
Practical Constructions for Single Input Functionality against a
Dishonest Majority*

Zhelei Zhou†,‡, Bingsheng Zhang†,‡, Hong-Sheng Zhou?, Kui Ren†,‡

†The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China

‡ZJU-Hangzhou Global Scientific and Technological Innovation Center, China

?Virginia Commonwealth University, USA

February 26, 2024

Abstract

Single Input Functionality (SIF) is a special case of MPC, where only one distinguished party called dealer
holds the secret input. SIF allows the dealer to complete a computation task and send to other parties their
respective outputs without revealing any additional information about its secret input. SIF has many applications,
including multiple-verifier zero-knowledge and verifiable relation sharing, etc. Recently, several works devote to
round-efficient realization of SIF, and achieve 2-round communication in the honest majority setting (Applebaum
et al., Crypto 2022; Baum et al., CCS 2022; Yang and Wang, Asiacrypt 2022).

In this work, we focus on concrete efficiency and propose the first practical construction for SIF against a
dishonest majority in the preprocessing model; moreover, the online phase of our protocol is only 2-round and
is highly efficient, as it requires no cryptographic operations and achieves information theoretical security. For
SIF among 5 parties, our scheme takes 152.34ms (total) to evaluate an AES-128 circuit with 7.36ms online time.
Compared to the state-of-the-art (honest majority) solution (Baum et al., CCS 2022), our protocol is roughly 2×
faster in the online phase, although more preprocessing time is needed. Compared to the state-of-the-art generic
MPC against a dishonest majority (Wang et al., CCS 2017; Cramer et al., Crypto 2018), our protocol outperforms
them with respect to both total running time and online running time.
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1 Introduction

Single Input Functionality (SIF) has received a lot of attention in the recent years [AKP20,AKP22,YW22,BJO+22].
We can view SIF as a special case of MPC, where only one distinguished party, called the dealer D, is allowed
to hold a private input w, while all other parties, called the verifiers V1, . . . ,Vn, have no private inputs. More
concretely, let (y1, . . . , yn) ← C(w) be the SIF they jointly compute; after the execution, the i-th verifier Vi obtains
yi as its private output.

The investigation of SIF can be traced back to the work by Gennaro et al. [GIKR02]. Very recently, Applebaum
et al. [AKP22] observe that SIF have two direct applications – Multiple-Verifier Zero-Knowledge (MVZK) [BJO+22,
YW22] and Verifiable Relation Sharing (VRS) [AKP20]. Note that, as shown in [AKP22], MVZK can be viewed as a
special case of VRS.

Multiple-Verifier Zero-Knowledge (MVZK). In a MVZK protocol, a distinguished party called prover P, who
takes input as the statement x and the witnessw, and he wants to convince the n verifiers V1, . . . ,Vn thatR(x,w) =
1 for an NP relation R. It is easy to see that MVZK can be implemented via SIF. Namely, let C be the circuit that
evaluates R(x,w). Then the parties can invoke SIF to jointly evaluate C such that the verifiers can obtain C(x,w)
as their outputs.

Recently, several MVZK protocols [AKP22, BJO+22, YW22] have been constructed in the honest majority set-
ting. More precisely, in these constructions, the adversary is allowed to corrupt the prover and the minority of
the verifiers. Among them, Applebaum et al. [AKP22] focus more on the theoretical side and show how to con-
struct a 2-round MVZK protocol in the plain model1 using non-interactive commitments. On the other hand,
Baum et al. [BJO+22] and Yang and Wang [YW22] provide highly efficient constructions. More concretely, Yang
and Wang [YW22] show how to construct 2-round MVZK protocols in the random oracle (RO) model, where the
prover sends a single message to each verifier in the first round, and the verifiers exchange messages among them
and make a decision in the second round. Similarly, the MVZK protocols proposed by Baum et al. [BJO+22] are
also 2-round, but they are designed in the preprocessing model2.

We must note that a variant of MVZK has been investigated in the dishonest majority setting (i.e., the prover
and the majority of the verifiers can be malicious): Lepinski et al. [LMs05] introduce the notion of fair ZK, which
can be viewed as a strengthened version of MVZK in the dishonest majority setting. More precisely, Lepinski et
al. extend the traditional ZK to the setting with multiple verifiers and add a new security property called fairness,
which ensures the malicious verifiers who collude with the malicious prover cannot learn anything beyond the
validity of the statement if the honest verifiers accept the proof. However, their construction is only a feasibility
result and is far from being practical. On the one hand, their protocol requires heavy cryptographic operations.
On the other hand, they assume an unrealistic network assumption: the parties can only communicate through a
broadcast channel and unidirectional secure channels (from the verifiers to the prover).

We emphasize that, the previous practical MVZK protocols are constructed in the honest majority setting [YW22,
BJO+22]. How to construct a practical MVZK protocol in the dishonest majority setting, is still an open problem.

Verifiable Relation Sharing (VRS). Analogously, in a VRS protocol, we also consider a distinguished prover P
who holds a private input s, and n verifiers V1, . . . ,Vn who have no private inputs. The prover P shares the
secret s to the verifiers; denote the verifier Vi’s share as xi, for i ∈ [n]. In addition, the prover P proves in zero-
knowledge that R(s, x1, . . . , xn) = 1 for an NP relation R. Clearly, VRS can also be implemented via SIF. In
particular, we define a circuit (y1, . . . , yn) ← C(s, x1, . . . , xn) such that yi = xi for i ∈ [n] if R(s, x1, . . . , xn) = 1;
otherwise, yi = ⊥ for i ∈ [n], where ⊥ is a failure symbol. We note that, as shown in [AKP22], VRS implies
many important cryptographic primitives, such as MVZK, Verifiable Secret Sharing (VSS) [CGMA85], and secure
multicast [GIKR01].

Applebaum et al. show that a 2-round VRS protocol can be constructed using non-interactive commitment
as a building block; their protocol allows the adversary to corrupt the prover and up to t < n

3 verifiers [AKP20].
The same authors later improve the corruption threshold without increasing the round complexity [AKP22]. More
precisely, the protocol in [AKP22] remains secure in the presence of a corrupted prover and up to t < n

2+ε corrupted
verifiers, where ε is a positive constant.

1In plain model, there is no setup.
2In preprocessing model, the protocol is divided into two phases: (i) the preprocessing phase, where the inputs are unknown to parties

and some correlated randomness are generated; (ii) the online phase, where the inputs are known to parties and the previously generated
randomness are consumed to accelerate the computation.
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To the best of our knowledge, all the existing VRS protocols in the literature assume an honest majority, and
constructing a practical VRS protocol against a dishonest majority remains an open problem.

1.1 Our Results

In this work, we focus on concrete efficiency and present the first practical construction for SIF against a dishonest
majority in the preprocessing model. The online phase of our protocol is only 2-round and achieves information
theoretical security; as a result, our online phase protocol is very fast. In addition, our protocol can be proven
secure in the Universal Composability (UC) framework [Can01]. As mentioned before, both VRS and MVZK can
be viewed as special cases of SIF; as side products, we also obtain the first practical MVZK and VRS protocols
against a dishonest majority in the preprocessing model, which provides answers to the aforementioned open
problems.

In the following, we will first provide a brief intuition of our construction.

Intuition. In our design, we make extensive use of a particular form of correlated randomness, called Information-
Theoretic Message Authentication Codes (IT-MACs) [BDOZ11, NNOB12]. Let Fpr be the extension field of a field Fp.
In order to authenticate the random value x ∈ Fp, we let the party who holds the MAC key (∆,K) ∈ F2

pr compute
the MAC tag mx := K + ∆ ·x ∈ Fpr . It is easy to see that a malicious party who obtains mx but does not know the
MAC key, cannot produce another valid mx′ for x′ 6= x except for negligible probability when |Fpr | is sufficiently
large. In the dishonest majority setting, IT-MACs are often combined with secret shares [BDOZ11,DPSZ12]. More
concretely, random values are shared among all the parties (e.g., for a random x, party Pi obtains xi such that
x =

∑n
i=1 xi), and the shares are authenticated to each other using IT-MACs. These random values are often used

to mask the wire values of the circuit.
Our key observation is that: in SIF, only the dealer holds the private input w; revealing the random masked

value of w to the dealer does not compromise the security, as the dealer is already aware of w. In addition, the
random masked value is secretly shared among the verifiers.

Following the above observation, we are able to design a 2-round SIF. We will follow the “gate-by-gate” design
paradigm. The dealer first commits to its secret inputw by broadcasting δ := w−x, where x is the random value
that is held by the dealer and shared among the verifiers. Due to the linearity of shares, the verifiers transform
the shares of δ into the shares of w. It is easy to see that all addition gates of the circuit can be processed locally
for free. For the multiplication gates of the circuit, we use the “Beaver triples” techniques [Bea92]. More precisely,
for each multiplication gate with input wire indices α, β and output wire index γ, we prepare three correlated
random values (a, b, c) such that c = ab in advance, and we denote by wα, wβ the input wire values and denote by
wγ the output wire value. If we set η := wα − a and ν := wβ − b, then it is easy to see that

wγ = wα · wβ = (wα − a+ a) · (wβ − b+ b)

= η · ν + η · b+ ν · a+ c
(1)

In MPC protocols in the dishonest majority setting, such as BDOZ-style MPC [BDOZ11] and SPDZ-style MPC [DPSZ12],
parties need to publicly open η and ν first; then the parties can obtain the shares of wα · wβ based on Equation 1.
To process the multiplication gates, interactions between the protocol parties are required; the overall round com-
plexity of BDOZ-style and SPDZ-style MPC protocols depend on the circuit depth. In contrast, in our setting, we
can simply let the dealer broadcast η, ν since wα, wβ , a, b are known by the dealer. Therefore, all multiplication
gates can be processed simultaneously at once! Notice that, the idea that all multiplication gates can be sent si-
multaneously is also used in the context of ZK, e.g. [KKW18, WYKW21, YSWW21]. In order to prevent the dealer
from cheating in computing η, ν, we let the verifiers to open η̃ := wα − a, ν̃ := wβ − b and check if η̃ = η, ν̃ = ν
hold in the following round. For output gates, for instance, the i-th output gate that belongs to Vi, we denote
by hi the output wire value, and let other verifiers open their shares of hi to Vi, so Vi can recover its output hi.
Notice that, the verifiers can open their shares of output values and send the messages that are used to check the
multiplication gates in the same round. As a result, the online phase of our SIF protocol can be constructed within
2 rounds.

Comparisons. In Table 1, we compare our result with the related state-of-the-art 2-round protocols. We implement
our protocol, and report our performance results in Section 6.1 and the comparison results with other works in
Section 6.2, respectively.
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Table 1: Comparison with related state-of-the-art 2-round protocols.

