption that A ≥ δdK , we
have that 0 < ∥vq∥ ≤ 51 · d · (A∆K)1/d. Now, note that ∥u∥∞ = 1, ∥exp(ζ)∥∞ ≤
exp(1/2) and N (q)−1/d ≤ A−1/d. We then have ∥vJ∥ ≤ 85 ·d ·∆1/d

K (and vJ ̸= 0).

Then, by Lemma 2.8, we have 0 < ∥BJ∥ ≤ 85 · d1.5 · δK ·∆1/d
K and

∥BI′∥ ≤ 85 · d2 · δK ·∆1/d
K · N (I)−1/d · ∥BI∥.

As elements of X are non-zero and η-balanced, we have that ∥x−1∥∞ ≤ η ·
N (x)−1/d. Also, note that since N (I ′) = 1, we have N (b) = N (x). As a result,
we obtain that y ̸= 0 and:

∥y∥ ≤ N (I)−1/d · ∥x−1∥∞ · ∥vJ∥

≤ N (I)−1/d · η · N (x)−1/d · 85 · d ·∆1/d
K

= 85 · d · η ·∆1/d
K · N (Ib)−1/d.

The latter and the fact that N (b) = N (x) belongs to [A, 4A] (by assumption
on X) provide the first statement on the output.

The previous computations show that every quantity manipulated by the
algorithm has size polynomial in logA, log∆K and the bit-size of the input. Note
that SampleWithTrapA,4A runs in polynomial time in A/|PA,4A|. The overall
running time is then polynomial in logA, log∆K , A/|PA,4A| and the size of the
input.

We now analyze the distribution of b. For this purpose, we define the following
distributions (see also Figure 2):

• D1 is the distribution of J at Step 4;
• D2 is the distribution u · exp(ζ) · q · N (q)−1/d where q is uniform in PA,4A,
and u, ζ are sampled as in Steps 2 and 3;
• D3 is the same as D2 but with q uniform in P0,4A;
• D4 is U(idLat0).

Note that we have the following relationships between the Di’s:

• SD(D1, D2) = 2−Ω(d), thanks to Lemma 2.9 and the data processing in-
equality;
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• RD∞(D3 ∥ D2) = Θ(1), thanks to the assumption on |P0,A|/|P0,4A|;
• SD(D3, D4) = 2−Ω(d) thanks to Lemma 2.3.

We also define D̃i (for i ≤ 4) as the distribution of b obtained by sampling J
from Di, setting I ′ = J ·I ·N (I)−1/d, sampling x from U(I ′∩X) and returning x·
I ′
−1

. Note that D̃1 is D and that D̃4 is DIdeal(X). Indeed, as U(idLat0) is
invariant by multiplication by a fixed norm-1 replete ideal, the ideal I ′ = J · I ·
N (I)−1/d is then distributed from U(idLat0). The data-processing inequalities
of the statistical distance and Rényi divergence imply that the above relations
also hold for D̃i in place of Di, for all i. Furthermore, by choice of X, the Rényi
divergence from U(IA,4A) to D̃4 is equal to Θ(1).

Using the probability preservation properties of the statistical distance and
Rényi divergence, we obtain that for any event E ⊆ IA,4A, we have:

D̃1(E) ≥ U(E)− 2−Ω(d)

Θ(1)
− 2−Ω(d) =

U(E)

Θ(1)
− 2−Ω(d)

which completes the proof. ⊓⊔

3.3 From ideal to their inverses

Let W be a set of fractional ideals. Below, we reduce W−1-avg-id-HSVP to
W-avg-id-HSVP and IA,4A-avg-id-HSVP for some appropriate integer A and
approximation factors. Recall that W−1 refers to the set

{
I−1, I ∈ W

}
.

The reduction is described as an algorithm, InverseToIntegralWA,X (Algo-

rithm 3.3), which takes as input the inverse I−1 of an integral ideal I ∈ W and
returns a short non-zero element of I−1. It is parametrized by an integer A and
a compact set X satisfying the conditions of Lemma 3.2. It relies on four oracles:
oracle OW for solving W-avg-id-HSVP, oracle OI for IA,4A-avg-id-HSVP, ora-
cle F for factoring integral ideals; and oracle S for sampling from I ∩X for I ∈
idLat0. Recall that F can be instantiated as a quantum polynomial time algo-
rithm. An instantiation of oracle S will be provided in Section 4, based on the de-
sign of a nice setX for Lemma 3.2. The reduction first usesOW on the inverse I of
its input, which gives a short non-zero vector vI ∈ I. Then RandomizeIdealA,X

(introduced in the previous subsection) is invoked to randomize I into a uniform
integral ideal b with norm in [A, 4A]. RandomizeIdealA,X also returns a short

non-zero y(Ib)−1 in (Ib)−1. Then OI is invoked on b and returns a short non-
zero vb in b. The reduction finally outputs vb · y(Ib)−1 ∈ I−1 that is short and
non-zero.

The astute reader will notice that, in the above description, the vector vI and
hence the oracle OW do not seem to be used in the subsequent steps. In fact,
we will be able to instantiate S only if given a short basis of I (see Lemma 4.9).
The approximation factor reached by OW will lead to a lower bound condition
on A: the smaller the approximation factor, the smaller the lower bound on A.

Theorem 3.4. LetW be a finite set of fractional ideals. Let γW , γI ≥ 1 and A ≥
max(δdK , dd∆c

K) for c as in Lemma 2.3. Let X be a compact subset of KR \ {0}
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Algorithm 3.3 InverseToIntegralW

Input: I−1 with I ∈ W.
Parameters: A integer and X ⊂ KR \ {0} compact.
Oracles: OW for W-avg-id-HSVPγW , OI for IA,4A-avg-id-HSVPγI ,
F for factoring integral ideals and S for sampling from U(I ∩X) for I ∈ idLat0.

Output: x ∈ I−1 \ {0}.

1: Compute vI ← OW(I).
2: If vI = ⊥, then return ⊥.
3: Compute BI = ReduceIdeal(I, vI).
4: Sample (b, y(Ib)−1)← RandomizeIdealA,X(BI), using F and S.
5: Compute vb ← OI(b).
6: If vb = ⊥, then return ⊥.
7: Return vb · y(Ib)−1 .

whose elements are η-balanced for some η > 1 and satisfy the assumptions of
Lemma 3.2 for A and B = 4A. Assume that |P0,A|/|P0,4A| ≤ c′ for some con-
stant c′ < 1. Let OW an oracle for W-avg-id-HSVPγW with success probabil-
ity εW and OI an oracle for IA,4A-avg-id-HSVPγI with success probability εI .

When given access to OW , OI , an integral ideal-factoring oracle F and an
oracle S for sampling from U(I ∩ X) for I ∈ idLat0, InverseToIntegralWA,X

runs in expected time polynomial in logA, log∆K , A/|PA,4A| and the size of
its input. Further, if its input I is such that I is distributed from U (W), it
outputs x ̸= ⊥ with probability ≥ εI · (εW/Θ(1) − 2−Ω(d)). If x ̸= ⊥, then we
have

x ∈ I−1 \ {0} and ∥x∥ ≤ γ′ ·Vol(I−1)1/d,

for γ′ = 85 · γI ·∆1/d
K · d · η.

Proof. Assume first that neither vI nor vb is equal to ⊥. As the assumptions of
Lemma 3.3 are satisfied, we have y(Ib)−1 ∈ (Ib)−1 \ {0} and

∥y(Ib)−1∥ ≤ 85 · d · η ·∆1/d
K · N (Ib)−1/d.

Now, by assumption, we have that vb ∈ b \ {0} satisfies ∥vb∥ ≤ γI · ∆1/(2d)
K ·

N (b)1/d. We then obtain that x = vb · y(Ib)−1 ∈ I−1 is non-zero and satisfies:

∥x∥ ≤ ∥vb∥ ·
∥∥y(Ib)−1

∥∥ ≤ γI ·∆3/(2d)
K · 85 · d · η · N (I)−1/d.

Towards completing the proof, not that the algorithm succeeds if and only if
neither vI nor vb is equal to ⊥. The probability that vI is not ⊥ is exactly εI .
Using Lemma 3.3 with the event E set to OI(b) succeeding, we obtain that vb
is not ⊥ with probability ≥ εW/Θ(1)−2−Ω(d). Note that the second probability
is over the internal randomness of RandomizeIdealA,X(BI). ⊓⊔
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4 The sampling set

Lemma 3.2 states that if a compact X satisfies a certain number of conditions,
then the output distribution of IdealRoundX resembles the uniform distribution
over integral ideals whose norms belong to a prescribed interval. In this subsec-
tion, we show that the set BηA,B defined below satisfies those constraints. We will
later also use the fact that its elements are η-balanced. An instantiation of the
set BηA,B can be visualized in Figure 1.

Definition 4.1. Let B > A > 0 and η > 1. We define the set:

BηA,B =

{
x ∈ K×R

∣∣∣N (x) ∈ [A,B],

∥∥∥∥Ln( x

N (x)1/d

)∥∥∥∥
2

≤ ln(η)

}
.

The purpose of this section is to prove the following theorem.

Theorem 4.2. Let A,B, η, δ > 0 satisfying A1/d ≥ d3 · η · max(∆
3/(2d)
K , δ),

B/A ≥ 4 and η ≥ e. The set BηA,B is compact and invariant by complex rotations,
satisfies the conditions of Lemma 3.2 and its elements are η-balanced. Further,
there exists an algorithm SampleUniform

η
A,B that, given as input a basis BI of

a norm-1 replete ideal satisfying ∥B⋆
I∥ ≤ δ, samples uniformly in I ∩ BηA,B and

whose expected running time is polynomial in logB, d and B/A.

4.1 Volume of the set Bη
A,B

Before proving that the assumptions of Lemma 3.2 are satisfied by BηA,B , we first
study its volume and its approximate invariance under translation.

Lemma 4.3. For any B > A > 0 and η > 1, we have

Vol
(
BηA,B

)
=

2dR · (2
√
2π)dC · VdR+dC−1√

d
· (B −A) · (ln η)dR+dC−1,

where Vn is the volume of the n-dimensional unit ℓ2 hyperball for any n ≥ 1.

The computation of the volume proceeds by a change of variable, between Rd

and σ(KR). The relevant aspect of the volume formula for the present work is
the linear dependency in (B −A) · (ln η)dR+dC−1.

Proof. Let ej denote the j-th elementary unit vector, we fix C = (c1, . . . , cd) ∈
Cd×d an orthonormal R-basis of σ(KR) ⊂ Cd defined by

cj = ej for 1 ≤ j ≤ dR,

cdR+j = 1/
√
2 · (edR+j + edR+dC+j) for 1 ≤ j ≤ dC,

cdR+dC+j = i/
√
2 · (edR+j − edR+dC+j) for 1 ≤ j ≤ dC.

