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Abstract

Correlation intractability is an emerging cryptographic paradigm that enabled several recent break-
throughs in establishing soundness of the Fiat-Shamir transform and, consequently, basing non-interactive
zero-knowledge proofs and succinct arguments on standard cryptographic assumptions. In a nutshell, a
hash family is said to be correlation intractable for a class of relations R if, for any relation R ∈ R, it is
hard given a random hash function h← H to find an input z s.t. (z, h(z)) ∈ R, namely a correlation.

Despite substantial progress in constructing correlation intractable hash functions, all constructions
known to date are based on highly-structured hardness assumptions and, further, are of complexity
scaling with the circuit complexity of the target relation class.

In this work, we initiate the study of the barriers for building correlation intractability. Our main
result is a lower bound on the complexity of any black-box construction of CIH from collision resistant
hash (CRH), or one-way permutations (OWP), for any sufficiently expressive relation class. In particular,
any such construction for a class of relations with circuit complexity t must make at least Ω(t) invocations
of the underlying building block.

We see this as a first step in developing a methodology towards broader lower bounds.
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1 Introduction
The Fiat-Shamir Transform. The Fiat-Shamir (FS) transform [FS87,BR94] is a popular technique for
eliminating interaction in interactive public-coin protocols. The technique was first conceived to transform
3-round identification protocols into non-interactive signature schemes [FS87]. Since its introduction, this
methodology has had a substantial impact on modern cryptography through several lines of research. The
concept gave rise to a number of key innovations in modern cryptography, both for achieving new theoret-
ical feasibility results and for designing communication-efficient practical solutions. In particular, among
its noticeable applications are non-interactive zero knowledge protocols (NIZKs) [KRR17, CCH+19, PS19,
BKM20,CJJ21], succinct non-interactive arguments (SNARGs) [Kil92,Mic00,BSCS16,BSBHR19,JJ21], and
complexity-theoretic hardness results [CHK+19,LV20a,JKKZ20].

The basic blueprint of the FS-transform, as laid out in [BR94], is to transform a (multi-round) public
coin protocol by using a hash function H to generate the verifier’s public coin messages deterministically
based on the protocol transcript so-far.

While it is usually a straight-forward to show that Fiat-Shamir preserves some properties of the original
interactive protocol, e.g. completeness and zero-knowledge, it is typically a lot more challenging to show
that it preserves soundness using any hash function H. Intuitively, this complication arises as a malicious
prover has some control over the computed challenges, e.g. it may just discard a protocol run and retry. In
fact, in most constructions the soundness of FS is based on heuristics.

More concretely, the soundness of the transformed protocol is often established in an idealized model
such as the random oracle model [BR94]: by modeling the hash function as a random oracle, which both
parties have access to, one can prove that the FS transform is sound as long as a cheating prover does not
make unreasonably many queries to the oracle. Thus, if the hash function behaves like a random function in
the eyes of a bounded adversary, then the non-interactive protocol is sound. The heuristic leap occurs when
the random oracle is instantiated by an “unstructured” function such as SHA-2.

Although the random oracle model provides a clean theoretical framework, it is not clear that a sound
Fiat-Shamir under the random oracle is a strong enough evidence that provably sound Fiat-Shamir in the
plain model exists. In fact, Goldwasser and Kalai [GK03] show that there exists a computationally sound
protocol on which the Fiat-Shamir transform is never sound when instantiated with any actual efficient hash
function, even though it is sound in the random oracle model. Further, Bitansky et al. [BDSG+13] rule out
the possibility of constructing a “universal” Fiat-Shamir hash function for all 3-message public-coin protocols
based on standard assumptions, or even basing the soundness of Fiat-Shamir for some specific protocols on
any falsifiable assumption.

Correlation Intractability. This gap between the conjectured soundness of Fiat-Shamir using “suffi-
ciently unstructured” functions and its provability under cryptographic assumptions in the plain model led
Canetti, Goldreich and Halevi [CGH04] to introduce the notion of Correlation Intractability. Essentially,
correlation intractability captures the computational hardness needed from a Fiat-Shamir hash function in
order to prove the soundness of the transform. We say that H is a correlation-intractable hash for a relation
class R (CIH for R) if, for any relation R ∈ R, it is computationally hard given a random hash key k to find
an input x such that (x,H(k, x)) ∈ R. Roughly speaking, in order to show that a Fiat-Shamir instantiation
is sound for a given protocol, we require that the underlying hash function is correlation-intractable for the
relation between partial protocol transcripts and “bad” verifier challenges that allow for soundness error.
Based on this outline, it is known [BLV06,CCR16,KRR17] that a CIH for all sparse relations (i.e. relations
where any x is in relation with at most a negligible fraction of all y’s) is sufficient for Fiat-Shamir over
any constant-round public-coin proof system(the special case of 3-message protocols has appeared already
in [DNRS03,HT06]).

While Canetti et al. [CGH04] show that obtaining correlation intractability in its most general form is
impossible, an extensive line of work has eventually led to CIH constructions that are useful for a wide
class of protocols, including zero knowledge [CCR16,KRR17,CCH+19], statistical ZAP arguments [BFJ+20,
GJJM20] and, most recently, succinct argument [JKKZ20, CJJ21, HJKS22, KLV23, CGJ+23]. Overall, the
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state-of-the-art constructions of CIH are based on advanced well-studied cryptographic primitives which are,
in turn, provably secure under standard assumptions such as LWE [PS19, LV20b] (through special fully-
homomorphic commitments or shiftable shift-hiding functions [PS18]) and DDH [BKM20, JJ21] (through
trapdoor hash functions [DGI+19]).

Towards Understanding The Complexity of Correlation Intractability. For a complete compre-
hension of the notion of correlation intractability, it is fundamental to investigate not only the possibilities
but also the limitations in basing correlation intractability on existing hardness notions. In this work, we
focus on the relation between correlation intractability and two of the most prominent hardness notions in
cryptography: One-wayness and collision-resistance.

One-way functions (OWF) [DH76] are functions that are easy to compute but hard to invert. OWFs
constitute a central building block in modern cryptography, and were shown to be essential and sufficient
for obtaining basic symmetric-key cryptographic notions (a.k.a. Impagliazzo’s “Minicrypt” [Imp95]), such
as pseudorandom generators [HIL99], pseudorandom functions [GGM85], symmetric encryption [GM84],
commitment schemes [Nao91], zero knowledge [OW93], and more.

A collision resistant hash family (CRH) is a family of hash functions where it is hard to find collisions
under a given random hash sampled from the family. CRH is one of the most widely used primitives in
cryptography, with applications ranging from the most basic cryptographic tasks [Dam87, HM96] to more
advanced ones [Kil92, BEG+91, BG02]. Despite its conceptual simplicity, it has been proven that collision
resistance cannot be based on one-way functions [Sim98] or even public-key cryptography [AS16,BD19], at
least not in a black-box manner.

While, as noted in [CLMQ20], it is almost trivial that one-way functions imply restricted notions of
correlation intractability, such as CIH for all relations Ra = {(x, h(x) + a)} (where h is any arbitrary fixed
function and addition is over a finite group)1, such CIH are too weak to realize any interesting applications,
in particular Fiat-Shamir for useful protocols. It is also known [HL18] that exponentially-secure OWF imply
output-intractability, which is a special case of correlation-intractability for relations R where the membership
(x, y) ∈ R is determined solely by the value of y (but is more general in the sense that it considers tuples of
such outputs), and has different applications. In contrast, known useful CIH constructions, for input-output
relations, are either based on public-key cryptographic primitives [CCH+19, PS19, BKM20, LV20b, JJ21],
or based on (sub-)exponentially secure OWF and additionally assume the existence of indistinguishability
obfuscation (iO) [HL18,LV20b].

Whereas the theoretical cryptography literature is rich with proven separations between various crypto-
graphic notions, almost no work had been done on the limitations of reducing correlation intractable hash to
other primitives, leaving our understanding of the “reduction complexity” of correlation intractability to be
very lacking. The only exceptions are [HT99], who rule out building the strongest possible form of CIH (for
all sparse relations, implying a universal Fiat-Shamir hash) on one-way functions, and [CLMQ20], who ask
whether we can instantiate some specific use-cases of Fiat-Shamir without (or with very weak) cryptography.
What we aim for is a more general and accurate picture where we place correlation intractability among the
prominent hardness notions in cryptography, specifically one-wayness and collision resistance.

While it is typically beyond our field’s current capabilities to rule out general reductions between dif-
ferent hardness notions, a useful framework, that has been developed along the past decades to facilitate
reaching meaningful separation results, considers the special case of fully-black-box constructions [RTV04],
where (i) the construction makes only black-box use of the underlying primitive, i.e. is oblivious in its
implementation, and (ii) the reduction is assumed to use the provided adversary against the base primi-
tive in a black-box manner. Such separations are insightful in particular since they already rule out most
of the techniques used constructions in the cryptographic literature. The fully-black-box framework has
been shown to be extremely fruitful to obtain fundamental separation results, such as separating CRH from
OWFs or public-key cryptography [Sim98,AS16,BD19] and separating key-agreement (and hence, public-key
cryptography) from OWFs [IR89].

1The hash function H(k, x) = f(x) + h(x) + k, where f is a OWF, is correlation intractable for {Ra}. An adversary that
breaks the correlation intractability of H for some Ra inverts f at a random image y when given the random key k = a− y.
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Restricting our focus to fully-black-box reductions, we propose the following question to initiate a thor-
ough study of the complexity of correlation intractability:

What is the black-box complexity of correlation intractable hashing from CRH?

We believe collision resistance is a natural starting point in this general direction as it is a sufficiently
simple and basic notion to constitute a first step towards broader research. There are two items to note here:
First, as collision resistance implies OWFs (in a fully-black-box manner), any answer for the above question
would immediately imply a similar statement for constructions from OWFs. Second, CRH are a special
case of multi-input correlation intractability, which is a generalization of correlation intractability where it
is hard to find a tuple of inputs that satisfy some relation between themselves and their images under the
hash (in standard CI relations are over a single input-output pair). While general multi-input CI is clearly
stronger than regular CI and implies it, what we ask above is whether multi-input CI for a specific natural
(multi-input) relation can be useful to build CI for a more general class of (single-input) relations, that is –
whether “multiplicity” of the relation class can be exchanged for “expressivness”.

1.1 Our Results
In this work, we explore inherent limitations in constructing correlation intractable hash functions and
initiate the study of the black-box complexity of correlation intractability. We draw the following connection
between the complexity of any fully-black-box construction of CIH from CRH or OWP and the complexity
of the relations we get correlation intractability for.

Theorem 1.1 (Black-box Complexity of CIH from CRH or OWP; Informal). Any fully-black-box construc-
tion of correlation intractable hash for any t-wise independent class of relations from collision-resistant hash,
or one-way permutations, must make at least O(t) calls to the underlying base primitive(s).

A t-wise independent class of relations R is class of relations where for any t′ ≤ t pairs (z1, w1), . . . ,
(zt′ , wt′), the events {(zi, wi) ∈ R} for a random relation R ← R are all independent. One example is the
class of all relations searchable by degree t polynomials, i.e. any relation consisting of all pairs (z, p(z))
for a degree t polyonomial p specified by the relation. Consequently, as polynomials of degree t can be
computed by circuits of size t, we get that the class of relations searchable by t-bounded circuits is Ω(t)-wise
independent. Hence, the degree of independence provides a meaningful proxy for the complexity of a class of
relations. To give some sense, CIH suitable for cryptographic applications, such as NIZKs or succinct non-
interactive arguments, as far as we know requires intractability for relations with complexity proportional
to the security parameter.

Our result carries a couple of caveats. First, it holds only for fully-black-box constructions. Although
this is already insightful and captures many of the existing and imaginable techniques, there might exist non
fully-black-box constructions that circumvent this impossibility. Second, this is not an absolute separation
in the sense that it does not entirely rule out building one primitive from another, rather it only sets a lower
bound on the efficiency of such constructions. While such a result is partial in nature, we believe that the
analysis underlying the proof provides many insights regarding the essence of correlation intractability and
its complexity, potentially leading to future work advancing our understanding further, through stronger
separations and even new constructions. We elaborate below.

1.2 Discussion and Open Questions
We view our result as initiating the research on the complexity of correlation intractable hashing. While our
bottom-line yields a lower bound that is far from what is known or even believed to be possible, our hope is
that the techniques and observations introduced in our analysis will eventually lead to a better understanding
of the notion of correlation intractability.

For instance, it may not be unlikely that, with some additional effort and insights, our proof can be
extended to achieve a similar impossibility for CIH from public-key cryptography; In the work of [BD19] by
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which our initial ideas were inspired, they are able to show separation of CRH not only from OWPs but also
from the combination of OWPs with iO, which, in particular, implies a separation from public-key encryption
(PKE) 2. While extending our result in an analogous manner is doomed to fail due to the existence of (fully
black-box) CIH based on OWP and iO, demonstrated in [LV20b], we expect that a more careful adaptation
of the developed ideas has the potential to yield a separation from PKE.

A more intriguing direction is to investigate the gap between our limited separation result, that does not
entirely rule out constructions of CIH from CRH or OWP, and the state-of-the-art CIH constructions which
are known from building blocks that are much more complex. We see it is important to understand whether
it is merely an artifact of our proof technique that we were not able to extend it to rule out constructions
for any (non-trivial) class of relations or whether there is an inherent barrier in proving such a separation.
In particular, one may ask

Is it indeed impossible to build non-trivial CIH in Minicrypt [Imp95] (or Hashomania [KNY18])?
Which relation classes can we get CIH for, based on one-way functions or collision-resistant hash?

1.3 Technical Overview
We will now discuss the ideas behind our main result, Theorem 1.1, which states that any fully-black-box
construction of CIH from CRH, or OWP for relations of complexity t (more accurately, that are t-wise
independent) must make Ω(t) invocations of the underlying base primitive(s).

The starting point of our proof is the work of Bitansky and Degwekar [BD19], which provides a sepa-
ration of collision-resistant hash functions (CRH) from one-way permutations (OWP). We generalize their
framework to the correlation intractability setting and further extend it to capture the separation from CRH.
Along the way, we introduce a new notion which facilitates establishing hardness under oracles (e.g. of inver-
sion or finding collisions) which we call differential indistinguishability. Proving oracle-relative hardness is
always at the core of separations of this theme since, typically, the underlying cryptographic primitive, which
is accessible only in a black-box manner, is modelled as an oracle that provably satisfies the corresponding
intractability property. Interestingly, through differential indistinguishability, we show how to use techniques
resembling those from the differential privacy literature in order to obtain traditional cryptographic hardness
relative to an oracle.

For the sake of this overview, we outline the lower bound on CIH constructions from one-way permutations
and then briefly discuss how the underlying techniques can be further expanded to obtain the lower bound
on constructions from CRH.

Let us briefly recall the fully black-box separation framework which we follow in this work.

Fully Black-box Separations and How to Prove Them. We say that a construction P of a crypto-
graphic primitive P from a different primitive Q is fully black-box [RTV04] if the construction makes only
black-box use of Q (that is, any instantiation of Q, independently of its implementation) and, further, there
is a black-box security reductionM which breaks P if it is given a black-box access to any adversary A that
breaks the underlying instantiation of Q. A fully black-box separation of P from Q simply means that fully
black-box constructions of P from Q are impossible. In many cases, such as ours, conditioned separations are
considered, namely, where it is only argued that fully-black-box constructions that satisfy certain constraints
(e.g. efficiency) are impossible.

Similarly to prior work on fully-black-box separations, we follow the “Two-Oracle Methodology” [Sim98,
HR04, AS16, BD19] where, to show that is it impossible to build correlation intractable hash from another
primitive Q, e.g. OWP or CRH – again, possibly assuming certain efficiency constraints – it is shown that
there exists an oracle Q, which models an idealized implementation of Q, and an oracle that models an
adversary against correlation intractability, namely, a correlation finder CF, such that (i) CF breaks any
black-box construction of CIH from Q that satisfies the presumed constraints, yet, (ii) Q is still secure, as

2This, in fact, was first established in [AS16]
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per the security definition of Q, in the presence of CF. Given that such oracles Q and CF exist, any fully
black-box reductionM fails in breaking Q using CF and, hence, no fully black-box construction of CIH from
Q exists.

We first focus on separating CIH constructions from OWP, as this captures many of the key concepts in
the extended result, and only later discuss how to further derive a separation from CRH.

The Challenge in Designing a Correlation Finder. We model our “ideal” OWP via a random per-
mutation oracle f : {0, 1}λ → {0, 1}λ. While it is straight-forward to show that it is infeasible to invert
a random permutation at a random image given bounded black-box access, our goal is to show this is still
infeasible even given access to a successful correlation finder CF. The correlation finder CF takes as input
a circuit C ∈ H describing a hash function with oracle access to f . Here we can think of the set H as
abstracting away from the keys in a hash construction. In essence the set H limits the adversary’s choice.

One natural way to show that any bounded reduction M still cannot invert f given CF is to show that
M is able to simulate, with little extra cost, any useful information it receives from CF by itself alone,
making the correlation finder redundant and using the one-wayness of a random permutation to complete
the proof. This approach has been successful to separate, in particular, CRH from OWP [Sim98,BD19]. An
elementary reason is that, under any (sufficiently shrinking) CRH, the marginal distribution of any “half” of
a uniformly random collision, is almost uniform. Let C ∈ H be a circuit with oracle-access to f describing a
hash function. Thus, when letting the collision finder, on input such a circuit Cf , simply output a random
collision (z, z′) (s.t. Cf (z) = Cf (z′) and z 6= z′), the reduction can simulate the marginals of each of z and
z′ without the help of the collision-finder. Roughly speaking, as has been shown particularly in [BD19], the
marginals capture the only “useful” information the reduction can obtain for inverting f .

Things are not that simple, however, when the goal of the oracle is to return a correlation. Here, the
correlation finder CFf

R depends on an a relation R as well as f . We will omit R and f when the context
is clear. On input a circuit C ∈ H the correlation finder CFf

R(C) should produce an input z such that
(z, Cf (z)) ∈ R. In this setting, a reduction M may produce a query to CF where all possible correlations
under a chosen relation R, i.e. all “correct” answers that CF may possibly return, coincide with a set of
inputs that is most useful for inverting f at any given point. For example, we may think of anM that, given
a challenge y, calls CF(C) where C is the hash circuit that on any input z, outputs a w s.t. (z, w) ∈ R (it is
reasonable to assume that such a w is efficiently computable) if and only if f(z) = y3. For this C, there is
only one such z satisfying (z, Cf (z)) ∈ R, an hence CF (C) must return this z.

Picky Correlation Finder. Given the inherent tension between correctness of the correlation finder and
its usefulness for inverting f , we propose the following way out. We design CF to be imperfect, that is, to
return a correct answer, say a uniformly random correlation, for most inputs while rejecting to do so for the
others. The distinction between functions on which CF may “cooporate” and functions on which CF must
reject is made possible by the fact that, in order to break correlation intractability, CF must succeed on some
relation R only for an average-case hash C̃ ← H. Thus, in the CIH game, which one can think of as the
“honest” case, the circuit C̃ that computes the hash function is independent of R and should not exhibit
any extraordinary behavior w.r.t. correlations under R. On the other hand, if M attempts to abuse CF to
invert f , then it must produce a “malicious” circuit C which is specifically tailored to be useful for inversion
and, therefore, as we argue in our proof, must highly “depend” on R.

Thus, we need to construct a correlation finder CF that is able to tell when a circuit C is likely to be
malicious, yet does not overshoot as it still needs to answer for an honest C. To that end, we articulate a
measure of “extraordinariness” that captures “usefulness” for inversion, which, roughly speaking, happens
to be tightly related to the Rényi divergence of infinite order (this can be thought of as an analog of KL-
divergence for min-entropy) between what useful information is obtained from CF and what useful information

3We are implicitly assuming that the input spaces for f and C are the same. When this is not the case, the reduction can
use any arbitrary 1-1 mapping that maps any C-input w to a corresponding f -input xw and the implication still holds.
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can be simulatable without CF. We let our CF reject any circuit C that is extraordinary w.r.t. R to obtain
a picky correlation finder, namely a correlation finder that is successful only with high probability.