Ref. Primitive Threshold Setup Security?

[YW22] MVZK t < n
2 + 1 RO it

[BJO+22] MVZK t < n
3 + 1 Prep. it

[AKP22] SIF t < n
2+ε + 1‡ - cs/es

Ours SIF t < n+ 1 Prep. it
? it: information-theoretical security; es: everlasting security; cs: com-

putational security.
† Refer to the number of rounds in the online phase.
‡ Here, ε is a small positive constant.

Our construction for SIF is highly efficient: for SIF among 5 parties, our construction takes 152.34ms (total) to
evaluate an AES-128 circuit with 7.36ms online time. We compare the performance of our protocol with the state-
of-the-art MVZK protocol in the honest majority setting, i.e. the Feta protocol by Baum et al. [BJO+22]3. When
there are 5 parties (1 prover and 4 verifiers), Feta takes 18.25ms to evaluate an AES-128 circuit with 16.24ms online
time; roughly, our protocol uses 2× less online time than Feta, although our protocol has a slower pre-processing
phase. In addition, we remark that, when the number of parties is 5, Feta only tolerates a single corrupted verifier
while our protocol can tolerate 3 corrupted verifiers. Furthermore, Feta is specially designed for MVZK while our
protocol is for SIF, supporting MVZK, VRS and more.

To further demonstrate the efficiency of our protocol, we also compare the performance of our SIF with that of
several MPC protocols in the dishonest majority setting. When there are 3 parties, our protocol takes 302.43ms to
evaluate a SHA-256 circuit with only 7.20ms online time. Compared to the state-of-the-art MPC protocols against
a dishonest majority [WRK17b,CDE+18], our improvement ranges from 1.2× to 1.7×w.r.t. the total running time,
and ranges from 2.2× to 4.4×w.r.t. the online phase running time.

1.2 Applications

Here we will discuss some application scenarios of our SIF/MVZK/VRS protocols in the following.

VSS against a dishonest majority. As pointed out in [AKP22], SIF captures a very important cryptographic
primitive, i.e., Verifiable Secret Sharing (VSS) [CGMA85]. In a VSS protocol, when a malicious dealer makes
dishonest behaviors, it would be caught by the honest verifiers and the honest verifiers will disqualify the dealer.

Typically, in a VSS protocol with an honest majority, the honest verifiers can always reconstruct the secret
if the dealer acts honestly. When it comes to the dishonest majority setting, the security requirement is relaxed
to capture the security with abort [NMO+04, DMQO+11], since malicious verifiers can always abort the protocol
execution. As shown in [NMO+04,DMQO+11], VSS can be used to construct general MPC protocols against a dis-
honest majority. The authors of [NMO+04,DMQO+11] propose VSS protocols against a dishonest majority in the
commodity based model, where they assume a trusted authority generates correlated randomness and delivers
these randomness to the protocol participants. Our protocol can be used to build VSS against a dishonest majority
in the preprocessing model, where we also use correlated randomness, and we present an efficient protocol to
generate these correlated randomness.

Private aggregation systems. In a private aggregation system, there are a set of clients, who hold private data, and
a set of servers, who want to collect and aggregate clients’ data. In Prio [CB17], a highly influential private aggre-
gation system, each client (acting as the prover) needs to employ Secret-Shared Non-Interactive Proofs (SNIPs) to
prove to the servers (acting as the verifiers) that its data is valid. However, the authors of [CB17] assume that the
malicious client cannot collude with the servers to ensure the soundness; in addition, Prio can tolerate all-but-one
malicious servers for zero-knowledge property. Therefore, our MVZK protocol against a dishonest majority could
be a more sound alternative to SNIPs, since our protocol remains secure even if the malicious prover is allowed to
collude with the verifiers.

3In Feta [BJO+22] two MVZK protocols have been constructed: in the first protocol, up to t < n
3

verifiers can be corrupted, while in the
second protocol, up to t < n

4
verifiers are corrupted. In our paper, we only refer to the former one.
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1.3 Paper Organization

In Section 2, we present the preliminaries that will be used in this work. In Section 3, we provide the technical
overview for our protocols. In Section 4 and Section 5, we give the full descriptions about our protocols for the
preprocessing phase and online phase protocols respectively. In Section 6, we discuss the performance of our
protocols. In Section 7, we show more details about the relevant work.

2 Preliminaries

2.1 Notation

We use λ ∈ N to denote the security parameter. We say that a function negl : N → N is negligible if for every
positive polynomial poly(·) and all sufficiently large λ, it holds that negl(λ) < 1

poly(λ) . We use the abbreviation PPT
to denote probabilistic polynomial-time. We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are statistically (resp. computationally indistinguishable), which we denote by X

s
≈ Y (resp., X

c
≈ Y), if for any

unbounded (resp., PPT) distinguisher A there exists a negligible function negl s.t. |Pr[A(Xλ) = 1] − Pr[A(Yλ) =
1]| = negl(λ). We use x ← S to denote that sampling x uniformly at random from a finite set S. For n ∈ N, we
denote by [n] a set {1, . . . , n}. For a, b ∈ Z with a ≤ b, we denote by [a, b] = {a, . . . , b}. We use bold lower-case
letters like x for vectors, and denote by xi the i-th element of vector x.

We consider an extension field Fpr of a finite field Fp, where p ≥ 2 is a prime or a power of a prime and r ≥ 1 is
an integer. We fix some monic, irreducible polynomial f(X) of degree r and write Fpr ∼= Fp[X]/f(X). Therefore,
every w ∈ Fpr can be written uniquely as w =

∑r
i=1 wi ·Xi−1 with wi ∈ Fp for all i ∈ [r]. Thus, we could view the

elements over Fpr equivalently as the vectors in (Fp)r.
Based on field Fp, we can define a circuit C : Fmp → Fnp as follows: First, the circuit C consists of a set of input

wires Iin and a set of output wires Iout, where |Iin| = m and |Iout| = n. Second, the circuit C consists of a list of
gates of the form (α, β, γ, T ), where α, β are the indices of the input wires and γ is the index of the output wire,
and T ∈ {Add,Mult} is the type of the gate. If p = 2, then C is a boolean circuit with Add = ⊕ and Mult = ∧; note
that, one can compute x⊕ 1 to negate x in a boolean circuit. If p ≥ 2 is a prime or a power of a prime, then C is an
arithmetic circuit where Add/Mult corresponds to addition/multiplication in Fp.

2.2 Universal Composability

We formalize and analyze the security of our protocols in the Universal Composability (UC) framework by
Canetti [Can01]. In the following, we give a high-level description for UC framework, and we refer readers to
see more details in [Can01].

In the UC framework, we define a protocol Π to be a computer program (or several programs) which is in-
tended to be executed by multiple parties. Every party has a unique identity pair (pid, sid), where pid refers to the
Party ID (PID) and sid refers to the Session ID (SID). Parties running with the same code and the same SID are
viewed to be in the same protocol session. The adversarial behaviors are captured by the adversaryA, who is able
to control the network and corrupt the parties. When a party is corrupted by the adversary A, the adversary A
obtains its secret input and internal state.

The UC framework is based on the “simulation paradigm” [GMW87], a.k.a., the ideal/real world paradigm.
In the ideal world, the inputs of the parties are sent to an ideal functionality F who will complete the computation
task in a trusted manner and send to each party its respective output. The corrupted parties in the ideal world are
controlled by an ideal-world adversary S (a.k.a., the simulator). In the real world, parties communicate with each
other to execute the protocol Π, and the corrupted parties are controlled by the real-world adversaryA. There is an
additional entity called environmentZ , which delivers the inputs to parties and receives the outputs generated by
those parties. The environment Z can communicate with the real-world adversaryA (resp. ideal-world adversary
S) and corrupt the parties through the adversary in the real (resp. ideal) world. Roughly speaking, the security of
a protocol is argued by comparing the ideal world execution to the real world execution. More precisely, for every
PPT adversary A attacking an execution of Π, there is a PPT simulator S attacking the ideal process that interacts
with F (by corrupting the same set of parties), such that the executions of Π with A is indistinguishable from that
of F with S to Z . We denote by EXECF,S,Z (resp. EXECΠ,A,Z ) the output of Z in the ideal world (resp. real world)
execution. Formally, we have the following definition.
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Definition 1. We say a protocol Π UC-realizes the functionality F , if for any PPT environment Z and any PPT adversary
A, there exists a PPT simulator S s.t. EXECΠ,A,Z

c
≈ EXECF,S,Z .

We then describe the modularity which is appealing in the UC framework: when a protocol calls subroutines,
these subroutines can be treated as separate entities and their security can be analyzed separately by way of
realizing an ideal functionality. This makes the protocol design and security analysis much simpler. Therefore, we
introduce the notion of “hybrid world”. A protocol Π is said to be realized “in the G-hybrid world” if Π invokes
the ideal functionality G as a subroutine. Formally, we have the following definition.

Definition 2. We say a protocol Π UC-realizes the functionality F in the G-hybrid world, if for any PPT environment Z
and any PPT adversary A, there exists a PPT simulator S s.t. EXECGΠ,A,Z

c
≈ EXECF,S,Z .

Adversarial model. In this work, we consider malicious static corruption, i.e., the adversary corrupts the parties at
the beginning of the protocol and the corrupted parties may deviate from protocol instructions. We also consider
rushing adversaries, who may delay sending messages on behalf of corrupted parties in a given round until the
messages sent by all the uncorrupted parties in that round have been received.

Malicious, static and rushing adversaries are also considered in the relevant state-of-the-art works, e.g., [AKP22,
YW22, BJO+22]. However, they additionally assume an honest majority while we do not. More precisely, in our
setting, when there are a dealer and n verifiers, we allow the adversary to corrupt the dealer and up to (n − 1)
verifiers.

Secure communication model. In this work, we consider simultaneous communication, and we assume the
parties are connected by pairwise secure channels and a broadcast channel. These secure communication channels
are also needed in the relevant state-of-the-art work [AKP22, YW22, BJO+22].

2.3 Single Input Functionalities

In [AKP22], Applebaum et al. formally define Single Input Functionalities (SIFs); there the majority of players are
assumed to be honest, and the SIFs are defined to capture full security. In our paper, the majority of players can be
corrupted; we thus consider a relaxed version of their SIFs, capturing security with abort.

A formal presentation of (the relaxed version of) the functionality, FSIF, can be found in Figure 1. More con-
cretely, in a SIF, there are a dealer D and n verifiers V1, . . . ,Vn. Without loss of generality, we assume that all the
parties hold a circuit C : Fmp → Fnp while the dealer D additionally holds a secret input w where |w| = m. The
functionality FSIF takesw from the dealer D, then it computes y := C(w) and delivers yi to Vi for i ∈ [n], where yi
is the i-th element of y.