We let ϕ be the isomorphism sending an element of σ(KR) to its coordinates
in the basis C. Since C is orthonormal, the map ϕ preserves the geometry. In
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particular, the volume of BηA,B is the same as the volume of ϕ(BηA,B) (which is

a d-dimensional object in Rd).
In order to compute this volume, we first introduce the set

Bη+
A,B =

{
x ∈ BηA,B

∣∣∣σi(x) > 0 for all 1 ≤ i ≤ dR

}
,

i.e., the elements of BηA,B whose real embeddings are all positive. Since BηA,B is

invariant by complex rotations, the set BηA,B is the union of 2dR distinct copies

of Bη+
A,B , hence we can focus on computing the volume of the latter. In order to

compute this volume, we will exhibit a function F transforming a “nice box”
of Rd into the set ϕ(Bη+

A,B). We will then use this function to perform a change

of variable and compute the volume of ϕ(Bη+
A,B) from the volume of the nice box.

Defining the function F . Let H be the (dR+dC−1)-dimensional subspace of Rd

spanned by Ln(O×K), i.e.,

H =
{
x ∈ Rd

∣∣∣ ∑
j≤d

xj = 0 ∧ ∀dR < j ≤ dR + dC : xj+dC = xj

}
,

and let B = (bi,j) ∈ Rd×(dR+dC−1) be any orthonormal basis of H. We define the
following function f from R× RdR+dC−1 × RdC to σ(KR) as:

f(N, z,θ) = exp(N/d) · exp
(
B · z+ iθ̂

)
,

where the second function exp is applied coordinate-wise to the vector B ·z+ iθ̂,
and where θ̂ = (0dR | θT | −θT )T ∈ Rd. Note that f is injective on the set
R×RdR+dC−1× [0, 2π)dC , and that its image indeed lies in σ(KR) (it even lies in
the subset of σ(KR) whose first dR coordinates are positive).

In order to obtain a transformation from Rd to itself, we compose the above
function f with the function ϕ, and we obtain F = ϕ ◦ f : Rd → Rd, which is
injective on R×RdR+dR−1× [0, 2π)dC . Moreover, by letting Ball(n)(R) denote the
Euclidean ball of radius R in Rn, we have that

ϕ(Bη+
A,B) = F

(
[lnA, lnB]× Ball(dR+dC−1)(ln η)× [0, 2π)dC

)
.

Indeed, let (N, z,θ) ∈ R×RdR+dC−1×[0, 2π)dC and let x = σ−1(f(N, z,θ)) ∈ KR.
ThenN (x) = exp(N) (because B·z belongs toH, so the sum of its coordinates is
zero) and Ln(x/N (x)1/d) = B · z, which implies that

∥∥Ln(x/N (x)1/d)
∥∥
2
= ∥z∥2

since B is orthonormal. The inclusion from right to left follows from these two
observations and the definition of BηA,B . For the inclusion from left to right, it

suffices to observe that a pre-image of x ∈ Bη+
A,B is obtained by taking N =

ln(N (x)), z equal to the coordinates of Ln(x/N (x)1/d) in basis B, and θ equal
to the arguments of σi(x).

The set [lnA, lnB]×Ball(dR+dC−1)(ln η)× [0, 2π)dC is the “nice set” we men-
tioned above. To compute the volume of Bη+

A,B , we will change variables, using
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the function F , in order to transform ϕ(Bη+
A,B) into this nice set. In order to

perform this change of variables, we first compute the Jacobian matrix of F and
its determinant.

Computing the Jacobian matrix of F . For 1 ≤ i ≤ d, let Fi be the function
corresponding to the i-th coordinate of F (note that Fi goes from Rd to R).
By definition of F and choice of C (which defines ϕ), one can check that the
following holds, for (N, z,θ) ∈ Rd:

Fi(N, z,θ) = exp
(
N/d+

∑
j bi,jzj

)
for 1 ≤ i ≤ dR,

FdR+i(N, z,θ) =
√
2 · exp

(
N/d+

∑
j bdR+i,jzj

)
· cos(θi) for 1 ≤ i ≤ dC,

FdR+dC+i(N, z,θ) =
√
2 · exp

(
N/d+

∑
j bdR+dC+i,jzj

)
· sin(θi) for 1 ≤ i ≤ dC.

Note that here, we used the fact that for all 1 ≤ j ≤ dR + dC − 1 and all
1 ≤ i ≤ dC, it holds that bdR+i,j = bdR+dC+i,j since the columns of B are in H.
We then obtain that:

∂N (Fi(N, z,θ)) = Fi(N, z,θ) · 1d for i ≤ d,
∂zj (Fi(N, z,θ)) = Fi(N, z,θ) · bi,j for i ≤ d and j ≤ dR + dC − 1,

∂θj(FdR+j(N, z,θ)) = FdR+j(N, z,θ) · − sin θj
cos θj

for j ≤ dC,

∂θj(FdR+dC+j(N, z,θ))= FdR+dC+j(N, z,θ) · cos θjsin θj
for j ≤ dC,

∂θj (Fi(N, z,θ)) = 0 else.

In short, the Jacobian matrix of F is DF (N, z,θ) = diagi(Fi(N, z,θ)) ·M, where

M =


1
d 0
... B diagi

(
− sin θi
cos θi

)
1
d diagi

(
cos θi
sin θi

)
 .

Computing the Jacobian determinant. We now compute the determinant of the
matrix DF (N, z,θ). First, we have

det
(
diagi

(
Fi(N, z, θ)

))
= exp(N) · (

√
2)2dC ·

∏
i≤dC

(
sin θi · cos θi

)
,

where we used again the fact that the sum of the coordinates of B · z is zero.

We now focus on M. Let M̂i,j be the matrix M where we have removed the i-th
line and j-th column. Observe that for i ≤ dC, the (dR + i)-th row of M and the
(dR + dC + i)-th row of M coincide except in the (dR + dC + i)-th column. So
developing the determinant of M on the (dR + dC + i)-th column leads to

|detM| =
∣∣∣∣ sin θicos θi

+
cos θi
sin θi

∣∣∣∣ · ∣∣∣det M̂dR+dC+i,dR+dC+i

∣∣∣
=

1

| sin θi · cos θi|
·
∣∣∣ det M̂dR+dC+i,dR+dC+i

∣∣∣.
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Here, to check that the signs are correct, we observe that we can permute the
rows of M without changing the absolute value of the determinant, and move
the row with index dR + i to position dR + dC + i+ 1 (so that it follows directly
the row dR + dC + i). This ensures that both minor matrices are the same, and
that the signs are opposite when we develop according to the (dR + dR + i)-th
column. Repeating the process on the dC last columns of M , we obtain that

|detM| =
(∏

i

1

| sin θi · cos θi|

)
· | det M̂|,

where M̂ is the top-left square sub-matrix of M of dimension dR + dC. Let
B0 ∈ RdR×(dR+dC−1) and B1 ∈ RdC×(dR+dC−1) be sub-blocks of the matrix B
such that B = (BT

0 |BT
1 |BT

1 )
T (recall that B is an arbitrary orthonormal basis

of H). Then all the entries of the first column of M̂ are equal to 1/d and the
remaining dR + dC − 1 are (BT

0 |BT
1 )

T . Let us consider the following distortion

of M̂:

N =

( 1
d · 1dR B0√
2
d · 1dC

√
2 ·B1

)
,

where 1k refers to the k-dimensional all-1 vector. Then det M̂ =
√
2
−dC · detN.

Furthermore, note that NT ·N = diag(1/d, 1, . . . , 1), because the columns of B
are orthonormal and in H (so the sums of their coordinates are zero). This gives
us that |detN| = 1/

√
d. Unrolling the above, we obtain

|detM| = 1
√
d ·
√
2
dC ·

∏
i | sin θi · cos θi|

,

and

|det(DF (N, z,θ))| = exp(N) ·
√
2
dC

√
d

.

Change of variables. We finally perform the change of variables using the func-
tion F to compute the volume of Bη+

A,B (recall that vol(BηA,B) = 2dR · vol(Bη+
A,B)).

Letting 1S(·) denote the indicator function of a set S, we have

vol(Bη+
A,B) =

∫
x∈Rd

1ϕ(Bη +
A,B)(x) dx

=

∫
N∈[lnA,lnB]

z∈Ball(dR+dC−1)(ln η)

θ∈[0,2π)dC

|det(DF (N, z, θ))|dθ dz dN

=

√
2
dC

√
d
·
∫
N∈[lnA,lnB]

exp(N) dN ·
∫
z∈Ball(dR+dC−1)(ln η)

dz ·
∫
θ∈[0,2π)dC

dθ

=

√
2
dC

√
d
· (B −A) · VdR+dC−1 · (ln η)dR+dC−1 · (2π)dC ,

as desired. ⊓⊔
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The proof of Lemma 4.3 gives us the volume of the set BηA,B , but it also a
way to sample uniformly in it.

Lemma 4.4. There exists a probabilistic algorithm that samples from U(BηA,B)
for any B > A > 0 and η > 1. The expected running time of this algorithm is
polynomial in logB, d (the degree of K) and B/A.

Proof. Let ϕ and F be the same functions as in the proof of Lemma 4.3. Recall
that

F
(
[lnA, lnB]× Ball(dR+dC−1)(ln η)× [0, 2π)dC

)
= ϕ(Bη+

A,B), (2)

and that F is injective on this set. It can be observed from their definitions
that F , ϕ and ϕ−1 can be computed in time polynomial in d.

Note that if we can sample from U(ϕ(Bη+
A,B)) in time T , then we can sam-

ple from U(BηA,B) in time T + poly(d). Indeed, it suffices to sample x from

U(ϕ(Bη+
A,B)); compute ϕ−1(x) (which can be done in time poly(d)); sample uni-

form signs (εi)i ∈ {−1, 1}dR ; and output σ−1
(
(ε1, . . . , εdR , 1, . . . 1)

)
· ϕ−1(x). In

the rest of this proof, we then focus on sampling the random variable U(ϕ(Bη+
A,B)).

Let Y be a random variable distributed over [lnA, lnB]×Ball(dR+dC−1)(ln η)×
[0, 2π)dC with density probability fY (N, z, θ) proportional to |det(DF (N, z, θ))|,
i.e., proportional to exp(N). From Equation (2) above, we know that F (Y ) is
distributed as U(ϕ(Bη+

A,B)). We are then reduced to sampling such a random
variable Y .

