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Abstract

Convex Consensus (CC) allows a set of parties to agree on a value v inside the convex hull
of their inputs with respect to a predefined convexity notion, even in the presence of byzan-
tine parties. In this work, we focus on achieving CC in the best-of-both-worlds paradigm,
i.e., simultaneously tolerating at most ts corruptions if communication is synchronous, and
at most ta ≤ ts corruptions if it is asynchronous. Our protocol is randomized, which is
a requirement under asynchrony, and we prove that it achieves optimal resilience. In the
process, we introduce communication primitives tailored to the best-of-both-worlds model,
which we believe to be of independent interest. These are a deterministic primitive, which
allows honest parties to obtain intersecting views, and a randomized primitive, leading to
identical views (which is impossible to achieve deterministically).

Afterwards, we consider achieving consensus using deterministic protocols, for which the
agreement condition must be appropriately relaxed depending on the convexity space. For
the relevant case of graph convexity spaces, we find that a previous asynchronous approxi-
mate agreement protocol for chordal graphs is incorrect, and hereby give a new protocol for
the problem designed for the best-of-both-worlds model and achieving tight point-wise re-
silience bounds. Finally, we show that asynchronous graph approximate agreement remains
unsolvable by deterministic protocols even when corruptions are restricted to at most two
crashing nodes and the distance agreement threshold is linear in the size of the graph.

1 Introduction

Arranging a meeting place for a group n of people in a city is a common problem, as determining
a location that is convenient and accessible for everyone can often be challenging. Oftentimes,
such a location can be determined by its geographic coordinates. In other cases, it may be
more convenient to represent the map of the city as a graph, with streets modeled as edges,
and intersections as vertices. Participants are initially in different locations, i.e., in different
vertices, and they want to agree on a vertex for their meeting point via pair-wise communication
channels. Finding such a meeting point, while also taking into account that misunderstandings
may occur, or that some of the participants may choose to behave dishonestly and not follow
the protocol, describes the Convex Consensus problem (CC).

The CC problem serves as a unifying framework for various agreement problems that deal
with different input spaces. Such input spaces may be continuous, such as RD, or discrete, such
as graphs and even lattices. Essentially, CC assumes a publicly available input space V (this
could be, for instance, the set of geo-coordinates representing the locations) equipped with a
convexity notion C (roughly meant to formalize which potential meeting points are convenient
with respect to the participants’ inputs). For example, in the case of RD, the standard “straight-
line” convexity notion can be considered. In contrast, convexity notions for graphs may be
defined in various ways: for example, geodesic convexity, defined over shortest paths between
vertices, or monophonic convexity, defined over minimal/chordless paths. For a given convexity
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notion, CC is concerned with enabling parties to agree on some value lying in the convex hull of
their inputs. This should be achieved even if up to t of the parties involved are corrupted and
may exhibit malicious behavior.

Agreement problems in general have been the subject of a tremendous line of work in
Distributed Computing. CC has been introduced by Vaidya and Garg for RD in [29], where
the authors showed that achieving CC on real values in the so-called synchronous model, where
parties have synchronized clocks and messages get delivered within a known amount of time ∆,
can be achieved if and only if at most t < n/(D + 1) of the parties involved are corrupted. To
the best of our knowledge, CC has not been studied in the asynchronous model, which makes
no assumptions on the parties’ clocks or on message delays, except for all messages getting
delivered eventually. In part, this is a consequence of the seminal result of Fischer, Lynch and
Paterson [18], implying that the standard definition of CC, or agreement in general, cannot be
achieved by deterministic protocols in the asynchronous model. As a result, research has instead
focused on Approximate Agreement (AA), introduced in [15], a relaxation of CC requiring that
the parties agree up to some error. For the case of RD, [23, 29] have shown that AA can be
achieved in the asynchronous model if and only if the maximum number of corruptions satisfies
t < n/(D+2). Nowak and Rybicki [27] have generalized the definitions of CC and AA to general
convexity spaces: for an input convexity space with so-called Helly number ω (i.e., D + 1 for
RD), they have shown that the thresholds of t < n/ω for the synchronous and t < n/(ω+1) for
the asynchronous setting are required for CC to be solvable when the input space is a convex
geometry, which is a restricted class of convexity spaces. For instance, contrary to intuition,
the standard convexity notion on RD is not a convex geometry. Moreover, they matched the
bound for the synchronous setting with a protocol, this time for all convexity spaces. They also
considered asynchronous AA for graphs under monophonic convexity under the assumption of
at most t < n/(ω + 1) Byzantine parties.

In this work, we primarily investigate whether a randomized CC protocol for arbitrary
convexity spaces can be achieved in the so-called best-of-both-worlds model. In particular, when
running in a synchronous setting, it shall achieve the presumed optimal resilience threshold ts <
n/ω, while if the network is asynchronous, it should still offer resilience up to a lower threshold
of ta ≤ ts corruptions. This network-agnostic approach mitigates important shortcomings of
the two classical models: the synchronous model allows for higher resilience thresholds, but in
practice, the maximum delay ∆ will often be violated during times of increased network load or
outages, while the asynchronous model deals with such situations with ease, but at the expense
of lower resilience thresholds. Primitives with such network-agnostic resilience guarantees have
received increased attention in recent years [4, 7, 10,13,19,20,25].

1.1 Our Contributions

We answer our main question in the affirmative, by giving a protocol achieving CC that is
resilient against ts corruptions in the synchronous case and ta corruptions in the asynchronous
one, as long as n > max(ω · ts, ω · ta + ts, 2 · ts + ta), where ω ≥ 2 is the Helly number of
the convexity space. The required conditions allow for a trade-off between the two expected
optimal “point-wise” resilience bounds: setting ta = ts gives an asynchronous protocol resilient
to ta < n/(ω + 1) corruptions, while setting ta = 0 yields a protocol resilient to ts < n/ω
corruptions if synchronicity holds and no corruptions if it fails, whilst maintaining correctness
even in the latter case. It is worth mentioning that the case ω = 1 corresponds to convexity
spaces where there exists an element v ∈ V contained in all non-empty convex sets. In this
case, the trivial protocol where parties unconditionally output v achieves CC.

Our protocol is inherently randomized (which is needed, because of [18]), and it makes use
of cryptographic setup — namely digital signatures. Assuming setup is necessary to tolerate
ts < n/ω corruptions in the synchronous model, in particular for ω = 2. This can be easily
inferred from various impossibility results (e.g., [29]). When ω increases, however, the quantity
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Figure 1: Feasibility of achieving CC resilient against ts corruptions if the network is
synchronous and ta ≤ ts corruptions if it is asynchronous. For a fixed value of n = 100, the
two plots depict in green the set of pairs (ts, ta) for which a protocol exists as percentages of
n:the condition n > max(ω · ts, ω · ta + ts, 2 · ts + ta). The two black lines correspond to the
point-wise optimal resilience thresholds n > ω · ts and n > (ω + 1) · ta required in the purely

synchronous and asynchronous models respectively. The condition
n > max(ω · ts, ω · ta + ts, 2 · ts + ta) can be understood as n > 2 · ts + ta for ω = 2 and

n > max(ω · ts, ω · ta + ts) for ω ≥ 3. The two cases are depicted above for ω = 2 and ω = 3.

ts decreases, which enables us to discard the digital signatures. Hence, in the paper, we will
briefly explain how this assumption can be removed when ω > 2.

Moreover, we generalize the aforementioned impossibility results from convex geometries to
all convexity spaces, so that t < n/ω is required for the synchronous case and t < n/(ω+1) for
the asynchronous one. We note that [27] also gives an impossibility result for general convexity
spaces, this time in terms of the distinct Carathéodory number (which in general has no relation
to the Helly number that we use to formulate our results), seemingly contradicting our findings.
However, upon closer inspection we exhibit what we believe to be an error in the proof, implying
that the correct bound is in terms of ω, and not the Carathéodory number. To prove these
resilience lower bounds, we introduce what we call adversarial families, which are a unified
framework for deriving impossibility proofs for convex agreement problems. For the best-of-
both-worlds model, we prove that the conditions required by our CC protocol are necessary:
n > max(ω · ts, 2 · ts + ta, ω · ta + ts) must hold. Together with our protocol, our impossibility
results complete the landscape of tractability for the purely synchronous, purely asynchronous,
and the best-of-both-worlds model. See Figure 1 for the conditions illustrated.

Our results lead to multiple secondary contributions, which may be of independent interest.
Namely, we design the best-of-both-worlds variants of two communication primitives. The

first one is an Agreement on a Core-Set primitive [5,6], which allows parties to distribute their
input values and obtain identical views. This result requires randomization. We also present
a weaker, but deterministic variant, namely a best-of-both-worlds implementation of Gather
[2, 12], which relaxes the guarantee of identical views to intersecting views. Both primitives
provide stronger guarantees than their standard definitions, i.e., if they run in a synchronous
network, the views contain all honest parties’ inputs.

Moreover, we identify a core issue in the asynchronous AA protocol for chordal graphs
with monophonic convexity of [27], and provide an alternative algorithm using our Gather
variant as an underlying building block, that additionally achieves best-of-both-worlds resilience
guarantees, requiring that n > ω · ts + ta where ω denotes the size of the largest clique in the
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input graph (which equals the Helly number in this case). For this case, it is unknown whether
the condition n > ω · ts + ta is tight. Note however that achieving a better trade-off when the
agreement conditions are relaxed is still an outstanding problem even for RD, left open in [20].
Notably, the fact that our randomized CC protocol achieves a better resilience trade-off implies
that a lower bound of n > ω · ts + ta is unlikely to have scenarios-based proofs, as such proofs
often apply to the randomized case with minor modifications.

Finally, we give a simple family of graphs {Gd}d≥1 for which no deterministic asynchronous
protocol achieves geodesic convex hull validity and agreement within graph distance d for graph
Gd, even when corruptions are restricted to at most two parties crashing. To the best of our
knowledge, thus far graph approximate agreement has only been considered when agreement
is to be achieved within graph distance 1. This contributes to a long line of research aiming
to understand the classes of graphs that admit wait-free AA algorithms under a plethora of
agreement and validity conditions, e.g. [3, 22].

1.2 Related Work

Synchronous CC was introduced by Vaidya and Garg in [29] (see also the journal version [24]),
on multidimensional real values. The most similar work to ours is that of Nowak and Rybicky
[27], which generalize the problem of synchronous CC to abstract convexity spaces, and also its
relaxed version AA for the asynchronous model. Our work addresses an open question raised in
[27] on whether there exists an input convexity space for which the optimal resilience threshold
of AA depends on the Carathéodory number and not on the Helly number, by showing that, in
fact, the asynchronous resilience threshold is actually independent of the Carathéodory number;
we provide a lower bound based on the Helly number instead. In addition, we identify a core
issue in the deterministic algorithm of [27] achieving asynchronous AA on chordal graphs, and
we show an alternative correct approach.

Our work additionally stands out from previous research on CC problems since we strive
to achieve protocols with best-of-both-worlds guarantees. This research direction has attracted
significant attention in recent years and has led to notable advancements in various areas.
For instance, there have been protocols designed for AA on real numbers [19] and its multi-
dimensional variant [20], for Byzantine Agreement [7, 13], State-Machine Replication [8] and
also Multi-Party Computation [4, 10, 13]. In our work, we build upon and extend techniques
from prior works such as [19,20], but also from prior works focused solely on asynchronous AA
[1,23,29]. Most notably, we present the first protocol in the best-of-both-worlds model achieving
an optimal resilience trade-off with a non-linear boundary (see Figure 1b).

2 Preliminaries

In the following, given a non-negative integer k, write [k] for the set {1, 2, . . . , k}.

2.1 Model

Consider n parties denoted by P1, P2, . . . , Pn running a protocol in a fully-connected network,
where links model authenticated channels. A synchronous network ensures that the parties’
clocks are perfectly synchronized and that each message is delivered within a publicly known
amount of time ∆. If any of these two guarantees fails, then the network is asynchronous. We
assume that the parties are not aware a priori of the type of network the protocol is running
in. In addition, we assume an adaptive adversary that may corrupt at most ts parties if the
network is synchronous, and at most ta parties if the network is asynchronous. Corrupted
parties permanently become Byzantine, meaning that they deviate arbitrarily, even maliciously,
from the protocol. Moreover, the adversary may control the message delivery schedule, subject
to the conditions of the network type. We will make use of a public key infrastructure (PKI),

4



(a) Graph G1. (b) Graph G2. (c) Graph G3.

Figure 2: Illustration of geodesic (G) and monophonic (M) convex hulls. In G1, ⟨{1, 3}⟩ =
{1, 2, 3} for G and {1, . . . , 7} for M. In all three graphs, ⟨{1, 4}⟩ consists of all vertices for both
G and M, despite not all nodes always lying on a shortest/induced path between 1 and 4.

and a secure signature scheme. For simplicity, we assume that the signatures are perfectly
unforgeable.

2.2 Abstract Convexity Spaces

Given a nonempty set V, also called the universe, an abstract convexity space on V is a family
C of subsets of V such that ∅, V ∈ C and C is closed under finite intersections; i.e., whenever
A,B ∈ C, it also holds that A∩B ∈ C. The sets in C are regarded as convex sets. For instance,
when V = RD, one possible C consists of all sets satisfying the condition that the straight-line
segment joining any two points in the set is also included in the set. Note that this yields the
standard convexity notion on RD. However, this is not the only way to define a convexity space
on RD that is consistent with the (arguably minimal) requirements of the definition; e.g., take
C to be the family of “box” subsets of RD; i.e., subsets of the form I1× . . .× ID, where (Ii)i∈[D]

are intervals on the real line. A central notion in convexity theory is that of convex hulls. In
particular, the convex hull of any (not necessarily convex) set S ⊆ V is the intersection ⟨S⟩ of
all convex sets C ∈ C containing S. Note that, as convexity spaces are required to be closed
under intersection, the convex hull is, indeed, convex. In RD under straight-line convexity,
hulls correspond to the usual notion of Euclidean convex hulls, while under “box”-convexity
they correspond to so-called “bounding-boxes”; i.e., take the box spanning the region between
the minimum and maximum coordinate in the set along each axis. Note that the convex hull
operator is idempotent, also called a closure operator, i.e., ⟨⟨S⟩⟩ = ⟨S⟩. Moreover, note that a
set is convex if and only if S = ⟨S⟩.

One relevant notion for our work will be that of extreme points. Namely, given a non-
necessarily convex set S ⊆ V, the set ex (S) = {s ∈ S | ⟨S \ s⟩ ⊊ ⟨S⟩} is the set of points in
S any of whose removal would “shrink” the convex hull. Set S is called free if ⟨S⟩ = ex (S).
Note that free sets are necessarily convex, as ⟨S⟩ = ex (S) ⊆ S ⊆ ⟨S⟩, from which ⟨S⟩ = S.
Equivalently, S is free if and only if S is convex and S = ex (S).