Detecting Malicious CF-Queries. In the following let CorrfR,C denote the set of all z which satisfy
(z, Cf (z)) ∈ R. To identify what “useful information” is w.r.t. inverting one-way permutations, we take
inspiration from [BD19], where they implicitly show that to invert an oracle f at a random image y∗, it
is necessary for the reduction M to be able to distinguish between black-box access to f and black-box
access to a different permutation f ′ = fx∗↔x′ that is obtained from f by swapping the solution pre-image
x∗ = f−1(y∗) with a uniformly random x′. Given this, a malicious query to CF is then a circuit C for which
the distribution of a non-rejecting CFf (C), namely the correlation finder’s answer to C under f can be
distinguished from a CFf ′

(C), namely its answer under f ′. Only using such malicious queries, the reduction
M can use CF to distinguish between f and f ′ and, thus, invert f . We observe that C can induce such
two distinguishable distributions under functions f and f ′ only if the swap x∗ ↔ x′ significantly affects the
set of correlations, from which CF samples its answer. This may occur only if, given a random correlation
z ← CorrfR,C , the hash function Cf (z) calls any of x∗, x′ with noticeable probability or, in other words, only
if any of x∗, x′ are heavy among correlations. Hence, our correlation finder should, in particular, look at the
weight of any worst-case x w.r.t. the given query C and the chosen relation R (it is crucial to note that CF
has no knowledge of x∗, x′ as they exist only in the inversion game and its analysis), which we define as

ωf
R,C(x) = Pr

z←CorrfR,C

[Cf (z) ⇁ x],

where Cf (z) ⇁ x denotes the event that the computation Cf (z) calls f at x. This alone is not sufficient,
however, since it may be the case that there are heavy inputs also under an honest query C, that does not
depend on the relation R. For instance, consider a CIH construction C that always calls f at some fixed
x0, regardless of its input being a correlation or not. Then, in such case we have that maxx ω(x) takes its
maximal value 1 and the correlation finder always rejects and is, therefore, never successful. It is clear that
such a query to CF cannot possibly be helpful to invert f since, intuitively speaking, any information thatM
may extract from CFf (C) regarding the image of the heavy input x0 it could already extract without calling
CF by calling C at random inputs (that are not necessarily a correlation). Keeping our initial outline in
mind, we are interested in the relative “usefulness” of information obtained form CF compared to information
simulatable without CF’s help. We refine our basic idea to consider the relative weight of any worst-case x
among correlations compared to its weight in the entire input space. For that, we define the scale of any
input x as

σf
C(x) = Pr

z←{0,1}m
[Cf (z) ⇁ x],

and look at the amplification in the likelihood of observing x in an execution Cf (z) due to restricting z to be
a random correlation compared to being a random input (i.e., a random CF answer compared to a random
input which is simulatable without CF), that is,

αf
R,C(x) = ωf

R,C(x)/σ
f
C(x).

We let CF reject only if there exists an x for which αf (x) � 1. This gives us a CF that is successful in
the honest case since one can easily see that αf (x) has an average of 1 when the relation R is sampled
independently in C (further, a sufficient tail bound for worst-case αf (x) can be derived already when R is
pairwise independent). On the other hand, CF rejects whenever x∗ or x′ are too heavy among correlations
since σf

C(x
∗) and σf

C(x
′) can be assumed to be small: x′ is a random input that is sampled in the analysis

and is independent in the reduction’s choice of C, while x∗ is the solution pre-image and, had it been heavy
among random inputs, the reduction would have been able to observe it by sampling random inputs to C
without the help of CF.

As already mentioned, it turns out that maxx α
f (x) is precisely the Rényi divergence of order infinity

between the distributions over the f -input space induced by the PDFs ω and σ. In Figure 1 we visualize the
distinction between honest queries, which give low divergence between ω and σ, and malicious queries.
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Figure 1: An illustration of the domain of the circuit C when C is an honest query vs. when it is a malicious
one. Notice that C is malicious only if some x is observed with much higher likelihood in the correlation set,
compared with the entire space.

While our efforts so far already constitute a major step towards a separation, a new problem pops up:
the decision for rejection, namely whether CF rejects or not, might itself give information that is useful for
inverting f ! This is not merely a hypothetical scenario; One can show, in fact, a concrete “attack” against
such CF, namely a reduction M that, while unable to learn anything from the non-rejection answers, can
learn the pre-image entirely based on the rejection decisions of CF (note each such decision conveys at most
a single bit of information).

Differential Indistinguishability. To solve the issue raised above, we encapsulate the “usefulness” (or
“uselessness”) of a correlation finder in inverting f via an novel oracle-relative hardness notion, we call
differential indistinguishability. At a high level, we say that CF is differentially indistinguishable if its
answers and, in particular, its rejection decision, do not substantially change when the function f is modified
locally (specifically, when two inputs are swapped under the permutation as described above). As already
mentioned, the notion of differential indistinguishability is implicitly used in the work of [BD19] and is
inspired by their proof. However, the straight-forward collision finder, that returns a random collision,
already satisfies differential indistinguishability and, therefore, the main effort in their proof goes to show
that differential indistinguishability implies “uselessness” for inversion. One of the contributions in our work
is formalizing then extending the implicit framework from [BD19] to capture correlation finders (in fact, any
oracle) and additionally show a similar implication regarding “uselessness” for finding collisions, through
which we derive the separation from CRH.

A Differentially Indistinguishable Rejection Policy. Given that differential indistinguishability im-
plies that f is hard to invert given CF, it remains to design a differentially indistinguishable CF. To that
end, we further refine the picky correlation finder from above and design a “soft” rejection policy that is
robust against local changes of the function f . Unsurprisingly, our mechanism for achieving this looks, in
retrospect, as if taken from the world of differential privacy (DP) [Dwo06]. In more details, we consider a
rejection policy that takes into account not only extraordinary behaviour, namely large αf (x), w.r.t. the
given function f , but also w.r.t. functions f ′ that are in the “neighborhood” of f , namely functions that can
be obtained by performing a limited series of swaps on f . By weighing in the impact of any extraordinary
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behaviour in a way that quickly vanishes with increasing distance from f , e.g. an weight function which drops
exponentially with the distance from f , we are able to derive differential indistinguishability. Overall, our
rejection policy, namely the probability that CF rejects at some circuit query C, is computed by a function
similar to the following

ρfR(C) = ϵ ·max
f ′,x

[e−∆(f,f ′)/d · αf ′

R,C(x)],

where ∆(f, f ′) denotes the swap distance 4 between f and f ′, and ϵ� 1 and d� 1 are carefully chosen nor-
malization parameters; The larger d and ϵ are, the stronger is the differential indistinguishability guarantee,
yet the harder it is to show that CF is successful in the honest case. For the sake of this overview, d can be
thought of as superpolynomial in the security parameter and ϵ as inverse-superpolynomial.

Having safeguarded intractability of inverting f via differential indistinguishability, we need to make sure
we have not broken the subtle balance with the necessary correctness requirement on CF. While it is almost
immediate that any circuit C (modelling a random has functionh C̃ ← H sampled from the CIH candidate)
behaves “nicely” under f w.r.t. an independently chosen relation R ← R, even when relations in R are
only pairwise-independent, it is not clear that this holds under all functions f ′ in the close neighborhoods
of f . The straight-forward attempt to apply a union bound over all possible functions in the neighborhood
inherently requires that relations in the class have a description of exponential size, which would dramatically
weaken our result. Instead, we exploit the fact that the candidate CIH is bounded to make t invocations of f
and observe strong dependencies between the α(x) values under different functions across the neighborhood
of f . More specifically, since the behavior of C on any input is determined by the images of at most t points
in f , we notice that we can represent αf ′

(x), under any f ′, as the average of a collection of values {α̂f ′
(x)}

where each α̂f ′
(x) depends solely on t� d points in f ′. This allows us to apply a much more benign union

bound to establish that none of the possible α̂f ′
(x) is too large. Consequently, we are able to argue that

if the relation class is sufficiently “expressive”, namely Ω(t)-wise independent, then when the relation R is
chosen at random and independently in the hash circuit C, C is indeed behaving well not only under f , but
rather under any f ′ that is sufficiently close to f . This implies that a rejection happens with low probability
for an honest query C and, therefore, CF is correct and we have a separation of CIH from OWP.

Extending to Constructions from Collision Resistance. We will now discuss how these results can
be extended to capture constructions from CRH as well. At the core of our extended result is the observation
that the task of finding collisions in an oracle can be conceptually though of as an “adaptive” inversion task;
To find a collision in an oracle f , an adversary must invert an image y for which he had already seen a
pre-image under f . The difference from breaking the one-wayness of f , namely inverting f at a random
image, is clear: In the collision-finding game, the adversary, in some sense, chooses the images he aims to
invert. Hence the “adaptiveness”.

Recall that in order to establish a separation of CIH from OWP, we (i) define a notion of differential indis-
tinguishability and prove a random f is hard to invert even given a differentially indistinguishable correlation
finder, and (ii) construct a differentially indistinguishable correlation finder (that is successful in the honest
case). Based on the above insight, we propose a notion of adaptive differential indistinguishably, then prove
that it is sufficient to imply collision-resistance of f under the (adaptively differentially indistinguishable)
correlation finder. Lastly, we show how to generalize our construction of correlation finder from above to
satisfy the required adaptive differential indistinguishably and, by this, finish. We elaborate below.

Re-randomizing Siblings. The reason that differential indistinguishability is sufficient to imply hardness
of inversion is that it allows us to re-randomize the target pre-image (that is, swap the original x∗ whose
image is given as a challenge with a random x′) without the adversary noticing that he is given access to
a different function f ′ = fx∗↔x′ . Thus, the probability that the adversary returns x∗ under f is equal to
the probability he returns x∗ under f ′, which carries no information about x∗, and therefore he cannot do
better than guessing. To adapt this idea to an adversary that is trying to find collisions, we re-randomize,

4We define the swap distance between permutations f and f ′ as the minimal number of times we need to swap outputs
between input pairs x1 and x2 in order to transform f into f ′
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as hinted above, the siblings of any input x at which the adversary calls f in his executions. The siblings
of any x under f are all x′ that make a collision with x, i.e. all x′ 6= x such that f(x) = f(x′). Roughly
speaking, since we may assume w.l.o.g. that the adversary calls f at a collision the moment he finds it, then
we can assume that a successful adversary must call a sibling of a previously queried input. It would not
be sufficient, however, to re-randomize, at every step of the execution, only siblings from previous queries
since, hypothetically, the adversary’s strategy might be to collect information about “future” siblings, namely
siblings of some x before actually making the query to f at x. We must therefore re-randomize all siblings
induced by the execution at any of its steps.

Adaptive Differential Indistinguishability. An inherent difference from the OWP case then arises:
In proving intractability of inverting an OWP f , we re-randomize a pre-image x∗ which is fixed apriori to
the execution of the adversary. In contrast, when re-randomizing siblings, specifically “future” siblings, we
are re-randomizing pre-images that are implicitly determined by the adversary’s execution. This difference
motivates us to define an adaptive analog of differential indistinguishability, where, in a high level, we require
that the answers of CF do not change when the function f is swapped even at points chosen adaptively in
the answers themselves (essentially, the answers are what constitute the view of the adversary on which he
bases his choice of siblings). The new adaptive notion introduces various non-trivial subtleties. For instance,
unlike its non-adaptive counterpart, adaptive differential indistinguishability against any general choice of
swap sets is impossible to realize while preserving correctness of the correlation finder. To see this, consider
an adaptive choice that, given an answer on some query C, namely a correlation z ← CFf (C), chooses to
swap the function f at an input x that is called by Cf (z). Swapping x possibly changes the outcome of
the computation Cf (z) making z no longer a correlation under the modified function f ′ and, therefore, no
longer a “correct” answer for z. A successful CF will most likely not output z in such a case, practically
implying that such a modification of f must cause CF to answer differently with high probability.

Fortunately, we are able to show that, unless our adaptive choice is that “targeted” (that is, chooses to
swap inputs that specifically appear in the execution of the query circuit C on CF’s answer), then adaptive
differential indistinguishability is achievable. On the other hand, we prove that the choice to swap the set
of siblings is never such a “targeted” choice under one condition in particular: that the execution of C on
the answer z ← CFf (C) does not observe a collision, namely does not make two f -queries that collide, with
high probability over CF’s randomness. Through these observations, we are able to generalize our correlation
finder from above to satisfy the required adaptive notion against any choice of siblings. In particular, our new
correlation finder looks at an analog of the amplification values α = ω/σ that we define for pairs of inputs
and, further, for the “soft” rejection considers the neighborhood of functions that are obtained by swapping
between sets of inputs (rather than individual points). Overall, we get a correlation finder that is adaptively
differentially indistinguishable against siblings, implying a similar separation of correlation intractable hash
from collision resistance.

1.4 Paper Organization
We start by introducing some preliminaries in Section 2. In Section 3 we define the notions of fully black-box
constructions and separations and in Section 4 we formally state our results. In Section 5 we present a generic
framework for proving bounds on constructions of correlation intractability via the notion of (adaptive)
differential indistinguishability and, in Section 6 we build a differentially indistinguishable correlation finder
that satisfies our requirements. In Section 7 we connect all the peices together and derive our main theorems.

2 Preliminaries
Let us introduce some basic notation and conventions, and recall some preliminary definitions and facts.

Notation. For a distribution X , we write x ∈ X to say that x is in the support of X , and x← X to denote
that x is sampled from the distribution X . We overload the notation for sets and write x ← X when x is
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sampled uniformly at random from a set X. We use P(X) to denote the power set of X. For an event E,
we use 1(E) to denote the binary value which takes 1 if and only if E occurs. SD(X ,Y) denotes statistical
distance between distributions X and Y . For an oracle-aided algorithm A, an oracle Ψ, and a Ψ-input z, we
denote by AΨ(x)

Ψ
⇁ Q the event where A, on input x, calls the oracle Ψ at Q. We extend this notation for

tuples of Ψ-inputs: AΨ(x)
Ψ
⇁ Q1, . . . , Qn if AΨ(x) calls Qi for all i.

Coupling and Statistical Distance. Coupling is a useful tool for bounding the statistical distance
between two probability measures.

Definition 2.1 (Coupling). Let X and Y be two random variables (i.e., distributions) over X and Y (resp.).
We say that a distribution X ′Y ′ over X × Y is a coupling of X and Y if the marginal distributions of X ′

and Y ′ are identical to the distributions of X and, respectively, Y .
We denote by PX,Y the set of all couplings of X and Y .

Proposition 2.2 (Statistical Distance through Coupling). Given any two distributions X,Y over X ,

SD(X,Y ) = inf
X′,Y ′∈PX ,Y

Pr
(x,y)←X′Y ′

[x 6= y]

Concentration Bounds We hereby state two useful concentration bounds for distributions satisfying
“nice” properties. We first recall Chebyshev’s inequality.

Proposition 2.3 (Chebyshev’s Inequality). Let X be a random variable with excpected value µ and non-zero
variance σ2. Then, for any k ∈ R,

Pr[|X − µ|≥ kσ] ≤ 1

k2
.

Next is a tail bound from [GGKL21] on the sum of random variables that are “almost” k-wise independent.

Theorem 2.4 (Concentration for almost k-wise independence). Let k ∈ N and p > 0. Let X1, . . . , Xn be
binary random variables such that for any set I ⊆ [n] of size at most k, Pr[

∏
i∈I Xi = 1] ≤ p|I|. Then, for

c ≥ 0,

Pr

[
n∑

i=1

Xi ≥ c · n

]
≤ min

0≤i≤k

(
pi
(
n
i

)(
cn
i

) ) .

The Borel-Cantelli Lemma. We recall the Borel-Cantelli lemma.

Proposition 2.5 (The Borel-Cantelli Lemma). Let {En}n∈N be a sequence of events in some probability
space such that the sum

∑
n Pr[En] converges. Then, the event where En occurs for infinitely many n ∈ N

has probability measure 0.

A Useful Combinatorial Proposition. In the following simple proposition, we argue that the images
of any t inputs under a random order-2 can be thought of as sampled uniformly at random for any practical
purpose.

Proposition 2.6. For any fixed ℓ ∈ N and distinct x1, . . . , xt ← {0, 1}ℓ, letting π ← Sym2({0, 1}ℓ) be a
uniformly random order-2 permutation and y1, . . . , yt be uniform over {0, 1}ℓ, it holds that

SD((y1, . . . , yt), (π(x1), . . . , π(xt))) = O(t2 · 2−ℓ).

Proof. Observe that π(x1), . . . , π(xt) are uniformly random conditioned on π(xi) 6= π(xj) for any i 6= j and
π(xi) = xj =⇒ π(xj) = xi. These two conditions may be violated by t uniformly random images only in
the event where π(xi) ∈ {xj , π(xj)} for some i 6= j. This occurs with probability O(t2 · 2−ℓ) and, therefore,
the proposition may be derived by Proposition 2.2 via the straight-forward coupling.
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3 Defining Black-box Constructions and Separations
To capture both separations of correlation intractability from OWP and CRH, we define black-box construc-
tions (and separations) of CIH from any intractability assumption following a typical syntax. To that end,
we first define a computational task over an idealized cryptographic primitive, namely over an oracle.

Definition 3.1 (Computational Task over Oracle). We define a computational task T = (D,A, V ) over
oracles of the form f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ} to consist of the following three components:

• A challenge distribution Df = {Df
λ} where, for any λ ∈ N, Df

λ is an oracle-aided distribution over
{0, 1}r(λ).

• An answer space A = {Aλ} where, for any λ ∈ N, Aλ ⊆ {0, 1}s(λ).

• A winning condition V f = {V f
λ } where, for any λ ∈ N, V f

λ is an oracle-aided relation over {0, 1}r(λ)×
{0, 1}s(λ).

For any oracle-aided adversary A, we say that A has advantage α := α(λ) in T under a given f if it outputs
an answer that satisfies the winning condition with probability at least α, that is, if

Advf
T(λ,A) := Pr

c←Dλ

[(c,Af (c)) ∈ V f
λ ] ≥ α(λ)

for infinitely many λ ∈ N.

We now define a fully black-box construction of correlation intractability from any idealized building
block over which a given computational task T is assumed to be intractable. We will later choose T to be
the task of inverting a given oracle to obtain a separation from OWP and the task of finding collisions under
a given oracle to obtain a separation from CRH.

Definition 3.2 (Fully Black-box Construction of CIH from T-Intractable Functions). Let m := m(n) and
ℓ := ℓ(λ) be length parameters, let R be a class of relations and let T be a computational task over oracles of
the form f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ} (as defined in Definition 3.1). A (t, q, ϵ)-fully black-box construction
of Correlation Intractable Hash (CIH) for R with input length m from T-intractable functions, for t := t(n),
q := q(λ) and ϵ := ϵ(λ), is an ensemble of distributions H = {Hn} where, for any n ∈ N, Hn is a
distribution over functions mapping m-bit inputs to n-bit outputs, and an oracle-aided reductionM satisfying
the following properties:

• Construction Efficiency: For any n ∈ N and any h ∈ Hn, hf makes at most t(n) queries to f on
any input.

• Black-box Security Reduction: For any oracle f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ} and any probabilistic
oracle-aided adversary A, if there exists a relation R ∈ R such that

AdvH
ci(n,R,A) := Pr

h←Hn

z←Af (1n,h)

[(z, hf (z)) ∈ R] >
1

2

for infinitely many n ∈ N, then,
Advf

T(λ,M
A) ≥ ϵ(λ)

for infinitely many λ ∈ N.

• Reduction Efficiency: For any λ ∈ N and y ∈ {0, 1}λ, Mf,A(y) makes at most q(λ) queries to the
oracles f and A, and for every A-query (1n, h) made byM(y), it holds that n < 2λ/24 and hf (·) makes
at most q(λ) queries to f on any input.
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Lastly, we define a fully black-box α-separation to embody the impossibility of any fully black-box
construction abiding a trade-off (parameterized by α) between the complexity of the underlying reduction
and its success probability. A larger value of α gives stronger separation and, in particular, superpolynomial
α indicates the impossibility of a reduction that is both polynomial time and has non-negligible advantage,
as typically required in the traditional cryptographic setting.