Note that the domain of Y is a “nice box”: [lnA, lnB]×Ball(dR+dC−1)(ln η)×
[0, 2π)dC . In this domain, we can sample a uniformly random variable Z in time

poly(d) (to sample from the ball Ball(dR+dC−1)(ln η), one can sample a Gaussian
element and then renormalize it inside the ball). To obtain a sample from Y , we
then keep Z with probability exp(ZN )/B, where ZN is the first coordinate of Z.
Note that the rejection probability is indeed between 0 and 1 since ZN ≤ ln(B).

It only remains to estimate the cost of the rejection step. Since ZN ≥ ln(A),
the probability of keeping Z is at least A/B, and so the expected number of
rejections before acceptance is bounded from above by B/A. ⊓⊔

4.2 Properties of the set Bη
A,B

The goal of this subsection is to prove that the set BηA,B satisfies the properties
needed to apply Lemma 3.2.

Lemma 4.5. For any B > A > 0 and η > 1, the set BηA,B is compact, invariant
by complex rotations and its elements are η-balanced.

Proof. Compactness follows from the fact that BηA,B is closed and contained in

the ball in infinity norm with radius η · B1/d. Invariance by complex rotations
follows from the fact that both N (·) and Ln(·) are invariant by complex rotations
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(i.e., we have N (ζx) = N (x) and Ln(ζx) = Ln(x) if x ∈ KR and ζ ∈ KR is such
that |σi(ζ)| = 1 for all i’s). Let x ∈ BηA,B , we have that∥∥∥∥ x

N (x)1/d

∥∥∥∥
∞

= exp

(∥∥∥∥Ln( x

N (x)1/d

)∥∥∥∥
∞

)
≤ exp

(∥∥∥∥Ln( x

N (x)1/d
)

∥∥∥∥
2

)
≤ η.

The same holds forN (x)1/d/x since
∥∥Ln (x/N (x)1/d

)∥∥
∞ =

∥∥Ln (N (x)1/d/x
)∥∥
∞,

which proves that x is η-balanced. ⊓⊔

We now prove that the slices Ln(BηA,B) ∩Ht are empty when t /∈ [lnA, lnB]
and have constant volume otherwise.

Lemma 4.6. Let B > A > 0 and η > 1. For t ∈ R, we define Ht = {x ∈
LnKR|

∑
i xi = t}. Then Ln(BηA,B) ∩Ht = ∅ for t /∈ [lnA, lnB], and the volume

of Ln(BηA,B) ∩Ht is constant for t /∈ [lnA, lnB].

Proof. By definition of BηA,B , we have that

Ln
(
BηA,B

)
=

x ∈ Ln(KR) :
∑
i≤d

xi ∈ [lnA, lnB],
∥∥∥x− (∑

i≤d

xi

)
· 1d

∥∥∥
2
≤ ln η

 ,

where 1d refers to the d-dimensional all-1 vector. The intersection with Ht is the
empty set if t /∈ [lnA, lnB]. Otherwise, it is the ball centered in t · 1 with radius
ln(η), whose volume do not depend on t. ⊓⊔

At this stage, only the first condition of Lemma 3.2 remains to be proved.
We start by an auxiliary lemma, where we prove that if we shift the set BηA,B by
some small vector, then the resulting set is included in another slightly larger

set Bη
′

A′,B′ . The parameter f in the lemma below quantifies how small the shift
vector needs to be, as a function of the parameters A and η. For the rest of the
article, one can think of f as being of the order of poly(d).

Lemma 4.7. Let B > A > 0, η > 1 and v ∈ KR. Assume that A1/d ≥ η·f ·∥v∥∞
for some f > 1. Then

BηA,B + v ⊂ Bη
′

A′,B′

with A′ = A · (1− 1/f)d, B′ = B · (1 + 1/f)d and η′ = η · exp(2
√
d/(f − 1)).

Proof. Let x ∈ BηA,B , we are going to show that x + v ∈ Bη
′

A′,B′ . The definition

of BηA,B and the fact that A1/d ≥ η · f · ∥v∥∞ imply that we have, for every i,

|vi|
|xi|
≤
∥v∥∞
|xi|

≤
∥v∥∞ · η
N (x)1/d

≤
∥v∥∞ · η
A1/d

≤ 1

f
.

The triangle inequality then gives that |xi + vi| > 0 for all i, and hence that x+
v ∈ K×R . Further, note that

N (x+ v)

N (x)
=
∏
i

∣∣∣∣xi + vi
xi

∣∣∣∣ =∏
i

∣∣∣∣1 + vi
xi

∣∣∣∣.
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Since |vi/xi| ≤ 1/f holds for all i, this implies that N (x+ v)/N (x) ∈ [(1 −
1/f)d, (1 + 1/f)d], which in turn shows that N (x+ v) ∈ [A′, B′].

Towards completing the proof, note that∥∥∥∥Ln( x+ v

N (x+ v)1/d

)
− Ln

( x

N (x)1/d

)∥∥∥∥ =

∥∥∥∥Ln (1 + v

x

)
− 1

d
ln
(N (x+ v)

N (x)

)
· 1
∥∥∥∥

≤
∥∥∥Ln (1 + v

x

)∥∥∥+ 1√
d
·
∣∣∣ ln (N (x+ v)

N (x)

)∣∣∣
≤
√
d ·

∥v/x∥∞
1− ∥v/x∥∞

+
√
d · 1/f

1− 1/f

≤ 2
√
d

f − 1
,

where we used the fact that

| ln(1 + y)| = max
(
ln(1 + y), ln

(
1 +

−y
1 + y

))
≤ |y|

1− |y|
,

for any y ∈ (−1, 1). This implies that∥∥∥∥Ln( x+ v

N (x+ v)1/d

)∥∥∥∥ ≤ ln(η) +
2
√
d

f − 1
= ln(η′).

We conclude that x+ v belongs to Bη
′

A′,B′ . ⊓⊔

We are now ready to prove that the first condition of Lemma 3.2 is satisfied.
To count the number of points of the ideal lattice I that belong to BηA,B , we
tile the space with shifts of a fundamental domain of the lattice (concretely,
the Voronoi cell for the ℓ∞ norm). Using Lemma 4.7, we show that the union
of Voronoi cells corresponding to elements of I ∩ BηA,B contains a smaller ver-

sion Bη0

A0,B0
of the set, and is contained in a larger version Bη1

A1,B1
. By carefully

choosing parameters, we can ensure that the ratio of volumes of these two sets
is bounded from above by a constant. In the lemma statement, note that C ′ is
independent of the ideal I, but may depend on the other parameters, such as A,
B, η and K. This proof is an adaptation of [Boe22, Le. 6.13] with BηA,B instead
of the ℓ∞ ball.

Lemma 4.8. Let A,B, η verifying A1/d ≥ η · d3 ·∆3/(2d)
K , B/A ≥ 4 and η ≥ e.

There exists C ′ > 0 such that for any replete ideal I ∈ idLat0, we have∣∣∣I⋂BηA,B

∣∣∣ ∈ C ′ · [1, 340].

Proof. Let I be a norm-1 ideal, and let V∞(I) be its ℓ∞-norm Voronoi cell, i.e.,
V∞(I) = {y ∈ KR : ∀x ∈ I \ {0}, ∥y + x∥∞ ≥ ∥y∥∞}. We let µ∞(I) denote

the (ℓ∞-norm) radius of V∞(I). By (1), we have that µ∞(I) ≤ d · ∆3/(2d)
K . As
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a consequence, Lemma 4.7 instantiated with f = d2 gives that since A1/d ≥
η · d3 ·∆3/(2d)

K

BηA,B + V∞(I) ⊂ Bη1

A1,B1
,

with A1 = A · (1− 1/d2)d, B1 = B · (1 + 1/d2)d and η1 = η · exp(2
√
d/(d2 − 1)).

Recall that we assumed that d ≥ 2 in all the article, so that we have f > 1 as
needed for Lemma 4.7.

Let A0 = A ·(1−1/d2)−d, B0 = B ·(1+1/d2)−d and η0 = η ·exp(−2
√
d/(d2−

1)). From the lower bound on η (and d ≥ 2), one can check that η0 > 1. Moreover,
we have that B0/A0 ≥ 1/3 · B/A ≥ 4/3 and hence that B0 > A0. Finally, from

A0 ≥ A and η0 ≤ η, we obtain that A
1/d
0 ≥ η0 · f · µ∞(I) with f = d2. This

implies that we can apply Lemma 4.7 again on A0, B0, η0 and f = d2 and we
obtain:

Bη0

A0,B0
+ V∞(I) ⊂ BηA,B .

Note that for any x ∈ Bη0

A0,B0
, there exists some (not necessarily unique)

ℓx ∈ I such that x − ℓx ∈ V∞(I). This implies that ℓx ∈ (Bη0

A0,B0
+ V∞(I)) ∩ I.

Therefore, we have

Bη0

A0,B0
⊆

⋃
ℓ∈(Bη0

A0,B0
+V∞(I))∩I

ℓ+ V∞(I) ⊆
⋃

ℓ∈Bη
A,B∩I

ℓ+ V∞(I).

The above union is made of sets that are disjoints except for volume-0 intersec-
tions, so we have

Vol(Bη0

A0,B0
) ≤ Vol

( ⋃
ℓ∈Bη

A,B∩I

ℓ+ V∞(I)
)
=
∣∣∣BηA,B

⋂
I
∣∣∣ ·Vol(V∞(I))

=
∣∣∣BηA,B

⋂
I
∣∣∣ ·√∆K .

Similarly, we have: ∣∣∣BηA,B

⋂
I
∣∣∣ ·√∆K ≤ Vol(Bη1

A1,B1
).

This gives us ∣∣∣BηA,B

⋂
I
∣∣∣ ∈ C ′ ·

[
1,

Vol(Bη1

A1,B1
)

Vol(Bη0

A0,B0
)

]
,

where C ′ = Vol(Bη0

A0,B0
)/
√
∆K > 0. It remains to bound the right boundary of

the interval. By using Lemma 4.3, we obtain that

Vol(Bη1

A1,B1
)

Vol(Bη0

A0,B0
)
=

(B1 −A1) · (ln η1)dR+dC−1

(B0 −A0) · (ln η0)dR+dC−1
≤ B1 −A1

B0 −A0
·
(
ln η1
ln η0

)d−1

.

Recall that we have already seen that B0/A0 ≥ 4/3. This implies that

B1 −A1

B0 −A0
≤ B1

B0 −A0
=
(
1 +

1

d2

)2d
· 1

1− (A0/B0)
≤ 5

2
· 1

1− 3/4
= 10.
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Using the fact that ln η ≥ 1, we also have:

( ln η1
ln η0

)d−1
=
( ln η + 2

√
d/(d2 − 1)

ln η − 2
√
d/(d2 − 1)

)d−1
≤
(1 + 2

√
d/(d2 − 1)

1− 2
√
d/(d2 − 1)

)d−1
≤ 34.

