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Abstract. Reversed multiplication friendly embedding (RMFE) amorti-
zation has been playing an active role in the state-of-the-art constructions
of MPC protocols over rings (in particular, the ring Z2k). As far as we
know, this powerful technique has NOT been able to find applications
in the crown jewel of two-party computation, the non-interactive secure
computation (NISC), where the requirement of the protocol being non-
interactive constitutes a formidable technical bottle-neck. We initiate such
a study focusing on statistical NISC protocols in the VOLE-hybrid model.
Our study begins with making the decomposable affine randomized encod-
ing (DARE) based semi-honest NISC protocol compatible with RMFE
techniques, which together with known techniques for forcing a malicious
sender Sam to honestly follow DARE already yield a secure amortized pro-
tocol, assuming both parties follow RMFE encoding. Achieving statistical
security in the full malicious setting is much more challenging, as applying
known techniques for enforcing compliance with RMFE incurs interaction.
To solve this problem, we put forward a new notion dubbed non-malleable
RMFE (NM-RMFE), which is a randomized RMFE such that, once one
party deviates from the encoding specification, the randomness injected
by the other party will randomize the output, preventing information from
being leaked. NM-RMFE simultaneously forces both parties to follow
RMFE encoding, offering a desired non-interactive solution to amortizing
NISC. We believe that NM-RMFE is on its own an important primi-
tive that has applications in secure computation and beyond, interactive
and non-interactive alike. With an asymptotically good instantiation of
our NM-RMFE, we obtain the first statistical reusable NISC protocols
in the VOLE-hybrid model with constant communication overhead for
arithmetic branching programs over Z2k .
As side contributions, we consider computational security and present
two concretely efficient NISC constructions in the random oracle model
from conventional RMFEs.

1 Introduction

Non-interactive secure computation (NISC) [19] is referring, in particular, to a
two-message secure two-party computation (2-PC), where the receiver Rachel
publishes a message encrypting her private input x and a sender Sam, at any time,
can use Rachel’s message to complete a secure computation of f(x, y), where y
is his private input, by sending a single message to Rachel, which contains no
information about y beyond f(x, y). The importance of NISC is vividly illustrated



by application scenarios such as profile matching in a dating website or DNA data
comparing in an algorithm that tells whether two persons are related. In these
application scenarios, both Sam’s and Rachel’s inputs contain sensitive personal
information and are to be kept private, hence a secure 2-PC protocol should be
implemented to complete the tasks. However, conventional 2-PC protocols require
interaction, which means that Sam and Rachel need to be online at the same time
and possibly exchange messages in multiple rounds. The synchronization, for
one thing, and intolerance to communication latency, for another, put solutions
involving interactive 2-PC protocols out of consideration. On the other hand,
NISC (especially those allow Rachel’s message to be reused by multiple senders,
called reusable NISC, or rNISC for short) enables “public-key” variants of secure
computation in the fashion that a public-key encryption scheme enables secure
transmission of messages among strangers.

Without efficiency concerns, the problem can be solved in a simple two-
step approach: one begins with any two-message 2-PC protocol secure against
semi-honest parties, e.g. Yao’s garbled circuit (GC) [25] or fully homomorphic
encryption (FHE) [16], and then have both parties include a non-interactive
zero-knowledge (NIZK) proof showing that their respective messages are honestly
prepared. The caveat of this simple approach is that the statements to be proved
involve cryptographic operations on secrets, which is in general inefficient.

NISC from oblivious transfer. In order to build NISC protocols for general
functions in the oblivious transfer (OT)-hybrid model, Ishai et. al. [19] started
with the semi-honest GC protocol. They used a statistical NISC for NC0 circuits
to prove that Sam participates in the GC protocol honestly, avoiding the inefficient
non-black-box use of NIZK and only making a black-box use of a pseudo-random
generator (PRG). For NC0 circuits, there is an efficient statistical semi-honest
two-message 2-PC in the OT-hybrid model using the so-called decomposable
affine randomized encoding (DARE) [18,2]. The DARE allows to transform a
circuit evaluation into parallel calls to an OT functionality, which in fact leaves
no room for a malicious NISC receiver (as OT receiver) to cheat. And the desired
statistical NISC for NC0 circuits can be obtained by applying the so-called
certified OT [19] mechanism that allows Rachel to verify that Sam’s inputs to
these parallel OTs are honestly prepared. Though the asymptotic efficiency of the
above protocol is rather appealing, it contains several ingredients that could incur
large hidden constant in the concrete efficiency estimation. The followup work [1]
devised a clever way to squash the interactive cut-and-choose to a single round,
and obtained a concretely efficient NISC construction. With more sophisticated
manipulations, this cut-and-choose approach was extended to yield amortized
NISC protocols that allow to simultaneously evaluate multiple instances of the
same circuit in order to reduce the cost [21]. This amortization technique seems
to be very task-specific and not likely to be applied elsewhere.

Reusable NISC. An impossibility result concerning statistical reusable NISC
in the OT-hybrid model was shown in [10], casting such protocols in the setting
of parallel calls to a string OT, where Sam provides the input pair and Rachel
provides the choice bit. The main observation is that such protocols satisfy that
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Rachel’s message can be separated into bits where each bit is interacting with
only a small part of Sam’s message. This allows a malicious Sam to apply the
so-called selective failure attack. For instance, Sam honestly follows the protocol
specification, except that, in one call to string OT, he replaces one of the two
input strings by a uniform string and is caught cheating only when Rachel selects
the tampered string, which occurs with probability 1/2. The authors of [10]
then proposed a countermeasure through replacing OT with oblivious linear
function evaluation (OLE), and constructed efficient statistical rNISC protocols
in the OLE-hybrid model for branching programs over finite fields, which has
high-level resemblance to the statistical NISC for NC0 circuits in [19]. The OLE
functionality over a ring R allows Sam to input a, b ∈ R and Rachel to input
α ∈ R, after which the functionality outputs a · α + b to Rachel. Intuitively,
replacing OT with OLE has the advantage that, the selective failure attack
succeeds with probability related to the ring size (e.g. 1/|R|, if R is a finite
field), which may be negligible by setting the ring to be sufficiently large. For
implementing the rNISC protocols, a two-message reusable OLE protocol under
the Paillier assumption was also presented in [10]. Informally, a reusable OLE
protocol has the property that it is difficult for Sam to construct a partially
correct message: any answer message Sam provides to Rachel is either accepted
or rejected except with a negligible probability.

The followup work [13] improved the state-of-the-art of statistical rNISC
through a new statistical proof system for circuit satisfiability called line-point
zero-knowledge (LPZK) by a single Vector-OLE (VOLE) invocation. Another
optimization comes from the implementation aspect through an efficient pseudo-
random correlation generator (PCG) [5] construction for VOLE (similar to OT
extension) based on a variant of learning parity with noise (LPN) [3] assumption.
Instantiated with the reusable VOLE construction in [10] and the two-round PCG
construction in [6], the resulting VOLE protocol has good concrete efficiency.

A very recent work [17] bypassed the impossibility result of [10], through
making a black-box use of a secure two-message OT protocol. The authors of [17]
followed the framework of [19], instead of extending the VOLE-hybrid framework,
and showed a compiler that constructs an rNISC in the random oracle model for
any Boolean function f , via a black-box use of any non-reusable NISC protocol
that computes a related function f ′. The non-reusable NISC protocol for f ′ was
then instantiated with the construction of [19]. The main drawbacks are that
their compiler is not statistical and incurs at least quadratic communication
overhead in the security parameter 1.

rNISC over integer rings. Focusing on statistical security and concerning
recent progress on rNISC for branching programs over fields, it is natural to ask
whether these schemes can be efficiently adapted to work over arbitrary rings (in
particular, the ring Z2k , as the models of computation in real-life programming
and the computer architectures are formulated as operations over Z232 or Z264).

1 We remark that for some simple function f , e.g. branching programs, it seems that
the non-reusable NISC can be instantiated with a lightweight NISC protocol, and
the overhead is then optimized to linear in the security parameter.
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More specifically, we are interested in finding out if it is possible to have
a statistical rNISC protocol over the ring Z2k that matches the benchmarks of
statistical rNISC protocols over large fields.

Given a branching program over a sufficiently large field, the statistical
rNISC protocols for branching programs in [10,13] have constant communication
overhead, compared to the semi-honest NISC (from DARE). We note that naively
taking the above rNISC protocols over a field and replacing the field with a
ring Z2k will ruin the security, due to the fact that the ring Z2k contains too
many zero divisors (one half). This results in that the soundness error will keep
a constant, no matter how large the ring Z2k is.

Similar problems have been under scrutiny in the study of arithmetic circuit
MPC protocols throughout the last decade, yielding a plethora of important
results. We highlight an extremely successful technique, the reversed multiplication
friendly embedding (RMFE) [7,12]. Informally, an RMFE includes two maps ϕ, ψ,
which allows to efficiently transform computations over a small field Fp (ring
Z2k) into its extension field Fpd (extension ring GR(2k, d)2) through ϕ, and the
results over Fp can be efficiently recovered from the result of computations over
the large field Fpd (Galois ring GR(2k, d)) through ψ. Here we remark that the
naive embedding (e.g. Fp ↪→ Fpd) is a special case of RMFE (Fm

p ↪→ Fpd). On
the one hand, the RMFE technique provides amortization benefits (compared
to naive embedding). On the other hand, non-trivial efforts should be made to
force parties to follow the RMFE encoding honestly. As far as we know, RMFEs
have been applied into honest majority MPC [7,9,12], dishonest majority MPC
[15], VOLE-based ZK [20], and zk-SNARKs [8,4], etc. However, RMFEs have not
been applied in the NISC setting yet.

1.1 Our Contributions

We put forward a new and novel RMFE technique that strengthens RMFEs,
called non-malleable RMFE (NM-RMFE). We initiate the study of NISC over
Z2k as well. With our NM-RMFE technique, we give the first asymptotically
efficient statistical rNISC/VOLE for arithmetic branching programs over Z2k .
We also explore computational approaches to realize more concretely efficient
NISC constructions for arithmetic branching programs over Z2k from RMFEs.

(1) The NM-RMFE is essentially a randomized variant of RMFE such that,
when used in amortizing a secure 2-PC protocol, the randomness injected by
the honest party prevents information about his/her private input from being
leaked to the malicious party who cheats by providing an element not in the
image of the map ϕ. NM-RMFE offers a conceptually simpler (removing the
proofs) and, more importantly, non-interactive solution to forcing correct RMFE
encoding: Rachel can directly implement a check mechanism in NM-RMFE to
abort a cheating Sam, while simultaneously an honest Sam’s input is not leaked
to Rachel when Rachel is cheating. We believe that NM-RMFE is of independent

2 see definition in Section 2.
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interest in amortizing secure computation, interactive and non-interactive alike.
We give an NM-RMFE construction (in Section 3.2) with the following features.
Theorem (informal) There exists a family of (m, d;D)-NM-RMFE’s from Zm

2k

to GR(2k, d), supporting multiplication for D − 1 times, with d/m asymptotically
close to a constant.

For instance, we construct a family of (m, d; 2)-NM-RMFEs over Z2k with
d
m → 29.13,m→∞ and a family of (m, d; 3)-NM-RMFEs over Z2k with d

m →
80.15,m→∞.

(2) Regarding NISC protocols over Z2k , we have the following informal
theorem (induced by Theorem 4).
Theorem (informal) There exists a statistical rNISC protocol computing branch-
ing programs over Z2k with communication overhead close to a constant.

The above theorem indicates that the amortized efficiency of our construction
asymptotically matches the state-of-the-art statistical rNISC protocol over large
fields [13]. Though our exposition highlights the most useful special cases of
arithmetic circuits over Z2k , all protocols straightforwardly extend to Fpk and
Zpk for arbitrary prime p. Before this work, statistical rNISC over small fields
[10,13] had to pay overhead at least linear in the security parameter (which are
realized by rNISC over large fields). More importantly, there was no efficient
constructions for Z2k . Our results bridge the gaps left behind by the difference
between computation domains in an amortized sense (asymptotic nature).

(3) As side contributions, we present a maliciously secure rNISC construction
for computing branching programs over Z2k from a random oracle aided cut-
and-choose, through making a black-box use of any two-message reusable VOLE
protocol over GR(2k, d) (inspired by the approach of [17]). We also present a
highly efficient maliciously secure NISC construction for computing branching
programs over Z2k in the OT-hybrid model.

1.2 Technical Overview

The challenge for constructing NM-RMFE lies in the fact that the notion itself
demands the coexistence of two conflicting properties: multiplication friendliness
(malleability for valid multiplicands) and non-malleability (against one invalid
multiplicand). There was no cryptographic primitive of this flavor in the literature,
as far as we know. One must turn to known constructions for each property
separately for inspirations and hope that they can be combined. The RMFE
concatenation technique plays an important role in constructing binary RMFE
by concatenating two RMFE’s. On the other hand, the Fujisaki-Okamoto (FO)
transform (widely used in e.g. post-quantum cryptography NIST submissions)
uses two encryption schemes, one encrypting the payload while the other one
encrypting the random key of the first to enable a consistency check via checking
whether the ciphertext of the second encryption scheme is valid. We import
the core idea of the FO transformation into RMFE concatenation by injecting
randomness into the first RMFE and use the its encoding relation for FO style
“cipher text” check.
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For rNISC/VOLE constructions, we begin with recalling the construction
of rNISC/VOLE for branching programs in [13]. The semi-honest protocol is
an execution of t parallel VOLE’s over a large enough Galois field F, where t
is the number of components in Rachel’s input x ∈ Ft. Rachel’s inputs to the
VOLE’s are simply the t components of x. Sam’s inputs to the VOLE’s are
generated using a DARE scheme that, given y, the branching program f(·, ·) and
Sam’s private randomness, produces t pairs of vectors (each pair of such vectors
define an affine line, hence the name DARE). Note that the semi-honest protocol
already leaves a malicious Rachel no room to cheat. The malicious protocol only
needs to make sure that Sam’s t input lines to the VOLE’s in the semi-honest
protocol are indeed the result of running the DARE scheme using f(·, ·), some
secret y and some secret randomness. If one adds a new VOLE to the semi-honest
protocol and let Sam describe the DARE scheme specification as an arithmetic
circuit C to invoke the LPZK proof system using his t input lines as witness,
then the only room for Sam to cheat in this intermediate protocol is to fake the
consistency of the t lines and LPZK witness encoded in the new VOLE instance.
The above consistency check problem boils down to a mechanism called VOLE
with equality constraint (eVOLE) that allows Sam to prove equivalence of an
arbitrary component in the two vectors defining one line and some component in
the two vectors defining the other line. To complete the malicious rNISC/VOLE
protocol, one more instance of VOLE is then added where Rachel’s input is a
uniform point β ∈ F (input randomizer for eVOLE construction), and eVOLE is
invoked to prove consistency of Sam’s input lines between this copy of VOLE
(serving as a bridge) and all other copies of VOLE’s.

We are now in good position to describe our constructions for rNISC/VOLE
over Z2k . Our exposition begins with an observation that the Galois ring GR(2k, d)
behaves very similarly to the Galois field F2d with respect to constructing building
blocks LPZK and eVOLE in the recalled malicious protocol. This suggests that
we could view the inputs of Sam and Rachel as consisting of elements in GR(2k, d)
and try to design a rNISC/VOLE over GR(2k, d). But this idea alone does not
give us the desired efficiency, as the choice of the extension degree d depends on
the security parameter (we need 2d to be roughly the size of F in the recalled
protocol). To circumvent this caveat, we embed multiple elements of Z2k into
a single element of GR(2k, d) and make sure that computation (in particular,
multiplication) is still “preserved” under this embedding. If we could make the
RMFE techniques work with the recalled rNISC/VOLE framework, the cost of
operating over a large ring GR(2k, d) will be amortized by executing Ω(d) copies
of computation over Z2k and we are done.

The first challenge comes from the DARE scheme in the semi-honest protocol.
Unlike the conventional masking approach to privacy (adding a one-time-pad
to the sensitive value before computing on it and remove the pad afterwards),
the DARE scheme hides information through multiplying the sensitive matrix
by two random structured matrices from the left and the right, respectively
(effectively hiding the sensitive matrix among the set of such matrices that have
the same determinant, hence destroying other information about the matrix
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than its determinant). This subtle difference already causes big troubles in the
semi-honest model when naively compiling the DARE scheme with RMFE. Recall
that an RMFE over Z2k includes two Z2k -linear maps, the embedding map ϕ
and the decoding map ψ. Note that ϕ is not surjective (being an embedding)
and the embedding only preserves multiplication for GR(2k, d) elements that lie
in the image of ϕ. Therefore, one needs to carefully analyze the effect of this
fact on the correctness and privacy of the DARE scheme. If we were to sample
entries of the structured random matrices over the entire GR(2k, d), we could
encounter multiplication by a GR(2k, d) element that does not lie in the image
of ϕ, which would damage the correctness of the DARE scheme. From now on,
assume we sample entries of the structured random matrices over the image of ϕ
only. The DARE scheme involves computing matrix multiplication for two times
(for correctness we can use Degree-3 RMFEs [14]). We next analyze whether the
privacy of the DARE scheme is affected by RMFE. We remark that the product
of two elements in the image of ϕ may no longer remain in the image of ϕ, which
may reveal more information than we expect. We solve this by masking with a
random element in the kernel of ψ.