2.2.1 Graphs Convexity Spaces

Unless stated otherwise, all graphs considered in this paper are finite, undirected, connected
and simple. Given a graph G = (V,E), one can define various convexity spaces on V. Similarly
to RD, one would want the convex hull of a set of nodes to represent a set of “good” gathering
points. Two prominent examples that have been extensively considered in the literature are
the so-called geodesic and monophonic convexities. We begin with geodesic convexity: a subset
C ⊆ V is geodesically convex if, for any two vertices u, v ∈ C, and any shortest path P from
u to v in G, all vertices in P are in C. This can be thought of as a discrete version of the
standard straight-line convexity notion for RD. Note, however, that unlike in RD, the shortest
path might not be unique. Monophonic convexity on G is defined analogously, relaxing the
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paths considered from shortest paths to induced paths (also called chordless paths); i.e., paths
with no short-circuit edges. In both cases, convex hulls are defined as before, as the intersection
of all convex sets containing the set.

A tempting alternative definition of the convex hull, motivated by the slogan “a good gath-
ering point” would just take all vertices that lie on some shortest/induced path between two
vertices in the set. This is, however, a distinct notion. For geodesic convexity, consider for
instance the graph G1 in Figure 2a, where all nodes except 7 lie on a shortest path between
1 and 4. However, the set of all nodes excluding 7 is not convex, as 7 is on a shortest path
between 3 and 6, so the convex hull actually consists of all nodes. Hence, arranging a meeting
point that lies on some shortest path between two parties can not be modelled through con-
vexity alone. Figure 2b gives an example for monophonic convexity where 5 does not lie on
any induced path between 1 and 4, but it is in the hull ⟨{1, 4}⟩. Write F (S) for the set of all
nodes lying on some shortest/induced path between nodes in S, then, the convex hull ⟨S⟩ is
the least fixed point of F containing S. Operationally, this means that ⟨S⟩ can be computed by
starting with S and repeatedly performing S := F (S) until equality is reached; i.e., take the
nodes lying on some shortest/induced path and add them to the set, repeating until the set no
longer changes. E.g., in Figure 2c, for both convexity notions the set S = {1, 4} would evolve
as follows: {1, 4} → {1, . . . , 4} → {1, . . . , 6} → {1, . . . , 7} = ⟨{1, 4}⟩.

An important observation, to become instrumental later on, is that free sets correspond to
cliques for our two graph convexity notions. The proof is enclosed in Appendix A.

Lemma 1. Let G = (V,E) be a graph and S ⊆ V be a subset of its vertices. Then, under both
geodesic or monophonic convexity S is a free set if and only if S induces a clique in G.

2.2.2 The Helly Number ω of a Convexity Space

The following seminal result in convexity theory concerns RD with straight-line convexity.

Theorem 2 (Helly’s Theorem). Consider a finite collection of at least D + 1 convex sets in RD

with straight-line convexity. If every D + 1 of them intersect, then all of them intersect.

Helly’s Theorem implies that, for instance, any collection of at least four disks in R2 with
triple-wise non-empty intersections has a non-empty intersection. Notice that the same would
not hold if D+1 was replaced by D; e.g., one can draw three disks in R2 that pair-wise intersect
but have no point common to all three. One might wonder what about box convexity? In that
case, D + 1 can be replaced by 2. For instance, this means that any collection of at least
three rectangles in R2 where any two intersect has a non-empty intersection, in contrast to
disks. This number, which is D + 1 for straight-line convexity and 2 for box convexity is what
is known as the Helly number ω of the convexity space. We make this more general in the
following: consider a convexity space C. An m-Helly family for C is a collection of m convex
sets C1, C2, . . . , Cm ∈ C such that their intersection is the empty set, but the intersection of
any m − 1 of them is non-empty. Formally, ∩m

j=1Cj = ∅, but ∩j ̸=iCj ̸= ∅ for any i ∈ [m].
The Helly number of C is the maximum number ω such that there exists an ω-Helly family for
C. Note that for some spaces there will exist arbitrarily-large Helly families, in which case the
Helly number is undefined.1

2.3 Chordal Graphs and Convex Geometries

A graph G = (V,E) is chordal if it has no induced cycle of length greater than three. A vertex
v ∈ V is simplicial if its neighbors in G form a clique. Chordal graphs admit many equivalent

1We do not directly concern ourselves with this case in the statement of our main results, but note that our
reasoning often still applies when ω is undefined, for instance when deriving impossibility results. For the rest of
this work we assume that the spaces we consider have a well-defined Helly number ω.
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definitions, most notably they are the graphs that have a simplicial vertex whose removal
yields another chordal graph. They are also the graphs that admit a perfect elimination order,
which is a total order ≻ on V such that any v ∈ V is simplicial in the subgraph induced by
{u ∈ V | u ⪰ v}. One should read u ≻ v as “u is eliminated after v.” A graph G is distance-
hereditary if distances in any connected induced subgraph are the same as in the original graph.
Equivalently, G is distance-hereditary if every induced path is a shortest path. A graph is
Ptolemaic if it is chordal and distance-hereditary.

An abstract convexity space C on universe V is a convex geometry if it additionally satisfies
that, for all convex sets C ⊊ V , there exists v ∈ V \C such that C∪{v} is convex. Note that this
is a non-trivial requirement; e.g., RD with neither straight-line convexity nor box convexity is a
convex geometry. However, two notable examples arise when we consider graphs endowed with
geodesic or monophonic path convexity. Namely, as shown in [17], the monophonic convexity
of a graph G is a convex geometry if and only if G is chordal and the geodesic convexity
of G is a convex geometry if and only if G is Ptolemaic. Hence, our work on graph convex
geometries will be concerned with chordal graphs. Notice that all graphs for which geodesic
convexity is a convex geometry are Ptolemaic, and hence distance-hereditary, meaning that the
two convexity notions coincide on such graphs. As a result, our results for chordal graphs will
target monophonic convexity. Unless stated otherwise, for chordal graphs by “convex” we mean
“monophonically convex.”

2.4 Convex Agreement Problems

A convex agreement problem is defined for a convexity space C over a universe V ; e.g., RD with
straight-line convexity, or a graph G = (V,E) with either geodesic or monophonic convexity.
Each party P starts with an input vPin ∈ V and should produce an output vPout. Ideally, all outputs
should match, and this common output should be in the convex hull of the inputs. However,
one has to consider the presence of the Byzantine parties. Hence, an agreement problem is
defined by a collection of less strict properties that protocols solving it should satisfy: one
validity, one agreement, and one termination condition. Write Vin and Vout for the set of inputs
and respectively outputs of the honest parties. A convex agreement problem has the following
validity condition:

Convex-Hull Validity: Vout ⊆ ⟨Vin⟩ (honest outputs are in the convex hull of honest inputs).

For the agreement condition, there are multiple natural options to choose from, such as:

Exact Agreement (Consensus): |Vout| ≤ 1 (no two honest parties obtain different outputs).
k-Set Agreement: |Vout| ≤ k (no k + 1 honest parties obtain pairwise distinct outputs).

Note that 1-Set Agreement is Consensus. When the convexity space has more structure, one
can define more specialized agreement conditions depending on the application. Most naturally,
if dist is a metric on universe V, then one can define:

Distance-d Agreement: maxp,q∈Vout dist(p, q) ≤ d (no two honest parties obtain outputs more
than distance d away from each other).

Two immediate examples are RD with straight-line convexity, where the Euclidean distance
is the natural choice for dist, and a graph G = (V,E) with either geodesic or monophonic
path convexity, where graph distance is the most natural choice. Another possible condition
introduced in [27] to capture a certain type of semilattice agreement is the following:

Free-Set Agreement: Vout is a free set (i.e., ⟨Vout⟩ = ex (Vout)).

For graphs, by Lemma 1, this corresponds to Vout inducing a clique in G, so it is equivalent to
Distance-1 Agreement. For RD with straight-line convexity, the only free sets are the singletons,
so Free-Set Agreement coincides with Consensus, while Distance-1 Agreement is more lenient.
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In the original application to semilattice agreement [27], Free-Set Agreement translates to values
in Vout forming a chain, which none of the other notions can capture.

Finally, let us discuss the termination requirements of the protocol. There are two flavors,
one for deterministic protocols, and one for randomized protocols, listed below:

Termination: all honest parties obtain outputs.
Probabilistic Termination: the probability that some honest party has not obtained output after
T time units tends to 0 as T → ∞.

In this work, we are mainly concerned with two convex agreement problems: Convex Con-
sensus (CC) and Approximate Agreement (AA); defined for a convexity space C. A protocol
solving CC or AA has to satisfy Convex Hull Validity and Termination (Probabilistic Termi-
nation for randomized protocols). For CC, Exact Agreement has to be satisfied, while for AA
we require Distance-d Agreement for some parameter d. The convexity space at hand dictates
the distance notion; i.e., Euclidean distance for RD and graph distance for graphs. For graphs,
unless stated otherwise, we are interested in the case d = 1, coinciding with Free-Set Agreement.

We say that a protocol Π solving CC or AA is (ts, ta)-resilient if it satisfies the relevant
properties in the presence of at most ts corrupted parties in the synchronous setting and ta ≤ ts
corrupted parties in the asynchronous one.

3 Tight Resilience Bounds Using the Helly Number

In this section, we introduce the notion of adversarial families to prove impossibility results
for convex agreement problems. Our main result is that CC in the best-of-both-worlds model
requires each of the following conditions to hold: n > ω · ts, n > 2 · ts + ta, and n > ω · ta + ts.

We begin by showing that the conditions n > ω · t and n > (ω + 1) · t are necessary in the
synchronous and resp. asynchronous model, where ω is the Helly number of the convexity space.
Note that the purely synchronous threshold immediately implies that the condition n > ω · ts
is necessary in the best-of-both-worlds model. Afterward, we move towards showing that the
other conditions are required in the best-of-both-worlds model.

In the next section, we will show that these bounds are tight, by giving CC protocols assuming
n > max(ω · ts, 2 · ts + ta, ω · ta + ts). All our (possibility and impossibility) results are general,
in that they make no assumption on the convexity space other than its Helly number.

We end this section by showing how adversarial families can be used to streamline known
impossibility proofs for agreement problems other than consensus, such as AA in RD with
straight-line convexity. We note that a previously-known resilience bound [27, Theorem 11]
given in terms of the distinct Carathéodory number of the space is incompatible with our
results, as in general there is no relation between the Carathéodory number and the Helly
number. However, this bound appears to be incorrect (detailed discussion in Appendix B.1).

Consider a convexity space C with Helly number ω defined on a universe V. Consider a
family A = {A1, . . . , Am} consisting of m non-empty pairwise-disjoint convex sets Ai ∈ C and
write A = ∪A. Then, A is m-adversarial if Ai = ∩ℓ̸=i⟨A \Aℓ⟩ for all i ∈ [m].2 Note that the
pairwise-disjoint condition is equivalent to ∩m

ℓ=1⟨A \Aℓ⟩ = ∅.3 The following technical lemma,
and the two following it, will be the main tool used to get impossibility results. The techniques
used in its proof are similar in spirit to the proofs for RD in [24].

Lemma 3. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. Assume
n ≥ m and that, moreover, n ≤ m · t if the network is synchronous and n ≤ (m + 1) · t if the
network is asynchronous. Then, any (deterministic or randomized) n-party protocol satisfying

2This definition requires m > 1 to avoid taking the intersection of an empty collection of sets. However, for
m = 1 all our results will hold if we assume that A = {A} is 1-adversarial for any convex set A ̸= ∅. We will not
discuss this technicality further and henceforth assume that m ≥ 1 is well-defined.

3To see this, note that for i ̸= j we have Ai ∩Aj = (∩ℓ̸=i⟨A \Aℓ⟩) ∩ (∩ℓ ̸=j⟨A \Aℓ⟩) = ∩m
ℓ=1⟨A \Aℓ⟩.
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Convex-Hull Validity and (Probabilistic) Termination will have a terminating execution where
there are honest parties P1, . . . , Pm such that the output viout of party Pi satisfies viout ∈ Ai.

The following two technical lemmas gives similar guarantees, this time for the hybrid, best-
of-both-worlds model. The proof of the first is similar to that for R in [19], while that of the
second is an extension of the asynchronous part of Lemma 3.

Lemma 4. Assume a convexity space C admitting a 2-adversarial family A = {A1, A2}. Assume
2 ≤ n ≤ 2 · ts + ta. Let Π denote an arbitrary (deterministic or randomized) protocol achiev-
ing Convex-Hull Validity and (Probabilistic) Termination for at most ts corruptions when the
network is synchronous and at most ta corruptions when it is asynchronous. Then, Π has a
terminating execution where the outputs v1out and v2out of two honest parties satisfy v1out ∈ A1

and v2out ∈ A2.

Lemma 5. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. Assume
that m ≤ n ≤ m · ta + ts. Then, any (deterministic or randomized) n-party protocol satisfying
Convex-Hull Validity and (Probabilistic) Termination for at most ts corruptions when the net-
work is synchronous and at most ta corruptions when the network is asynchronous will have
a terminating execution where there are honest parties P1, . . . , Pm such that the output viout of
party Pi satisfies viout ∈ Ai.

We now show a relationship between adversarial families and Helly families.

Lemma 6. Consider a convexity space C, then an m-adversarial family exists if and only if an
m-Helly family exists. Hence, the size of the largest adversarial family for a convexity space
equals its Helly number ω.

Proof. First, consider an adversarial family A = {A1, . . . , Am} for C and as usual write A = ∪A.
The family of sets ⟨A \Ai⟩i∈[m] do not intersect, but any m− 1 of them do, since for any i we
assumed that Ai = ∩ℓ ̸=i⟨A \Aℓ⟩ is non-empty, so it is an m-Helly family. Conversely, consider
an m-Helly family; i.e., convex sets C1, . . . , Cm ∈ C that do not intersect, but any m−1 of them
do. Define the family of non-empty convex sets A = {A1, . . . , Am} where Ai = ∩ℓ̸=iCℓ. Notice
that for i ̸= j we have Ai ∩Aj = ∩ℓ∈[m]Cℓ = ∅, so the sets are pairwise disjoint. To show that
A is an m-adversarial family, it remains to show that for all i it holds that Ai = ∩ℓ ̸=i⟨A \Aℓ⟩.
To see this, note that A \ Aℓ = ∪{A1, . . . , Aℓ−1, Aℓ+1, . . . , Am} and that Aℓ′ ⊆ Cℓ for all
ℓ′ ̸= ℓ, so A \ Aℓ ⊆ Cℓ. Since Cℓ is convex, this means that ⟨A \Aℓ⟩ ⊆ ⟨Cℓ⟩ = Cℓ. As a
result, ∩ℓ̸=i⟨A \Aℓ⟩ ⊆ ∩ℓ ̸=iCℓ = Ai. To also show that Ai ⊆ ∩ℓ̸=i⟨A \Aℓ⟩ just notice that
Ai ⊆ A \Aℓ ⊆ ⟨A \Aℓ⟩ for all ℓ ̸= i.