This completes the proof. ⊓⊔

4.3 Sampling uniform ideal elements in Bη
A,B

We now show how to uniformly sample in I ∩ BηA,B , where I is a norm-1 ideal.

For this purpose, SampleUniformηA,B (Algorithm 4.1) uniformly samples in a

larger Bη1

A1,B1
(using Lemma 4.4) and deterministically round to I using Babai’s

nearest plane algorithm [Bab86, Th. 3.1]. The sample is kept if it belongs to BηA,B .

Algorithm 4.1 SampleUniform
η
A,B

Input: BI a basis of an ideal I ∈ idLat0.
Output: x ∈ I

⋂
Bη

A,B .

1: Let A1 = A · (1− 1/d2)d, B1 = B · (1 + 1/d2)d and η1 = η · exp(2
√
d/(d2 − 1)).

2: repeat

3: Sample y ← U(Bη′

A′,B′).
4: Run Babai’s nearest plane algorithm on (BI , y); let x ∈ I be the output.
5: until x ∈ Bη

A,B .
6: Return x.

Lemma 4.9. Let A,B, η with B/A ≥ 4 and η ≥ e. Let I ∈ idLat0 given by a
basis BI and δ = ∥B⋆

I∥. Assume that A1/d ≥ d2.5 ·η ·δ. Then SampleUniform
η
A,B

samples uniformly in I ∩ BηA,B and its expected running time is polynomial in
logB, d and B/A.

Proof. Let P(BI) = B⋆
I · (−1/2, 1/2]d be the rounding cell of Babai’s nearest

plane algorithm. In order to prove that the output distribution is uniform, it
suffices to prove that for any point x ∈ I ∩ Bη

A,B , we have P(BI) + x ⊂ Bη1

A1,B1
.

The definition of the nearest-plane algorithm’s rounding cell implies that the
ℓ∞ norm of vectors in P(BI) is at most

√
dδ. The definitions of A1, B1, η1 and

Lemma 4.7 (with f = d2) allow us to conclude.
The running time follows from Lemma 4.4 and from bounding the probability

that after Step 4, we have x /∈ BηA,B . This occurs if y /∈ ∪x∈Bη
A,B∩I (x+ P(BI)).

As in the proof of Lemma 4.8, we have that:

Bη0

A0,B0
⊂

∑
x∈Bη

A,B∩I

x+ P(BI),
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where A0 = A ·(1+1/d2)d, B0 = B ·(1−1/d2)d and η0 = η ·exp(−2
√
d/(d2−1)).

The probability of exiting the loop is then bounded from below by

Vol(Bη0

A0,B0
)

Vol(Bη1

A1,B1
)
≥ B0 −A0

B1 −A1
· (ln η0)

d−1

(ln η1)d−1
≥ Ω(1),

where the inequalities are as in the proof of Lemma 4.8. ⊓⊔

5 Wrapping up

We combine Theorems 3.4 and 4.2 to obtain the main result from this work. To
simplify the statement, we instantiate the integral ideal-factoring oracle with a
quantum polynomial-time algorithm, and use the Extended Riemann Hypoth-
esis. The latter allows us to bound |P0,A|/|P0,4A| by a constant that is < 1
when A ≥ (log∆K)Ω(1) and A/|PA,4A| by O(lnA) (see [BS96, Th. 8.7.4]).

Theorem 5.1 (ERH). There exists CK = (dδK∆
1/d
K )O(1) such that the fol-

lowing holds. Let W be a finite set of fractional ideals. Let γW , γI ≥ 1 and A
with A1/d ≥ CK · γW . Let OW an oracle for W-avg-id-HSVPγW with success
probability εW and OI an oracle for IA,4A-avg-id-HSVPγI with success proba-
bility εI .

There exists a quantum algorithm making one call to OW and one call to OI
whose running time is polynomial in logA, log∆K and the size of its input, such
that the following holds. Given as input I ∼ U(W), it outputs x ∈ I−1 \{0} with
probability ≥ εI · (εW/Θ(1)− 2−Ω(d)) such that

∥x∥ ≤ γ′ ·Vol(I−1)1/d with γ′ = 232 · d ·∆1/d
K · γI .

Proof. The algorithm is InverseToIntegralW (Algorithm 3.3) instantiated with
the set BηA,B with B = 4A and η = e.

Note that at Step 3 of InverseToIntegralW , we have ∥BI∥ ≤ δK · ∥vI∥ (by
Lemma 2.8). By definition of OW , this implies that ∥BI∥ ≤ δK · γW ·∆1/(2d)

K ·
N (I)1/d. InverseToIntegralW then calls RandomizeIdeal (Algorithm 3.2),
which at its Step 6 computes a basis BJ of an ideal J that was showed in
the proof of Lemma 3.3 to satisfy:

∥BJ∥ ≤ 85 · d2 · δK ·∆1/d
K · N (I)−1/d · ∥BI∥

≤ 85 · d2 · δ2K ·∆
3/(2d)
K · γW =: δ.

The result follows from Theorems 3.4 and 4.2, using δ as above. ⊓⊔
As a corollary, we obtain a quantum reduction from I−1A,4A-avg-id-HSVPγ′

to IA,4A-avg-id-HSVPγ and from P−1A,4A-avg-id-HSVPγ′ to PA,4A-avg-id-HSVPγ

if A1/d ≥ (dδK∆
1/d
K )Ω(1) ·γ and γ′ = O(d∆

1/d
K ) ·γ. Note that in the case of prime

ideals, the success probability decreases with ρ̃A (the inverse of the proportion
of prime ideals among all ideals of norm ≤ A), which may or may not be small
depending on the choice of the field K. This dependency arises from hoping that
a uniform integral ideal is prime.
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Corollary 5.2 (ERH). There exists CK = (dδK∆
1/d
K )O(1) such that the fol-

lowing holds. Let γ ≥ 1 and A with A1/d ≥ CK · γ. Let O an oracle for
IA,4A-avg-id-HSVPγ with success probability ε ≥ 2−Ω(d).

There exists a quantum algorithm making two calls to O whose running time
is polynomial in logA, log∆K and the size of its input, such that, given as
input a ∼ U(IA,4A), it outputs x ∈ a−1 \ {0} with probability Ω(ε2) with

∥x∥ ≤ γ′ ·Vol(a−1)1/d with γ′ = 232 · d ·∆1/d
K · γ.

Corollary 5.3 (ERH). There exists CK = (dδK∆
1/d
K )O(1) such that the fol-

lowing holds. Let γ ≥ 1 and A with A1/d ≥ CK · γ. Let O an oracle for
PA,4A-avg-id-HSVPγ with success probability ε ≥ 2−Ω(d).

There exists a quantum algorithm making two calls to O whose running time
is polynomial in logA, log∆K and the size of its input, such that, given as
input p ∼ U(PA,4A), it outputs x ∈ p−1 \ {0} with probability Ω(ε2/ρ̃A) with

∥x∥ ≤ γ′ ·Vol(p−1)1/d with γ′ = 232 · d ·∆1/d
K · γ.

Combining Corollary 5.3 with Theorem 2.10, we obtain a quantum worst-case
to average-case reduction for ideal-HSVP, where the average-case distribution is
the uniform distribution over prime ideals with norm in some interval [A, 4A].

Corollary 5.4 (ERH). Let γ ≥ 1. There exists some γ′ = γ · poly(∆1/d
K ,

log∆K , δK) and A = γd · poly(∆K , (log∆K)d, δdK) such that

id-HSVPγ′ reduces to PA,4A-avg-id-HSVPγ .

The reduction is quantum and runs in expected time polynomial in its input size,
log∆K , 1/ρ̃A and 1/ε, where ε is the success probability of the oracle solving
PA,4A-avg-id-HSVPγ .

Proof. We assume without loss of generality that γ ≤ 2d, since otherwise we
can solve id-HSVPγ′ in polynomial time using the LLL algorithm, for γ′ =

γ ·
√
d. We also assume that the success probability ε of the oracle solving

PA,4A-avg-id-HSVPγ is ≥ 2−Ω(d), since otherwise one can run an exact SVP
solver in time 1/ε.

Let C ′1,K be the max of the C1,K from Theorem 2.10 and the CK from Corol-

lary 5.3. Then C ′1,K = poly(∆
1/d
K , log∆K , δK) since both quantities are. Let A =(

C ′1,K · (232d ·∆
1/d
K ) · γ

)d
. One can check that A = γd · poly(∆K , (log∆K)d, δdK)

as desired. Let also γ′ = A1/d ·C2,K = γ ·(232d ·∆1/d
K ) ·C ′1,K ·C2,K , where C2,K is

as in Theorem 2.10. Similarly, one can check that γ′ = γ ·poly(∆1/d
K , log∆K , δK)

as desired. Finally, let γavg = 232d ·∆1/d
K · γ.

Note that A, γ and ε satisfy the conditions from Corollary 5.3. So there is a
quantum reduction

from P−1A,4A-avg-id-HSVPγavg
to PA,4A-avg-id-HSVPγ ,
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which succeeds with probability δ = Ω(ε2/ρ̃A) and runs in time polynomial
in log∆K . Now, observe that γavg, A and γ′ satisfy the conditions from Theo-
rem 2.10, so there is a quantum reduction

from id-HSVPγ′ to P−1A,4A-avg-id-HSVPγavg ,

which runs in expected time polynomial in its input size, log∆K and 1/δ. Com-
bining both reductions and instantiating with the lower bound on δ completes
the proof. ⊓⊔

6 NTRU with polynomial modulus

The main result of this section is Corollary 6.3. It gives a distribution over NTRU
instances with small modulus q that is hard on average, under the worst-case
id-HSVP hardness assumption.

Definition 6.1 ([PS21, Def. 3.1 and 3.4]). Let γ ≥ γ′ ≥ 1 be real numbers.
Let q ≥ 2 be an integer.

• A (γ, q)-NTRU instance is an element h ∈ OK/qOK such that there exists
(f, g) ∈ OK \ {(0, 0)} verifying f = h · g mod q and ∥f∥, ∥g∥ ≤ √q/γ.

• The (γ, γ′, q)-NTRU problem asks, given a (γ, q)-NTRU instance h, to find
(f, g) ∈ OK \ {(0, 0)} verifying f = h · g mod q and ∥f∥, ∥g∥ ≤ √q/γ′.

• Let D be a distribution over (γ, q)-NTRU instances. The (D, γ, γ′, q)-NTRU
problem asks to solve (γ, γ′, q)-NTRU for an instance sampled from D, with
non-negligible probability (over the choice of the instance and the internal
randomness of the algorithm).