Definition 3.3 (Black-box Separation of CIH from T-Intractability). Let m := m(n) and ℓ := ℓ(λ) be length
parameters and let R be a class of relations. We say that t-bounded CIH functions for R (with input length
m) are α(λ)-fully black-box separated from T-intractable functions (with input length ℓ), for t := t(n) and
α(λ) > 1, if for any (t, q, ϵ)-fully black-box construction of such CIH from T-intractability, it holds that either

1. q(λ) > O(α(λ)), or

2. ϵ(λ) ≤ O(1/α(λ)).

4 Our Results: Statement of Main Theorems
In this section we formally state our separation results of CIH from CRH and OWP. Let us first make few
necessary definitions.

Definition 4.1 (Inversion and Collision-Finding Tasks). We will be particularly interested in two special
cases of computational tasks over oracles f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ}.

• Inversion: We define the inversion task Inv = (D,A, V ), where

– Dλ = f(x∗) for a random x∗,
– Aλ = {0, 1}λ, and

– V f
λ = {(x, y) | fλ(x) = y}.

• Collision Finding: We define the collision-finding task CollFind = (D,A, V ), where

– Dλ = 1λ,
– Aλ = {0, 1}λ × {0, 1}λ, and

– V f
λ = {(1λ, (x1, x2)) | x1 6= x2, fλ(x1) = fλ(x2)}.

Our impossibility result rules out any construction of a CIH for relation classes that, roughly speaking,
constitute complexity greater than the black-box complexity of the construction. To articulate the complexity
of a given relation class, we refer to the degree of “unpredictability” induced by a random relation. More
specifically, we say that a relation is k-wise universal if, in particular, the likelihood of any (z, w) to be in
a random relation does not change even given the membership (or non-membership) in the relation of any
k − 1 pairs. We formalize below.

Definition 4.2 (k-wise Universal Relations). Let k : N → N and p : N → (0, 1). We say that a relation
class R = {Rn ⊆ P({0, 1}m × {0, 1}n)}, for m := m(n) is k-wise p-universal if, for any n ∈ N, there exists
a distribution over relations in Rn (which we ambiguously denote by Rn) such that for any k′ ≤ k and any
distinct (z1, w1), . . . , (zk′ , wk′) ∈ {0, 1}m × {0, 1}n, it holds that

Pr
R←Rn

[(zi, wi) ∈ R ∀i ∈ [k′]] = p(n)k
′(n).

We now formally state our main separation theorems: In any fully-black-box construction of CIH against
a k-wise independent relation class from CRH (or OWP) with non-trivial security, the hash function must
invoke the underlying CRH (or OWP) at least Ω(k) times in its computation. We provide the formal
theorems with accurate quantitative details below.
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Theorem 4.3 (Black-box Separation of CIH from OWP). Let m := m(n) and p : N → [0, 1] be such that
p(n) ≥ 4n22−m(n) and let k, t : N → N be such that k(n) > 20 · t(n) for all n ∈ N. Then, t-bounded CIH
functions, with input length m, for any class of k-wise p-universal relations are 2λ/10-fully black-box separated
from OWP.

Theorem 4.4 (Black-box Separation of CIH from CRH). Let m := m(n) and p : N → [0, 1] be such that
p(n) ≥ 4n22−m(n) and let k, t : N → N be such that k(n) > 25 · t(n) for all n ∈ N. Then, t-bounded CIH
functions, with input length m, for any class of k-wise p-universal relations are 2λ/25-fully black-box separated
from CRH mapping ℓ(λ) = λ+O(1) bits to λ bits.

Note that our separation result from collision-resistance considers CRH that shrinks its input only by a
constant number of bits. We stress, however, that our proof technique results in equally-merited separations
from any CRH with constant multiplicative shrinkage smaller than 1

2 , where we still require k = Ω(t)

and obtain a 2Ω(λ)-separation. Further, since such a CRH implies collision-resistance with any polynomial
shrinkage (via a logarithmic number of sequential invocations), one may derive more general separation
results with corresponding parameters.

5 A Generic Framework: Differentially Indistinguishable Corre-
lation Finder

We introduce a generic framework for showing barriers on CIH constructions. Our approach builds on the
“Two-Oracle Methodology” [Sim98, HR04, AS16, BD19] where, in order to obtain bounds on cryptographic
constructions, one creates an idealized (oracle-relative) world under which such constructions are impossible.
In our case, such a world would consist mainly of an ideal oracle representation of a cryptographic primitive
(be it a CRH or OWP) and a correlation finder that should be able to break any construction of CIH from
the ideal primitive that satisfies certain constraints, e.g. query complexity, yet is useless for breaking the
intractability of the underlying oracle (that is, inverting it or finding induced collision).

Our contribution in this section is the formulation of a somewhat unified hardness notion, namely dif-
ferential indistinguishability, and show that any correlation finder that satisfies it is indeed useless breaking
the ideal OWP or CRH. We believe that our approach is sufficiently modular to allow for adaptation in
different settings. While we attempt to be as general as possible in our representation, we sometimes adhere
to specificity for the sake of brevity and cleanliness.

Setting and Notation. We start by fixing the notation that will be used throughout our proof. Our
proof will be centered around two “computational games”: In the first, a correlation finder aims to break the
correlation intractability of a candidate CIH that maps m := m(n) bits to n bits (n can be thought of as the
“security parameter” in this game). In the second game, an adversary is given access to the correlation finder
and aims to break the intractability of an idealized primitive that is given as an oracle mapping ℓ := ℓ(λ)
bits to λ bits (here, λ is the security parameter). We now list the main playing parts in this settings:

• A relation class R = {Rn} where, for any n ∈ N, Rn is a class of relations over {0, 1}m(n) × {0, 1}n.
This will denote a relation class which we seek to build (actually, rule out) correlation intractability
for.

• A (random) oracle F = {Fλ} where for any λ ∈ N, Fλ is the uniform distribution over regular functions
mapping ℓ(λ)-bit inputs to λ-bit outputs (for our purposes, we will always assume that ℓ(λ) ≥ λ for
any λ ∈ N). This will represent the idealized cryptographic building block (OWP or CRH in our case)
from which correlation intractable hash is to be constructed separated. We will typically use f to
denote a function chosen from F . We say that an algorithm is f -aided if it is given access to an oracle
that follows the syntax of f ∈ F .
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• The family of f -aided circuits C = {Cn} where, for any n ∈ N, Cn is the set of all f -aided circuits
mapping m(n)-bit inputs to n-bit inputs. In particular, a CIH candidate for R (from the idealized
primitive represented by F) is an ensemble of f -aided circuits C = {Cn} where Cn ∈ Cn for all n ∈ N.

• A correlation finder O = {OR} where, for any R ∈ R, OR is a distribution over f -aided oracles that on
input 1n and an f -aided circuit C ∈ Cn (for any n ∈ N) outputs a C-input of length m(n) bits (which
should be a correlation w.r.t. R if successful). We often omit the input 1n as it is clearly determined
by C and sometimes omit the relation R when it is irrelevant in the context.

• An oracle-aided adversary A that is given access to an oracle f ∈ F and a correlation finder O ∈ O
(which in turn has access to f). We say that A is a T-adversary if it follows the syntax dedicated by
a computational task T. In particular, we will be interested in Inv-adversaries, which take as input an
image y ∈ {0, 1}λ and return a pre-image x ∈ {0, 1}ℓ(λ) and in CollFind-adversaries which take as input
a security parameter 1λ and return a pair of inputs (x1, x2) ∈ {0, 1}ℓ(λ) × {0, 1}ℓ(λ).

5.1 The Two-Oracle Methodology
We now recall the methodology developed in prior separation results [Sim98,HR04,AS16,BD19] and adapt
it to separations of correlation intractability from general T-intractability (where T is any computational
task T – see Definition 3.1).

Definition 5.1 ((q, q′, q′′)-Bounded Adversary). Let q, q′, q′′ : N→ N. We say that an oracle-aided adversary
A is (q, q′, q′′)-bounded if, for any fixed correlation finder O and any f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ}, Af,Of

on any input with security parameter λ makes at most q(λ) queries to fλ and q′(λ) queries to O, where each
O-query C makes at most q′′(λ) queries to fλ on any input.

Lemma 5.2 (Separation via Correlation-Finding Oracle). Let κ : N → [0, 1] and c ∈ N be a constant. Let
R be a class of relations. Assume there exists a correlation finder O = {OR}R∈R (see Setting and Notation
above), such that

– O breaks all CIH (Correctness): For any CIH candidate H = {Hn} with query complexity bounded
by t(n) (i.e. which satisfies the construction efficiency property in Definition 3.2), it holds that

E R←R
O←OR

[AdvH
ci(n,R,O)(n)] = Pr

f←F,h←Hn
R←R,O←OR

[z ← Of (1n, h); (z, hf (z)) ∈ R] > 1− 1

2n2

for infinitely many n ∈ N.

– F is T-Intractable under O (Security): For any (q, q, q)-bounded A that on security parameter λ
calls O only with queries (1n, h) s.t. n < 2λ/24, any λ ∈ N, and any R ∈ R,

E f←F
O←OR

[Advf
T(λ,A

O)] = O(q(λ)c · κ(λ)).

Then, t-bounded CIH functions for R with input length m are (κ−1/(1+c))-fully black-box separated from
T-intractability.

Proof. Let q, ϵ be such that q = O(κ−1/(1+c)) and ϵ > O(κ1/(1+c)). Fix a candidate (t, q, ϵ)-construction of
correlation intractable hash from T-intractable functions, consisting of hash H = {Hn} and reduction M
that satisfy the two efficiency properties from Definition 3.3 w.r.t. t and q. To establish separation, we show
that there exist f ∈ F and R ∈ R such that Of ← OR breaks correlation intractability with probability
at least 1/2 yet the (q, q, q)-reduction M cannot invert f given access to such an O with probability bigger
than ϵ.
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We know, by the first assumption, that

Pr
f←F,h←Hn
R←R,O←OR

[z ← Of (1n, h); (z, hf (z)) /∈ R] <
1

2n2

for infinitely many n ∈ N. Further, Mf,Of by the reduction efficiency of M, it is a (q, q, q)-adversary and,
therefore, by the second assumption in the lemma, it holds that

Pr
f←F

R←R,O←OR

x∗←{0,1}ℓ,M

[Mf,Of

(1λ, f(x∗)) = x∗] = O(q(λ)cκ(λ)/λ2).

For any f ∈ F and R ∈ R, we define, for any n ∈ N,

αci(n, f,R) = Pr
O←OR
h←Hn

[z ← Of (1n, h); (z, hf (z)) ∈ R]

and, for any λ ∈ N,
αT(λ, f,R) = Pr

O←OR

x∗←{0,1}ℓ,M

[Mf,Of

(1λ, f(x∗)) = x∗].

Then, by the above, we know that, for infinitely many n ∈ N and any λ ∈ N, it holds that

Ef←F,R←R[1− αci(n, f,R)] < 1/n2 and Ef←F,R←R[αT(λ, f,R)] < O(q(λ)cκ(λ)/λ2)

and, by Markov, we can imply that

Pr
f,R

[αci(n, f,R) < 1/2] = Pr
f,R

[1− αci(n, f,R) > 1/2] < 1/n2 and Pr
f,R

[αT(λ, f,R) > qcκ] < O(1/λ2).

We now use the Borel-Cantelli lemma over the above tail bounds, that hold for all λ ∈ N and infinitely many
n ∈ N to derive that, with high probability, there are infinitely many n ∈ N and, respectively, infinitely many
λ ∈ N, for which αci(n, f,R) > 1

2 yet αT(λ, f,R) < qcκ.
More formally, let us denote by Bci(n, f,R) the event that αci(n, f,R) < 1

2 and by N = {n1, n2, . . . } ⊆ N
the infinite set of all n for which Pr[Bci(n, f,R)] < 1/n2. We also denote by BT(n, f,R) the event that
αT(λ, f,R) > qcκ. Then, since

∑
i∈N Pr[Bci(ni, f, R)] <

∑
n∈N 1/n2 and

∑
λ∈N Pr[BT(λ, f,R)] <

∑
λ∈N 1/λ2

converge, then by Proposition 2.5, it holds that, for any η > 0, that

Pr[Bci(n, f,R) for infinitely many n ∈ N ] < η

Pr[Binv(λ, f,R) for infinitely many λ ∈ N] < η.

Let B∗ci(f,R) be the event that Bci(n, f,R) occurs for infinitely many n ∈ N and B∗inv(f,R) be the event
that Binv(λ, f,R) occurs for infinitely many λ ∈ N. Notice that it is sufficient to show that there exist f ∈ F
and R ∈ R for which neither B∗ci(f,R) nor B∗inv(f,R) occur since this means that for infinitely many n ∈ N ,
AdvH

ci(n,R,O)(n) > 1
2 and, at the same time, for all but finitely many λ ∈ N, AdvT(λ,MO) < q(λ)cκ(λ) =

O(κ1/(1+c)) < ϵ. This contradicts (H,M) being a (t, q, ϵ)-fully black-box construction. Consequently, it
would suffice to show that with non-zero probability over the choice of f and R, neither of the two events
occur. This follows immediately from the analysis above as follows

Pr
f,R

[B∗T(f,R) ∧B∗ci(f,R)] ≥ 1− (Pr
f,R

[B∗T(f,R)] + Pr[B∗ci(f,R)]) > 1− 2η > 0.
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5.2 Generic Assumptions on the Candidate, Adversary and the Correlation
Finder

To facilitate our proof, we will make few assumption over the structure and behavior of both the correlation
finder and the oracle-aided adversary attacking the idealized base primitive. Some of these assumptions
evidently hold without loss of generality, while some will require a little effort to manifest generally.

The first assumption we make is from the former type, and will be immediately satisfied by our construc-
tions later on. We will be assuming that the correlation finder answers each of its queries using independent
randomness. This is formally captured by the following definition.

Definition 5.3 (Query-Independent Oracle). We say that a distribution O : Q → Z over oracles is query-
independent if the answers of a random oracle O← O to different queries are independent or, more formally,
if

(O(Q))Q∈Q ≡ (OQ(Q))Q∈Q

where O and {OQ}Q∈Q are all sampled independently at random from O.

Next, we will be assuming w.l.o.g. that our candidate H always makes exactly t queries on any input.
Another simple assumption that we make on the candidate construction of CIH is in the following remark.

Remark 5.4. We may consider, w.l.o.g., only constructions H that never call fλ for λ that is too small to
give any security. More specifically, we may assume from this point on that, for any n ∈ N, Hn calls fλ only
if λ > 24 log n.

Proof. The above assumption holds without loss of generality since, were there a correlation finder O that
breaks only such candidate constructions, there exists a correlation finder O′ that breaks any candidate
and does not make inversion of f any easier. More specifically, O′ on input a hash function h embeds
f≤ = {fλ}λ≤24 logn in the function’s circuit (note this is of polynomial size O(n24 log n)) to obtain a hash
h′ where any fλ-query for λ ≤ 24 log n is replaced by a lookup in the corresponding hardwired function.
Success of O′ follows from the success of O since h and h′ compute the same function under f . Further, if
there exists a (q, q, q)-bounded A such that Af,O′ is successful in T when O′ ← O′ then so is Af,O for when
O← O by the limitation on A’s queries which guarantees they are answered similarly by O and O′.

The rest of the assumptions concern the adversary against the base primitive, which can be any Inv- or
CollFind-adversary. We begin with the notion of a canonical adversary, which captures a general structure
of successful adversaries in the sense that any adversary can be easily made canonical without loss in its
advantage or complexity.

Definition 5.5 (Canonical Adversary). We say that an oracle-aided adversary A against Inv or CollFind is
canonical if it satisfies the following three properties for any O = {On : Cm(n),n → {0, 1}n} and any f :

(i) Af,Of never makes the same oracle query twice.

(ii) After any O-query C that Af,Of makes, Af,Of immediately calls f at any x such that Cf (O(C)) ⇁ x.

(iii) Af,Of immediately halts and outputs answer if found: In the case of Inv, this means if Af,Of

(y∗) calls
f at some x ∈ f−1(y∗), he outputs x∗ right afterwards, while in the case of CollFind, if Af,Of

(1λ) calls
f at some (x1, x2) ∈ Collf , (in two separate queries) he outputs the collision immediately after making
the second query of the two.

(iv) Af,Of always calls f at its final output(s): In the case of Inv, this means Af,Of

(y∗) = x implies
Af,Of

(y∗)
f
⇁ x, while in the case of CollFind, if Af,Of

(1λ) = (x1, x2) then Af,Of

(y∗)
f
⇁ xi for both

i ∈ {1, 2}.
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Crucial to our analysis is one more assumption over the adversary, namely that it is smooth. Conceptually,
a smooth adversary never calls the correlation finder with queries that already convey sufficient amount of
information for succeeding in its task (without the help of the correlation finder). Specifically, these are
queries C where the transcript of Cf (z) for a random input z may contain a correct solution with noticeable
probability. In the case of inversions, we require that any pre-image x is observed by Cf (z) with negligible
probability5 while, in the case of CollFind, we require that Cf (z) does not observe a collision – neither a
“sibling” of a previously observed input nor a colliding pair of inputs.

To formally capture the notion of smoothness, we first define it for sets of f -inputs (these will be later
specified to be the “solution” input sets).

Definition 5.6 (Smooth Input Sets). Fix an oracle f and an f -aided circuit C ∈ Cn and let γ : N→ [0, 1].
We define the family of γ-smooth input sets w.r.t. C and f as follows

Smoothfγ(C) = {X ⊂ {0, 1}ℓ(λ) | λ ∈ N, Pr
z←{0,1}m

[∃x ∈ X : Cf (z) ⇁ x] ≤ γ(λ)}.

We will further consider the following notion of collision-smoothness, which will be additionally needed
when separating from collision-resistance.

Definition 5.7 (Collision-Smooth Circuits). We say that an f -aided circuit C : {0, 1}m → {0, 1}n is
(λ, f, γ)-collision-smooth, for f ∈ F , λ ∈ N and γ ∈ [0, 1], if

Pr
z←{0,1}m

[∃(x1, x2) ∈ Collfλ : Cf (z) ⇁ x1, x2] ≤ γ,

where
Collfλ = {(x1, x2) ∈ {0, 1}2×ℓ(λ) | x1 6= x2, f(x1) = f(x2)}.

Further, for a function γ : N→ [0, 1], we denote the family of γ-collision-smooth circuits by

C∗γ = {C∗λ,f,γ},

where, for any λ ∈ N and f ∈ F , C∗λ,f,γ is the set of all (λ, f, γ(λ))-collision-smooth circuits.

To define smoothness for adversaries, we must specify the target input sets for which we will require
smoothness. While the target sets for inverting a permutation is straight-forward (it is simply the pre-image
of any possible challenge), the target set for finding collisions is not merely the set of all collisions, but also
the set of all inputs that collide with f -queries observed by the adversary in its execution.

We begin by defining the function sibf = {sibf
λ} that maps any input x to its siblings set under the

given function f , i.e.
sibf

λ(x) = {x
′ ∈ {0, 1}ℓ(λ) | x′ 6= x, fλ(x) = fλ(x

′)}. (1)
Next, for any fixed f ∈ F , O ∈ O, and deterministic oracle-aided adversary A (we override notation and

use A also to denote the randomness sampled for the adversary, or, equivalently, the random instance of the
adversary’s deterministic machine when sampling and fixing its randomness), we denote the set of f -queries
made by Af,Of by

Qλ(f,O,A) = {x ∈ {0, 1}ℓ(λ) | Af,Of

(1λ)
f
⇁ x}. (2)

Lastly, we define the function Sibλ = {Sibλ} that maps any f ∈ F , O ∈ O and deterministic A to the
set of siblings of all f -queries made by A in its execution, except for the last query (recall that the last query
made by any canonical adversary is an f -query). That is,

Sibλ(f,O,A) =
q−1⋃
i=1

sibf
λ(Qi), where (Q1, . . . , Qq) = Qλ(f,O,A). (3)

We are now prepared to define smooth adversaries, both against inversion and against collision resistance.
5In fact, we require this only for x that has not been already observed by A since, by canonicality, if an x has already been

observed then this it is not the solution. Notice that, otherwise, the correlation finder has no knowledge about the identity of
the targeted pre-image and, therefore, we quantify over all such x’s.
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Definition 5.8 (Smooth Adversary). Let τ, γ : N → [0, 1]. We define the following notions of smoothness
for oracle-aided adversaries:

– We say that an oracle-aided adversary is (τ, γ)-smooth at unobserved inputs if, for any f , any fixed
correlation finder O, any λ ∈ N, any A-input a, and any i ∈ N, letting Ci be the (random) ith O-query
made by Af,O(a) and X<i ⊂ {0, 1}ℓ(λ) be the set of all fλ-queries made by A prior to Ci, it holds that

Pr
A
[∀x ∈ {0, 1}ℓ(λ) \X<i, {x} ∈ Smoothfγ(Ci)] > τ(λ).