The second challenge comes from making malicious Sam follow the RMFE
encoding in our semi-honest protocol and making malicious Rachel correctly
encode her input using RMFE, simultaneously. Jumping ahead, note that once
the correct RMFE encoding is guaranteed, the rest of the security proof against
a malicious adversary follows straightforwardly using analogy to the recalled
protocol over fields (we include a self-contained exposition of the building blocks
LPZK and eVOLE over GR(2k, d) in Section 4.2 for completeness). This second
challenge is a huge bottle-neck because none of the known RMFE techniques
come close to suggesting a workable idea. The standard RMFE techniques for
constructing interactive secure computation protocols do have a (V)OLE-based
variant [20], where elements in GR(2k, d) are restricted in image of ϕ (see the
exposition in Section 5.1, where we do use it in our two side contributions). The
difficulties lie in removing the interaction that is liberally in use and seemingly
inherent. For one thing, sacrifice is used to generate correlated randomness that
enables the re-embedding VOLE functionality. This can be made non-interactive
at the cost of using a random oracle, hence settling for computational security.
More seriously, the above process of correlated randomness generation is only
capable of allowing one party (VOLE sender) to prove correct RMFE encoding
to the other party (VOLE receiver). This means that we would not be able
to prove correct RMFE encoding for Sam and Rachel simultaneously without
interaction. We put forward the notion of NM-RMFE and propose a statistical
instantiation of NM-RMFE that solves this bottle-neck problem. In a high level,
strengthening RMFE to NM-RMFE allows for “extraction” in the simulation,
which means that the simulation will go through no matter how the adversary
deviates from the NM-RMFE encoding. Combining all pieces together, we obtain
a statistical rNISC/VOLE for computing branching programs over Z2k with
asymptotic efficiency as the rNISC/VOLE over large fields.
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Computational NISC. Finally, we explore standard computationally secure
techniques for forcing both parties to follow the RMFE encoding honestly. For the
malicious sender side, we augment the above Galois ring analogue certified VOLE
by substituting the VOLE-hybrid model with the re-embedding VOLE-hybrid
model following the idea of [20]. For the malicious receiver side, we define a
variant of VOLE over GR(2k, d), where the receiver’s inputs are restricted in the
image of ϕ, and provide two instantiations. The former instantiation (inspired by
[17]) uses the random oracle to realize a non-interactive cut-and-choose such that
Rachel “proves” to Sam her input is in the image of ϕ. The latter construction
comes from an observation that for a correlated OT-based VOLE construction,
since the image of ϕ is actually a linear space over Z2k , the bits that Rachel sends
to correlated OTs one-to-one correspond to an element in the image of ϕ as long
as the number of correlated OTs is restricted to the size of the image of ϕ.

2 Preliminaries

Notations. In this paper, bold letters (e.g. a, b) are used to denote vectors.
We use xi to denote the ith-component of the vector x (similarly xi,j for the
jth-component of xi). We use [a, b] (or [a, b + 1) sometimes) to denote the set
of integers in the range from a to b. If a = 1, it is simplified by [b]. We also use
x|J to denote the set {xi | i ∈ J}. We use x $← R to denote that x is uniformly
sampled from a ring R and denote the uniform distribution over R by UR. For
a map ϕ : R1 → R2, we naturally extend it to be defined over vector space Rn

1

and matrix space Rm×n
1 . Let Im(ϕ) denote the set {ϕ(x) | x ∈ R1} and Ker(ϕ)

denote the set {x ∈ R1 | ϕ(x) = 0}. For a commitment scheme, we use the
notation [[α]] to denote the commitment of α. For two distributions D1,D2, we
use the notation D1

s≈ D2 to denote that they are statistically close.
Galois Rings. Let p be a prime, and k, d ≥ 1 be integers. Let f(X) ∈ Zpk [X]

be a monic polynomial of degree d such that f(X) := f(X) mod p is irreducible
over Fp. A Galois ring over Zpk of degree d denoted by GR(pk, d) is a ring extension
Zpk [X]/(f(X)) of Zpk . We refer to the textbook [24] for a friendly exposition.
Same as the special case of Galois fields, there is a bound on the number of roots
for a nonzero polynomial over GR(pk, d).

Lemma 1 ([24]). A nonzero degree-r polynomial over GR(pk, d) has at most
rp(k−1)d roots.

Lemma 1 immediately gives that for any nonzero degree-r polynomial f(x)
over GR(pk, d), we have that

Pr
[
f(α) = 0

∣∣∣α $← GR(pk, d)
]
≤ rp−d.

In particular, we have that 1/pd fraction of elements are zero divisors in GR(pk, d).
Degree-D RMFE. The reverse Multiplicative Friendly Embedding (RMFE for
short) was first introduced in [7], which packs multiple multiplications over a
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field Fq to one multiplication over its extension Fqd . It was further shown in [12]
that RMFEs over Galois fields (Fm

pr → Fprd) induce RMFEs over Galois rings
(GR(pk, r)m → GR(pk, rd)). Degree-D RMFE [14] is a natural generalization of
RMFE, which supports multiplication for upto D − 1 times.

Definition 1. Let p be a prime, k, r,m, d,D ≥ 1 be integers. A pair (ϕ, ψ) is
called an (m, d;D)-RMFE over GR(pk, r), if ϕ : GR(pk, r)m → GR(pk, rd) and
ψ : GR(pk, rd)→ GR(pk, r)m are two GR(pk, r)-linear maps such that

ψ(ϕ(x1) · ϕ(x2) · · · ϕ(xD)) = x1 ∗ x2 ∗ · · · ∗ xD

for all x1,x2, ...,xD ∈ GR(pk, r)m, where ∗ denotes the entry-wise multiplication.

Standard RMFEs are essentially degree-2 RMFEs. Degree-D RMFEs have
the following properties, which are generalized from the degree-2 case.

Lemma 2 ([20]). Let (ϕ, ψ) be an (m, d;D)-RMFE over Galois ring GR(pk, r).
We have that GR(pk, rd) is the direct sum of Ker(ψ), ϕ(1)D−1 · Im(ϕ), where 1
denotes the vector of all 1’s. That is GR(pk, rd) = Ker(ψ)⊕ (ϕ(1)D−1 · Im(ϕ)).

As shown in [14], there always exists an (m, d;D)-RMFE over Galois ring
GR(pk, r) with ϕ(1) = 1. Thus, we always assume ϕ(1) = 1 for the rest of this
paper. Then, the above lemma indicates that ψ introduces a bijection when
restricted on Im(ϕ). We have the following lemma that indicates the asymptotic
behavior of degree-D RMFEs.

Lemma 3 ([14]). There exists a family of (m, d;D)-RMFE over Z2k for all
k ≥ 1 with m→∞ and d

m →
1+2D

3 (D + D(3+1/(2D−1))
2D+1−1

).

For instance, when m → ∞, there exists a family of (m, d; 2)-RMFEs over
Z2k with d

m → 4.92. and a family of (m, d; 3)-RMFEs over Z2k with d
m → 8.47.

VOLE. The (random) vector oblivious linear function evaluation (VOLE) is a
two-party primitive that allows two parties PS , PR to obtain random correlated
values. In more detail, the sender PS obtains two random vectors a, b, while
the receiver PR obtains a random scalar α and a random vector v such that
v = a ·α+b holds. We formalize the ideal VOLE functionality over arbitrary ring
R in Figure 1. We also use the chosen-input variant of VOLE in this paper, where
(a, b), α are provided by the sender and the receiver, respectively. The above
VOLE correlation can be viewed as a linear homomorphic Message Authentication
Code (MAC) that authenticates a using the MAC key α, denoted by [a]α.
Non-Interactive Secure Computation. We follow the VOLE-based reusable
Non-interactive Secure Computation (rNISC) definition in [13]. In a high level,
the sender PS encodes its input as multiple lines (PS ’s VOLE inputs) and the
receiver PR encodes its input as multiple points (PR’s VOLE inputs), one for each
line. In reusable security, a malicious sender A can learn whether the receiver
rejects its possibly illegal messages after each execution. We give the formal
definition of rNISC as follows.
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Functionality FR
VOLE

Parameterized by a ring R, length parameters l1, ..., ln ∈ N.

Setup phase: Upon receiving (sid; initialize) from PS and PR, sample α $←R
and store (sid;α), and ignore any further inputs from PS and PR with the same
session identifier sid. Send α to PR.
Send phases: Upon receiving (sid; send; li) from PS and PR, verify that there
are stored values (sid;α); else, ignore that message. Sample a, b

$←Rli , and store
(sid;a, b; li), and ignore any further inputs from PS and PR with the same session
identifier sid. Send (a, b) to PS and v := a · α+ b to PR.

Fig. 1: Ideal functionality for random VOLE over R.

Definition 2 (rNISC). An VOLE-based reusable non-interactive secure compu-
tation (NISC) protocol for an arithmetic function f : Rn1 ×Rn2 → Rt consists
of a triple of algorithms (R1, S,R2) defined as follows:

– R1(R,x) is a PPT algorithm that, given an input x ∈ Rn1 , outputs points
(α1, ..., αn′) ∈ Rn′

and auxiliary information aux.
– S(R,y) is a PPT algorithm that, given an input y ∈ Rn2 , outputs n′ pairs

of vectors ai, bi ∈ Rli , each specifying an affine line vi(α) := ai · α+ bi.
– R2(R, (v1, ...,vn′), aux) is a polynomial-time algorithm, such that given n′

evaluations vi ∈ Rli and auxiliary information aux, outputs either z ∈ Rt

or ⊥.

We say the algorithms (R1, S,R2) has reusable malicious security, if the following
security requirements hold:

– Completeness. As long as R2 takes inputs vi = vi(αi), for i ∈ [n′], where
vi(α) and αi are given by S and R1, respectively, we have that R2 outputs
z = f(x,y).

– Reusable ε-security against malicious sender. There exists a polynomial-
time extractor Ext such that given n′ lines v∗

i (t) := a∗
i · α+ b∗i with vectors

a∗
i , b

∗
i ∈ Rli , outputs y∗ ∈ Rn2 or ⊥ with the following holds: for every honest

receiver’s input x ∈ Rn1 , the receiver’s output z := R2(R, (v∗
1, ...,v

∗
n′), aux)

is equal to f(x,y∗) except with ≤ ε probability over the receiver’s randomness.
The random-input variant of the above definition is also used in this paper,
where the probability is over both the receiver’s randomness and an x sampled
from Rn1 uniformly at random.

– Statistical security against malicious receiver. There exist a polynomial-
time extractor algorithm Ext and PPT simulator algorithm Sim such that,
given points α∗

1, ..., α
∗
n′ ∈ R, Ext outputs effective x∗ ∈ Rn1 with the fol-

lowing holds: for every honest sender’s input y ∈ Rn2 , the output distri-
bution of Sim(R, f(x∗,y)) is statistically close to {(v1(α

∗
1), ...,vn′(α∗

n′)) |
(v1(α), ...,vn′(α))← S(R,y)}.
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Branching Program. In this paper, we mainly consider arithmetic functions
that can be represented by branching programs [18].

Definition 3 (Branching Program over R). A branching program (BP )
over R is defined by a quadruple BP = (G,φ, v, t), where G = (V,E) is a directed
acyclic graph, φ is an edge labeling function assigning each edge a degree-1
polynomial in a single input variable xi, and v, t are two special vertices. The size
of BP is the number of vertices in G. Each input assignment x = (x1, ..., xn) ∈ Rn

induces an assignment Gx of a value from R to each e ∈ E. The output BP(x)
is defined as the sum of the weights of all directed paths from v to t in Gx, where
the weight of a path is the product of the values of its edges.

Let BP = (G,φ, v, t) be a BP of size s + 1 over R, computing a function
f : Rn → R. Fix some topological ordering of the vertices of G, where the source
vertex v is labeled 1 and the terminal vertex t is labeled s + 1. For any input
x, let Ax be the (s+ 1)× (s+ 1) matrix over R whose (i, j) entry contains the
value assigned by φ to the edge (i, j) (or 0 if there is no such edge). Define L(x)
as the submatrix of Ax − I obtained by deleting column v and row t (i.e. the
first column and the last row). Note that each entry of L(x) has degree (at most)
1 in the inputs x; moreover, L(x) contains the constant −1 in each entry of its
second diagonal (the one below the main diagonal) and the constant 0 below this
diagonal. We have the fact that f(x) = det(L(x)), and we say L(x) is induced
by a BP that computes f .

We briefly introduce the so-called “Decomposable Affine Randomized Encod-
ing” (DARE) for branching programs [18,2]. We begin by a simple randomization
lemma.

Lemma 4 ([18]). Let H be a set of square matrices over R, and G1,G2 be
multiplicative groups of matrices of the same dimension as H. Denote by ‘∼’ the
equivalence relation on H defined by: H ∼ H ′ iff there exists G1 ∈ G1, G2 ∈ G2
such that H = G1H

′G2. Let R1, R2 be uniformly and independently distributed
matrices from G1,G2, respectively. Then, for any H,H ′ such that H ∼ H ′, the
random variables R1HR2 and R1H

′R2 are identically distributed.

The above lemma can be instantiated with the following matrix sets:

– Hs consists of all s× s matrices over Z2k with −1’s in the second diagonal
(the diagonal below the main diagonal), and 0’s below the second diagonal.

– Gs1 consists of all s× s matrices over Z2k with 1’s on the main diagonal and
0’s below the main diagonal.

– Gs2 consists of all s× s matrices over Z2k with 1’s on the main diagonal and
0’s in all of the remaining entries except those of the rightmost column.

Let L(x) be a matrix induced by a size (s + 1) BP over Z2k computing
f : Zn

2k → Z2k . We have the following corollary.

Corollary 1. Let R1, R2 be uniformly and independently distributed matrices
from Gs1 ,Gs2, respectively. We have that R1L(x)R2 reveals nothing about L(x) but
det(L(x)).

11



Essentially, R1L(x)R2 in Corollary 1 is a randomized encoding of L(x), and
the above procedure is referred as DARE.

3 Non-Malleable RMFE

Before we show how to construct NISC/VOLE over Z2k , we first introduce our
main innovation separately, as we believe it is of independent interest. We start
with introducing the conception of NM-RMFE, followed by a construction.

3.1 Non-Malleable RMFE

To better illustrate the benefits of upgrading RMFEs to NM-RMFEs, let us
first consider a simple NISC/VOLE task as a warm-up, where PS has inputs
ai, bi ∈ Zl

2k , PR has inputs αi, and PR wants to obtain vi := ai · αi + bi, for
i ∈ [m], i.e. the task for parallel VOLE over Z2k . This can be done with the
help of an (m, d; 2)-RMFE (ϕ, ψ) over Z2k and a VOLE functionality FGR(2k,d)

VOLE .
We show what would go wrong if RMFE encodings are not honestly computed
through this example.

In more detail, PS picks r $← Ker(ψ)l and sends ϕ(a1, ...,am), ϕ(b1, ..., bm)+r

to FGR(2k,d)
VOLE , while PR sends ϕ(α1, ..., αm). Finally, PR receives v from FGR(2k,d)

VOLE ,
and outputs (v1, ...,vm) := ψ(v). We remark that the mask r is necessary and
sufficient for the privacy of PS ’s private inputs. In fact, we only want PR to
obtain ψ(v), but PR actually receives v. The potential leakage then is prevented
by masking with r, by Lemma 2.

The above protocol achieves semi-honest security, but not malicious security.
The main obstacle is that, for example, if a malicious receiver takes an input
Y /∈ Im(ϕ), the simulator cannot “extract” a y′ from Y (the simulation will go
through in the semi-honest model, by setting y′ := ψ(Y )). Existing works [9,15,20]
have developed methods to solve this issue, by letting the adversary to prove that
Y ∈ Im(ϕ). However, these approaches are either not statistical or interactive.
Instead, we solve the issue statistically by putting forward the notion of Non-
Malleable RMFE, which conceptually allows Y /∈ Im(ϕ). For the sake of generality,
we define Degree-D Non-Malleable RMFE as follows:

Definition 4 (Degree-D NM-RMFE). Let GR(pk, r) be a Galois ring and κ
be the statistical security parameter. A pair of maps (ϕ, ψ) is called an (m, d;D)-
NM-RMFE over GR(pk, r), if it has the following properties:

1. ϕ : GR(pk, r)m × {0, 1}O(κ) → GR(pk, rd), ψ : GR(pk, rd) → GR(pk, r)m ∪ {⊥}
are GR(pk, r)-linear maps3, satisfying

ψ(ϕ(x1, r1) · ϕ(x2, r2) · · · ϕ(xD, rD)) = x1 ∗ x2 ∗ · · · ∗ xD,

for any x1, ...,xD ∈ GR(pk, r)m and r1, ..., rD
$← {0, 1}κ.