Note that a more restrictive definition of adversarial families where all the sets are singletons
would not suffice to prove the previous, as in some spaces no singletons are convex.

To access the full power of Lemmas 3 and 5, which require n to be at least the size of the
adversarial family, we would like that adversarial families of a certain size imply the existence
of adversarial families of all smaller sizes. We show this in the following lemma.

Lemma 7. Given a convexity space, if there exists an m-Helly family, then there exist m′-Helly
families for any 1 ≤ m′ < m. The same holds if “Helly” is replaced by “adversarial.”

Proof. It suffices to consider m′ = m−1. If C1, . . . , Cm is an m-Helly family, then one can check
that C1, . . . , Cm−2, (Cm−1∩Cm) is an (m− 1)-Helly family. For the latter, apply Lemma 6.

We now leverage Lemmas 3 and 6 to get the following result, generalizing those in [27] by
removing the strong requirement of a convex geometry.
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Theorem 8. Consider a convexity space C with Helly number ω. Assume n ≤ ω·t if the network is
synchronous and n ≤ (ω+1) · t if the network is asynchronous. Then, there is no (deterministic
or randomized) n-party protocol satisfying Convex-hull Validity and (Probabilistic) Termination
such that the set of outputs of the honest parties is guaranteed to have size at most min(n, ω)−1.

Proof. Write m = min(n, ω). By Lemma 6, there is an ω-adversarial family for C. Since m ≤ ω,
using Lemma 7, let A = {A1, . . . , Am} be an m-adversarial family for C. Consider a protocol Π
satisfying convex-hull validity and termination. By Lemma 3, there is a terminating execution
of Π where the set of honest outputs contains {a1, . . . , am} where ai ∈ Ai. As sets in A are
pairwise disjoint, this set has cardinality m, implying the conclusion.

By similarly leveraging Lemmas 4 and 5, we similarly get the following impossibilities for
the best-of-both-worlds model.

Theorem 9. Consider a convexity space C with Helly number ω ≥ 2. Assume 2 ≤ n ≤ 2 · ts + ta
or 2 ≤ n ≤ ω · ta + ts. Then, there is no (deterministic or randomized) n-party protocol satisfy-
ing Convex-Hull Validity, (Probabilistic) Termination and Exact Agreement can simultaneously
tolerate at most ts corruptions when the network is synchronous and at most ta corruptions
when the network is asynchronous. For the case 2 ≤ n ≤ ω · ta+ ts, the same holds even for the
weaker condition of agreeing on at most min(n, ω)− 1 values.

We conclude by showing that adversarial families can also be used to recover known impos-
sibility results for RD with straight-line convexity. The same can also be done to recover the
requirement of n > 2 · ts + ta for R in the best-of-both-worlds model [19].

Theorem 10. Consider RD with straight-line convexity and let d > 0 be arbitrary. Assume
n ≤ (D+1) · t if the network is synchronous and n ≤ (D+2) · t if the network is asynchronous.
Then, there is no (deterministic or randomized) n-party protocol satisfying Convex-Hull Validity
and Termination such that no two honest outputs are more than Euclidean distance d apart.

4 Achieving Convex Consensus

We now describe a construction achieving CC in the best-of-both-worlds model that matches
our previous resilience lower bounds. Concretely, we focus on proving the following theorem.

Theorem 11. Assume that ta ≤ ts and n > max(ω · ts, 2 · ts + ta, ω · ta + ts). Then, there is a
protocol achieving (ts, ta)-resilient CC.

To set up the intuition for our construction, we recall the outline of the synchronous pro-
tocol on RD of [29]. The synchronous model offers powerful communication primitives (i.e.,
Synchronous Reliable Broadcast [16]), that enable the parties to reliably distribute their values
and obtain an identical view. This view consists of a set of value-sender pairs, out of which
n − ts correspond to honest parties. Then, honest parties may derive a safe area inside their
inputs’ convex hull by intersecting the convex hulls of all subsets of n − ts values received, as
defined below. For the convenience of avoiding working with multisets, our protocols will work
with sets of value-sender pairs. For this purpose, we extend the convex hull operator to such
sets straightforwardly: ignore party identities and take the convex hull of the values.

Definition 12 (Safe Area). Let M denote a set of value-sender pairs. For a given k, safek(M) :=⋂
M∈restrictk(M)⟨M⟩, where restrictk(M) := {M ⊆ M :

∣∣M ∣∣ = ∣∣M∣∣− k}.

Specifically, if parties received the (same) setM of n−ts+k value-sender pairs, they compute
their safe area as safek(M). We will later show (in a more general form) that, since n > ω · ts,
the safe area obtained is non-empty. Therefore, any value in the common safe area is a valid
choice. Hence, parties may output any such value chosen by some deterministic criterion.
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Identical Views in Asynchrony. Building towards our solution achieving best-of-both worlds
guarantees, we first identify the challenges posed by translating the outline above to the purely
asynchronous model (where ts = ta and n > (ω + 1) · ta). Assuming a primitive that enables
parties to obtain an identical vrew of n− ta value-sender pairs, CC can be achieved in a similar
manner. Out of the set M of n − ta pairs agreed upon, at most ta may be corrupted. Then,
honest parties derive a safe area inside their inputs’ convex hulls by computing safeta(M), and
may afterward take a deterministic decision to obtain the same output.

While achieving an identical view deterministically is impossible in this model [18], allowing
randomization leads to a simple solution. Namely, we employ a primitive introduced in [5]
achieving Agreement on a Core-Set (ACS) when up to ta < n/3 of the parties involved are
corrupted, which suffices for our case of ω ≥ 2. Roughly speaking, an ACS protocol assumes
that each party holds a value meant to be distributed, and enables the parties to obtain the
same set M of n− ta value-sender pairs. By utilizing the (randomized) ACS protocol presented
in [6, Section 4], we achieve asynchronous CC with optimal resilience, in constant expected
number of rounds, proving the lower bound n > (ω + 1) · ta to be tight as well.

Maintaining the Advantages of Synchrony. While the standard definition of ACS makes obtain-
ing identical views possible in an asynchronous network as well, the synchronous network still
has an advantage that will be crucial for matching the point-wise optimal resilience thresholds
for CC. Namely, the key insight on why CC can be achieved up to ts < n/ω corruptions in the
synchronous model, while ta < n/(ω+1) is necessary in the asynchronous one, is that the former
ensures all honest values are delivered. Intuitively, in the asynchronous setting, ta corrupted par-
ties may replace ta honest parties: the messages of these honest parties get delayed for sufficiently
long, while the ta corrupted parties follow the protocol correctly, but with inputs of their choice.
Hence, to achieve hybrid CC under the resilience condition n > max(ω ·ts, 2·ts+ta, ω ·ta+ts), we
require an additional property from ACS: if the network is synchronous, all honest values must
be included in the output set agreed upon. Consequently, we propose the following definition
for ACS in the best-of-both-worlds model.

Definition 13 (Agreement on a Core Set). Let Π be a protocol where every party P holds an
input vP and may output a set of value-sender pairs MP . We consider the following properties.

• Validity: Let P and P ′ be two honest parties. If (v′, P ′) ∈ MP , then v′ = vP ′.
• Consistency: Let P and P ′ be two honest parties. If (v′′1 , P

′′) ∈ MP and (v′′2 , P
′′) ∈ MP ′,

then v′′1 = v′′2 .
• Exact Agreement: Let P and P ′ be two honest parties, and assume they obtain outputs
MP and MP ′ respectively. Then, MP = MP ′.

• T -Output Size: If an honest party P obtains output MP , then
∣∣MP

∣∣ ≥ n− T .
• Honest Core: If an honest party P obtains output MP , then (vP ′ , P ′) ∈ M for every
honest party P ′.

Then, we say that Π is a (ts, ta)-resilient ACS protocol if it achieves the following:

• Validity, Consistency, Exact Agreement, ts-Output Size, Probabilistic Termination and
Honest Core when running in a synchronous network and at most ts parties are corrupted;

• Validity, Consistency, Exact Agreement, ts-Output Size,4 Probabilistic Termination when
running in an asynchronous network and at most ta parties are corrupted.

This way, if parties use an ACS protocol to distribute their values, they obtain the same set
M of n− ts + k value-sender pairs. If the network is asynchronous, at most ta of these values
are corrupted. In contrast, if the network is synchronous, the Honest Core property will ensure
that at most k of these values are corrupted. To take both cases into account, parties locally

4This is intentional: we do not require the stronger property of ta-Output Size.

11



compute their safe areas as S := safemax(k,ta)(M) and deterministically decide on an output
s ∈ S. Note that, by definition of the safe area, S is indeed inside the honest inputs’ convex hull.
In addition, since the input space has Helly number ω and n > max(ω · ts, 2 · ts + ta, ω · ta + ts),
the safe area obtained is still non-empty, so such s can be chosen. The proof of this result,
stated below, is enclosed in Appendix D.

Lemma 14. Assume n > max(ω · ts, ω · ta + ts), and that M is a set of n − ts + k value-party
pairs, where 0 ≤ k ≤ ts. Then, safemax(k,ta)(M) ̸= ∅.

Achieving ACS. We now focus on describing a concrete construction of a (ts, ta)-resilient ACS
protocol. In particular, we describe the proof of the theorem below.

Theorem 15. Let n, ts, ta be such that n > 2 · ts+ ta and ta ≤ ts. Then, there is a protocol ΠACS

achieving (ts, ta)-resilient ACS.

When ts, ta < n/3 (which is suitable for ω ≥ 3), one can achieve this stronger variant of ACS
in the best-of-both-worlds model even without using a public key infrastructure, by making a
few adjustments to the ACS protocol of [6]. We present this protocol in detail in Appendix C.2.

Building such a primitive under the weaker resilience assumption n > 2 · ts + ta is however
significantly more challenging. Simple adjustments to the outline of [6] will not suffice anymore,
even when employing building blocks with optimal-resilience best-of-both-worlds guarantees.
The insight behind this claim is that such primitives would only be able to provide synchronous
guarantees if all conditions are met, i.e., if honest parties are ready to join these subprotocols
simultaneously. On the other hand, the outline of [6] cannot ensure this premise.

Hence, we use a different approach for achieving ACS with Honest Core when n > 2 · ts+ ta.
Our approach hinges on two building blocks. The first is a hybrid Byzantine Agreement (BA)
protocol, as defined below.

Definition 16 (Byzantine Agreement). Let Π be a protocol where every party P holds a bit as
input and may output a bit. We consider the following properties:

• Weak Validity: If all honest parties hold input b, no honest party outputs b′ ̸= b.
• Exact Agreement: Let P and P ′ be two honest parties, and assume they obtain outputs
b and b′ respectively. Then, b = b′.

Then, Π is a (ts, ta)-resilient BA protocol if it achieves Weak Validity, Exact Agreement, and
Probabilistic Termination when up to ts of the parties are corrupted if it runs in a synchronous
network, and when up to ta of the parties are corrupted if running in an asynchronous network.

Concretely, we make use of the BA protocol of Blum, Katz and Loss [7].

Theorem 17 ([7]). Let n, ts, ta be such that n > 2 · ts + ta and ta ≤ ts. Then, there is a protocol
ΠBA achieving (ts, ta)-resilient BA.

The second building block will be a best-of-both-worlds version of a primitive known as
Gather (GTHR) [2,12]. A GTHR protocol is a slightly weaker, but deterministic variant of ACS.
Namely, GTHR relaxes the Exact Agreement property by only requiring that honest parties’
output sets have at least n−ts values in common. We provide our best-of-both-worlds definition
of GTHR below. Notice that our definition also requires the previous Honest Core property to
hold under synchrony. Moreover, we require that parties obtain outputs simultaneously if the
network is synchronous.

Definition 18 (Gather). Let Π be a protocol where every party P holds an input vP and may
output a set of value-sender pairs MP . We consider the following properties, additionally to
those in Definition 13.
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• T -Common Core: If all honest parties terminate, then
∣∣⋂

P honestMP

∣∣ ≥ n− T .
• Simultaneous Termination: All the honest parties terminate and obtain an output at
the same time.

Then, we say that Π is a (ts, ta)-resilient GTHR protocol if it achieves:

• Validity, Consistency, Honest Core5 and Simultaneous Termination when running in a
synchronous setting where at most ts of the parties involved are corrupted;

• Validity, Consistency, ts-Common Core and Termination when running in an asynchronous
setting where at most ta of the parties involved are corrupted.

In Section C.3 we provide a construction achieving best-of-both-worlds GTHR, as stated
below. Our protocol follows the outline of the initialization protocol Πinit of [20, Section 5],
while making use of insights from [2], which focuses on the asynchronous definition of GTHR.
The formal construction and its analysis are enclosed in Section C.4 of the Appendix.

Theorem 19. Let n, ts, ta be such that n > 2 · ts + ta and ta ≤ ts. Then, there is a protocol
ΠGTHR achieving (ts, ta)-resilient GTHR.

These building blocks enable us to sketch the proof of Theorem 15.

Proof Sketch of Theorem 15. The ΠACS protocol proceeds as follows: parties distribute their
values using ΠGTHR, obtaining consistent sets of value-party pairs that intersect in least n− ts
pairs. If the network is synchronous, this common core will contain all honest value-sender pairs
by the Honest Core property.

When party P obtains output MGTHR from ΠGTHR, it joins n invocations of ΠBA, one for
each party P ′. Party P inputs 1 in the invocation for P ′ if MGTHR contains some value from
P ′ and 0 otherwise. Note that, if the network is synchronous, ΠGTHR provides Simultaneous
Termination, hence honest parties join ΠBA simultaneously, and therefore the guarantees of ΠBA

hold.
Then, regardless of the type of network, honest parties agree on a bit for each party. They

will output the values sent by parties for whom the bit agreed upon is 1. The ts-Common Core
property of ΠGTHR ensures that there are at least n− ts parties for whom all honest parties join
ΠBA with input 1, and therefore agree on output 1 (due to Weak Validity).

However, note that obtaining output 1 in the ΠBA invocation for P ′ does not mean that all
honest parties have received a value from P ′ via ΠGTHR. Instead, the Weak Validity property of
ΠBA only ensures that at least one honest party P has joined this invocation with input 1, and
hence has received a value from P ′ via ΠGTHR. We will then make use of an additional property
provided by our implementation of ΠGTHR: if parties wait for sufficiently long, they will receive
the missing values as well.6

This way, all honest parties output the same set of at least n − ts values, meaning that
Probabilistic Termination, Exact Agreement and ts-Output Size hold. Note that Validity and
Consistency follow immediately from ΠGTHR achieving these properties. In addition, if the
network is synchronous, the output set will include all honest values, so the Honest Core property
is also ensured.

