
Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes
for IoT-to-Cloud Secure Computation

Amit Singh Bhati

COSIC, KU Leuven

Leuven, Belgium

amitsingh.bhati@esat.kuleuven.be

Erik Pohle

COSIC, KU Leuven

Leuven, Belgium

erik.pohle@esat.kuleuven.be

Aysajan Abidin

COSIC, KU Leuven

Leuven, Belgium

aysajan.abidin@esat.kuleuven.be

Elena Andreeva

Technical University of Vienna

Vienna, Austria

elena.andreeva@tuwien.ac.at

Bart Preneel

COSIC, KU Leuven

Leuven, Belgium

bart.preneel@esat.kuleuven.be

ABSTRACT
IoT devices collect privacy-sensitive data, e.g., in smart grids or

in medical devices, and send this data to cloud servers for further

processing. In order to ensure confidentiality as well as authen-

ticity of the sensor data in the untrusted cloud environment, we

consider a transciphering scenario between embedded IoT devices

and multiple cloud servers that perform secure multi-party compu-

tation (MPC). Concretely, the IoT devices encrypt their data with a

lightweight symmetric cipher and send the ciphertext to the cloud

servers. To obtain the secret shares of the cleartext message for

further processing, the cloud servers engage in an MPC protocol

to decrypt the ciphertext in a distributed manner. This way, the

plaintext is never exposed to the individual servers.

As an important building block in this scenario, we propose a

new, provably secure family of lightweight modes for authenti-

cated encryption with associated data (AEAD), called Eevee. The

Eevee family has fully parallel decryption, making it suitable for

MPC protocols for which the round complexity depends on the

complexity of the function they compute. Further, our modes use

the lightweight forkcipher primitive that offers fixed-length output

expansion and a compact yet parallelizable internal structure.

All Eevee members improve substantially over the few available

state-of-the-art (SotA) MPC-friendly modes and other standard

solutions. We benchmark the Eevee family on a microcontroller

and in MPC. Our proposed mode Jolteon (when instantiated with

ForkSkinny) provides 1.85x to 3.64x speedup in IoT-encryption time

and 3x to 4.5x speedup in both MPC-decryption time and data for

very short queries of 8 bytes and, 1.55x to 3.04x and 1.23x to 2.43x

speedup, respectively, in MPC-decryption time and data for queries

up to 500 bytes when compared against SotA MPC-friendly modes

instantiated with SKINNY. We also provide two advanced modes,

Umbreon and Espeon, that show a favorable performance-security

trade-off with stronger security guarantees such as nonce-misuse

security. Additionally, all Eevee members have full 𝑛-bit security

(where 𝑛 is the block size of the underlying primitive), use a single

primitive and require smaller state and HW area when compared

with the SotA modes under their original security settings.

1 INTRODUCTION
In today’s era of big data, the tremendous growth of Internet-

connected devices such as resource-constrained lightweight sensor

nodes enables fine-grained data collection. While the collected data

is utilized in good faith, e.g., to improve models, aid energy sav-

ing or offer personalized analysis, privacy risks remain due to the

centralized nature of the collection and utilization. For example

in a smart grid environment, smart electricity meters serve as em-

bedded IoT devices that measure power consumption and transmit

readings to energy providers [71]. Amalgamating the data from

numerous users enables efficient power grid management, dynamic

distribution, and predictive modeling of energy demands. However,

it is crucial to consider that frequent individual electricity readings

may inadvertently reveal highly sensitive information on the user’s

health, habits and beliefs.

Previous privacy-preserving solutions either rely on data aggre-

gation [71] or on blockchain infrastructure [32, 54]. In our solution,

the sensor data is encrypted and authenticated at the source by

the resource-constrained devices using a suitable authenticated

encryption with associated data (AEAD) mode, and the encrypted

data is sent to multiple computing parties. The computing parties

then perform a distributed decryption via secure multi-party com-

putation (MPC) to obtain secret shares of the plaintext data on

which they can perform further privacy-preserving computation

in MPC. Once the computation is done, the result is provided in a

suitable manner to the legitimate parties. With this approach, we

don’t lose accuracy due to aggregation nor do we require expensive

distributed ledger technologies. Moreover, the encrypted sensor

data can be centrally collected and stored since it is both encrypted

and authenticated. The distributed decryption and subsequent data

usage can tolerate up to all-but-one malicious computing parties,

thus ensuring that private data remains private.