3 More precisely, ϕ is GR(pk, r)-linear on GR(pk, r)m.
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2. if Y /∈ Im(ϕ), there exists a constant y ∈ GR(pk, r)m, such that for any
x1, ...,xD−1 ∈ GR(pk, r)m, we have

ψ(ϕ(x1) · · · ϕ(xD−1) · Y ) = x1 ∗ · · · ∗ xD−1 ∗ y + δ,

where δ ∼ Dx,Y
s≈ DY and DY is a PPT-sampleable distribution over

GR(pk, r)m ∪ {⊥} determined only by Y . We use the convention that for
any z ∈ GR(pk, r)m, z +⊥ = ⊥ to make ψ well-defined.

Note that the above definition includes Degree-D NM-RMFE over Galois
fields, as GR(pk, r) is a field when k = 1. According to property 1, we can specify
the distribution DY for Y ∈ Im(ϕ), such that δ ← DY , Pr[δ = 0] = 1. We remark
that in a high level, NM-RMFE allows for “extraction”. Using an (m, d; 2)-NM-
RMFE (ϕ, ψ) over Z2k instead of (m, d; 2)-RMFEs over Z2k , we immediately
obtain a reusable malicious secure VOLE scheme over Z2k in the FGR(2k,d)

VOLE -hybrid
model without any additional cryptographic primitives (see Figure 2). We have
the following theorem.

Protocol Π
Z
2k

VOLE

Parameterized by GR(2k, d), length l. Suppose PR has her private inputs α ∈ Zm
2k ,

PS has his private inputs ai, bi ∈ Zl
2k , for i ∈ [m]. Let (ϕ, ψ) be an (m, d; 2)-NM-

RMFE over Z2k .

1. The receiver PR: Compute ∆ := ϕ(α). Send ∆ to FGR(2k,d)
VOLE .

2. The sender PS : Compute A := ϕ(a1, ...,am) and B := ϕ(b1, ..., bm). Sample
C

$← Ker(ψ)l. Send A,B +C to FGR(2k,d)
VOLE .

3. The receiver PR: Upon receiving Z from FGR(2k,d)
VOLE . Compute (z1, ..., zm) :=

ψ(Z). Output z1, ..., zl.

Fig. 2: A reusable malicious secure VOLE construction over Z2k in the FGR(2k,d)
VOLE -

hybrid model

Theorem 1. The protocol ΠZ
2k

VOLE realizes FZ
2k

VOLE with reusable malicious secu-
rity in the FGR(2k,d)

VOLE -hybrid model.

Proof. We first consider the situation that PS is corrupted and then turn to the
situation that PR is corrupted. Messages with a hat are from the simulator and
messages with a prime are from the adversary.

If PS is corrupted. When the simulator SimS extracts the messages A′,B′ +

C ′ sent to the ideal functionality FGR(2k,d)
VOLE by the adversary A, he computes
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â1, ..., âm ∈ Zl
2k such that for any α ∈ Zm

2k , ψ(A
′·ϕ(α)) = (â1·α1, ..., âm·αm)+δ,

where the i-th row of δ satisfies the distribution DT
A′

i
, and picks (b̂1, ..., b̂m) ←

ψ(B′ +C ′) +DA′4. SS sends âi, b̂i for i ∈ [m] to the ideal functionality FZ
2k

VOLE.
The indistinguishability comes from that ψ(A′ ·∆+B′ +C ′) in the real world
and (â1 · α1 + b̂1, ..., âm · α1 + b̂m) in the ideal world are statistically-close by the
definition of (m, d; 2)-NM-RMFE.

If PR is corrupted. When SimR extracts the message ∆′ sent to the ideal
functionality FGR(2k,d)

VOLE by the adversary A, he computes a α̂ such that for any
a1, ...,am ∈ Zl

2k , ψ(ϕ(a1, ...,am) · ∆′) = (a1 · α̂1, ...,am · α̂m) + δ, where δ

satisfies the distribution (DT
∆′)l. SimR sends α̂ to the ideal functionality FZ

2k

VOLE.
Upon receiving z1, ...,zm ∈ Zl

2k from FZ
2k

VOLE, SimR picks (d̂1, ..., d̂m)← (DT
∆′)l,

Ĉ
$← Ker(ψ)l, and computes Ẑ := ϕ(z1 + d̂1, ...,zm + d̂m) + Ĉ. Then SimR

sends Ẑ to A. The adversary A receives Z = ϕ(a1, ...,am) ·∆′+ϕ(b1, ..., bm)+C

in the real world, where ψ(Z) and ψ(Ẑ) are statistically-close by the definition of
(m, d; 2)-NM-RMFE. Further, as Z’s projection on Ker(ψ) is perfectly masked
by C, A can not distinguish Z and Ẑ as well. Thus, we conclude the proof. ⊓⊔

3.2 Constructing NM-RMFE

In this section, we present an asymptotically good instantiation, that realizes a
slightly weaker variant of NM-RMFE, where the Property 2 in Definition 4 holds
for any x1, ...,xD ∈ (GR(pk, r)∗)m. We argue that this weaker variant is as good
as the standard one when applied in our NISC/VOLE protocol later in Section 4.

For convenience and w.l.o.g., we construct NM-RMFE over Galois fields. In a
high level, our construction consists of two layers of RMFEs, one is a standard
RMFE, and the other is a so-called Extended RMFE. We define degree-D
Extended RMFE as follows:

Definition 5 (Degree-D Extended RMFE). Let Fq be a finite field of q
elements, n > d > m ≥ 1 and D ≥ 1 be integers. A pair of maps (ϕ, ψ) is called
an (m, d, n;D)q-Extended RMFE if ϕ : Fm

q ×Fqd → Fqn and ψ : Fqn → Fm
q ×Fqd

are two Fq-linear maps satisfying

ψ(ϕ(x1, y1) · ϕ(x2, y2) · · · ϕ(xD, yD)) = (x1 ∗ x2 ∗ · · · ∗ xD, y1y2 · · · yD),

for any xi ∈ Fm
q , yi ∈ Fqd , i ∈ [D].

The degree-D Extended RMFE is a natural extension of degree-D RMFEs,
and the construction is straightforward. Thus it is omitted here.

Let (ϕ1, ψ1) be an (m+ k, d;D)q-RMFE, and (ϕ2, ψ2) be an (m+ k, d, n;D)q-
extended RMFE. We construct an (m,n;D)q-NM-RMFE (ϕ, ψ) as follows.

– ϕ : Fm
q → Fqn is an Fq-linear map, such that ϕ : x 7→ ϕ2(x, r, ϕ1(x, r)),

where r
$← Fk

q .

4 We define DA′ := (DA′
1
, ...,DA′

l
)T.
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– For a Y ∈ Fqn , let (y, s, e) := ψ2(Y ), where y ∈ Fm
q , s ∈ Fk

q and e ∈ Fqd .
ψ : Fqn → Fm

q is defined as follows:

ψ(Y ) =

{
y, if ψ1(e) = (y, s) ,
⊥, otherwise.

W.l.o.g. and for simplicity, we take D = 2, and assume ϕ1(1) = 1 and
ϕ2(1, 1) = 1. Let V⊥ denote the set {ϕ2(0,0, ϕ1(x, r)) | x ∈ Fm

q , r ∈ Fk
q}. We

have the following observations (which can be naturally extended to D > 2 cases).

Proposition 1. Let (ϕ, ψ) be defined as above, there exists qn−d solutions for
Y ∈ Fqn , such that ψ(Y ) ̸= ⊥.

Proof. Assume there exist z ∈ Fm
q , t ∈ Fk

q satisfying ψ2(ϕ(Y ) = (z, t, ϕ1(z, t)).
Then, we have that

Y ∈ ψ−1
2 ({(z, t, ϕ1(z, t)) | z ∈ Fm

q , t ∈ Fk
q}).

By Lemma 2, we have that ψ−1
2 ({(z, t, ϕ1(z, t)) | z ∈ Fm

q , t ∈ Fk
q}) = Ker(ψ2)⊕

Im(ϕ). Since |Ker(ψ2)| = qn

qm+k·qd and |Im(ϕ)| = qm+k, there are qn−d solutions
for Y such that ψ(Y ) ̸= ⊥. ⊓⊔

Proposition 2. Let (ϕ, ψ) be defined as above, then Fqn = Im(ϕ)⊕V⊥⊕Ker(ψ).

Proof. We show that for any Y ∈ Fqn , Y can be uniquely written as the additions
of the projections on the above sets, respectively. Define τ1 := ϕ1 ◦ ψ1. Assume
(y, s, e) := ψ2(Y ). Let A := ϕ2(y, s, ϕ1(y, s)) and B := ϕ2(0,0, τ1(e)− ϕ1(y, s)).
By definition, we have that A ∈ Im(ϕ) and B ∈ V⊥. It can be verified that
ψ2(Y −A−B) = (0,0, e− τ1(e)). Thus, (Y −A−B) ∈ Ker(ψ) and we complete
the proof. ⊓⊔

As the adversary can carefully select a Y /∈ Im(ϕ), we need to find the
distribution DY for each Y . From now on we consider the specific polynomial-
based construction of RMFE5, which allows us to provide an explicit description
of DY

6.
Let α1, α2, ..., αm and β1, β2, ..., βk be m + k pair-wise distinct elements in

Fq. There exists a unique polynomial f ∈ Fq[x] with deg(f) ≤ m+ k − 1, such
that f(αi) = xi, i ∈ [m] and f(βj) = rj , j ∈ [k]. Let d = 2(m + k) − 1 and
n ≥ 2(m+ k + d)− 1. There exist a degree-d irreducible polynomial p ∈ Fq[x]
and a degree-n irreducible polynomial g ∈ Fq[x] such that Fqd

∼= Fq[x]/(p) and
Fqn
∼= Fq[x]/(g). Therefore, elements in the extension field can be viewed as

polynomials. In particular, we pick g(x) = xn + ax + b, where a, b ∈ Fq (such
irreducible g(x) exists, if q is a prime and (n, d) = 1, see [22]). Let Y be a
polynomial over Fq with degree ≤ n− 1.
5 In the RMFE literature [7,12,14], known RMFEs are constructed from algebraic

geometry curves. Polynomials are essentially genus-0 curves and in most cases, RMFEs
constructed from genus-0 curves have a lower ratio d

m
.

6 In fact, similar results can be obtained for general constructions of RMFE, also for
RMFEs over Galois rings.
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– For x ∈ Fm
q , ϕ is defined as

ϕ : x 7→ f, where f
$← Fq[x]≤m+k−1, satisfying f(αi) = xi, i ∈ [m].

– For f ∈ Fq[x]≤n−1, let f̂ := f mod p. ψ is defined as

ψ : f 7→
{
(f(α1), ..., f(αm)), if f̂(αi) = f(αi), f̂(βj) = f(βj), i ∈ [m], j ∈ [k],
⊥, otherwise.

First we give the following lemma.

Lemma 5. Given a x ∈ Fm
q , α1, ..., αm and β1, ..., βk are m+k pair-wise distinct

elements in Fq, then there are qi solutions of r ∈ Fk
q , such that x, r interpolate a

polynomial f with degree ≤ m− 1 + i, i = 0, 1, ..., k.

Proof. Since the evaluation map σ : f 7→ (f(α1), ..., f(αm), f(β1), ..., f(βk)) in-
duces a bijection from Fq[x]≤m+k−1 := {f ∈ Fq[x] | deg(f) ≤ m + k − 1} to
Fm
q × Fk

q , there are at most qm+i solutions of x, r such that x, r interpolate a
polynomial f with degree ≤ m − 1 + i, i = 0, 1, ..., k. On the other hand, for a
given x ∈ Fm

q , let the first i positions of r be random, thus x along with r|[i]
interpolate a polynomial f with degree ≤ m − 1 + i. Set the remaining k − i
positions of r lie on f . Thus, there are at least qi solutions of r ∈ Fk

q for a given
x. Combining together, we conclude the proof. ⊓⊔

We have the following theorem.

Theorem 2. Let ϕ, ψ be defined above. For any Y ∈ Fqn , x ∈ (F∗
q)

m and
sufficiently large k, there exists a distribution DY such that Dx,Y

s≈ DY .

Proof. Let us consider the degree of Y . We remark that the result holds for any
x ∈ Fm

q if not pointed out explicitly.

i. If deg(Y ) ≤ m+ k − 1. We have that

ψ(ϕ(x) · Y ) = ψ(f · Y ) = (f · Y (α1), ..., f · Y (αm))

= (f(α1), ..., f(αm)) ∗ (Y (α1), ..., Y (αm))

= x ∗ ψ(Y ),

as deg(f · Y ) ≤ d− 1. So in this condition, Dx,Y = DY : Pr[δ = 0] = 1.
ii. If m + k − 1 < deg(Y ) ≤ m + 2k − 1. Since deg(ϕ(x · Y )) ≤ d + k − 1,

ψ(ϕ(x) · Y ) = ⊥ if deg(ϕ(x) · Y ) ≥ d. On the other hand, the equation
ψ(ϕ(x) · Y ) = x ⋆ ψ(Y ) holds if deg(ϕ(x) · Y ) ≤ d − 1. By Lemma 5 , we
have that for all possible values of x,

Dx,Y :

{
Pr[δ = 0] = 1/qdeg(Y )−m−k+1,
Pr[δ = ⊥] = 1− 1/qdeg(Y )−m−k+1.

So in this condition, Dx,Y = DY .
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iii. If m + 2k − 1 < deg(Y ) ≤ 2(m + k − 1). Similarly, since deg(ϕ(x · Y )) ≤
d + m + k − 2, we have that ψ(ϕ(x) · Y ) = ⊥ if deg(ϕ(x) · Y ) ≥ d, and
ψ(ϕ(x) · Y ) = x ⋆ ψ(Y ) holds if deg(ϕ(x) · Y ) ≤ d − 1. There are only
q2(m+k)−1−deg(Y ) possible values of x such that x interpolates a polynomial
f with degree ≤ 2(m+k−1)−deg(Y ), as there are exactly q2(m+k)−1−deg(Y )

choices of such f . For these x, let r lie on f , and we have that

Dx,Y :

{
Pr[δ = 0] = 1/qk,
Pr[δ = ⊥] = 1− 1/qk.

For the remaining qm − q2(m+k)−1−deg(Y ) possible values of x, there are no
solutions for r ∈ Fk

q , and we have Dx,Y = D. So in this condition, Dx,Y
s≈ D

for sufficient large k.
iv. If 2(m + k) − 1 ≤ deg(Y ) ≤ n − m − k. Let Ŷ := Y mod p, and we

can find r ∈ Fq[x] satisfying Y = Ŷ + p · r. Let a(x) :=
∏m

i=1(x − αi),
and b(x) :=

∏k
i=1(x − βi). Since deg(ϕ(x · Y )) ≤ n − 1, we have that if

deg(Ŷ ) ≤ m+ k − 1, a(x) | r(x), and r(βj) = 0 for j ∈ J ⊆ [k],

Dx,Y :

{
Pr[δ = 0] = 1/qk−|J|,
Pr[δ = ⊥] = 1− 1/qk−|J|.

However, we remark that if deg(Ŷ ) ≤ m+ k − 1, b(x) | r(x) and a(x) ∤ r(x),
we have that ψ(ϕ(0) · Y ) = 0 but ψ(ϕ(x) · Y ) = ⊥, for x ∈ (F∗

q)
m. Thus

for the remaining choices of Y , Dx,Y = D holds for x ∈ (F∗
q)

m. So, in this
condition, Dx,Y = DY for x ∈ (F∗

q)
m.

v. If deg(Y ) ≥ n − m − k + 1. If deg(ϕ(x) · Y ) ≤ n − 1, the discussion is
similar to the previous one, and we have that Dx,Y = DY for x ∈ (F∗

q)
m.

If deg(ϕ(x) · Y ) ≥ n, deg(ϕ(x) · Y mod g) will exceed d− 1 and lead to ⊥
overwhelmingly, as we take g(x) of the form g(x) = xn + ax+ b, a, b ∈ Fq.
So in this condition, Dx,Y

s≈ DY for x ∈ (F∗
q)

m.