The functionality interacts with a dealer D, n verifiers V1,. . . ,Vn and an adversary S. Let HV denote the set of hon-
est verifiers.
The functionality is parameterized by a circuit C where C : Fmp → Fnp .

Upon receiving (INPUT, sid,w) from D and (INPUT, sid) from Vi for all i ∈ [n] where w ∈ Fmp , do

• Compute y := C(w), and send (OUTPUT, sid, yi) to V∗i for each V∗i /∈ HV where yi is the i-th element of y.

• Send (CONTINUE, sid) to the adversary S. For each Vi ∈ HV, upon receiving an input from S,

– If it is (CONTINUE, sid,Vi), send (OUTPUT, sid, yi) to Vi.

– If it is (ABORT, sid,Vi), send (ABORT, sid) to Vi.

Functionality FSIF

Figure 1: The Functionality FSIF

2.4 Information-Theoretic Message Authentication Codes

Originating from the work by Beaver [Bea92], who shows how to use “Beaver triples” for designing efficient
protocols in the dishonest majority setting, many MPC protocols make extensive use of correlated randomness
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for better efficiency [BDOZ11, DPSZ12, NNOB12, WRK17a, WRK17b, CDE+18, BGIN21, EGP+23]. Among them,
there is a powerful technique called Information-Theoretic Message Authentication Codes (IT-MACs) which is
used to authenticate the values, especially the secret shares [BDOZ11, NNOB12].

In this subsection, we review the IT-MACs [YSWW21] over the extension field Fpr where pr > 2λ. For sim-
plicity, we assume there are two parties P1 and P2. Let ∆ ∈ Fpr be the global MAC key held by P1. A value
x ∈ Fp known by P2 is authenticated to P1 by having P1 hold a local MAC key K and having P2 hold the cor-
responding MAC tag MAC∆,K(x) := K + ∆ · x ∈ Fpr . It is easy to see that a malicious P∗2 who sees MAC∆,K(x)
for a chosen x cannot produce a new valid MAC tag MAC∆,K(x′) for x′ 6= x except with probability p−r < 2−λ.
Furthermore, the security of IT-MACs holds when an honest party has many MAC keys that share the same ∆ but
with independently random K, and we call such MAC keys consistent.

Another appealing advantage of IT-MACs is additive homomorphism. More precisely, for consistent keys (∆,K1),
. . . , (∆,Kn), given the public coefficients c1, . . . , cn, c ∈ Fp, it holds that MAC∆,K(y) :=

∑n
i=1 ci ·MAC∆,Ki(xi) ∈

Fpr , where y :=
∑n
i=1 ci · xi + c ∈ Fp and K :=

∑n
i=1 ci ·Ki − c ·∆ ∈ Fpr .

3 Technical Overview

Before giving the formal description of our construction, we first provide a technical overview of our design in
this section. Full descriptions of our protocols can be found in Section 4 and Section 5, below.

3.1 Starting Point: BDOZ-Style MPC

Our starting point is the BDOZ-style MPC [BDOZ11,NNOB12] which is designed in the preprocessing model; that
is, the parties first jointly prepare some correlated randomness in the preprocessing phase, and those correlated
randomness will be “consumed” during the online phase to accelerate the online computation. BDOZ-style MPC
exploits the merit of IT-MACs (cf. Section 2.4) to achieve malicious security while preserving high performance
during the online phase.

Here we provide a high-level description for BDOZ-style MPC. Suppose there are n parties P1, . . . ,Pn. In
the preprocessing phase, the parties jointly generate sufficiently many random values. For instance, for random
x ∈ Fp, each party Pi holds an additive share xi ∈ Fp such that x =

∑n
i=1 xi. For each ordered pair of parties

(Pi,Pj), Pi authenticates its own share (namely, xi) to Pj , i.e., at the end of the preprocessing phase, Pi holds
xi ∈ Fp and M j

xi ∈ Fpr and Pj holds ∆j ,K
j
xi ∈ (Fpr )2 such that M j

xi = MAC∆j ,K
j
xi

(xi) = Kj
xi + ∆j · xi ∈ Fpr .

Given these authenticated shares, every party can share its secret input easily. Suppose party Pi wants to share its
secret input w ∈ Fp, other parties simply open their random shares of x to Pi; After recovering x, Pi can simply
broadcast δ := w − x ∈ Fp to others. By the additive homomorphism of IT-MACs, all the parties obtain the shares
of w.

Then the parties will execute the protocol for online phase in the “gate-by-gate” paradigm. The addition
gates can be processed without interactions between the parties. For each multiplication gate (α, β, γ,Mult), one
authenticated Beaver triples [Bea92] (i.e., the authenticated shares of a, b, c such that c = a · b) should be prepared
in the preprocessing phase. To compute wα ·wβ , each party Pi holds the shares of input wire values wα,i, wβ,i and
the shares of the authenticated Beaver triple (ai, bi, ci); then all the parties can open η := wα − a and ν := wβ − b.
Since wα ·wβ = (wα− a+ a) · (wβ − b+ b) = η · ν + η · b+ ν · a+ c, all the parties can compute the shares of wα ·wβ
based on the shared (a, b, c) and the public η and ν. Since the process of multiplication gates involves interactions
between the parties, the round complexity of the online phase of BDOZ-style MPC linearly depends on the circuit
depth.

3.2 Key Observations

BDOZ-style shares vs. SPDZ-style shares. Compared with the BDOZ-style MPC, its follow-up, the SPDZ-style
MPC [DPSZ12], is more popular in the community and has been widely studied [KOS16,KPR18,CDE+18,Kel20].
In the SPDZ-style MPC, the shares are formed in a different way: each party holds a share of a single global MAC
key; for a secret value x, each party holds a share of x and a share of the MAC tag on x. In most application
scenarios, we prefer SPDZ-style shares to BDOZ-style shares, since the size of SPDZ-style shares is smaller; thus,
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it is more efficient to operate on SPDZ-style shares. However, opening SPDZ-style shares requires a “commit-and-
open” procedure, which will increase the round complexity. Since we are pursing for 2-round online communica-
tion, BDOZ-style shares are more suitable for our purpose.

The dealer can learn all correlated randomness. In a conventional MPC setting, the BDOZ-style protocol uses the
authenticated shares of random values to mask the wire values of the circuit to ensure the privacy, i.e., to make
sure that corrupted parties cannot recover the wire values. Our key observation is that in the SIF setting, only the
dealer D has a private inputw and other parties’ inputs are public; therefore, even if all the correlated randomness
generated in the preprocessing phase are revealed to the the dealer D, it does not compromise the overall security
of the SIF protocol. This is due to the fact that the dealer D already knows her own input.

3.3 Our Techniques

Reducing the round complexity. Enlightened by the observations above, we are able to reduce the round com-
plexity of the online phase of our construction; namely, we can process all the multiplication gates at once within
only 2 rounds! More precisely, we first let the dealer D evaluate the entire circuit. Then for each multiplication
gate (α, β, γ,Mult), we let the dealer D broadcast η := wα − a and ν := wβ − b to all the verifiers, where (a, b, c) is
the Beaver triple; note that, as discussed above, we let D learn (a, b, c) in plaintext. After receiving the messages
from the dealer D, the verifiers can locally compute the shares of wα · wβ as it is done in the BDOZ-style MPC.
Finally, in order to check whether the dealer D deviates from the protocol while computing the values η and ν for
a multiplication gate, the verifiers can jointly check whether η, ν are computed correctly. Namely, the verifiers will
publicly open η̃ := wα − a and ν̃ := wβ − b using their authenticated shares of wα, wβ , a, b, and then the verifiers
jointly check if η̃ = η and ν̃ = ν. Clearly, the above can be completed within 2 rounds.

Modified preprocessing protocol. Finally, we show how to generate the BDOZ-style correlated randomness in
our setting. This can be achieved by the following steps:

• Step 1: Generate the authenticated shares of random values x and Beaver triples (a, b, c) such that the dealer D
and the n verifiers jointly holds their shares.

• Step 2: Let the n verifiers open their shares of all the correlated randomness to the dealer D, and then D checks
the validity of the shares w.r.t. their MACs and recover them in plaintext.

• Step 3: Let the dealer D send its shares of all the correlated randomness to each verifier; then one verifier,
say V1, will add the dealer’s share to its own share; the remaining (n − 1) verifiers will locally update the
corresponding MAC keys accordingly.

4 SIF against a Dishonest Majority: Preprocessing Phase

As discussed in Section 3, our protocol will be designed in the preprocessing model. In this section, we mainly
focus on how to design the protocol for preprocessing phase. We first provide the BDOZ-style preprocessing
functionality FBDOZ

Prep , then describe our own preprocessing functionality FOurs
Prep . Finally, we give our protocol ΠPrep

for preprocessing phase which UC-realizes FOurs
Prep in the FBDOZ

Prep -hybrid world.

4.1 BDOZ-Style Preprocessing Functionality

First of all, we provide a quick recap of the BDOZ-style preprocessing phase [BDOZ11,NNOB12,WRK17a,WRK17b],
and we make some modifications to adapt to our setting, where there are a dealer D and n verifiers V1, . . . ,Vn.
We let the dealer D (resp. each verifier Vi) hold its global MAC keys ∆0 (resp. ∆i). To share a value x ∈ Fp among
D,V1, . . . ,Vn, we will randomly select x0, x1, . . . , xn ← Fp such that x :=

∑n
i=0 xi and give x0 to D and xi to Vi for

i ∈ [n]. Furthermore, these shares are authenticated to each other using IT-MACs. For example, to authenticate
Vi’s share (namely, xi) to Vj , we let Vj hold a local MAC key Kj

xi which is uniformly random; meanwhile, we let
Vi hold a MAC tag M j

xi such that M j
xi := MAC∆j ,K

j
xi

(xi) = Kj
xi + ∆j · xi. When the parties decide to make x pub-

lic, the corrupted parties cannot lie about their shares, since the corrupted parties cannot forge a MAC tag except
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with a negligible probability. For better presentation, we introduce the following notation JxKBDOZ to denote the
BDOZ-style shares of value x:

JxKBDOZ = {{xi, {∆i,K
i
xj ,M

j
xi}j∈[0,n]\{i}}i∈[0,n]} ,

where {x0, {∆0,K
0
xj ,M

j
x0
}j∈[n]} (resp. {xi, {∆i,K

i
xj ,M

j
xi}j∈[0,n]\{i}}) are privately held by the dealer D (resp.

each verifier Vi), and we use JxKBDOZ as shorthand when it is not need to explicitly talk about the shares and MAC
tags. We call J·KBDOZ the BDOZ-style shares.