Note that in this work we are only interested in the vector version of NTRU
from [PS21]. We let IdealToNTRU denote [PS21, Alg. 4.1]. It takes as input a
basis of an integral ideal a and a modulus q and outputs an instance of (γ, q)-
NTRU whose solution is related to a short non-zero vector of a. The following
result is a consequence of [PS21, Le. 4.3], whose proof is very similar to [PS21,
Th. 4.1]. We provide a proof for the sake of completeness.

Theorem 6.2 (Adapted from [PS21, Th. 4.1]). Let γ ≥ γ′ ≥ 1 be real
numbers, q ≥ 2 be an integer, and

N =
1

2d+2
·

( √
q

γ · d1.5 · δK ·∆1/(2d)
K

)d

.

Let a be an integral ideal of norm in [N, 2d+2 · N ] and h = IdealToNTRU(a, q).
Then h is a (γ, q)-NTRU instance. If (f, g) is a solution to (γ, γ′, q)-NTRU
on instance h, then g is a solution to γHSVP-id-HSVP for instance a, where
γHSVP = γ/γ′ · 4d1.5 · δK .

Further, IdealToNTRU runs in time polynomial in its input size and in log∆K .



Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals 33

Note that the statement is void if 2d+2 · N < 1 (no integral ideal has norm in
(0, 1)): an extra parameter constraint is implicily required for it to be meaningful.

Proof. The running time of IdealToNTRU is stated in [PS21, Le. 4.3].
By [PS21, Le. 4.3], there exists (f, g) ∈ OK

2\{(0, 0)} such that g·h = f mod q

and ∥f∥, ∥g∥ ≤ d1.5 · δK ·∆1/(2d)
K · N (a)1/d. (Note that δK in the present work is

an upper bound on the quantity δK from [PS21].) Using N (a) ≤ 2d+2 · N and
the definition of N , this gives that h is a (γ, q)-NTRU instance.

Assume now that (f, g) ∈ OK \ {(0, 0)} is a solution to (γ′, γ, q)-NTRU for
instance h. Then we have

∥f∥, ∥g∥ ≤
√
q

γ′
≤ q

d1.5 · δK ·∆1/(2d)
K · (2d+2 ·N)1/d

≤ q

d1.5 · δK ·∆1/(2d)
K · N (a)1/d

,

where the second inequality comes the definition of N , and the third one comes
from the assumption N (a) ≤ 2d+2 · N . By [PS21, Le. 4.3], we obtain that g ∈
a \ {0}. Finally, the fact that g is a solution to γHSVP follows from

∥g∥ ≤
√
q

γ′
=

2(d+2)/d ·N1/d · γ · d1.5 · δK ·∆1/(2d)
K

γ′

≤ 4 · γ · d1.5 · δK
γ′

·∆1/(2d)
K · N (a)1/d,

where the last inequality follows from the inequalities N (a) ≥ N and d ≥ 2. ⊓⊔

For A, q ≥ 2, we defineDA,q
NTRU = IdealToNTRU(U(PA,4A), q). Theorem 6.2 im-

plies a polynomial-time reduction from IA,4A-avg-id-HSVP to (DA,q
NTRU, γ, γ

′, q)-
NTRU for well chosen γ, γ′, A and q. Combining Corollary 5.4 and Theorem 6.2
give the following result.

Corollary 6.3 (ERH). Let γ ≥ γ′ ≥ 1. There exists an integer q = (γ4/γ′2) ·
poly(∆

1/d
K , log∆K , δK), and real numbers γHSVP = (γ/γ′) · poly(∆1/d

K , log∆K ,
δK) and A = (γ/γ′)d · poly(∆K , (log∆K)d, δdK) such that

id-HSVPγHSVP
reduces to (DA,q

NTRU, γ, γ
′, q)-NTRU.

The reduction is quantum and runs in expected time polynomial in its input
size, log q, log∆K , 1/ρ̃A and 1/ε, where ε is the success probability of the oracle

solving (DA,q
NTRU, γ, γ

′, q)-NTRU.

Proof. Without loss of generality, we can assume that γ/γ′ ≤ 2d, since otherwise
we have a polynomial time algorithm solving id-HSVPγHSVP for γHSVP = γ/γ′.
Let Γ = (γ/γ′) · 4d1.5 · δK . Let A = Γ d · poly(∆K , (log∆K)d, δdK) be as in

Corollary 5.4, with “γ = Γ”. Similarly, let γHSVP = Γ ·poly(∆1/d
K , log∆K , δK) be

the quantity γ′ from Corollary 5.4, with “γ = Γ”. Finally, let X = γ ·2 · (4A)1/d ·
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d1.5 ·δK ·∆1/(2d)
K and q = ⌊X2⌋. Note that q ≥ X2/4. Note that γHSVP = (γ/γ′) ·

poly(∆
1/d
K , log∆K , δK) and that q = (γ4/γ′2) · poly(∆1/d

K , log∆K , δK).

Let N = 1
2d+2 ·

( √
q

γ·d1.5·δK ·∆1/(2d)
K

)d
be as in Theorem 6.2. Using the fact that

X/2 ≤ √q ≤ X and the definition of X, we have that [A, 4A] ⊆ [N, 2d+2 · N ].
Hence, the support of the distribution U(PA,4A) is contained in the set of integral
ideals with norm in [N, 2d+2 ·N ].

Recall that DA,q
NTRU is the distribution IdealToNTRU(U(PA,4A), q). By Theo-

rem 6.2, there is a reduction from PA,4A-avg-id-HSVPΓ to (DA,q
NTRU, γ, γ

′, q)-NTRU,
which runs in time polynomial in log q, log∆K and logA = poly(log∆K) (since
γ/γ′ ≤ 2d) and preserves the the success probability of the algorithm. More-
over, from Corollary 5.4, id-HSVPγHSVP

reduces to PA,4A-avg-id-HSVPΓ, which
is quantum and runs in expected time polynomial in its input size, log∆K , 1/ρ̃A
and 1/ε. Combining both reductions gives the desired result. ⊓⊔

Note that the distribution DA,q
NTRU can be sampled from along with a trapdoor

by running SampleWithTrap with appropriate parameters (in order to generate
an ideal from U(PA,4A) together with a short non-zero vector in it), and then
running the IdealToNTRU algorithm. This, however, requires an access to a fac-
toring oracle (for the SampleWithTrap algorithm). Finding a classical algorithm

to efficiently sample from DA,q
NTRU with a trapdoor is an interesting open problem.
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NTRU. In ASIACRYPT, 2022.

Gen09a. C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University, 2009.

Gen09b. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

Gen10. C. Gentry. Toward basing fully homomorphic encryption on worst-case
hardness. In CRYPTO, 2010.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

KF17. P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In EUROCRYPT, 2017.

LM06. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are
collision resistant. In ICALP, 2006.

LPR10. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

MG02. D. Micciancio and S. Goldwasser. Complexity of lattice problems: a crypto-
graphic perspective. Springer, 2002.

Mic02. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions. In
FOCS, 2002.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

Neu13. J. Neukirch. Algebraic number theory. Springer, 2013.
PHS19. A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices
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A Additional preliminaries

For s > 0 and x ∈ Rn we define ρs(x) = exp
(
−π · ∥x∥2/s2

)
. Given an n-

dimensional lattice L, a vector u ∈ Rn and a parameter s > 0, we define the
discrete Gaussian distribution DL,s,u over L with center parameter u and stan-
dard deviation parameter s by DL,s,u(x) := ρs(x− u)/ρs(L− u) for all x ∈ L.

For any ε > 0 and n-dimensional lattice L, the smoothing parameter ηε(L)
is defined as the smallest s > 0 such that ρ1/s(L

∗\{0}) ≤ ε, where L∗ = {x ∈
spanR(L) | ⟨x, ℓ⟩ ∈ Z for all ℓ ∈ L}. In the case of an ideal lattice I, we have
(see [PRS17, Lemma 6.9]), for any ε ∈ (0, 1):

ηε(I) ≤ ∆
1/d
K · N (I)1/d ·max

(
1,

√
ln(1/ε)

d

)
. (3)

For any basis B of an n-dimensional lattice L, we have the following upper
bound (obtained by instantiating [GPV08, Le. 3.1] with ε = 1/2 and observing
that ln(6n/π) ≤ n for all n ≥ 1).

η1/2(L) ≤
√
n ·max

i
∥b∗i ∥. (4)

We will use the following results on lattice Gaussians.

Lemma A.1 (Proof of [MR07, Le. 4.4]). Let L be a rank n lattice, u ∈
span(L) and s ≥ ηε(L) for some ε > 0. Then it holds that

ρs(L+ u) ∈ [1− ε, 1 + ε] · sn

vol(L)
.

Corollary A.2. Let I be a fractional ideal, a be an integral ideal and ε ∈ (0, 1).

Let u ∈ span(I) and s ≥ ∆
1/d
K · N (a · I)1/d ·

√
ln(3/ε). Then

DI,s,u(a · I) ∈ [1− ε, 1 + ε] · N (a)−1.

Proof. Note that since a is integral, then a ·I is a sub-lattice of I and DI,s,u(a ·I)
is well-defined. By (3) and the lower bound on s, we have s ≥ ηε′(a · I) ≥ ηε′(I),
for ε′ = ε/3. We can thus apply Lemma A.1 to both lattices I and a · I. We

obtain DI,s,u(a · I) = ρs(a · I −u)/ρs(I −u) ∈ [ 1−ε
′

1+ε′ ,
1+ε′

1−ε′ ] · vol(I)/ vol(a · I). We
conclude using the fact that vol(a · I)/ vol(I) = N (a) and the choice of ε′. ⊓⊔

Lemma A.3 ([Reg05, Claim 3.8]). For any ε > 0, lattice L, center u ∈
spanR(L) and parameter s ≥ ηε(L), it holds that

ρs(L+ u) ∈
[
1− ε

1 + ε
, 1

]
· ρs(L).

Lemma A.4 ([Ban93, Le. 1.5]). For any c > 1/
√
2π, any n-dimensional

lattice L and any u ∈ span(L), we have ρ1((L−u)\c
√
nB) ≤ 2Cnρ1(L), where B

denotes the Euclidean ball of radius 1 and C = c
√
2πe · e−πc2 < 1.
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Corollary A.5. Let L be a lattice of rank n, B be any basis of L, u ∈ span(L)
and s ≥

√
n ·maxi ∥b∗i ∥. For any ε ∈ (0, 1], it holds that Prx←DL,s,u(∥x− u∥ ≥

s ·
√
ln(1/ε) + 4n) ≤ ε.

Proof. Without loss of generality, we can scale everything so that s = 1. Let us
define c :=

√
(1/n) · ln(1/ε) + 4. Then, we have

Pr
x←DL,1,u

(
∥x− u∥ ≥

√
ln(1/ε) + 4n

)
=

ρ1
(
(L− u) \ c

√
nB
)

ρ1(L− u)
.