– We say that an oracle-aided adversary A is (τ, γ)-smooth at siblings if, for any f , any fixed correlation
finder O, any λ ∈ N, any A-input a, and any i ∈ N, letting Ci be the (random) ith O-query made by
Af,O(a), it holds that

Pr
A
[Sibλ(f,O,A) ∈ Smoothfγ(Ci)] > τ(λ).

– We say that an oracle-aided adversary A is (τ, γ)-smooth at collisions if for any f , any fixed correlation
finder O, any λ ∈ N, any A-input a, and any i ∈ N, letting Ci be the (random) ith query made by
Af,O(a), it holds that

Pr
A
[C ∈ C∗λ,f,γ ] ≥ τ(λ).

Further, we say that an Inv-adversary is simply (τ, γ)-smooth if it is (τ, γ)-smooth at unobserved inputs and
that a CollFind-adversary is (τ, γ)-smooth if it is (τ, γ)-smooth at siblings and (τ, γ)-smooth at collisions.

We note that the notion of smooth Inv-adversaries at singleton sets is considered already in [BD19]
with the difference that we require smoothness only for unobserved inputs – this simplifies the adaption to
correlation intractability and is w.l.o.g. assuming canonical adversaries.6

Having characterized canonical and smooth adversaries, we proceed to showing that such adversaries are
complete, in the sense that it would be sufficient to show intractability against them if we can tolerate a
small cost in complexity.

Lemma 5.9 (The Smoothening Lemma). For any canonical (q, q′, q′′)-bounded Inv- or CollFind-adversary
A and any β := β(λ), there exists a canonical (q + βq′q′′, q′, q′′)-bounded Inv- or, resp., CollFind-adversary
B such that the following two properties hold:

– Correctness: for any fixed correlation finder O, any f , and any λ ∈ N,

Advf
T(λ,B

O) ≥ Advf
T(λ,A

O)

where T ∈ {Inv,CollFind} is the corresponding task.

– Smoothness: B is a (1 − 2log(q
′′/γ)−γβ , γ)-smooth Inv-adversary or, resp., a (1 − 22−γβ/4, γ)-smooth

CollFind-adversary, for all γ > 0 (see Definition 5.8).

Proof. Given any adversary A, we construct B to behave as follows, under the constraint to preserve canoni-
cality (specifically properties (i) and (iii) in Definition 5.5). Bf,O runs Af,O on its input and, whenever A calls
O with input Cf , B evaluates Cf (·) on β(λ) uniformly random inputs and only then calls O(C), forwards
the answer to A, and proceeds with the simulation. For technicalities, if B decides to halt (complying to
canonicality), we assume it replaces all its further queries by dummy queries (circuits that never call f and
are therefore smooth at everything).

Correctness, canonicality and complexity of B are straight-forward. For smoothness, let us first consider
the case of Inv-adversaries. Fix γ, an oracle O, an input to B, an i ∈ N and let C := Ci denote B’s ith

6More specifically, in [BD19], they make any adversary smooth by modifying his O-queries. Their collision finder is oblivious
to these modifications since the functionality of the queries (as f -aided circuits) is preserved. This does not hold for our
correlation finder and, therefore, their smoothening method does not preserve advantage in our settings. Hence, we slightly
modify the definition, w.l.o.g., to allow for generic smoothening under any oracle, in particular for our correlation finder.
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query (which, when exists, is also A’s ith query). We bound the probability that there exists an fλ-query
x ∈ {0, 1}ℓ(λ) which was not made by B prior to C yet {x} /∈ Smoothfγ(C). Observe that this occurs if there
exists x ∈ {0, 1}ℓ s.t. Prz←{0,1}m [Cf (z) ⇁ x] > γ(λ) and x is not queried by B before making the call to
O with C. However, notice that in such a case, x will be queried by B during the β random evaluations of
Cf (·) except with probability at most (1− γ(λ))β(λ) ≤ 2−γβ . A simple counting argument shows that there
exist at most q′′/γ such non-smooth x’s. Therefore, by applying a union bound over all such inputs under
Cf , we get that B queries all of them with probability at least 1− 2−γβ · q′′/γ.

To show smoothness in the case of CollFind-adversaries, we first derive smoothness at collisions by a
similar reasoning to the above; If there exists among A’s queries to O a circuit C /∈ C∗λ,f,γ , then it holds
that a collision will be observed by B during the β random evaluations of Cf (·) except with probability at
most (1− γ)β ≤ 2−γβ . Recall that when B observes a collision it halts since it is canonical. Therefore, the
probability that C is called by B, and not replaced by a dummy call, is at most 2−γβ .

It remains to show that smoothness at siblings additionally holds. To that end, we split the set of siblings
to three disjoint subsets: (i) the subset S∗≪i of all siblings of f -queries made prior to making the ith query
C and the β evaluations preceding C, (ii) the subset S∗<i of all siblings of f -queries made during the β
evaluations preceding C, and (iii) the subset S∗≫i of all siblings of f -queries x made after making the query
C (excluding the last query as per the definition in (3)). Evidently, these three subsets cover Sibλ(f,O,A)
entirely and are disjoint. Hence, it holds that

Pr
B
[Sibλ(f,O,B) /∈ Smoothfγ(C)]

≤ Pr
B
[S∗≪i /∈ Smoothfγ/4(C)] + Pr

B
[S∗<i /∈ Smoothfγ/2(C)] + Pr

B
[S∗≫i /∈ Smoothfγ/4(C)].

We now analyze each of the above probabilities.

– S∗≪i: This case follows by a similar argument since S∗≪i is independent in the query C and its corre-
sponding “smoothening” queries (namely the β evaluations preceding C). If S∗≪i /∈ Smoothfγ/4(C) then,
it holds that, except with probability 2−γβ/4, B does not observe a sibling in the β evaluations (which
are completely independent in the set S≪i). Since when B does observe a sibling it never reaches the
ith query, then with probability only 2−γβ/4 we have that S∗≪i /∈ Smoothfγ/4(C).

– S∗<i: While the siblings in S∗<i are not at all independent in C and its smoothening, this case still
follows quite easily from the same logic. One way to see this is to apply the argument on two separate
halves of S∗<i that are independent of each others. Formally, let S

(0)
<i and S

(1)
<i denote the siblings of

f -queries observed by the first and, resp., second half of the β evaluations preceding C. It holds that

Pr
B
[S∗<i /∈ Smoothfγ/2(C)] = Pr

B
[S

(0)
<i /∈ Smoothfγ/4(C)] + Pr

B
[S

(1)
<i /∈ Smoothfγ/4(C)].

Now, fix b ∈ {0, 1} and S
(b)
<i . By the fact that the evaluations producing S

(b)
<i , are sampled independently

of S(1−b)
<i , it still holds, conditioned on this fixed S

(b)
<i , that S(1−b)

<i is the set of siblings of f -queries seen
in β/2 evaluations of Cf on random inputs. Therefore, letting B(0),B(0) denote the random coins used
for sampling the two halves of the β evaluations, we have

Pr
B
[S

(b)
<i /∈ Smoothfγ/4(C)] = Pr

B
[S

(b)
<i /∈ Smoothfγ/4(C) ∧ B ⇁ C] ≤ max

S
(b)
<i /∈Smoothf

γ/4
(C)

Pr
B(1−b)

[B ⇁ C].

Notice that B calling C implies that S(b)
<i has not been observed during the other half of β/2 evaluations,

which again occurs with probability at most 2−γβ/4 when S
(b)
<i is not γ/4-smooth.

– S∗≫i: To analyze this last case, we separate the random coins used by B to sample the β random
evaluations preceding C, which we denote by Bi, from all other randomness used by B which we denote
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by B-i (this is used for simulating A and the evaluations corresponding to the other O-queries). Now,
observe that the set S∗≫i is determined by B-i up to the event where, during the β evaluations sampled
by Bi, a “future sibling” x ∈ S∗≫i is observed – in which case x and any input that had been added
as a sibling after x, will be “removed” from S∗≫i (since B halts once observing the sibling of x and we
exclude the last query from Sib). More formally, we denote by S′≫i the set of siblings of all f -queries
made by B after calling C, had it not invoked the β evaluations preceding C (intuitively, this is the
S∗≫i of B-i). Again, notice that S′≫i depends only on B-i and that S∗≫i ⊆ S′≫i. Therefore,

Pr
B
[S∗≫i /∈ Smoothfγ/4(C)] ≤ Pr

B
[S∗≫i /∈ Smoothfγ/4(C) | S′≫i /∈ Smoothfγ/4(C)]

Now, fix any S′≫i /∈ Smoothfγ/4(C) by fixing randomness for B-i. Let us write the elements in S′≫i by
the order they were added to the set as S′≫i = {x1, . . . , xN}, and let j be the smallest integer such that
S′j = {x1, . . . , xj} /∈ Smoothfγ(C). The identity of S′j is independent in Bi since S′≫i is and, therefore,
with probability all but 2−γβ/4 it holds that Bi calls some x ∈ S′j , in which case S∗≫i ⊆ {x1, . . . , xj−1},
which is smooth by the choice of j.

5.3 One-wayness from Differential Indistinguishability
In this section, we formalize the notion of differential indistinguishability for correlation finders and show
that it is hard to invert f under any differentially indistinguishable correlation finder. This allows us to focus
our design on obtaining differential indistinguishability to establish separation from OWP (via Lemma 5.2).

We begin by defining this new notion.

Definition 5.10 (Differential Indistinguishability). Let δ, γ : N → R+ and q : N → N. We say that a
correlation finder O = {OR} is (non-adaptively) differentially (q, γ, δ)-indistinguishable for F if for any
R ∈ R, any λ ∈ N, any f ∈ F , any f -aided circuit C ∈ C which makes at most q(λ) queries to fλ on any
input, and any x∗ ∈ Smoothfγ(C) of length ℓ(λ), it holds that

SD(Of (C), Of ′
(C)) ≤ δ(λ),

where O← OR and f ′ = fx∗↔x′ for a uniformly random x′ ← {0, 1}ℓ.

We now state and then prove that it is hard to invert a random permutation f , even when given a
differential indistinguishable correlation finder.

Lemma 5.11. Let F = {Fλ} be the distribution of random permutations over {0, 1}λ (i.e. ℓ(λ) = λ).
Let δ : N → [0, 1] and let A be a (q, q′, q′′)-bounded Inv-adversary that is canonical and (τ, γ)-smooth (see
Definitions 5.5 and 5.8). Let O be a correlation finder that is query-independent (see Definition 5.3) and
differentially (q′′, γ, δ)-indistinguishable for F . Then, it holds for any λ ∈ N that

Ef,O[Advf
Inv(λ,A

O)] ≤ O((1− τ(λ)) + q(λ) · 2−λ + q′(λ) · δ(λ)),

where f ← F and O← O.

Proof. By the definition of Inv (see Definitions 3.1 and 4.1), it holds that

Ef,O[Advf
Inv(λ,A

O)] = Pr
f,O,x∗←{0,1}λ,A

[f(Af,Of

(f(x∗))) = x∗].

As a first step, since A is assumed to be smooth, we may condition on the event that A makes only
queries that are smooth at “unobserved inputs” (see Definition 5.8). In particular, by the canonicality of A,
notice that x∗ is never observed by A before making any of its O-queries since the moment x∗ is observed
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A halts and makes no further queries. Formally, let Ef,O,x∗ denote the event that there exists i ∈ [q′] such
that {x∗} /∈ Smoothfγ(Ci), where Ci is the ith O-query that Af,O(f(x∗)) makes. By the (τ, γ)-smoothness of
A, we know that, for any fixed f , O and x∗, it holds that

Pr
A
[Ef,O,x∗ ] ≤ q′ ·max

i
Pr
A
[x∗ /∈ Smoothfγ(Ci)] ≤ Pr

A
[∃x ∈ {0, 1}ℓ(λ) \X<i : x /∈ Smoothfγ(Ci)] ≤ q′ · (1− τ),

where X<i is all observed inputs, as defined in Definition 5.8. Hence,

Pr
f,O,x∗←{0,1}λ,A

[f(Af,Of

(f(x∗))) = x∗] ≤ Pr
f,O,x∗←{0,1}λ,A

[Ef,O,x∗ ∧ f(Af,Of

(f(x∗))) = x∗] + q′ · (1− τ). (4)

To show hardness of inversion, we switch the experiment to an experiment where the adversary (and
the oracle O) is given access to an oracle f ′ that statistically hides any information about the pre-image
of the given challenge, i.e. x∗, which deems non-trivial success in computing a successful answer virtually
impossible. More specifically, we swap f at x∗ with a random x′ ← {0, 1}λ, essentially “randomizing”
the pre-image of the given challenge under the given function f ′ = fX∗↔X′ . By the presumed differential
indistinguishability of O (in particular) we are able to show that such a swap does not affect the view of
A except with a negligible probability. By the symmetry between f and f ′ given y∗ = f(x∗), we may then
conclude that f ′ hides any information about x∗ and, hence, inversion is impossible.

More formally, we denote, for every 1 ≤ i ≤ q + q′, by Ai the algorithm that takes as input the view of
A after making the first i− 1 queries to its oracles and outputs the ith query (or a final output if halting).
Then, recalling the query-independence of O and the canonicality of A, we may model the probability in (4)
with the following experiment

– Exp:

1. Sample x∗ ← {0, 1}λ at random and let y∗ = f(x∗).
2. Sample a random permutation f : {0, 1}λ → {0, 1}λ.
3. Sample an oracle O = (O1, . . . ,Oq′)← Oq′ .
4. For i = 1 . . . q + q′, let Qi ← Ai(y

∗, (Q1, A1), . . . , (Qi−1, Ai−1)),
– If Qi is an f -query: If Qi = x∗ output 1 (A wins), otherwise let Ai = f(Qi).
– If Qi is an O-query: If x∗ /∈ Smoothfγ(Qi) output 0, otherwise let Ai = Of

i (Qi).
5. Output 0 (A fails).

We now consider sampling an independently uniform x′ ← {0, 1}ℓ(λ), and swapping f at x∗ with x′ to
obtain the function f ′ = fx∗↔x′ and a new experiment Exp′ where the answers we give to the adversary are
according to f ′ (yet, notice that the winning condition remains unchanged).

– Exp′:

1. Sample x∗ ← {0, 1}λ at random and let y∗ = f(x∗).
2. Sample a random permutation f : {0, 1}λ → {0, 1}λ.
3. Sample a uniform x′ ← {0, 1}λ and let f ′ = fx∗↔x′ .
4. Sample an oracle O = (O1, . . . ,Oq′)← Oq′ .
5. For i = 1 . . . q + q′, let Q′i ← Ai(y

∗, (Q′1, A
′
1), . . . , (Q

′
i−1, A

′
i−1)),

– If Q′i is an f -query: If Q′i = x∗ output 1 (A wins), otherwise let A′i = f ′(Q′i).
– If Qi is an O-query: If x∗ /∈ Smoothfγ(Qi) output 0, otherwise let A′i = Of ′

i (Q′i).
6. Output 0 (A fails).
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We bound the statistical distance between the two experiments via a coupling argument. We use the
straight-forward coupling that samples the same x∗, x′, f and randomness for A for both Exp and Exp′, while
the randomness for the underlying correlation finding oracles is sampled, for one query at a time, according
to the coupling that gives us the lowest probability of discrepancy between the two experiments, which is
at most δ by the differential indistinguishability of O (recall we only care about the case x∗ ∈ Smoothf (Qi)
since otherwise the output of the experiments is equal). More formally, we consider the coupling between Exp
and Exp′ which samples x∗ ← {0, 1}λ, uniform f and x′, and randomness for A, then, for i = 1, . . . , q + q′,
samples randomness for the correlation finders at query i by (Oi,1,Oi,2) ← Pi (to be respectively used by
Exp and Exp′) where Pi is the coupling that gives, by Proposition 2.2,

Pr
(Oi,1,Oi,2)←Pi

[Of
i,1(Qi) 6= Of ′

i,2(Qi)] = SD(Of (Qi),O
f ′
(Qi)) ≤ δ(λ)

where Qi is the ith query made by the adversary at Af,Of

(y∗) (recall that all relevant information – f, y∗,A
and queries Q<i and their answers A<i – is determined by this point). Notice that by the query-independence
of O, sampling randomness for O at the different queries via independent couplings still gives the desired
joint marginal distribution for each of O1 = (Oi,1)

q+q′

i=1 and O2 = (Oi,2)
q+q′

i=1 . Now, since the two experiments
are identical except for our answers to the adversary’s queries (Ai), it follows that

SD(Exp,Exp′) ≤ Pr
x∗,x′,f,A

∀i,(Oi,1,Oi,2)←Pi

[Exp 6= Exp′] = Pr[(Ai)i∈[q+q′] 6= (A′i)i∈[q+q′]] =

q+q′∑
i=1

Pr[A<i = A′<i∧Ai 6= A′i].

(5)
Keeping in mind that A<i = A′<i implies Qi = Q′i, we look into the following two cases separately:

– Qi is an f -query: In such a case, it is evident that the answer to Qi is different in Exp than in Exp′

only when Qi = x′ (notice that when Qi = x∗ the experiment ends before setting Ai, A
′
i). Thus, since

in Exp (and therefore in its marginal by the coupling) x′ is sampled independently of Qi, it holds

Pr[A<i = A′<i ∧Ai 6= A′i] ≤ Pr[Qi = Q′i ∧Ai 6= A′i] ≤ Pr
x∗,x′,f,O1,A

[Qi ∈ x′] = 2−λ.

– Qi is an O-query: In which case, by the definition of Pi, it holds that

Pr[A<i = A′<i ∧Ai 6= A′i] ≤ Pr
x∗,x′,f,A,

(Oi,1,Oi,2)←Pi

[Of
i,1(Qi) 6= Of ′

i,2(Qi)] ≤ δ(λ).

By the above and (5) we conclude

SD(Exp,Exp′) ≤ q(λ) · 2−λ + q′(λ) · δ(λ) (6)

and, therefore, it remains to bound the probability that Exp′ = 1. On a closer look, Exp′ is essentially the
inversion game when A is given access to f ′ yet wins if inverts w.r.t. f , namely calls some x∗, i.e.

Pr[Exp′ = 1] = Pr
x∗,x′,f,O,A

[Af ′,Of′

(y∗)
f ′

⇁ x∗].

Lastly, observe that f and f ′ are completely symmetric in Exp′ given y∗: In steps 1-3 of the experiment,
we are sampling (y∗, f, f ′) at random where for every y∗, f and f ′ are uniform in the space of all regular
function pairs that satisfy f ′ = ff−1(y∗)↔f ′−1(y∗) or, equivalently f = f ′

f ′−1(y∗)↔f−1(y∗)
(hence the symme-

try). Thus, the marginals of (y∗, f, x′ = f ′
−1

(y∗)) and (y∗, f ′, x∗ = f−1(y∗)) are identical and, in particular,
x∗ distributes uniformly over {0, 1}λ and independently of f ′ and, thus, can be sampled after the output of
Af ′,Of′

(y∗) is determined. Given this rundown of the experiment we may proceed to conclude

Pr[Exp′ = 1] = Pr
y∗,f ′,x∗

[Af ′,Of′

(y∗)
f ′

⇁ x∗] ≤ q(λ) · 2−λ.

We then finish by combining the above with (4) and (6).
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5.4 Collision Resistance from Adaptive Differential Indistinguishability
We extend the framework from the previous section to allow a separation from collision-resistant hash
functions and not only one-way permutations.