Notice that, authenticated Beaver triples (i.e., JaKBDOZ, JbKBDOZ,JcKBDOZ such that c = ab) will also be generated
during the BDOZ-style preprocessing phase. Formally, we present the functionality FBDOZ

Prep in Figure 2 which
captures the BDOZ-style preprocessing phase, and the functionality FBDOZ

Prep is adapted from [BDOZ11, WRK17b].

The functionality interacts with a dealer D, n verifiers V1, . . . ,Vn and an adversary S. Let H denote the set of the
honest parties.

Initial. Upon receiving (INIT, sid) from D and V1, . . . ,Vn, do

1. If D /∈ H, receive ∆0 ∈ Fpr from the adversary S; otherwise, sample random ∆0 ← Fpr .

2. For i ∈ [n]: If Vi /∈ H, receive ∆i ∈ Fpr from S; otherwise, sample random ∆i ← Fpr .

3. Return ∆0 to D and ∆i to Vi for each i ∈ [n].

4. Store {∆i}i∈[0,n], and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and V1, . . . ,Vn, for v ∈ [u]:

1. Send (SINGLES, sid, v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT, sid, v) to
every honest party and halt. If it is CONTINUE, continue the procedure.

2. Sample random x← Fp and create JxKBDOZ as follows:

(a) If D /∈ H, receive x0 ∈ Fp and {K0
xj ,M

j
x0}j∈[n] ∈ (Fpr )2n from S.

(b) For i ∈ [n]: If Vi /∈ H, receive xi ∈ Fp and {Ki
xj ,M

j
xi}j∈[0,n]\{i} ∈ (Fpr )2n from S.

(c) For each honest Vi ∈ H, its share xi ∈ Fp is chosen at random, subject to x =
∑n
i=0 xi. (Here we can regard

D as V0 for notation convenience.)

(d) For each honest Vi ∈ H and j ∈ [0, n] \ {i}, Ki
xj is chosen as follows: if Vj ∈ H, sample random Ki

xj ← Fpr ;
otherwise, set Ki

xj := M i
xj −∆i · xj ∈ Fpr . (Here we can regard D as V0 for notation convenience.)

(e) For i ∈ [0, n], j ∈ [0, n] \ {i}: Compute M j
xi := MAC

∆j ,K
j
xi

(xi) = Kj
xi + ∆j · xi ∈ Fpr .

(f) Send {x0, {K0
xj ,M

j
x0}j∈[n]} to D and {xi, {Ki

xj ,M
j
xi}j∈[0,n]\{i}} to each Vi for i ∈ [n].

Triples. Upon receiving (TRIPLES, sid, u) from D and V1, . . . ,Vn, for v ∈ [u]:

1. The same as step 1 in Singles procedure.

2. For each triple to create, the functionality samples a, b← Fp and sets c := a · b ∈ Fp, then it creates JaKBDOZ,
JbKBDOZ,JcKBDOZ, each as step 2 in Singles procedure.

Functionality FBDOZ
Prep

Figure 2: The Functionality FBDOZ
Prep for BODZ-Style Preprocessing

4.2 Our Preprocessing Functionality

Unlike the BDOZ-style preprocessing phase where secrets are shared among all the parties, in our preprocessing
phase, we share secrets among the verifiers V1, . . . ,Vn and let the dealer D hold the entire secrets. The shares’
authentication among V1, . . . ,Vn follows the same method as in Section 4.1. More precisely, for a secret x, we
let each verifier Vi hold a share xi and {Ki

xj ,M
j
xi}j∈[n]\{i}; meanwhile, we let the dealer D hold the verifiers’

shares x1, . . . , xn. Notice that, the verifiers’ MAC keys and MAC tags are hidden from the dealer. In this way,
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the dealer D can announce the secret x :=
∑n
i=1 xi by itself, later the verifiers can open their shares to check if

the announcement is correct. Even if the malicious dealer D∗ colludes with some verifiers, D∗ cannot make a false
announcement without being detected, since the corrupted verifiers cannot lie about their shares. For notation
convenience, we use the following way of representing x:

JxK = {{xi}i∈[n], {xi, {∆i,K
i
xj ,M

j
xi}j∈[n]\{i}}i∈[n]} ,

where {xi}i∈[n] (resp. {xi, {∆i,K
i
xj ,M

j
xi}j∈[n]\{i}}) is privately held by the prover P (resp. the verifier Vi), and we

use JxK as shorthand when it is not need to explicitly talk about the shares and MAC tags.
For modularity, we assume that there is an ideal functionality FOurs

Prep providing us with the above, and we
present the functionality FOurs

Prep in Figure 3. Similar to FBDOZ
Prep depicted in Figure 2, our FOurs

Prep also generates the
authenticated Beaver triples, i.e., JaK, JbK, JcK such that c = ab.

The functionality interacts with a dealer D, n verifiers V1, . . . ,Vn and an adversary S. Let H denote the set of the
honest parties.

Initial. Upon receiving (INIT, sid) from D and V1, . . . ,Vn, do

1. For i ∈ [n]: If Vi /∈ H, receive ∆i ∈ Fpr from S; otherwise, sample random ∆i ← Fpr .

2. Return ∆i to Vi for each i ∈ [n].

3. Store {∆i}i∈[n], and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and V1, . . . ,Vn, for v ∈ [u]:

1. Send (SINGLES, sid, v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT, sid, v) to
every honest party and halt. If it is CONTINUE, continue the procedure.

2. Sample random x← Fp and create JxK as follows:

(a) For i ∈ [n]: If Vi /∈ H, receive xi ∈ Fp and {Ki
xj ,M

j
xi}j∈[n]\{i} ∈ (Fpr )2n from S.

(b) For each honest Vi ∈ H, its share xi ∈ Fp is chosen at random, subject to x =
∑n
i=1 xi.

(c) For each honest Vi ∈ H and j ∈ [n] \ {i}, Ki
xj is chosen as follows: if Vj ∈ H, sample random Ki

xj ← Fpr ;
otherwise, set Ki

xj := M i
xj −∆j · xj ∈ Fpr .

(d) For i ∈ [n], j ∈ [n] \ {i}: Compute M i
xj := MAC

∆j ,K
j
xi

(xi) = Kj
xi + ∆j · xi ∈ Fpr .

(e) Send {xi}i∈[n] to D and {xi, {Ki
xj ,M

j
xi}j∈[n]\{i}} to each verifier Vi.

Triples. Upon receiving (TRIPLES, sid, u) from D and V1, . . . ,Vn, for v ∈ [u]:

1. The same as step 1 in Singles procedure.

2. For each triple to create, the functionality samples a, b← Fp and sets c := ab ∈ Fp, then it creates JaK, JbK, JcK,
each as step 2 in Singles procedure.

Functionality FOurs
Prep

Figure 3: The Functionality FOurs
Prep for Preprocessing

Operations on our J·K shares. By additive homomorphism of IT-MACs described in Section 2.4, when the MAC
keys are consistent (i.e., each party holds its own single global MAC key and many independently random local
MAC keys), linear operations on our J·K shares can be performed locally. For completeness, we present it in
Figure 4.

4.3 Our Preprocessing Protocol

In this subsection, we show how to efficiently realize our preprocessing functionality FOurs
Prep . Our key idea is to

convert BDOZ-style shares J·KBDOZ into our shares J·K. We achieve this by letting the verifiers send their shares
to the dealer privately, so the dealer can obtain the entire random values. After that, we let the dealer open its
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Addition of shares: Given two consistent JxK and JyK (i.e., both JxK and JyK are generated under the same global
MAC keys), D,V1, . . . ,Vn obtain the consistent shares of z := x+ y ∈ Fp by locally performing the followings:

• D computes zi := xi + yi ∈ Fp for i ∈ [n].

• For i ∈ [n]: Each Vi computes zi := xi + yi ∈ Fp,Ki
zj := Ki

xj +Ki
yj ∈ Fpr ,M j

zi := M j
xi +M j

yi ∈ Fpr for
j ∈ [n] \ {i}.

Multiplication by constants: Given JxK and a constant c ∈ Fp, D,V1, . . . ,Vn obtain the consistent shares of z :=
c · x ∈ Fp by locally performing the followings:

• D computes zi := c · xi ∈ Fp for i ∈ [n].

• For i ∈ [n]: Each Vi computes zi := c · xi ∈ Fp,Ki
zj := c ·Ki

xj ∈ Fpr ,M j
zi := c ·M j

xi ∈ Fpr for j ∈ [n] \ {i}.

Addition of constants: Given JxK and a constant c ∈ Fp, D,V1, . . . ,Vn obtain the consistent shares of z := c+ x ∈ Fp
by locally performing the followings:

• D computes z1 := c+ x1 ∈ Fp and zi := xi ∈ Fp for i ∈ [2, n].

• V1 computes z1 := c+ x1 ∈ Fp,K1
zj := K1

xj ∈ Fpr ,M j
z1 := M j

x1 ∈ Fpr for j ∈ [2, n]. For i ∈ [2, n]: Each Vi sets
zi := xi ∈ Fp,Ki

zj := Ki
xj ∈ Fpr ,M j

zi := M j
xi ∈ Fpr for j ∈ [2, n] \ {i} and computes Ki

z1 := Ki
x1 − c ·∆i ∈ Fpr ,

M1
zi := M1

xi ∈ Fpr .

Local Operations

Figure 4: Local Operations on Our J·K Shares

Initial. On input (INIT, sid), P,V1, . . . ,Vn work as follows:

1. P,V1, . . . ,Vn send (INIT, sid) to FBDOZ
Prep , which returns {∆0

j}j∈[n] to P and {∆i
j}j∈[0,n]\{i} to Vi for each i ∈ [n].

2. Vi outputs {∆i
j}j∈[n]\{i} for each i ∈ [n].

Singles. On input (SINGLES, sid, u), for each v ∈ [n], P,V1, . . . ,Vn work as follows:

1. P,V1, . . . ,Vn send (SINGLES, sid, 1) to FBDOZ
Prep , which returns either ABORT or [x]BDOZ to them. If it is the first

case, they simply abort. If it is the second case, P receives {x0, {K0
xj ,mj(x0)}j∈[n]} and each Vi receives

{xi, {Ki
xj ,mj(xi)}j∈[0,n]\{i}}. Notice that, x =

∑n
i=0 xi.

2. For i ∈ [n]: Vi opens its share to P by sending xi,m0(xi) to P over a private channel. Then P checks if
m0(xi) = K0

xi + ∆0
i · xi holds. If not, P aborts.

3. P opens its share to V1, . . . ,Vn by sending x0,mi(x0) to each Vi over a private channel. Then Vi checks if
mi(x0) = Ki

x0 + ∆i
0 · x0 holds. If not, Vi aborts.