Since c ≥
√
4 > 1/

√
2π, we can apply Lemma A.4 to bound the numer-

ator from above. In order to simplify the computations, we use the fact that
c · e−πc2 ≤ e−c

2

for all c > 1/
√
2π. Then we see that 6 · Cn ≤ 6n · Cn ≤

e− ln(1/ε)+(ln(
√
2πe)+ln(6)−4)n ≤ e− ln(1/ε) = ε. Using Lemma A.4, we hence ob-

tain the bound

ρ1
(
(L− u) \ c

√
nB
)
≤ ε/3 · ρ1(L).

Let us now bound the quantity ρ1(L−u) from below. Using Lemma A.3 with
ε = 1/2 (observe that s ≥ η1/2(L) by Equation (4)), we see that ρ1(L − u) ≥
1/3 · ρ1(L). Combining both inequalities provides the desired result. ⊓⊔

Lemma A.6 ([BLP+13, Le. 2.3]). There is a probabilistic polynomial-time
algorithm that, given a basis B of an n-dimensional lattice L, a center u ∈
spanR(L), and a parameter s ≥

√
ln(2n+ 4)/π · ∥B∗∥, outputs a sample dis-

tributed according to DL,s,u.

The following lemma is adapted from [GPV08, Th. 4.1] and [PS21, Le. 2.2].
We will notably be interested in values of ε that are 2−ω(n), which is not captured
in the typical variants of this statement. For completeness, a proof is provided.

Lemma A.7. There exists a probabilistic polynomial time algorithm that takes
as input a basis B of an n-dimensional lattice L, an error bound ε ∈ (0, 1/2], a
parameter s ≥

√
n · ∥B∗∥ and a center u ∈ span(L) and outputs a sample from

a distribution D̃B,s,u such that

• SD(DL,s,u, D̃B,s,u) ≤ ε;

• for all v← D̃B,s,u, it holds that ∥v − u∥ < s ·
√

ln(1/ε) + 4n.

Proof. The algorithm from Lemma A.7 is obtained by running the algorithm
from Lemma A.6 until the output v satisfies ∥v − u∥ < s ·

√
ln(1/ε) + 4n. From

Corollary A.5, this event happens with probability at least 1 − ε ≥ 1/2, hence
the algorithm resamples at most twice on average, and the output distribution
is within statistical distance ≤ ε from DL,s,u (the distribution before rejection).

Finally, note that
√
ln(2n+ 4)/π ≤

√
n for all n ≥ 1, hence we can indeed apply

Lemma A.6, and we conclude that the expected run time of the algorithm is
polynomial. ⊓⊔



Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals 39

B Proof of Lemma 2.9

The SampleWithTrap algorithm is given below, as Algorithm B.1. It relies on an
ideal-factoring oracle which can be implemented either in quantum polynomial
time or in classical sub-exponential time. We prove the following statement,
which can be viewed as a reformulation of Lemma 2.9. (Recall that factoring
ideals reduces in polynomial time to factoring integers.)

Algorithm B.1 SampleWithTrapA,B

Input: Integers 2 ≤ A ≤ B, a real δ ∈ (0, 1] and a basis BI of a non-zero ideal I.
Oracle: F for factoring integral ideals.
Output: (p, w) with p ∈ PA,B , and w ∈ Ip.

1: Set ε = δ/(8B).
2: Set M =

√
4 + ln(3/ε)/d.

3: Set s = max(
√
d · ∥B∗

I∥, ∆
1/d
K ·B1/d · N (I)1/d ·

√
ln(3/ε)).

4: Set u = Ms · 1 with 1 = (1, . . . , 1)T ∈ Rd.
5: Set kmax = d · logA(2M ·

√
d · N (I)−1/d).

6: repeat
7: Sample w ← D̃BI ,s,u using Lemma A.7 with error bound ε.
8: Compute a = I−1 · (w).
9: Factor a using F and let S be the set of distinct factors of a in PA,B .
10: until S ≠ ∅.
11: Sample p uniformly in S.
12: With probability 1− |S|·N (p)

kmax·B , go to Step 6.

13: Return (p, w)

Lemma B.1. Let F be an ideal-factoring oracle. Given as inputs two inte-
gers 2 ≤ A < B, a real δ ∈ (0, 1] and the basis BI of a non-zero ideal I,
SampleWithTrap outputs (p, w) such that

• the distribution of p is at statistical distance δ from the uniform distribution
on PA,B;

• the element w belongs to I ·p\{0} and verifies ∥w∥ ≤ 2s ·
√
4d+ ln(24B/δ),

where

s = max
(√

d · ∥B∗I∥, ∆
1/d
K ·B1/d · N (I)1/d ·

√
ln(24B/δ)

)
.

Furthermore, SampleWithTrap runs in expected time polynomial in B/|PA,B |,
B/A, log∆K , logB, log(1/δ) and in the size of its input.

Proof. We first analyze the running time of SampleWithTrap and then its cor-
rectness.
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Running time. Observe that every step of the algorithm can be performed in
polynomial time. For Step 7, we use Lemma A.7, whose assumptions are indeed
satisfied. We further observe that at Step 12, the rejection probability is always
between 0 and 1, hence we can indeed reject with this probability. Note that
we have B ≥ N (p) since p ∈ PA,B . Also, we have |S| ≤ logAN (a). It hence
suffices to show that for any non-zero ideal a computed at Step 8, we have
logAN (a) ≤ kmax. From Lemma A.7, we know that ∥w−u∥ < s ·

√
ln(3/ε) + 4d.

As ∥u∥ =
√
d·M ·s = s·

√
ln(3/ε) + 4d, we have ∥w∥ ≤ 2∥u∥ = 2M ·

√
d·s, which

in turn implies that N (w) ≤ ∥w∥d ≤ (2M ·
√
d · s)d. Hence, we conclude that

N (a) ≤ (2M ·
√
d · s)d · N (I)−1 = Akmax . This shows that (|S| ·N (p))/(kmax ·B)

belongs to [0, 1], as desired.

We now study the probability of exiting the outer loop, from Step 6 to
Step 12. It is bounded from below by A/(kmaxB) (since we have |S| ≥ 1 when
we exit the inner loop). Hence, the expected number of iterations of this loop is
at most kmax ·B/A. Since A ≥ 2, then kmax is polynomial in d = poly(log∆K),
log(s), log(M) and logN (I−1). From the definition of s, one can check that kmax

is polynomial in log∆K , logB, log log(1/δ) and the size of the input.

It remains to bound from below the probability of exiting the inner loop,
from Step 6 to Step 10. The proof of this statement is an adaptation of the proof
of [Gen09a, Le. 15.2.3]. This probability can be written as:

Pr
w←D̃BI ,s,u

(
∃p ∈ PA,B : p divides I−1 · (w)

)
=
∑
w∈I

1W (w) · D̃BI ,s,u(w) (5)

where W = ∪p∈PA,B
I · p and 1W (·) is the indicator function of W . For any w ∈

I \ {0}, we have

1W (w) ≥ 1

ln(N (w · I−1))
·
∑

p∈PA,B

p|w·I−1

ln(N (p)).

Indeed, either w /∈ W and the sum on the right is empty, or w ∈ W and the
sum on the right is bounded from above by 1 (since the norm of the product of
all the primes dividing w · I−1 is at most the norm of w · I−1 when w · I−1 is
non-zero). Moreover, we have already seen that the algebraic norm of a = w ·I−1
is at most (2M ·

√
d · s)d · N (I−1), and by assumption we know that N (p) ≥ A

for all p ∈ PA,B . Hence, letting 1I·p(·) be the indicator function of I · p, it holds
that

1W (w) ≥ ln(A)

ln
(
(2M ·

√
d · s)d · N (I−1)

) · ∑
p∈PA,B

1I·p(w)

=
1

kmax
·
∑

p∈PA,B

1I·p(w),

where kmax is defined as in Step 5.
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Before returning to (5), note that D̃B,s,u(0) = 0. Indeed, we have seen that

∥w−u∥ < M ·
√
d · s and, by construction, we have ∥u∥ = M ·

√
d · s. Using the

above, we obtain:∑
w∈I

1W (w) · D̃BI ,s,u(w) =
∑

w∈I\{0}

1W (w) · D̃BI ,s,u(w)

≥ 1

kmax

∑
w∈I\{0}

∑
p∈PA,B

1I·p(w) · D̃BI ,s,u(w)

=
1

kmax

∑
w∈I

∑
p∈PA,B

1I·p(w) · D̃BI ,s,u(w)

=
1

kmax

∑
p∈PA,B

D̃BI ,s,u(I · p).

From Lemma A.7, we know that SD(D̃BI ,s,u, DI,s,u) ≤ ε. Hence, it holds that

D̃BI ,s,u(I ·p) ≥ DI,s,u(I ·p)−ε. Moreover, observe that by definition of s, it holds

that for any p ∈ PA,B we have s ≥ N (I · p)1/d ·∆1/d
K ·

√
ln(3/ε). Hence, we can

apply Corollary A.2 and we obtain that DI,s,u(p ·I) ≥ (1−ε) ·N (p)−1 ≥ 1/(2B).
By choice of ε, we finally obtain

D̃BI ,s,u(I · p) ≥
1

2B
− ε ≥ 1

4B
.

Plugging this back in our lower bound on the probability to exit the inner loop,
we have

Pr
w←D̃BI ,s,u

(∃p ∈ PA,B : p divides I−1 · (w)) ≥ 1

kmax

∑
p∈PA,B

1

4B
=

|PA,B |
4B · kmax

.

The expected number of iterations of the inner loop is then ≤ 4kmax ·B/|PA,B |.

Correctness. Let (p, w) be the output of SampleWithTrap on input (A,B, δ,BI).
By construction, we have p ∈ PA,B . Further, as w ∈ I and p|I−1 · (w), we have
that w ∈ I · p. The bound on ∥w∥ comes from the fact that ∥w∥ ≤ 2∥u∥ =
2M ·

√
d · s. It remains to prove that the distribution D of the ideal p is within

statistical distance ≤ δ/2 from uniform over PA,B .
Let us fix p ∈ PA,B and compute D(p). First, we compute the probability

that p is chosen at Step 11 of the algorithm. The distribution of the element w
when exiting of the inner loop is D̃B,s,u conditioned on w ∈ W = ∪q∈PA,B

I · q
(which is equivalent to S ̸= ∅). Moreover, the ideal p belongs to S if and only if
w ∈ I · q. So the probability that p belongs to S in Step 11 is

Pr (p ∈ S in Step 11) =
D̃B,s,u(I · p)
D̃B,s,u(W )

.

Note that the quantity D̃B,s,u(W ) is a fixed and independent of p (and non-zero,
since the algorithm terminates). In the rest of the computation, we will write it
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p0. After running Step 11, we obtain

Pr (p is chosen in Step 11) =
D̃B,s,u(I · p)
|S| · p0

.

