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Abstract. Beerliová-Trubíniová and Hirt introduced hyper-invertible
matrix technique to construct the first perfectly secure MPC protocol in
the presence of maximal malicious corruptions ⌊n−1

3
⌋ with linear com-

munication complexity per multiplication gate [5]. This matrix allows
MPC protocol to generate correct shares of uniformly random secrets
in the presence of malicious adversary. Moreover, the amortized com-
munication complexity of generating each sharing is linear. Due to this
prominent feature, the hyper-invertible matrix plays an important role
in the construction of MPC protocol and zero-knowledge proof protocol
where the randomness needs to be jointly generated. However, the down-
side of this matrix is that the size of its base field is linear in the size of
its matrix. This means if we construct an n-party MPC protocol over Fq

via hyper-invertible matrix, q is at least 2n.
In this paper, we propose the ramp hyper-invertible matrix which can be
seen as the generalization of hyper-invertible matrix. Our ramp hyper-
invertible matrix can be defined over constant-size field regardless of the
size of this matrix. Similar to the arithmetic secret sharing scheme, to ap-
ply our ramp hyper-invertible matrix to perfectly secure MPC protocol,
the maximum number of corruptions has to be compromised to (1−ϵ)n

3
.

As a consequence, we present the first perfectly secure MPC protocol
in the presence of (1−ϵ)n

3
malicious corruptions with constant commu-

nication complexity. Besides presenting the variant of hyper-invertible
matrix, we overcome several obstacles in the construction of this MPC
protocol. Our arithmetic secret sharing scheme over constant-size field is
compatible with the player elimination technique, i.e., it supports the dy-
namic changes of party number and corrupted party number. Moreover,
we rewrite the public reconstruction protocol to support the sharings
over constant-size field. Putting these together leads to the constant-size
field variant of celebrated MPC protocol in [5].
We note that although it was widely acknowledged that there exists an
MPC protocol with constant communication complexity by replacing
Shamir secret sharing scheme with arithmetic secret sharing scheme,
there is no reference seriously describing such protocol in detail. Our work
fills the missing detail by providing MPC primitive for any applications
relying on MPC protocol of constant communication complexity. As an
application of our perfectly secure MPC protocol which implies perfect
robustness in the MPC-in-the-Head framework, we present the constant-
rate zero-knowledge proof with 3 communication rounds. The previous
work achieves constant-rate with 5 communication rounds [32] due to the



statistical robustness of their MPC protocol. Another application of our
ramp hyper-invertible matrix is the information-theoretic multi-verifier
zero-knowledge for circuit satisfiability[43]. We manage to remove the
dependence of the size of circuit and security parameter from the share
size.

1 Introduction

Secure multiparty computation (MPC) is a technique that allows several parties
to jointly compute a public function without disclosing their private inputs even
if an adversary corrupts t out of n parties. The MPC protocols can be divided
into several classes based on their security levels and threat models. A proto-
col is perfectly secure if an adversary’s view of the protocol can be simulated
given only his inputs and outputs, and the simulated view follows exactly the
same distribution as the real view. An adversary is called malicious if the cor-
rupted parties he controls can deviate the protocol in an arbitrary manner. It
was shown in [6] that the maximal number of corrupted parties is ⌊n−1

3 ⌋ for
an n-party MPC protocol perfectly secure against malicious adversary.3 Since
then, there is a great effort to improve the communication complexity of MPC
protocol in this adversary model. The first MPC protocol achieving linear com-
munication complexity is due to [5]. They introduced a new technique called
hyper-invertible matrices (HIM for short) that can generate a random sharing
at the cost of linear communication complexity. They also borrow several ideas
from previous works such as player elimination [31], public reconstruction [18].
We note that although they achieve the linear communication complexity, the
actual amortized communication complexity of securely evaluating a multipli-
cation gate is O(n log n) bits regardless of the size of the field. The work in
[11] introduced a new technique called reverse multiplication friendly embed-
ding which maps a vector in Fr

q into an element in extension field Fqm while the
component-wise product of two vectors is preserved by mapping it to a product
of two elements(here m is linear in r). This technique enables their MPC pro-
tocol to securely evaluate O(log n) instances over binary field by invoking the
protocol in [5] in a “black-box” way and thus they manage to achieve the linear
communication complexity for any Boolean circuit. All above protocols use the
Shamir secret sharing scheme (SSS) [39] as their building block. Thus, the share
sizes of their protocols are least Ω(log n).

The arithmetic SSS introduced in [12] generalizes the idea of Shamir SSS.
The merit of the generalization is that one can obtain a variant of Shamir SSS
over constant-size field while the downside of this variant is that there is an ϵn
gap between privacy and reconstruction. Thus, such arithmetic SSS can not han-
dle the maximal number of corruptions ⌊n−1

3 ⌋ but the sub-optimal number of
corruptions (1−ϵ)n

3 . Due to the Franklin-Yung paradigm [21] and arithmetic SSS,
it was widely acknowledged that there exists an MPC protocol over constant-size
3 The perfectly secure MPC protocol in this paper is assumed to have guaranteed

output delivery since t < n/3.
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field perfectly secure against (1−ϵ)n
3 malicious corrupted parties with O(1) amor-

tized communication complexity. However, we are surprised to find that there
is no literature seriously describing such a protocol in detail. In this paper, we
present such a protocol by deriving constant-size field variant of the celebrated
MPC protocol [5]. The first challenge we face is the constant-size field variant
of hyper-invertible matrix which we name it ramp hyper-invertible matrix. The
idea of ramp hyper-invertible matrix can be dated back to [11]. However, they
do not seriously expand such idea by providing efficient constructions of this
matrix. Instead, we present the explicit constructions of such matrix in this pa-
per and apply it to MPC protocol. We believe that the applications of ramp
hyper-invertible matrix are not limited to MPC protocol and might be of inde-
pendent interests. Besides, the player elimination technique is not compatible
with arithmetic SSS. The player elimination technique remove parties from the
preprocessing phase which implies that the number of parties n and the num-
ber of corrupted parties t are dynamically changed during the preprocessing
phase. Thus, we propose an arithmetic SSS that is compatible with the dynamic
changes of n and t. Finally, we rewrite the public reconstruction protocol to make
it applicable over constant-size field. Putting everything together, we are able
to present the constant-size variant of MPC protocol [5]. As a consequence, we
obtain a constant-rate zero-knowledge proof from MPC-in-the-head (MPCitH)
framework [32]. We also provide two applications of our ramp hyper-invertible
matrices in the zero-knowledge proof.

1.1 Our Contributions

The hyper-invertible matrix was proposed in [5] to amortize the communication
complexity of generating random sharings. However, the downside of this matrix
is that the size of its base field grows with the size of the matrix. Therefore,
any MPC protocol based on hyper-invertible matrix must be defined over a
field of size Ω(n). The motivation of our ramp hyper-invertible matrix is to
construct a perfectly secure MPC protocol over constant-size field for n-parties
in the presence of almost maximal malicious corruptions (1−ϵ)n

3 such that the
amortized communication complexity of evaluating single multiplication gate is
O(1). Such an MPC protocol implies a constant-rate zero-knowledge proof [32].
Although such an MPC protocol was assumed to exist by replacing the Shamir
secret sharing scheme with the asymptotically good arithmetic secret sharing
scheme [12] in the MPC protocol, we note that there are still several technical
difficulties to be overcome which were not explored so far. In this work, we
consider the constant-size field variant of the celebrated MPC protocol [5]. The
first obstacle is the variant of hyper-invertible matrix defined over constant-size
field which we believe to be of independent interest. The second obstacle is to
construct arithmetic secret sharing scheme compatible with the dynamic change
of the number of parties and the number of corrupted parties. This is due to the
application of player elimination protocol which removes a pair of parties at a
time. The third obstacle is to carry out error correction over constant-size field
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as our shares are defined over constant-size field. In the rest of this subsection,
we will introduce these obstacles in detail and how we overcome them.

Hyper-invertible matrix We introduce ramp hyper-invertible matrices which
can be seen as a generalization of hyper-invertible matrices. Basically speaking,
M is an n×n hyper-invertible matrix if for any subsets I, J ⊆ [n] with |I| = |J |,
the submatrix of M indexed by the rows in I and the columns in J is in-
vertible. As a consequence, if (y1, . . . , yn)

T = M(x1, . . . , xn)
T , for any subsets

I, J ⊆ [n] with |I| + |J | = n, there is a linear bijective function f : Fn
q → Fn

q

mapping (xi)i∈I , (yj)j∈J onto (xi)i∈[n]/I , (yj)j∈[n]/J . This leads to the following
two properties. If I is the set of corrupted parties, (xi)i∈[n]/I and (yj)j∈[n]/J

uniquely determine (yj)j∈J . Moreover, (yj)j∈J are distributed uniformly at ran-
dom by knowing (xi)i∈I and (yj)j∈[n]/J . The argument in [5] leverages these
two properties to generate random double sharings with linear communication
complexity. Our ramp hyper-invertible matrices still keep these two properties
with slight relaxation. In particular, we require that |I|+ |J | ≤ (1− ϵ)n for the
first property to hold and |I| + |J | ≥ (1 + ϵ)n for the second property to hold.
We show that this ramp hyper-invertible matrix is closely related to linear code
with large distance and dual distance. Such connection allows us to exploit the
knowledge from the well-studied coding theory to produce ramp hyper-invertible
matrix over any constant-size field.

Asymptotically good arithmetic secret sharing scheme and player
elimination. The player elimination technique was introduced in [31] to di-
vide the preprocessing phase into Ω(n) segments and in each segment if a party
deviates from the protocol, a pair of parties containing this party will be identi-
fied and removed from the following computation. This technique can efficiently
reduce the communication cost of identifying corrupted parties and thus was
adopted in [5] and some follow-ups. To adapt such technique to our MPC proto-
col, our asymptotically good arithmetic SSS must be compatible with dynamic
change of the number of parties and the number of corrupted parties. We note
that in contrast to the Shamir SSS, the known construction of asymptotically
good arithmetic SSS does not satisfy this dynamic property, i.e., based on al-
gebraic geometry code, one can construct a family of ti-strongly multiplicative
SSS4 on ni parties such that ti

ni
= Ω(1) and ni tends to infinity with ni

ni−1
> 1

is a constant. In Theorem 4, we show how to construct t′-strongly multiplica-
tive SSS on n′ parties for any n′ = n − 2(t − t′) and t′ ≤ t from a t-strongly
multiplicative SSS on n parties.

Error-correcting codes and public reconstruction. The public reconstruc-
tion in [5] can efficiently and robustly open the secret at the cost of linear
communication complexity. The first step is to treat k secrets waiting for open-
ing as a message and re-encode such message to a codeword (c1, . . . , cn) via a
4 We refer the reader to Section 4.1 for formal definition.
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Reed-Solomon code. In this process, all parties locally compute the share of ci
according to the encoding algorithm. Then, all parties send their shares of ci
to the i-th party and let i-th party reconstruct c′i. By applying the decoding
algorithm to (c′1, . . . , c

′
n), all parties can robustly reconstruct the codeword and

thus obtain k secrets. To adapt this protocol, we propose an error-correcting
code over constant-size field with large distance. Moreover, the encoding and
decoding algorithm of our code can be efficiently implemented.