Defining Adaptive Differential Indistinguishability. We generalize differential indistinguishability
to consider adaptive choices of the input x∗ that depend on the random answer of the oracle (recall that
in the non-adaptive notion x∗ is worst-case but fixed apriori). More specifically, we consider x∗ that is
computed as a function of Of (C), where C is the given O-query and O is the random oracle. Notice that
this function defines the dependence of the adversarial choice of x∗ on the oracle O and the query C chosen
by the environment. Contrary to before, we will not be able to guarantee such an adaptive notion for any
worst-case (bounded) C and, therefore, we will be requiring indistinguishability for an average-case query C
sampled from a specified distribution C∗ (speaking ahead, we will be looking at the distribution of O-queries
made by the adversary). Additionally, necessary for our separation from CRH, we generalize the notion
to consider sequences of swaps, namely an adaptively-chosen subset X∗ that is swapped with a uniformly
random X ′ of the same size. The formal definition is given below.

Definition 5.12 (Adaptive Differential Indistinguishability). Let δ : N→ R+. Let C∗ = {C∗λ,f} be a family
of distributions over C and let X∗ = {X∗λ,f} be a probabilistic function X∗λ,f : C × {0, 1}∗ → P({0, 1}ℓ(λ))
(equivalently, distributions over such deterministic functions). We say that a correlation finder O = {OR}
is adaptively differentially δ-indistinguishable for F against (C∗,X∗) if for any R ∈ R, any λ ∈ N and any
f ∈ F , it holds that

SD =
(
(O, C,Of (C)), (O, C,Of ′

(C))
)
≤ δ(λ),

where O ← O, C ← C∗λ,f and f ′ = fX∗↔X′ for X∗ ← X∗λ,f (C,O
f (C)) and a uniformly random subset

X ′ ⊆ {0, 1}ℓ(λ) of size |X∗|.

Our Adaptive Adversary: The Siblings of Observed Inputs. In order to base collision resistance on
adaptive differential indistinguishability, we must first identify a family of adversaries A = (C∗,X∗) against
which adaptive differential indistinguishability is required to obtain such a reduction. At a high level, given
an adversary A, we consider (C∗,X∗) where a random Q← C∗λ,f and a random X∗ ← X∗λ,f (Q,Of (Q)) would
imitate the distribution of an O-query made by A in a random execution and, respectively, the set of siblings
corresponding to that execution (recall the definition in (3)). We formalize below.

Definition 5.13 ((F ,O,A)-Siblings). Let F be a family of oracles f = {fλ : {0, 1}ℓ(λ) → {0, 1}λ}, let O be
an f -aided correlation finder and let A be an oracle-aided CollFind-adversary. We say that (C∗,X∗) is an ith

(F ,O,A)-siblings distribution for i ∈ N if, for any λ ∈ N and f ∈ F , it holds that

C∗ ≡ Ci X∗λ,f (C, z) ≡ Sibλ(f,OC,z,AC,z)

where Ci is the ith O-query made by a random Af,O(1λ), and OC,A and AC,A are deterministic instances of
O and A, that are jointly sampled from their respective distributions conditioned on C is the ith query made
by Af,Of

(1λ) and Of (C) = z.

Remark 5.14. Let O be query-independent. Then, for any ith (F ,O,A)-siblings distribution A, any f ∈ F
and any λ ∈ N, it holds that

(C∗,Oi,X
∗
λ,f (C

∗,Of
i (C

∗))) ≡ (Qi,Oi,Sibλ(f,O,A)),

where C∗ ← C∗, O = (Oj) is sampled at random from O (in a query-independent fashion) and Qi is the ith

query made by Af,Of .
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Proof. To see the equivalence, notice first that the value of Sibλ(f,O,A) is independent in Oi given the ith

answer Ai = Of
i (Qi) and, therefore, we can write Sibλ as a function of f,O ̸=i,A and Ai,

(Qi,Oi,Sibλ(f,O,A)) ≡ (Qi,Oi,Sibλ(f, O̸=i,A,Of
i (Qi))).

Second, since all of Qi, O ̸=i and A are independent of Oi, we may think about sampling O ̸=i and A as first
sampling an ith query Qi according to its marginal distribution in a random execution (that is, according to
C∗), then sampling A and O ̸=i conditioned on Qi is the ith query made by Af,Of – we denote these (possibly
correlated) distributions by AQi

and, resp., O ̸=i,Qi
) – and only then sampling Oi independently at random.

(Qi,Oi,Sibλ(f,O,A)) ≡ (Qi,Oi,Sibλ(f,O ̸=i,Qi
,AQi

,Of
i (Qi))).

Lastly, observe that A and O ̸=i are independent in the answer Ai and, therefore, sampling from the distri-
butions AQi and O ̸=i,Qi conditioning further on Ai = Of

i (Qi) gives us still the same distributions. Since,
additionally, the siblings set is independent of Oi once Ai is fixed, we may replace the random O ̸=i,Qi and AQi

with random OQi,O
f
i (Qi)

and AQi,O
f
i (Qi)

(in OQi,O
f
i (Qi)

we are implicitly sampling “fresh” Oi that anyway
does not affect the identity of the siblings set given Ai), to obtain the desired equivalence

(Qi,Oi,Sibλ(f,O,A)) ≡ (Qi,Oi,Sibλ(f,OQi,O
f
i (Qi)

,AQi,O
f
i (Qi)

,Of
i (Qi))) ≡ (C∗,Oi,X

∗
λ,f (C

∗,Of
i (C

∗))).

The Reduction Statement. In the lemma below, we argue a reduction from the task of finding collisions
under random regular hash functions to the task of breaking adaptive differential indistinguishability against
siblings. As a consequence, it would suffice to show that a correlation finder satisfies such adaptive differential
indistinguishability in order to establish a separation from collision-resistant hash.

Lemma 5.15. Let F = {Fλ} be the distribution of random regular functions mapping ℓ(λ)-bit inputs
to λ-bit outputs. Let δ : N → [0, 1] and let A be a canonical (q, q′, q′′)-bounded CollFind-adversary. Let
O be a correlation finder that is query-independent (see Definition 5.3), and adaptively differentially δ-
indistinguishable for F against any (F ,O,A)-siblings distribution (see Definition 5.13). Then, it holds for
any λ ∈ N that

Ef,O[Advf
CollFind(λ,A

O)] = O(q2 · 2ℓ−2λ + q′ · δ),
where f ← F and O← O.

Proof of Lemma 5.15 To show hardness of finding collisions, we show that the adversary would have
seen the same view had we switched the function f to a different function f ′ that hides any information
about collisions containing any input x that the adversary calls f at (this is exactly the set Sibλ(f,O,A) as
defined in (3)).

More specifically, consider the experiment where we run Af,Of

(1λ) and record all f -points {x1, . . . , xt}
that A has observed in its execution via an f -query, i.e. Qλ(f,O,A) (see (2)). We take the set of all siblings
S∗ = Sibλ(f,O,A) (recall (3)) and notice that if A finds a collision, then he must have found an input in
S∗ and therefore, in this sense, S∗ is the “target set” for the adversary and can alone define his winning
condition in the game. To “hide” S∗, we swap f at S∗ with randomly chosen inputs S′ to obtain f ′. We
claim that, by adaptive differential indistinguishability against canonical siblings, if we were to re-run the
execution of A using the same randomness under the same O, yet replacing the oracle f with f ′, we would
have obtained the same outcome. We then show that S∗ distributes as if uniform and independent given
the function f ′ and, thus, finding any input in S∗ given access only to f ′, as happens in the re-execution, is
hard for any query-bounded adversary.

Formally, we denote, for every 1 ≤ i ≤ q+ q′+1, by Ai the algorithm that takes as input the view of the
adversary after making the first i − 1 queries to its oracles and outputs the ith query (or a final output if
i = q + q′ + 1). By additionally exploiting the query-independence of O, we may model the collision-finding
experiment as follows
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– Exp:

1. Sample a random function f ← F , an oracle O = (O1, . . . ,Oq′)← Oq′ and randomness for A.
2. Let S = ∅.
3. For i = 1 . . . q + q′, let Qi ← Ai(1

λ, (Q1, A1), . . . , (Qi−1, Ai−1)),
– If Qi is an f -query:

– If Qi ∈ S output 1 (A succeeds).
– Otherwise, let Ai = f(Qi) and, if Qi ∈ {0, 1}ℓ(λ), S ← S ∪ sibf (Qi).

– If Qi is an O-query, let Ai = Of
i (Qi).

4. Output 0 (A fails).

As a first step, we notice that by the canonicality of A, we can replace the intermediate value of S in
all iterations in Exp by the final value that it eventually takes, which is essentially Sibλ(f,O,A) (see the
definition in (3)). This allows us to focus on the following mutation of the experiment above.

– Exp∗:

1. Sample a random function f ← F , an oracle O = (O1, . . . ,Oq′)← Oq′ and randomness for A.
2. Let S∗ = Sibλ(f,O,A).
3. For i = 1 . . . q + q′, let Qi ← Ai(1

λ, (Q1, A1), . . . , (Qi−1, Ai−1)),
– If Qi is an f -query:

– If Qi ∈ S∗ output 1 (A succeeds).
– Otherwise, let Ai = f(Qi).

– If Qi is an O-query, let Ai = Of
i (Qi).

4. Output 0 (A fails).

Claim 1. SD(Exp∗,Exp) = 0.

Proof. We show that the outcomes of Exp and Exp∗ are equal for any fixed f,O and A. To see this, observe
that the only scenario where the experiments may behave differently is when Qi ∈ S∗ (and Exp∗ output 1
at iteration i) yet Qi /∈ Si, where Si is the value that S takes during the ith iteration of Exp prior to its
update (notice that Si \ S∗ = ∅). However, since Qi ∈ S∗ \ Si, then there must exist j > i for which Qj is
an f -query and Qi ∈ sib(Qj) and, therefore, Qi ∈ Sj . In such a case, it holds by the symmetry of sib that
Qj ∈ sib(Qi) ⊆ Sj , hence Exp halts at iteration j and outputs 1 as well.

We now consider an experiment Exp′ similar to Exp∗ where the adversary A and the oracle O are given
access a different function f ′, yet the winning condition remains unchanged. Specifically, we obtain the
function f ′ from f by swapping the inputs in S∗ by the order they were added to the set (in fact, any fixed
arbitrary order works for us) with an ordered set S′ ⊆ {0, 1}ℓ of the same size as S∗, which we sample
independently and uniformly at random.

– Exp′:

1. Sample a random function f ← F , an oracle O = (O1, . . . ,Oq′)← Oq′ and randomness for A.
2. Let S∗ = Sibλ(f,O,A).
3. Sample a uniformly random ordered set S′ ⊆ {0, 1}ℓ(λ) of size q(2ℓ−λ − 1) and let f ′ = fS∗↔S′ .
4. For i = 1 . . . q + q′, let Q′i ← Ai(1

λ, (Q′1, A
′
1), . . . , (Q

′
i−1, A

′
i−1)),

– If Q′i is an f -query:
– If Q′i ∈ S∗ output 1 (A succeeds).
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– Otherwise, let Ai = f(Q′i).
– If Q′i is an O-query, let Ai = Of

i (Q
′
i).

5. Output 0 (A fails).

Let us define the following deterministic mapping

View : (f,O,A) 7→ ((Q1, A1), . . . , (Qq, Aq))

that maps any f , oracle O and adversary randomness A to the view of the adversary in Exp when given this
randomness, that is, when running Af,Of

(1λ).
We hereby prove that, with high probability, the views seen by A under f is identical to that under f ′.

We use this, in particular, to imply statistical proximity between the outcomes of Exp∗ and Exp′.

Claim 2. For f,O,A, f ′ sampled as in Exp∗ and Exp′,

Pr
f,O,A,S′

[View(f ′,O,A) 6= View(f,O,A)] ≤ q2(λ) · 2−λ + q′(λ) · δ(λ).

Proof. It holds by inspection that

Pr
f,O,A,S′

[View(f ′,O,A) 6= View(f,O,A)] = Pr[(Ai)i∈[q] 6= (A′i)i∈[q]] =

q+q′∑
i=1

Pr[A<i = A′<i ∧Ai 6= A′i]. (7)

Keeping in mind that A<i = A′<i implies Qi = Q′i, we look into the following two cases separately:

(i) Qi is an f -query: In such a case, it is evident that the answer to Qi is different in Exp′ than in Exp∗

only when Qi ∈ S′ (notice that when Qi ∈ S∗ the experiment ends before setting Ai, A
′
i in both cases).

Thus, since S′ is sampled independently of Qi,

Pr[A<i = A′<i ∧Ai 6= A′i] ≤ Pr[Qi = Q′i ∧Ai 6= A′i] ≤ Pr
f,O,A,S′

[Qi ∈ S′]

≤ 2−ℓ(λ) · |S∗|= 2−ℓ · q(2ℓ−λ − 1) ≤ q2−λ. (8)

(ii) Qi is an O-query: In which case, it holds that

Pr[A<i = A′<i ∧Ai 6= A′i] ≤ Pr
f,O,A,S∗,S′

[Of ′

i (Qi) 6= Of
i (Qi)].

We bound the above probability by relying on the assumed adaptive differential indistinguishability
of O against siblings. Specifically, we look at the ith (F ,O,A)-siblings distribution (C∗,X∗) (see
Definition 5.13). By the equivalence demonstrated in Remark 5.14, we may write

Pr
f,O,A,S∗,S′

[Of ′

i (Qi) 6= Of
i (Qi)] = Pr

f,Qi,Oi,S
∗,S′

[Of ′

i (Qi) 6= Of
i (Qi)] = Pr

f,Oi,C,X∗,X′
[Of ′

i (C) 6= Of
i (C)]

where f and Oi distribute as in Exp∗ (or Exp′), C ← C∗, X∗ ← X∗λ,f (C,O
f
i (C)), X ′ is uniformly

random of size |X∗| and f ′ = fX∗↔X′ . The above probability is bound by δ based on the adaptive
differential indistinguishability of O against A and Proposition 2.2 (the best coupling must sample the
same Oi and Qi).

The proof of the claim is then complete by plugging the above and (8) into (7).

By Claim 2 and Proposition 2.2 it immediately follows that

SD(Exp′,Exp∗) ≤ q2 · 2−λ + q′ · δ(λ).
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It remains to bound the probability that Exp′ = 1. On a closer look, Exp′ is essentially the collision
finding task when A is given access to f ′ yet wins if succeeds w.r.t. f , i.e. finds S∗ – siblings of observed
points under f . Our goal then is to show that S∗ distributes uniformly at random given f ′, making it
virtually impossible to find. To that end, we draw a symmetry between f and f ′ and prove that (f, f ′) and
(f ′, f) are indistinguishable. We further notice that the deterministic mapping that maps (f, f ′) to (f, S′)
also maps (f ′, f) to (f ′, S∗) and therefore, given the symmetry, since S′ is independent in f , so is S∗ in f ′.

Claim 3. For f, f ′ sampled as in Exp′,

SD((f, f ′,O,A), (f ′, f,O,A)) = O(q2(λ) · (2−λ + 2ℓ−2λ) + q′(λ) · δ(λ)).

Proof. For any O ∈ O and fixed deterministic A, let us denote by VO,A the marginal distribution of
View(f,O,A), when f is sampled uniformly at random. For any V ∈ VO,A, we denote

FV,O,A = {f | View(f,O,A) = V }.

We can then think about (f, f ′) that are produced by Exp′ as being generated via sampling random O, A,
V ← VO,A and S′, then sampling a uniformly random f ← FV,O,A and obtaining the corresponding function
f ′ = fS∗↔S′ (recall S∗ is deterministically fixed by f,O,A). Given such a representation, we observe that
by Claim 2, such an f ′ is in FV,O,A with high probability and, hence, we may replace the uniform S′

with a slightly different distribution, that samples S′ uniformly conditioned on f, f ′ ∈ FV,O,A (by rejection
sampling). More formally, we consider a recasting of Exp′ which we denote by Exp′0 (and which evidently
produces the same distribution of (f, f ′) as sampled by Exp′) and a modified experiment Exp′1:

Exp′0:

1. Sample random O,A and V ← VO,A.

2. Sample uniformly random S′.

3. Sample f ← FV,O,A.

4. Let S∗ = S∗(f,O,A).

5. Output (f, f ′ = fS∗↔S′ ,O,A).

Exp′1:

1. Sample random O,A and V ← VO,A.

2. Sample uniformly random S′.

3. Sample f ← FV,O,A.

4. Let S∗ = S∗(f,O,A).

5. If f ′ = fS∗↔S′ /∈ FV,O,A, repeat from step 1.
Otherwise, output (f, f ′,O,A).

Then, by Claim 2, it holds that

SD(Exp′0,Exp
′
1) ≤ Pr

O,A,V,S′

f←FV,O,A

[f ′ /∈ FV,O,A] = Pr
f←F,O,A,S′

[f ′ /∈ FView(f,O,A),O,A]

= Pr
f←F,O,A,S′

[View(f ′,O,A) 6= View(f,O,A)] ≤ q2 · 2−λ + q′ · δ.

We next consider an experiment where, instead of sampling uniformly random S′, we derive S′ from
S∗ using a random permutation over the input space of f . In fact, in order to facilitate the symmetry
argument, we will be sampling a uniformly random order-2 permutation, that is, a permutation π where
π = π−1 (equivalently, π2 = I). By Proposition 2.6, this still gives us S′ that is statistically close to uniform.

Exp′2 :

1. Sample random O, A and V ← VO,A.
2. Sample a uniformly random order-2 permutation π ← Sym2({0, 1}ℓ).
3. Sample f ← FV,O,A and let S∗ = S∗(f,O,A) and S′ = π(S∗).
4. If f ′ = fS∗↔S′ ∈ FV,O,A, output (f, f ′,O,A) and, otherwise, repeat from step 1.
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Then, by Proposition 2.6, we may bound the distance between Exp′2 and Exp′1 as follows

SD(Exp′2,Exp
′
1) ≤ SD(π(S∗), S′) = O(2−ℓ · |S∗|2) = O(q22ℓ−2λ).

Now, letting

FV,O,A(π) = {f ∈ FV,O,A | fS∗↔S′ ∈ FV,O,A, where S∗ = S∗(f,O,A) and S′ = π(S∗)},

we may look at f is if being sampled uniformly at random from FV,O,A(π). Moreover, we denote by SwapO,A,π

the deterministic transformation that transforms any f ∈ FV,O,A(π) to the corresponding f ′ as defined in
Exp′2. More formally, we define

SwapO,A,π(f) : 1. Let S∗ = S∗(f,O,A). 2. Let S′ = π(S∗). 3. Output f ′ = fS∗↔S′ .

and observe that SwapO,A,π is in fact 1-1 over FV,O,A(π)! To see this, notice that, if f ∈ FV,O,A(π) then
f ′ = SwapO,A,π(f) satisfies f ′ ∈ FV,O,A and, therefore, View(f ′,O,A) = V = View(f,O,A) and

S∗(f ′,O,A) =
⋃

x:Af′⇁x

sibf ′
(x) =

⋃
x:Af⇁x

sibf ′
(x) = S′.

Further, since π is of order 2, then it holds that π(S′) = π−1(S′) = S∗. Hence, f = SwapO,A,π(f
′)

and f ′ ∈ FV,O,A(π). We may use SwapO,A,π then, to look at FV,O,A(π) as the disjoint union of pairs
FV,O,A(π) =

⋃̇
(f,f ′)∈P{f, f ′} where, for each such pair (f, f ′) ∈ P, f = SwapO,A,π(f

′) or, equivalently,
f ′ = SwapO,A,π(f). By these insights, we may rewrite the last experiment above as follows

Exp′3 :

1. Sample O← O, random A and V ← VO,A.
2. Sample π ← Sym2({0, 1}ℓ).
3. Sample uniformly random f ← FV,O,A(π) and let f ′ = SwapO,A,π(f) and output (f, f ′,O,A).

where it is easy to see that f and f ′ are symmetric – they are simply a uniformly random pair (f, f ′)← P
from the disjoint union P defined above (which is deterministically defined by O,A, V, π). This completes
the proof of the claim.