From above discussions, we conclude the proof. ⊓⊔

As the above NM-RMFE construction contains two layers of RMFEs, we
remark that the asymptotic behavior of NM-RMFE is not as good as RMFE
(though still constant). For instance, by Lemma 3, there exists a family of (m, d; 2)-
NM-RMFEs over F2(Z232 ,Z264) with m → ∞ and d

m → 29.13 and a family of
(m, d; 3)-NM-RMFEs over F2(Z232 ,Z264) with m→∞ and d

m → 80.15. For the
concrete efficiency of (m, d; 3)-NM-RMFEs over Z232 , according to the results
in [14], there exists a (3m, 7(3m+ 4); 3)-RMFE over Z232 for any m ≤ 150. We
obtain that the NM-RMFE ratio d

m+k is 56 approximately, where k is related
to the statistical security parameter κ. Assume κ = 80, by setting m = 150, the
ratio d/m is 87.3. Note that for a given κ, the ratio d/m is close to a constant
(56 in this case), as long as m is relatively large compared to k.
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4 Amortized rNISC/VOLE

In this section, we first show how to construct a semi-honest secure NISC/VOLE
for computing branching programs over Z2k . Then we show how to obtain a
reusable malicious secure one.

4.1 Amortized NISC/VOLE with semi-honest security

Let L(x) be a matrix induced by a size (s+1) BP over Z2k computing f : Zn
2k →

Z2k , i.e. det(L(x)) = f(x). Suppose x1, ...,xm ∈ Zn
2k . We consider the case of

computing f(x1), ..., f(xm) in parallel7, where we can amortize the cost by using
RMFEs. In a high level, we present a variant of DARE for BP over GR(2k, d),
which, in effect, computes parallel DAREs for BP over Z2k (i.e. reveals nothing
but f(x1), ..., f(xm)).

Let (ϕ, ψ) be an (m, d; 3)-RMFE over Z2k , and τ := ϕ◦ψ. We generalize these
maps to perform on matrices in a natural way. As ϕ is a Z2k -linear map, it can
be observed that ϕ(L(x1), ..., L(xm)) = L(ϕ(x1, ...,xm)). We define following
matrix sets over GR(2k, d):

Ĥs := {ϕ(H1, ...,Hm) | Hi ∈ Hs, i ∈ [m]},
Ĝs1 := {ϕ(G1, ..., Gm) | Gi ∈ Gs1 , i ∈ [m]},
Ĝs2 := {ϕ(G1, ..., Gm) | Gi ∈ Gs2 , i ∈ [m]},

where Hs,Gs1 ,Gs2 are defined in Corollary 1.
We observe that the encoding of L(ϕ(x1, ...,xm)) (i.e. R1L(ϕ(x1, ...,xm))R2,

where R1, R2 are sampled uniformly at random from Ĝs1 , Ĝs2 , respectively) reveals
not only det(L(x1)), ..., det(L(xm)) but also det(L(ϕ(x1, ...,xm))), which we do
not desire. To solve this issue, we mask the encoding by random values over
Ker(ψ). Therefore, we define a matrix group Is for this purpose.

Definition 6. Let Is be the set of all s× s matrices over Ker(ψ) with 0’s below
the main diagonal.

We have the following proposition, which indicates that parallel DAREs over Z2k

can be implemented at one time via RMFE.

Proposition 3. Let R1, R2, R3 be uniformly and independently distributed ma-
trices from Ĝs1 , Ĝs2 , Is, respectively. We have that M := R1L(ϕ(x1, ...,xm))R2+R3

reveals no information about L(x1), ..., L(xm) but det(L(x1)), ..., det(L(xm)).

Proof. The map ψ : GR(2k, d)→ Zm
2k induces m Z2k -linear maps ψi : GR(2

k, d)→
Z2k , for i ∈ [m], i.e. (ψ1, ..., ψm) := ψ. By the definition of (m, d; 3)-RMFEs,
we have that ψi(R1L(ϕ(x1, ...,xm))R2 +R3) = ψi(R1)L(xi)ψi(R2), for i ∈ [m].
Since R1, R2 are uniformly and independently distributed from Ĝs1 , Ĝs2, and ψ

7 It remains interesting and open whether a branching program can be transformed
into copies of a sub branching program.
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conditioned on Im(ϕ) is a bijection, ψi(R1), ψi(R2) are uniformly and indepen-
dently distributed from Gs1 ,Gs2 for i ∈ [m], respectively. Thus, by Corollary 1,
ψi(R1)L(xi)ψi(R2) reveals nothing about L(xi) but det(L(xi)), for i ∈ [m].
Finally, we claim that R1L(ϕ(x1, ...,xm))R2 + R3 reveals no more informa-
tion than ψ(R1L(ϕ(x1, ...,xm))R2 + R3). Since, by Lemma 2, we have that
GR(2k, d) = Im(ϕ) ⊕ Ker(ψ) (assuming ϕ(1) = 1) and R1L(ϕ(x1, ...,xm))R2’s
projection on Ker(ψ) is perfectly masked by R3. This completes the proof. ⊓⊔

Given the above proposition, now we proceed to construct our semi-honest
NISC protocol over Z2k . We consider a slightly more general framework with t
branching programs BPi of size (si+1) over Z2k , computing fi : Zn1

2k
×Zn2

2k
→ Z2k ,

for i ∈ [t]. Let f(x,y) be a two-party sender-receiver functionality, taking inputs
x ∈ Zn1

2k
,y ∈ Zn2

2k
from the receiver PR and the sender PS , respectively, and sends

f(x,y) ∈ Zt
2k to PR, where f := (f1, ..., ft). Let Li(x,y) be the si × si matrix

induced by BPi, for i ∈ [t]. Suppose f(x,y) will be invoked m times, with inputs
(x1,y1), ..., (xm,ym) ∈ Zn1

2k
× Zn2

2k
, respectively. We present the amortized NISC

protocol in Figure 3 and we have the following theorem.

Protocol ΠNISC

The function f : Zn1

2k
× Zn2

2k
→ Zt

2k is described as above. Suppose PR has input
x1, ...,xm ∈ Zn1

2k
, and PS has input y1, ...,ym ∈ Zn2

2k
. Let (ϕ, ψ) be an (m, d; 3)-

RMFE over Z2k .

1. The receiver PR computes X := ϕ(x1, ...,xm). For j ∈ [n1], PR sends (j;Xj)

to FGR(2k,d)
VOLE .

2. The sender PS computes Y := ϕ(y1, ...,ym). For i ∈ [t], PS computes Mi(·) :=
R1,iLi(·,Y )R2,i +R3,i, where R1,i

$← Ĝsi1 , R2,i
$← Ĝsi2 , R3,i

$← Isi . Since each
entry of Mi(X) is a linear polynomial on variables X1, ..., Xn1 , PS sends
messages to FGR(2k,d)

VOLE according to Mi(·), for i ∈ [t].
3. For i ∈ [t], PR obtains Mi(X) from FGR(2k,d)

VOLE , and then computes
(Li(x1,y1), ..., Li(xm,ym)) := ψ(Mi(X)). For j ∈ [m], PR computes and
outputs f(xj ,yj) := (det(L1(xj ,yj)), ..., det(Lt(xj ,yj))).

Fig. 3: Protocol for semi-honest NISC over Z2k in the (chosen-input) FGR(2k,d)
VOLE -

hybrid model.

Theorem 3 (Semi-honest NISC/VOLE over Z2k). Protocol ΠNISC realizes
a two-party sender-receiver functionality that computes f : Zn1

2k
× Zn2

2k
→ Zt

2k

with semi-honest security in the FGR(2k,d)
VOLE -hybrid model. In particular, ΠNISC

invokes n1 instances of VOLE, and the length of the j-th VOLE instance is
Sj :=

∑
i∈D(j)

(
si
2

)
, where D(j) is the set of output entries that depend on Xj.
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Proof. If PR is corrupted, the simulator SimR receives X1, ..., Xn1
from the

adversary A. Then, SimR computes (x1, ...,xm) := ψ(X), and sends them to
the ideal functionality that computes f . For j ∈ [m], SimR receives zj ∈ Zt

2k

from the ideal functionality, and for i ∈ [t], SimR samples random matrix Lj,i

over Z2k with −1’s in the second diagonal and 0’s below the second diagonal
such that det(Lj,i) = zj,i. For i ∈ [t], SimR samples R3,i

$← Isi and computes
Mi := ϕ(L1,i, ..., Lm,i) +R3,i. Finally, SimR delivers M1, ...,Mt to A emulated
as VOLE outputs (n1 instances of VOLE, with total length

∑n1

j=1 Sj). We remark
that this procedure can be done without the knowledge of Y , since the function f
is public. The correctness is easy to verify and the indistinguishability is directly
obtained by Proposition 3.

If PS is corrupted, the simulator SimS receives VOLE inputs from the ad-
versary A, which conveys the matrices M1(·), ...,Mt(·) over GR(2k, d). For i ∈ [t],
SimS computes (M1,i(·), ...,Mm,i(·)) := ψ(Mi(·)). Recall that for each Mj,i(·),
there exist R1,j,i ∈ Gsi1 and R2,j,i ∈ Gsi2 such that R1,j,iLi(·,yj)R2,j,i = Mj,i(·).
It can be observed that each entry of R1,j,i, R2,j,i can be computed from the VOLE
messages. (This depends crucially on the structure of R1,j,i, Li(·,yj), R2,j,i; we
refer the reader to [18] for more details.) Since R1,j,i, R2,j,i are invertible, SS can
extract yj for all j ∈ [m]. Finally, SimS sends y1, ...,ym to the ideal functionality
that computes f . The indistinguishability is obtained by the correct extraction of
y1, ...,ym. This completes the proof. ⊓⊔

4.2 Amortized rNISC/VOLE with malicious security

We first consider an intermediate security model where both the malicious sender
and the malicious receiver follow the RMFE part specifications 8 (e.g., computes
X := ϕ(x1, ...,xm), Y := ϕ(y1, ...,ym)) and we only need to enforce the malicious
sender’s compliance with the DARE part specifications (e.g., sends messages to
the VOLE functionality according to Mi(·)). Then, we consider the full malicious
security model and show how to construct maliciously secure rNISC/VOLE for
computing branching programs over Z2k .

We generalize the certified VOLE (cVOLE) method (for Galois fields) [13] to
Galois ring analogue as the first step. The cVOLE is a special case of NISC/VOLE,
where the sender’s inputs sent to multiple instances of VOLE need to satisfy
some arithmetic constraints (formulated by a circuit C), which allows for forcing
the malicious sender to follow the (ΠNISC) protocol specifications honestly (see
Figure 4). Similar to its Galois field counterpart [13], constructing a cVOLE
protocol over Galois rings involves two main ingredients, a certified VOLE with
equality constraint (eVOLE for short) over Galois rings and a statistical NIZK
protocol for proving circuit satisfiability over Galois rings.
eVOLE. The eVOLE is a weak variant of cVOLE, which only restricts some
given positions of the sender’s inputs to multiple instances of VOLE to being
equal (rather than satisfying a general arithmetic constraint). We formalize the
8 In fact, the malicious receiver can only cheat by deviating from the RMFE encoding.

Namely, we assume a semi-honest receiver.
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Functionality FGR(2k,d)
cVOLE

Parameterized by a Galois ring GR(2k, d), a sequence of n positive integers l1, ..., ln,
for i ∈ [n], and an arithmetic circuit C over GR(2k, d) on q ≤ 2

∑n
i=1 li inputs.

Suppose PS has input ai, bi ∈ GR(2k, d)li , and PR has input αi ∈ GR(2k, d), for
i ∈ [n].

1. Receive (α1, ..., αn) from PR, and (a1, ...,an, b1, ..., bn) from PS .
2. Verify that (a1, ...,an, b1, ..., bn) is a satisfying assignment for circuit C. If the

check fails, send ⊥ to PR. Otherwise, compute vi := ai ·αi + bi for i ∈ [n] and
send (v1, ...,vn) to PR. If PS is corrupted, and receive aborting from S, send
⊥ to PR.

Fig. 4: Certified VOLE with a general arithmetic constraint

Functionality FGR(2k,d)
eVOLE

FGR(2k,d)
eVOLE extends the (chosen-input) VOLE functionality FGR(2k,d)

VOLE . Setup phase,
Send phases, and Deliver phases are identical to those in FGR(2k,d)

VOLE , respectively.
Parameterized by a Galois ring GR(2k, d), length parameters l1, ..., ln ∈ N.
Verify phases:

1. Upon receiving (sid1, sid2; Verify†; li1 , li2 , j1, j2) from PR, where i1, i2 ∈
[n], j1 ∈ [li1 ], j2 ∈ [li2 ] and sid1, sid2 are two session identifiers, verify that
there are stored inputs (sid1;a1, b1; li1) and (sid2;a2, b2; li2) from PS ; else
ignore the message. Then, verify that a1,j1 = a2,j2 . If the check fails, send ⊥
to PR.

2. Upon receiving (sid1, sid2; Verify‡; li1 , li2 , j1, j2) from PR, where i1, i2 ∈
[n], j1 ∈ [li1 ], j2 ∈ [li2 ] and sid1, sid2 are two session identifiers, verify that
there are stored inputs (sid1;a1, b1; li1) and (sid2;a2, b2; li2) from PS ; else
ignore the message. Then, verify that b1,j1 = a2,j2 . If the check fails, send ⊥
to PR.

Fig. 5: Distributional certified VOLE with equality constraints.
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eVOLE functionality in Figure 5. The eVOLE construction9 (presented in Figure
6) shares similarity with the eVOLE construction for Galois fields [13], and is built
upon random VOLE. We address the main difference and sketch how to construct
eVOLE from chosen-input VOLE for simplicity (the reduction of chosen-input
VOLE to random VOLE is straightforward).

Protocol ΠGR(2k,d)
eVOLE

Parameterized by a Galois ring GR(2k, d), length parameters l1, l2 ∈ N. PS has
inputs at, bt ∈ GR(2k, d)lt , t ∈ [2]. PR has (random) inputs α1, α2 ∈ GR(2k, d).

1. The sender PS and the receiver PR invoke the Setup phase of FGR(2k,d)
VOLE with

PR’s inputs (α1, α2).
2. For t ∈ [2], PS and PR invoke the Send phases of FGR(2k,d)

VOLE with inputs
(t; lt + 1). The sender PS receives ât, b̂t ∈ GR(2k, d)lt+1, while PR receives
v̂t ∈ GR(2k, d)lt+1, such that v̂t = ât · αt + b̂t.

3. For t ∈ [2], PS sends ut := at − ât|[lt], wt := bt − b̂t|[lt] to PR.

Verify†: On input i, j.

(i) The sender PS sends u1,l1+1 := b2,j − â1,l2+1, u2,l1+1 := b1,i − â2,l2+1 and
b̂1,l1+1 − b̂2,l2+1 to PR.

(ii) For t ∈ [2], PR computes vt := v̂t+ut ·αt+(wt ∥ 0), where vt|[lt] = at ·αt+bt.
Note that v1,l1+1 = b2,j · α1 + b̂1,l1+1, v2,l2+1 = b1,i · α2 + b̂2,l2+1.

(iii) The receiver PR checks that α2 · v1,i −α1 · v2,j + v1,l1+1 − v2,l2+1 = b̂1,l1+1 −
b̂2,l2+1. If the check fails, PR aborts.

Verify‡: On input i, j.

(i) The sender PS sends w1,l1+1 := b2,j − b̂1,l1+1, u2,l2+1 := a1,i − â2,l2+1 and
b̂2,l2+1 − â1,l1+1 to PR.

(ii) The receiver PR computes v1 := v̂1 + (u1 ∥ 0) · α1 + w1 and v2 := v̂2 +
u2 · α2 + (w2 ∥ 0), where vt|[lt] = at · αt + bt, for t ∈ [2]. Note that
v1,l1+1 = â1,l1+1 · α1 + b2,j and v2,l2+1 = a1,i · α2 + b̂2,l2+1.

(iii) The receiver PR checks that v2,j − v1,l1+1 − v1,i · α2 + v2,l2+1 · α1 = α1 ·
(b̂2,l2+1 − â1,l1+1). If the check fails, PR aborts.

Fig. 6: Protocol for eVOLE over GR(2k, d) in the FGR(2k,d)
VOLE -hybrid model.

Suppose a1, b1 ∈ GR(2k, d)l1 , a2, b2 ∈ GR(2k, d)l2 are PS ’s inputs and α1, α2

are PR’s inputs to two VOLE instances, respectively. For proving the equality
constraint of some a1,i = a2,j , where i ∈ [l1], j ∈ [l2], we apply a Galois ring
9 We remark that for convenience, the construction proves one equality constraint,

which can be naturally extended to prove an arbitrary number of equality constraints.
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analogue of the check mechanism [13]. By PS setting a1,l1+1 := b2,j , a2,l2+1 := b1,i,

b1,l1+1, b2,l2+1
$← GR(2k, d) and sending b1,l1+1 − b2,l2+1 to PR, we have that

α2 · v1,i − α1 · v2,j + v1,l1+1 − v2,l2+1 = b1,l1+1 − b2,l2+1 (1)

holds if a1,i = a2,j . If a1,i ̸= a2,j and α1, α2 are uniformly and independently
distributed, by Lemma 1, Equation (1) holds with probability at most 1/2d−1.