Beaver triples. The Beaver triples are used to securely evaluate the multi-
plication gate in the online phase. The Beaver triple consists of two sharings of
random elements [a]t, [b]t and the share of their product [ab]t where [·]t represents
sharing of t-threshold Shamir SSS. To produce this triple in [5], the preprocess-
ing phase first prepares two sharings of random element [r]t, [r]2t. Both of them
can be efficiently produced via hyper-invertible matrix technique. [r]2t is used to
mask the product [a]t[b]t and [r]t is used to re-share the secret ab by computing
ab + r − [r]t. One can think of [·]t as degree-t polynomial. To adapt this tech-
nique, we let [·]t be the sharings of an SSS Σt with t-privacy. Since our SSS is
t-strongly multiplicative, the product of two sharings belongs to a new SSS Σ2t

with 2t-privacy. The reconstruction of Σ2t is 2r if the reconstruction of Σt is r.5

Perfectly secure MPC protocol with constant amortized communi-
cation complexity. With all building blocks above at hand, we are able to
present the perfectly secure MPC protocol with constant amortized communi-
cation complexity in the presence of (1−ϵ)n

3 corrupted parties. The idea is to
replace the building blocks in [5] defined over large field with our new building
blocks which can be defined over constant-size field. To do this, we first replace
the Shamir SSS with our arithmetic SSS to reduce the share size. Moreover,
our new public reconstruction protocol is applicable to secret over constant-size
field as we resort to error-correcting code over constant-size field. By replac-
ing hyper-invertible matrix with ramp hyper-invertible matrix, we can generate
double-sharings as efficient as in [5]. As a consequence, our new protocol can
achieve the linear complexity as the celebrated MPC protocol in [5]. Since the
number of corrupted parties (1−ϵ)n

3 is suboptimal, our protocol use the packed
arithmetic secret sharing to further reduce the communication complexity. If we
simultaneously evaluate Ω(n) instances of the same circuit, we can reduce linear
communication complexity to constant. In this sense, our protocol achieves the
constant amortized communication complexity.

Constant-rate zero-knowledge proof. The communication complexity of
constant-rate zero-knowledge proof is linear in circuit size |C|. The first construc-
tion was presented in [32] as a byproduct of the MPC-in-the-Head framework.
This requires an MPC protocol over constant-size field with perfect or statistical
5 In fact, we are only concerned about the reconstruction of Σ2t.
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t-robustness (in a malicious model) and t-privacy (in a semi-honest model). In
[32], they show that a variant of the MPC protocol given in [16] using arithmetic
SSS as the building block can serve this purpose. However, the MPC protocol
in [16] only achieves statistical t-robustness. This forces the MPCitH protocol
relying on this MPC protocol to be separated into two phases which causes more
communication rounds. It is desirable to achieve perfect t-robustness so as to op-
timize the communication rounds. The building block of our MPCitH protocol
is a perfectly secure MPC protocol over constant-size field and thus our MPCitH
needs 3 communication rounds.

Joint sampling of multiple verifiers. In information-theoretic multi-verifier
zero-knowledge(MVZK), n verifiers jointly generate one challenge for the prover.
We consider MVZK for circuit satisfiability in the setting of honest majority
verifiers. By applying HIM technique in [5] to generate random secret sharings,
the coin-tossing protocol in MVZK [43] achieves communication overhead O(λ+
log |C|) where λ is security parameter and |C| is the number of multiplication
gates in the circuit. If we relax the number of corrupt parties from n−1

2 to
( 1−ϵ

2 )n, the ramp HIM can replace HIM to do the same job and reduce the
communication overhead of coin-tossing protocol to O(1). Moreover, we propose
a new technique to remove the dependence of security parameter from the share
size when checking the circuit satisfiability.

1.2 Related Work

The first perfectly secure MPC protocol was proposed in [6] for t < n/3. Since
then, there are numerous efforts to reduce the communication complexity. The
introduction of the hyper-invertible matrix in [5] leads to the first perfectly se-
cure MPC protocol with linear communication complexity which also reaches the
theoretical limit. The same linear communication complexity can be achieved for
perfectly secure MPC protocol over any finite field [11]. The depth related com-
munication complexity in the expression was further removed in [27]. For honest
majority setting t < (n − 1)/2, there are many constructions achieving linear
complexity in security-with-abort model [18, 7, 24, 14, 36, 29, 26, 20]. In [13], they
consider the honest majority MPC protocol tolerating t < n(1−ϵ)

2 corruptions.
Compared to the optimal corruption n−1

2 , their scheme is defined over constant-
size field and thus can save a O(log n) multiplicative factor. We note that once
t > n/3, MPC protocols can not be zero-error but succeed with high probability
with the help of broadcast channel. Thus, it is not comparable with our MPC
protocol for t < n/3 where the broadcast can be simulated with perfect secure
by communicating O(n2) bits.

The MPC-in-the-head paradigm establishes a close connection between zero-
knowledge proof systems and MPC protocols. Its theoretical framework was
proposed in [32] and the first practical instantiation was given in [25]. From
practical point of view, the MPC protocols based on additive secret sharing play
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a crucial role in the MPCitH protocol. The reason is that additive secret shar-
ing can be efficiently generated by the pseudo-random generator and thus the
MPCitH protocol can commit to the seed instead of sharings. The preprocessing
phase was introduced to the MPCitH protocols in [34]. Since then, there are two
ways of verification in the preprocessing phase: cut-and-choose (KKW [34]) and
sacrificing (BN [4], Limbo [19], Helium [33]). They are practical MPCitH proto-
cols requiring either more communication rounds or larger field size. In this work,
we are concerned about the theoretical performance of zero-knowledge proof and
thus propose the MPCitH protocol based on ramp HIM. Combined with our per-
fectly secure MPC protocol against malicious adversary, our MPCitH protocol
is a 3-round constant-rate zero-knowledge proof.

MVZK was first proposed in [10] and non-interactive MVZK was instantiated
in [1]. Some earlier works [1, 30] rely on public-key operations and thus achieve
only computational security. In [2], they focus on minimal assumption for MVZK
and achieves computational security and everlasting security. There are a few
works investigating MVZK in the presence of honest majority verifiers [2, 3, 43].
The protocol in [3] aims to realize stronger security-with-identifiable-abort at a
cost of tolerating a smaller number of corruptions(t < n/3 or t < n/4). In this
paper, we aim to reduce the communication overhead by replacing the HIM in
[43] with the ramp HIM.

2 Preliminaries

For an integer n > 1, denote by [n] the set {1, 2, . . . , n}. For two integers a, b
with 0 ≤ a < b, denote by [a, b] the set {a, a + 1, · · · , b}. A finite field of size
q is denoted by Fq. Throughout this paper, we use bold face v to represent a
vector. Given a vector u = (ui)i∈[n] ∈ Fn

q and a subset J ⊂ [n], we denote
by uJ = (ui)i∈J the projection of u at J . The component-wise product of two
vectors c1 and c2 is denoted by c1 ⋆ c2. Fr

q is the collection of r-dimensional
vectors over Fq and Fr×n

q the collection of r × n matrices over Fq. We assume
the circuits evaluated by MPC protocol consist of cI input gates, cR random
gates and cM multiplicative gates. The depth of multiplication gates is denoted
as DM . We denote by λ the security parameter in zero-knowledge proof, which
implies that soundness error is at most 2−λ.

2.1 Hyper-invertible matrices

The hyper-invertible matrix was introduced in [5] to amortize the communica-
tion complexity of generating random sharings. A prominent feature of hyper-
invertible matrix is that every square submatrix of this matrix is invertible.

Definition 1. A matrix M ∈ Fr×n
q is called a hyper-invertible matrix if for

any row index set I ⊆ [r] and column index set J ⊆ [n] with |I| = |J |, the
square submatrix of M formed by rows indexed by I and columns indexed by J
is invertible.
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The mapping of a hyper-invertible matrix implies a symmetry property.

Lemma 1 ([5]). Let M be an n×n hyper-invertible matrix over Fq. Let (y1, . . . , yn)T
= M(x1, . . . , xn)

T . Then for any subset I,B ⊆ [n] with |I|+ |B| = n, there is a
linear bijective function f : Fn

q → Fn
q mapping ((xi)i∈I , (yj)j∈B) onto ((xi)i∈[n]/I ,

(yj)j∈[n]/B).

2.2 Linear codes

A linear code C over Fq is a linear subspace in Fn
q . The dimension of C is defined

to be the Fq-dimension of this subspace and the length of C is defined to be n.
One can define Hamming distance for any pair of vectors v = (vi),u = (ui) in
Fn
q , i.e., d(v,u) = |{i ∈ [n] : vi ̸= ui}|. The Hamming weight of u is defined

as wt(u) = d(u,0), where 0 stands for the zero vector. For a linear code C,
the minimum distance (distance for short) of C is defined to be the smallest
Hamming weight of nonzero codewords. A linear code of length n, dimension k
and distance d is denoted by [n, k, d]. A generator matrix G of a linear code C
is a k × n matrix whose row vectors form an Fq-basis. The dual code C⊥ of C
consists of the solutions to GxT = 0T , i.e., C⊥ = {x ∈ Fn

q : Gx = 0}. We call
the minimum distance of C⊥ the dual distance of C. A generator matrix of C⊥

is called a parity-check matrix of C.

2.3 Secret sharing scheme

Let us briefly introduce the background of secret sharing scheme.

Definition 2 (Secret sharing scheme). A secret sharing scheme over Fq is
a vector of random variables X = (X0, X1, . . . , Xn) with each Xi ∈ Fq such that
the following holds:

– The random variable X0 is uniform over Fq.
– t-privacy: Given any subset B ⊆ [n] with |B| ≤ t, any x0 ∈ Fq and any xB ∈

F|B|
q with Pr[(Xi)i∈B = xB |X0 = x0] > 0, Pr[X0 = x0|(Xi)i∈B = xB ] = 1/q.

That is, the shares in the set B provide no information on the secret.
– r-reconstruction: Given any subset B ⊆ [n] with |B| ≥ t + 1 and any xB ∈

F|B|
q with Pr[(Xi)i∈B = xB |X0 = x0] > 0, there is a unique x0 ∈ X0 such

that Pr[X0 = x0|(Xi)i∈B = xB ] = 1. That is, the shares in the set B uniquely
determine the secret.

In this paper, we use packed secret sharing scheme to reduce the communication
complexity. A packed secret sharing scheme is a secret sharing scheme with its
secret defined over a vector space instead of a field.