By claim 3 and as hinted above, it immediately follows that

SD((f ′, S∗), (f, S′)) = SD((f ′, S∗(f,O,A)), (f, S∗(f ′,O,A))) = O(q2 · 2ℓ−2λ + q′ · δ)

and, hence,

Pr[Exp′ = 1] = Pr
f ′,S∗

[Af ′,Of′

(1λ)
f
⇁ S∗]

= Pr
f,S′

[Af,Of

(1λ)
f
⇁ S′] +O(q2 · 2ℓ−2λ + q′ · δ)

= O(q2 · 2ℓ−2λ + q′ · δ)

and the proof of Lemma 5.15 is finished.
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5.5 Towards Adaptive Differential Indistinguishability against Siblings
We have reduced our task in Section 5.4 to design a correlation finder with adaptive differential indistin-
guishability against siblings. As a first step towards this end, we identify in this section two key properties
of siblings distributions that make it eventually possible to build such a correlation finder. In fact, it is hard
to imagine a correlation finder that is both correct and adaptively differentially indistinguishable against an
adversarial (C∗,X∗) that does not satisfy these properties.

The first of these properties is elusiveness, using which we rule out a scenario where the adaptive adversary
swaps the function specifically at inputs that appear in the transcript produced by the oracle’s answer, namely
in the execution Cf (Of (C)). We formalize below.

Definition 5.16 (Elusive (C∗,X∗)). Let O = {OR} be a correlation finder and let (C∗,X∗) be an adversarial
distribution against adaptive differential indistinguishability, i.e. a distribution C∗ over C and a probabilistic
function X∗ : C × {0, 1}∗ → P({0, 1}ℓ(λ)) (see Definition 5.12). We say that (C∗,X∗) is (O, η)-elusive for
η : N→ [0, 1] if for any R ∈ R, any λ ∈ N and any f , it holds that

Pr
O←OR,C←C∗

λ,f

X∗←X∗
λ,f (C,Of (C))

[∃x∗ ∈ X∗ : Cf (Of (C)) ⇁ x∗] < η(λ).

The second property is smoothness, namely that X∗ is smooth under f with high probability.

Definition 5.17 (Smooth (C∗,X∗)). Let O = {OR} be a correlation finder. We say that an adversarial
distribution against adaptive differential indistinguishability (C∗,X∗) (see Definition 5.12) is (O, τ, γ)-smooth
for τ, γ : N→ [0, 1] if for any R ∈ R, any λ ∈ N and any f , it holds that

Pr
O←O,C←C∗

λ,f

X∗←X∗
λ,f (O

f (C))

[X∗ ∈ Smoothfγ(C)] ≥ τ(λ).

Siblings are Smooth. In the following straight-forward lemma, we observe that the siblings distribution
corresponding to any canonical and smooth adversary A is smooth as per the definition above.

Lemma 5.18. Let O be a query-independent correlation finder and let A be a (q, q′, q′′)-bounded CollFind-
adversary that is canonical and (τ, γ)-smooth. Then, any (F ,O,A)-siblings distribution A (see Defini-
tion 5.13) is (O, τ, γ)-smooth.

Proof. Follows by Remark 5.14 and the definition of a smooth adversary (Definition 5.8).

Siblings are Elusive under Sound Correlation Finders. While the smoothness of siblings follows by
definition, it is not clear whether siblings are always elusive even assuming a canonical and smooth adversary.
We hereby define two notions of soundness for correlation finders and show that they are sufficient to imply
the elusiveness of siblings. At a high level, soundness bounds the amplification in the likelihood to observe
any x when computing Cf on the oracle’s answer, compared to when computing Cf on a random input.
In another way to look at it, this is the exponent of the Rényi divergence of order infinity (which is to
min-entropy what KL-divergence is to Shannon entropy) between the queries made by Cf on Of (C), namely
information leaked by O, and the queries made by Cf on a random input, namely information simulatable
without O. We also define pairwise-soundness, which simply considers the likelihood to observe pairs rather
than individual inputs.

Definition 5.19 (Soundness). Let O = {OR} be a correlation finder for R. We define two notions of
soundness for O:

– We say that O has soundness ϵ : N → [0, 1] if for any R ∈ R, any f , any C ∈ C, any λ ∈ N,
γ : N→ [0, 1] and any x ∈ {0, 1}ℓ(λ), it holds that

Pr
O←OR

[Cf (Of (C)) ⇁ x] ≤ Pr
z←{0,1}m

[Cf (z) ⇁ x]/ϵ(λ).
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– We say that O has pairwise-soundness ϵ : N → [0, 1], if for any R ∈ R, any f , any λ ∈ N and any
x1, x2 ∈ {0, 1}ℓ(λ), it holds that

Pr
O←OR

[Cf (Of (C)) ⇁ x1, x2] ≤ Pr
z∈{0,1}m

[Cf (z) ⇁ x1, x2]/ϵ(λ).

Lemma 5.20. Fix f and let O be a correlation finder (for any fixed relation) with soundness ϵ. Let C ∈ C
be an f -aided circuit that makes at most q(λ) fλ-queries for any λ ∈ N and on any input. Then, for any
γ : N→ [0, 1], any λ ∈ N and any subset S ⊆ {0, 1}ℓ(λ) such that S ∈ Smoothfγ(C), it holds that

Pr
O←O

[∃x ∈ S : Cf (Of (C)) ⇁ x] ≤ q(λ) · γ(λ)/ϵ(λ).

Additionally, if O has pairwise-soundness ϵ and C ∈ C∗λ,f,γ , then

Pr
O←O

[∃(x1, x2) ∈ Collfλ : Cf (Of (C)) ⇁ x1, x2] ≤ q2(λ) · γ(λ)/ϵ(λ).

Proof. We start with the first statement in the lemma. It holds by the presumed soundness of O that

Pr
O←O

[∃x ∈ S : Cf (Of (C)) ⇁ x] ≤
∑
x∈S

Pr
O←O

[Cf (Of (C)) ⇁ x] ≤
∑
x∈S

Pr
z←{0,1}m

[Cf (z) ⇁ x]/ϵ(λ).

We can write ∑
x∈S

Pr
z←{0,1}m

[Cf (z) ⇁ x] = 2−m ·
∑

z←{0,1}m
x∈S

1(Cf (z) ⇁ x)

where we recall 1(·) ∈ {0, 1} denotes the predicate function for its argument. Now, by the assumption on C,
there are at most q := q(λ) distinct inputs x ∈ S such that Cf (z) ⇁ x. Therefore, assuming w.l.o.g. that C
always makes exactly q(λ) queries to fλ, we may bound the above sum by

2−m ·
∑

z∈{0,1}m
x∈S

1(Cf (z) ⇁ x) ≤ q2−m ·
∑

z,(x1,...,xq):
(x1,...,xq)∩S ̸=∅

1(Cf (z) ⇁ x1, . . . , xq),

where (x1, . . . , xq) iterates over all q-tuples of inputs in {0, 1}ℓ(λ). We rewrite

q2−m ·
∑

z,(x1,...,xq):

(x1,...,xq)∩Collfλ ̸=∅

1(Cf (z) ⇁ x1, . . . , xq) = q · Ez←{0,1}m [
∑

(x1,...,xq):
(x1,...,xq)∩S ̸=∅

1(Cf (z) ⇁ x1, . . . , xq)].

and observe that the sum in the expectation above is always binary; by the q-boundedness of C, at most
a single summon takes the value of 1. Moreover, this occurs only when Cf (z) calls some x ∈ S. Thus, we
conclude that for any subset S,∑

x∈S
Pr

z←{0,1}m
[Cf (z) ⇁ x] ≤ q · Pr

z←{0,1}m
[∃x ∈ S : Cf (z) ⇁ x] (9)

and finish the proof of the first part of the lemma by the fact that S ∈ Smoothfγ(C). The second part
of the lemma, concerning collision smooth circuits, follows by an identical proof, except we rely on the
pairwise-soundness of O and we get an overhead of q2 since we are counting pairs.

Lemma 5.21. Let O = {OR} be a query-independent correlation finder with soundness and pairwise-
soundness ϵ and let A be a (q, q′, q′′)-bounded CollFind-adversary that is canonical and (τ, γ)-smooth. Then,
any (F ,OR,A)-siblings distribution (C∗,X∗) (see Definition 5.13) is (OR, η)-elusive for η = O((1 − τ) +
(q′′)2 · γ/ϵ).
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Proof. By the definition of elusiveness (Definition 5.16), we must bound the probability that, for a random
C ∈ C∗λ,f , a random oracle O ← O returns an answer z ∈ {0, 1}m(n) such that Cf (z) calls an input in the
induced set of siblings S∗ = X∗λ,f (C, z). Recall that, by Remark 5.14, when O is query-independent, such an
(C,S∗) imitates, for some i ∈ N, the distribution of the ith query made by A and the siblings of inputs seen
by Af,Of . Therefore, roughly speaking, the aforementioned event occurs when Cf (z) calls a sibling of either

– an f -query which A made prior to making the query C, in which case Oi is independent in the sibling’s
identity and we may use the soundness property to claim that the sibling is called by Cf (A) with low
probability, or

– an f -query which A makes after making the query C because it appears in the execution Cf (A) (recall
A is canonical), which means that Cf (A) calls a collision and occurs with low probability by the
collision-soundness of O, or

– an f -query which A makes after making the query C and that does not appear in Cf (A), i.e. after
finishing calling all x s.t. Cf (A) ⇁ x (see Definition 5.5 of canonical adversaries), a scenario we claim
impossible by the canonicality of A.

More formally, by Remark 5.14, it holds for any (F ,O,A)-siblings distribution (X∗,C∗) that, for some
i ∈ N and any f ∈ F ,

Pr
Oi←O,C←C∗

λ,f

S∗←X∗
λ,f,C(Of

i (C))

[∃x∗ ∈ S∗ : Cf (Of (C)) ⇁ x∗] = Pr
A,O←O

S∗=Sibλ(f,O,A)

[∃x∗ ∈ S∗ : Cf (Of
i (C)) ⇁ x∗]

Now, denote by S∗<i the subset of S∗ corresponding to siblings of f -queries made prior to making the ith

query, by S∗=i the subset of S∗ corresponding to siblings of any x such that Cf (Of (C)) ⇁ x, and by S∗>i the
subset of S∗ corresponding to siblings of f -queries x made after making the ith query such that Cf (Of (C))
does not call f at x. Evidently, these three subsets cover S∗ entirely. We now analyze the probability of
Cf (Of (C)) hitting each of these subsets, then finish using a union bound.

– S∗<i: Notice, first, that Oi is random over O and independent in S∗<i and the ith query C. Second, by
the smoothness of A at siblings (Definition 5.8), we know that

Pr
A
[S∗<i ∈ Smoothfγ(C)] ≥ τ

and, therefore, by the presumed soundness of O and Lemma 5.20

Pr
A,O

[∃x∗ ∈ S∗<i : C
f (Of

i (C)) ⇁ x∗] ≤ (1− τ) + max
C,S∈Smoothfγ(C)

Pr
Oi

[∃x∗ ∈ S : Cf (Oi(C)) ⇁ x∗]

≤ (1− τ) + q′′ · γ/ϵ.

– S∗=i: The case that Cf (Of (C)) hits S∗=i occurs when Cf (Of (C)) calls an x and one of its siblings.
We similarly bound the probability of such a scenario based on the smoothness at collisions of A, the
pairwise-soundness of O and Lemma 5.20 as follows (recall that Oi is independent in C)

Pr
A,O

[∃x∗ ∈ S∗=i : C
f (Of

i (C)) ⇁ x∗]

≤ Pr
A,O

[∃(x1, x2) ∈ Collfλ : Cf (Of
i (C)) ⇁ x1, x2]

≤ (1− τ) + max
C∈C∗

λ,f,γ′
Pr
Oi

[∃(x1, x2) ∈ Collfλ : Cf (Of
i (C)) ⇁ x1, x2]

≤ (1− τ) + (q′′)2 · γ/ϵ.
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– S∗>i: If Cf (Of (C)) ever hits an x∗ ∈ S∗>i, i.e. an x∗ such that there is some x that Af,Of

(1λ) calls
after making C and querying all the induced f -queries, then by the point that A is about to query f
at x, x∗ ∈ sib(x) has already been called by A. By the symmetry of sib, it holds that x ∈ sib(x∗)
and, hence, x is the last query made by A, after which it immediately halts and outputs (x, x∗) (by
canonicality, see Definition 5.5). Recall that we define Sib to exclude the siblings of the last query (see
(3)). Hence, such a scenario is impossible and has probability zero.

The Smoothness and Elusiveness of Non-Adaptive x∗. In the next section we will show a construc-
tion of correlation finder that will satisfy adaptive differential indistinguishability against smooth and elusive
distributions (X∗,C∗). We have demonstrated above that this captures siblings distributions and is therefore
sufficient to derive separation from CRH (via Lemma 5.15). For the construction to be sufficient for a sep-
aration from OWP as well, we must prove that our non-adaptive notion of differential indistinguishability
(see Definition 5.10, Lemma 5.11) is a special case of adaptive differential indistinguishability against smooth
and elusive distributions.

Remark 5.22. If O is ϵ-sound and adaptively differentially δ-indistinguishable for F against any (O, 1, γ)-
smooth and (O, γ/ϵ)-elusive (C∗,X∗) then it is differentially (q, γ, δ)-indistinguishable for any q.

Proof. Let (C∗,X∗) be any pair where C∗ outputs a constant C ∈ C such that, for all λ ∈ N, C ← C∗λ,f
makes at most q(λ) queries to fλ on any input, and X∗ = {X∗λ,f : C × {0, 1}∗ → {0, 1}ℓ(λ)} is independent
of its second argument and satisfies Prx∗←X∗(C)[x

∗ ∈ Smoothfγ(C)] = 1. Notice that adaptive differential δ-
indistinguishability for all such distributions implies (non-adaptive) differential (q, γ, δ)-indistinguishability.
These distributions are all (O, 1, γ)-smooth by inspection and, further, the fact they are all (O, γ)-elusive
follows easily by smoothness (notice the answer of O is independent in x∗) and the ϵ-soundness of O.

6 The Correlation Finder
In this section, we build a correlation finder that is correct and adaptively differentially indistinguishable
against elusive and smooth adversarial choices (as defined in Section 5.5). Given the work done so far, in
particular in Lemmas 5.15, 5.18 and 5.21, this is sufficient to derive the desired separation.

Our correlation finder follows a natural structure of a picky correlation finder, namely a correlation finder
that given any input, rejects with some probability (outputs ⊥7) and, otherwise, simply outputs a uniformly
random correlation under the target relation. Given this framework, it remains only to specify the rejection
policy of our correlation finder, that is, the probability with which he rejects for any given input. As a first
step, we specify a list of conditions on the rejection policy (which is simply a function from the query space
C to real values in [0, 1]) and show that any policy that satisfies these conditions gives a correlation finder
that is both correct and (adaptively) differentially indistinguishable. Having these conditions in hand, we
then proceed to define our rejection policy and show that it satisfies these conditions.

6.1 Strategy: Picky Correlation Finder
First, we define the set of correlations between a circuit and a relation.

Definition 6.1 (Set of Correlations). Let f : {0, 1}∗ → {0, 1}∗ be any oracle function and Cf : {0, 1}m →
{0, 1}n be an f -aided circuit. Let R be a relation. The set of (R,Cf )-correlations is defined as

CorrfR,C = {z | (z, Cf (z)) ∈ R}.

We sometimes omit f , R and C from notation when clear by context.
7Although our definition for a correlation finder allows only for outputs in {0, 1}m, we can always dedicate some z ∈ {0, 1}m

(e.g. the all-zeros input) to correspond to ⊥.
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We are now ready to present our generic picky correlation finder, which we will late instantiate with a
proper rejection policy.

Construction 6.1 (Picky Correlation Finder). Let R be a relation class and F be a class of oracles. Let
ρ := {ρfR : C → [0, 1]} be a an ensemble of functions (namely, a rejection policy) that take as input a
description of an f -aided circuit and outputs a real value in [0, 1] w.r.t. fixed R ∈ R and f ∈ F . We
define our picky correlation finder with rejection policy ρ, which we denote by CF [ρ] = {CFR[ρR]}R∈R,
such that, for every R ∈ R, CFR[ρR] is the distribution over deterministic oracles where, for any C, letting
CF← CFR[ρR], CFf

R(C) is an independent random variable that is equal to the random output of the following
algorithm 8

CFf
R(C) :

Reject with probability ρfR(C) and, otherwise, output a uniformly random correlation zC ← CorrfR,C

(if Corr = ∅, set zC = ⊥).

We point out that CF [ρ] is by construction query-independent (as by Definition 5.3).

6.2 Sufficient Conditions on the Rejection Policy
In this section, we state a list of conditions on the rejection policy ρ from Construction 6.1 that are sufficient
for CF [ρ] to be correct and adaptively differentially indistinguishable for siblings, paving the way towards a
separation via a picky correlation finder.

Lemma 6.2. Let t, q,N : N → N and ϵ, τ, γ, η : N → [0, 1]. Let R be a relation class and let ρ := {ρfR :
Cf → [0, 1]}R∈R that satisfies the following properties:

• Correctness: For any f ∈ F and any circuit C = {Cn ∈ Cn} with query complexity bounded by t(n),
it holds that

ER←R[ρ
f
R(Cn)] <

1

2n2

for infinitely many n ∈ N.

• Soundness: For any R ∈ R, any f ∈ F and any circuit C ∈ C, if ρfR(C) < 1 then, for any λ ∈ N
and any x ∈ {0, 1}ℓ(λ), it holds that

Pr
z←Corrf

[Cf (z) ⇁ x] < Pr
z←{0,1}m

[Cf (z) ⇁ x]/ϵ(λ).

• Worst-case Differential Indistinguishability: For any R ∈ R, any f ∈ F , any circuit C ∈ C,
any λ ∈ N and any X∗, X ′ ⊆ {0, 1}ℓ(λ) such that |X∗|= |X ′| and X∗, X ′ ∈ Smoothfγ(C), it holds that

|ρf
′

R (C)− ρfR(C)|< δ(λ),

where f ′ = fX∗↔X′ .

Then, CF [ρ] = {CFR[ρR]} from Construction 6.1 satisfies

ä Correctness as required by Lemma 5.2, for CIH candidates with query complexity bounded by t(n),

ä Soundness ϵ (as defined in Definition 5.19), and
8Although the described algorithm has access to f , we think of its random coins as being sampled obliviously of f (w.l.o.g.),

and therefore CFR[ρR] is well-defined prior to setting f . One way to sample such an oracle is proposed in the proof of Lemma 6.2.
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ä Adaptive Differential δ′-Indistinguishability , where

O((1− τ) + δ + (qN/γ) · 2−ℓ + 2q · γ/ϵ+ η)

against any (CF [ρ], τ, γ)-smooth and (CF [ρ], η)-elusive (C∗,X∗) such that any C ∈ C∗λ,f makes at
most q(λ) fλ-queries for any λ ∈ N on any input and any X∗ ∈ X∗λ,f,C has size at most N(λ).

Additionally, if ρ satisfies

• Pairwise-Soundness: For any R ∈ R, f ∈ F and any circuit C ∈ C, if ρfR(C) < 1 then, for any
λ ∈ N and any x1, x2 ∈ {0, 1}ℓ(λ), it holds that

Pr
z←Corrf

[Cf (z) ⇁ x1, x2] < Pr
z←{0,1}m

[Cf (z) ⇁ x1, x2]/ϵ(λ),

then, for any R ∈ R, CFR[ρR] satisfies

ä Pairwise-Soundness ϵ (as defined in Definition 5.19).

The following two corollaries result from plugging in Remark 5.22 into Lemma 6.2 and, respectively,
Lemmas 5.18 and 5.21 into Lemma 6.2.

Corollary 6.3. Let ρ be a rejection policy satisfying the assumptions of Lemma 6.2 w.r.t. a relation class R.
Let A be a (q, q′, q′′)-bounded Inv-adversary that is canonical and (τ, γ)-smooth. Then, CF [ρ] is differentially
(q′′, γ, δ′)-indistinguishable for permutations, where

δ′ = O(δ + (q′′/γ) · 2−λ + q′′ · γ/ϵ).

Corollary 6.4. Let ρ be a rejection policy satisfying the assumptions of Lemma 6.2 w.r.t. a relation class
R. Let A be a (q, q′, q′′)-bounded CollFind-adversary that is canonical and (τ, γ)-smooth. Then, CF [ρ] is
adaptively differentially δ′-indistinguishable against any (F , CFR[ρR],A)-siblings, where

δ′ = O((1− τ) + δ + (qq′′/γ) · 2−λ + (q′′)2 · γ/ϵ).

In what follows till the end of this section is a proof of Lemma 6.2.