1.1 Approach
We start to approach this transciphering scenario by exploring the

spectrum of security-efficiency trade-offs using traditional AEAD

solutions. Considering the globally accepted AEAD standard AES-

GCM [33] for the IoT-to-Cloud transciphering problem, we observe

very efficient internal components AES and GHASH and the sup-

port of hardware acceleration on standard platforms leading to

high performance. However, when compared against lightweight

tweakable block ciphers (TBCs) such as SKINNY [14], AES suffers

from (1) larger hardware (HW) area which increases energy con-

sumption and hinders battery life of the device (see [52, Fig. 4 and

5]) and (2) larger register sizes for threshold implementations (TI)

1

https://orcid.org/0000-0003-0843-4885
https://orcid.org/0000-0001-8871-8532
https://orcid.org/0000-0002-5128-3608
https://orcid.org/0000-0003-0964-8711
https://orcid.org/0000-0003-2005-9651

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

to achieve protection from various side channel attacks (see [62, Ta-

ble 1] and [63, Table 1]
1
). Further, the drawbacks of GCM as a mode

include its sub-optimized structure for small size IoT messages due

to the additional costly pre- and post-processing cipher calls, and

lack of nonce-misuse resistance which brings devastating attacks

when nonces are repeated [20, 72] and at most 64-bit security. As

a result, AES-GCM is not a suitable lightweight solution for small

embedded/IoT devices
2
.

Another option is to consider MPC-friendly block ciphers. This

choice would prioritize fast decryption and would put more strain

on the IoT device. We implemented twoMPC-friendly AEADmodes

CTR-then-PMAC (short: CTR-PMAC) and CTR-then-Hash-then-

MAC (short: CTR-HtMAC) proposed by Rotaru et al. [68] on a

microcontroller. The modes are instantiated with MiMC-128, an

algebraic block cipher operating on a 128-bit prime field. Our bench-

mark in Fig. 7 in Appendix A.1 shows that the MPC-friendly AEAD

modes encrypt messages between one and two orders of magni-

tude slower than all other studied modes. As a consequence, the

increased workload for encryption impacts, among others, power

consumption, heat management and battery life of a device signifi-

cantly. Thus, current MPC-friendly AEAD modes that are proposed

for transciphering can hardly be called lightweight and do not seem

well suited for many IoT applications.
3
In this work, we assume

that the implementation cost of an MPC-friendly solution is pro-

hibitively large for practical deployment in IoT applications. We

focus our approach on traditional lightweight primitives.

The term lightweight is both a subjective and relative term the

meaning of which depends on the context, for example the specific

IoT application. For this work, we specify some common properties

that are targeted (or considered important) by major IoT appli-

cations to reduce production costs and to comply with platform

resource constraints. Our lightweight solution aims at (1) minimal

RAM and HW area requirements (as low as possible) and thus low

power consumption to reduce the heat and cooling costs, (2) built-in

defence against accidental or adversarially controlled nonce repeti-

tions, (3) robust 128-bit security levels with small key sizes, (4) use

of a small number of primitives with common components, (5) sup-

port for online/block-wise processing of streamed data removing

the need to buffer large chunks of the message and (6) provably

secure standard model guarantees.

Some of the submitted AEAD designs to the NIST Lightweight

Cryptography competition [64] fit only partially to our lightweight

criteria. Note that security robustness and nonce-misuse resilience

is met only by Romulus-M [45] and partially by the Elephantv2

candidates [19]. Yet, Romulus-M requires a double pass over the data

which penalizes performance both in IoT and MPC. Elephantv2

on the other hand, does not provide security guarantees in the

standard model but rather in the ideal cipher model.

In addition, if deployed in our transciphering scenario, existing

lightweight solutions have to be adapted to support efficient and

secure computation on the decryption side. Ideally, the target design

1
TBCs are shown here as better and efficient alternatives to block ciphers or sponges

for TI.

2
See, e.g., the NIST LWC Standardization Process criteria [64] and the well-summarized

SoK [41, 65].

3
Another indicator may be the lack of MiMC implementations for IoT/microcontrollers.

To the best of our knowledge, MiMC has only been implemented in high-level lan-

guages for the use in zero-knowledge proof systems.

has to reduce the MPC cost (computational and communicational)

by a significant margin without trading any security properties or

significantly increasing the costs on the IoT device. Unlike the IoT

end, where area and battery life are hard constraints, MPC servers

have high computational processing capabilities and constraints on

the communication costs. Consequently, to reduce the overall cost

to the user which includes the MPC-as-a-service cost, we look for

an IoT-friendly solution with a computation/communication cost

for MPC decryption that is as low as possible.

As a result, a scheme that is mainly optimized for lightweight

applications has to integrate additional nontrivial design changes

for performance and security, such as decryption parallelizabil-

ity. All these considerations render existing lightweight solutions

inappropriate for our target scenario.

In Table 1, we provide a summary of the existing solutions and

conclude that they still lack some crucial properties for being IoT-

to-MPC-friendly.

1.2 Desirable Properties
Summarizing our IoT-to-Cloud computation scenario, the following

properties of the AEAD mode are important.