4. V1 updates its share and MAC tag by setting x′1 := x1 + x0 and mi(x
′
1) := mi(x1) for i ∈ [2, n]. For i ∈ [2, n]: Vi

updates its local MAC keys by setting Ki
x′1

:= Ki
x1 − x0 ·∆i

1. In this way, we create new authenticated shares of
x among the verifiers.

5. For notation convenience, P,V1, . . . ,Vn set x′i := xi,mj(x
′
i) := mj(xi),K

j

x′i
:= Kj

xi for i ∈ [2, n], j ∈ [n] \ i. Notice

that, now x =
∑n
i=1 x

′
i

6. P outputs {x′i}i∈[n] and Vi outputs {x′i, {Ki
x′j
,mj(x

′
i)}j∈[n]\{i}} for each i ∈ [n].

Triples. On input (TRIPLES, sid, u), for each v ∈ [n], P,V1, . . . ,Vn work as follows:

1. P,V1, . . . ,Vn send (TRIPLES, sid, 1) to FBDOZ
Prep , which returns either ABORT or [a]BDOZ, [b]BDOZ, [c]BDOZ to them. If it

is the first case, they simply abort. If it is the second case, they receive [a]BDOZ, [b]BDOZ, [c]BDOZ such that c = ab.

2. For each t ∈ {a, b, c}, P,V1, . . . ,Vn convert [t]BDOZ to [t] as step 2-6 in Singles procedure.

Protocol ΠPrep

Figure 5: Our Protocol ΠPrep for Preprocessing Phase in the FBDOZ
Prep -Hybrid World
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(original) shares to the verifiers, so the verifiers can update their shares locally. We present our protocol ΠOurs
Prep for

preprocessing phase in Figure 5 and prove the security through Theorem 1.

Theorem 1. Let Fpr be the underlying extension field with pr > n · 2λ. The protocol ΠPrep depicted in Figure 5 UC-realizes
the functionality FOurs

Prep depicted in Figure 3 with information theoretical security in the FBDOZ
Prep -hybrid world, in the presence

of a static malicious adversary corrupting up to the dealer and (n− 1) verifiers.

Proof. We leave the formal proof in Appendix A.1.

5 SIF against a Dishonest Majority: Main Protocol

In this section, we aim to provide the main protocol for SIF against a dishonest majority. Since we have described
how to realize the preprocessing phase in Section 4, here we mainly focus on the online phase. The intuition of
our protocol for online phase can be found in Section 3. We give a high-level description of our protocol for online
phase in the following.

We design our protocol for online phase in the “gate-by-gate” paradigm. The dealer D who holds the secret
input w ∈ Fmp first commits to all input wire values to the verifiers V1, . . . ,Vn by consuming m random values
{JµiK}i∈[m] produced by FPrep. More precisely, for each i ∈ Iin, D broadcasts the masked input wire value δi :=
wi − µi to all verifiers. Then V1, . . . ,Vn obtain the shares of input wire value by computing JwiK := JµiK +
δi. As discussed in Section 4.2, J·K is additively homomorphic; therefore, addition gates can be processed for
free. For each multiplication gate, one authenticated Beaver triple (JaiK, JbiK, JciK) such that ci = ai · bi will be
consumed to ensure the multiplication gate will be processed properly. This technique is originated from the
work by Beaver [Bea92]. More precisely, for each multiplication gate (α, β, γ,Mult), D broadcasts ηi := wα − ai
and νi := wβ − bi to the verifiers, where wα and wβ are the input wires values of this gate. By the following
eqution wα · wβ = (wα − ai + ai) · (wβ − bi + bi) = (ηi + ai) · (νi + bi) = ηi · νi + ηi · bi + νi · ai + ci, it is clear that
if D acts honestly, the verifiers are able to reconstruct the shares of output wire value JwγK by locally computing
ηi · νi + ηiJbiK + νiJaiK + JciK. If D acts maliciously, i.e., D broadcasts the false ηi or νi, the verifiers are able to detect
this malicious behavior by opening Jη̃iK := JwαK−JaiK and Jν̃iK := JwβK−JbiK to each other, and checking if η̃i = ηi
and ν̃i = νi hold. Finally, the verifiers hold the shares of output wire values {JhiK}i∈[n]. In order to let Vi obtain its
own output, other verifiers simply open JhiK to Vi. Notice that, during the protocol execution, the honest verifiers
would abort if any check fails or any verifier fails to open its share.

Formally, we present our main protocol ΠSIF, which captures both preprocessing phase and online phase, in
Figure 6 and prove the security through Theorem 2.

Theorem 2. Let Fpr be the underlying extension field with pr > n · 2λ. The protocol ΠSIF depicted in Figure 6 UC-realizes
the functionality FSIF depicted in Figure 1 with information theoretical security in the FOurs

Prep -hybrid world, in the presence
of a static malicious adversary corrupting up to the dealer and (n− 1) verifiers.

Proof. We leave the formal proof in Appendix A.2.

Efficiency analysis. Assume the circuit has m input wires and s multiplication gates. Let n be the number of
verifiers. We analyze both the computation and communication efficiency of our online phase protocol in the
following:

• Computation: Here we measure the computation cost by the number of multiplication operations, since ad-
dition operations are for free. The dealer D only requires s multiplications, which is extremely efficient. Each
verifier Vi requires 4ns+m multiplications, which is also very efficient.

• Communication: Here we measure the communication cost by the number of field elements sent by each party.
The dealer D sends m + 2s filed elements to the verifiers over a broadcast channel. Each verifier Vi sends 4s
field elements to another verifier Vj over a private channel.

6 Implementation and Evaluation

We implement a prototype of our protocols in C++, and conduct a benchmark on various circuit evaluations.
Our code is available at https://github.com/ZheleiZhou/SIF-Implmentation. The performance of our
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Inputs: The dealer D and the verifiers V1, . . . ,Vn hold a circuit C : Fmp → Fnp . We denote by Iin the input wires of
C and denote by Iout the output wires of C. We assume the circuit C has s multiplication gates. The dealer D also
holds a secret input w in (Fp)m.

Preprocessing Phase. Both the concrete structure of the circuit and the witness are unknown.

1. D,V1, . . . ,Vn send (INIT, sid) to FPrep, which returns ∆i ∈ Fpr to Vi for each i ∈ [n].

2. D,V1, . . . ,Vn send (SINGLES, sid,m) to FPrep, which returns {JµiK}i∈[m] to them. More precisely, for each i ∈ [m],
D holds {µi,1, . . . , µi,n} such that µi =

∑n
j=1 µi,j ; meanwhile, each Vj holds {µi,j , {Kj

µi,k ,M
k
µi,j}k∈[n]\{j}}. D

computes µi :=
∑n
j=1 µi,j ∈ Fp for each i ∈ [m].

3. D,V1, . . . ,Vn send (TRIPLES, sid, s) to FPrep, which returns {JaiK, JbiK, JciK}i∈[t] to them where ci = aibi. More
precisely, for each i ∈ [s] and ρi ∈ {ai, bi, ci}, D holds {ρi,1, . . . , ρi,n} such that ρi =

∑n
j=1 ρi,j ; meanwhile, each

Vj holds {ρi,j , {Kj
ρi,k ,M

k
ρi,j}k∈[n]\{j}}. D computes ρi :=

∑n
j=1 ρi,j ∈ Fp for each i ∈ [s] and ρi ∈ {ai, bi, ci}.

Online Phase. Now the concrete structure of the circuit and the witness are known by the parties.

Round 1: The dealer D works as follows:

1. For i ∈ Iin: D broadcasts δi := wi − µi ∈ Fp to all verifiers, where wi is i-th element in w.

2. For each gate (α, β, γ, T ), D evaluates the circuit C in a predefined topological order:

(a) If T = Add, D computes wγ := wα + wβ ∈ Fp, where wα, wβ , wγ are the wire values correspond to the wire
indices α, β, γ of this gate.

(b) If T = Mult and it is the i-th multiplication gate, D computes wγ := wα · wβ ∈ Fp first, then broadcasts
ηi := wα − ai ∈ Fp and νi := wβ − bi ∈ Fp to all verifiers.

Round 2: The verifiers V1, . . . ,Vn work as follows:

3. For i ∈ Iin: the verifiers compute JwiK := JµiK + δi using the received δi ∈ Fp.

4. For each gate (α, β, γ, T ), the verifiers evaluate the circuit C in a predefined topological order:

(a) If T = Add, the verifiers compute JwγK := JwαK + JwβK.

(b) If T = Mult and it is the i-th multiplication gate, the verifiers compute JwγK := JciK + ηiJbiK + νiJaiK + ηi · νi
using the received ηi, νi ∈ Fp.

5. The verifiers perform the followings to check the multiplication gates: For i-th multiplication gate (α, β, γ,Mult),
the verifiers open Jη̃iK := JwαK− JaiK and Jν̃iK := JwβK− JbiK to each other. Then the verifiers check if η̃i = ηi
and ν̃i = νi hold. The verifiers will abort if any verifier fails to open its share or any check fails

6. The verifiers perform the followings to obtain their output: For i ∈ Iout with authenticated output wire value
JhiK, the verifiers open JhiK to Vi. If any verifier fails to open its share, Vi aborts; otherwise, Vi outputs hi.

Protocol ΠSIF

Figure 6: Our Main Protocol ΠSIF in the FOurs
Prep -Hybrid World
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protocols is reported in Section 6.1. Notice that, there are three state-of-the-art works in the literature [AKP22,
YW22, BJO+22] are closely related to our protocol. Among them, only Feta is implemented by the authors and
reported the performance in their paper; therefore, we compare the efficiency of our protocols with Feta [BJO+22]
in Section 6.2. We then compare the performance of our SIF protocols with the state-of-the-art generic MPC
protocols in the dishonest majority setting (cf. Section 6.2).

We present experimental validation of the efficiency of our protocols over well-known boolean circuits. Note
that, our protocols can support both arithmetic and boolean circuits. Hereby, we report the benchmark results over
boolean circuits (AES-128 and SHA-256) in order to have a fair comparison between our work and Feta [BJO+22].
(They only provide the benchmark results on boolean circuit evaluation in their paper.)

We instantiate the BDOZ-style preprocessing functionality FBDOZ
Prep over extension field Fpr for boolean circuits

with the offline protocol in [WRK17b]. We set p = 2 and r = 128, which provides at least 40-bit statistical security.
All experiments are executed on a machine with Intel Xeon Silver 4214 CPU at 2.20GHz and 128 GB Memory,
running Ubuntu 20.04.5 LTS. The network setting is exactly the same as in [BJO+22], i.e. at a delay of 0.6ms and
bandwidth of 10Gbit/s. Each experiment is run 40 times and the median is taken.