By Lemma A.7, Corollary A.2 and the choice of s, we know that

D̃B,s,u(I · p) ∈ [1− ε, 1 + ε] · N (p)−1 + [−ε, ε]
⊆ [1− δ/4, 1 + δ/4] · N (p)−1,

where in the last inequality we used the fact that ε = δ/(8 ·B) ≤ δ/8 · N (p)−1.
Combining this with the equation above, we obtain that

Pr (p is chosen in Step 11) ∈
[
1− δ

4
, 1 +

δ

4

]
· 1

N (p) · |S| · p0
.

Finally, because of the rejection sampling in Step 12, we have

Pr (p is selected after Step 12) ∈
[
1− δ

4
, 1 +

δ

4

]
· 1

N (p) · |S| · p0
· |S| · N (p)

kmax ·B
· 1
p′0

=

[
1− δ

4
, 1 +

δ

4

]
· 1

kmax ·B · p0 · p′0
,

where p′0 is the probability (over the random choice of w, the random choice of p
and the rejection probability of Step 12) that one exists the outer loop.

Overall, we have just proven that there exists some quantity C such that for
any p ∈ PA,B , it holds that D(p) ∈ [1−δ/4, 1+δ/4] ·C. Since

∑
p∈PA,B

D(p) = 1,

it must be that C ∈
[

1
1+δ/4 ,

1
1−δ/4

]
· 1
|PA,B | . It implies that for all p ∈ PA,B ,∣∣∣∣D(p)− 1

|PA,B |

∣∣∣∣ ≤ max

(
1− 1− δ/4

1 + δ/4
,
1 + δ/4

1− δ/4
− 1

)
· 1

|PA,B |
≤ δ

|PA,B |
.

The statistical distance between D and the uniform distribution satisfies

SD
(
D,U(PA,B)

)
=

1

2
·
∑

p∈PA,B

∣∣∣∣D(p)− 1

|PA,B |

∣∣∣∣
≤ δ

2
·
∑

p∈PA,B

1

|PA,B |
=

δ

2
.

This completes the proof. ⊓⊔

C Proof of Theorem 2.10

In this section, we provide a proof of Gentry’s reduction for SVP, as stated
in Theorem 2.10. The proof is similar to the one provided in Gentry’s the-
sis [Gen09a], but we instantiate it directly with the shortest vector problem, in-
stead of the variant of the bounded distance decoding problem used in [Gen09a].
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C.1 Balanced-ideal-HSVP

In the proof, we will make use of balanced elements (as defined in Definition 2.4).
We introduce the problem ideal-balanced-HSVP, and give a (folklore) proof that
this problem is equivalent to id-HSVP (up to a polynomial loss in the approxi-
mation factor). The balanced version of id-HSVP will be more convenient to use
in the following proof.

Definition C.1. Let η > 1 and γ ≥ 1. The problem id-BHSVPη
γ asks, given as

input a fractional ideal I, to find a non-zero element x ∈ I such that ∥x∥ ≤
γ · vol(I)1/d and x is η-balanced. The problem inv-BHSVPη

γ is the problem
id-BHSVPη

γ restricted to inverses of integral lattices.

We describe in Algorithm C.1 a polynomial-time reduction from id-BHSVP
to id-HSVP, which relies on Babai’s nearest plane algorithm [Bab86].

Algorithm C.1 BalanceElement

Input: The HNF of a fractional ideal I, an element x ∈ I and M > 0.
Output: y ∈ I.

1: Let s =
√
d · δK · ∥x∥∞.

2: Let BI = ReduceIdeal(I, x).
3: Let t = s

√
d(M + 1)/2 · 1 with 1 = (1, . . . , 1) ∈ KR.

4: Run Babai’s nearest plane algorithm on (BI , t); let y ∈ I be the output.
5: Return y.

Lemma C.2. Algorithm C.1 runs in polynomial time. On input I, x,M with
x ∈ I \ {0}, it outputs y ∈ I \ {0} that is (1 + 2/M)-balanced and satisfies

∥y∥ ≤ (1 +M/2) · d3/2 · δK · ∥x∥∞.

Proof. The running time follows directly from the description of the algorithm.
Let y be the output of Algorithm C.1 on input I, x and M . We have, by property
of the nearest plane algorithm (see [Bab86, Th. 3.1]), that there exist µ1, . . . , µd

in [−1/2, 1/2] such that

∥y − t∥∞ ≤ ∥y − t∥ ≤
(∑

i

µ2
i · ∥b∗i ∥

2
)1/2

.

By Lemma 2.8, we have ∥B∗I∥ ≤ δK · ∥x∥ ≤ s. We hence obtain that ∥y − t∥∞ ≤√
ds/2. As a result, we have |yi| ∈ [s

√
dM/2, s

√
d(M + 2)/2] for all i.

We then have N 1/d(y) ≥ s
√
dM/2 ≥ M/(M + 2)∥y∥∞. The same holds

for y−1, which gives that y is (1 + 2/M)-balanced. Finally, the inequality ∥y∥ ≤√
d · ∥y∥∞ gives the desired bound on the norm of y. ⊓⊔
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Corollary C.3. For any γ ≥ 1 and η > 1, there is a Karp polynomial time
reduction from id-BHSVPη

γ′ to id-HSVPγ , where γ′ = γ · δK · d3/2 · η/(η − 1).

Note that the converse reduction holds without any parameter loss, by defi-
nition of id-BHSVP.

Proof. Let I be an instance of id-BHSVPη
γ′ , and assume we have an oracle O

for id-HSVPγ . Let x be the output of O on I. We let M = 2/(η− 1) and return
y = BalanceElement(I, x,M). The fact that y is a valid id-BHSVPη

γ′ solution
follows from the definition of M and Lemma C.2. ⊓⊔

Corollary C.4. For any constant η > 1, id-BHSVPη
γeasy(η)

can be solved in

polynomial time for γeasy(η) = δK · d3/2 · (η/(η − 1)) · 2d.

Proof. The result follows from Corollary C.3, by using the LLL algorithm to
solve id-HSVPγ . ⊓⊔

C.2 Finding a non-trivial solution to inv-HSVP using a
P−1

A,B-avg-HSVP oracle

The reduction from Theorem 2.10 is an iterative reduction, which proceeds by
iteratively improving an existing solution with the usage of an oracle solving
P−1A,B-avg-id-HSVPγavg

. In this subsection, we focus on the main ingredient of
one iteration of the reduction, the SampleSmall algorithm, presented in Algo-
rithm C.2. The objective of this algorithm is, given as input b−1 the inverse of a
prime ideal, to find a non-trivial short non-zero vector in b−1. Indeed, since b is
integral, we know that OK ⊆ b−1, so the short non-zero vectors of OK give triv-
ial solutions to short non-zero vectors in b−1. The objective of the SampleSmall
algorithm is to find slightly shorter vectors than those trivial short vectors lying
in OK (which will exist if the norm of b is large enough). In particular, we would
like to obtain x ∈ b−1 \ {0} with ∥x∥ < 1, so that multiplying by x decrease the
euclidean norm. This will be used in the reduction to iteratively decreases the
norm of a short non-zero vector found in our input ideal I.

Algorithm C.2 SampleSmallA,B

Input: A basis of an integral ideal b.
Oracles: O for P−1

A,B-avg-id-HSVPγavg , F for factoring integral ideals.

Output: x ∈ b−1 or x =⊥.

1: Compute a basis B of b−1 with ∥B∗∥ ≤ δK (using InvertIdeal).
2: Set (p, w) be the output of SampleWithTrapA,B on input (A,B, 2−(d+1),B) (this

relies on F).
3: Set v = O(p−1).
4: If v ̸= ⊥, then return v · w.
5: Else, return ⊥.



Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals 45

Theorem C.5. Let γavg ≥ 1 and 3 ≤ A < B satisfying B/|PA,B |, B/A ≤
poly(log∆K). Let O be an oracle solving P−1A,B-avg-id-HSVPγavg

with success

probability δ ≥ 2−d and let F be an ideal-factoring oracle.
On input a non-zero integral ideal b and given access to O and F , Algorithm

SampleSmallA,B runs in expected time poly(log∆K , logB, logN (b)), and per-
forms only one call to O and possibly multiple calls to F for integral ideals of
norm poly(log∆K , logB, logN (b)) bits. It outputs x ̸=⊥ with probability ≥ δ/2
and, when this is the case, it holds that x ∈ b−1 \ {0} and

∥x∥ ≤
10γavg(d+ lnB) ·∆1/(2d)

K

A1/d
·max

(
δK ,

(
B ·∆K · N (b−1)

)1/d)
.

Proof. We first focus on the running time of the algorithm. Every step can be
performed in polynomial time. For Step 1, we use Lemma 2.8 and the fact that b
is integral. For Step 2, we use Lemma 2.9. Note that Step 3 is not inside a loop,
hence the call to O is performed only once.

Let us now prove that the algorithm returns an element x ̸=⊥ with proba-
bility at least δ/2. Note that by Lemma 2.9, the distribution D of the ideal p
given as input to O is within statistical distance ≤ 2−(d+1) ≤ δ/2 from uniform
over PA,B (here we used the lower bound δ ≥ 2−d). Since we know that O has
success probability δ when its input p−1 is distributed uniformly in P−1A,B , this
proves that the probability that O succeeds in solving id-HSVPγavg in Step 3 of
the algorithm is at least δ − δ/2 ≥ δ/2, as desired.

Finally, let us prove the upper bound on ∥x∥ when x ̸=⊥. In this case, we
have x = v · w and use the upper bounds on v and on w (from Lemma 2.9) to
obtain

∥x∥ ≤ ∥v∥ · ∥w∥

≤ γavg ·Vol(p−1)1/d · 2(5d+ lnB + ln(48)) ·max
(
δK ,

(
∆K ·B · N (b−1)

)1/d)
≤

10γavg(d+ lnB) ·∆1/(2d)
K

A1/d
·max

(
δK ,

(
B ·∆K · N (b−1)

)1/d)
,

where we used the fact that B ≥ 3. This completes the proof. ⊓⊔

For simplicity, we will use the following corollary, where we use the Extended
Riemann Hypothesis in order to estimate the number of prime ideals in the
set PA,B and simplify the conditions.

Corollary C.6 (ERH). Let γavg ≥ 1 and 3 ≤ A ≤ (∆K)d
O(1)

. Let O be an
oracle solving P−1A,4A-avg-id-HSVPγavg with success probability δ ∈ (0, 1] and let F
be an oracle factoring integral ideals. Let ε ∈ (0, 1) and assume that

A1/d ≥ 10 · γavg · (d+ ln(4A)) ·∆1/d
K · δK · ε−1.