Parallel Decryption. In many MPC protocols, e.g. [17, 25, 30, 31,

37, 50, 51], multiplications (or equivalent non-linear operations)

require interaction between the parties but independent multipli-

cations can be performed in parallel. Here, the communication

cost is directly proportional to the number of non-parallelizable

secret-secret multiplications. In an AEAD mode which is based on

some underlying primitives, this property turns into minimizing

the number of non-parallelizable primitive calls. To exemplify the

impact, we note that the performance of serial decryption modes

degrades more than their parallel counterpart in slow networks

since only one block can be computed at a time.

Nonce-Misuse Resistance. Nonce misuse presents a greater risk

for embedded devices where nonces could repeat due to various

memory or space constraints or an increased attack surface. En-

suring the correct use of nonces is very challenging in distributed

systems where nodes and connections can fail at any time. Recent

attacks [20, 53, 72] that exploit implementation flaws causing an

application to reuse the same nonce illustrate the severity of nonce

misuse in practice.

Block-wise Processing for Encryption. Due to buffer-size con-

straints most IoT devices cannot process large messages as a whole

and follow the online or block-wise processing strategy. This al-

lows an attacker to see a processed block output before the next

block input and hence the attacker can choose each upcoming block

adaptively which can lead to severe attacks in practice [12, 16, 48].

We target the online AE (OAE) [35] notion of security which re-

sists block-wise adaptive attackers [34] and is a more realistic and

stronger notion when compared with the basic nonce-based AE

(nAE) [67] and the nonce misuse resilience (NMR) [10] notions

of security. An OAE secure scheme is also nAE- and NMR-secure,

however, it additionally provides a well-defined level of security

(both confidentiality and integrity) for queries with reused nonces,

i.e., security against nonce-misuse.

2

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

Beyond-Birthday Security.Modes with security beyond the birth-

day bound (i.e., > 𝑛/2 bits) or even close to full 𝑛 bits (where 𝑛 is

the block size) can avoid the use of large block primitives to achieve

the desired level of security. Smaller primitives require less area

and consume less power which both are important factors in IoT

devices.

Length-Independent Security. Security bounds that are inde-

pendent of the length of queried messages are called length-

independent (LI) [58]. Such security does not degrade with an in-

crease in message lengths and is useful when the average message

length in queries is longer, e.g., when sensor data is streamed. The

long message will have equal confidentiality and integrity as a sin-

gle message block. This enables processing more data securely with

the same key and hence avoids the heavy cost of frequent rekeying.

Single Primitive. AEAD constructions that use the same primitive

both for encryption and authentication are beneficial for embedded

devices since only one primitive has to be securely (e.g., resistant

to side-channels) and efficiently implemented. Moreover, HW area

can be saved if the primitive performs two functions.

Reusable Encryption.We finalize our IoT-to-MPC computation

model by considering another useful property of the IoT encryption.

We call the encryption share-independent/reusable when ciphertext

does not depend on the number or nature of the MPC parties and

thus the ciphertext can be reused for different MPC computations

by simply resharing the key. This saves the cost of storing old

data for re-encryptions on the IoT device or performing multiple

encryptions for different groups of servers.

We note that storage and re-encryption of previously collected

data is not feasible for real-time streaming or sensing IoT applica-

tions. This includes but is not limited to applications such as smart

grids, healthcare IoTs, SCM IoTs, and agriculture IoTs. These classes

of applications are novel and unexplored for IoT-to-MPC setting.

Consequently, the devices supporting such applications are wide-

spread but not MPC-aware at present, i.e., they were not installed

with MPC processing in mind. To adapt them to the IoT-to-MPC

setting, one can surely benefit from a cost-effective solution that

does not require upgrading the device hardware.

Using a symmetric AEAD to build a share-independent/reusable

scheme has multiple benefits over simply secret-sharing the col-

lected data with the MPC engines. When using secret-sharing to

input data, the IoT devices have to know MPC protocol specific

details about the involved computing parties already during data

collection. Coupled with the IoT devices’ lack of sufficient memory

capacity to store large amounts of sensor data, this hinders the

flexibility since data collected for a specific analysis setting cannot

be reused in a differing MPC setup, nor can the data collection start

before the MPC parties are selected and ready.

In addition, the input shares have to be sent confidentially to each

MPC party, increasing the encryption and communication work on

the IoT device linearly in the number of parties. Battery-powered

devices or those with tiny uplink bandwidth suffer performance

drops due to this approach.

Our targeted AEAD approach shifts the workload to the more

powerful MPC side instead. Here, only the symmetric key is (secret-)

shared with the MPC parties once before the data analysis, reducing

the linear cost (for the IoT device) to a few hundred bits. The MPC

parties then use the key shares to compute a distributed decryption

in MPC over the symmetrically AEAD encrypted data, where the

ciphertext is a public input to the protocol, before computing the

data analysis. To further increase flexibility, the symmetric key

can be shared at the latest possible instant, shortly before the MPC
computation, and can be shared again with different MPC parties to

perform a different analysis on the same collected data.