Definition 3 (Packed secret sharing scheme). A packed secret sharing
scheme over Fq with secret space Fs

q is a vector of random variables X =
(X0, X1, . . . , Xn) with each Xi ∈ Fq for i ∈ [n] and X0 ∈ Fs

q.
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In most of the cases, a packed secret sharing scheme is obtained by first construct-
ing a secret sharing scheme over Fq with n+ s− 1 shares (X1, . . . , Xn+s−1) and
move s−1 shares (Xn+1, . . . , Xn+s−1) to the secret space. Then, such secret shar-
ing scheme has n shares (X1, . . . , Xn) and the secret (X0, Xn+1, . . . , Xn+s−1) ∈
Fs
q. It is easy to show that if the original secret sharing scheme has t-privacy and

r-reconstruction, the resulting packed secret sharing scheme has t − s-privacy
and r-reconstruction.

2.4 Algebraic curves

Let us briefly introduce some background on algebraic curves and function fields
over finite fields. The reader may refer to [42, 41] for detail. An algebraic curve
X defined over Fq is denoted by X/Fq. We denote by X (Fq) the set of all Fq-
rational points on X (informally those points with coordinates belonging to Fq).
We denote by Fq(X ) the function field of X/Fq. An element of Fq(X ) is called a
function. For a point P on X , we denote by νP the normalized discrete valuation
corresponding to the point P .

For a nonzero function x of Fq(X ) and a point P , we denote by νP (x) the
valuation of x at P . For m ∈ Z, we form the vector space

L(mP ) = {x ∈ Fq(X )\{0} : νP (x) ≥ −m; νQ(x) ≥ 0 for all Q ̸= P}∪{0}. (1)

This is a finite-dimensional vector space over Fq. We have the following Riemann-
Roch Theorem [41, Chapter 1].

Proposition 1 (Riemann-Roch Theorem). Let X/Fq be an algebraic curve
of genus g. Then for any m ∈ Z and a point P , one has

dimFq
L(mP ) ≥ m− g + 1 (2)

and equality holds if m ≥ 2g − 1.

For algebraic geometry codes based on algebraic curves, we usually require
curves have many rational points compared with genus. In other words, given
an algebraic curve X/Fq of genus g, we want the cardinality |X (Fq)|, denoted by
N(X ), to be as large as possible. By the Hasse-Weil bound [42, 41, 35], we know
that

N(X ) ≤ q + 1 + 2g
√
q. (3)

The above Hasse-Weil bound is tight for relatively small genus, i.e., for genus
g ≤ q(q−1)/2. For large genus, we have the following asymptotic Vlǎduţ-Drinfeld
bound [42, 41, 35]: for any family {X/Fq} of algebraic curves with genus g(X ) of
X tending to ∞, we have

lim sup
g(X )→∞

N(X )

g(X )
≤ √

q − 1. (4)
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If q is an even power of a prime, then based on modular curves, Garcia-Stichtenoth
[22, 23] provided an explicit construction of a family {X/Fq} of algebraic curves
satisfying that g(X ) → ∞ and

N(X ) ≥ 1 + (
√
q − 1)g(X )

for every curve X in this family.

2.5 MPC-in-the-head

The MPC-in-the-Head paradigm was introduced by [32]. It applies an MPC
protocol and a commitment scheme to construct a zero-knowledge proof for
the witness w of any NP relation R. MPCitH tackles any NP relation R(x,w)
as an multiparty computation functionality f(x,w) for input client I, n parties
P1, · · · , Pn and output client O. Input cient I receives witness w from the prover
and shares to n parties, who can execute a protocol to verify the witness with
public input x and send result to output client O.

The prover emulates the execution of an MPC protocol with n imaginary
parties in his head and commits to the views of all parties. The view of a party
consists of its private input, its random tapes, and all its received messages
from other parties. The verifier selects a subset containing t parties. Finally, the
prover reveals the views of chosen parties and the verifier checks the consistency
of views. We say a pair of views Vi, Vj of party Pi, Pj are consistent if all ongoing
messages of Vi are identical to the incoming messages in Vj and vice versa.

If we want to instantiate MPCitH paradigm with a concrete MPC protocol,
it should satisfy following properties:

Definition 4 (Three properties of an MPC protocol). Let Πf be an MPC
protocol realizing the function f representing a NP relation R for input client
I, n parties P1, · · · , Pn and output client O. Let 1 ≤ t < n and the adversary
could corrupt at most input client and t parties. We denote I ⊆ [n] with |I| ≤ t
as corrupted parties.

– Correctness: We say Πf realizes perfect (statistical, respectively) correct-
ness if for any (x,w1, · · · , wn), the probability that the outputs of some parties
deviate from f(x,w1, · · · , wn) is 0 (negl(λ), respectively).

– t-Privacy: We say Πf realizes statistical (perfect, respectively) t-privacy
in the presence of semi-honest adversary if for any input (x,w1, · · · , wn),
there exists a PPT algorithm S such that the distribution of S(x, {wi}i∈I ,
f(x,w1, · · · , wn)) is statistically(perfectly, respectively) indistinguishable with
the distribution of joint views V iewI(x,w1, · · · , wn)

– t-Robustness: We say Πf realizes statistical (perfect, respectively) t-robustness
in the presence of malicious adversary if for any input (x,w1, · · · , wn) sat-
isfying f(x,w1, · · · , wn) = 0 , the probability that all parties outputs 1 and
the views of honest parties are consistent is negl(λ) ( 0, respectively).
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3 Ramp hyper-invertible matrix

In this section, we will introduce the notion of ramp hyper-invertible matrices
and their constructions. We also provide an explicit construction via algebraic
geometry codes as well as an existence result based on the Gilbert-Varshamov
bound.

3.1 Ramp hyper-invertible matrices and functions

The ramp hyper-invertible matrix (ramp HIM for short) is a generalization of
the hyper-invertible matrix. The formal definition is given as follows.
Definition 5. A matrix M ∈ Fm×n

q with m ≤ n is called an (n,m; r, p)q-ramp
hyper-invertible matrix if

(i) For any integers s, t satisfying 0 ≤ s ≤ m, 0 ≤ t ≤ n and s + t ≥ r, every
s× (n− t) submatrix of M has full column rank;

(ii) For any integers s, t satisfying 0 ≤ s ≤ m, 0 ≤ t ≤ n and s + t ≤ p, every
s× (n− t) submatrix of M has full row rank.

Definition 5 implies that an (n,m;n, n)q-ramp HIM is actually an HIM de-
fined in [5]. However, it is not easy to see how to construct a ramp HIM meet-
ing Definition 5. Thus, we propose an equivalence definition, i.e, ramp hyper-
invertible function (HIF for short). The ramp HIF is a generalization of hyper-
invertible function defined in [5].
Definition 6. An Fq-linear map from Fn

q to Fm
q is called an (n,m; r, p)q-ramp

hyper-invertible function if

(i) Given every pair x ∈ Fn
q and y ∈ Fm

q with y = f(x); and any subsets I ⊆ [n]
and J ⊆ [m] with |I| + |J | ≥ r, the vectors xI and yJ uniquely determine
xĪ .

(ii) Given any subsets I ⊆ [n] and J ⊆ [m] with |I| + |J | ≤ p, and any vector
uI ∈ F|I|

q , the composition map πJ ◦ f(uI ,xĪ) is a surjective map from F|Ī|
q

to F|J|
q :

F|Ī|
q

f(uI ,xĪ)−→ Fm
q

πJ−→ F|J|
q ,

where πJ is the projection map at the index set J .

The following result proves the equivalence between ramp HIMs and ramp HIFs.
Theorem 1. There exists an (n,m; r, p)q-ramp HIM if and only if there exists
an (n,m; r, p)q-ramp hyper-invertible function.

Proof. We first prove the if direction. Assume that there is an (n,m; r, p)q-ramp
hyper-invertible function ϕ. By fixing a basis {v1, . . . ,vn} of Fn

q and a basis
{u1, . . . ,um} of Fm

q , we have ϕ(vi) =
∑m

j=1 aijuj . Since ϕ is an Fq-linear map,
we conclude that ϕ(x) = AxT , where A = (aij). Next, we show that A is indeed
an (n,m; r, p)-ramp HIM. Let I ⊆ [n], J ⊆ [m] be any subsets of size t and s
respectively.
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1. Assume s + t ≥ r. Recall that the matrix AJI is a submatrix of A whose
rows are indexed by J and columns indexed by I. As ϕ(x) = AxT = yT , we
have yT

J = AJIx
T
I +AJĪx

T
Ī

. By the first condition of a ramp HIF, yJ and xI

uniquely determine xĪ . Suppose that AJĪ would not have full column rank,
then there exists a nonzero vector a such that AJĪa

T = 0. This implies that
AJĪx

T
Ī
= AJĪ(a+ xĪ)

T = yT
J − AJIx

T
I . This contradicts the first condition

of a ramp HIF. Thus, we conclude that any s× (n− t) submatrix of A has
full column rank if s+ t ≥ r.

2. Assume s + t ≤ p. Similarly, we have yT
J = AJIx

T
I + AJĪx

T
Ī

. By fixing xI

and the second condition of a ramp HIF, the map ϕJ : F|Ī|
q → F|J|

q given by

ϕJ(xĪ) := AJĪx
T
Ī +AJIx

T
I

is surjective. This implies that AJĪ has full row rank. Thus, we conclude that
any s× (n− t) submatrix of A has full row rank if s+ t ≤ p.

We proceed to prove the only if direction. Given an [n,m; r, p]q-ramp HIM A, we
define the linear map ϕ : Fn

q → Fm
q given by ϕ(x) = AxT . Let I ⊆ [n], J ⊆ [m]

be any subsets of size t and s respectively.

1. Assume s + t ≥ r. Given every pair x ∈ Fn
q and y ∈ Fm

q with yT = ϕ(x),
we have yT

J = AJIx
T
I + AJĪx

T
Ī

. Since any s × (n − t) submatrix of A has
full column rank, a similar proof in the “if” part shows that xĪ is uniquely
determined by yJ and xI .

2. Assume s+ t ≤ p. Observe that yT
J = AJIx

T
I +AJĪx

T
Ī

. Fixing any xI ∈ F|I|
q ,

the map πJ ◦ ϕ(x) = yJ is surjective as AJĪ is an s × (n − t) submatrix of
A with full row rank.

The proof is completed.

From Theorem 1, it suffices to construct a ramp HIF so as to construct a
ramp HIM. In the following subsection, we show how to construct the ramp HIF
from the linear code. This provides a machinery for the constructions of ramp
HIMs.

3.2 Connections with linear codes

In this subsection, we establish the connection between ramp HIFs and linear
codes. We show that a linear code with large distance and dual distance can be
used to construct a ramp HIF. Since linear codes are well studied, this provides a
very good source for explicitly constructing HIMs. In the following theorem, we
prove that a ramp HIF exists if and only if a linear code with certain property
exists.

Theorem 2. There exists an (n,m; r, p)q-ramp HIF if and only if there exists
an [n+m,n, n+m− r + 1]-linear code C with dual distance p+ 1 over Fq.

12



Proof. We first prove the if direction. Since the dimension of C is n, without
loss of generality, we may assume the first n indices of C form an information
set, i.e., the first n columns of every generator matrix are linearly independent.
We proceed to show how to construct a ramp HIF from C. Define a linear map
ϕ : Fn

q → Fm
q given by ϕ(c1, . . . , cn) = (cn+1, . . . , cn+m) with (c1, . . . , cn+m) ∈ C.