Proof of Lemma 6.2. Soundness is immediate and correctness follows quite straight-forwardly by our
construction; Let H = {Hn} be a hash family. Then, it holds that

Pr
f,h←Hn

R←R,CF←CFR

[z ← CFf (h); (z, hf (z)) /∈ R] ≤ max
f,C

Pr
R←R

CF←CFR

[z ← CFf (Cn); (z, C
f
n(z)) /∈ R]

= max
f,C

ER←R Pr
CF←CFR

[z ← CFf (Cn); (z, C
f
n(z)) /∈ R] = max

f,C
ER←R[ρ

f
R(Cn)] < 1/2n2.

It remains, then, to show adaptive differential indistinguishability holds given the conditions assumed in
the lemma. Let us fix R ∈ R and omit it from notation. Recall that, by the definition of adaptive differential
indistinguishability (see Definition 5.12) and Proposition 2.2, it suffices to show that for any λ ∈ N and any
f , it holds that

Pr
CF←CFR[ρR]

C,X∗,X′

[CFf ′
(C) 6= CFf (C)]

where C ← C∗f,λ and f ′ = fX∗↔X′ for X∗ ← X∗λ,f,C(CF
f (C)) and a uniformly random X ′ ⊆ {0, 1}ℓ(λ) of size

|X∗|.
We first note that by the presumed smoothness of (C∗,X∗) we have Pr[X∗ /∈ Smoothfγ(C)] ≤ (1 − τ).

Second, we use the following claim to deduce that the random X ′ is also smooth with high probability.
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Claim 4. Fix a circuit C ∈ C that makes at most q′′(λ) queries to fλ on any input, fix λ ∈ N and let
X ′ ⊆ {0, 1}ℓ(λ) be a uniformly random subset of size N . Then, it holds for any γ : N→ [0, 1] that

Pr
X′

[X ′ /∈ Smoothfγ(C)] ≤ q′′N2−ℓ(λ)/γ.

Proof. By definition and Markov,

Pr
X′

[X ′ /∈ Smoothfγ(C)] = Pr
X′

[ Pr
z←{0,1}m

[∃x′ ∈ X ′ : Cf (z) ⇁ x′] > γ]

< EX′ [ Pr
z←{0,1}m

[∃x′ ∈ X ′ : Cf (z) ⇁ x′]]/γ,

where

EX′ [ Pr
z←{0,1}m

[∃x′ ∈ X ′ : Cf (z) ⇁ x′]] = EX′,z[1(∃x′ ∈ X ′ : Cf (z) ⇁ x′)] ≤ max
z

Pr
X′

[∃x′ ∈ X ′ : Cf (z) ⇁ x′].

Fixing any z ∈ {0, 1}m, notice that the probability, over a random choice of X ′, that Cf (z) calls any x′ ∈ X ′

can be bound by q′′ ·N2−ℓ(λ) based on the assumed limitation over C. Therefore,

EX′ [ Pr
z←{0,1}m

[∃x′ ∈ X ′ : Cf (z) ⇁ x′]] ≤ q′′N2−ℓ(λ)

and we finish.

By the above, we may conclude that both X∗ and X ′ are smooth with high probability. Formally, letting
E denote the event that X∗, X ′ ∈ Smoothfγ(C), we know that Pr[E] ≥ τ − q′′N2−ℓ/γ and, therefore,

Pr
CF←CFR[ρR]

C,X∗,X′

[CFf ′
(C) 6= CFf (C)] ≤ Pr

CF←CFR[ρR]
C,X∗,X′

[E ∧ CFf ′
(C) 6= CFf (C)] + (1− τ) + q′′N2−ℓ/γ (10)

We are now prepared to proceed with the analysis conditioned on E. We frame the sampling of CF ←
CFR[ρR] as sampling, for any possible query C, a uniformly random point rC ← [0, 1] (i.e., Pr[r ∈ [a, b]] =
b − a for any 0 ≤ a ≤ b ≤ 1) and a uniformly random permutation πC : {0, 1}m → {0, 1}m. Then, when
given access to f , the oracle computes the following function on C:
CFf (C; r, π):

1. If r ≤ ρf (C), reject.

2. Otherwise, output z = π(i) where i is the lexicographically smallest element in {0, 1}m such that
π(i) ∈ CorrfR,C .

The fact that the above representation of CFf (C; r, π) matches a random CFf (C) as by Construction 6.1 is
evident.

Now, observe that CFf ′
(C) 6= CFf (C) occurs either when rejection occurs in one of the executions but

not in the other, or when rejection occurs in neither, yet the answers given by the two are different. The
former case occurs only when r is in the range between ρf

′
(C) and ρf (C), since in any other scenario the

rejection decision is similar under f and f ′. This happens with probability equal to the expected length of
this range and, since we are conditioning on E, we can use the assumed differential indistinguishability of
the rejection policy (see statement of Lemma) to derive a bound. Namely,
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Pr
CF←CFR[ρR]

C,X∗,X′

[E ∧ CFf ′
(C) 6= CFf (C)]

≤ Pr
CF←CFR[ρR]

C,X∗,X′

[E ∧ CFf ′
(C) 6= CFf (C) | CFf ′

(C),CFf (C) 6= ⊥] + Pr
CF←CFR[ρR]

C,X∗,X′

[r ∈ [ρf
′
(C), ρf (C)] | E]

= Pr
CF←CFR[ρR]

C,X∗,X′

[E ∧ CFf ′
(C) 6= CFf (C) | CFf ′

(C),CFf (C) 6= ⊥] + ECF←CFR[ρR]
C,X∗,X′

[|ρf
′
(C)− ρf (C)|| E]

≤ Pr
CF←CFR[ρR]

C,X∗,X′

[E ∧ CFf ′
(C) 6= CFf (C) | CFf ′

(C),CFf (C) 6= ⊥] + δ. (11)

It would be sufficient at this point, then, to bound the probability expression on the left-hand side of
(11). We note that, when the oracle does not reject nor under f neither under f ′, then we have that
CFf (C) = π(i) and CFf ′

(C) = π(i′) for the lexicographically smallest i and i′ that satisfy π(i) ∈ CorrfR,C

and, resp., π(i′) ∈ Corrf
′

R,C . Therefore, the inequality occurs only when i 6= i′, which subsequently means
that there is some x ∈ X∗∪X ′ that is called by either Cf (π(i)) or Cf ′

(π(i′)) (otherwise, these executions are
identical under f and f ′ and, therefore, they must be both corresponding to a correlation, implying i = i′).
Based on this observation, we bound the probability for i 6= i′ via the following two claims and complete the
proof.

Claim 5. PrCF,C,X∗,X′ [i < i′] ≤ N · q2−ℓ + η.

Proof. The event of i < i′ occurs only when Cf (π(i)) ⇁ x for some x ∈ X∗∪X ′ since, otherwise, π(i) would
have been a correlation also w.r.t. f ′, implying i′ ≤ i. First, since X ′ is sampled at random independently
in any of f,CF and C. Thus, it holds that

Pr
CF,C,X∗,X′

[∃x ∈ X ′ : Cf (CFf (C)) ⇁ x] ≤ N · q2−ℓ.

Second, by the elusiveness of (C∗,X∗), it holds that

Pr
CF,C,X∗,X′

[∃x ∈ X∗ : Cf (CFf (C)) ⇁ x] ≤ η.

The proof of the claim concludes by union bound.

Claim 6. PrCF,X∗,X′ [i′ < i ∧ E] ≤ 2q · γ/ϵ.

Proof. As already mentioned, the event i′ > i necessarily implies that Cf ′
(π(i′)) ⇁ x for some x ∈ X∗ ∪X

since otherwise the executions Cf ′
(π(i′)) and Cf (π(i′)) are identical. Further, notice that if X∗ ∪ X ′ ∈

Smoothf (C) then X∗ ∪X ′ ∈ Smoothf
′
(C) since if an execution of C calls an input in X∗ ∪X ′ under f then

it must do so under f ′ as well (these are the only inputs that are altered). Therefore, when conditioning on
E, then X∗ ∪X ′ are smooth w.r.t. f ′ as well and, therefore, we can rely on the soundness of CF [ρ] to argue
that the aforementioned event is improbable. There is, however, a subtle issue in this reasoning that has to
be addressed: it is not clear that the random answer of CFf ′

on C, namely π(i′), distributes independently
of X∗ and X ′, since the latter are a function of CFf (C) which may be correlated with CFf ′

(C) through the
choice of π.

To overcome this dependency, we observe that, when fixing any C, f and f ′ such that E holds (notice
that f and f ′ uniquely determine X∗ and X ′ and therefore E), then π(i′) distributes as if it were a uniformly
random z′ ← Corrf

′
\Corrf ; It is necessarily in this set since i′ < i and it is equal to any of its elements with

the same probability by the uniformity of π(i′). Further, when additionally fixing randomness for X, we see
that the event i′ < i occurs only when the smallest lexicographically î s.t. π(̂i) ∈ Corrf

′
∪ Corrf satisfies

38



π(̂i) ∈ Corrf
′
\Corrf . Since, in such a case, π is uniform conditioned on X(C, π(i)) = (X∗, X ′), then ẑ = π(̂i)

is a uniformly random element in Corrf
′
∪ CorrfX∗,X′ , where CorrfX∗,X′ is the set of all correlations z ∈ Corrf

s.t. X(C, z) = (X∗, X ′). More formally, by the above and for any fixed C, X, f , f ′ s.t. E holds, letting π′ be
the marginal distribution of π under such a fixing, we obtain

Pr
π′
[i′ < i] ≤ Pr

π′
[∃x ∈ X∗ ∪X ′ : Cf ′

(π′(i′)) ⇁ x ∧ i′ < i]

= Pr
π′
[∃x ∈ X∗ ∪X ′ : Cf ′

(π′(i′)) ⇁ x | i′ < i] · Pr
π′
[i′ < i]

= Pr
z′←Corrf

′\Corrf
[∃x ∈ X∗ ∪X ′ : Cf ′

(z′) ⇁ x] · Pr
ẑ←Corrf

′∪Corrf
X∗,X′

[ẑ ∈ Corrf
′
\ Corrf ]

= Pr
z′←Corrf

′∪Corrf
X∗,X′

[∃x ∈ X∗ ∪X ′ : Cf ′
(z′) ⇁ x ∧ z′ ∈ Corrf

′
\ Corrf ]

≤ Pr
z′←Corrf

′∪Corrf
X∗,X′

[∃x ∈ X∗ ∪X ′ : Cf ′
(z′) ⇁ x ∧ z′ ∈ Corrf

′
]

≤ Pr
z′←Corrf

′
[∃x ∈ X∗ ∪X ′ : Cf ′

(z′) ⇁ x] ≤ qγ/ϵ.

where the last inequality follows by the soundness ϵ of CF [ρ] (which we already derived by the soundness
assumption in the lemma) and Lemma 5.20 (recall X∗ ∪X ′ is smooth under f ′ given E).

By Claims 5 and 6, we conclude that

Pr
CF←CFR[ρR]

C,X∗,X′

[E∧CFf ′
(C) 6= CFf (C) | CFf ′

(C),CFf (C) 6= ⊥] ≤ Pr
CF←CFR[ρR]

C,X∗,X′

[E∧ i 6= i′] ≤ 2q · γ/ϵ+N · q2−ℓ + η.

The proof of the adaptive differential indistinguishability part in Lemma 6.2 is then complete by plugging
the above into (11) then (10).

6.3 The Rejection Policy
In this section, we present our construction for the rejection policy ρ and show it satisfies the conditions
listed in Lemma 6.2, making it utilizable in our proof.

Definitions and Notation. We first lay the groundwork necessary to define our rejection policy. Recall
that a rejection probability is calculated for any circuit C with respect to an oracle f and a relation R. In
what follows, we often omit C, f and R from notation as they are clear from context.

– Weights. For any λ ∈ N, we let

X = {Xλ} Xλ = {0, 1}ℓ(λ) ∪ {(x1, x2) ∈ {0, 1}2×ℓ(λ) | x1 6= x2}

be the set of all points and pairs of f -inputs. Recall that these are the tuples on which soundness and
pairwise-soundness hinge. We define the weight of any such tuple x ∈ X as

ωf
R,C(x) = Pr

z←CorrfR,C

[Cf (z) ⇁ x] = |Hitsfx ∩ CorrfR,C |/|Corr
f
R,C |, (12)

and its scale as
σf
C(x) = Pr

z←{0,1}m
[Cf (z) ⇁ x] = |Hitsfx|/2m. (13)

We will be interested in the ratio between the weight of any given x and its scale which captures, as
the reader may notice, the amplification in the likelihood of observing x due the correlation finder
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(equivalently, the Rényi divergence of order infinity between the distributions induced by ω and σ as
PDFs). We denote

αf
R,C(x) = ωf

R,C(x)/σ
f
R,C(x). (14)

– Neighborhoods. To guarantee differential indistinguishability, our rejection policy must consider,
besides f itself, functions in the d-Neighborhood of f . These are functions that are obtained by
applying at most d swaps over f . In fact, we will consider only alterations of the function that consist
of a sequence of smooth swaps, where at every step, we swap two input sets that are jointly smooth
relative to the function obtained hitherto. More formally, if we define the set of γ-smooth swaps to be

X̃f
γ(λ,C) = {(X∗, X ′) | X∗, X ′ ⊂ {0, 1}ℓ(λ), |X∗|= |X ′|, X∗ ∪X ′ ∈ Smoothfγ(C)}

and, for any series of d′ ≤ d swaps denoted by

X = ((X∗1 , X
′
1), . . . , (X

∗
d′ , X ′d′)), where X∗i , X

′
i ⊂ {0, 1}ℓ(λ), |X∗i |= |X ′i| for all i,

we define the function
fX = f{X∗

i↔X′
i}i∈[d′]

,

then, the d-Neighborhood of f (for smoothness parameter γ) is defined as

N f
d,γ(λ,C) =

⋃
0≤d′≤d

{
fX | X = ((X∗1 , X

′
1), . . . , (X

∗
d′ , X ′d′)) : ∀ i, (X∗i , X

′
i) ∈ X̃

fXi−1
γ (λ,C)

}
,

where Xℓ denotes the first ℓ swaps in X.
Further, we define the distance between functions f and f ′ as the smallest number of swaps required
between smooth inputs in {0, 1}λ to obtain f ′ from f (and is set to ∞ if such a transformation is not
possible). That is,

∆γ,λ,C(f, f
′) = min

d
f ′ ∈ N f

d,γ(λ,C).

Remark 6.5. Notice that if (X∗, X ′) ∈ X̃f
γ(λ,C), then (X∗, X ′) ∈ X̃f ′

γ (λ,C) where f ′ = fX∗↔X′ .
This is because any execution Cf (z) that calls an f -query either in X∗ or X ′ will do so also under f ′

(and vice-versa). Consequently, for any f ′ ∈ N f
d,γ(λ,C) it holds that f ∈ N f ′

d,γ(λ,C) and, hence, the
distance function ∆γ,λ,C is symmetric.

The Rejection Policy ρ. We are now prepared to define our rejection policy. As hinted by the above
definitions, our strategy is to have the rejection probability be proportional to the worst-case amplification
α(x) to obtain soundness and, further, to blur out the difference between adjacent functions to obtain
differential indistinguishability, by “spreading out” large amplification factors corresponding to some “bad”
f over its neighborhood in the function space. We formally define our rejection policy in Figure 2 below.

In the following three lemmas, we show that our rejection policy ρ satisfies the conditions required by
Lemma 6.2: correctness, soundness, pairwise-soundness and adaptive differential indistinguishability. Look-
ing ahead, through their proofs (and via Corollaries 6.3 and 6.4) we will obtain the following consequence.

Corollary 6.6. Let ϵ, γ : N→ [0, 1] be such that ϵ(λ) ≤ min(2−λ/4, 29λ/10γ). Let p : N→ [0, 1] be such that
p(n) ≥ 4n2 · 2−m(n) and k, t : N→ N be such that k(n) > (−λ/log ϵ(λ))(6t(n) + 2) for all n, λ ∈ N. Let R be
a k-wise p-universal class of relations (see Definition 4.2). Then, the oracle CF [ρ] from Construction 6.1,
instantiated with the rejection policy from Figure 2 with parameters ϵ, γ, satisfies

1. Correctness as required by Lemma 5.2, for CIH candidates with query complexity bounded by t(n),

2. Differential (q′′, γ, δ)-Indistinguishability where

δ = O((q′′/γ) · 2−λ + q′′ · γ/ϵ).
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ρ = {ρR : C → [0, 1]}

Parameters: ϵ, γ : N→ [0, 1] (such that ϵ� γ).
For any C ∈ C, letting d = (ϵ/γt)2, where t is the largest number of queries
that C makes on any input, we define

ρfR(C) = max
λ∈λ(C),x∈Xλ

f ′∈N f
d,γ(λ,C)

[e−∆γ,λ,C(f,f ′)/
√
d · (ϵ(λ) · αf ′

R,C(x))],

where (χ) = min(1, χ) and

λ(C) = {λ ∈ N | ∃z ∈ {0, 1}m, x ∈ {0, 1}ℓ(λ) : Cf (z) ⇁ x}.

Figure 2: The Rejection Policy.

3. Adaptive Differential δ-Indistinguishability against any (F , CF [ρ],A)-siblings where

δ = O((1− τ) + (q′′)2 · γ/ϵ+ (qq′′/γ) · 2−λ),

for any (q, q′, q′′)-bounded CollFind-adversary A that is canonical and (τ, γ)-smooth.

Soundness. The following straight-forward lemma is sufficient to imply both soundness and pairwise-
soundness ϵ of ρ.

Lemma 6.7. For any R ∈ R, any f and C : {0, 1}m → {0, 1}n, if ρfR(C) < 1 then, for any λ ∈ N and any
x ∈ Xλ, it holds that

Pr
z←CorrR,C

[Cf (z)
f
⇁ x] < Pr

z←{0,1}m
[Cf (z)

f
⇁ x]/ϵ(λ).

Proof. The proof follows by definition; ρf (C) < 1 implies, in particular, that ϵ · αf (x) < 1 and, therefore,

Pr
z←Corr

[Cf (z)
f
⇁ x] = ωf (x) = αf (x) · σf (x) < σf (x)/ϵ(λ) = Pr

z←{0,1}m
[Cf (z)

f
⇁ x]/ϵ(λ).

Differential Indistinguishability. The proof of differential indistinguishability is also simple and follows
almost immediately by construction.

Lemma 6.8. For any R ∈ R, any f , any C that makes at most q queries on any input, any λ ∈ N and any
X∗, X ′ ⊂ {0, 1}ℓ(λ) such that |X∗|= |X ′| and X∗, X ′ ∈ Smoothfγ/2(C), it holds that

|ρf
′

R (C)− ρfR(C)|< O(qγ/ϵ),

where f ′ = fX∗↔X′ .

Proof. It holds, for any X∗, X ′ ∈ Smoothfγ/2(C) that (X∗, X ′) ∈ X̃f
γ(C) and, therefore, by our definition

of a d-neighborhood, we have that ∆γ,λ,C(f, f
′) = 1. Therefore, ∆(f ′′, f ′) ≤ ∆(f ′′, f) + 1 for any f ′′ and
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N f ′

d,γ(λ,C) ⊆ N f
d,γ(λ,C) ∪ {f ′′ | ∆(f ′′, f ′) = d}. Therefore,

ρfR(C) = max
λ∈λ(C),x∈X
f ′′∈N f

d,γ(λ,C)

[e−∆(f,f ′′)/
√
d · (ϵ · αf ′′

(x))]

≤ max
λ∈λ(C),x∈X
f ′′∈N f

d,γ(λ,C)

[e−(∆(f ′,f ′′)−1)/
√
d · (ϵ · αf ′′

(x))]

= e1/
√
d · max

λ∈λ(C),x∈X
f ′′∈N f

d,γ(λ,C)

[e−∆(f ′,f ′′)/
√
d · (ϵ · αf ′′

(x))]

≤ e1/
√
d · max

λ∈λ(C),x∈X
f ′′∈N f′

d,γ(λ,C)

[e−∆(f ′,f ′′)/
√
d · (ϵ · αf ′′

(x))] + e−(d−1)/
√
d = ρf

′

R (C) +O(1/
√
d).

The lemma is derived by symmetry.