Recently, an initial public draft of a call for multi-party threshold

schemes by NIST [22] calls the same property “interchangeable” and

defines it as a desirable property for interaction with thresholdized

schemes.

1.3 Contributions
We design AEAD modes based on forkciphers (FC) [9] that are a

type of tweakable ciphers with a versatile input and output struc-

ture. ForkSkinny [8, 66] is a forkcipher instance that is based on the

recent ISO standard SKINNY [14]. The latter fact, together with the

forkcipher’s promising functional and security features in efficient

modes of operation [4–6, 9] makes it a suitable candidate towards

building AEAD modes that (1) are both lightweight for IoT de-

vices and efficient in MPC for distributed decryption, and (2) guard

against relevant security threats on both ends. A forkcipher (com-

pared to a tweakable block cipher) as underlying primitive in the

mode allows further parallelization on the primitive level in MPC

such as parallel branch computation after the forking point. This

makes Eevee members parallelizable both at mode and primitive

levels.

We propose the Eevee family of three lightweight AEAD schemes

based on a forkcipher. The three modes: Umbreon, Jolteon and

Espeon are designed to be fully parallelizable in decryption, i.e.,

parallelizing all cipher calls, which is the best strategy so far [68] for

decryption over MPC, and are at the same time IoT-friendly, as they

are based on the lightweight forkcipher ForkSkinny. In addition, to

use Eevee with any block cipher, we provide a generic forkcipher

instantiation based on, e.g., AES.

Eevee modes provide security up to the full block length of

the primitive and resistance against nonce-misuse and block-wise

adversaries. Unlike existing MPC-friendly designs, the Eevee fam-

ily contains dedicated yet simple AEAD modes based on a single

primitive. The efficiency and suitability advantages of Eevee for

both encryption and decryption over MPC make it a well-suited

for secure data sharing solution from IoT-to-Cloud. Our specific

contributions are as follows.

• Novel IoT- and MPC-friendly modes with better security

properties.

(1) Umbreon (prioritizing security) provides full 𝑛 bits

of OAE security that logarithmically degrades with

nonce-misuse.

(2) Jolteon (prioritizing performance) has smaller state

requirements and provides better performance when

compared with Umbreon at the cost of losing security

under nonce-misuse.

(3) Espeon (intermediate trade-off) provides similar per-

formance as Jolteon but with tweak-size-dependent

security under nonce-misuse.

3

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

Table 1: Comparison of Eevee modes with other possible solutions for the target IoT-to-MPC setting. 𝑛, 𝑡 and 𝑘 represent the
block, tweak, and key sizes of the underlying primitive in bits, respectively. Here, `, |𝑀 |, 𝑠𝐻 and 𝐴𝐻 represent the maximum
number of nonce repetitions, message length (in bits), the extra state size (in bits) and HW area used by the hash function in
the AEAD scheme, respectively. We use the abbreviations Nonce-Respecting (NR), Nonce-Misuse (NM), Gate Equivalent (GE),
Non-parallelizable Primitive Calls in MPC Decryption (NPCMD), Length-Independent security (LI), Single Primitive based
design (SP) and Block-wise Processing Support (BPS). Security entries are in bits. Green color gradients in a column illustrate
the result strength.
∗ To the best of our knowledge, a HW implementation of Forkskinny-128-384 has not been studied yet. We give the area for
Forkskinny-128-288 which also uses a 3𝑛 tweakey schedule albeit optimized since some bits are zero.

Mode

(Instantiations)

Minimal State

(part of RAM)

Security

Margin

Minimal

HW Area

NPCMD NR Security

(nAE)

NM Security

(OAE / MRAE)

LI(NR) SP BPS

AES-GCM [33]

(AES,GHASH)

5𝑛 + 𝑘 <64 7215 GE [11]

+𝐴𝐻
3 < 𝑛/2 ✗ ✗ ✗ ✓

AES-GCM-SIV [39]

(AES,POLYVAL)

5𝑛 + 𝑘 + |𝑀 | <64 7215 GE [11]

+𝐴𝐻
3 < 𝑛/2 (𝑛 − 2 log

2
`)/3 [46] ✗ ✗ ✗

CTR-PMAC [68]

(SKINNY)

3𝑛 + 𝑡 + 𝑘 64 3312 GE [14] 2 𝑛/2 ✗ ✗ ✓ ✓

CTR-HtMAC [68]

(SKINNY, BLAKE2s)

2𝑛 + 𝑡 + 𝑘
+𝑠𝐻

64 3312 GE [14]

+𝐴𝐻
1 𝑛/2 ✗ ✗ ✗ ✓

Jolteon [This work]

(ForkSkinny)