We first prove that this map is well defined. Note that [n] is an information set
of C. This implies that the projection map π[n] : C → Fn

q is a bijection. For
any vector (c1, . . . , cn) ∈ Fn

q , there exists unique codeword c ∈ Fn+m
q such that

c[n] = (c1, . . . , cn). Thus, this map is well defined. It is clear that ϕ is an Fq-
linear map. We proceed to show that ϕ is an (n,m; r, p)q-ramp HIF. Let I ⊆ [n],
J ⊆ [m] be any subsets of size t and s, respectively.

1. Assume s + t ≥ r. Given every pair x ∈ Fn
q and y ∈ Fm

q with y = ϕ(x), we
have (x,y) ∈ C. Since C has minimum distance n+m− r + 1, knowing xI

and yJ , we can uniquely identify a codeword (x,y) ∈ C. Otherwise, if there
exists another codeword (x′,y′) ∈ C such that x′

I = xI and y′
J = y. Due

to the linearity of C, (x − x′,y − y′) ∈ C is a nonzero codeword of weight
at most n+m− r. A contradiction occurs. Since we can uniquely identify a
codeword (x,y) ∈ C, xĪ is unique.

2. Assume s+t ≤ p. Given any vector uI ∈ F|I|
q , we want to prove that the map

πJ ◦ϕ(uI ,uĪ) is a surjection from F|Ī|
q → F|J|

q . To see this, we recall that the
dual distance of C is p+1. This implies that for any uI ∈ F|I|

q and vJ ∈ F|J|
q ,

there exists a codeword (x,y) ∈ C such that xI = uI and yJ = vJ as
|I|+ |J | ≤ p. By the definition of the map ϕ, the identity πJ ◦ϕ(xI ,xĪ) = yJ

holds for any yJ ∈ F|J|
q .

We proceed to prove the only if direction. Let ϕ be an (n,m; r, p)q-ramp HIF.
Thus, by Theorem 1, we have ϕ(x) = AxT for some m × n matrix A over Fq.
To define a linear code C, it suffices to define a generator matrix G of C. Let
G = (In, A

T ) be an n× (n+m) matrix over Fq, where In is the identity matrix
of size n. We want to show that the linear code with generator matrix G has
dimension n, minimum distance at least n+m− r+1 and dual distance at least
p+ 1. The dimension of this code is clear as rank(G) = n.

(i) We now show that the minimum distance of C is at least n+m−r+1. Suppose
that the minimum distance were less than n+m− r + 1. Let (x,xAT ) ∈ C
be a codeword of weight at most n + m − r. This means there exists two
index subsets I ⊆ [n] and J ⊆ [m] with |I| + |J | ≥ r such that xI = 0 and
πJ(AxT ) = AJIx

T
I + AJĪx

T
Ī

= 0. This gives AJĪxĪ = 0. Put s = |I| and
t = |J |. Since ϕ is an (n,m; r, p)q-ramp HIF, by Theorem 1, any s× (n− t)
submatrix of A has full column rank. This implies AJĪ has full column rank
and xĪ has to be 0. Therefore, the distance of C is at least n+m− r + 1.

(ii) Finally we show that the dual distance of C is at least p + 1. Since the
generator matrix G of C is systematic, a generator matrix of dual code C⊥

of C has the form (−A, Im). We turn to bound the minimum distance of
this dual code. Let c = (−xA,x) ∈ C⊥ be a codeword of weight at most p.
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Let I ⊆ [n] and J ⊆ [m] with s = |I| and t = |J | be the support sets of
xA and x, respectively. This implies πĪ(−xA) = −xJAJĪ = 0. Since ϕ is an
(n,m; r, p)q-ramp HIF, by Theorem 1, any s×(n− t) submatrix of A has full
row rank as long as s+ t ≤ p. This forces xJ = 0 and thus c = 0. Therefore,
the dual distance of C is at least p+ 1.

The proof is completed.

By combining Theorem 2 and Theorem 1, we obtain the following corollary.

Corollary 1. The following are equivalent.

(i) There exists an [n,m; r, p]q-ramp HIM.
(ii) There exists an [n,m; r, p]q-ramp HIF.
(iii) There exists an [n + m,n, n + m − r + 1] linear code C over Fq with dual

distance p+ 1.

Moreover, if G = (In, A
T ) is the generator matrix of C, then A is an [n,m; r, p]q-

ramp HIM.

3.3 Construction of q-ary ramp HIM

By Subsection 3.2, we know that in order to construct a ramp HIM with smaller
reconstruction r and larger privacy p, we need a linear code with both large
distance and dual distance. A good candidate for such a code is the algebraic
geometry code. Before instantiating our construction of ramp HIMs through
linear codes, let us briefly introduce algebraic geometry codes in this subsection.
The reader may refer to [42, 41] for details. In this subsection, we instantiate
the construction of q-ary ramp HIM. The binary ramp HIM is deferred to the
Appendix.

Let X/Fq be an algebraic curve of genus g with ℓ+1 pairwise distinct rational
points P∞, P1, . . . , Pℓ. Denote by P the set {P1, . . . , Pℓ}. For an integer κ with
g ≤ κ < ℓ, define an algebraic geometry code

C(P, κP∞) := {(f(P1), . . . , f(Pℓ)) : f ∈ L(κP∞)}. (5)

Then the code C(P, κP∞) is a linear code over Fq. Furthermore, C(P, κP∞) and
its dual C⊥(P, κP∞) have the following parameters

Proposition 2 (see [42, 41]). Assume 2g − 1 < k < ℓ, then C(P, κP∞) is a
q-ary [ℓ, k, d]-linear code and C⊥(P, κP∞) is a q-ary [ℓ, k⊥, d⊥]-linear code with
the parameters k, k⊥, d, d⊥ satisfying

k = κ− g + 1, k⊥ = ℓ− κ+ g − 1, d ≥ ℓ− κ d⊥ ≥ κ− 2g + 2.

Corollary 2 (via Garcia-Stichtenoth tower). Assume that q is an even
power of a prime. There exists a family of [n, k, d]-linear codes over Fq with
efficient encoding and decoding algorithms and k + d ≥ n(1 − 1√

q−1 ) + 1. Here
g = n√

q−1 .
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If the curve is a projective line, then the genus g is equal to 0 and the algebraic
geometry code defined above is a Reed-Solomon code. Now we instantiate the
above algebraic geometry code to Corollary 1 to obtain a ramp HIM.
Proposition 3. Let X/Fq be an algebraic curve of genus g with at least m+n+1
pairwise distinct rational points. If g − 1 < m ≤ n, then for any κ there exists
an (n,m; r, p)q-ramp HIM with r ≤ n+ g and p ≥ n− g.

Proof. Put ℓ = m+n and κ = n−g+1. By Proposition 2, the code C(P, κP∞) is
a q-ary [m+n, n]-linear code with minimum distance d ≥ m+n−κ = m− g+1
and dual distance d⊥ ≥ κ − 2g + 2 = n − g + 1. By Corollary 1, there is an
(n,m; r, p)-ramp HIM with d = n + m − r + 1 and p + 1 = d⊥. This gives
r = n+m+ 1− d ≤ n+ g and p = d⊥ − 1 ≥ n− g. This completes the proof.

Note that if the base curve is a projective line, then the genus g = 0. Thus, we
obtain an (n,m;n, n)-ramp HIM, i.e., an (n,m)q-HIM.

Theorem 3. If q ≥ 4 is an even power of a prime, then there exists a family of
(n,m; r, p)-ram HIM with n → ∞, m ≥ n√

q−1 and

lim sup
n→∞

r

n
≤ 1 +

2
√
q − 1

, lim inf
n→∞

p

n
≥ 1− 2

√
q − 1

.

Furthermore, this family can be constructed in time O(n3).

Proof. Let {X/Fq} be a family of algebraic curves given in [22]. Then we have
N(X ) ≥ 1 + g(X )(

√
q − 1). Put g = g(X ) and let g − 1 < m ≤ n satisfy

N(X ) = n + m. By Proposition 3, there exists a family of (n,m; r, p)q-ramp
HIMs with r ≤ n + g and p ≥ n − g. As m ≤ n and g

m+n → 1√
q−1 , we have

g
n ≤ 2√

q−1 . The desired result follows. As the Riemann-Roch space L(κP∞) can
be constructed in time O(κ3) [40], A generator matrix of C(P, κP∞) can be
constructed in time O(n3). By Corollary 1, the corresponding ramp HIM can be
constructed in time O(n3) as well.

Corollary 3. If q = O(1/ϵ2) for a real ϵ ∈ (0, 1), then there exists a family of
(n, n; (1 + ϵ)n, (1 − ϵ)n)-ramp HIM with n → ∞. Furthermore, this family can
be constructed in time O(n3).

4 Perfectly secure MPC for t < n(1−ϵ)

3
over constant-size

fields

In this section, we will present a perfectly secure MPC protocol over constant-
size fields by modifying the one in [5]. The challenge is to replace each gadget
over large field in [5] with the one over constant-size fields. We emphasize that
our security proof follows the line of [5]. The missing proof can be found in [5]
such as the player elimination and so on. Since our MPC protocol is perfectly
secure, most of the efforts are taken to detect the corruptions and remove the
corrupted parties.
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4.1 Arithmetic secret sharing schemes

Let us briefly explain the downside of the Shamir secret sharing scheme. Since
the Shamir secret sharing scheme is derived from polynomial evaluation, the
number of parties is at most the size of underlying field. If an n-parties MPC
protocol securely evaluates an arithmetic circuit over the constant-size field Fq,
then Shamir secret sharing scheme will cause a Ω(log n) overhead by embedding
this constant field Fq into Fqr with qr ≥ n. Thus, it is desirable to design
secret sharing scheme over constant-size field. Our protocol utilizes the gap ϵn to
simultaneously compute Ω(n) instances. We emphasize that although we present
our perfectly secure MPC protocol over field of size Ω( 1

ϵ2 ), it is possible to
construct perfectly secure MPC protocol over binary field by replacing each
gadget with the one over the binary field.

An arithmetic secret sharing scheme [15] is a generalization of the Shamir
secret sharing scheme which can be instantiated over any constant-size field.
The formal definition of arithmetic secret sharing scheme is tedious and too
general for our application. We briefly explain the motivation of this scheme and
only provide the necessary definitions for our purpose. We note that the Shamir
secret sharing scheme supports multiplication, i.e., the component-wise prod-
uct of two sharings from t-threshold Shamir secret sharing scheme is a sharing
from 2t-threshold Shamir secret secret sharing scheme. It can be generalized to
component-wise product of d sharings. In arithmetic secret sharing scheme, we
first have a base scheme called C and let the component-wise product of d shar-
ings consist of a scheme C∗d. We require that the sharing in C∗d can be used to
recover the product of d secrets corresponding to these d sharings. Moreover, the
base scheme must have t-privacy and r-reconstruction. These are the properties
necessary for MPC protocols. In this sense, the arithmetic secret sharing scheme
captures the essence of the Shamir secret sharing scheme for MPC application.
The merit of such generalization is that we can find a large number of codes
except Reed-Solomon codes meet the definition of arithmetic secret sharing and
are applicable to MPC protocol and other cryptography primitives.