Then there exists an algorithm A that takes as input any integral ideal b with
N (b) ≥ 4A and outputs x ∈ b−1 \ {0} such that ∥x∥ ≤ ε. If given access
to O and F , algorithm A runs in expected time poly(log∆K , log(N (b)), 1/δ)
and calls F on ideals of norm at most poly(log∆K , logN (b)) bits.
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Proof. Algorithm A consists in repeatedly running SampleSmallA,B with B =
4A, on input b, until it outputs x ̸=⊥. Let us prove that A and B satisfy the
constraints required in Theorem C.5. If A ≤ poly(log∆K), then 4A/|PA,4A| is
polynomial. Else, the ERH implies that

4A

|PA,B |
≤ O(lnA) ≤ poly(log∆K).

The claim on the running time of algorithm A and the fact that x ∈ b−1 \ 0
follow from Theorem C.5. Note that Theorem C.5 is guaranteed to work only
if the success probability δ of O is at least 2−d. If the success probability is
smaller than this quantity, algorithm A simply runs an SVP solver on ideal b−1

and returns a shortest non-zero vector. This shortest non-zero vector will have
Euclidean norm ≤

√
d ·∆1/(2d)

K · A1/d ≤ ε by assumption on A, and the call to
the SVP solver has a running time 2O(d) = poly(1/δ).

We now bound ∥x∥. From Theorem C.5 and by choice of B, we know that

∥x∥ ≤
10γavg(d+ ln(4A)) ·∆1/(2d)

K

A1/d
·max

(
δK ,

(
4A ·∆K · N (b−1)

)1/d)
.

SinceN (b) ≥ 4A and δK ≥ λd(OK) ≥ ∆
1/(2d)
K , it holds that (4A·∆K/N (b))1/d ≤

δK ·∆1/(2d)
K , and hence

∥x∥ ≤
10γavg · (d+ ln(4A)) ·∆1/d

K · δK
A1/d

≤ ε.

The last inequality follows from the assumption on A and ε. ⊓⊔

C.3 Iterating the reduction

In order to prove Theorem 2.10, we are going to use the id-BHSVP problem.
Recall that the id-BHSVP problem is equivalent to the id-HSVP problem, up
to some polynomial loss, so we can safely replace id-HSVP by id-BHSVP, which
will make our reductions easier to prove. The lemma below states that if we have
an oracle solving P−1A,4A-avg-id-HSVPγavg

and an algorithm solving inv-BHSVPη
γ ,

then we can create an algorithm solving inv-BHSVPη′

γ′ where γ′ is slightly smaller
than γ and η′ is slightly larger than η (i.e., we can find smaller less balanced
vectors in our ideals). This corresponds to one iteration of the full reduction.

For the whole subsection, we fix γavg ≥ 1, ε ∈ (0, 1) and 3 ≤ A ≤ (∆K)d
O(1)

satisfying:

A1/d ≥ 10 · γavg · (d+ ln(4A)) ·∆1/d
K · δK · ε−1.

Lemma C.7 (ERH). Let γmin = (4A)1/d/(ε · ∆1/(2d)
K ), γ > γmin and η ∈

(1, γ/γmin].

inv-BHSVPη′

γ′ reduces to inv-BHSVPη
γ and P−1A,4A-avg-id-HSVPγavg
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for η′ = η · (1 + 1/d) and γ′ = 2 · d5/2 · δK · ε · γ. If given access to an oracle F
factoring integral ideals, the expected running time of the reduction is polynomial
in log∆K , log γ, 1/δ and the size of its input, where δ is the success probability of
the oracle for P−1A,4A-avg-id-HSVPγavg

. Moreover, the oracle F is called on ideals
whose norms have a bit-size poly(log∆K , log γ).

Proof. Assume that we are given I = b−1 the inverse of an integral ideal. Let x
be the output of the inv-BHSVPη

γ oracle on input I. As η′ ≥ η, the element x is

η′-balanced. If ∥x∥∞ ≤ ε ·γ ·Vol(I)1/d, then it is a solution for inv-BHSVPη′
√
d·ε·γ

and we can output it. Else, we have

|N (x)| ≥ η−d · ∥x∥d∞ ≥ η−d · εd · γd ·∆1/2
K · N (I).

Now we set b = (x) · I−1. This ideal is the inverse of an integral ideal, and by
the previous inequality and the condition on η we have

N (b) =
N (x)

N (I)
≥

εd · γd ·∆1/2
K

ηd
≥ 4A.

This last inequality, and the definition of A meet the conditions of Corollary C.6,
we then can make a call to SampleSmallA,4A(b) and denote by y its output. The

element y verifies ∥y∥∞ ≤ ε and y ∈ b−1 \ {0}.
We now denote y′ = BalanceElement(b−1, y, 2d). By Lemma C.2, we have

that y′ ∈ b−1 \ 0 is (1 + 1/d)-balanced and that

∥y′∥ ≤ (1 + d) · d3/2 · δK · ε ≤ 2 · d5/2 · δK · ε

We then return y′ ·x. We have that y′ ·x ∈ I, and since x is η-balanced and y′

is (1 + 1/d)-balanced, then xy′ is η′-balanced and

∥x · y′∥ ≤ ∥y′∥ · ∥x∥ ≤ 2 · d5/2 · δK · ε · γ ·Vol(I)1/d = γ′ ·Vol(I)1/d.

The running time of the algorithm comes from the running time of the call
to SampleSmallA,4A(b) and the running time of BalanceElement(b−1, y, 2d).
The former is polynomial in log∆K , logN (b) and 1/δ and requires factoring
ideals of norm at most poly(log∆K , logN (b)) bits. The latter has a running
time polynomial in log∆K and logN (b). Observe that N (b) = |N (x)|/N (I) ≤
∥x∥d/N(I) ≤ γd ·

√
∆K . The result follows. ⊓⊔

We will now iterate Lemma C.7, instantiated with ε = 1/2 · (2 · d5/2 · δK)−1.
This choice of ε ensures that γ′ = γ/2, i.e., the approximation factor is di-
vided by 2 at every iteration of the reduction (at the cost of slightly less bal-
anced elements). We will iterate this reduction step until we obtain a reduction

from inv-BHSVPη′

γ′ with an approximation factor γ′ as small as possible, to
inv-BHSVPη

γ with γ so large that it can be solved in polynomial time using the
LLL algorithm. Hence, the only oracle that will remain for the reduction to work
is the one solving P−1A,4A-avg-id-HSVPγavg (and the one factoring ideals, which
can be quantumly efficiently instantiated).
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Lemma C.8. Let γavg ≥ 1, 3 ≤ A ≤ ∆dO(1)

K verifying

A1/d ≥ γavg · 40 · d5/2 · (d+ ln(4A)) ·∆1/d
K · δ2K

and

γmin =
4 · d5/2 · δK · (4A)1/d

∆
1/(2d)
K

.

There exists a reduction

from inv-BHSVP2e
2eγmin

to P−1A,4A-avg-id-HSVPγavg .

Given access to an ideal-factoring oracle F , the expected running time of this
reduction is polynomial in its input bit-size, in log∆K and in 1/δ, where δ ∈
(0, 1] is the success probability of the P−1A,4A-avg-id-HSVPγavg

oracle. Moreover,
the reduction calls F on integral ideals whose algebraic norms have bit-size
poly(log∆K).

Proof. Let ε = (4d5/2 · δK)−1. Define γ0 = γmin · 2e · 2d, η0 = 2, and for any

k ∈ {1, . . . , d} γk = γ0 ·2−k and ηk = η0 · (1 + 1/d)
k
. Observe that, for any k, we

have that γk > γmin and ηk ∈ (1, γk/γmin]. Moreover, if we let ε = (4d5/2 · δK)−1,
then our choice of γmin coincide with the definition of γmin in Lemma C.7, and our

choice of A satisfies the constraint A1/d ≥ 10 · γavg · (d+ ln(4A)) ·∆1/d
K · δK · ε−1.

We can then apply Lemma C.7 and we get, for any 0 ≤ k < d, that

inv-BHSVPηk+1
γk+1

≤ inv-BHSVPηk
γk

+ P−1A,4A-avg-id-HSVPγavg
.

By combining the reduction, we then have that

inv-BHSVPηd
γd
≤ inv-BHSVPη0

γ0
+ P−1A,4A-avg-id-HSVPγavg .

Now, from the definition of γmin and the lower bound on A1/d, one can check that

γ0 ≥ δK · d3/2 ·
(

η0

η0−1

)
· 2d. Hence, by Corollary C.4 we have that inv-BHSVPη0

γ0

can be solved in polynomial time.

Regarding the running time, our reduction consists in d consecutive reduc-
tions. From Lemma C.7, the k-th reduction has a running time polynomial
in log∆K , log γk and 1/δ. Since for every k we have that log γk ≤ log γ0 =
poly(log∆K), we conclude that the total running time of the reduction is poly-
nomial in log∆K and 1/δ. The same argument also shows that the ideal-factoring
oracle is only called on integral ideals whose norm have a bit-size poly(∆K). ⊓⊔

We are now ready to prove our main theorem of this section. To do so, we
instantiate Lemma C.8 with an appropriate value of A, and combine the reduc-
tion with the ones from Appendix C.1 showing that inv-BHSVP is equivalent to
id-HSVP (up to polynomial losses).
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Proof (of Theorem 2.10). Let C1,K be minimal such that C1,K ≥ 40 · d5/2 · (d+
d2+ln

(
4Cd

1,K

)
)·∆1/d

K ·δ2K . Then C1,K = poly(∆
1/d
K , log∆K , δK). Moreover, using

the fact that γavg ≤ 2d, one can check that

(γd
avg · Cd

1,K)1/d ≥ γavg · 40 · d5/2 · (d+ ln
(
4 · γd

avg · Cd
1,K

)
) ·∆1/d

K · δ2K .

This inequality also holds for any A ≥ γd
avg · Cd

1,K . Hence, any such A with

A ≤ ∆dO(1)

K satisfies the conditions of Lemma C.8. Now let

C2,K = 2e · 4 · d
5/2 · δK · 41/d

∆
1/(2d)
K

= poly(log∆K , δK).

We set γ = A1/d ·C2,K and observe that γ ≥ 2e · γmin for γmin as in Lemma C.8.
Then by the Lemmas C.8 and 2.6 we have:

id-HSVPγ ≤ inv-HSVPγ ≤ inv-BHSVP2e
γ ≤ P−1A,4A-avg-id-HSVPγavg ,

where the second reduction comes from the definition of id-BHSVP (a solution to
id-BHSVPη

γ in any fractional ideal I is by definition also a solution of id-HSVPγ

in L). This completes the proof. ⊓⊔
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