6.1 Performance of Our Protocols

Table 2 illustrates the running time of our protocol w.r.t. AES-128 and SHA-256 evaluation. The numbers of
verifiers are 2, 4, 7, respectively. We report the evaluation results in 4 dimensions: preprocessing time, dealer time,
verifier time and proof size. The numbers of running time consist of both computation time and communication
time. The proof size refers to the size of the message that the dealer sends to each verifier. The running time is
reported in millisecond (ms) and the proof size is reported in KiloByte (KB).

Table 2: The Performance of our protocols.

#Verifiers

2 4 7

AES-128

Preprocessing Time (ms) 96.28 144.98 213.55

Dealer Time (ms) 0.22 0.27 0.41

Verifier Time (ms) 2.04 7.09 20.91

Proof Sizes (KB) 12.75 12.75 12.75

SHA-256

Preprocessing Time (ms) 295.23 452.75 623.86

Dealer Time (ms) 0.75 0.86 1.04

Verifier Time (ms) 6.45 22.01 66.89

Proof Sizes (KB) 44.84 44.84 44.84

As shown in Table 2, the performance of our protocols is highly efficient: when there are single prover and 4
verifiers, it takes 152.34ms to evaluate an AES-128 circuit, in which online running time (the sum of dealer time
and verifier time) is merely 7.36ms. Notice that, the dealer running time of our protocol is extremely fast, since
in addition to evaluating the entire circuit in plaintext, the extra computation cost for dealer is 1 addition (resp. 2
additions) per input wire (resp. AND gate), which is almost for free.

Microbenchmark. From Table 2, we found that the most time-consuming step of our protocols lies in the pre-
processing phase. As discussed in Section 4, our preprocessing phase can be divided into two parts: the first part
involves generating the BDOZ-style shares J·KBDOZ and the second part involves converting J·KBDOZ into the shares
J·K as required by our SIF protocol. The generation of BDOZ-style shares can also be divided in two components:
triples generation (i.e., the generation of the Beaver triples in FBDOZ

Prep ) and singles generation (i.e., the generation
of the single random values in FBDOZ

Prep ). To figure out which part is the most time-consuming, we conduct a mi-
crobenchmark of our preprocessing protocol and plot the results in Figure 7. As shown in Figure 7, the cost of the
preprocessing procedure mainly comes from the triples generations.

In this work, we instantiate the BDOZ-style shares generation protocol with the realization proposed by Wang
et al. [WRK17b]. We notice that the recent work by Yang et al. [YWZ20] mainly focuses on speeding up the triples
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Figure 7: Microbenchmark of our preprocessing protocol. “Triples Generation” refers to the time taken to generate
all the Beaver triples in FBDOZ

Prep ; “Singles Generation” refers to the time taken to generate all the single random
values in FBDOZ

Prep ; “Conversion” refers to the time taken to convert J·KBDOZ into the shares J·K that we need.

generation in BDOZ-style shares. Compared to [WRK17b], their improvement ranges from roughly 4× to 6×.
Moreover, they also reduce the communication cost for the rest of the preprocessing protocol by roughly 1.3×
without increasing the cost for the online phase; thus, they obtain a more efficient BMR-style MPC than [WRK17b].
Since our preprocessing protocol is designed in a modular fashion, if we instantiated the BDOZ-style shares gener-
ation protocol with that by Yang et al. [YWZ20], our preprocessing time could be benefited by the same magnitude
of improvement. We make an estimation of the running time according to the improvement reported in [YWZ20]
and put the results in Table 3. As shown in Table 3, for SIF among 3 parties, our protocol (combined with [YWZ20])
is expected to take only 25.83ms preprocessing time for AES-128 evaluation and 80.95ms for SHA-256 evaluation.
Compared to the running time of our SIF protocol using preprocessing protocol realized by [WRK17b], this is a
roughly 3.7× improvement.

Table 3: The performance comparison of preprocessing phase among WRK [WRK17b], YWZ [YWZ20] and ours.
The number of parties is set as n = 3.

Protocol
Triples Generation

Time (ms)

Total Preprocesing

Time (ms)

AES-128

WRK [WRK17b] 100.34 119.19

YWZ [YWZ20]† 25.21 39.72

Ours + [WRK17b]§ 94.09 96.28

Ours + [YWZ20]†, § 23.64 25.83

SHA-256

WRK [WRK17b] 290.01 345.61

YWZ [YWZ20]† 72.87 115.64

Ours + [WRK17b]§ 286.18 295.23

Ours + [YWZ20]†, § 71.90 80.95

† At the time of submission, the code of YWZ is not publicly available;
therefore, the numbers in “YWZ [YWZ20]” and “Ours + [YWZ20]” rows
are estimated according to the improvement that reported in [YWZ20].
§ “Ours + [WRK17b]” (resp. “Ours + [YWZ20]”) refers to the combination

of our protocol and [WRK17b] (resp. [YWZ20]).

It is worth to mention that since our SIF protocol uses BDOZ-type preprocessing in a blackbox fashion, should
there be any faster and better ideas to generate the BDOZ-type shares in the coming future, the preprocessing time
of our SIF protocol can also be benefited.
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6.2 Comparison with Relevant Works

Comparison with MVZK in the honest majority setting. Here we compare the performance of our protocols
with the state-of-the-art MVZK protocol in the honest majority setting, i.e., the Feta protocol proposed by Baum
et al. [BJO+22]. We stress that, Feta is specifically designed for MVZK, while our SIF protocol can be applied not
only to MVZK, but also to other applications, such as VRS. The comparison results are depicted in Table 4. The
numbers for Feta reported in Table 4 are taken in their published paper. Our protocol is evaluated on the same
hardware and network configuration as in [BJO+22].

Table 4: Performance comparison between ours and Feta [BJO+22]. We set the number of verifiers n = 4, in this
case, Feta only tolerates a single corrupted verifier while our protocol can tolerate 3 corrupted verifiers.

Protocol Threshold
Prep.

Time(ms)
Online

Time(ms)
Proof

Size(KB)

AES-128
Feta [BJO+22] t<n

3 +1 2.01 16.24 2.75
Ours t<n+1 144.98 7.36 12.75

SHA-256
Feta [BJO+22] t<n

3 +1 3.41 47.07 8.60
Ours t<n+1 452.75 22.87 44.84

As shown in Table 4, our protocol is roughly 2× faster in the online phase compared to Feta, when there are
single prover and 4 verifiers. The main drawback of our protocol lies in the time-consuming preprocessing phase,
compared to Feta. However, our protocol is in the dishonest majority setting (the corruption threshold of our
protocol is t < n + 1), while Feta assumes an honest majority (the corruption threshold of Feta is t < n

3 + 1);
typically, the protocols against a dishonest majority are less efficient than the protocols that assume an honest
majority. Furthermore, in the following paragraph, we will show that our preprocessing phase is faster than some
state-of-the-art generic MPC protocols against a dishonest majority.

Comparison with generic MPC in the dishonest majority setting. To further demonstrate the efficiency of our
protocol, we compare our SIF protocols with the state-of-the-art (SOTA) generic MPC protocols over boolean
circuits in the dishonest majority setting, i.e., the WRK protocol by Wang et al. [WRK17b] and the SPDZ2k protocol
by Cramer et al. [CDE+18]. The WRK protocol [WRK17b] represents the SOTA of BMR-style MPC, and the SPDZ2k

protocol [CDE+18] represents the SOTA of SPDZ-style MPC.
As shown in Figure 8, our protocol outperforms WRK and SPDZ2k in running times. The reported numbers

are evaluated by ourselves (the codes of WRK and SPDZ2k can be found in [WMK16] and [Kel20], respectively),
using the same network and hardware configurations. For SIF among three parties, our protocol takes 302.43ms
to evaluate a SHA-256 circuit with 7.20ms online running time; while WRK (resp. SPDZ2k ) takes 361.75ms (resp.
523.49ms) to evaluate the same circuit with 16.13ms (resp. 31.85ms) online running time. In this case, our im-
provement for total running time ranges from 1.2× to 1.7× and our improvement for online running time ranges
from 2.2× to 4.4×.
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Figure 8: Performance comparison among WRK [WRK17b], SPDZ2k [CDE+18] and ours.
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7 Related Work

Here we will review the closely related work in the literature, including multiple-verifier zero-knowledge, dis-
tribute zero-knowledge and verifiable relation sharing.

Multiple-Verifier Zero-Knowledge (MVZK). In a MVZK protocol, the prover who holds (x,w) ∈ R can convince
n verifiers that x is true at once. The notion of MVZK was first introduced by Burmester and Desmedt [BD91].
Later, Abe et al. propose a 2-round MVZK protocol for circuit satisfiability in the presence of a malicious adversary
corrupting a prover and up to t < n

3 verifiers [ACF02]; the corruption threshold of their protocol can be improved
to t < n

2 + 1 at the cost of increasing round complexity. Lepinski et al. introduce the notion of fair zero-knowledge
proof [LMs05], which can be regarded as a MVZK protocol against a dishonest majority. More concretely, they
extend the ZK functionality to obtain the fairness, which states that if an honest verifier accepts the proof, then it is
assured that all other verifiers cannot learn anything beyond the validity of the statement, even if they maliciously
collude with the corrupted prover. The ZK protocol by Groth and Ostrovsky [GO07,GO14] can be transformed in
a 2-round MVZK protocol, and its corruption threshold is t < n

2 + 1.
Very recently, there are three papers [AKP22, YW22, BJO+22] studying 2-round MVZK protocols. Among

them, the protocol by Applebaum et al. [AKP22] is the only that provides the full security, i.e., the honest parties
are guaranteed to receive the output. More precisely, the protocol by Applebaum et al. [AKP22] assumes non-
interactive commitment and its corruption threshold is t < n

2+ε + 1, where ε is a small positive constant. However,
Applebaum et al. [AKP22] focus on a theoretical perspective, and their protocol is not practical. In contrast,
the protocols by Yang and Wang [YW22] and Baum et al. [BJO+22] are designed to achieve practical efficiency,
but their protocols provide weaker security guarantees than [AKP22]. Yang and Wang [YW22] propose 2-round
MVZK protocols assuming a random oracle in the corruption threshold of t < n

2 + 1; but their protocols only
achieve security with abort. Baum et al. [BJO+22] employ a stronger assumption (i.e., the preprocessing model) to
construct a 2-round MVZK protocol in the corruption threshold of t < n

3 + 1, and their protocol achieves security
with identifiable abort (i.e., when the honest parties do not obtain their output, they can identify the cheaters)
which is stronger than [YW22].

Distributed Zero-Knowledge (dZK). The concept of dZK was proposed by Boneh et al. [BBC+19]. In dZK, there is
a distinguished prover holding (x,w) ∈ R and the statement x is shared among the verifiers. In dZK, the prover is
allowed to convince the verifiers that x is correct in zero-knowledge even if the verifiers do not know the entire x.
The main difference between dZK and MVZK is that: in dZK, the statement x is distributed between the verifiers
and no verifier knows the entire statement x; in contrast, in MVZK, each verifier knows the entire statement x.