Definition 7. Let C ⊆ Fs
q × Fn

q (packed secret sharing scheme for s > 1) be a
linear secret sharing scheme whose secret space is Fs

q and share space is Fn
q .6We

say C is t-strongly multiplicative secret sharing scheme7 if

1. C has t-privacy: for any subset A of [n] of size at most t, and any pair of
secret s, s′ ∈ Fs

q, one has that |{c ∈ C : cA = s}| = |{c ∈ C : cA = s′}|.
2. C has (n − 2t)-reconstruction: i.e., for any subset A of [n] of size at least

n− 2t and c, c′ ∈ C∗2, one has that cA ̸= c′A.
3. The secret sharing scheme C⋆2 = spanFq

{c1 ⋆ c2 : c1, c2 ∈ C} has (n − t)-
reconstruction, i.e., for any subset A of [n] of size at least n−t and c, c′ ∈ C∗2,
one has that cA ̸= c′A.

6 We use 0 to represent the index of the secret and [n] to represent n indices of the
shares.

7 In [15], a t-strongly multiplicative LSSS on n players for Fk
q over Fq is also called an

(n, t, 2, t)-arithmetic secret sharing scheme with secret space Fk
q and share space Fq
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It is desirable to fix the field size q and let the number of parties n approach infin-
ity. If the ratio t

n is a constant, such t-strongly SSS is asymptotically good. The
instantiation of asymptotically good t-strongly multiplicative SSS is based on
algebraic geometry code. By applying Garcia-Stichtenoth tower [22], we obtain
the following construction.
Proposition 4 (via Garcia-Stichtenoth tower). Assume q is an even power
of a prime. Let γ ∈

(
0, 1

3 − 2√
q−1

)
. Then there exists a sequence {Ci} of q-ary

LSSS on ni players with the secret space Fqki , the share space Fq such that

(i) limi→∞
ki

ni
= γ.

(ii) Ci has ri-reconstruction and ti-privacy satisfying ti
ni

= ri
ni

− 2√
q−1 − γ.

(iii) C∗2
i = spanFq{c1 ⋆ c2 : c1, c2 ∈ Ci} ⊆ Fki

q × Fni
q is a SSS with 2ri-

reconstruction and 2ti-privacy.
(iv) The sharing and reconstruction algorithms of Ci and C∗2

i can be efficiently
implemented.

(v) The decoding algorithm of Ci can efficiently correct up to ni−ri−1
2 corrupted

shares for any sharing in Ci

If 2ri ≤ ni − ti, then Ci is a ti-strongly multiplicative LSSS. Let ri =
ni

3 and
we obtain the following SSS.

Corollary 4. Let q ≈ 144
ϵ2 = O( 1

ϵ2 ) and γ = ϵ
6 . There exists a family of ( 1−ϵ

3 )ni-
strongly multiplicative secret sharing scheme Ci ⊆ F

ϵni
6

q × Fni
q when ni → ∞.

This multiplicative SSS has (1−ϵ)ni

3 -privacy and ni

3 -reconstruction.

The player elimination introduced in [31] is used to transform a non-robust
protocol into a robust protocol with no additional costs. Each time the inconsis-
tent sharings are detected, this player elimination protocol is initiated to localize
and remove a pair of parties containing at least one corrupted party from the
preprocessing phase. To apply this protocol, our arithmetic secret sharing scheme
should be compatible with the reduced number of the parties and corrupted par-
ties. In the following theorem, we show how to obtain a t′i-strongly multiplicative
LSSS from a ti-strongly multiplicative LSSS with t′i < ti. Then, we can apply
Corollary 4 for any privacy ti and number ni of parties.

Theorem 4. Assume that Ci ⊆ Fs
q ×Fni

q is a ti-strongly multiplicative LSSS on
ni players in Proposition 4. Then, there exists a t′i-strongly multiplicative LSSS
C ′ ⊆ Fs

q × Fn′
i

q with n′
i = ni − 2(ti − t′i). Moreover, r′i ≤

n′
i

3 and t′i ≤
n′
i(1−ϵ)

3 if
ri =

ni

3 and ti =
ni(1−ϵ)

3 .

Proof. Since Ci is a ti-strongly multiplicative LSSS, we have 2ri ≤ ni − ti. We
first fix the number of parties ni and the dimension of secret space si, and let
the privacy be t′i and reconstruction be r′i = ri − (ti − t′i) in Proposition 4. Such
SSS Ĉi exists as

t′i
ni

=
ti
ni

− (ti − t′i)

ni
=

ri − (ti − t′i)

ni
− 2

√
q − 1

− γ =
r′i
ni

− 2
√
q − 1

− γ
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We obtain C ′
i by puncturing the last 2(ti − t′i) shares of Ĉi. The privacy and

reconstruction of C ′
i are exactly the same as that of Ĉi which are t′i and r′i =

ri − (ti − t′i) respectively. Similarly, the reconstruction of C ′∗2
i is 2r′i. The proof

is completed as 2r′i = 2ri − 2(ti − t′i) ≤ n′
i − ti ≤ n′

i − t′i. It is clear that r′i ≤
n′
i

3

and t′i ≤
n′
i(1−ϵ)

3 if ri = ni

3 and ti =
ni(1−ϵ)

3 .

Remark 1 Although we only present t-strongly multiplicative SSS over field of
size Ω(1/ϵ2), it is possible to construct t-strongly multiplicative SSS over binary
field [38]. The same trick in Theorem 4 can be applied to this SSS. The resulting
SSS becomes the building block of perfectly secure MPC over the binary field.

Remark 2 To check the consistency of this linear secret sharing scheme, we
note that it suffices to run the reconstruction algorithm of this linear secret
sharing scheme and then compare the shares recovered by this reconstruction
algorithm with the shares at hand. Since our secret sharing scheme is obtained
from algebraic geometry code with an efficient decoding algorithm, this recon-
struction algorithm is in fact the decoding algorithm for this algebraic geometry
code.

4.2 Randomization based on ramp hyper-invertible matrices

Protocol RandEl(d)
Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ϵ)

3
of them are

corrupted. Let M be an (n′, n′, n′(1+ϵ), n′(1−ϵ))-ramp hyper-invertible matrix over
Fq in Definition 6.

– For Pi ∈ I, Pi generates a random secret si ∈ Fs
q and shares this secret among

parties in I by invoking Σd.
– All parties locally compute ([r1]d, . . . , [rn′ ]d)

T = M([s1]d, . . . , [sn′ ]d)
T .

– For i = T + 1, . . . , n′ for some T ≤ t′, all parties open ri to Pi. Pi checks the
consistency of [ri]d and becomes unhappy if the sharing is not correct.

– Output the remaining unopened sharings [r1]d, . . . , [rT ]d.

The secret sharing scheme in Corollary 4 is our building block for our MPC
protocol. Our MPC protocol starts with n parties and at most t = (1−ϵ)n

3 of
them are corrupted where ϵ can be an arbitrarily small value. In what follows,
we fix t = (1−ϵ)n

3 . During the preprocessing phase, the player elimination tech-
nique introduced in [31] divides the computation into O(n) segments and in each
segment the protocol tries to identify the corrupted parties when inconsistent
shares are detected. This protocol can locate a pair of parties such that at least
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one of them is corrupted. Then, this pair of parties are removed from the proto-
col. The number of parties and the number of corrupted parties are updated to
n−2 and t−1 respectively. All remaining parties repeat current segment. Thus,
in the preprocessing phase, our protocol assumes that the number of parties and
corrupted parties are n′ ≤ n and t′ ≤ t respectively.

In what follows, we assume q = O( 1
ϵ2 ) and our MPC protocol is defined over

Fq.
Let Σd ∈ Fs

q × Fn′

q be an SSS in Theorem 4 with privacy d ∈ [t′, n′(1−ϵ)
3 ],

reconstruction r = n′

3 and s = ϵn
6 . Due to the player elimination protocol, the

value of d may decrease throughout the prepocessing protocol. The initial value
of d is t. Denote by [s]d = (x1, . . . , xn) ∈ Σd the packed secret-sharing of s ∈ Fs

q.8
Since our SSS supports multiplication, to open the secret of [s1]d ⋆ [s2]t safely,
we need to mask it with [r]2d, a sharing of a random vector r generated by Σ2d.
This is because Σ2d is actually the “squared” Σd, i.e., Σd corresponds to Ci and
Σ2d corresponds to C∗2

i by Proposition 4. In this sense, Σ2d has 2d-privacy and
2r-reconstruction.

Proposition 5. Assume that Σd in the Protocol RandEl has d-privacy with
d ≥ t′. If T ≤ t′ and all honest parties are happy, then [r1]d, . . . , [rT ]d are
correct sharings of uniformly random secrets r1, . . . , rT and the adversary learns
no information about them. The total communication complexity is O(n2) for
generating Ω(n) correct sharings.

Proof. The proof follows the same step in [5] except that we replace hyper-
invertible matrix with ramp hyper-invertible matrix in Definition 5. For con-
venience, we use [ri] to represent the sharing [ri]d in the proof. We first con-
sider the robustness, i.e., the unopened sharings [r1], . . . , [rT ] are correct. Let
S ⊆ {T +1, . . . , n′} be the index set of honest parties and S̄ = {T +1, . . . , n′}/S.
Since there are at most t′ corrupted parties in I, |S| ≥ n′ − T − t′ ≥ n′ − 2t′.
[ri]i∈S are correct sharings checked by the honest parties in S as all parties do
not complain. Moreover, there are at least n′ − t′ honest parties in I. Let H be
the collection of honest parties in I and we have |H| ≥ n′ − t′. Observe that
|H|+ |S| ≥ 2n′ − 3t′ ≥ n+ ϵn as t′ ≤ n′(1−ϵ)

3 . This implies that n′ − t′ sharings
[si]i∈H generated by the honest parties together with [ri]i∈S uniquely determine
T sharings [ri]i∈[T ] as M is an (n′, n′, n′(1+ϵ), n′(1−ϵ))-ramp HIM. Since [si]i∈H

and [ri]i∈S are correct sharings, the unopened sharings [ri]i∈[T ] are correct as
well.

We proceed to the privacy argument. The secret sharing scheme Σ has d ≥ t′-
privacy. This implies that the adversary can not obtain ri from any t′ shares of
[ri]. Moreover, the adversary knows the random vectors ri for i ∈ S̄ opening
to the corrupted parties and si for i ∈ [n′] \ H generated by the corrupted
parties. They are at most 2t′ vectors in total. If we fix these vectors, as M is an
(n′, n′, n′(1 + ϵ), n′(1− ϵ))-ramp HIM and |S̄ ∪ [T ]|+ |[n] \H| ≤ 3t′ ≤ n′(1− ϵ),
there is a surjection from si, i ∈ H to ri, i ∈ [T ]. Since si, i ∈ H are distributed
8 In the Shamir SSS, one can identify this privacy d as the degree of polynomials.
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uniformly at random, ri, i ∈ [T ] are distributed uniformly at random as well.
This means the distribution ri, i ∈ [T ] is independent of ri for i ∈ S̄ and si for
i ∈ [n′] \H.