For proving the equality constraint of some b1,i = a2,j , we cannot reduce it
to the above case like [13] 10. We use another equation for the check. By PS

setting b1,l1+1 := b2,j , a2,l2+1 := a1,i, b2,l2+1, a1,l1+1
$← GR(2k, d) and sending

b2,l2+1 − a1,l1+1 to PR, we have that

v2,j − v1,l1+1 − v1,i · α2 + v2,l2+1 · α1 = α1 · (b2,l2+1 − a1,l1+1) (2)

holds if b1,i = a2,j . Similarly, by Lemma 1, Equation (2) holds with probability at
most 1/2d−1 if b1,i ̸= a2,j and α1, α2 are uniformly and independently distributed.

We have the following proposition (the proof is deferred to Appendix B.2).

Proposition 4. ΠGR(2k,d)
eVOLE realizes FGR(2k,d)

eVOLE in the FGR(2k,d)
VOLE -hybrid model.

NIZK. The authors of [13] introduced a simple kind of information-theoretic
proof system for proving circuit satisfiability called line point zero knowledge
(LPZK). Informally, in an LPZK proof, the prover P generates from the witness
w and the circuit C an affine line v(x) := a · x+ b over a field Fq. The verifier
V queries a single point α and obtains the evaluation v(α), then V decides
whether to accept the proof or reject. The LPZK proof system is statistical in
the VOLE-hybrid model and can be realized by a single invocation of VOLE.
We naturally extend the LPZK-NIZK construction for fields of [13] to Galois
rings, by simply replacing the field Fq with a Galois ring GR(2k, d) (see Πq,t

NIZK

in Figure 15). We remark that the soundness error is decreased from O(1/q) to
O
(
1/2d

)
, which can be negligible in the security parameter for a sufficiently large

d. The construction communicates 3 elements over GR(2k, d) per multiplication
gate and is “free” for addition gates. We have the following proposition with the
detailed proof in Appendix B.1.

Proposition 5. Protocol Πq,t
NIZK realizes FZK in the FGR(2k,d)

VOLE -hybrid model with
soundness error 1/2d−1 and statistical security.

cVOLE. We next provide a high-level overview of the construction of cVOLE
from eVOLE and LPZK-NIZK. The eVOLE is used to move the sender’s inputs
to multiple VOLE instances (n1 lines, on fixed points α1, ..., αn1) to another
VOLE instance (another line, on a random point γ), where a LPZK-NIZK over
Galois rings can be performed.

When substituting parallel VOLE instances in the semi-honest protocol ΠNISC

with the above cVOLE construction, the eVOLE requirement should be satisfied
10 In more detail, we cannot reduce v1,i = a1,i · α1 + b1,i to v1,i · α−1

1 = b1,i · α−1
1 + a1,i,

as 1/2d fraction of elements in GR(2k, d) are zero divisors.
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(i.e. PR’s inputs need to be uniformly and independently distributed). However,
PR has fixed inputs in the NISC setting. To solve this, n1 + 2 VOLE instances
with PR’s corresponding inputs (α1 + β, ..., αn1 + β, β, γ) are required, where
α1, ..., αn ∈ Im(ϕ) and β, γ $← GR(2k, d), and the equality constraints are proven
between VOLE instances corresponding to (αi + β, γ) and (β, γ). The cVOLE
protocol is presented in Figure 7, and we have the following corollary with a
deferred proof in Appendix B.2.

Corollary 2. ΠGR(2k,d)
cVOLE realizes FGR(2k,d)

cVOLE in the (FGR(2k,d)
VOLE ,FGR(2k,d)

eVOLE )-hybrid model.

Protocol ΠGR(2k,d)
cVOLE

Parameterized by a Galois ring GR(2k, d), a sequence of n positive integers l1, ..., ln,
and an arithmetic circuit C over GR(2k, d) on qa + qb = q ≤ 2

∑n
i=1 li inputs with t

multiplication gates. Let L1 = 0 and for i = 2, 3, ..., n+1, let Li = l1+ ...+ li−1. Let
(ϕ, ψ) be an (m, d; 3)-RMFE over Z2k . The receiver PR has inputs αi ∈ GR(2k, d)
and the sender PS has inputs ai, bi ∈ GR(2k, d)li , for i ∈ [n]. Suppose C takes qa
inputs from a entries and qb inputs from b entries.

1. The two parties invoke the Setup phase of FGR(2k,d)
eVOLE with PR’s inputs (α1 +

β, ..., αn + β, β, γ), where β, γ $← GR(2k, d).
2. For i ∈ [n], PS picks ei

$← GR(2k, d)li and sends (ai, bi + ei) with session id i
to FGR(2k,d)

eVOLE . For the (n+ 1)-st instance of VOLE, PS computes an+1 := a1 ∥
... ∥ an, bn+1 := e1 ∥ ... ∥ en and sends (n+ 1;an+1, bn+1;Ln+1) to FGR(2k,d)

eVOLE .
For the (n+ 2)-nd instance of VOLE, if ai,j is the k-th input from a entries
to circuit C, set an+2,k := ai,j ; else if bi,j is the k-th input from b entries
to circuit C, set an+2,qa+k := bi,j and an+2,q+k := bn+1,Li+j . Additionally,
PS picks bn+2

$← GR(2k, d)q+qb . Then, PS sends (n+ 2;an+2, bn+2; q + qb) to
FGR(2k,d)

eVOLE . The receiver PR receives v1, ...,vn+2 from FGR(2k,d)
eVOLE .

3. By invoking the Verify phases of FGR(2k,d)
eVOLE , PR verifies that

(i) ai,j = an+2,k and an+1,Li+j = an+2,k, if ai,j is the k-th input from a
entries to circuit C, for k ∈ [qa].

(ii) bi,j = an+2,qa+k and bn+1,Li+j = an+2,q+k, if bi,j is the k-th input from
b entries to circuit C, for k ∈ [qb]. Recompute vn+2,qa+k by subtracting
vn+2,q+k.

4. Invoke the subprotocol Πq,t
NIZK with inputs {[an+2,i]γ}i∈[q] to verify that

{[an+2,i]γ}i∈[q] is a satisfying assignment for C. If any of above verifications
fails, PR aborts.

Fig. 7: Protocol for Certified VOLE with a general arithmetic constraint in the
FGR(2k,d)

eVOLE -hybrid model
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In particular, if instantiating FGR(2k,d)
eVOLE withΠGR(2k,d)

eVOLE , we obtain a cVOLE/VOLE
construction, which essentially admits a NISC/VOLE protocol with reusable
malicious security for branching programs over GR(2k, d). If we further assume
both parties follow RMFE encoding honestly, the protocol can securely compute
branching programs over Z2k .
Putting all pieces together. Recall that NM-RMFE allows for “extraction”
when the adversary does not follow the NM-RMFE encoding honestly. The final
step is upgrading standard RMFE to NM-RMFE and we do not need to assume
both parties follow NM-RMFE encoding honestly. For NISC tasks that compute
BPs over Z2k , using the cVOLE technique11 and substituting Degree-3 RMFEs
by an (m, d; 3)-NM-RMFE (ϕ, ψ) in ΠNISC, we have the following theorem.

Theorem 4 (rNISC/VOLE from NM-RMFE). Suppose f : Zn1

2k
× Zn2

2k
→

Zt
2k is a sender-receiver functionality whose i-th output can be computed by an

arithmetic branching program over Z2k of size si + 1 that depends on di inputs.
Let (ϕ, ψ) be an (m, d; 3)-NM-RMFE over Z2k and κ be the statistical security
parameter. Then f admits an rNISC/VOLE protocol with the following features:
• The protocol takes n1 + 2 parallel VOLE instances over GR(2k, d), and

outputs m executions of f .
• The protocol is secure against a malicious sender and a malicious receiver.
• Assume the branching program admits a verification circuit C that takes

qa inputs from a entries, qb inputs from b entries. The circuit C has S :=∑t
i=1(di

(
si
2

)
+ s3i ) multiplication gate. The total length of VOLE instances is

2S + 6qa + 7qb +
∑t

i=1 di
(
si
2

)
, and 3S + 1 + 8qa + 9qb + 2

∑t
i=1 di

(
si
2

)
elements

over GR(2k, d) are communicated.
• The simulation error is ε = O

(
1/2d + 1/2κ

)
.

Proof. The construction is obtained by replacing RMFE with NM-RMFE and
VOLE with cVOLE in ΠNISC. Similar to that in Theorem 1, NM-RMFE allows
for simulating the cheating behavior of not following NM-RMFE encoding, thus
the resulting NISC protocol has reusable malicious security in the FGR(2k,d)

cVOLE -
hybrid model. With a statistical secure instantiation of FGR(2k,d)

cVOLE in the FGR(2k,d)
VOLE -

hybrid model, the resulting NISC protocol has reusable malicious security in the
FGR(2k,d)

VOLE -hybrid model. The simulation error is computed by the union bound
of the soundness of cVOLE and that of NM-RMFE. For the communication
complexity, recall that in cVOLE we require two additional entries of VOLE for
an ai,j entry that is an input to C, and three additional entries of VOLE for an
bi,j entry that is an input to C. Thus, we can obtain the above results. ⊓⊔

Recall that by Theorem 2, we realize a slightly weaker variant of NM-RMFE,
where x ∈ (Z∗

2k)
m. We argue that this imperfect construction is still sufficient for

building rNISC/VOLE. When instantiating NM-RMFE with our construction in
the above rNISC/VOLE, intuitively the adversary A is allowed to query some
11 The circuit C (specifies the arithmetic constraints in DARE) is of size S :=

∑n1
j=1 Sj +∑t

i=1 s
3
i according to naive matrix multiplication (Sj , si are defined as in Theorem 3).
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positions of the honest party’s inputs to VOLEs, and he learns whether they are
all in Z∗

2k (through observing the validity of VOLE outputs). More precisely, if
the receiver is corrupted, recall that when we implement parallel DAREs, PS ’s
input Y will never be put into a entries, thus this attack can be avoided by
instantiating Lemma 4 with Ḡs1 ≤ Gs1 , Ḡs2 ≤ Gs2 such that their entries are even
(i.e. zero divisors) except for the main diagonal. If the sender is corrupted, we let
PR sample the mask α from ϕ((Z∗

2k)
m)12, then applying this attack will always

lead to PR aborting.

5 Amortized Computationally Secure NISC

Our NM-RMFE approach admits rNISC/VOLE with good asymptotic efficiency
and practical concrete efficiency for a relative large batch size m. To achieve
better concrete efficiency (especially for small m), we consider weaker security
models and explore computationally secure solutions to constructing (reusable)
NISC protocols for BPs over Z2k .

In this section, we first show how to force the sender to follow RMFE encoding
efficiently. Then, we present two approaches to forcing the receiver to follow
RMFE encoding honestly. The former approach is based on cut-and-choose and
makes black-box use of any two-round reusable VOLE protocol. The latter OT-
based approach is highly efficient but unfortunately not reusable. Combining
all together, we obtain two NISC protocols, a concrete efficient reusable NISC
construction with communication overhead O(λ), where λ is the computational
security parameter, and a highly efficient NISC construction with communication
overhead close to a constant.

5.1 Forcing the Sender to Follow RMFE Encoding

A naive solution is to augment the NIZK subprotocol in cVOLE to include a
proof for correct RMFE encoding. However, this would lead to proving circuit
satisfiability on a circuit of large size, which is inefficient. To this end, we use a
more efficient technique, re-embedding VOLE (embVOLE) [20] that was originally
designed for ZK protocols and allows to “prove” RMFE constraints before NIZK
is applied. We slightly generalize the random embVOLE functionality to fit NISC
settings (see FGR(2k,d)

embVOLE in Figure 8), which then allows the receiver PR to query
â|J ’s projection on Ker(ψ), for some J ⊆ [l]. For some i ∈ J , to obtain [ai]α
from a random [âi]α, PS is supposed to send ui := ai − âi to PR, then PR can
verify whether ui = τ(âi)− âi (PR learns τ(âi)− âi from querying âi’s projection
on Ker(ψ)). If the check fails, ai /∈ Im(ϕ) and PR will abort, which forces PS ’s
inputs to satisfy RMFE constraints.

The random embVOLE protocol ΠGR(2k,d)
embVOLE (slightly adapted from [20]) is

presented in Figure 16, which can be made non-interactive by Fiat-Shamir
heuristic. We remark that ΠGR(2k,d)

embVOLE has communication overhead close to a
constant, when the length l is relatively large.
12 This would slightly affect the eVOLE soundness.
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Functionality FGR(2k,d)
embVOLE

FGR(2k,d)
embVOLE extends the random VOLE functionality FGR(2k,d)

VOLE (Figure 1). Setup
phase and Send phases are identical to those in FGR(2k,d)

VOLE , respectively. Parame-
terized by a Galois ring GR(2k, d), length parameters l1, ..., ln ∈ N. Let (ϕ, ψ) be an
(m, d; 3)-RMFE over Z2k , and τ := ϕ ◦ ψ.
Deliver phases: Upon receiving (sid; Delivery; li; J) from the adversary where
i ∈ [n], J ⊆ [li] and sid is a session identifier, verify that there are stored values
(sid;α) and (sid;a, b; li); else ignore that message. Next, compute η := (τ(a) −
a)|J ∈ Ker(ψ)|J|, and send (sid;η; li; J) to PR, and ignore further messages
(sid; Delivery; li; J) from the adversary with the same session identifier sid.

Fig. 8: Ideal functionality for random re-embedding VOLE over GR(2k, d).

We slightly modify the FGR(2k,d)
eVOLE functionality and the FGR(2k,d)

cVOLE functionality
to include checking RMFE constraints (see the resulting functionalities FGR(2k,d)

ëVOLE

in Figure 17, and FGR(2k,d)
c̈VOLE in Figure 19.). We present the ëVOLE protocol in

Figure 18, which is the same as ΠGR(2k,d)
eVOLE , except that ΠGR(2k,d)

ëVOLE is built upon
FGR(2k,d)

embVOLE. We also present the c̈VOLE protocol in Figure 20, which is the same
as ΠGR(2k,d)

cVOLE , except that ΠGR(2k,d)
c̈VOLE is built upon FGR(2k,d)

ëVOLE .
We have the following lemmas (proofs are deferred to Appendix B.2).

Lemma 6. ΠGR(2k,d)
ëVOLE realizes FGR(2k,d)

ëVOLE in the FGR(2k,d)
embVOLE-hybrid model with reusable

malicious security.

Lemma 7. Instantiating FGR(2k,d)
ëVOLE with ΠGR(2k,d)

ëVOLE , we have that ΠGR(2k,d)
c̈VOLE realizes

FGR(2k,d)
c̈VOLE in the FGR(2k,d)

embVOLE-hybrid model with reusable malicious security.

5.2 Forcing the Receiver to follow RMFE Encoding

In this section, we consider the remaining issue of forcing the receiver to follow
RMFE encoding. We remark again that the malicious receiver in the ΠNISC pro-
tocol can only cheat by deviating from RMFE encoding. Therefore, in Figure 9 we
define a variant of VOLE, called ϕVOLE, where the receiver’s inputs are restricted
in the image of a RMFE map ϕ (this leaves no room for the malicious receiver to
cheat when building ΠNISC upon it). In general, we construct computationally
secure NISC protocols following the roadmap below,

FGR(2k,d)
ϕVOLE =⇒ Π

GR(2k,d)
embVOLE =⇒ Π

GR(2k,d)
ëVOLE

+Πq,t
NIZK=⇒ Π

GR(2k,d)
c̈VOLE =⇒NISC.

Recall that in c̈VOLE, there are n+ 2 VOLE instances, and the first n+ 1
VOLE instances correspond to PR’s inputs α1 + β, ..., αn + β, β, respectively. We
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remark that α1+β, ..., αn+β, β will be restricted in Im(ϕ), the ëVOLE soundness
is 1/2d + 1/2m rather than 1/2d−1. We present two ϕVOLE constructions with
different features as follows.