Boneh et al. [BBC+19] give two 2-round dZK constructions under RO model in two different settings: (i) in their
first construction, the adversary can corrupt the prover and up to t < n

2 verifiers; (ii) in their second construction,
the adversary can corrupt the prover or up to t < n verifiers. Several follow-up works [BGIN19,BGIN20,BGIN21]
demonstrate that dZKs are quite useful in the context of MPC. Concretely, these works showed how to com-
pile semi-honest MPC protocols into malicious ones using dZKs. In recent work by Hazay et al. [HVW], they
strengthen the formalization of [BBC+19] by adding strong completeness, which can prevent corrupted verifiers
from framing the honest prover, i.e., causing the proof of a correct claim to fail. They call their new formalization
strong-complete dZK. Hazay et al. construct their strong-complete dZK in the corruption threshold of t < n−2

6 + 1,
assuming an ideal coin-flipping. While the constructions in [BBC+19] only achieve security with abort, the con-
struction by Hazay et al. can achieve full security.

Verifiable Relation Sharing (VRS). VRS allows the prover to share its input x to multiple verifiers; at the same
time, the prover needs to prove in zero-knowledge that the shared data satisfies some properties. The main
difference between VRS and dZK is that: in VRS, the prover is allowed to choose the statement and the verifiers’
shares; while in dZK, the prover has no control over the statement and verifiers’ shares.

To our knowledge, the first VRS was implicitly studied by Gennaro et al. [GIKR02] in the context of SIF; their
2-round protocol achieves perfect security and full security in the plain model, and its corruption threshold is t <
n
6 + 1. Applebaum et al. improve the corruption threshold to t < n

3 + 1 at the cost of degrading the perfect security
to computational security [AKP20]. Later, the same authors improve the corruption threshold to t < n

2+ε+1, where
ε is a small positive constant [AKP22]. Although dZK and VRS are quite different, Hazay et al. show a connection
between these two primitives [HVW]. More precisely, under a certain restricted condition (i.e., the relations are
robust, and we refer readers to see the definition of robust relations in [HVW]), Hazay et al. show a construction of
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VRS from dZK as well as a construction of dZK from VRS without further computational assumptions; and both
constructions are at the cost of one additional round.

8 Conclusion

In this paper, we propose the first practical construction for SIF against a dishonest majority in the preprocessing
model. Our online phase protocol is only 2-round and is information theoretically secure. As side products,
we also obtain the first practical 2-round MVZK and VRS protocol against a dishonest majority in the prepro-
cessing model. To demonstrate the practicality of our constructions, we implement our protocols and conduct
extensive experiments. The performance of our protocol is competitive, compared to the state-of-the-art relevant
work [BJO+22] in the honest majority setting and the MPC protocols [WRK17b,CDE+18] in the dishonest majority
setting.

Acknowledgment. The authors thank Zehao Li for his assistance in the protocol implementation.
Bingsheng Zhang is supported by the National Key R&D Program of China (No. 2021YFB3101601), the Na-

tional Natural Science Foundation of China (Grant No. 62072401 and No. 62232002), and Input Output (iohk.io).
Hong-Sheng Zhou is supported in part by NSF grant CNS-1801470, and a Google Faculty Research Award.

References
[ACF02] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive distributed-verifier proofs and proving rela-

tions among commitments. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 206–223.
Springer, Heidelberg, December 2002.

[AKP20] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The resiliency of MPC with low interaction: The benefit
of making errors (extended abstract). In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 562–594. Springer, Heidelberg, November 2020.

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and multi-verifier zero-
knowledge in two rounds: Trading NIZKs with honest majority - (extended abstract). In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 33–56. Springer, Heidelberg,
August 2022.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs on secret-
shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 67–97. Springer, Heidelberg, August 2019.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract). In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 81–95. Springer, Heidelberg, April 1991.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and mul-
tiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188.
Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party computation via sublinear
distributed zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 869–886. ACM Press, November 2019.

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via distributed zero-
knowledge proofs. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 244–276. Springer, Heidelberg, December 2020.

[BGIN21] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear GMW-style compiler for MPC with preprocessing.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 457–485, Virtual
Event, August 2021. Springer, Heidelberg.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta: Efficient threshold
designated-verifier zero-knowledge proofs. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 293–306. ACM Press, November 2022.

17



[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate statistics.
In 14th USENIX symposium on networked systems design and implementation (NSDI 17), pages 259–282, 2017.
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A Security Proofs

A.1 Proof of Theorem 1

Theorem 1. Let Fpr be the underlying extension field with pr > n ·2λ. The protocol ΠPrep depicted in Figure 5 UC-realizes
the functionality FOurs

Prep depicted in Figure 3 with information-theoretical security in the FBDOZ
Prep -hybrid world, in the presence

of a static malicious adversary corrupting up to the dealer and (n− 1) verifiers.

Proof. We prove the security of the protocol ΠPrep by showing it is a UC-secure realization of FOurs
Prep . We describe

the workflow of the simulator S in the ideal-world with FPrep, the dummy dealer D̃ and the dummy verifiers
Ṽ1, . . . , Ṽn, and give a proof that for any adversary A and any environment Z , the simulation in the ideal-world

EXECFOurs
Prep ,S,Z

is statistically indistinguishable from the real-world execution EXEC
FBDOZ

Prep

ΠPrep,A,Z . Notice that, here we
focus on Singles procedure, since Initial procedure is trivial and Triples procedure fully relies on Singles proce-
dure.

When dealer is honest. In this case, we denote by HV the set of the honest verifiers in the real-world execution
and |HV| ≥ 1. The simulator S needs to simulate the honest dealer and the honest verifiers. We describe the
simulation strategy of S as follows:

1. S emulates FBDOZ
Prep and waits forA to send its input. IfA sends ABORT, S simply halts; otherwise, S receives

{xi,∆i, {Ki
xj ,M

j
xi}j∈[0,n]\{i}} fromA for each malicious V∗i /∈ HV. Then S sends {xi,∆i, {Ki

xj ,M
j
xi}j∈[0,n]\{i}}

to FPrep for each dummy Ṽ∗i . After that, S picks a random x← Fp and honestly generates the rest of JxKBDOZ

for the honest dummy parties.

2. On behalf of the honest dealer, S waits for each malicious V∗i /∈ HV to send x∗i ,M
0
x∗i

. Then S checks if
M0
x∗i

= K0
xi + ∆0 · x∗i holds where K0

xi ,∆0 are the private information held by S. If not, S aborts.

3. On behalf of the honest dealer, S sends x0,M
i
x0

to each V∗i /∈ HV privately.

4. On behalf of the honest parties, S honestly updates their shares, local MAC keys and MAC tags.

We prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: Real world execution EXEC
FBDOZ

Prep

ΠPrep,A,Z .
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• Hybrid Hyb1: Same as Hyb0, except that S executes the step 1 in the simulation strategy above. Perfect
indistinguishability holds since S simply imitates the adversary’s behavior by emulating FBDOZ

Prep .

• Hybrid Hyb2: Same as Hyb1, except that S executes the step 2 in the simulation strategy above.

Lemma 1. Let Fpr be the underlying extension field with pr > n · 2λ. Hybrid Hyb2 is statistically indistinguishable
from Hyb1 with adversarial advantage at most p−r.

Proof. If a malicious V∗i /∈ HV is able to find a pair of (x∗i ,M
0
x∗i

) such thatM0
x∗i

= K0
xi+∆0 ·x∗i but x∗i 6= xi, then

the adversary will find the distinction. The reason is that: in hybrid Hyb2, the honest dealer will output x∗i ;
while in the ideal world, the honest dealer will output xi. By the properties of IT-MACs which is described in
Section 2.4, we know that any malicious V∗i /∈ HV can forge such a valid pair (x∗i ,M

0
x∗i

) with probability 1
|Fpr | .

Therefore, Hyb2 is statistically indistinguishable from Hyb1 with adversarial advantage at most p−r.

• Hybrid Hyb3: Same as Hyb2, except that S executes the step 3-4 in the simulation strategy above.

Lemma 2. Hybrid Hyb3 is perfectly indistinguishable from Hyb2.

Proof. Here we argue that the outputs of the honest parties in both ideal world and hybrid Hyb3 are perfectly
indistinguishable. First of all, we talk about the honest parties’ shares. Since the secret x is randomly picked
in both ideal world and hybrid Hyb3, even if the adversary can choose its own share, the honest parties’
shares are still uniformly random conditioned on that x is uniformly random. Secondly, since the global
MAC keys ∆i of each honest Vi ∈ HV are chosen randomly in both ideal world and hybrid H3, they are
also uniformly random. Thirdly, for each honest Vi ∈ HV, its local MAC keys Ki

xj is computed as follows:
if Vj ∈ HV, sample random Ki

xj ← Fp; otherwise, set Ki
xj := M i

xj − ∆j · xj ∈ Fpr . Since ∆j is uniformly
random, in both case, honest parties’ local MAC keys are perfectly indistinguishable in both ideal world and
hybrid Hyb3. Finally, since the MAC tags are deterministic conditioned on the shares, global MAC keys and
local MAC keys, the honest parties’ MAC tags are also perfectly indistinguishable in both ideal world and
hybridH3. In conclusion, Hyb3 is perfectly indistinguishable from Hyb3.

Hybrid Hyb3 is identical to the ideal world execution EXECFOurs
Prep ,S,Z

. In conclusion, when the dealer is honest,

EXECFOurs
Prep ,S,Z

is statistically indistinguishable from EXEC
FBDOZ

Prep

ΠPrep,A,Z with adversarial advantage at most p−r.

When dealer is malicious. In this case, we also denote by HV the set of the malicious verifiers in the real-world
execution and |HV| ≥ 1. The simulator S needs to simulate the honest verifiers. We describe the simulation
strategy of S as follows:

1. S emulates FBDOZ
Prep using the same strategy as in Step 1 in the previous case.

2. On behalf of each honest verifier Vi ∈ HV, S sends xi,M0
xi to malicious D∗.

3. On behalf of each honest verifier Vi ∈ HV, S waits for D∗ to send x∗0,M i
x∗0

. Then S checks ifM i
x∗0

= Ki
x0

+∆i·x∗0
holds where Ki

x0
,∆i are the private information held by S. If not, S aborts.

4. On behalf of the honest parties, S honestly updates their shares, local MAC keys and MAC tags.

We prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: Real world execution EXEC
FBDOZ

Prep

ΠPrep,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S executes the step 1 in the simulation strategy above. Perfect
indistinguishability holds since S simply imitates the adversary’s behavior by emulating FBDOZ

Prep .