As for the communication complexity, we note that each party sends and
receives n′ − 1 shares. Thus, the total communication complexity is O(n′2) =
O(n2). If no one complains, invoking RandEl can generate Ω(n) correct sharings
and thus each sharing cost O(n) communication complexity. We also note that
each sharing belongs to a packed secret sharing scheme and thus the amortized
communication complexity is further reduced to constant.

The RandEl was invoked in [5] to produce random double sharings. Assume
there are t′ corrupted parties and n′ parties remaining in the preprocessing phase.
Instead of using HIM, we use ramp HIM over constant-size field to generate
the random double sharings. All parties want to obtain the double sharings
([a]d, [a]d′) of random vector a for some t′ ≤ d, d′ ≤ n′ − t′. In order to do
that, one can modify RandEl protocol as follows. Pi generates random double
sharings [si]d, [si]d′ and applies the ramp hyper-invertible matrix to obtain [ri]d
and [ri]d′ . For i = T + 1, . . . , n, Pi not only checks the consistency of [ri]d and
[ri]d′ but also makes sure that the opened secrets ri are the same. This will force
the remaining unopened sharings [ri]d and [ri]d′ to be correct and associated
with the same secret. We call this modified protocol DoubleSharings. The
same argument implies the following result.

Corollary 5. Assume that t′ ≤ d, d′ ≤ n′−t′. If T ≤ t′ and all honest parties are
happy, then DoubleSharings will output correct sharings ([r1]d, [r1]d′), . . . , ([rT ]d, [rT ]d′)
with uniformly random secrets r1, . . . , rT and the adversary learns no informa-
tion about them. The total communication complexity is O(n2) for generating
Ω(n) correct sharings.

4.3 Public Reconstruction

The public reconstruction protocol is used to efficiently and robustly open the
secret [18, 5]. The idea is that instead of reconstructing one secret, this protocol
allows all parties to simultaneously reconstruct Ω(n) secrets. Meanwhile, the
communication complexity keeps the same O(n2) and thus the amortized com-
munication complexity is reduced to O(n). To achieve this goal, this protocol
treats k = Ω(n) secrets as a message of length k and re-encodes this message to
a codeword of length n′ such that this linear code has minimum distance at least
2t′ + 1. Each party reconstructs one secret corresponding to one component of
this codeword. Since there are at most t′ corrupted parties, this message can be
robustly recovered subject to at most t′ errors. Our Protocol ReconPub is a
generalization of the counterpart in [18, 5]. Because our protocol is defined over
constant-size field, we resort to algebraic geometry codes for error correction.

Theorem 5. For d ≤ t, ReconPub robustly reconstructs the secrets a1, . . . , aT
towards all parties in I. For d ≤ 2t′, ReconPub detectably reconstructs the
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Protocol ReconPub(d, [a1]d, . . . , [aT ]d)
Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ϵ)

3
of them are

corrupted. Let T = n′(1 − ϵ) − 2t′ − 1 = Ω(n) and M = (mij)n′×T be a generator
matrix of a [n′, T, 2t′+1] linear code C over Fq in Corollary 2 as 2t′+1+T = n′(1−ϵ).

Input: T sharings [a1]d, . . . , [aT ]d ∈ Σd in Corollary 4.

– For i = 1, . . . , n′, the parties in I locally compute [ri]d =
∑T

j=1 mij [aj ]d.
– The parties in I send their shares of [ri]d to Pi.
– Pi checks the consistency of [ri]d. If d ≤ t′, Pi robustly reconstructs the secret

ri by invoking decoding algorithm of Σd and sends them to other parties in I.
Otherwise if d ≤ 2t′, Pi either reconstructs the secret r̃i and sends it to other
parties in I or becomes unhappy if there are inconsistent shares.

– If no one becomes unhappy, the parties in I robustly reconstruct a1, . . . , aT

from r̃1, . . . , r̃n′ . More precisely, write r̃i = (ri1, . . . , ris) ∈ Fs
q and decode the

codeword (r1j , . . . , rn′j) ∈ C for j = 1, . . . , s to obtain the message (a1j , . . . , aTj)
for j = 1, . . . , s.

Output: ai = (ai1, . . . , ais), i = 1, . . . , T .

secrets a1, . . . , aT towards all parties in I. The total communication complexity
is O(n′2)

Proof. We prove the first claim. Without loss of generality, we assume d = t. For
each party Pi ∈ I, [ri]d consists of at most t′ incorrect shares. Since [ri]d ∈ Σd,
by Proposition 4, the reconstruction of Σd is r = t + ϵn′/3 and it can correct
up to (n′−r)

2 ≥ t′ errors. Thus, the honest party Pi can robustly reconstruct ri.
After this reconstruction, there are at least n′ − t′ correct secrets ri. Thus, the
decoding algorithm of C can correct errors and output correct messages.

We proceed to the second claim d = 2t′. The argument is divided into two
cases.

1. Some honest party Pj receives corrupted shares of [ri]d from the adversary.
By Proposition 4 and Corollary 4, the minimum distance of Σ2t′ is at least
n′ − 2r′ ≥ n′/3. Since there are at most t′ < n′/3 corrupted shares, Pj can
detect them and become unhappy.

2. All honest parties receive consistent shares. This implies that there are at
least n′− t′ correct secrets ri. Thus, the decoding algorithm of C can correct
errors and output correct messages.

As for the communication complexity, party Pi sends his share of [rj ]d to Pj and
the secret ri to all other parties. Thus, the total communication complexity is
O(n2) for opening T = Ω(n) secrets. The proof is completed.

Now we proceed to generate Beaver triples ([a]t, [b]t, [c]t) to prepare for mul-
tiplication gates. Random sharings [a]t and [b]t could be generated by invoking
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RandEl. Since arithmetic secret sharing has strong multiplicativity, all par-
ties could locally compute [c]2t. The key of transforming [c]2t to [c]t is degree
reduction, which can be done with double sharings generated in RandEl.

Protocol Triples
Setup: The set of parties I = {P1, . . . , Pn′}, the number of parties n′ and the number
of corrupted parties t′.

– The parties in I invoke DoubleSharings three times to gener-
ate ([a1]t, [a1]t′), . . . , ([aT ]t, [aT ]t′), ([b1]t, [b1]t′), . . . , ([bT ]t, [bT ]t′) and
([r1]t, [r1]2t′), . . . , ([rT ]t, [rT ]2t′).

– The parties in I locally compute [dk]2t′ = [ai]t′ ⋆ [bi]t′ + [ri]2t′ for i = 1, . . . , T .
– The parties in I invoke ReconPub(2t′, [d1]2t′ , . . . , [dT ]2t′) to publicly recon-

struct d1, . . . ,dT ,
– The parties in I locally compute [ci]t = di − [ri]t.

Output: T triples ([a1]t, [b1]t, [c1]t), . . . , ([aT ]t, [bT ]t, [cT ]t).

Theorem 6. If all honest parties are happy, Protocol Triples successfully out-
puts Beaver triples ([ai]t, [bi]t, [ci]t)i∈[T ]

9 such that ai and bi are uniformly
random vectors and ci = ai ⋆ bi. Moreover, the total communication complexity
of Triples is O(n2).

Proof. Corollary 5 shows that if all honest parties are happy, then Double-
Sharings generates correct sharings ([ai]t′ , [bi]t′ , [ri]2t′)i∈[T ] such that ai,bi, ri
are uniformly random vectors by Corollary 5. Theorem 5 shows that Recon-
Pub can reconstruct correct secrets towards all parties if all honest parties are
happy. It is clear that ci = ai ⋆bi as our SSS are multiplicative by Proposition 4.
The privacy argument is straightforward. DoubleSharings does not reveal any
information to the adversary by Corollary 5. Moreover, ReconPub only opens
the random elements which contain no information about ci. The total commu-
nication complexity is the cost of invoking DoubleSharings and ReconPub,
which is O(n2) due to Corollary 5 and Theorem 5.

4.4 Put Together

In this subsection, we briefly explain how to replace the protocols in [5] with our
new protocols so as to obtain perfectly secure MPC for t < n(1−ϵ)

3 over constant-
size fields. The prominent feature of our MPC protocol is constant share size.
We use the same player elimination protocol in [5] containing fault detection,
fault localization and player elimination.

Put everything together, we obtain the following theorem.
9 Invoking Triples once can generate T = n′(1 − ϵ) − 2t′ − 1 = Ω(n) triples. Each

triple contains ϵn
6

secrets.
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Theorem 7. The protocol PreprocessingPhase generates cM + cR + cI inde-
pendent random Beaver triples [ai]t, [bi]t, [ai ⋆ bi]t with independently random
vectors ai,bi ∈ F

ϵn
6
q . The total communication complexity is O((cI+cM +cR)n+

n3). The amortized communication complexity of generating one triple is O(n).
10

Proof. The proof is quite straightforward since we have already proven Theo-
rem 6. If every party is happy, then Triples guarantees that all the Beaver
triples generated in this segment is correct. Otherwise, all parties invoke the
player elimination protocol to localize a pair of parties containing at least one
corrupt party. The privacy argument can be derived directly from Theorem 6.
It remains to compute the communication complexity. We note that we divide
the preprocessing phase into t segments. In each segment, we either remove
two parties or complete this segment and obtain ℓ Beaver triples. Since there
are n parties, we invoke at most t + n

2 = O(t) segments. For each segment,
we invoke Triples ℓ

tT times which incurs O( ℓn
2

tT ) = O(ℓ) communication com-
plexity. The player elimination protocol in Appendix incurs the same amount
of communication complexity in this segment plus the cost of three broadcasts
O(n2). Thus, the total communication complexity for preprocessing phase is
O(ℓt+ n3) = O((cI + cM + cR)n+ n3).

Protocol PreprocessingPhase
Setup: the set of actual parties is I = {P1, . . . , Pn′}, the number of parties is n′ = n
and the number of corrupted parties is t′ = t. The preprocessing phase generates
ℓ = cI + cM + cR Beaver triples.

– For 1st, . . . , tth segment,

• Each party in I sets his happy-bit to happy.
• The party in I invokes Triples ⌊ ℓ

tT
⌋ times to generate ℓ

t
Beaver triples

([a]t′ , [b]t′ , [a ⋆ b]t′).
• If there is at least one party unhappy, invoke player elimination protocol to

localize a pair of parties P ′ = {Pi, Pj}.
• Set I = I \ P ′ and n′ = n′ − 2, t′ = t′ − 1. Repeat this segment.