Functionality FGR(2k,d)
ϕVOLE

Let (ϕ, ψ) be an (m, d; 3)-RMFE over Z2k . Parameterized by a ring GR(2k, d), length
parameters l1, ..., ln ∈ N and the RMFE map ϕ.
Setup phase: Upon receiving input (sid;α) from PR where α ∈ Im(ϕ) and sid
is a session identifier, store (sid;α), send (sid; initialized) to the adversary and
ignore any further inputs from PR with the same session identifier sid.
Send phases: Upon receiving input (sid;a; b; li) from PS , where (a, b; li) ∈
GR(2k, d)li × GR(2k, d)li × N and sid is a session identifier, store (sid;a; b; li), send
(sid; sent; li) to the adversary, and ignore any further inputs from PS with the
same session identifier sid.
Deliver phases: Upon receiving a message (sid; Delivery; li) from the adversary
where li ∈ N and sid is a session identifier, verify that there are stored inputs
(sid;α) from PR and (sid;a, b; li) from PS ; else ignore that message. Next, compute
v := a ·α+b, send (sid;v; li) to PR, and ignore further messages (sid; Delivery; li)
from the adversary with the same session identifier sid.

Fig. 9: Ideal functionality for chosen-input ϕVOLE over GR(2k, d).

The ϕVOLE construction based on cut-and-choose. We are initially in-
spired by the approach of the concurrent work [17], where they bypassed the
impossible result of OT-based rNISC [10] via making a black-box use of OT proto-
cols with random oracles. Making a black-box use of OT (VOLE) protocols instead
of assuming black-box access to an ideal OT (VOLE) functionality allows for “con-
necting” the inputs that the parties use to compute OT messages with the other
cryptographic primitives, e.g. commitments. Let (Π

GR(2k,d)
PR,1 , Π

GR(2k,d)
PS ,1 , Π

GR(2k,d)
PR,2 )

be a two-message reusable VOLE protocol over GR(2k, d), where PR runs ΠGR(2k,d)
PR,1

on her private input and random tape to obtain the first round message π1, then
PS computes the second round message π2 by running ΠGR(2k,d)

PS ,1 on π1 and his

private input, and finally PR obtains the result by evaluating ΠGR(2k,d)
PR,2 on π2

and her random tapes. Recall that our goal here is to guarantee that PR’s inputs
are restricted in the image of an RMFE map, and intuitively our high-level idea
is cut-and-choose. The receiver PR commits to inputs and random tapes used for
generating her first VOLE messages (several copies), and reveals some of them
according to queries to a random oracle. The sender PS then can check whether
PR’s inputs are valid and the VOLE messages are correctly computed. However,
there is still a gap since PR’s inputs are private (for computing rNISC/VOLE
tasks) and none of them could be revealed. We overcome this issue by observing
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that in cVOLE, PR’s inputs to multiple VOLE instances are masked with a
random β (suppose PR has inputs α1, ..., αn), thus one of these commitments
[[α1 + β]], ..., [[αn + β]], [[β]] can be opened. Repeating the procedure for a sufficient
number of times and PS will believe that PR behaves honestly with an over-
whelming probability. The final problem is that a malicious PR may not provide
consistent inputs in different iterations. We show that if further assuming the
commitment scheme (Com, Open) is linearly homomorphic over Galois rings, we
can apply a random linear combination check on the committed inputs, where
the random coefficients can be obtained by querying a random oracle as well.
Since RMFEs over Z2k are Z2k -linear maps, these random coefficients can be
sampled from Z2k . We present the desired protocol in Figure 10, which has O(λ)
communication overhead due to cut-and-choose.

We have the following theorem (see proof in Appendix B.6).

Theorem 5. Assuming a two-message reusable VOLE protocol over GR(2k, d),
and a linearly-homomorphic commitment scheme over GR(2k, d), ΩGR(2k,d)

ϕVOLE realizes

FGR(2k,d)
ϕVOLE in the random oracle model.

Combining all pieces together, we obtain an rNISC protocol (for computing
BPs over Z2k) that makes black-box use of any two-message reusable VOLE
protocol in the random oracle model. We note that, for constructing an rNISC
computing a general function f , the work [17] provides a compiler that lifts
a non-reusable (malicious secure) NISC protocol (computes a related function
f ′) to a reusable one. We observe that their tool is strong, but quite heavy
and expensive for general functions, while for some simple f , the efficiency can
be significantly improved. To optimize the efficiency, we can use their rNISC
compiler to obtain a reusable VOLE protocol over Galois rings from black-box
use of OT 13, which is expected to have good concrete efficiency.
The ϕVOLE construction from OT. We start with an observation on RMFEs.
Let (ϕ, ψ) be an (m, d;D)-RMFE over Z2k . We have that GR(2k, d) can be viewed
as a linear space over Z2k with dimension d. As ϕ, ψ are Z2k -linear maps, Im(ϕ)
can be viewed as a linear space over Z2k with dimension m, which is a subspace
of GR(2k, d) as well. Therefore, there exist a basis γ1, ..., γm ∈ GR(2k, d) such that

ϕ : Zm
2k → GR(2k, d), (a1, ..., am) 7→ a1γ1 + ...+ amγm.

We call such γ1, ..., γm an RMFE-basis. Let α ∈ Zm
2k , and a, b1, ..., bm ∈

GR(2k, d)l. Denote a · αi + bi by vi, for i ∈ [m]. We have that

m∑
i=1

vi · γi =
m∑
i=1

(a · αi + bi) · γi = a · (
m∑
i=1

αiγi) +

m∑
i=1

bi · γi

= a · ϕ(α1, ..., αm) +

m∑
i=1

bi · γi.

13 VOLE is essentially a simple NISC task, therefore the inner protocol of the rNISC
compiler can be an OT-based (non-reusable) VOLE protocol. The specific construction
is beyond the scope of this work, thus omitted.
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Protocol ΩGR(2k,d)
ϕVOLE

Parameterized by a Galois ring GR(2k, d), length parameter l, computational security
parameter λ and cut-and-choose parameter t = O(λ). Let (ϕ, ψ) be an (m, d; 3)-
RMFE over Z2k . Let (Π

GR(2k,d)
PR,1 , Π

GR(2k,d)
PS ,1 , Π

GR(2k,d)
PR,2 ) be a two-message reusable

VOLE protocol over GR(2k, d). Let H1 : {0, 1}∗ → ({0, 1}st)(n+1)×t and H2 :
{0, 1}∗ → Zn×t

2k
be two hash functions, where st is the number of bits needed

to toss a biased coin (used for interpreting the hash values as matrices with a
special form). Let (Com, Open) be a commitment scheme. Suppose PR has input
α ∈ Im(ϕ)n, and PS has input ai, bi ∈ GR(2k, d)l for i = 0, 1, ..., n.

1. Round-1:
(a) For j ∈ [t], PR samples βj

$← Im(ϕ). For i = 0, 1, ..., n and j ∈ [t], PR

samples random tape ri,j to be used in the protocol ΠGR(2k,d)
PR,1 .

(b) For i ∈ [n], PR computes [[αi]] := Com(αi). For j ∈ [t], PR computes
π0,j,1 := Π

GR(2k,d)
PR,1 (βj ; r0,j), [[βj ]] := Com(βj), and [[r0,j ]] := Com(r0,j). For

i ∈ [n] and j ∈ [t], PR computes πi,j,1 := Π
GR(2k,d)
PR,1 (αi + βj ; ri,j), [[αi +

βj ]] := Com(αi + βj) and [[ri,j ]] := Com(ri,j). Denote the sequence of values
({[[αi]]}i∈[n], {π0,j,1, [[βj ]], [[r0,j ]]}j∈[t], {πi,j,1, [[αi + βj ]], [[ri,j ]]}i∈[n],j∈[t]) by
msg.

(c) The receiver PR computes S = H1(msg), and interprets S as a (n+ 1)× t
matrix such that each column contains at most one 1 and zeros everywhere
else (we require S has at least one column with all zeros). Then, PR
computes {χi,j}i∈[n],j∈[t] := H2(msg), where χi,j ∈ Z2k .

(d) The receiver PR computes unv := Open(
∑

i∈[n],j∈[t] χi,j · ([[αi+βj ]]− [[αi]]−
[[βj ]])).

(e) The receiver PR sends ({msg, unv, {Open([[αi + βj ]]), Open([[ri,j ]])}Si,j=1) as
the first message.

2. Round-2:
(a) The sender PS recomputes S and {χi,j}i∈[n],j∈[t] as in step-(c) of Round-

1 and checks whether the openings are valid. In particular, PS checks
whether unv is an opening of [[0]].

(b) For i ∈ [n], j ∈ [t] such that Si,j = 1, PS checks whether αi + βj ∈ Im(ϕ).
For j ∈ [t] such that S0,j = 1, PS checks whether βj ∈ Im(ϕ).

(c) For i ∈ [n], j ∈ [t] such that Si,j = 1, PS checks whether πi,j,1 =

Π
GR(2k,d)
PR,1 (αi + βj ; ri,j). For j ∈ [t] such that S0,j = 1, PS checks whether

π0,j,1 = Π
GR(2k,d)
PR,1 (βj ; r0,j).

(d) If any of above checks fail, PS aborts. Otherwise, PS randomly picks j
satisfying the j-th column of S are all 0’s.

(e) PS computes πi,2 := Π
GR(2k,d)
PS ,1 (ai, bi, πi,j,1) for i = 0, 1, ..., n. PS sends

(π0,2, ..., πn,2, j) to PR.
3. Output Computation: The receiver PR computes vi := Π

GR(2k,d)
PR,2 (πi,2, ri,j),

for i = 0, 1, ..., n.

Fig. 10: Protocol for ϕVOLE making black-box use of VOLE over GR(2k, d).
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Denoting
∑m

i=1 vi ·γi by v and
∑m

i=1 bi ·γi by b, we obtain an VOLE instance
v = a · ϕ(α) + b. From above discussions, we present the (chosen-input) reverse
subring VOLE (rsVOLE) functionality over GR(2k, d) in Figure 21, where the
receiver PR’s inputs are over Z2k . Then in Figure 11, we present a semi-honest
secure ϕVOLE construction over GR(2k, d) in the FGR(2k,d)

rsVOLE -hybrid model. To
enable perfect simulation, we further require that γ1 is invertible in GR(2k, d).
Such RMFE-basis γ1, ..., γm ∈ GR(2k, d) always exists, for an (m, d;D)-RMFE
(ϕ, ψ) with ϕ(1) = 1. Intuitively, if b1 is uniformly random, then b is uniformly
random as well. We have the following theorem (see proof in Appendix B.6).

Theorem 6. Protocol ΠGR(2k,d)
ϕVOLE realizes FGR(2k,d)

ϕVOLE with semi-honest security.

It is straightforward that the FGR(2k,d)
rsVOLE functionality can be instantiated from

OTs in a standard way (similar to the way that SPDZ2k [11] implements VOLE
over Z2k), yielding the required VOLE protocol with semi-honest security (mk
OTs involved in total). We present the OT-based protocol FGR(2k,d)

rsVOLE in Figure 22
and its security proof in Theorem 13. For such OT-based constructions, the
malicious security can be naturally obtained if upgrading OTs to Correlated
OTs (COTs) (we can use the COT construction in [23]), as there is no room
for a malicious PR to cheat and a malicious PS can only cheat by providing
inconsistent inputs to OTs. This leads to an efficient malicious secure ϕVOLE
construction (the cost is even cheaper than constructing standard VOLE from
COT), and further an efficient malicious secure NISC construction for computing
BPs over Z2k .

Protocol ΠGR(2k,d)
ϕVOLE

Parameterized by a Galois ring GR(2k, d), length parameter l. Let (ϕ, ψ) be an
(m, d; 3)-RMFE over Z2k , and γ1, ..., γm ∈ GR(2k, d) be an RMFE-basis such that
γ1 is invertible. Suppose PR has input α ∈ Zm

2k , and PS has input a, b ∈ GR(2k, d)l.

1. For i = 1, ...,m, PR sends (i;αi) to FGR(2k,d)
rsVOLE .

2. For i = 2, ...,m, PS picks random bi ∈ GR(2k, d)l. PS sets b1 = γ−1
1 · (b −∑m

i=2 bi · γi). PS sends (i;a, bi; l) to FGR(2k,d)
rsVOLE , for i ∈ [m].

3. Upon receiving (i;vi; l) from FGR(2k,d)
rsVOLE , where vi = a · αi + bi, for i ∈ [m], PR

computes v :=
∑m

i=1 vi · γi.

Fig. 11: Protocol for ϕVOLE over GR(2k, d) in the FGR(2k,d)
rsVOLE -hybrid model.
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Supplementary Material

A More Preliminaries

Commitment Scheme. Informally, a commitment scheme is a two party pro-
tocol consisting of two algorithms, Commit and Open. In the commit phase of
the protocol, the sender PS invokes Commit to commit some value m, obtaining
[[m]] ← Commit(m) as the result. Then he sends [[m]] to the receiver PR. Later
on in the unveil phase, PS is required to send m along with the unveil infor-
mation unv := Open([[m]]) to PR such that PR can check whether m is a valid
opening of [[m]]. There are two security properties that a commitment scheme
should satisfy; 1.Hiding: PR can not learn anything about m from [[m]] in the
commit phase, and 2.Binding: PS can not provide a m′ ̸= m and a unv′ such
that PR accepts m′ as a valid opening of [[m]] in the unveil phase. A linearly
homomorphic commitment scheme over some ring R additionally satisfies the
linear homomorphic property: for n > 0, ai,mi ∈ R, i ∈ [n], PR can check
whether m =

∑
i∈[n] aimi is a valid opening of

∑
i∈[n] ai[[mi]], as long as given

m, ai, [[mi]], i ∈ [n] and unv := Open(
∑

i∈[n] ai[[mi]]).
Zero-Knowledge Proof. The zero-knowledge proof functionality (FZK, Figure
12) for circuit satisfiability allows the prover P to prove knowledge of a witness
w for some public circuit C, i.e. C(w) = 1 without revealing any additional
information to the verifier V.

Functionality FZK

Parameterized by a ring R, a witness size parameter n.

Input phase: Upon receiving (sid; input,w) from a prover P with w ∈ Rn and
(sid; input) from a verifier V, store (sid;w) and ignore any further inputs from P
and V with the same session identifier sid.
Prove phase: Upon receiving (sid; prove, C) from P and (sid; verify, C) from V,
verify that there are stored values (sid;w) and C is a circuit over R with input
size n; else ignore that message. Send (sid; true) to V if C(w) = 1 and (sid; false)
otherwise.

Fig. 12: Zero-knowledge functionality for circuit satisfiability.
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Functionality FEQ

Input phase: Upon receiving (sid;VP) from a party P and (sid;VV) from a party
V, where VP , VV are two strings, store (sid;VP , VV) and ignore any further inputs
from P and V with the same session identifier sid.
Send phase: Upon receiving (sid; send) from P, send (sid;VP , VP

?
= VV) to V.

Upon receiving (sid; send) from an honest V, if VP = VV , send (sid; true) to P,
and if VP ̸= VV , send (sid; abort) to P. If receive (sid; continue) from a corrupted
V, send (sid;VP

?
= VV) to P. If receive (sid; abort) from a corrupted V, send

(sid; abort) to P.

Fig. 13: Ideal functionality for equality tests.

Functionality FOT

Parameterized by a ring R.

Input phase: Upon receiving (sid; input,m0,m1) from PS and (sid; input, b)
from PS , where m0,m1 ∈ R and b ∈ {0, 1}, store (sid;mb) and ignore any further
inputs from PS and PR with the same session identifier sid.
Send phase: Upon receiving (sid; send) from PS , verify that there are stored
inputs (sid;mb); else ignore that message. Next, send (sid;mb) to PR.

Fig. 14: Ideal functionality for oblivious transfer.
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B Deferred Proofs & Protocols

B.1 NIZK

We present the subprotocol Πq,t
NIZK for proving circuit satisfiability over GR(2k, d)

in Figure 15. We remark that though the presentation of our protocol is different
from [13], it is essentially an LPZK-NIZK in Galois ring analogue. On input [w]γ ,
the subprotocol Πq,t

NIZK communicates 3 Galois ring elements per multiplication
gate.

Protocol Πq,t
NIZK

The prover P and the verifier V have agreed on a circuit C over GR(2k, d) with q
inputs and t multiplication gates, and P holds a witness w ∈ GR(2k, d)q such that
C(w) = 1.

1. Offline:
(a) The two parties invoke the Setup phase of FGR(2k,d)

VOLE (where P acts as
the sender, and V acts as the receiver), then V receives γ ∈ GR(2k, d).

(b) The two parties invoke the Send phases of FGR(2k,d)
VOLE , then P receives

ν,π ∈ GR(2k, d)t,M ∈ GR(2k, d)2t, and V receives K ∈ GR(2k, d)2t such
that Kνi =Mνi + νi · γ and Kπi =Mπi + πi · γ for i ∈ [t]. Namely, they
obtain random MACs [ν]γ , [π]γ .

2. Online: On input [w]γ .
(a) For each gate (x, y, z, T ) ∈ C, in a topological order:

– If T=Add, then P and V locally compute [wz]γ := [wx]γ + [wy]γ .
– If T=Mul and this is the i-th multiplication gate, then P sends di :=
wx · wy − νi to V, and they locally compute [wz]γ := [νi]γ + di.