Achieving CC. We now provide the formal code of our protocol achieving CC.

Protocol ΠCC

Code for party P with input vin

1: Join ΠACS with input vin. Upon obtaining output M:

5Note that this implies ts-Common Core, so we do not ask for it separately.
6Intuitively, this is because in ΠGTHR parties distribute their values via Reliable Broadcast.
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2: k :=
∣∣M∣∣− (n− ts); S := safemax(k,ta)(M)

3: Choose vout ∈ S according to a predetermined, publicly available, deterministic rule.
4: Output vout and terminate.

Proof of Theorem 11. Since parties distribute their values via ΠACS, parties obtain the same set
M of n− ts + k value-sender pairs, where 0 ≤ k ≤ ts. Then, regardless of whether the network
is synchronous or asynchronous, M contains at most max(k, ta) values from dishonest senders.
Note that this holds when the network is synchronous due to ΠACS’s Honest Core property.
Hence, there is a subset MH ⊆ M of size

∣∣M∣∣−max(k, ta) only containing values from honest
senders. By definition, MH ∈ restrictmax(k,ta)(M), so S ⊆ ⟨MH⟩, meaning that the safe area S
obtained by the honest parties is included in the honest inputs’ convex hull. Lemma 14 ensures
that S is non-empty, so parties agree on the same value vout in the honest inputs’ convex hull.
Hence, Convex Validity, Exact Agreement and (Probabilistic) Termination hold.

5 Approximate Agreement on Chordal Graphs

We investigate the previously known deterministic protocol that efficiently achieves chordal
graph AA with monophonic path convexity [27, Section 4.2], finding that it is sadly incorrect.
Recall that chordal graphs are precisely those for which monophonic path convexity induces
a convex geometry. In this section, we will introduce a new protocol to solve the problem
correctly, designed for the best-of-both-worlds setting.

The protocol of [27, Section 4.2] focuses strictly on the asynchronous setting, hence, when
describing it, for brevity we assume a single number t = ta. Roughly speaking, this proceeds in
iterations. In each iteration, parties distribute their values via a weaker variant of GTHR, say
Π. Instead of ensuring t-Common Core, Π ensures that the honest parties’ output sets have
pair-wise intersections of size n− t. Parties then compute safe areas and select some new value
from their safe area as their new value. In order to ensure fast convergence, these new values are
to be chosen carefully. This is done by relying on a special kind of tree decomposition admitted
by chordal graphs, namely clique trees, to be introduced below. In particular, in tandem with
the main algorithm, parties additionally run a tree AA protocol on the tree decomposition of
the graph, using it to guide the main algorithm. Hence, at each step, each party computes
both a “normal” and a “tree” safe area. It is then proven that each vertex in the tree safe area
corresponds to at least one vertex in the graph safe area. Then, if the new value is to be taken
from the center of the tree safe area, convergence can be ensured by an argument showing that
the diameter of the tree safe area is roughly halved at each iteration. As we will show, it might
actually be that no vertices in the center of the tree safe area appear in the graph safe area,
preventing the algorithm from proceeding further. We now make the previous more exact by
introducing the algorithm of [27, Section 4.2]. To do so, we first need to introduce clique trees.

Chordal graphs can be equivalently characterized as graphs admitting a clique tree. A clique
tree T = (V (T ), E(T )) for a graph G = (V (G), E(G)) is a tree whose vertices are subsets of
V ; i.e. V (T ) ⊆ 2V (G). Every vertex of T has to induce a clique in G. Moreover, the following
requirements have to be satisfied: (i) for all v ∈ V (G) there is b ∈ V (T ) such that v ∈ b;
(ii) for all (u, v) ∈ E(G) there is b ∈ V (T ) such that {u, v} ⊆ b and (iii) if a, b ∈ V (T ) and
v ∈ a ∩ b, then v ∈ c for all c ∈ V (T ) residing on the unique a− b path in T. Usually, one also
requires that the cliques induced by vertices of T are maximal cliques. Note that, unlike general
graphs, chordal graphs have a number of maximal cliques that is at most linear in the number
of vertices in G, so they admit a clique tree with at most this many vertices. To illustrate,
consider the chordal graph G in Figure 3a. The four maximal cliques are circled with dashed
lines of different colors. One of the clique trees of G is given in Figure 3b. Namely, this is a
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(a) Chordal graph G. (b) Possible clique tree for G. (c) Resulting expanded clique tree.

Figure 3: Chordal graph on which protocol ΠIncorrectChordal fails.

four-node star graph with the center in {1, 2, 3} and leaves {2, 6}, {2, 3, 4} and {3, 5}, in order
from top to bottom.

Fix an arbitrary clique tree T of the input graph G. The algorithm will operate on what the
authors call the “expanded clique tree”: take T and subdivide each edge (a, b) ∈ E(T ) to get
two edges a− x and x− b, where x = a ∩ b. Note that the expanded clique tree is also a clique
tree for G, although the newly added vertices might no longer correspond to maximal cliques.
This construction is exemplified for the clique tree in Figure 3b and Figure 3c.

We are now ready to give the protocol ΠIncorrectChordal from [27, Section 4.2], presented below.
Note that it is only concerned with the asynchronous case, so only a single bound t = ts = ta is
used here instead of separate bounds ts and ta. Moreover, since the algorithm requires convex
hulls both in graph G and in tree T, for S ⊆ V (G) we write ⟨S⟩G for the hull of S in G, and
for S ⊆ V (T ) we write ⟨S⟩T for the hull of S in T. We define safeGk and safeTk analogously. We
note that now the values in the pairs of the message sets M are pairs of vertices (v, b). We,
therefore, expand the definition of ⟨M⟩ to such pairs: safeGk refers to the values v in these pairs,
while safeTk to the values b.

Protocol ΠIncorrectChordal

Code for party P with input v0 ∈ V (G)

1: Select b0 ∈ V (T ) arbitrarily such that v0 ∈ b0
2: for it = 1 . . .max it := ⌈log2 diam(T )⌉+ 2 do
3: Join Π with input (vit−1, bit−1). Upon obtaining output M in Π:
4: ST := safeTt (M); bit = center(S); SG := safeGt (M);
5: Select vit ∈ SG ∩ bit arbitrarily.
6: end for
7: Output vmax it and terminate.

We next show an example where ΠIncorrectChordal does not execute correctly. In particular, it
will be that for some honest party SG∩bit = ∅, implying that the party can not proceed further.
To construct this, consider the graph G in Figure 3a and assume that its chosen clique tree is the
one in Figure 3b. The expanded clique tree is then the one in Figure 3c. We assume t = 3 and
that there are n = 13 > ω·t = 4·t = 12 parties. In our scenario, the t = 3 corrupted parties crash
before taking part in the protocol. The other ten (honest) parties have inputs as follows: three
parties have input 5, three parties have input 6, and four parties have input 4. For our input
values 4, 5, 6, there are unique nodes in the clique tree containing them. In particular, parties
holding 4 will set b0 := {2, 3, 4} at the beginning of the protocol. Likewise, parties holding 5
will set b0 = {3, 5} and parties holding 6 will set b0 = {2, 6}. Now, consider what subsequently
happens in the protocol during the first iteration for an arbitrary party P holding input 4.
Because the Byzantine parties have crashed, the set of messages M received by P is uniquely
determined. In particular, in terms of the (v, b) payloads, M contains four pairs (4, {2, 3, 4}),
three pairs (5, {3, 5}), and three pairs (6, {2, 6}). We then obtain ST = ⟨{{3, 5}, {2, 3, 4}}⟩T ∩
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⟨{{2, 6}, {2, 3, 4}}⟩T = {{1, 2, 3}, {2, 3}, {2, 3, 4}}. Hence, center(ST ) = {2, 3}, so party P sets
bit := {2, 3}. Similarly, let us compute SG = ⟨{5, 4}⟩G ∩ ⟨{6, 4}⟩G = {5, 3, 4} ∩ {6, 2, 4} = {4}.
Therefore, party P can not select vit ∈ SG ∩ bit = {4} ∩ {2, 3} = ∅.

It is now instructive to also identify the error in the original proof that SG∩ bit ̸= ∅, namely
[27, Lemma 11]. The core of the proof hinges on an argument showing that there is some vertex
u ∈ bit such that there are at least t + 1 pairs of parties from which P has received values at
iteration it whose two values vit−1 have an induced path in G between them that passes through
u. The proof of this fact is correct [27, Lemma 10]. However, it is then claimed that, because
there are at most t corrupted parties, for at least one such pair of parties at least one of them
is not corrupted. This is false in general: consider for simplicity t = 10 and parties P1, . . . , P10.
There are

(
10
2

)
= 45 ≥ t + 1 = 11 pairs of parties, yet 10 corruptions are enough to corrupt

both parties in each pair. For this fact to be true, one would need to replace t+ 1 by
(
t
2

)
+ 1,

for which [27, Lemma 10] seems unlikely to hold. On a secondary note, towards the end of the
proof, two induced (or even shortest) paths in G, say one from say a to b, and one from b to c
are implicitly claimed to yield an induced path from a to c that passes through b, which is not
the case in general, e.g., in our graph G no induced path from 5 to 6 passes through 4.

A Corect Hybrid Protocol for AA on Chordal Graphs. In this section, we give a correct de-
terministic protocol achieving Monophonic Hull validity, Termination, and Agreement within
Graph Distance 1 for chordal graphs. Unlike the protocol ΠIncorrectChordal presented in the previ-
ous section, our protocol does not directly rely on the clique tree decomposition of the chordal
graph G = (V,E), hence simplifying notation when it comes to convex hulls, as all convex
hulls are now on G. Our protocol follows the common outline of AA protocols, proceeding in
iterations. In every iteration, parties distribute their current values, and based on the values
received obtain a new value for the next iteration, while ensuring that the new values “get
closer” and stay within the convex hull of honest inputs. More concretely, once P obtains a
set of n − ts + k value-sender pairs M, it computes its safe area as S := safemax(k,ta)(M),
as described for our CC protocol. To ensure that S is non-empty and included in the convex
hull of the values proposed by honest parties, the underlying communication primitive needs to
ensure that the sets M are large enough, and contain sufficient honest values. Then, once the
safe area is obtained, P may compute its new value. Since G is chordal, assume ≻ is a perfect
elimination order over the vertices of G. Namely, for u, v ∈ V write u ≻ v if u comes after v
in the elimination order. Then, given a set of vertices S ⊆ V, write max≻ S, or simply maxS,
for the vertex in S that comes last in the elimination order, and define minS similarly. If S
induces a clique in G, party P will pick maxS as its new value. Otherwise, P will pick its new
value as an arbitrary vertex in S that is not an extremal point. We will show that this update
rule guarantees that agreement within distance d = 1 is achieved after a sufficient number of
iterations, under the assumption that the safe areas obtained by all honest parties intersect. To
fulfill this assumption, we make use of the protocol ΠGTHR of Theorem 19. This is shown with
the help of the lemma below, which is proven in Appendix D.

Lemma 20. Let (Mi)
K
i=1 be sets of value-party pairs such that ki :=

∣∣Mi

∣∣ − (n − ts) ≥ 0. If∣∣⋃K
i=1Mi

∣∣ ≤ n and
∣∣⋂K

i=1Mi

∣∣ ≥ n− ts hold, then
⋂K

i=1 safemax(ki,ta)(Mi) ̸= ∅.

Our protocol ΠChordal is given below:

Protocol ΠChordal

Code for party P with input v0 ∈ V

1: for it = 1 . . .max it := |V | − 1 do
2: Join ΠGTHR with input vit−1

3: Upon obtaining output M in ΠGTHR:
4: k :=

∣∣M∣∣− (n− ts); S := safemax(k,ta)(M).
5: If S = ex (S), vit := maxS // S induces a clique in G.
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6: Otherwise, select vit ∈ S \ ex (S) arbitrarily.
7: end for
8: Output vmax it and terminate.

We may now analyze ΠChordal. We provide the result below, and we include the formal
analysis in Section E of the Appendix.

Theorem 21. Consider a chordal graph G with maximum clique size ω. Given n, ts, ta such
that ts ≥ ta and n > ω · ts + ta, ΠChordal is a (ts, ta)-resilient deterministic protocol achieving
Monophonic Convex Validity, Termination and Agreement within Graph Distance 1.

We use H0 to denote the convex hull of the honest inputs, and Hit to denote the convex hull
of the honest vertices vit obtained in iteration it ≥ 1. First, the Validity condition is guaranteed,
as a direct consequence of Lemma 14 along with the properties of ΠGTHR.

To show that Agreement within Graph Distance 1 is also guaranteed, we will show that,
unless the values held by honest parties at a certain iteration already form a clique; i.e., Hit−1

induces a clique; then the convex hull in the next iteration Hit is a strict subset of Hit−1.

Lemma 22. Assume 1 ≤ it ≤ max it and that Hit−1 does not form a clique in G. Then, Hit ⊊
Hit−1.

Proof Sketch. Since G has |V | vertices, this implies that the hull can only decrease at most
|V | − 1 times before agreement is reached, justifying the choice for max it. Hence, it remains
to prove that the hull indeed strictly decreases with each iteration until agreement is reached.
The proof here consists of a few ideas, including a number of helper lemmas. In essence, the
first lemma says that simplicial vertices in the subgraph induced by a convex set are extremal
for that set. The second lemma says that nodes that are not extremal for a convex set can not
be extremal for a convex superset of it. The third is the classical result of Dirac [14] that a
chordal graph has at least two simplicial vertices, provided it is not a clique.

To show that the honest hull decreases, write s = minHit−1 and consider a node y that
appears in the safe area of all honest parties. Note that such a node is guaranteed to exist by
the properties of ΠGTHR. Note that s is simplicial in the subgraph induced by Hit−1, from which
it is extreme for Hit−1, so if no party selects it as their next value, that would decrease the hull.
If the common value satisfies y ̸= s, then all honest parties whose safe area is a clique do not
pick s since y ≻ s, and all of those for which it is not a clique will have s as an extreme point
since it is an extreme point of the honest hull as a whole, and hence will also not pick it. The
case y = s is more interesting since in that case, it could be that some party only has s in their
safe area, so s does not get removed on this iteration. However, if this was the case, use the
assumption that the honest hull is not a clique together with the result of Dirac to get another
simplicial vertex a ∈ Hit−1. It can be shown that this vertex can be chosen so that the edge s−a
is not in the graph. This time, instead of s, node a will be guaranteed to be removed from the
hull. This is because any party who has a in their safe area also has s, so also has a length-two
path from a to s in their safe area, meaning the safe area is not a clique, from which similarly
to the above it follows that a will not be chosen because it is simplicial and hence extremal.