Theorem 8. The protocol OnlinePhase perfectly securely evaluates a single
instruction multiple data (SIMD) circuit with ϵncI

6 input, ϵncM
6 multiplication,

ϵncR
6 random gates and DM depth in the presence of t = (1−ϵ)n

3 actively cor-
rupted parties, given cI + cM + cR pre-shared multiplication triples. The total
10 Since such triple consists of packed secret sharing scheme, we can further reduce the

amortized communication complexity to constant if we evaluates Ω(n) instances of
the same circuit in the online phase.
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Protocol OnlinePhase
Input Gate: (Pi input s)

– The parties in I send their shares of [r]t to Pi. Pi robustly reconstructs r by
running decoding algorithm in Proposition 4.

– Pi broadcasts s− r and the parties in I locally compute [s]t = s− r+ [r]t.

Addition Gate: The parties in I locally compute [x+ y]t = [x]t + [y]t.
Scalar Gate: The parties in I locally compute [λx]t = λ[x]t
Random Gate: Pick a random sharing [r]t associated with this gate.
Multiplication Gate: Up to T

2
multiplication gates are processed simultaneously.

The input of each multiplication gate is [xi]t, [yi]t for i = 1, . . . , T/2. The Beaver
triples ([ai]t, [bi]t, [ci]t), i = 1, . . . , T/2 are given.

– For i = 1, . . . , T/2, the parties in I locally compute [di]t = [xi]t − [ai]t and
[ei]t = [yi]t − [bi]t.

– Invoke ReconPub to robustly reconstruct the secrets di, ei for i = 1, . . . , T/2.
– The parties in I locally compute [xi ⋆yi]t = di ⋆ ei + ei ⋆ [xi]t +di ⋆ [yi]t + [ci]t

for i = 1, . . . , T/2.

Output Gate: (Output [s]t to all parties) The parties in I send their shares of [s]t
to other parties. All parties robustly reconstruct s by running decoding algorithm in
Proposition 4.

communication complexity is O((cI + cM + cR)n + DMn2 + n3) and thus the
amortized communication complexity of computing each gate is O( DMn+n2

cI+cM+cR
). If

cI + cM + cR is bigger than n2+DMn, the amortized communication complexity
for each gate is a constant.

Proof. The online phase follows the line of Computationphase protocol in [5].
Since our circuit is a SIMD circuit, we use the packed secret sharing obtained
in preprocessing phase to compute the Computationphase protocol. Each triple
in the preprocessing phase can compute ϵn

6 instances simultaneously. Thus, it
suffices to generate cI + cM + cR Beaver triples in the preprocessing phase. The
total communication complexity in the preprocessing phase is O((cI + cM +
cR)n+ n3) by Theorem 7.

We proceed to the online phase. At the input gate, we use a pre-shared ran-
dom vector r to mask the input s and then broadcast the difference s−r. Thus, we
broadcast n times and each broadcast can be simulated by communicating O(n2)
bits. All parties obtain their shares of the secret s by locally computing [r]t+s−r.
The addition and scalar gate can be done locally. Thus, the total communication
complexity for computing input gates is O(n3+cIn). At the multiplication gate,
the Beaver triple ([a]t, [b]t, [a ⋆ b]t) is used to securely compute a sharing of a
product at the cost of two public reconstructions. The ReconPub amortizes the
communication complexity of public reconstruction by reconstructing T = Ω(n)
secrets simultaneously. Thus, we can evaluate Ω(n) multiplication gates by in-
voking ReconPub once. Since the secret space of our SSS has dimension ϵn

6 ,
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this packed secret sharing scheme can evaluate ϵn
6 instances simultaneously. Each

random gate picks a random sharing. Thus, the total communication complexity
of random gates is O(cRn). This means the total communication complexity of
computing multiplication gates is O(cMn + DMn2). Therefore, the total com-
munication complexity of OnlinePhase is O((cI + cM + cR)n+DMn2 + n3).

We proceed to the robustness argument. At the input gate, all parties use
a random sharing generated in the preprocessing phase to generate the sharing
of one input. No corruption happens in this stage. At the addition gate and
scalar gate, all parties do local computation and no corruption happens. At the
multiplication gate, all parties open secrets by invoking ReconPub. We note
that the the sharings to be opened belong to Σt which can be error corrected by
Proposition 4. Thus, the corruptions caused by the adversary in this stage will
be corrected. At the output gate, we obtain the same conclusion as the sharings
to be opened belong to Σt as well.

We proceed to the privacy argument. We note that the secret sharing scheme
we use has t-privacy and there are t′ ≤ t corrupted parties in the online phase. At
the input gate, the input is masked by a random element and thus the element
broadcasted is a random element revealing no information about the input. At
the multiplication gate, the opened secrets are random elements which reveal no
information. Thus, the adversary learns nothing except the output in the online
phase.

Remark 3 Since our MPC protocol uses the packed secret sharing scheme, to
achieve constant amortized communication complexity, our MPC protocol must
run over single instruction multiple data (SIMD) circuit which carries out the
exact same computation to several inputs simultaneously. However, it is also
possible to adapt it to other circuits although the protocol will be more complicated.
We briefly explain the modification required for this goal. In [17], they propose
a way to reroute the network. We can replace our double sharings with the
sharings of random vectors and the permutation of their coordinates in the ramp
HIM protocol. When we open the pair of secrets, we compare if the secret and
the permutation of the secret are consistent. Thus, we can apply the technique
in [17] to modify the circuit to achieve small communication complexity. The
technique in [17] is to embed the computation in a special form of a universal
circuit based on the so-called Bene’s network [9] which requires the sharings with
the permutation of their coordinates.

5 MPC-in-the-head

5.1 Check consistency of shares via ramp HIM

The application of HIM in zero-knowledge proof was due to [8] where HIM
was used to check the consistency of sharings. To check consistency of n − 2t
sharings, HIM requires n+ t additional sharings. Thus, the overhead of checking
one sharing is roughly t+n

n−2t = O(1) field element. The downside is that HIM
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requires that |F| ≥ 2n. As a generalization of HIM, the ramp HIM is defined
over constant-size field which can save the communication complexity.
Proposition 6. Assume at most t = 1−ϵ

3 n parties of P1, · · · , Pn are corrupted
and Σd has d-privacy with d ≥ t. Protocol CheckConsistency(d) verify the
d-consistency of 2t secret sharings with zero error probability. It is t-private in
the presence of semi-honest adversary and perfectly t-robust in the presence of
malicious adversary.
Proof. We use [ri] to represent [ri]d. We begin by proving that protocol Check-
Consistency(d) is t-robust in the presence of malicious adversary. Let H ⊆ [n]
be the index set of honest parties and H̄ = [n]/H be the index set of corrupted
parties. Since there are at most t corrupted parties, |H| ≥ n − t. If no party
complains, [si] for i ∈ H are correct sharings. Moreover, [ri] for i ∈ [2t + 1, n]
provided by the input client can not be corrupted by the adversary. The fact that
|H|+ |[2t+1, n]| ≥ 2n−3t ≥ (1+ ϵ)n and M is an (n, n, (1+ ϵ)n, (1− ϵ)n)-ramp
HIM implies that [si] for i ∈ H and [ri] for i ∈ [2t + 1, n] uniquely determine
the sharings [ri] for i ∈ [2t]. Since [r] for i ∈ [2t] and [si] for i ∈ H are correct
sharings, [ri] for i ∈ [2t] are also correct sharings.

We proceed to the argument of t-privacy in the presence of semi-honest ad-
versary. Since Σd has d ≥ t-privacy, the adversary learns nothing from any t
shares of [s1], . . . , [sn]. If we fix [si] for i ∈ H and [ri] for i ∈ [2t], the fact that
M is an (n, n, (1+ ϵ)n, (1− ϵ)n)-ramp HIM and |H̄|+2t ≤ 3t ≤ (1− ϵ)n implies
that there is a surjection from ri, i ∈ [2t+1, n] to si, i ∈ H̄. Since ri, i ∈ [2t+1, n]
provided by the input client are distributed uniformly at random, si, i ∈ H̄ are
also distributed uniformly.

Protocol CheckConsistency(d)
Setup: n parties P1, · · · , Pn and an input client I
Public input: an (n, n, (1 + ϵ)n, (1− ϵ)n)-ramp HIM M
Private input: Pi obtains corresponding shares of [r1]d, · · · , [r2t]d

– Input client randomly generates [r2t+1]d, · · · , [rn]d and distributes corresponding
shares to P1, · · · , Pn

– Parties locally compute ([s1]d, · · · , [sn]d)
T = M([r1]d, · · · , [rn]d)

T

– Party Pi receives all shares of [si] from other parties and checks the consistency.
If the sharing is incorrect, Pi complains and the protocol aborts.

– If no party complains, the parties conclude that [r1]d, · · · , [r2t]d are consistent.

Remark 4 Protocol CheckConsistency(d) is similar to Protocol RandEl(d)
as ramp HIM is used to guarantee d-consistency. The major difference is input
and output. In MPC protocol, preprocessing data come from secret sharings
generated by each party including both honest parties and corrupted parties while
in MPCitH protocol, preprocessing data are directly provided by the prover.
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5.2 Constant-rate zero-knowledge proof

The MPC protocol in [5] is perfectly secure against malicious adversary. This
MPC protocol has perfect robustness and the MPCitH protocol relying on it
thus saves two rounds of communication [32].

The communication cost of the prover consists of commitment and decom-
mitment. According to [32], we need a statistically-binding commitment scheme,
whose output length grows linearly in message length. The communication cost
of commitment is O(n|C| log q) bits. The decommitment requires the prover to
reveal the views of t parties selected by the verifier which includes witness,
preprocessing data and broadcast value, which takes O(t|C| log q) bits commu-
nication. In summary, the communication complexity of MPCitH protocol is
O((n + t)|C| log q) bits, which is equivalent to O(n|C| log n) as t = Ω(n) and
HIM forces q ≥ 2n [8].

We briefly describe how to reduce communication complexity to O(|C|) with
the help of ramp HIM. Firstly, we apply a packed secret sharing which batches
Ω(n) evaluations together to remove the multiplicative factor n in the commu-
nication complexity. The next step is to apply an MPC protocol over constant-
size field in Section 4. By replacing RandEl(d) with CheckConsistency(d),
we obtain an MPC protocol Πf that has t-privacy and perfect t-robustness
due to Proposition 6. Plugging this MPC protocol in [8], finally we obtain a
3-round constant-rate zero-knowledge proof. In contrast, the constant-rate zero-
knowledge proof proposed in [32] has 5 communication rounds since it relies on
a MPC protocol[16] with statistical robustness and coin tossing between prover
and verifier causes more interaction.
Theorem 9. Given a statistically binding commitment scheme, for any NP
relation R(x,w) which can be verified with a circuit with O(|C|) gates, there
exists a two-party 3-round11 constant-rate zero-knowledge proof in the random
oracle model. The protocol has communication complexity O(|C|) and soundness
error 2−Ω(n).