2𝑛 + 𝑡 + 𝑘 64

128

2718 GE (64),

3917 GE (128) [7]

1 𝑛 ✗ ✓ ✓ ✓

Espeon [This work]

(ForkSkinny)

2𝑛 + 𝑡 + 𝑘 128 > 4567
∗
GE [7] 1 𝑡/2 ✓

min(𝑡/2, 𝑛 − log
2
`)

✗ ✓ ✓

Umbreon [This work]

(ForkSkinny)

3𝑛 + 𝑡 + 𝑘 64

128

2718 GE (64),

3917 GE (128) [7]

1 𝑛 ✓
𝑛 − log

2
`

✓ ✓ ✓

• Compact provable security analysis of Eevee modes due to

(1) a joint confidentiality analysis of Eevee as a family

with non-trivial ways of defining intermediate adver-

saries, using their advantages to express individual

mode bounds and therefore maximizing the common

parts of the analyses.

(2) the possibility of relying on (or reusing) the analysis

of confidentiality to give a short proof for integrity.

• Full performance evaluation of the Eevee family for both

encryption in IoT devices and distributed decryption in

MPC. We compare the Eevee family with the state of the art

MPC-friendly modes by Rotaru et al. [68] and the standard

AEAD solutions AES-GCM [33] and AES-GCM-SIV [39, 40].

In order to keep underlying primitives similar, we instanti-

ate Eevee with ForkSkinny and the MPC-friendly baseline

with SKINNY and instantiate Eevee with AES (see Sect. 6.1

for details) to compare to the standardized AEAD solutions.

Our results show that all Eevee members improve substantially

over the few available SotA MPC-friendly modes and standard

solutions. Jolteon (with ForkSkinny) provides 1.85x to 3.64x speed-

up in IoT-encryption time and 3x to 4.5x speed-up in both MPC-

decryption time and data for very short messages of 8 bytes and,

1.55x to 3.04x and 1.23x to 2.43x speed-up, respectively, in MPC-

decryption time and data for messages up to 500B when compared

to SotA MPC-friendly modes instantiated with SKINNY. We also

provide two advanced modes, Umbreon and Espeon, that show a

favourable performance-security trade-off with stronger security

guarantees. In addition, all Eevee members use a single primitive

and have smaller state requirements when compared to the other

modes under their original security settings.

1.4 Related Work
Historically, AES has long been the de facto benchmark for effi-

ciency of the MPC protocols, e.g., [26, 29, 42]. As MPC is getting

more traction in practical applications, the performance limitations

of AES are becoming more apparent. Therefore, there has been an

interest in MPC-friendly cryptographic primitives such as block

ciphers [1, 2] and modes-of-operations [68]. The block cipher and

hash function primitives aim for low multiplication depth [2] or

native support for operations in GF(𝑝) for a large prime 𝑝 , as in

[1]. Rotaru et al. [68] proposed MPC-friendly AEAD modes CTR-

HtMAC and CTR-PMAC that are based on MPC-friendly block

primitives MiMC/Leg (i.e., based on the Legendre symbol).

1.5 Outline
The paper is organized as follows. We present the preliminary no-

tations and MPC-related background in Sect. 2. This is followed

by the design definitions of Eevee AEAD family and its OAE se-

curity in Sect. 3. Next, in Sect. 4, we detail the design rationale of

each Eevee mode and discuss their targeted instantiations in Sect. 5.

Following a benchmark of Eevee for software performance on mi-

crocontrollers and MPC in Sect. 6, we present a security analysis

of the proposed Eevee family in Sect. 7. Finally, we conclude the

paper in Sect. 8.

4

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

2 NOTATION AND PRELIMINARIES

Strings and Operations. All strings are binary strings, {0, 1}𝑛
is the set of strings of length 𝑛 > 0, {0, 1}∗ denotes strings of
arbitrary length. We denote by Perm(𝑛) and Func(𝑚,𝑛) the sets
of all permutations of {0, 1}𝑛 and functions with domain {0, 1}𝑚
and range {0, 1}𝑛 , respectively. For a string 𝑋 of ℓ bits, let 𝑋 [𝑖]
denote the 𝑖th bit of 𝑋 for 𝑖 = 0, . . . , ℓ − 1 (starting from the left)

and 𝑋 [𝑖 . . . 𝑗] = 𝑋 [𝑖] ∥𝑋 [𝑖 + 1] ∥ . . . ∥𝑋 [𝑗] for 0 ≤ 𝑖 < 𝑗 < ℓ . We let

leftℓ (𝑋) = 𝑋 [0 . . . (ℓ − 1)] denote the ℓ leftmost bits of 𝑋 .