Impossibility of Deterministic Graph Approximate Agreement. In the previous section, we have
seen that chordal graphs admit a deterministic protocol achieving monophonic path convexity,
termination, and agreement within graph distance 1, as long as n > ω · ts + ta, and the number
of corruptions is bounded by ts if the network is synchronous and ta when the network is
asynchronous. One might wonder whether something similar holds for general graphs, perhaps
by increasing the bound on the allowed distance between any two honest outputs from 1 to some
function in the size of the graph. We hereby show that, at least for geodesic convexity, if the
network can be asynchronous, this function would have to be linear in the number of vertices of
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the graph even to tolerate as low as two crash failures. This is shown in the following, proven
by reduction from 2-Set Agreement in Appendix E.

Theorem 23. Assume n ≥ 3 and that the network is asynchronous, then for any d ≥ 0 there
is a graph Gd with Θ(d) vertices and edges such that no deterministic n-party protocol resilient
against two crashes satisfies Geodesic Convex-Hull Validity, Termination, and Agreement within
Graph Distance d.

6 Conclusions

We have presented multiple feasibility and impossibility results in the realm of network-agnostic
agreement problems in convex spaces when Byzantine corruptions are also involved.

We have seen that for any convexity space with Helly number ω achieving convex validity,
(probabilistic) termination and agreement on at most min(n, ω) − 1 values requires n > ω · t
in synchronous networks and n > (ω + 1) · t in asynchronous ones. In the best-of-both-worlds
model, we have shown that n > max(ω · ts, ω · ta + ts, 2 · ts + ta) is necessary and sufficient for
achieving CC. To this end, we provided a protocol ΠCC achieving CC when this condition holds
by making use of randomization, which can be seen to be necessary due to the celebrated result
of Fischer, Lynch, and Paterson [18].

In the process, we proposed two communication primitives for the best-of-both-worlds model
which we believe to be of independent interest. These are variants of ACS and GTHR, which
allow each party to distribute its input so that parties obtain highly reliable and consistent views
on the original inputs. These variants differ from their previous counterparts by ensuring that,
if the network is synchronous, all honest parties’ proposed values are included in the parties’
views. These stronger definitions enabled us to provide the additional synchronous guarantees
of CC in terms of resilience in the best-of-both-worlds model. With its stronger guarantees, our
ACS protocol can simplify future works on network-agnostic secure Multi-Party Computation,
where ACS protocols are often employed during the input-sharing part of the protocol (for
instance, [9] uses a less general form of ACS).

We have also focused on deterministic variants of CC; namely on AA. Here, we identified an
error in a previously known AA protocol for chordal graphs and provided a different protocol
for the problem, which is additionally tailored to the best-of-both-worlds model. This protocol
constitutes an application of our best-of-both-worlds variant of GTHR, and achieves AA under a
stronger resilience assumption of n > ω · ts+ ta, where ω denotes the size of the largest clique in
the input graph (equaling the Helly number). While we could only prove this resilience bound
to be point-wise tight, this is indeed a natural extension of the requirements of previous AA
protocols and an outstanding open problem, directly related to the corresponding question for
RD left open in [20]. Finally, we considered relaxing the AA agreement condition for graphs
from “outputs should be at most distance 1 apart” to “outputs should be at most distance d
apart.” Sadly, even for d a constant fraction of the number of nodes, we found that there exist
simple graphs where no deterministic asynchronous AA protocol can be resilient even to at most
two parties crashing.
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A Preliminary Proofs

Lemma 1. Let G = (V,E) be a graph and S ⊆ V be a subset of its vertices. Then, under both
geodesic or monophonic convexity S is a free set if and only if S induces a clique in G.

Proof. First, note that for all S inducing a clique, S = ⟨S⟩, as all vertices in S are linked by
edges. Moreover, if S induces a clique, then S = ex (S) because for any s ∈ S it holds that
S \ {s} induces a clique and hence s /∈ S \ {s} = ⟨S \ {s}⟩. This proves the “if” direction. For
the “only if” direction, assume S does not induce a clique and let a, b ∈ S be two vertices not
joined by an edge. Consider a shortest/induced path P from a to b in G. Since a and b are not
adjacent, P consists of at least three nodes, so take v /∈ {a, b} to be on path P. By definition,
this means that v ∈ ⟨S⟩ Moreover, v ∈ ⟨S \ {v}⟩ because of path P, from which v /∈ ex (S).
Therefore, v ∈ ⟨S⟩ \ ex (S), so by definition S is not free.

B Impossibility Results Using Adversarial Families

Lemma 3. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. Assume
n ≥ m and that, moreover, n ≤ m · t if the network is synchronous and n ≤ (m + 1) · t if the
network is asynchronous. Then, any (deterministic or randomized) n-party protocol satisfying
Convex-Hull Validity and (Probabilistic) Termination will have a terminating execution where
there are honest parties P1, . . . , Pm such that the output viout of party Pi satisfies viout ∈ Ai.

Proof. Write A = ∪A and consider a protocol Π satisfying convex-hull validity and termination.
Partition the n parties intom groups G1, G2, . . . , Gm such that 1 ≤ |Gi| ≤ t for all i and consider
an instance of Π where each party in Gi has as input some arbitrary value ai ∈ Ai. Consider
m + 1 scenarios. In scenario s ∈ [m], the adversary corrupts precisely the parties in Gs, while
in scenario m + 1, the adversary corrupts no parties. In all scenarios, the adversary ensures
no corrupted parties ever deviate from the protocol and does not manipulate the scheduler.
By construction, observe that any execution of the protocol that is consistent with any of the
scenarios is consistent with all scenarios. Since Π satisfies termination, consider an arbitrary
execution E of the protocol consistent with scenario m + 1. Note that this implies that all
parties obtain outputs and that execution E is consistent with the other scenarios as well. For
execution E, consider an arbitrary i and a party P ∈ Gi whose output is vPout. We will show
that vPout ∈ Ai. Assume otherwise, then, since Ai = ∩ℓ ̸=i⟨A \Aℓ⟩, there exists k ̸= i such that
vPout /∈ ⟨A \Ak⟩. In scenario k the set of corrupted parties is Gk, so the convex hull of the
honest inputs is a subset of ⟨A \Ak⟩. In this scenario party P is not corrupted and has output
vPout /∈ ⟨A \Ak⟩, contradicting convex-hull validity. Therefore, we get that vPout ∈ Ai as claimed,
and hence the conclusion.

For the asynchronous case, the proof is similar in spirit. This time, partition the n parties
into m + 1 groups G1, G2, . . . , Gm+1 such that 1 ≤ |Gi| ≤ t for i ∈ [m] and 0 ≤ |Gm+1| ≤ t.
Consider an instance of Π where each party in Gi has input some arbitrary value ai ∈ Ai, except
parties in Gm+1, which can have arbitrary inputs. Consider again m+ 1 scenarios. In scenario
s ∈ [m + 1], the adversary corrupts precisely the parties in Gs. For s = m + 1, the adversary
makes the corrupted parties crash immediately and does not manipulate the scheduler. For
s ∈ [m], the adversary ensures no corrupted party deviates from the protocol, but this time
delays messages sent from parties in Gm+1 until all other parties have obtained outputs. Note
that this could lead to messages getting delayed indefinitely if some honest party does not
obtain output (e.g., if the protocol is randomized), which would not be within the power of
the adversary, but this will not be the case for the executions we consider. Because Π satisfies
termination, consider an arbitrary execution E of the protocol consistent with scenario m + 1
in which all honest parties obtain outputs. Note that any such execution is also consistent with
the other scenarios. The rest of the proof is analogous, showing with the same argument that
for execution E we have that vPout ∈ Ai for any P ∈ Gi, where i ∈ [m].
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Lemma 4. Assume a convexity space C admitting a 2-adversarial family A = {A1, A2}. Assume
2 ≤ n ≤ 2 · ts + ta. Let Π denote an arbitrary (deterministic or randomized) protocol achiev-
ing Convex-Hull Validity and (Probabilistic) Termination for at most ts corruptions when the
network is synchronous and at most ta corruptions when it is asynchronous. Then, Π has a
terminating execution where the outputs v1out and v2out of two honest parties satisfy v1out ∈ A1

and v2out ∈ A2.

Proof. Write A =
⋃
A. We partition the n parties into three groups G1, G2 and Ga, such that

1 ≤ |G1|, |G2| ≤ ts and 0 ≤ |Ga| ≤ ta. For 1 ≤ i ≤ 2, assume that each party in Gi has as input
some arbitrary value ai ∈ Ai. We consider three scenarios.

In the first scenario, we assume that the network is synchronous, hence at most ts parties
may be corrupted. The adversary therefore corrupts the parties in G2, causing them to not
send any messages. The parties in G1 and Ga are honest and hold as input some arbitrary value
a1 ∈ A1. Then, Convex-Hull Validity ensures that, in any terminating execution consistent with
the scenario, parties in G1 obtain outputs in A1.

Similarly, in the second scenario, we assume that the network is synchronous, but this time
the adversary corrupts the parties in G1, causing them to not send any messages. The parties
in G2 and Ga are honest and hold as input some arbitrary value a2 ∈ A2. Then, Convex-Hull
Validity ensures that, in any terminating execution consistent with the scenario, parties in G2

obtain outputs in A2.
In the third scenario, we assume that the network is asynchronous, hence at most ta parties

may be corrupted. The adversary therefore corrupts the parties in Ga. Intuitively, the adversary
will make use of the parties in Ga and of the message delivery scheduler to cause honest parties’
views to be indistinguishable from their views in the previous two scenarios. We assume that
the honest parties’ clocks are still synchronized; however, the adversarial scheduler will block
the communication between the two groups of honest parties G1 and G2. The messages sent
within G1∪Ga or within G2∪Ga will be delivered with delay at most ∆, as if the network were
synchronous. Then, we make a virtual copy of each party in Ga, obtaining two virtual sets of
corrupted parties: G1

a and G2
a. The virtual copies in G1

a run Π correctly with the same inputs
a1 ∈ A1 as in the first scenario towards the parties in G1. Similarly, the virtual copies in G2

a run
Π correctly with the same inputs a2 ∈ A2 as in the second scenario towards the parties in G2.
This ensures that parties in G1 and G2 have the same view as in the first and second scenario
respectively. Since Π achieves Termination, there is a terminating execution consistent with this
scenario, hence also consistent with the first two scenarios. Then, as argued previously, in any
such execution, parties G1 and G2 obtain outputs v1out ∈ A1 and resp. v2out ∈ A2, completing
the proof.

Lemma 5. Let A = {A1, . . . , Am} be an m-adversarial family for convexity space C. Assume
that m ≤ n ≤ m · ta + ts. Then, any (deterministic or randomized) n-party protocol satisfying
Convex-Hull Validity and (Probabilistic) Termination for at most ts corruptions when the net-
work is synchronous and at most ta corruptions when the network is asynchronous will have
a terminating execution where there are honest parties P1, . . . , Pm such that the output viout of
party Pi satisfies viout ∈ Ai.

Proof. Consider a protocol Π satisfying convex-hull validity and termination. Partition the n
parties into m + 1 groups G1, G2, . . . , Gm+1 such that 1 ≤ |Gi| ≤ ta for all 1 ≤ i ≤ m, and
0 ≤

∣∣Gm+1

∣∣ ≤ ts. The rest of the proof is identical to the proof for the asynchronous setting in
Lemma 3.

Theorem 9. Consider a convexity space C with Helly number ω ≥ 2. Assume 2 ≤ n ≤ 2 · ts + ta
or 2 ≤ n ≤ ω · ta + ts. Then, there is no (deterministic or randomized) n-party protocol satisfy-
ing Convex-Hull Validity, (Probabilistic) Termination and Exact Agreement can simultaneously
tolerate at most ts corruptions when the network is synchronous and at most ta corruptions
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when the network is asynchronous. For the case 2 ≤ n ≤ ω · ta+ ts, the same holds even for the
weaker condition of agreeing on at most min(n, ω)− 1 values.

Proof. For the case 2 ≤ n ≤ 2 · ts+ ta, by Lemma 6, there is an ω-adversarial family for C. Since
2 ≤ ω, using Lemma 7, let A = {A1, A2} be a 2-adversarial family for C. Consider a protocol Π
satisfying convex-hull validity and termination. By Lemma 4, there is a terminating execution
of Π where the set of honest outputs contains {a1, a2} where a1 ∈ A1 and a2 ∈ A2. Since A1

and A2 are disjoint, a1 ̸= a2, from which the conclusion follows.
For the case 2 ≤ n ≤ ω · ta + ts, write m = min(n, ω). Similarly, by Lemma 6, there is

an ω-adversarial family for C. Since m ≤ ω, using Lemma 7, let A = {A1, . . . , Am} be an m-
adversarial family for C. Consider a protocol Π satisfying convex-hull validity and termination.
By Lemma 5, there is a terminating execution of Π where the set of honest outputs contains
{a1, . . . , am} where ai ∈ Ai. As sets in A are pairwise disjoint, this set has cardinality m,
implying the conclusion.

Theorem 10. Consider RD with straight-line convexity and let d > 0 be arbitrary. Assume
n ≤ (D+1) · t if the network is synchronous and n ≤ (D+2) · t if the network is asynchronous.
Then, there is no (deterministic or randomized) n-party protocol satisfying Convex-Hull Validity
and Termination such that no two honest outputs are more than Euclidean distance d apart.

Proof. It suffices to consider the case n ≥ D + 1, as otherwise the inputs would be contained
in an (n − 1)-dimensional subspace of RD, which is equivalent to assuming they are points in
Rn−1, so the result could then be invoked for Rn−1 with n ≥ (n − 1) + 1. Consider the origin
point 0 of RD, as well as the unit vectors e1, . . . , eD, and define the family of disjoint convex
sets A = {A0, . . . , AD}, where A0 = {0} and Ai = {(2d)ei} for i ∈ [D]. One can check that A is
a (D+1)-adversarial family because the intersection of any D faces of a D-simplex is the point
common to all of them. Hence, by Lemma 3 any protocol Π satisfying convex-hull validity and
termination has a terminating execution where {0, (2d)e1, . . . , (2d)eD} is a subset of the honest
outputs. The distance between 0 and (2d)e1 is 2d > d, implying the conclusion.

B.1 Comparison with [27, Theorems 10 and 11]

In this section, we compare our impossibility results with the related [27, Theorems 10 and 11].
We find that our results generalize the aforementioned, with the exception of the first part of
[27, Theorems 11], to which our findings are orthogonal. However, we exhibit what we believe
to be an error in the original proof of this part, rendering the result false in general.

Theorem 24 ([27, Theorem 10]). Let C be a convex geometry with Helly number ω. If the network
is synchronous and n ≤ ωt, then no n-party protocol satisfies convex-hull validity, termination
and exact agreement.

Contrasting this with Theorem 8, for the synchronous case our results generalize the previous
by removing the strong requirement on C to be a convex geometry and by adding the fact that
even agreement on at most min(n, ω)− 1 values is not possible. Next, for use in the following,
call a (not necessarily convex) subset I ⊆ V irredundant if there is a point p ∈ ⟨I⟩ such that
the hull of no proper subset of I contains p. The Carathéodory number c of C is then the size
of the largest such irredundant set I.