(b) For the i-th multiplication gate, the two parties hold ([wx]γ , [wy]γ , [wz]γ)
with Kwj =Mwj + wj · γ for j ∈ {x, y, z}.
– The prover P computes A0,i := Mwx ·Mwy ∈ GR(2k, d) and A1,i :=
wx ·Mwy + wy ·Mwx −Mwz ∈ GR(2k, d).

– The verifier V computes Bi := Kwx ·Kwy −Kwz · γ ∈ GR(2k, d).
(c) The two parties do the following check:

– For i ∈ [t], P computes Xi := A0,i + Mπi ∈ GR(2k, d) and Yi :=
A1,i + πi ∈ GR(2k, d), and sends (Xi, Yi) to V.

– For i ∈ [t], V computes Zi := Bi+Kπi ∈ GR(2k, d), and checks whether
Zi = Xi + Yi · γ holds. If the check fails, V outputs false and aborts.

(d) For the single output wire ωh, they hold [ωh]γ .
– The prover P sends Mωh to V.
– The verifier V checks whether Kωh = Mωh + γ. If the check fails, V

outputs false. Otherwise, V outputs true.

Fig. 15: Zero-knowledge protocol for circuit satisfiability over GR(2k, d) in the
FGR(2k,d)

VOLE -hybrid model.
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Theorem 7 (Proposition 5, restated). Protocol Πq,t
NIZK realizes FZK in the

FGR(2k,d)
VOLE -hybrid model with soundness error 1/2d−1 and statistical security.

Proof. We divide our proof into two parts. We first consider P is corrupted, then
we consider V is corrupted. In each case, we build a PPT simulator S to interact
with the corrupted party in the ideal world, which can read the corrupted party’s
inputs to functionalities FGR(2k,d)

VOLE .
Corrupted P: The simulator S interacts with A as follows:

1. The simulator S samples γ $← GR(2k, d) and records ν,π ∈ GR(2k, d)t and
M ∈ GR(2k, d)2t that A sends to FGR(2k,d)

VOLE . Thus, S can immediately obtain
the MACs [µ]γ , [π]γ . Similarly, S can obtain the input MACs [w]γ .

2. The simulator S runs the rest of the protocol as an honest verifier, using
the MACs generated in previous steps. If the honest verifier outputs true, S
sends w and the circuit C to FZK. Otherwise, S sends w := ⊥ and C to FZK

and aborts.

From the simulation, we can see that S behaves like an honest verifier towards A,
therefore, the environment Z can not distinguish the ideal simulation and real
execution from the adversary A’s view. Note that Z has access to the output of
the honest party, the situation remains to be considered is that honest verifier
V accepts the proof while A does not hold the witnesses. Below we show the
probability that V accepts a proof of wrong statements (i.e. the soundness error)
is upper bounded by 1/2d−2.

First we prove that all the values on the wires in the circuit are correct. It
can be immediately obtained that the values associated with input wires and the
output wires of Add gates are computed correctly, since they are computed locally.
Thus, we need to consider the correctness of values on the output wires of Mul
gates, which is guaranteed by the correctness of di, for all i ∈ [t] in our protocol
Πq,t

ZK. Consider that some of components of d are incorrect, e.g. there is an error
in the i-th Mul gate. Let di := wx · wy − νi + ei, where ei ∈ GR(2k, d). Thus we
have that

Kŵz
: = Kνi

+ γ · di = Kνi
+ γ · (wx · wy − νi + ei)

=Mνi
+ γ · νi + γ · (wx · wy − νi + ei)

=Mŵz
+ γ · (wx · wy) + γ · ei,

and

Bi : = Kwx
·Kwy

− γ ·Kŵz

= (Mwx
+ γ · wx) · (Mwy

+ γ · wx)− γ · (Mŵz
+ γ · (wx · wy) + γ · ei)

= (Mwx
·Mwy

) + γ · (wx ·Mwy
+ wy ·Mwx

−Mŵz
)− γ2 · ei

= A0,i + γ ·A1,i − γ2 · ei,

which leads to
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Zi : = Bi +Kπi

= Xi + γ · Yi − γ2 · ei,

for all i ∈ [t]. Assume A sends X ′
i = X + eXi

and Y ′
i = Y + eYi

to the honest
verifier, where eXi , eYi ∈ GR(2k, d), for all i ∈ [t]. V accepts if and only if

Zi = X ′
i + γ · Y ′

i ⇐⇒ 0 = eXi
+ γ · eYi

+ γ2 · ei,

holds for all i ∈ [t]. By Lemma 1, we obtain that the above equations hold with
probability at most 2−(d−1).

Finally, we show that if C(w) = 0, and all the values on the wires in the circuit
are correct, the probability that A successfully provides a M ′

wh
:=Mwh

+ ewh
such

that Kwh
= M ′

wh
+ γ is upper bounded by 2−kd. The honest verifier accepts if

and only if
Kwh

=M ′
wh

+ γ ⇐⇒ 0 = ewh
+ γ,

which holds for a random γ ∈ GR(2k, d) with probability at most 1/2−kd.
Thus, the overall soundness error is bounded by 2−(d−1) + 2−kd ≈ 2−(d−1).

Namely, a PPT Z can distinguish between the real world and the ideal world with
advantage approximately at most 2−(d−1).

Corrupted V: If S receives false from FZK, then it just aborts. Otherwise,
S interacts with A as follows:

1. In the offline phase: S records γ ∈ GR(2k, d) that A sends to FGR(2k,d)
VOLE , also,

S records Kνi
,Kπi

∈ GR(2k, d) for i ∈ [t] that A sends to FGR(2k,d)
VOLE . Similarly,

S records Kwi
for i ∈ [q] for the input MACs.

2. The simulator S samples ν,π
$← GR(2k, d)t, and w

$← GR(2k, d)q.
3. For each gate (x, y, z, T ) ∈ C, in a topological order:

– If T=Add, S computes Kwz
:= Kwx

+Kwy
as the honest verifier would

do, and sets wz := wx + wy.
– If T=Mul, and this is the i-th multiplication gate, then S sends di :=
wx · wy − νi to A. The simulator S computes Kwz := Kνi + γ · di, and
Bi := Kwx

· Kwy
− γ · Kwz

as the honest verifier would do, and sets
wz := wx · wy.

4. For i ∈ [t], S computes Zi := Bi +Kπi ∈ GR(2k, d), then S samples Yi
$←

GR(2k, d) and sets Xi := Zi − γ · Yi. The simulator S sends {(Xi, Yi)}i∈[t] to
A.

5. For the single output wire wh, S already holds Kwh
. Finally, S computes

Mwh
:= Kwh

− γ, and sends Mwh
to A.

It can be observed that {(Xi, Yi)}i∈[t] provided by the honest prover are distributed
uniformly at random due to the masks Mπi , πi, respectively, under the equality
constraints Zi = Xi + γ · Yi, i ∈ [n]. Besides, Mwh

is identically distributed in
both real execution and ideal simulation. Therefore, the simulation is perfect. This
completes the proof. ⊓⊔
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B.2 eVOLE & cVOLE

Theorem 8 (Proposition 4, restated). ΠGR(2k,d)
eVOLE realizes FGR(2k,d)

eVOLE in the
FGR(2k,d)

VOLE -hybrid model with reusable malicious security.

Proof. If the receiver is corrupted, the simulator S emulates the FGR(2k,d)
VOLE function-

ality, and α1, α2 from the adversary. S forwards α1, α2 to the ideal functionality
FGR(2k,d)

eVOLE , and receives v1 ∈ GR(2k, d)l1 ,v2 ∈ GR(2k, d)l2 . S samples random v̂1 ∈
GR(2k, d)l1+1, v̂2 ∈ GR(2k, d)l2+1 and sends them to the adversary. For t = 1, 2,
S samples random ut from GR(2k, d)lt , and computes wt := vt − ut · αt − v̂t.
For t = 1, 2, S sends ut,wt to the adversary. S forwards the verification com-
mand (Verify†, i, j) received from the adversary to FGR(2k,d)

eVOLE . S samples random
u1,l1+1, u2,l2+1. If FGR(2k,d)

eVOLE returns ⊥, S samples random b̂, otherwise, S com-
putes b̂ := α2 ·v1,i−α1 ·v2,j + v̂1,l1+1+α1 ·u1,l1+1− v̂2,l2+1−α2 ·u2,l2+1. S sends
u1,l1+1, u2,l2+1, b̂ to the adversary. Similarly, S forwards the verification com-
mand (Verify‡, i, j) received from the adversary to FGR(2k,d)

eVOLE . S samples random
w1,l1+1, u2,l2+1. If FGR(2k,d)

eVOLE returns ⊥, S samples random b̂, otherwise, S com-
putes b̂ such that α1·b̂ := v2,j−v̂1,l1+1−w1,l1+1−v1,i·α2+(v̂2,l2+1+u2,l2+1·α2)·α1.
S sends w1,l1+1, u2,l2+1, b̂ to the adversary. One can check that the simulation is
perfect.

For reusable security in the malicious sender setting, the simulator S emulates
the FGR(2k,d)

VOLE functionality and extracts A’s inputs from A’ messages, then S
forwards the inputs to the FGR(2k,d)

eVOLE functionality. As discussed in Section 3, the
soundness error here is upper bounded by 1/2d−1. This completes the proof. ⊓⊔

Theorem 9 (Corollary 2, restated). ΠGR(2k,d)
cVOLE realizes FGR(2k,d)

cVOLE in the (FGR(2k,d)
VOLE ,FGR(2k,d)

eVOLE )-
hybrid model.

Proof. If the receiver is corrupted. We construct a simulator SimR that invokes a
simulator SimNIZK

R for Πq,t
NIZK. The simulator SimR emulates the ideal functional-

ity FGR(2k,d)
eVOLE , and records the adversary’s inputs (α′

1, ..., α
′
n, β, γ). Then SimR com-

putes αi := α′
i−β, for i ∈ [n], and sends them to the ideal functionality FGR(2k,d)

cVOLE ,

which returns v1, ...,vn to SimR. For i ∈ [n], SimR samples v̂i
$← GR(2k, d)li ,

and v̂n+2
$← GR(2k, d)q+qb . Besides, SimR sets v̂n+1 := v̂1−v1 ∥ ... ∥ v̂n+1−vn.

For i ∈ [n+ 2], SimR sends v̂i to the adversary. For the adversary’s eV OLE
queries, SimR responds with “yes”. Finally, SimR invokes SimNIZK

R . The indis-
tinguishability is straightforward.

If the sender is corrupted. We construct a simulator SimS that invokes a sim-
ulator SimNIZK

S for Πq,t
NIZK. The simulator SimS emulates the ideal functionality

FGR(2k,d)
eVOLE , and records the adversary’s inputs (ai, bi), for i ∈ [n+2]. SimS checks

equality constraints that a honest receiver would check (Also, SimS emulates the
Verify Phase of FGR(2k,d)

eVOLE and invokes SimNIZK
S .). If any of the equality check

39



fails, SimS sends aborting to FGR(2k,d)
cVOLE . Finally, SimS sends (ai, bi), for i ∈ [n]

to FGR(2k,d)
cVOLE . The environment can distinguish ideal world and real execution with

probability at most the soundness error of Πq,t
NIZK. ⊓⊔

B.3 Re-embedding VOLE

We remark that our ΠGR(2k,d)
embVOLE protocol (Figure 16) allows to re-embed a subset

J of the a entries. Also, ΠGR(2k,d)
embVOLE can be made non-interactive via Fiat-Shamir

transform, where (l+ r) VOLE correlations are obtained and |J |+3r Galois ring
elements are communicated. We have the following theorem.

Protocol ΠGR(2k,d)
embVOLE

Parameterized by a Galois ring GR(2k, d), length parameters l ∈ N. Let (ϕ, ψ) be an
(m, d;D)-RMFE over Z2k , and τ := ϕ ◦ ψ. Let J ⊆ [l], and denote J ∪ [l + 1, l + r]
by Ĵ .

1. PS and PR invoke the Setup phase of FGR(2k,d)
VOLE , then PR receives α ∈

GR(2k, d).
2. PS and PR invoke the Send phases of FGR(2k,d)

VOLE , then PS receives a, b ∈
GR(2k, d)l+r, and PR receives v such that v = a · α+ b.

3. Deliver:
(a) Let η := 0 ∈ GR(2k, d)l+r. PS resets η|Ĵ := (τ(a)− a)|Ĵ , and sends η to

PR. If η|Ĵ /∈ Ker(ψ)|J|+r, PR aborts.

(b) PR samples χ1, ...,χr $← Zl
2k , and sends them to PS .

(c) For i ∈ [r], PS computes xi := al+i +
∑

j∈J χ
i
j · aj and yi := τ(al+i) +∑

j∈J χ
i
j ·τ(aj). PS sends x,y to PR. PS computes zi := bl+i+

∑
j∈J χ

i
j ·bj

for i ∈ [r].
(d) PR checks yi − xi = ηl+i +

∑
j∈J χ

i
j · ηj , for i ∈ [r] and y ∈ Im(ϕ)r. If the

check fails, PR aborts. PR computes ẑi := vl+i +
∑

j∈J χ
i
j · vj − xi · α for

i ∈ [r].
(e) PR sends z to FEQ as V. PS sends ẑ to FEQ as P. PR receives ẑ. PS and

PR abort if the equality test fails.
4. Output: PS outputs a|[l], b|[l] and PR outputs v|[l],η|J .

Fig. 16: Protocol for re-embedding VOLE over GR(2k, d) in the (FGR(2k,d)
VOLE ,FEQ)-

hybrid model.

Theorem 10 (Adapted from [20]). Π
GR(2k,d)
embVOLE UC-realizes FGR(2k,d)

embVOLE in

the (FGR(2k,d)
VOLE ,FEQ)-hybrid model. In particular, no PPT environment Z can
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distinguish the real world execution from the ideal world simulation except with
advantage at most 2−r + 2−d.
Proof. We divide our proof into two parts. First, we consider PS is corrupted and
construct a PPT simulator SimS , then we consider PR is corrupted and build a
PPT simulator SimR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to functionalities
FGR(2k,d)

VOLE ,FEQ.
Corrupted PS: SimS acts as follows:

1. SimS reads a, b ∈ GR(2k, d)l+r that A sends to FGR(2k,d)
VOLE .

2. Upon receiving η ∈ GR(2k, d)l+r from A, if η|Ĵ /∈ Ker(ψ)|J|+r, SimS aborts.
3. SimS samples χ1, ...,χr $← Zl

2k , and sends them to A.
4. Upon receiving x,y ∈ GR(2k, d)r from A. If yi − xi ̸= ηl+i +

∑
j∈J χ

i
j · ηj , for

some i ∈ [r], or y /∈ Im(ϕ)r, SimS aborts.
5. SimS reads ẑi, i ∈ [r] that A sends to FEQ. SimS computes zi := bl+i +∑

j∈J χ
i
j ·bj , for i ∈ [r]. If both η|Ĵ = (τ(a)−a)|Ĵ and ẑ = z hold, SimS sends

true to A (emulating FEQ), and sends (a|[l], b|[l]) to FGR(2k,d)
embVOLE. Otherwise,

SimS sends false to A and aborts.

It can be observed that when SimS aborts in step 2 or step 4 of the simulation, the
honest PR aborts in corresponding step of the protocol as well. Besides, χ1, ...,χr

are sampled in the same way of the ideal simulation and real execution. Therefore,
it remains to consider the simulation for FEQ. Basically, A can cheat by sending
η|Ĵ ∈ Ker(ψ)|J|+r, but η|Ĵ ̸= (τ(a) − a)|Ĵ . Let η|Ĵ = (τ(a) − a)|Ĵ + ε, where
ε ∈ Ker(ψ)|J|+r. We have that

η|Ĵ = τ(a|Ĵ)− (a|Ĵ − ε) = τ(a|Ĵ − ε)− (a|Ĵ − ε).