Correctness. The rest of this section is dedicated to prove that our ρ satisfies correctness which, unlike
the security properties that follow easily by the definition of our policy, will demand much more effort.

Let us denote, for any CIH candidate C = {Cn} ∈ C, the largest security parameter at which C calls f
by λ∗n(C) = supλ(Cn).

Lemma 6.9. Let ρ be the rejection policy defined in Figure 2 with ϵ(λ) ≤ min(2−λ/4, 29λ/10γ). Let p : N→
[0, 1] be such that p(n) ≥ 4n22−m(n) and let k, t : N → N be such that k(n) > (−λ/log ϵ(λ))(6t(n) + 2) for
all n, λ ∈ N. Let R be a k(n)-wise p(n)-universal relation class. Then, it holds, for any oracle f and any
t(n)-bounded circuit C = {Cn} and any n ∈ N, that

ER←R[ρ
f
R(Cn)] <

1

2n2
.

Proof of Lemma 6.9. Correctness of ρ shall be implied by a bound, for any fixed f , on the probability
that under a random relation R ← R there exists fX ∈ N f

d,γ and x ∈ X for which αfX(x) is significantly
large.

A straight-forward attempt would be to apply a union bound over all possible functions in the neighbor-
hood N f

d,γ . Such a bound, however, is doomed to be too wasteful and requires an inverse doubly-exponential
bound on the probability of the “bad” event for any fixed fX to eliminate the doubly-exponential blow-up
incurred by the neighborhood’s size. This can be satisfied only by a relation class where relations have expo-
nential size description, which is unreasonable to assume in any real-world utilization. Instead, we observe
that the quantities αfX(x) in the neighborhood exhibit strong dependencies by the fact that C is of bounded
locality. Roughly speaking, we show that it is possibly to write any αfX(x), which potentially depends on the
d� t swaps in X, as an average of corresponding “local” quantities {αf

Q}, each depending on the projection
of X on merely t points in f ! 9 Consequently, the existence of a large αfX in the neighborhood must imply
the existence of such a small projection that gives a large amplification and, hence, a union bound over
all such projections, whose number is exponentially smaller than that of different functions fX ∈ N f

d,γ , is
sufficient.

We achieve such a structure via “pixelating” the space of C-inputs that incur a call to fX at x, i.e. all
z ∈ HitsfXx , by the set of additional t − |x| queries made by the execution CfX(z). That is, each “pixel”
corresponds to some Q ⊂ {0, 1}ℓ of size t − |x| and contains HitsfXx,Q = HitsfXx ∩ HitsfXQ . Based on the fact
that such a splitting of the space induces a disjoint union of HitsfXx (recall we assume w.l.o.g. that C always
makes exactly t queries), we are able to show that αfX(x) is essentially the average of all its restrictions over

9In contrary to our high-level notation, we will actually have many (yet bounded) local quantities corresponding to any such
subset of t points.
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these “pixels” (under some fixed distribution). Further, fixing Q, let us define X[Q] to be the projection of
X on Q, i.e. the set of alterations (not necessarily swaps) induced by X on the t−|x| inputs in Q. We notice
that for any z ∈ HitsfXx,Q, the execution CfX(z) is identical to the execution CfX[Q](z), as it is oblivious in the
value of f on any x′ /∈ Q ∪ {x}. Therefore, any measure under fX over the “pixel” corresponding to Q may
be reduced to depend only on X[Q], which is chosen from the space of all t pairs (x, y) ∈ {0, 1}ℓ(λ)×{0, 1}λ.

To formalize the above outline, we extend our notation as follows. For any −→x ⊆ {0, 1}ℓ(λ), define

ω̃f
R,C(
−→x ) = Pr

z←CorrfR,C

[
∧

x∈−→x

Cf (z) ⇁ x] = |Hits−→x ∩ Corr|/p2m,

σf
R,C(
−→x ) = Pr

z←{0,1}m
[
∧

x∈−→x

Cf (z) ⇁ x] = |Hits−→x |/2m,

and
α̃f (−→x ) = ω̃f (−→x )/σf (−→x ).

We note that, to facilitate our analysis, we slightly diverge from the definition of ω given in (12), and define
ω̃ as if assuming in its calculation that the size of the correlation set takes its expected average, which is p2m.
To justify this, we need first to bound the probability that the size of the correlation set largely deviates,
which will assure us that α̃ is expected to be close enough to α.

Claim 7. Let m,n ∈ N and R ⊆ P({0, 1}m×{0, 1}n) be a class of pairwise p-universal relations. Then, for
any (possibly oracle-aided) circuit C : {0, 1}m → {0, 1}n and any α > 0, it holds that

Pr
R←R

[|CorrR,C |< p2m−1] < 4/p2m.

Proof. For any z ∈ {0, 1}m, we have

ER[|Corr|] =
∑

z∈{0,1}m
ER[1(z ∈ Corr)] = p2m

and, from pairwise-independence of {1(z ∈ Corr)}z,

VarR(|Corr|) =
∑

z∈{0,1}m
VarR(1(z ∈ Corr)) = (p− p2)2m < p2m.

Thus, the claim follows immediately from Chebyshev’s inequality (Proposition 2.3).

While the above bound is sufficient to imply that α̃f < 2αf , it does not say anything about the value
of α̃ compared to α under functions in the neighborhood f ′ ∈ N f

d,γ . We extrapolate a similar relation over
the neighborhood by relying on the bound under f using the conditional bound which we will later show is
useful when applied inductively.

Claim 8. Let m,n ∈ N and T > 0. For any λ ∈ N, any relation R ⊆ {0, 1}m × {0, 1}n, any f -aided circuit
C : {0, 1}m → {0, 1}n that makes at most t queries on any input, and any oracle functions f and f ′ such
that ∆λ,C(f, f

′) = 1, if maxx∈{0,1}ℓ(λ) α
f
R,C(x) ≤ T , then it holds that

|Corrf
′

R,C |≥ (1− 2tTγ(λ)) · |CorrfR,C |.

Proof. Let X = (X∗, X ′) ∈ X̃f
γ(C) be the swap that takes f to f ′, i.e. f ′ = fX∗↔X′ (its existence is implied

by the distance 1). Letting HitsX =
⋃

x∈X∗∪X′ Hitsx, we have that

|Corrf | = |Corrf \ Hitsf
X
|+|Corrf ∩ Hitsf

X
|= |Corrf

′
\ Hitsf

X
|+|Corrf ∩ Hitsf

X
|

≤ |Corrf
′
|+

∑
x∈X∗∪X′

|Corrf ∩ Hitsfx|= |Corr
f ′
|+|Corrf |·

∑
x∈X∗∪X′

ωf (x)

≤ |Corrf
′
|+|Corrf |·T ·

∑
x∈X∗∪X′

σf (x) = |Corrf
′
|+|Corrf |·T ·

∑
x∈X∗∪X′

Pr
z←{0,1}m

[Cf (z) ⇁ x]
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(note that Corrf \ Hitsf
X
= Corrf

′
\ Hitsf

X
since f, f ′ are identical at all points except for X). We borrow (9)

from the proof of Lemma 5.20 to conclude

|Corrf |≤ |Corrf
′
|+|Corrf |·T · t · Pr

z←{0,1}m
[∃x ∈ X∗ ∪X ′ : Cf (z) ⇁ x] ≤ |Corrf

′
|+|Corrf |·2tTγ.

Given the statements proven so far, we are prepared now to show a connection between the rejection
probability, which is determined by the maximal α-value in the neighborhood, and the probability of having
a large α̃-value in the neighborhood, thus transforming our focus into bounding the α̃’s.

Claim 9. Let m,n ∈ N and p > 0 and let R ⊆ P({0, 1}m × {0, 1}n) be a class of pairwise p-universal
relations. Then, for any oracle function f and any f -aided circuit C : {0, 1}m → {0, 1}n that makes at most
t queries, it holds that

ER[ρ
f (C)] ≤ 1/p2m + 1/4n2 + t

√
d ln(4n2) · max

d′,λ∈λ(C)
Pr
R
[ max

x∈Xλ

f ′:∆(f,f ′)=d′

α̃f ′
(x) > 1/ϵ(λ)4n2].

Proof. Let B denote the event where |Corrf |< p2m−1 and recall that PrR[B] < 4/p2m by Claim 7. Further,
for any d′, λ ∈ N let us denote by Bλ,d′ the event that there exist x ∈ Xλ and f ′ with ∆(f, f ′) = d′ such
that e−d

′/
√
d · (ϵ · αf ′

(x)) > 1/4n2. Observe that we need to concern ourselves only with d′ ≤ ln(4n2)
√
d

since otherwise it holds that e−d
′/
√
d < 1/4n2. We can then simplify by law of total expectation and union

bound as follows

ER[ρ
f (C)] = ER[ max

λ∈λ(C),x∈Xλ

f ′∈N f
d,γ(λ,C)

[e−∆(f,f ′)/
√
d · (ϵ · αf ′

(x))]]

≤ Pr
R
[B] + 1/4n2 + Pr

R
[B ∧ ∃λ ∈ λ(C), d′ ≤ ln(4n2)

√
d : Bλ,d′ ]

≤ 1/p2m + 1/4n2 +
∑

λ∈λ(C)

0≤d′≤ln(4n2)
√
d

Pr
R
[B ∧Bλ,d′

∧
d′′<d′

Bλ,d′′ ] (15)

Looking more closely at the conjunction of events above, we notice that it is possibly satisfied only
if: (i) |Corrf |> p2m−1, and (ii) for any d′′ < d′ and any function f ′ of distance d′′ from f , it holds that
maxx α

f ′
(x) ≤ 1/ϵ4n2. Hence, by inductively applying Claim 8, starting with f and transitioning, swap by

swap, to f ′ of distance d′, we may infer that for any such f ′ with ∆(f, f ′) = d′, it holds that

|Corrf
′
|≥ (1− 2tγ/ϵ4n2)d

′
|Corrf |≥ (1− 2tγ/ϵ4n2)d

′
p2m−1 = e−2tγd

′/ϵ4n2

p2m−1

and, hence, in such case
αf ′

(x) < 2e2γd
′/ϵ4n2

· α̃f ′
(x) < 2etγd

′/ϵ · α̃f ′
(x)

for all x.
Consequently, for any λ and d′,

Pr
R
[B ∧Bλ,d′

∧
d′′<d′

Bλ,d′′ ] ≤ Pr
R
[ max
x,f ′:∆(f,f ′)=d′

e−d
′/
√
d · (ϵ · 2etγd

′/ϵα̃f ′
(x)) > 1/4n2]

≤ Pr[ max
x,f ′:∆(f,f ′)=d′

α̃f ′
(x) > ed

′(1/
√
d−tγ/ϵ)/ϵ4n2]

≤ Pr[ max
x,f ′:∆(f,f ′)=d′

α̃f ′
(x) > 1/ϵ4n2],

and, therefore, the desired inequality follows by plugging the above in (15).
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We have reduced our task to bounding large deviations in the values of α̃ in the neighborhood. We now
proceed by describing α̃f ′

(x) as the average of similar “local” measures, in the sense that each depends on
the choice of at most t− |x| swaps out of those applied to obtain f ′.
Claim 10. Let m,n ∈ N. For any relation R ⊆ {0, 1}m×{0, 1}n, any f -aided circuit C : {0, 1}m → {0, 1}n
that makes at most t queries on any input, any oracle function f , any X = ((X∗1 , X

′
1), . . . , (X

∗
d′ , X ′d′)) and

x ∈ Xλ, there exist {νQ}Q⊂{0,1}ℓ(λ)\{x},
|Q|=t−|x|

such that νQ > 0 for all Q and
∑

Q νQ = 1 and, for any R ∈ R, it

holds that
α̃fX(x) =

∑
Q⊂{0,1}λ\{x},
|Q|=t−|x|

νQ · α̃fX[Q](x,Q),

where X[Q] is projection of X onto Q, i.e. the series of alterations (not necessarily swaps) that partially
applies X, altering only inputs in Q.
Proof. Since Hitsx =

⋃̇
QHitsx,Q, it holds for φ ∈ {σ, ω̃} that

φfX(x) =
∑

Q⊂{0,1}ℓ(λ)\{x}
|Q|=t−|x|

φfX(x, Q).

Next, since C is t-bounded, then for any x, Q and z ∈ HitsfXx,Q, CfX(z) makes no queries to fX at points
other than x and those in Q. Thus, we have that CfX(z) = CfX[Q](z) and, therefore, HitsfXx,Q = Hits

fX[Q]

x,Q and
φfX(x, Q) = φfX[Q](x, Q). It follows, then, that

φfX(x) =
∑

Q⊂{0,1}ℓ(λ)\{x}
|Q|=t−|x|

φfX[Q](x, Q). (16)

The claim follows immediately from (16) by setting

νQ = σfX(x, Q)/σfX(x).

The above representation of α̃ implies that, if α̃f ′
(x) is too large for some f ′ = fX, then it must be

the result of a large local value of the form α̃fX[Q](x, Q). Such a variable value depends on the choice of
Q ⊂ {0, 1}ℓ(λ) of size t−|x| and the alterationsX[Q] (possibly involving only a subset of Q – those that appear
inX). Thus, we are maximizing over all such values corresponding to any choice of an input x, a (t−|x|)-tuple
−→x = (x1, . . . , xt−|x|) ∈ {0, 1}(t−|x|)×λ, a subset S ⊆ [t−|x|] and |S| outputs −→yS = {yi}i∈S ∈ {0, 1}|S|×λ, that
correspond to the respective images that {xi}i∈S are mapped to in fX[Q]. This allow to apply the following
union bound

Pr
R
[ max

x∈Xλ

f ′:∆(f,f ′)=d′

α̃f ′
(x) > 1/ϵ4n2] ≤ Pr

R
[ max

x∈Xλ

fX:∆(f,fX)=d′

Q⊂{0,1}ℓ(λ):|Q|=t−|x|

α̃fX[Q](x, Q) > 1/ϵ4n2]

≤ Pr
R
[ max
x∈Xλ

S,−→x ,−→yS

α̃f−→xS→−→yS (x, x1, . . . , xt−|x|) > 1/ϵ4n2]

≤ 2t(2λ+1) · max
x,S
−→x ,−→yS

Pr
R
[α̃f−→xS→−→yS (x, x1, . . . , xt−|x|) > 1/ϵ4n2]

≤ 2t(2λ+1) · max
f,x,x1,...,xt−|x|

Pr
R
[α̃f (x, x1, . . . , xt−|x|) > 1/ϵ4n2]. (17)

To finish, we use the k-wise universality of our relation class to bound the probability that any individual
“local” α̃-value is too large.
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Claim 11. Let m,n ∈ N and let R ⊆ P({0, 1}m × {0, 1}n) be an almost k-wise (·, p)-universal class of
relations. For any circuit C : {0, 1}m → {0, 1}n, any oracle function f , any λ, t ∈ N and −→x = (x1, . . . , xt) ∈
{0, 1}t×λ, it holds for any T > 0 that

Pr
R←Rn

[α̃f (−→x ) > T ] < (T/e)−k.

Proof. We start by rewriting

Pr
R
[α̃f (−→x ) > T ] = Pr

R
[ω̃f (−→x ) > T · σf (−→x )] = Pr

R
[|Hitsf−→x ∩ Corrf |> T · p|Hitsf−→x |].

Now, for any z ∈ Hitsf−→x , we define the binary random variable 1Corr(z) that takes 1 if and only if z ∈ Corrf ,
i.e. (z, Cf (z)) ∈ R. Letting N = |Hitsf−→x |, it holds by the definition of k-wise universality (Definition 4.2)
and Theorem 2.4 that 10

Pr
R
[α̃f (−→x ) > T ] = Pr

R
[
∑

z∈Hits−→x

1Corr(z) > pT ·N ] ≤
pk
(
N
k

)(
pTN
k

) ≤ ( peN/k

pTN/k

)k

= (e/T )k.

The proof is then complete by applying Claim 11 to bound the expression in (17) then plugging it in
Claim 9; Based on the assumptions stated in the lemma and in particular assuming, w.l.o.g., that log n <
λ/24 < − log ϵ/6 for any λ ∈ λ(Cn) (see Remark 5.4), we obtain the following for any n ∈ N,

ER[ρ
f (C)] ≤ 1/p(n)2m(n) + 1/4n2 + t(n) ln(4n2) · max

λ∈λ(Cn)

√
d(λ)2t(n)(2λ+1) · (ϵ(λ)4en2)k(n)

≤ 1/2n2 + max
λ∈λ(Cn)

2log logn+log(ϵ(λ)/γ(λ))+3λ·t(n)+k(n)·(log ϵ(λ)+2 logn+O(1)

≤ 1/2n2 + max
λ∈λ(Cn)

2log(ϵ(λ)/γ(λ))+3λ·t(n)+(k(n)/2)·log ϵ(λ)

≤ 1/2n2 + max
λ∈λ(Cn)

2−λ/10 ≤ 1/n2.

7 Putting Everything Together: Proof of Main Theorems
Finally, we recall our separation results stated in Theorems 4.3 and 4.4, then show how to utilize our
correlation finder construction from Section 6 with carefully chosen parameters to obtain them via the
differential indistinguishability framework from Section 5.

We begin with the separation of CIH from CRH (Theorem 4.4) since it requires little more attention.

Theorem 4.4 (Black-box Separation of CIH from CRH). Let m := m(n) and p : N → [0, 1] be such that
p(n) ≥ 4n22−m(n) and let k, t : N → N be such that k(n) > 25 · t(n) for all n ∈ N. Then, t-bounded CIH
functions, with input length m, for any class of k-wise p-universal relations are 2λ/25-fully black-box separated
from CRH mapping ℓ(λ) = λ+O(1) bits to λ bits.

Proof. By Lemma 5.2, the desired separation can be derived by a correlation finder that satisfies both the
correctness and security conditions in the lemma w.r.t. our ideal implementation of CRH as a uniformly
random regular ℓ-bit-to-λ-bit hash function f ← F . We choose our correlation finder to be the picky
correlation finder from Construction 6.1 with the rejection policy from Figure 2, instantiated with parameters
ϵ = 2−λ/4 and γ = 2−5λ/12. Corollary 6.6 immediately implies correctness. For security, we need to bound the
advantage in finding collisions of any (q, q, q)-bounded adversary A that makes no O-queries with n < 2λ/24.

10As noted previously, assuming almost universality, where the probability of a k′-conjunction is merely bounded by pk, is
also sufficient.

46



By the smoothening lemma (Lemma 5.9, with γ = 2−5λ/12 and β = λ/γ), it would be sufficient to bound
the advantage of any (q + (λ/γ)q2, q, q)-bounded (τ = 1 − 22−λ/4, γ = 2−5λ/12)-smooth adversary B. For
that, we use Lemma 5.15 and the adaptive differential indistinguishability of our construction for siblings,
that is implied by Corollary 6.6, to derive

Ef,O[Advf
CRH(λ, f,AO)] ≤ Ef,O[Advf

CRH(λ, f,BO)]
= O(((λ/γ)q2)22−λ + q · ((1− τ) + q2 · (γ/ϵ) + (λ/γ2)q3 · 2−λ)))
= O(q · ((1− τ) + q2 · (γ/ϵ) + (λ/γ2)q3 · 2−λ)))
= O(λq3 · 2−λ/6).

This allows to plug our correlation finder into Lemma 5.2, with c = 3 and κ = 2−λ/6λ3, to get 2λ/24/λ3 >
2λ/25-separation.

We similarly derive the separation from OWP, yet with a different choice of parameters, and obtain a
slightly stronger separation.

Theorem 4.3 (Black-box Separation of CIH from OWP). Let m := m(n) and p : N → [0, 1] be such that
p(n) ≥ 4n22−m(n) and let k, t : N → N be such that k(n) > 20 · t(n) for all n ∈ N. Then, t-bounded CIH
functions, with input length m, for any class of k-wise p-universal relations are 2λ/10-fully black-box separated
from OWP.

Proof. The theorem is derived along similar lines to the proof of Theorem 4.4, using the same construction
and its (non-adaptive) differential indistinguishability implied by Corollary 6.6. In this case, however, we
choose γ = 2−2λ/3 and ϵ = 2−λ/3 for the construction and obtain c = 2 and κ = λ2−λ/3 in Lemma 5.2.
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