For the rest of the section, we fix an arbitrary integer 𝑛 and

call it the block size. Given an 𝑋 ∈ {0, 1}∗, we let 𝑋 ∥10∗ denote
𝑋 ∥10𝑛−(|𝑋 | mod 𝑛)−1

for simplicity. Then let pad10(𝑋) return 𝑋
if |𝑋 | ≡ 0 (mod 𝑛) and 𝑋 ∥10∗ otherwise. Given a string 𝑋 , we

let 𝑋1, . . . , 𝑋𝑥 , 𝑋∗
𝑛←− 𝑋 denote partitioning 𝑋 into 𝑛-bit blocks

with the last block 𝑋∗ possibly incomplete. For two distinct strings

𝑋1, . . . , 𝑋𝑥
𝑛←− 𝑋 , 𝑌1, . . . , 𝑌𝑦

𝑛←− 𝑌 , llcp𝑛 (𝑋,𝑌) denotes the length
of the longest common prefix of 𝑋 and 𝑌 in 𝑛-bit blocks, i.e., the

largest 𝑖 ≤ 𝑥,𝑦 with 𝑋 𝑗 = 𝑌𝑗 , 1 ≤ 𝑗 ≤ 𝑖 . For the same string, we

denote by ⟨𝑖⟩𝑑 , some 𝑑-bit encoding of a number 𝑖 with leading

zeros, if needed. For two strings 𝑋,𝑌 ∈ {0, 1}∗ with |𝑋 | ≤ |𝑌 |, we
let 𝑋 ⊕ 𝑌 denote the bitwise XOR of 𝑋 ∥0 |𝑌 |− |𝑋 | and 𝑌 . For the
same strings, we define 𝑋 ⊕𝑎 𝑌 = (𝑋 ⊕ 𝑌) [0 . . . 𝑎 − 1].

We denote by𝑋 ←$ X sampling an element𝑋 from a finite setX
following the uniform distribution. The symbol ⊥ denotes an error

signal or an undefined value. We use lexicographic comparison of

tuples of integers, i.e., (𝑖′, 𝑗 ′) < (𝑖, 𝑗) iff. 𝑖′ < 𝑖 or 𝑖′ = 𝑖 and 𝑗 ′ < 𝑗 .

Syntax of AEAD.We follow the AEAD syntax by Rogaway [67].

A nonce-based AEAD scheme is a triplet Π = (K, E,D). The key
space K is a finite set. The deterministic encryption algorithm E
maps a secret key 𝐾 , a nonce 𝑁 , associated data 𝐴 and a message

𝑀 to a ciphertext 𝐶 = E(𝐾, 𝑁,𝐴,𝑀). The nonce, associated data

and message domains are all subsets of {0, 1}∗. The determinis-

tic decryption algorithm D takes a tuple (𝐾, 𝑁,𝐴,𝐶) and either

returns a message 𝑀 , or a distinguished symbol ⊥ to indicate an

authentication error. For correctness of Π, we require that for all
𝐾, 𝑁,𝐴,𝑀 we have𝑀 = D(𝐾, 𝑁,𝐴, E(𝐾, 𝑁,𝐴,𝑀)).

OAE Security. Our target AE notion is online AE (OAE) by Fleis-

chmann et al. [35]. We use a variant defined by Hoang et al. [43],

who extend it to deal with messages that are not 𝑛-bit (block)

aligned. We opt for the two-requirement flavor of the notion, sepa-

rating confidentiality as oprpf and authenticity as auth. We refer

the reader to Appendix D or [5, 35] for the full security definition.

Forkcipher. We follow the formalism by Andreeva et al. [9]. A

forkcipher F is a tweakable symmetric-key cipher that maps a secret

key 𝐾 , a tweak 𝑇 and an input block𝑀 of 𝑛 bits to two ciphertext
blocks𝐶0 and𝐶1, each of size 𝑛 bit, such that𝐶0 and𝐶1 are each an

(independent) permutation of 𝑀 . Formally, a forkcipher is defined

as a pair of deterministic algorithms, the encryption algorithm F :

{0, 1}𝑘×T ×{0, 1}𝑛×{0, 1, b} → {0, 1}𝑛∪({0, 1}𝑛×{0, 1}𝑛) and the
inversion algorithm F−1 : {0, 1}𝑘 ×T × {0, 1}𝑛 × {0, 1} × {i, o, b} →
{0, 1}𝑛 ∪ ({0, 1}𝑛 × {0, 1}𝑛) as illustrated in Fig. 1 where 𝑘, 𝑛 and T
denote the key size, block size and tweak space of F, respectively.
Here in the forward call 𝑠 ∈ {0, 1, b} identifies the desired output

branch(es) and in the inverse call 𝑏 ∈ {0, 1} identifies the input’s

branch and 𝑠 ∈ {i, o, b} identifies the desired outputs i.e. the inverse,
the other branch ciphertext or both. For more details on the syntax

of a forkcipher we refer the reader to [9].