Theorem 25 ([27, Theorem 11]). Let C be a convexity space with Helly number ω and Carathéodory
number c. Assume the network is asynchronous and consider a protocol satisfying convex-hull
validity and termination, then:

1. If n ≤ (c+ 1)t there is an execution where the honest outputs do not form a free set in C.
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2. If n ≤ (ω + 1)t and C is a convex geometry there is an execution where the set of honest
outputs either has size at least ω or is not a free set in C.

Contrasting with Theorem 8, for the asynchronous case our results generalize Part 2 of the
above by once again removing the requirement on C to be a convex geometry and also by no
longer requiring the clause “or is not a free set in C.” Our result also replaces ω by min(n, ω),
which we believe is also implicitly meant in the original result, as when n < ω the condition
becomes vacuous, and a protocol where parties just output their own inputs satisfies convex-hull
validity and termination in some convex geometries.

Part 1 of Theorem 25, on the other hand, is orthogonal to our results. In our attempt to
use adversarial families to potentially also recover Part 1, we have discovered what we believe
to be an error in the proof of this part, making the result false in general. Namely, the proof of
Part 1 hinges on the following technical lemma:

Lemma 26 ([27, Lemma 15]). Let C be a convexity space and A be an irredundant set such that
|A| > 1. Then for any a ∈ A and y ∈ ⟨A⟩ \A there exists b ∈ A \ {a} such that y /∈ ⟨A \ {b}⟩.

Note that we have added the condition “A is irredundant” missing from the original state-
ment.7 The error in the proof is towards the end where, using the original notation, it is stated
that y /∈ ∂A = ⟨A⟩ \ B ⊆ ⟨A⟩ \ A implies that y /∈ ⟨A⟩ \ A, contradicting the hypothesis.
However, in general, if some sets satisfy S1 ⊆ S2 and y /∈ S1 it does not follow that y /∈ S2. We
next construct a convexity space where the lemma in fact fails for all irredundant sets A and all
a ∈ A. First, introduce some auxiliary notation: given two convexity spaces C1 and C2 defined
on universes V1 and V2 respectively, define C1⊕C2 to be the convexity space on universe V1×V2

such that C1 ⊕ C2 = {C1 ×C2 | C1 ∈ C1, C2 ∈ C2}. For the construction, start with an arbitrary
convexity space C on universe V and consider the convexity space C′ = C⊕{∅, {0, 1}}. To build
intuition for C′, notice that ⟨{(v, i)}⟩ = {(v, 0), (v, 1)} for any v ∈ V and i ∈ {0, 1}. Assume A
is an irredundant set for C′. Note that for no v ∈ V does A contain both points (v, 0) and (v, 1),
as otherwise it would be that ⟨A⟩ = ⟨A \ {(v, 1)}⟩, so A would not be irredundant. Consider
any a = (v, i) ∈ A and take y = (v, 1 − i) ∈ ⟨A⟩ \ A, then for any b ∈ A \ {a} it holds that
a ∈ A \ {b}, from which ⟨{a}⟩ = {(v, 0), (v, 1)} ⊆ ⟨A \ {b}⟩, so y ∈ ⟨A \ {b}⟩, contradicting the
statement of the lemma. Hence, we have constructed a space for which the lemma fails for any
irredundant set A and any a ∈ A, indicating that any correct weakening of the lemma might
sadly not be of much use in its current form.

We conclude by constructing a space whose Carathéodory number c is much larger than its
Helly number ω, showing that our possibility results are not consistent with Part 2 of Theorem
25. To do so, we will use the fact [28, Theorems 2.1 and 3.2] that given convexity spaces
C1 and C2 with Helly numbers ω1, ω2 and Carathéodory numbers c1, c2 the space C1 ⊕ C2 has
Helly number ω = max{ω1, ω2} and Carathéodory number c satisfying c1+ c2−2 ≤ c ≤ c1+ c2.
Consider the space C = R2 with straight-line convexity, whose Helly and Carathéodory numbers
are both 3. Then, the space Ck =

⊕k
ℓ=1 C has Helly number ωk = 3 and Carathéodory number

ck ≥ 3k − 2(k − 1) = k + 2. For this space, our possibility results imply that, for instance
when the network is synchronous, convex consensus be solved assuming n > 2t, while Part 2 of
Theorem 25 would imply that it can not be solved for n ≤ (k + 2)t.

C Communication Primitives

In this section, we include the formal definitions of the communication primitives used in our
algorithms, along with formal proofs.

7The proof of the lemma notes that if A is not irredundant the claim becomes vacuous, however, one can
actually consider R2 with straight-line convexity, A = {(±1,±1)} and y = (0.5, 0.5), in which case y ∈ ⟨A \ {a}⟩
for any a ∈ A. This issue is however only minor since the lemma is only invoked in the proof of the subsequent
[27, Lemma 16], where A is assumed to be irredundant.
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C.1 Reliable Broadcast

We recall the formal definition of rBC. We use the definition of [19], which makes the termination
time explicit when the network is synchronous.

Definition 27. Let Π be a protocol where a designated party S (called the sender) holds a value
vS, and every party P may output a value vP .

• Validity: If S is honest, and an honest party outputs vP , then vP = vS.
• Consistency: If P and P ′ are honest and output vP and resp. vP ′, then vP = vP ′.
• c-Honest Termination: If S is honest, parties obtain outputs eventually. In addition, if
the network is synchronous and the parties start executing the protocol at the same time
τ , every honest party obtains output by time τ + c ·∆.

• c′-Conditional Termination: If an honest party P obtains output at time τ , then all honest
parties obtain outputs eventually. In addition, if the network is synchronous and the honest
parties start executing the protocol at the same time, then all honest parties obtain output
by time τ + c′ ·∆.

We say that Π is a (ts, ta, c, c
′)-resilient Reliable Broadcast protocol if it achieves Validity, Con-

sistency, c-Honest Termination, and c′-Conditional Termination even when ts of the parties
involved are corrupted if it runs in a synchronous network, and even when ta of the parties
involved are corrupted otherwise.

Our protocols will make use of two rBC protocols. The first one is Bracha’s protocol [11],
which does not assume a public key infrastructure. The theorem below follows from the analysis
of [20].

Theorem 28 (Bracha [11]). Assume that n > 3t. Then, there is an n-party protocol achieving
(t, t, crBC, c

′
rBC)-resilient Reliable Broadcast, where crBC := 3 and c′rBC := 2.

The second protocol is that of Momose and Ren [25]. The theorem below follows from the
analysis of [19].

Theorem 29 (Momose and Ren [25]). Assume that n > 2 · ts + ta and ts ≥ ta. Then, there is an
n-party protocol achieving (ts, ta, crBC, c

′
rBC)-resilient Reliable Broadcast (assuming PKI), where

crBC := 3 and c′rBC := 1.

C.2 Agreement on a Core-Set When ts, ta < n/3

We present a protocol achieving our best-of-both-worlds definition of ACS that assumes ts, ta <
n/3. We note that this protocol does not require a public key infrastructure.

As previously mentioned, to achieve this definition of ACS, we follow the outline of [6].
In this protocol, parties first distribute their values via an rBC protocol ΠrBC. In this case,
Bracha’s protocol, noted in Theorem 28, is sufficient. A second building block that we assume
is the asynchronous (BA) protocol ΠBA of Mostefaoui et al [26], noted in the theorem below.

Theorem 30. Given ts, ta ≤ n/3, there is a (ts, ta)-resilient BA protocol ΠBA that does not
assume PKI.

In the asynchronous ACS protocol of [6], n parallel invocations of ΠBA are initiated – one
for each party. When a party P receives a value v from P ′ via ΠrBC, it joins the ΠBA invocation
that corresponds to P ′ with input 1. Once n − ta ΠBA invocations have resulted in output 1
(and therefore n− ta values are worth waiting for), P may join any remaining invocations with
input 0. All the ΠBA invocations are guaranteed to terminate eventually, and once this is the
case, P outputs the set of value-sender pairs corresponding to the ΠBA invocations terminating
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in 1. This way, the protocol ensures that all honest parties obtain an identical view, regardless
of the type of network.

The first modification that we make is to only wait for n − ts (instead of n − ta) ΠBA

invocations to terminate with output 1 before allowing parties to join the remaining invocations
with input 0. This is needed as, if the network is synchronous, n − ts ≤ n − ta and therefore
waiting for n− ta values may not be possible.

We still need to ensure that, if the network is synchronous, all honest parties are included in
the output sets. We make use of a few non-standard properties of ΠrBC, proven in [20]. Namely,
in the case of Bracha’s protocol, if the network is synchronous and the sender is honest, all
parties obtain output within crBC · ∆ time for crBC = 3. Therefore, to ensure that all honest
values are included in the output set agreed upon, we force parties to wait until crBC ·∆ time
passed before joining any ΠBA invocation with input 0 (which does not change anything if the
network is asynchronous).

We present the formal code of the protocol below.

Protocol ΠACS

Code for party P with input v

1: τstart := τnow
2: Send v to every party via ΠrBC.
3: When receiving a value v from P ′ via ΠrBC:
4: If less than n− ts invocations of ΠrBC have terminated, or τnow ≤ crBC ·∆:
5: Join the invocation of ΠBA for P ′ with input 1.
6: When τnow > crBC ·∆ and at least n− ts of the ΠBA invocations have terminated with input 1,

join the remaining ΠBA invocations with input 0.
7: When all ΠBA invocations have terminated:
8: P := parties whose corresponding ΠBA invocations have terminated with output 1.
9: When all invocations of ΠrBC having senders in P have terminated:

10: M := the set of pairs (v′, P ′), where P ′ ∈ P and v′ is the value P ′ sent via ΠrBC.
11: Output M and terminate.

We may now prove the following result.

Theorem 31. There is a (ts, ta)-resilient ACS protocol for ts, ta < n/3.

We separate the proof into the analysis of ΠACS in the synchronous setting only, and then
in the asynchronous setting only.

Lemma 32. When running in a synchronous network where at most ts of the parties involved are
corrupted, ΠACS achieves Validity, Consistency, Exact Agreement, ts-Output Size, and Proba-
bilistic Termination, and Honest Core.

Proof. First, Validity and Consistency follow immediately from the properties of ΠrBC.
Since the network is synchronous, at least the n − ts honest invocations of ΠrBC terminate

by time crBC ·∆. Hence, at this time, all honest parties join the n invocations of ΠBA. Moreover,
all honest parties join the invocations corresponding to honest parties with input 1.

ΠBA’s Weak Validity then ensures that at least the n−ts invocations corresponding to honest
parties result in output 1. In addition, if the ΠBA invocation for some party P results in output
1, then at least one honest party has joined this invocation with input 1, and therefore has
received a value from P via ΠrBC. Then, c′rBC-Conditional Termination ensures that all honest
parties receive this value.

Hence, ΠBA has allowed (by to Probabilistic Termination) parties to agree on the same set
(by Exact Agreement) of at least n− ts parties P, that contains all the honest parties, and each
honest party eventually receives the values sent by all parties in P. Hence, all parties output the
same set M of at least n− ts values. Therefore, Exact Agreement, Probabilistic Termination,
and Honest Core hold.

27



Lemma 33. When running in an asynchronous network where at most ta of the parties in-
volved are corrupted, ΠACS achieves Validity, Consistency, Exact Agreement, ts-Output Size,
and Probabilistic Termination.

Proof. Similarly, Validity and Consistency follow immediately from ΠrBC’s Validity and Consis-
tency properties.

We first show that at least n− ts invocations of BA terminate with output 1. Note that no
honest party joins ΠBA with input 0 until n − ts of the ΠBA invocations have terminated with
output 1. crBC-Honest termination ensures that at least the ΠrBC invocations having honest
senders terminate. Therefore, eventually n − ts of the ΠBA invocations indeed terminate with
output 1.

Then, similarly to the proof for the synchronous case, if the ΠBA invocation for some party
P results in output 1, Weak Validity ensures that at least an honest party has joined this
invocation with input 1, and therefore has received a value from P . Then, ΠrBC’s Consistency
and c′rBC-Conditional Termination properties ensure that all parties eventually receive the same
value from P .

Hence, ΠBA allows the parties to agree on the same set P of at least n− ts parties, and even-
tually parties receive the same values sent by the parties in set P and therefore may terminate.
It follows that Exact Agreement, ts-Output Size, and Probabilistic Termination. also hold.

C.3 Gather

We may now present our construction realizing Theorem 19.

Theorem 19. Let n, ts, ta be such that n > 2 · ts + ta and ta ≤ ts. Then, there is a protocol
ΠGTHR achieving (ts, ta)-resilient GTHR.

Our protocol ΠGTHR will make use of an underlying rBC protocol ΠrBC. When instantiated
with the protocol of Theorem 29, this will lead exactly to the construction proving Theorem 19.
Making use of the rBC protocol of Theorem 28 instead will lead to a (ts, ta, 8)-resilient GTHR
protocol that does not assume any cryptographic setup.

Theorem 34. Let ts, ta < n/3. Then, there is a (ts, ta)-resilient GTHR protocol ΠGTHR that does
not assume PKI.

ΠGTHR follows the outline of the initialization subroutine used in the AA protocol of [20]
(Section 5). That is, it heavily relies on the witness technique [1]. Parties distribute their inputs
via ΠrBC, and add any value received and its sender to a set of value-party (or value-sender)
pairs M. Whenever such an input is received from ΠrBC, the sender is added to a set W0,
representing level-zero witnesses.

When at least crBC ·∆ time has passed (meaning that, if the network is synchronous, every
honest input was received), and when

∣∣M∣∣ ≥ n − ts (since at most ts parties are corrupted),
the parties reliably broadcast their set of level-zero witnesses W0. Then, if P receives a set of
level-zero witnesses W ′

0 from P ′ such that all values sent by parties in W ′
0 were also received by

P (roughly, MP ′ ⊆ M), P marks P ′ as a level-one witness by adding it to its set W1.
Following the insights of [2], we obtain that, when n− ts honest parties hold W1 sets of size

n − ts, then ts + 1 honest parties have a common level-one witness P ⋆ that is also an honest
party. This will then enable us to achieve the ts-Common Core property. Concretely, when
party P gathers n− ts level-one witnesses, it sends its set W1 to all the parties. When receiving
a set of W ′

1 from some party P ′′ such that W ′
1 ⊆ W1, P marks P ′ as a level-two witness by

adding it to its set W2. Once P collects n − ts level two-witnesses, it may output its set M.
This ensures that P has marked at least one of the parties that have announced P ⋆ to be one of
their level-one witnesses – and therefore P has marked P ⋆ as a level-one witness as well. Hence,
P has received the set W ⋆

0 sent by P ⋆, and therefore all the values sent by the parties in W ⋆
0
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have been included in P ’s set M. This argument applies to every honest party, which ensures
that the ts-Common Core property holds.