• Hybrid Hyb2: Same as Hyb1, except that S executes the step 2-3 in the simulation strategy above.

Lemma 3. Let Fpr be the underlying extension field with pr > n · 2λ. Hybrid Hyb2 is statistically indistinguishable
from Hyb1 with adversarial advantage at most 2−λ.
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Proof. If the malicious D∗ is able to find a pair of (x∗0,M
i
x∗0

) such that M i
x∗0

= Ki
x0

+ ∆i ·x∗0 but x∗0 6= x0 for any
Vi ∈ HV, then the adversary will find the distinction. The reason is that: in hybrid H2, the malicious dealer
will cause inconsistent output of the honest verifiers (i.e., make the honest Vi update its representations
with x∗0 while make other honest ones update their representations with x0); while in the ideal world, the
malicious dealer cannot do that. By the properties of IT-MACs which is described in Section 2.4, we know
that any malicious D∗ can forge such a valid pair (x∗0,M

i
x∗0

) with probability 1
|Fpr | . Since the adversary can

only corrupt the dealer and attempt to forge such a valid pair for n honest verifiers, the overall adversarial
probability is at most n

|Fpr | < 2−λ.

• Hybrid Hyb3: Same as Hyb2, except that S executes the step 4 in the simulation strategy above. Perfect
indistinguishability holds due to the similar argument as in Lemma 2.

Hybrid Hyb3 is identical to the ideal world execution EXECFOurs
Prep ,S,Z

. In conclusion, when the prover is malicious,

EXECFOurs
Prep ,S,Z

is statistically indistinguishable from EXEC
FBDOZ

Prep

ΠPrep,A,Z with adversarial advantage at most 2−λ.

A.2 Proof of Theorem 2

Theorem 2. Let Fpr be the underlying extension field with pr > n · 2λ. The protocol ΠSIF depicted in Figure 6 UC-realizes
the functionality FSIF depicted in Figure 1 with information-theoretical security in the FOurs

Prep -hybrid world, in the presence
of a static malicious adversary corrupting up to the dealer and (n− 1) verifiers.

Proof. We prove the security of the protocol ΠSIF by showing it is a UC-secure realization of FSIF. We describe
the workflow of the simulator S in the ideal-world with FSIF, the dummy dealer D̃ and the dummy verifiers
Ṽ1, . . . , Ṽn, and give a proof that for any adversary A and any environment Z , the simulation in the ideal-world

EXECFSIF,S,Z is statistically indistinguishable from the real-world execution EXEC
FOurs

Prep

ΠSIF,A,Z .

When the dealer is honest. In this case, we denote byHV the set of the honest verifiers in the real-world execution
and |HV| ≥ 1. The simulator S simulates the honest dealer and the honest verifiers, emulates FPrep for A, and
needs to simulate the view of A without knowing the secret input w of the dealer. We describe the strategy of S
as follows:

1. S receives (OUTPUT, sid, yi) from FSIF for each corrupted dummy verifier Ṽ∗i .

2. In the preprocessing phase: For a randomly picked x ∈ {(µi)i∈[m], (ai, bi, ci)i∈[s]}, S emulates FOurs
Prep for A and

waits forA to send its input. IfA sends ABORT, S simply halts; otherwise, S receives xi,∆i and {Ki
xj ,M

j
xi}j∈[n]\{i}

from A for each V∗i /∈ HV. After that, S honestly generates the rest of JxK for the honest parties.

3. In Round 1 of the online phase, for i-th input wire where i ∈ [m], S picks w′i ← Fp as input wire. Then S acts
as the honest dealer to execute the round 1 protocol using the randomly picked {w′i}i∈[m].

4. In Round 2 of the online phase, S acts as the honest verifiers to execute the round 2 protocol honestly, except
that when the malicious V∗i /∈ HV want to obtain its output hi, S performs the followings tricks to make V∗i
believe hi = yi, where yi is the received output of the dummy Ṽ∗i : Since S acts as the honest dealer previously,
S knows each output share hi,j held by each malicious verifier V∗j /∈ HV. Then S picks h′i,j for each honest
verifier Vj ∈ HV, such that

∑
j s.t. Vj /∈HV

hi,j +
∑
j s.t. Vj∈HV

h′i,j = yi. After that, S generates the new valid MAC
tags {Mk

h′i,j
}k∈[n]\{j} for each honest verifier Vj ∈ HV (S is able to do so since S emulates FPrep and knows the

global MAC keys for each party). In this way, at the time of opening the output [hi], S can make V∗i believe
hi = yi. Notice that, we are dealing with the rushing adversary A, which means that the adversary A can
delay its messages until it receives the messages from the honest parties. In other words, the adversary A can
send its messages after S sending its simulated messages described above. Notice that, S would abort if the
adversaryA forges its MAC tags for its new maliciously generated shares that would make the honest verifier
output a false result.
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5. During the simulation, for each honest verifier Vi ∈ HV in the real-world execution, if the adversary A at-
tempts to cause it abort, S will send (ABORT, sid, Ṽi) to FSIF to make the dummy Ṽi; otherwise, S will send
(CONTINUE, sid, Ṽi) to FSIF.

We prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: Real-world execution EXEC
FOurs

Prep

ΠSIF,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S executes step 1-3 in the simulation above.

Lemma 4. Hybrid Hyb1 is perfectly indistinguishable from Hyb0.

Proof. Since S emulates FPrep for A honestly, the adversary cannot distinguish between hybrid H1 and the
ideal world. As for the round 1 of the protocol, since µi is uniformly random picked, it perfectly hides the
input value wi. Therefore, the adversary A cannot compute w′i to compare it with the real input value that
the environment Z feeds to the honest dummy dealer D̃. In a word, hybrid Hyb1 is perfectly indistinguishable
from Hyb0.

• Hybrid Hyb2: Same as Hyb1, except that S executes step 4-5 in the simulation above.

Lemma 5. Let Fpr be the underlying extension field with pr > n · 2λ. Hybrid Hyb2 is statistically indistinguishable
from Hyb1 with adversarial advantage at most p−r.

Proof. The adversary A will find the distinction when the simulator S aborts, which occurs when A forges its
MAC tags for its new maliciously generated shares that would make any honest verifier Vi outputs hi that is
deviated from the received output yi of the dummy Ṽi, i.e. hi 6= yi. By the properties of IT-MACs which is
described in Section 2.4, we know that the malicious verifiers cannot forge the MAC tags, unless the malicious
verifiers know the global MAC keys of the honest verifiers, which occurs with probability at most p−r. In
conclusion, Hyb2 is statistically indistinguishable from Hyb1 with adversarial advantage at most p−r.

Hybrid Hyb2 is the ideal-world execution EXECFSIF,S,Z . In conclusion, when the dealer is honest, EXECFSIF,S,Z is

statistically indistinguishable from EXEC
FOurs

Prep

ΠSIF,A,Z with adversarial advantage at most p−r.

When the dealer is malicious. In this case, we also denote by HV the set of the honest verifiers in the real-world
execution and |HV| ≥ 1. The simulator S simulates the honest verifiers, emulates FPrep for A, and needs to extract
the secret input w from adversary’s messages. We describe the simulation strategy of S as follows:

1. In the preprocessing phase: S prepares the correlated randomness using the same strategy as in Step 2 in the
previous case.

2. In the online phase, S simply acts as the honest verifiers to execute the protocol ΠSIF and obtains the result hi
for each honest Vi ∈ HV. S extracts the witness w as follows. For each input value mask δi that A sends, S
recovers the input value wi := δi + µi ∈ Fp; note that, S emulates FPrep for A previously, so S knows µi. In
this way, S obtains the whole witness w. Then S computes y := C(w) and aborts if yi 6= hi for any Vi ∈ HV. If
yi = hi holds for any Vi ∈ HV, S sends (PROVE, sid, C,w) to FSIF on behalf of the corrupted dummy dealer D̃∗.

3. During the simulation, for each honest verifier Vi ∈ HV in the real-world execution, if the adversary A at-
tempts to cause it abort, S will send (ABORT, sid, Ṽi) to FSIF to make the dummy Ṽi; otherwise, S will send
(CONTINUE, sid, Ṽi) to FSIF.

We prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: Real-world execution EXEC
FOurs

Prep

ΠSIF,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S executes step 1-3 in the simulation above.
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Lemma 6. Let Fpr be the underlying extension field with pr > n · 2λ. Let C be the circuit with s multiplication gates.
Let n be the number of verifiers. HybridH2 is statistically indistinguishable fromH1 with adversarial advantage at most
2s+1
n·2λ .

Proof. The adversaryAwill find the distinction when the simulator S aborts. Note that, S aborts when yi 6= hi
for any Vi ∈ HV, where hi is the output of the honest Vi in the real-world execution while yi is the output of
the dummy honest Ṽi in the ideal-world execution. In the following, we will show that the probability of S
aborting is at most 2s+1

n·2λ .

First of all, we prove that all the values on the wires in the circuit are correct when the verification checks pass.
It is trivial that the values associated with the input wires and the output wires of the addition gates are com-
puted correctly. Therefore, we focus the multiplication gates. Note that, when the malicious dealer D∗ cheats
in the i-th multiplication gate, i.e., produce false ηi and νi. It will be detected due to the checks performed
in step 5 of ΠSIF, unless the malicious dealer collude with some malicious verifiers and the malicious verifiers
succeed to forge new MAC tags. By the properties of IT-MACs which is described in Section 2.4, we know that
the malicious verifiers cannot forge the MAC tags, unless the malicious verifiers know the global MAC keys
of the honest verifiers, which occurs with probability at most 1

|Fpr | . Since there are two new MAC tags that the
malicious verifiers have to forge in each multiplication gates, and there are total s multiplication gates in the
circuit, the probability of the adversary A cheating in the multiplication gates without being detected is 2s

|Fpr | .

Now, we assume that all the values on the wires in the circuit are correct. If C(w) = y but any honest Vi in the
real-world execution output hi 6= yi, then the adversary A must corrupt some verifiers and forge their MAC
tags when it is the time to open [hi] to Vi, so the adversaryA is able to put an influence the output value hi such
that hi 6= yi. This event would occur with probability at most 1

|Fpr | . In conclusion, hybrid Hyb1 is statistically
indistinguishable from Hyb0 with adversarial advantage at most 2s+1

|Fpr | <
2s+1
n·2λ .

Hybrid Hyb1 is the ideal-world execution EXECFSIF,S,Z . In conclusion, when the dealer is honest, EXECFSIF,S,Z is

statistically indistinguishable from EXEC
FOurs

Prep

ΠSIF,A,Z with adversarial advantage at most 2s+1
n·2λ .
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