The security of a forkcipher F is defined through indistinguisha-

bility of the games prtfp-realF (which implements F faithfully)

and prtfp-idealF (which replaces F by a pair of tweakable random

permutations 𝜋T,0, 𝜋T,1 ←$ Perm(𝑛) for T ∈ T in a natural way),

in a chosen ciphertext attack. We define the prtfp-advantage of

an adversary B against F as AdvprtfpF (B) = Pr[Aprtfp-realF ⇒
1] − Pr[Aprtfp-idealF ⇒ 1].

Figure 1: The forkcipher algorithms.

Statistical Distance. The statistical distance between two random

variables 𝑋 and 𝑌 is SD(𝑋,𝑌) = 1

2

∑
𝑥∈X | Pr[𝑋 = 𝑥] − Pr[𝑌 = 𝑥] |.

MPC Model of Computation. In many MPC protocols, e.g., [17,

25, 30, 31, 37, 50, 51], the number of communication rounds is

proportional to the circuit depth, i.e., the number of multiplications

in series in the function to compute.

We illustrate this by the actively secure, SPDZ family of protocols

for dishonest majority [18, 30, 31, 50]. These protocols work in

the pre-processing model, where a computationally heavy pre-

processing (offline) phase precedes a fast online phase. Since the

pre-processing only depends on the characteristics of the function

but not on the input, the phase can be run in advance, e.g., during

low system load.

For computation, additive secret-sharing in a finite field F is

used. We write J𝑥K to denote the authenticated share of 𝑥 . During

the online phase, addition/multiplication by constants 𝑎 · J𝑥K + 𝑏
and addition J𝑥K + J𝑦K are local operations, i.e., they do not incur

communication cost. Multiplications J𝑥K ·J𝑦K require multiplication

triples [13] (J𝑎K, J𝑏K, J𝑎·𝑏K) obtained in the offline phase. The parties

blind J𝑥K−J𝑎K, J𝑦K−J𝑏K and then broadcast and reconstruct J𝑥 −𝑎K
as 𝛾 and J𝑦 − 𝑏K as 𝜖 . The multiplication can now be obtained via

a local operation J𝑥𝑦K ← J𝑎𝑏K + 𝛾 · J𝑏K + 𝜖 · J𝑎K + 𝛾 · 𝜖 . Due to

the broadcast, every multiplication in the function requires one

interaction between theMPC parties. However, multiplicationswith

independent arguments can be parallelized in the same interaction.

We call the number of multiplications in series, i.e., those that

cannot be parallelized, the depth 𝐿 of a circuit.

3 THE EEVEE FAMILY AND ITS OAE
SECURITY

The Eevee family consists of three AEAD modes, Umbreon, Jolteon
and Espeon, that share a common way of processing the associated

5

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

data (AD). Each of them provides distinct security-performance

trade-offs. The underlying cipher of the Eevee family is the tweak-

able forkcipher F (as defined in Sect. 2).

In encryption, Jolteon and Espeon both use a single branch of

the forkcipher up to the last processed message block to boost

performance. Additionally, in Jolteon, the forkcipher evaluations
can be parallelized during encryption but at the cost of reduced

security. On the other hand, Umbreon and Espeon both work se-

quentially and use either both forkcipher branches throughout (in

Umbreon) or longer tweaks (in Espeon) which brings extra security
benefits. Decryption is fully parallelizable for all modes, while on

the primitive level Umbreon allows the reconstruction and inverse

evaluations to be parallelized.

We illustrate the Eevee family AEAD encryption and decryption

algorithms in Fig. 2 and 3, and present their complete pseudocode

in Fig. 9 (App. B). We state the formal claim about the OAE security

of Umbreon, Jolteon and Espeon in Theorem 3.1 and defer its proof

to Sect. 7.

Theorem 3.1. Let F be a tweakable forkcipher with tweak space
T = {0, 1}𝑡 . Then for any nonce-respecting adversaryA𝑛𝑟 and nonce-
misuse adversaryA𝑛𝑚 who make at most 𝑞𝑒 encryption queries with
a nonce repeating at most ` ≤ 2

𝑛−1 times and at most 𝑞𝑣 verification
queries such that the total number of forkcipher calls induced by all
the message parts of encryption and verification queries is at most
𝜎𝑚,𝑒 and 𝜎𝑚,𝑣 ≤ 2

𝑛−2, respectively, we have

AdvauthUmbreon[F] (A𝑛𝑚) −
𝑞𝑣

2
𝑛−4 ≤ AdvoprpfUmbreon[F] (A𝑛𝑚)

≤ AdvprtfpF (B) + 3(𝜎𝑚,𝑒 + 𝑞𝑒) (` − 1)
2
𝑛−1 ,

AdvauthJolteon[F] (A𝑛𝑟) −
𝑞𝑣

2
𝑛−2 ≤ AdvoprpfJolteon[F] (A𝑛𝑟)

≤ AdvprtfpF (B) ,

AdvauthEspeon[F] (A𝑛𝑚) −
𝑞𝑣

2
𝑛−4 ≤ AdvoprpfEspeon[F] (A𝑛𝑚)

≤ AdvprtfpF (B) + 2𝑞𝑒 (` − 1)
2
𝑛

+
𝜎2

𝑚,𝑒

2
𝑡−3

for some prtfp adversary B, making at most 𝜎 queries to F and
running in time given by the running time of A plus 𝛾 · 𝜎 where
𝜎 denotes the total number of F calls induced by all encryption and
verification queries and 𝛾 is the runtime of an F call in the model of
computation. Here for Espeon, 𝑡 ∈ {𝑛, 2𝑛}.