We include the formal code of ΠGTHR below. Note that, in the protocol’s code and proofs,
we assume that crBC ≥ c′rBC ≥ 1.

Protocol ΠGTHR

Code for party P with input v

1: τstart := τnow; M := ∅; W0,W1,W2 := ∅.
2: Send v to every party via ΠrBC.
3: Whenever receiving a value v′ from P ′ via ΠrBC, add (v′, P ′) to M and P ′ to W0.
4: If τnow ≥ τstart + crBC ·∆ and

∣∣W0

∣∣ ≥ n− ts:
5: Send W0 to all parties via ΠrBC.
6: Whenever receiving W ′

0 from P ′ via ΠrBC such that
∣∣W ′

0

∣∣ ≥ n− ts:
7: When W ′

0 ⊆ W0, add P ′ to W1.
8: When τnow ≥ 2 · crBC ·∆ and

∣∣W1

∣∣ ≥ n− ts:
9: Send W1 to all parties.

10: Whenever receiving W ′
1 from P ′ such that

∣∣W ′
1

∣∣ ≥ n− ts:
11: When W ′

1 ⊆ W1, add P ′ to W2.
12: When τnow ≥ (2 · crBC + c′rBC) ·∆ and

∣∣W2

∣∣ ≥ n− ts:
13: Output M.

We now proceed to analyze ΠGTHR, first assuming that the network is synchronous, and
then that the network is asynchronous. Theorem 19 follows immediately from Lemmas and 43
below.

Synchronous Network. In the following, we assume that the network is synchronous, all parties
join the protocol at the same time τstart, and at most ts of the parties involved are corrupted.

Lemma 35. Let P be an honest party. By time τstart + crBC ·∆, P holds a set W0 containing
all honest parties.

Proof. Follows immediately from ΠrBC’s crBC-Honest Termination.

Lemma 36. Let P and P ′ denote two honest parties. By time τstart + 2crBC ·∆, P has added
P ′ to its set W1.

Proof. According to Lemma 35, at time τstart + crBC ·∆, P ′ has sent its set W ′
0 to all parties

via ΠrBC. Hence, P receives W ′
0 by time τstart + 2 · crBC · ∆ due to Validity and crBC-Honest

Termination.
The set W ′

0 set contains at least n− ts parties from whom P ′ has received values via ΠrBC by
time τstart+crBC ·∆. Then, the Consistency and c′rBC-Conditional Termination properties ensure
that P has received these values as well by time τstart+(crBC+c′rBC)·∆ ≤ τstart+2crBC ·∆ (since
c′rBC ≤ crBC). This implies that, when P receives the set W ′

0 from P ′, the condition W ′
0 ⊆ W0

holds. Therefore, P adds P ′ to its set W1 at time τstart + 2crBC ·∆.

Lemma 37. Let P and P ′ denote two honest parties. By time τstart + (2crBC + c′rBC) ·∆, P has
added P ′ to its set W2.

Proof. Lemma 36 ensures that, at time τstart + 2 · crBC · ∆, P ′ holds a set W ′
1 of size at

least n − ts, and therefore sends it to all the parties. These messages are received within one
communication round, and, since c′rBC ≥ 1, it follows that P has received this set at time
τstart + (2crBC + 1) ·∆ ≤ τstart + (2crBC + c′rBC) ·∆.

Note that, if P ′ has added a party P ′′ in its set W ′
1 by time τstart + 2 · crBC ·∆, P receives

all the necessary messages to add P ′′ to its set W1 as well. Moreover, these messages are
received within c′rBC ·∆ additional time, due to c′rBC-Conditional Termination and Consistency.
Therefore, by time τstart + (2crBC + c′rBC) ·∆, W ′

1 ⊆ W1 holds and hence P adds P ′ to W2.
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Lemma 38. ΠGTHR satisfies Synchronized Termination Honest Common Core, Validity, and
Consistency when running in a synchronous network where at most ts of the parties involved
are corrupted.

Proof. Validity and Consistency follow immediately from the properties of ΠrBC. Then, the
Honest Common Core property follows from Lemma 35. Finally, Lemma 37 ensures that all
honest parties output at time (2crBC+c′rBC) ·∆, hence Synchronized Termination also holds.

Asynchronous Network. In the following, we assume that the network is asynchronous, and at
most ta of the parties involved are corrupted.

Lemma 39. For every honest party P , it eventually holds that
∣∣W1

∣∣ ≥ n− ts.

Proof. We first note that
∣∣W0

∣∣ ≥ n− ts eventually holds: this follows from ΠrBC’s Validity and
crBC-Honest Termination properties, which ensures that every honest value gets delivered.

Hence, every honest party eventually sends W0 to via ΠrBC. These sets are also eventually
delivered. Then, ΠrBC ensures that every value included by an honest party in its set M is
also received by all other parties due to Consistency and c′rBC-Conditional Termination, and
therefore at least n− ts parties are marked as level one witnesses eventually.

Lemma 40. For every honest party P , it eventually holds that
∣∣W2

∣∣ ≥ n− ts.

Proof. According to Lemma 39, every honest party sends its set W1 eventually via ΠrBC. Then,
these sets are eventually received by Validity and crBC-Honest Termination. In addition, if
P ′′ ∈ W1 for some honest party P ′, then eventually every honest party receives the same set
W ′′

0 that P ′ has received from P ′ due to ΠrBC’s Consistency and c′rBC-Conditional Termination,
and therefore may add P ′′ to their sets W1. Hence, every honest party may add P ′ to its set
W2. Therefore, eventually

∣∣W2

∣∣ ≥ n− ts for every honest party.

Lemma 41. Let H denote the first n− ts parties for whom
∣∣W1

∣∣ ≥ n− ts holds. Then, there is
an honest party P ⋆ such that ts + 1 parties in H have included P ⋆ in their sets W1.

Proof. We prove this result with the help of a counting argument. We first provide a lower
bound on the number of honest sets W0 received in total by the parties in H. Since each of the
n− ts in H has received n− ts such sets, and at least n− ts − ta out of these sets were sent by
honest parties, parties in H have received (n− ts − ta) · (n− ts) such sets.

Then, assume that there is no such party P ⋆, that was included in the W1 sets of at least
ts + 1 parties in H. This implies that every honest party has been included in the W1 sets of
at most ts parties in H. Therefore, the parties in H have received in total at most ts · (n− ts)
sets W0 from honest parties. This leads to a contradiction, as n > 2 · ts + ta implies that
(ts + 1) · (n− ts) < (n− ts − ta) · (n− ts).

Lemma 42. Assume
∣∣W2

∣∣ ≥ n − ts holds for all honest parties. Then, there is set of n − t
common value-sender pairs in their sets M.

Proof. Lemma 41 ensures that there is an honest party P ⋆ included in the W1 sets of at least
ts+1 honest parties. Since parties wait until

∣∣W2

∣∣ ≥ n− ts holds, they add at least one of these
ts + 1 parties to their sets W2, and therefore are forced to wait until they add P ⋆ to their set
W1. That is, until the set W ⋆

0 sent by P ⋆ is received, and W ⋆
0 ⊆ W0 holds. This will eventually

be the case, due to ΠrBC’s properties. Then, the value-sender pairs corresponding to the at least
n− ts parties in W ⋆

0 are included in the each of the honest parties’ output sets M.

Lemma 43. ΠGTHR satisfies Termination, ts-Common Core, Validity, and Consistency when
running in an asynchronous network where at most ta of the parties involved are corrupted.

Proof. Validity and Consistency follow immediately from the properties of ΠrBC. Then, Lemma
40 ensures Termination, and, together with Lemma 42, ensures ts-Common Core.
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C.4 Core-Set Agreement When n > 2 · ts + ta

We may now present our best-of-both-worlds protocol ΠACS enabling us to achieve CC with
optimal resilience.

As described in the main body of the paper, our approach for designing this protocol relies
on GTHR. Parties first distribute their inputs via the ΠGTHR protocol realizing Theorem 19,
described in Section C.3. When receiving output MGTHR, party P join an invocation of the
ΠBA protocol described in Theorem 17 for each party P ′: with input 1 if its set MGTHR contains
some value from P ′ and 0 otherwise.

Then, parties output the set value-sender pairs of senders for whom the ΠBA invocations have
resulted in output 1. Note that, although this implies that at least one honest party had input
1 in this invocation, this does not imply that every honest party has received the corresponding
value via ΠGTHR. In fact, we make use of an additional property that the implementation of
GTHR presented in Section C.3 provides, if the protocol is allowed to continue running for
sufficient amount of time even after parties obtain output (regardless of whether the network is
synchronous or asynchronous).

Lemma 44. Let P and P ′ denote two honest parties, and let M and M′ denote their message
sets in ΠGTHR. If (v, P ′′) ∈ M, then, eventually (v, P ′′) ∈ M′ as well.

Proof. Follows from ΠrBC’s Consistency and c′rBC-Conditional Termination properties: once P
receives a value via ΠrBC, P

′ receives it as well.

We provide the code of our ΠACS protocol below.

Protocol ΠACS

Code for party P with input v

1: Join ΠGTHR with input v.
2: When receiving output MGTHR from ΠGTHR:
3: Join an invocation of ΠBA for each party P ′: with input 1 if (v′, P ′) ∈ MGTHR for some v′,

and 0 otherwise.
4: Keep running line 2 of ΠGTHR:
5: Whenever receiving v′ from P ′ via ΠrBC initiated in ΠGTHR, add (v′, P ′) to MGTHR.
6: When obtaining outputs in all invocations of ΠBA:
7: P := the set of parties whose ΠBA invocations returned output 1
8: When (v′, P ′) ∈ MGTHR for every P ′ ∈ P:
9: M := the set of pairs (v′, P ′) ∈ MGTHR with P ′ ∈ P.

10: Output M and terminate.

Theorem 15. Let n, ts, ta be such that n > 2 · ts+ ta and ta ≤ ts. Then, there is a protocol ΠACS

achieving (ts, ta)-resilient ACS.

Proof. First, the Validity property follows immediately from the Validity properties of ΠrBC

and ΠGTHR. Next, ΠGTHR ensures that all honest parties obtain sets MGTHR that intersect in
at least n − ts values. In addition, if the network is synchronous, these sets contain all honest
values, and are obtained simultaneously.

Therefore, if the network is synchronous, all parties join the ΠBA invocations simultaneously,
hence all properties that ΠBA ensures when running in a synchronous network hold. It follows
that parties obtain output 1 for every honest party, and hence all honest values are included
in the output sets M. Moreover, parties agree on the same bit for every corrupted party. If
the output bit for some corrupted party is 1, then at least one honest party has included this
corrupted party’s value in its set MGTHR. Lemma 44 ensures that all honest parties receive this
value as well. Therefore, all honest parties output the same set M.
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If the network is asynchronous, since ΠGTHR ensures Termination, all honest parties even-
tually join the ΠBA invocations, and hence agree on a bit for each party due to Weak Validity.
ΠGTHR’s Common Core property ensures that all honest parties input 1 in at least n− ts of the
ΠBA invocations, and therefore output 1 in these invocations. For each invocation returning 1,
the Weak Validity property ensures that at least one honest party P has input 1, meaning that
P has received the corresponding value via ΠGTHR. Lemma 44 then ensures that all parties
eventually receive this value, and therefore all parties output the same set M of at least n− ts
values.

D Properties of The Safe Area

In this section, we prove a few useful properties of the honest parties’ safe areas. In some of
our proofs, we make use the following version of the Pigeonhole principle.

Lemma 45 (Pigeonhole Principle). Let S be a finite set and consider m subsets S1, . . . , Sm of
S. If

∑m
i=1

∣∣Si

∣∣ > (m− 1) ·
∣∣S∣∣, then ⋂

i∈[m] Si ̸= ∅.

Proof. For each s ∈ S, write Xs = {i ∈ [m] : s ∈ Si}. Observe that
∑

s∈S
∣∣Xs

∣∣ = ∑m
i=1

∣∣Si

∣∣ >
(m−1) ·

∣∣S∣∣. If ∣∣Xs

∣∣ ≤ m−1 holds for all s ∈ S, then
∑

s∈S
∣∣Xs

∣∣ ≤ (m−1) ·
∣∣S∣∣ would hold, which

we know is not the case. Hence, for some s ∈ S we have
∣∣Xs

∣∣ = m, from which s ∈
⋂

i∈[m] Si.

We first prove the central lemma for the analysis of our CC protocol, ensuring honest parties
compute non-empty safe areas. For this, n > max(ω · ts, ω · ts + ta) is assumed, where recall
that ta ≤ ts and ω is the Helly number of the convexity space.

Lemma 14. Assume n > max(ω · ts, ω · ta + ts), and that M is a set of n − ts + k value-party
pairs, where 0 ≤ k ≤ ts. Then, safemax(k,ta)(M) ̸= ∅.

Proof. For brevity, write t′ = max(k, ta). Recall that safet′(M) :=
⋂

M∈restrictt′ (M)⟨M⟩, where
restrictt′(M) := {M ⊆ M :

∣∣M ∣∣ = ∣∣M∣∣ − t′}. To show that an intersection of convex sets is
non-empty, it suffices to show that any ω of them intersect (by the definition of ω). Consider
ω sets M1, . . . ,Mω ∈ restrictt′(M). We show that ∩ω

i=1Mi ̸= ∅ using Lemma 45, from which
the required ∩ω

i=1⟨Mi⟩ ≠ ∅ naturally follows. To apply the lemma, we need that
∑ω

i=1

∣∣Mi

∣∣ >
(ω − 1) ·

∣∣M∣∣. Since ∑ω
i=1

∣∣Mi

∣∣ = ω · (
∣∣M∣∣− t′), this amounts to showing that ω · (

∣∣M∣∣− t′) >
(ω − 1) ·

∣∣M∣∣ ⇐⇒
∣∣M∣∣ > ω · t′ ⇐⇒ n− ts + k > ω · t′. Distinguish two cases:

• If k ≥ ta, the latter becomes n − ts + k > ω · k ⇐⇒ n − ts > (ω − 1) · k, which is true
since k ≤ ts and n > ω · ts.

• Otherwise, k < ta, and the latter becomes n − ts + k > ω · ta, which is true since k ≥ 0
and n > ω · ta + ts.

The rest of the section builds towards proving Lemma 20, which is the central result ensuring
the correctness of our AA protocol for chordal graphs. From this point on, our results make the
stronger assumption n > ω · ts + ta. This will often not be stated explicitly in the statements of
the lemmas to avoid unnecessary repetition.

Lemma 46. Let M1,M2 denote two sets of value-sender pairs such that
∣∣M1 ∪M2

∣∣ ≤ n, and∣∣M1∩M2

∣∣ ≥ n−ts. Assume that k1 =
∣∣M1

∣∣−(n−ts) ≥ ta, and define k∪ =
∣∣M1∪M2

∣∣−(n−ts).
Then, safek1(M1) ⊇ safek∪(M1 ∪M2) ̸= ∅.