6 Information-theoretic multi-verifier zero-knowledge
proof

In MVZK, the prover P wants to convince n verifiers V1, · · · ,Vn that regarding
to a NP relation R, it holds a witness w for a statement such that R(x,w) = 1.
In this paper, we focus on a special NP relation:circuit satisfiability, which aims
to find a witness w ∈ Fq for a circuit C such that C(w) = 1. We assume that
at most t verifiers are corrupted by the adversary and can collude with the
prover. There are two types of communications, the communications between
the verifiers and prover and the communications between different verifiers. In
[43], they present an efficient MVZK in the presence of honest-majority verifiers.
11 If we consider random oracle model, then statistically binding commitment scheme

needs only one round [37]. We emphasize that regardless the model, our new MPCitH
protocol saves two rounds of communication compared to [32].
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In the information-theoretic MVZK, the verifiers invoke a coin-tossing func-
tionality Fcoin to jointly sample an random element in the challenge set. In this
process, HIM plays a central role in producing random sharings. However, due
to circuit size and the security parameter, the share size of MVZK has to be
large enough. There is another challenge related to the share size which is the
verification technique [43]. We briefly introduce this technique and show how to
adapt it to our constant-size field later.
1. For a circuit with |C| multiplication gates, the prover distributes correspond-

ing share of ([xi], [yi], [zi])i∈[|C|] to n verifiers, which needs communication
of O(n|C|) field elements in Fq.

2. All verifiers jointly sample a uniform challenge χ ∈ Fqr and compute the
inner-product tuple:

[x] = ([x1], χ · [x2], . . . , χ
|C|−1 · [x|C|])

[y] = ([y1], [y2], . . . , [y|C|])

[z] =

|C|∑
i=1

χi−1 · [zi]

Note that inner product tuples are Shamir SSS defined over Fqr . In this step,
joint sampling communicates O(n2) field elements in Fqr .

3. All verifiers apply the inner-product checking method in [28, 29]. As [28]
has analyzed, the verification procedure incurs communication of O((nτ +
n2) logτ |C|) field elements in Fqr (Here τ is compress parameter).
We notice that the soundness error is dependent on Fqr . If there exists one

incorrect multiplication triple, then the inner-product tuple passes the verifica-
tion of inner product with probability at most |C|−1

qr . To achieve a soundness
error of 2−λ, we have to set qr = 2λ(|C| − 1), which incurs a communication
overhead O(λ+ log |C|) if our computation is carried out over Fq instead of Fqr .

It is clear that moving from Fq to Fqr increases the communication complexity
in Step 2 and Step 3. We can save the communication complexity in Step 2 by
introducing ramp secret sharing and ramp HIM. The communication complexity
in step 3 can be saved by “batched checking”.

Functionality Fcoin

This functionality runs for n verifiers and an adversary A as follows:

– Upon receiving (coin, C) from all verifiers where C is the challenge set, sample
r ← C and sends (random, r) to A.

– If A returns the message (deliver), then sends (random, r) to all verifiers. Oth-
erwise A returns the message (abort), then outputs abort for all verifiers.

To begin with, we instantiate Fcoin over constant-size field. The building
blocks of our protocol are ramp secret sharing scheme and ramp HIM, i.e., we use
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the ramp secret sharing scheme over constant-size field with 1−ϵ
2 n-privacy and

1
2n-reconstruction. This ramp SSS requires that the number of corrupted verifiers
is sub-optimal t = (1−ϵ)n

2 and its secret space is FΩ(ϵn)
q with ϵ = O(λ log |C|

n ).

Protocol Rand
Public input: an (n, t, a, (1 − ϵ)n)-ramp HIM M(a can be any number since Rand
only uses (1− ϵ)n-privacy instead of (1 + ϵ)n-reconstruction of ramp HIM).

– Each verifier Vi samples a random sharing [si]t and distributes corresponding
share to other verifiers.

– All verifiers locally compute ([r1]t, . . . , [rt]t)
T = M([s1]t, · · · , [sn]t)

T .

Protocol Coin
Setup: The protocol Rand generates t random sharings at one time. The protocol
Coin picks a random sharing [r]t from these t sharings.

– Each verifier sends his share of [r]t to all other verifiers. After receiving shares
from other n − 1 verifiers, each verifier checks whether [r]t is a valid secret
sharing.

– If each verifier Vi concludes that all shares are correct, the secret r are recon-
structed and outputted. Otherwise, Vi broadcasts the message (abort) and the
protocol aborts.

Similar to [43], we obtain the following result.

Theorem 10. The protocol Coin realizes Fcoin in security-with-abort model in
the presence of a malicious adversary corrupting t = 1−ϵ

2 n verifiers.

Proof. The only difference from [43] is that our Rand protocol uses ramp HIM
instead of HIM. It suffices to prove that the randomness produced by Rand
protocol is independent of the adversary. Since M is an (n, t, a, (1 − ϵ)n)-ramp
HIM and 2t = (1− ϵ)n, there is a surjection from (si)i∈H to (ri)i∈[t] where H is
the set of honest parties. This means (ri)i∈[t] distributes uniformly at random
conditioning on the sharings of the corrupted parties (si)i∈[n]/H .

We proceed to the batch checking. Assume that [x] is a sharing over Fq and
χ ∈ Fqr . We redefine the inner product in this setting. We note that one can
represent Fqr as a linear subspace over Fq. Let v1, . . . , vr be the basis of Fqr over
Fq. Then, for any element λ ∈ Fqr , we have λvi =

∑r
j=1 mijvj . Thus, λ can be

thought of as a linear map Mλ = (mij)r×r from Fr
q to its self. In this sense, we

redefine · as
λ · (x1, . . . , xr) = Mλ(x1, . . . , xr)
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where x1, . . . , xr ∈ Fq. We now show how to check circuit satisfiability.

1. For a circuit with |C| multiplication gates, the prover distributes correspond-
ing share of ([xi], [yi], [zi])i∈[|C|] over Fq to n verifiers. Pad ([0], [0], [0])’s to
these |C| sharings so that the number of sharings is divisible by r. We now
assume that |C| is divisible by r.

2. All verifiers jointly sample a uniform challenge χ ∈ Fqr and compute the
inner-product tuple:

[x] = (([x1], . . . , [xr]), χ · ([xr+1], . . . , [x2r]), . . . , χ
|C|/r−1 · [x|C|−r+1], . . . , [x|C|])

[y] = (([y1], . . . , [yr]), ([yr+1], . . . , [y2r]), . . . , ([y|C|−r+1], . . . , [y|C|]))

[z] =

|C|/r∑
i=1

χi−1 · ([z(i−1)r+1], . . . , [zir])

3. All verifiers apply the inner-product checking method in [28, 29].

Therefore, the amortized share size is now independent of the security parameter
and circuit size.
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A Player Elimination

Player elimination was first proposed in [31] to transform a non-robust (but de-
tectable) protocol into a robust protocol at essentially no additional costs. This
protocol cuts the preprocessing phase into many segments. At the beginning of
each segment, all parties are happy. If some party detects the inconsistency, he
becomes unhappy in this segment. At the end of this segment, if there is some
party unhappy, the protocol enters into fault localization and removes a pair
of parties from the rest of the computation. Then, the player elimination pro-
tocol repeats this segment. For completeness, we present the player elimination
protocol in [5].

Player Eliminiation
Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ϵ)

3
of them are

corrupted. Divide the computation into several segment and do the following in each
segment.

Initialization: All parties set their happy-bit happy.

Fault Detection: Reach agreement whether or not at least one party is unhappy.

Fault Localization: Find a pair of parties E in I that contain at least one corrupted
party.

– Denote the player Pr ∈ I with the smallest index r as the referee.
– Every Pi ∈ I sends everything he received and all random values he chose during

the computation of the actual segment (including fault detection) to Pr.
– Given the value received above, Pr can reproduce all message that should be

sent and compare it with the value from the recipient that claims to have. Then,
Pr broadcasts (ℓ, i, j, x, x′) where ℓ is the index of the message, x is the message
sent by Pi and x′ is the message received by Pj with x ̸= x′.

– The accused parties Pi, Pj broadcast whether they agree with Pr. If Pi disagrees,
set E = {Pr, Pi}. If Pj disagrees, set E = {Pr, Pj}. Otherwise set E = {Pi, Pj}.

Player Elimination: Set I = I \ E, n′ = n′ − 2, t′ = t′ − 1 and repeat this segment.

B Construction of binary ramp HIM

Binary ramp HIMs have particular interest due to applications. In order to con-
struct good binary ramp HIMs, we require binary codes with both large distance
and dual distance. However, the construction based on algebraic geometry codes
does not work well for binary ramp HIMs. This is because there are fewer points
compared with genus for algebraic curves over the binary fields. In this sub-
section, we briefly report the result of explicit binary ramp HIMs based on the
trivial concatenation of algebraic geometry codes. We also present an existence
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result of binary ramp HIMs from the Gilbert-Varshomov bound. It is surprisingly
noted that there is no big difference between these two results.

By employing the algebraic geometry codes from the Garcia-Stichtenoth
tower and trivial binary codes, we obtain the following explicit construction
on binary HIMs.

Theorem 11. Let t be an even positive integer. Let δ ∈
(

1
2t/2−2

, 1
]

be a real.
Then there is a family of binary (n,m; r, p)2-ramp HIM with n → ∞, m

n → δ
and

lim sup
n→∞

r

n
≤ 1 +

t− 1

t
× δ +

1 + δ

t(2t/2 − 1)
, lim inf

n→∞

p

n
≥ 1

t
+

1− δ

t(2t/2 − 1)
.

In particular, there is a family of (n, n; r, p)2-ramp HIM with n → ∞ and

lim sup
n→∞

r

n
≤ 1 +

t− 1

t
+

2

t(2t/2 − 1)
, lim inf

n→∞

p

n
≥ 1

t
− 2

t(2t/2 − 1)
.

Furthermore, this family can be constructed in time O(n3).

The random linear code can approach Gilbert-Varshamov bound and so does
its dual code.

Lemma 2. With probability at least 1− 2−ϵℓ, a random binary linear code and
its dual code both achieve the Gilbert-Varshamov bound. Precisely speaking, given
a random binary [ℓ, k, d]-linear code C and its dual C⊥ = [ℓ, ℓ−k, d⊥], with high
probability one has

k = ℓ

(
1−H2

(
d

ℓ

)
− ϵ

)
, ℓ− k = ℓ

(
1−H2

(
d⊥

ℓ

)
− ϵ

)
. (6)

By Lemma 2, we have the following existence result.

Theorem 12. Let δ ∈ (0, 1] be a real. Let τ, τ⊥ be reals in [0, 1/2] satisfying the
equation

(δ + 1)(1−H2(τ)) = 1, (δ−1 + 1)(1−H2(τ
⊥)) = 1.

Then there is a family of binary (n,m; r, p)2-ramp HIM with n → ∞, m
n → δ

and
lim

n→∞

r

n
≤ (1 + δ)(1− τ), lim

n→∞

p

n
≥ (1 + δ)τ⊥.

In particular, there is a family of binary (n, n; r, p)2-ramp HIM with n → ∞ and

lim
n→∞

r

n
≤ 2(1− τ), lim

n→∞

p

n
≥ 2τ⊥.
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