Therefore, A can set

x∗i := (al+i − εl+i) +
∑
j∈J

χi
j · (aj − εj),

and

y∗i := τ(al+i − εl+i) +
∑
j∈J

χi
j · τ(aj − εj) = τ(al+i) +

∑
j∈J

χi
j · τ(aj) = yi,

for i ∈ [r]. These x∗i , y∗i would pass the check of honest PR. Now in real protocol,
we have that

zi = vl+i +
∑
j∈J

χi
j · vj − α · x∗i

= (bl+i + αal+i) +
∑
j∈J

χi
j(bj + αaj)− α(al+i − εl+i +

∑
j∈J

χi
j(aj − εj))

= bl+i +
∑
j∈J

χi
j · bj + α · (εl+i +

∑
j∈J

χi
j · εj)

= ẑi + α · (εl+i +
∑
j∈J

χi
j · εj).
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Thus, FEQ returns true if and only if

α · (εl+i +
∑
j∈J

χi
j · εj) = 0,

for all i ∈ [r]. If εl+i +
∑

i∈J χ
i
j · εj ̸= 0, from lemma 1, the above equality holds

with probability at most 2−d. Since χi
j ∈ Z2k , for j ∈ [l], εl+i +

∑
j∈J χ

i
j · εj = 0

holds with probability at most 1/2. Combining together, FEQ returns true with
probability at most 2−r + 2−d in real execution if η|Ĵ ̸= (τ(a) − a)|Ĵ , while in
simulation, this will leads to abort. Note that if η|Ĵ is correct, the outputs of
honest PR are computed in the same way in two worlds. Therefore, environment
Z can distinguish the ideal simulation and real execution with advantage at most
2−r + 2−d.

Corrupted PR: SimR does as follows:

1. SimR reads α ∈ GR(2k, d) that A sends to FGR(2k,d)
VOLE in the Setup phase.

SimR then sends α to FGR(2k,d)
embVOLE.

2. SimR records v ∈ GR(2k, d)l+r sent by A. Upon receiving η ∈ Ker(ψ)l from
FGR(2k,d)

embVOLE, SimR samples η′ $← Ker(ψ)r and sends η̂ := (η,η′) ∈ Ker(ψ)l+r

to A.
3. SimR sets v′ := v + α · η̂. Upon receiving χi ∈ Zl

2k , i ∈ [r] from A, SimR

samples y
$← Im(ϕ)r, and computes xi := yi − ηl+i −

∑
j∈J χ

i
j · ηj , for i ∈ [r].

Then, SimR sends x,y to A.
4. SimR reads z that A sends to FEQ. SimR computes ẑi := vl+i +

∑
j∈J χ

i
j ·

vj −α ·xi, for i ∈ [r]. SimR sends ẑ to A (emulating FEQ). If z = ẑ, SimR
sends true to A. Otherwise, SimR sends abort to A and aborts.

5. SimR sends v|[l] to FGR(2k,d)
embVOLE.

The indistinguishability between ideal simulation and real execution for corrupted
PR is simple. We first consider the view of A. In real protocol, A receives
η ∈ Ker(ψ)l+r. Since a is distributed uniformly at random in GR(2k, d)l+r, η|Ĵ
is distributed uniformly at random in Ker(ψ)|J|+r. While in simulation, η̂|Ĵ are
uniformly sampled from Ker(ψ)|J|+r as well. As for (x,y = τ(x)) in real protocol,
x is masked with a|[l+1:l+r], which makes y have the uniform distribution on
Im(ϕ)r. Thus, (x,y) generated by SimR have the same distribution as that in the
real protocol. The final message that A receives from FEQ is ẑ. It can be easily
verified that

zi = vl+i +
∑
j∈J

χi
j · vj − α · xi = bl+i +

∑
j∈J

χi
j · bj = ẑi,

Thus ẑ has the same distribution in both worlds. Further, if FEQ aborts in real
execution, SimR will send false to A and aborts as well. Finally, we turn to the
output of the honest PS . In real protocol, ai is conditioned on that τ(ai)−ai = ηi,
for all i ∈ J , while they have the same properties in ideal simulation. Therefore,
no PPT environment Z can distinguish the ideal simulation and the real execution.
This completes the proof. ⊓⊔
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B.4 ëVOLE & c̈VOLE

Functionality FGR(2k,d)
ëVOLE

FGR(2k,d)
ëVOLE extends the ideal functionality FGR(2k,d)

eVOLE in Figure 5. Setup phase, Send
phases, and Deliver phases are identical to those in FGR(2k,d)

eVOLE , respectively. For the
Verify phases, FGR(2k,d)

ëVOLE additionally supports RMFE verification. Parameterized
by a Galois ring GR(2k, d), length parameters l1, ..., ln ∈ N. Let (ϕ, ψ) be an
(m, d; 3)-RMFE over Z2k .
Verify phases: (RMFE verification) Upon receiving (sid; Verify♯; lt; J) from
PR, where t ∈ [n], J ⊆ [lt] and sid is a session identifier, verify that there are
stored inputs (sid;a, b; lt) from PS ; else ignore the message. Then, verify that
a|J ∈ Im(ϕ)|J|. If the check fails, send ⊥ to PR.

Fig. 17: Distributional certified VOLE with equality and RMFE constraints.

Theorem 11 (Lemma 6, restated). ΠGR(2k,d)
ëVOLE realizes FGR(2k,d)

ëVOLE in the FGR(2k,d)
embVOLE-

hybrid model with reusable malicious security.

Proof. If the receiver is corrupted, the simulator S acts as same as the simulator
for ΠGR(2k,d)

eVOLE , except that S here need to additionally respond to the command
(Verify♯, t, Jt) from the adversary. On this command, S sends η̂t to the adversary
such that η̂t|Jt := (ut − τ(ut))|Jt and zeros everywhere else. If the sender is
corrupted, as we realize ëVOLE in the FGR(2k,d)

embVOLE-hybrid model, the receiver PR

verifies the RMFE constraints for free. The simulator S emulates the FGR(2k,d)
embVOLE

functionality and extracts A’s inputs from A’ messages, then S forwards the
inputs to the FGR(2k,d)

ëVOLE functionality. The soundness error here is upper bounded
by 1/2d−1 as that in Corollary 4. This completes the proof. ⊓⊔

Theorem 12 (Lemma 7, restated). Instantiating FGR(2k,d)
ëVOLE with ΠGR(2k,d)

ëVOLE , we
have that ΠGR(2k,d)

c̈VOLE realizes FGR(2k,d)
c̈VOLE in the FGR(2k,d)

embVOLE-hybrid model with reusable
malicious security.

Proof. Correctness and security are immediately obtained from the correctness
and security of the underlying protocols (as it is built directly upon Π

GR(2k,d)
ëVOLE and

Πq,t
NIZK.). ⊓⊔

B.5 Reverse subring VOLE

Theorem 13. Protocol ΠGR(2k,d)
rsVOLE perfectly realizes FGR(2k,d)

rsVOLE with semi-honest
security.
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Protocol ΠGR(2k,d)
ëVOLE

Parameterized by a Galois ring GR(2k, d), length parameters l1, l2 ∈ N. Let (ϕ, ψ)
be an (m, d; 3)-RMFE over Z2k . PS has inputs at, bt ∈ GR(2k, d)lt , t ∈ [2]. PR has
(random) inputs α1, α2 ∈ GR(2k, d).

1. The sender PS and the receiver PR invoke the Setup phase of FGR(2k,d)
embVOLE

with PR’s inputs (α1, α2).
2. For t ∈ [2], PS and PR invoke the Send phases of FGR(2k,d)

embVOLE with inputs
(t; lt + 1). The sender PS receives ât, b̂t ∈ GR(2k, d)lt+1, while PR receives
v̂t ∈ GR(2k, d)lt+1, such that v̂t = ât · αt + b̂t.

3. For t ∈ [2], PS sends ut := at − ât|[lt], wt := bt − b̂t|[lt] to PR.

Verify♯: On input session id t, length lt and Jt ⊆ [lt].

(i) The sender PS and the receiver PR invoke the Deliver phases of FGR(2k,d)
embVOLE

with inputs (t; lt; Jt). Upon receiving η̂t ∈ GR(2k, d)lt from FGR(2k,d)
embVOLE, where

η̂t|Jt = (τ(ât)− ât)|Jt and 0’s in all of the remaining entries, PR checks that
(ut − τ(ut))|Jt = η̂t|Jt . If the check fails, PR aborts.

Verify†: The same as Verify† of ΠGR(2k,d)
eVOLE .

Verify‡: The same as Verify‡ of ΠGR(2k,d)
eVOLE .

Fig. 18: Protocol for ëVOLE over GR(2k, d) in the FGR(2k,d)
embVOLE-hybrid model.

Functionality FGR(2k,d)
c̈VOLE

Parameterized by a Galois ring GR(2k, d), a sequence of n positive integers l1, ..., ln,
a series of subsets Ji ⊆ [li], for i ∈ [n], and an arithmetic circuit C over GR(2k, d)
on q ≤ 2

∑n
i=1 li inputs. Let (ϕ, ψ) be an (m, d; 3)-RMFE over Z2k . Suppose PS

has input ai, bi ∈ GR(2k, d)li , and PR has input αi ∈ GR(2k, d), for i ∈ [n].

1. Receive (α1, ..., αn) from PR, and (a1, ...,an, b1, ..., bn) from PS .
2. Verify that ai|Ji ∈ Im(ϕ)|Ji| for i ∈ [n] and (a1, ...,an, b1, ..., bn) is a satisfying

assignment for circuit C. If the check fails, send ⊥ to PR. Otherwise, compute
vi := ai · αi + bi for i ∈ [n] and send (v1, ...,vn) to PR.

Fig. 19: Certified VOLE with a general arithmetic constraint
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Protocol ΠGR(2k,d)
c̈VOLE

Parameterized by a Galois ring GR(2k, d), a sequence of n positive integers l1, ..., ln,
a series of subsets Ji ⊆ [li], for i ∈ [n], and an arithmetic circuit C over GR(2k, d)
on qa + qb = q ≤ 2

∑n
i=1 li inputs with t multiplication gates. Let L1 = 0 and

for i = 2, 3, ..., n + 1, let Li = l1 + ... + li−1. Let (ϕ, ψ) be an (m, d; 3)-RMFE
over Z2k . The receiver PR has inputs αi ∈ GR(2k, d) and the sender PS has inputs
ai, bi ∈ GR(2k, d)li , for i ∈ [n]. Suppose C takes qa inputs from a entries and qb
inputs from b entries.

1. The two parties invoke the Setup phase of FGR(2k,d)
ëVOLE with PR’s inputs (α1 +

β, ..., αs + β, β, γ), where β, γ $← GR(2k, d).
2. For i ∈ [n], PS picks ei

$← GR(2k, d)li and sends (ai, bi + ei) with session id i
to FGR(2k,d)

ëVOLE . For the (n+ 1)-st instance of VOLE, PS computes an+1 := a1 ∥
... ∥ an, bn+1 := e1 ∥ ... ∥ en and sends (n+ 1;an+1, bn+1;Ln+1) to FGR(2k,d)

ëVOLE .
For the (n+ 2)-nd instance of VOLE, if ai,j is the k-th input from a entries
to circuit C, set an+2,k := ai,j ; else if bi,j is the k-th input from b entries to
circuit C, set an+2,qa+k := bi,j and an+2,q+k := bn+1,Li+j . Additionally, PS

picks bn+2
$← GR(2k, d)q+qb . Then, PS sends (n+ 2;an+2, bn+2; q) to FGR(2k,d)

ëVOLE .
The receiver PR receives v1, ...,vn+2 from FGR(2k,d)

ëVOLE .
3. By invoking the Verify phases of FGR(2k,d)

ëVOLE , PR verifies that
(i) ai|Ji ∈ Im(ϕ)|Ji|, for i ∈ [n]. (This is the main difference from Π

GR(2k,d)
cVOLE .)

(ii) ai,j = an+2,k and an+1,Li+j = an+2,k, if ai,j is the k-th input from a
entries to circuit C, for k ∈ [qa].

(iii) bi,j = an+2,qa+k and bn+1,Li+j = an+2,q+k, if bi,j is the k-th input from
b entries to circuit C, for k ∈ [qb]. Recompute vn+2,qa+k by subtracting
vn+2,q+k.

4. Invoke the subprotocol Πq,t
NIZK with inputs {[an+2,i]γ}i∈[q] to verify that

{[an+2,i]γ}i∈[q] is a satisfying assignment for C. If any of above verifications
fails, PR aborts.

Fig. 20: Protocol for Certified VOLE with a general arithmetic constraint in the
FGR(2k,d)

ëVOLE -hybrid model
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Functionality FGR(2k,d)
rsVOLE

Parameterized by a ring GR(2k, d), length parameters l1, ..., ln ∈ N. The Send
phase, and Deliver phases are the same as those in the functionality FGR(2k,d)

ϕVOLE ,
respectively.
Setup phase: Upon receiving input (sid;α) from PR where α ∈ Z2k and sid is
a session identifier, store (sid;α), send (sid; initialized) to the adversary and
ignore any further inputs from PR with the same session identifier sid.

Fig. 21: Ideal functionality for chosen-input reverse subring VOLE over GR(2k, d).

Proof. If PR is corrupted, the simulator SimR receives α0, ..., αk−1 ∈ {0, 1}
from the adversary A. SimR computes α :=

∑k−1
i=0 αi · 2i ∈ Z2k , and sends

α to FGR(2k,d)
rsVOLE . Upon receiving v from FGR(2k,d)

rsVOLE , SimR samples v1, ...,vk−1
$←

GR(2k, d)l and computes v0 := v −
∑k−1

i=1 vi · 2i. SimR sends v0, ...,vk−1 to A.
The indistinguishability is clear since v1, ...,vk−1 are distributed uniformly at
random both in the real world and the ideal world.

If PS is corrupted, the simulator SimS receives a, b0, ..., bk−1 ∈ GR(2k, d)l

from the adversary A. SimS computes b :=
∑k−1

i=0 bi · 2i, and sends a, b to

FGR(2k,d)
rsVOLE . The indistinguishability is clear since the outputs v in the real world

and the ideal world are identical. Thus, we conclude the proof. ⊓⊔

Protocol ΠGR(2k,d)
rsVOLE

Parameterized by a Galois ring GR(2k, d), length parameter l. Suppose PR has
input α ∈ Z2k , and PS has input a, b ∈ GR(2k, d)l. Write α as α = α0 + α1 · 2 +
...+ αk−1 · 2k−1, where α0, ..., αk−1 ∈ {0, 1}.

1. For i = 0, ..., k − 1, PR sends (i;αi) to FOT.
2. For i = 1, ..., k − 1, PS picks random bi ∈ GR(2k, d)l, and sets b0 := b −∑k−1

i=1 bi · 2i.
3. For i = 0, 1, ..., k − 1, PS sends (i; bi,a+ bi) to FOT.
4. Upon receiving (i;vi) from FOT, where vi = a · αi + bi, for i = 0, 1, ..., k − 1,

PR computes v :=
∑k−1

i=0 vi · 2i.

Fig. 22: Protocol for reverse subring VOLE over GR(2k, d) in the FOT-hybrid
model.
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B.6 ϕVOLE.

Theorem 14 (Thorem 5, restated). Assuming a two-message reusable VOLE
protocol over GR(2k, d), and a linearly-homomorphic commitment scheme over
GR(2k, d), ΩGR(2k,d)

ϕVOLE realizes FGR(2k,d)
ϕVOLE in the random oracle model.

Proof. Sketch. Correctness of ΩGR(2k,d)
ϕVOLE is directly obtained by the correctness

of the underlying VOLE protocol. Similarly, the reusable security against a
malicious sender is obtained by that of the underlying VOLE protocol as well. We
consider security against a malicious receiver. In general, a malicious PR has
three cheating strategies. First, PR may compute hash functions or commitments
incorrectly. These cheating behaviors can be detected by the check step-(a) of
round-2 and security reduces to the security of the underlying hash function and
the commitment scheme. Second, PR may provide inconsistent inputs in different
iterations, e.g. computes some πi,j,1 from α̂i + βj instead of αi + βj . This will be
detected by the random linear combination check (over GR(2k, d)), with soundness
error 1/2d, by Lemma 1. Finally, PR may compute some πi,j,1 incorrectly or input
some αi + βj /∈ Im(ϕ). The resulting soundness error can be negl(λ) by choosing
the cut-and-choose parameters appropriately. This completes the proof. ⊓⊔

Theorem 15 (Theorem 6, restated). Protocol ΠGR(2k,d)
ϕVOLE perfectly realizes

FGR(2k,d)
ϕVOLE with semi-honest security.

Proof. If PR is corrupted, the simulator SimR receives α1, ..., αm ∈ Z2k from
the adversary A. SimR computes α := ϕ(α), and sends α to the ideal VOLE
functionality. Upon receiving v from the ideal VOLE functionality, SimR samples
v2, ...,vm

$← GR(2k, d)l and computes v1 := γ−1
1 (v −

∑m
i=2 vi · γi). SimR sends

v1, ...,vm to A. The indistinguishability is clear since v2, ...,vm are distributed
uniformly at random both in the real world and the ideal world.

If PS is corrupted, the simulator SimS receives a, b1, ..., bm ∈ GR(2k, d)l from
the adversary A. SimS computes b :=

∑m
i=1 bi · γi, and sends a, b to the ideal

VOLE functionality. The indistinguishability is clear since the outputs v in the
real world and the ideal world are identical. Thus, we conclude the proof. ⊓⊔
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