Proof. Note that ta ≤ k∪ ≤ ts. Lemma 14 then immediately implies that safek∪(M1∪M2) ̸= ∅.
Moreover, restrictk1(M1) = {M ⊆ M1 :

∣∣M ∣∣ = n − ts} ⊆ {M ⊆ M1 ∪M2 :
∣∣M ∣∣ = n − ts} =

restrictk∪(M1 ∪M2). Hence, safek1(M1) ⊇ safek∪(M1 ∪M2).

The following is a useful monotonicity property of safe areas.
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Lemma 47. Let m be a value-party pair and M a set of value-party pairs. Then, for any t we
have safet(M) ⊆ safet−1(M) and safet(M) ⊆ safet(M∪ {m}).

Proof. We reason equatorially:

safet(M) =
⋂

M∈restrictt(M)

⟨M⟩ ⊆
⋂

M∈restrictt(M)

 ⋂
m′∈M\M

⟨M ∪ {m′}⟩


=

⋂
M∈restrictt−1(M)

⟨M⟩ = safet−1(M)

safet(M∪ {m}) = safet−1(M) ∩

 ⋂
M∈restrictt(M)

⟨M ∪ {m}⟩


⊇ safet(M) ∩

 ⋂
M∈restrictt(M)

⟨M⟩

 = safet(M)

Lemma 48. Let M1,M2 be two sets of value-party pairs such that
∣∣M1 ∪M2

∣∣ ≤ n, and
∣∣M1 ∩

M2

∣∣ ≥ n− ts. Assume that
∣∣M1

∣∣− (n− ts) ≤ ta. Then, safeta(M1) ⊇ safeta(M1 ∩M2) ̸= ∅.

Proof. Since n−ts ≤
∣∣M1∩M2

∣∣ ≤ ∣∣M1

∣∣ ≤ n−ts+ta, Lemma 14 implies that safeta(M1∩M2) ̸=
∅. Moreover, Lemma 47 implies that safeta(M1 ∩M2) ⊆ safeta(M1).

Lemma 49. Let M1,M2 be two sets of value-party pairs such that
∣∣M1 ∪M2

∣∣ ≤ n, and
∣∣M1 ∩

M2

∣∣ ≥ n − ts. Assume that
∣∣M1

∣∣ − (n − ts) ≤ ta and
∣∣M2

∣∣ − (n − ts) > ta, and define
k∪ =

∣∣M1 ∪M2

∣∣− (n− ts). Then, safeta(M1) ∩ safek∪(M1 ∪M2) ̸= ∅.

Proof. In order to prove this result, it will be useful for us to unroll the definition of the safe
areas. The statement becomes the following:⋂

M∈restrictta (M1)

⟨M⟩ ∩
⋂

M∈restrictk∪ (M1∪M2)

⟨M⟩ ≠ ∅.

It suffices to prove that any ω terms of this intersection have a non-empty intersection. That
is, for any a, b ≥ 0 with a + b = ω, every a elements X1, X2, . . . , Xa of restrictta(M1) and b
elements Y1, Y2, . . . Yb of restrictk∪(M1∪M2) have a non-empty intersection, implying the same
holds about their convex hulls.

Note that the edge-cases (a, b) ∈ {(0, ω), (ω, 0)} can be proven analogously to Lemma 14,
which shows that safe areas are non-empty.

From this point on, we may assume that a, b ≥ 1. For this case, we will show a slightly
stronger claim:

⋂a
i=1Xi∩

⋂b
i=1(Yi∩M1) ̸= ∅. This way, to apply Lemma 45 it suffices to show

that
∑a

i=1

∣∣Xi

∣∣+∑b
i=1

∣∣Yi ∩M1

∣∣ > (ω − 1) ·
∣∣M1

∣∣.
We first provide lower bounds for the sizes of sets Xi and Yi ∩ M1: each set Xi has size∣∣M1

∣∣ − ta and each set Yi ∩ M1 has size at least
∣∣M1

∣∣ − ts = (n − ts) − (ts − k1), where
k1 =

∣∣M1

∣∣ − (n − ts). The latter is non-trivial to see: note that Yi ∩ M1 = Yi \ (M2 \ M1),
from which

∣∣Yi ∩M1

∣∣ ≥ ∣∣Yi∣∣ − ∣∣M2 \M1

∣∣ = (n − ts) −
∣∣M2 \M1

∣∣. Moreover,
∣∣M2 \M1

∣∣ ≤∣∣M1 ∪M2

∣∣− ∣∣M1

∣∣ ≤ n− (n− ts + k1) = ts − k1.
Since ta ≤ ts, we obtain that

∣∣M1

∣∣− ts ≤
∣∣M1

∣∣− ta. Hence, a ·(
∣∣M1

∣∣− ta)+b ·(
∣∣M1

∣∣− ts) ≥
(
∣∣M1

∣∣− ta) + (ω− 1) · (
∣∣M1

∣∣− ts). We want to show that (
∣∣M1

∣∣− ta) + (ω− 1) · (
∣∣M1

∣∣− ts) >
(ω− 1) ·

∣∣M1

∣∣, which is the same as
∣∣M1

∣∣ > ta + (ω− 1) · ts. This holds because
∣∣M1

∣∣ ≥ n− ts
and n > ω · ts + ta.

Hence, Lemma 45 applies, so any ω of the relevant sets intersect, so their convex hulls also
intersect. Then, by the definition of the Helly number ω all relevant sets intersect, proving our
claim.
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Lemma 20. Let (Mi)
K
i=1 be sets of value-party pairs such that ki :=

∣∣Mi

∣∣ − (n − ts) ≥ 0. If∣∣⋃K
i=1Mi

∣∣ ≤ n and
∣∣⋂K

i=1Mi

∣∣ ≥ n− ts hold, then
⋂K

i=1 safemax(ki,ta)(Mi) ̸= ∅.

Proof. First, note that, for every 1 ≤ i ≤ K it holds that 0 ≤ ki ≤ ts.
Write M∪ :=

⋃K
i=1Mi, and M∩ :=

⋂K
i=1Mi and moreover define k∪ := M∪ − (n − ts)

and k∩ := M∩ − (n− ts). Note that, according to Lemma 14, the safe areas of these two sets,
namely S∪ := safemax(k∪,ta)(M∪) and S∩ = safemax(k∩,ta)(M∩) are non-empty. Then, Lemma
48 ensures that S∩ ̸= ∅ is included in the safe area of each set Mi with ki ≤ ta. If there is
no set Mi with ki > ta, our statement is proven. Similarly, Lemma 46 ensures that S∪ ̸= ∅ is
included in the safe area of every set Mi with ki > ta. Hence, there is no Mi with ki ≤ ta, our
statement is proven.

If there is at least a set Mi with ki ≤ ta and a set Mj with kj > ta, it follows that that
k∩ ≤ ta, while ta < k∪ ≤ ts. Applying Lemma 49, we obtain that ∃v ∈ S∩ ∩ S∪. Then, since
S∩ is included in the safe area of Mi with ki ≤ ta, and S∪ is included in the safe area of any
Mj with kj > ta, v belongs to all honest safe areas, which concludes the proof.

E Approximate Agreement

We first establish that, when the network is synchronous, since ΠGTHR ensures Simultaneous
Termination, its strong synchronous guarantees hold in every iteration. Then, regardless of
whether the network is synchronous or asynchronous, the Termination property of ΠChordal is
trivially achieved. In the following, we focus on Validity and Agreement.

Lemma 50. Let G be a chordal graph and A be a convex set of vertices in G. Let a ∈ A be a
simplicial vertex in the subgraph of G induced by A. Then, a ∈ ex (A).

Proof. Assume for a contradiction a ∈ ⟨A \ {a}⟩. Since in general A \ {a} ⊆ ⟨A \ {a}⟩, this
means that ⟨A \ {a}⟩ = A. Hence, considering the computation of ⟨A \ {a}⟩ by iterating the
“take all nodes on induced paths” operator in Section 2.2.1, there is an induced path P between
two vertices b, c ∈ A \ {a} that passes through a. Because A is convex, all vertices in P are
included in A. Because a is neither the beginning nor the end of P, it follows that a has two
neighbors in A \ {a} that are on P. However, since a is simplicial in A, those two neighbors are
joined by an edge, contradicting the fact that P is an induced path.

Lemma 51. Let A and B be convex sets such that A ⊆ B, and consider a ∈ A. If a /∈ ex (A),
then a /∈ ex (B). More succinctly, A \ ex (A) ⊆ A \ ex (B).

Proof. Write ⟨B \ {a}⟩ = ⟨(B \A) ∪ (A \ {a})⟩ = ⟨(B \A) ∪ ⟨(A \ {a})⟩⟩ = ⟨(B \A) ∪A⟩ =
⟨B⟩, where we have used the standard property that ⟨X ∪ Y ⟩ = ⟨X ∪ ⟨Y ⟩⟩.

Lemma 52 (Dirac’1961, [14]). Every chordal graph has a simplicial vertex. Every chordal graph
that is not a clique has two non-adjacent simplicial vertices.

Lemma 22. Assume 1 ≤ it ≤ max it and that Hit−1 does not form a clique in G. Then, Hit ⊊
Hit−1.

Proof. Write s = minHit−1. Note that s is simplicial in Hit−1 by definition of ordering ≻, and
hence it is also extremal by Lemma 50. Let P be the set of honest parties. Denote by SP

it the
safe area computed by honest party P in iteration it. Note that, by Lemma 14, SP

it ⊆ Hit−1. The
properties of ΠGTHR enable us to apply Lemma 20 and therefore obtain that the intersection
of the honest parties’ safe areas is non-empty, so consider an arbitrary y ∈ ∩P∈PS

P
it . We now

distinguish two cases:
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1. If y ̸= s, consider some honest party P ∈ P with computed safe area SP
it . We will show

that vPit ̸= s. Since s is extremal, this implies that s ∈ Hit−1\Hit, and hence the conclusion.
Consider two cases, corresponding to the two cases in the algorithm:

(a) If SP
it = ex (SP

it ), then party P sets vPit = maxSP
it . However, as y ∈ SP

it and y ≻ s it
follows that vPit ≻ s, so vPit ̸= s, as claimed.

(b) If SP
it ̸= ex (SP

it ), then party P picks vPit ∈ SP
it \ ex (SP

it ) arbitrarily. Since S
P
it ⊆ Hit−1,

by Lemma 51, it follows that vPit ∈ SP
it \ ex (Hit−1). As s ∈ ex (Hit−1), this means that

vPit ̸= s, as claimed.

2. If y = s, then, since Hit−1 does not induce a clique, by Lemma 52, the subgraph induced
by Hit−1 in G has two simplicial vertices a, b ∈ Hit−1 which are not joined by an edge. For
the proof, we will need two such vertices where one of them is s. Recall that s is known
to be simplicial. If s /∈ {a, b} and the graph has both edges s − a and s − b, then that
would contradict the fact that s is simplicial. Hence, without loss of generality, assume
that s and a are distinct simplicial vertices with no edge between them in the graph. We
will now show that for any honest party P ∈ P it holds that vPit ̸= a. If a /∈ SP

it , then
this is clear, so assume a ∈ SP

it . As a result, we know that {s, a} ⊆ SP
it . Since the edge

s − a does not exist in G and its endpoints are contained in SP
it , it follows that SP

it does
not induce a clique, meaning by Lemma 1 that SP

it is not free, so SP
it ̸= ex (SP

it ). As a
result, party P picks vPit ∈ SP

it \ ex (SP
it ) arbitrarily. Since SP

it ⊆ Hit−1, by Lemma 51, it
follows that vPit ∈ SP

it \ ex (Hit−1). Since a is a simplicial vertex in the subgraph induced
by Hit−1, it follows by Lemma 50 that a ∈ ex (Hit−1), so vPit ̸= a, as claimed. To conclude,
a ∈ Hit−1 \Hit, from which the conclusion follows.

Theorem 23. Assume n ≥ 3 and that the network is asynchronous, then for any d ≥ 0 there
is a graph Gd with Θ(d) vertices and edges such that no deterministic n-party protocol resilient
against two crashes satisfies Geodesic Convex-Hull Validity, Termination, and Agreement within
Graph Distance d.

Proof. It suffices to prove this for odd d, as for even d one can just use the result for d + 1 to
get the conclusion. Hence, it equivalently suffices to prove the result for 2d + 1 for all d ≥ 0.
Consider a cycle graph G consisting of 6d+ 3 nodes. For graph G, assume Π is a deterministic
n-party protocol achieving geodesic convex-hull validity, termination, and agreement within
graph distance 2d + 1 if the network is asynchronous and at most two parties might crash.
Designate nine nodes v0, . . . , v8 in, say, clockwise order along the cycle such that the distances
dist(vi, vi+1) in order for 0 ≤ i < 9 are d, 1, d, d, 1, d, d, 1, d, where we assumed for convenience
that v9 denotes v0. Construct a new protocol Π′ which runs Π followed by each party P taking
their output vPout from Π and computing their output for Π′ as the node v ∈ {v0, v3, v6} which
minimizes the distance dist(vPout, v). Note that, because the distance between any two distinct
nodes in {v0, v3, v6} is 2d + 1, and hence odd, this node v is uniquely determined. Let us now
investigate the guarantees achieved by protocol Π′. First, it can not be that three distinct honest
parties output v0, v3 and respectively v6, as one can check that this would require some outputs
of Π to be more than distance 2d+ 1 apart, which can not be the case by assumption. Hence,
Π′ satisfies 2-Set Agreement. Moreover, note that Π′ inherits termination from Π. Now, say we
restrict protocol Π′ to only allow parties to have inputs in {v0, v3, v6}, making it a protocol with
the three-valued input-output domain {v0, v3, v6}, which we so far know satisfies termination
and 2-Set Agreement. Because Π satisfies convex-hull validity, notice that if all honest parties
have the same input, then they will also have the same output, equalling this input. Moreover,
if the set of honest inputs consists of two values, say without loss of generality v0 and v3, then
the set of honest outputs for Π will be contained in ⟨v0, v3⟩, which is the path between v0 and v3
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in G. Hence, the outputs for Π′ computed by the honest parties will be contained in {v0, v3}. As
a result, Π′ satisfies Honest-Input Validity, meaning that the set of honest outputs is a subset
of the set of honest inputs. Overall, Π′ is an n-party deterministic protocol with a three-valued
input-output domain that guarantees termination, 2-Set Agreement and Honest-Input Validity
when the network is asynchronous and at most two parties may crash. Such a protocol is known
not to exist for n ≥ 3 by standard combinatorial topology arguments [21]. This is true for crash
failures even if Honest-Input Validity is replaced with Any-Input Validity. Hence, Π can not
exist either.
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