Eevee puts forward the first modes optimized for IoT-to-MPC

computation. We now compare Eevee modes with the baseline

ForkAE [9] modes (PAEF, SAEF and RPAEF). Like SAEF, Umbreon
achieves OAE security but additionally offers fully parallel decryp-

tion by applying only one mask (i.e. XORing internal states only to

the input blocks). This change requires a novel way to get authentic-

ity. We also present a parallel tag-verification to process the whole

ciphertext-tag pair which is not provided by existing forkcipher

modes. We achieve 𝑛-bit security whereas SAEF has 𝑛/2-bit. The
designs of Jolteon and Espeon are inspired by Umbreon. Espeon
does not use the second forkcipher leg, and to preserve dependence

among calls for error propagation, we include two ciphertext blocks

into the tweak and achieve a security of 𝑡/2-bit equaling 𝑛-bit for
instantiations with larger tweak of size 2𝑛 bits. In Jolteon the tags

need to depend on every bit of the message, hence a distinct check-

sum of message and ciphertext is input to the last forkcipher call.

We use PAEF’s AD processing with a modified tweak encoding

for efficiency. Since the consequences of these design choices are

not obvious they require a dedicated security analysis which we

address in our unified provable treatment of the Eevee family.

4 DESIGN RATIONALE
This section explains the Eevee design decisions that make it suit-

able for IoT-to-Cloud computation.

Parallel Decryption for MPC. In decryption, the calls to the fork-

cipher primitive are completely independent, making the circuit

depth independent of the ciphertext size. This property is essential

for MPC protocols with a round complexity depending on the cir-

cuit depth, such as GWM [37], SPDZ-style [17, 30, 31, 50, 51], and

CCD [25]. Moreover, the use of a forkcipher allows further paral-

lelization of the branch computation after the forking point which

makes Eevee members parallelizable both at mode and primitive

levels.

OAE Security.OAE security is achieved inUmbreon by using a full
forkcipher call where one branch is used to generate the ciphertexts

and the other one is used as both the feed-forward for input blocks

to get high error propagation in the following output blocks and to

get security against nonce-misusing and/or blockwise adversaries,

and to maintain a state for the final authentication tag. Espeon, on
the other hand, uses a slightly different approach of feed-forwarding

(by using the past two ciphertext blocks) into the tweak instead

of the input. This avoids the internal state accumulation of the

costly second forkcipher branch and replaces this accumulation

by the message checksum but at the cost of larger tweaks. Jolteon,
the last member of the family trades the large tweak cost with

nonce-misuse security by completely eliminating feed-forwarding

and ensuring the tag authentication using combined checksums of

message and ciphertext.

Length-Independent Security. All Eevee modes except Espeon
(due to the tweak occupied by ciphertexts) use a counter, which

results in independence among the cipher calls of a query and hence

length-independent security at no additional cost.

Beyond-Birthday Security. Extending the length independence

argument, we note that achieving independence among the prim-

itive calls (especially the last ones) not only inside a query but

also over all the queries allows us to prevent typical attacks, like

birthday in 𝑛, on the design (see Sect. 7 for proof). All Eevee modes

except Espeon use the nonce along with the counter in the tweak to

achieve independence in the nonce-respecting setting and a grad-

ual increase in dependence under nonce-misuse. Espeon, on the

other hand, relies on the random collision probability of the tweaks

and hence provides birthday security in tweak size 𝑡 which can

be considered beyond-birthday in 𝑛 for 𝑡 > 𝑛. Our instantiation

ForkSkinny supports these larger tweak sizes.

Single Primitive. All Eevee modes are based on a single dedicated

tweakable forkcipher which, combined with beyond birthday secu-

rity, allows us to avoid large block primitives, large code size and

area for multiple primitives in hardware implementations.

6

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

Figure 2: The Eevee family of AEAD modes (Encryption diagrams). The top left figure and the rest illustrate the corresponding processing of an associated
data𝐴 and of a message𝑀 of size 𝑛𝑎 + 𝑥𝑎 and 𝑛𝑚 + 𝑥𝑚 bits, respectively, for some positive integers 𝑎,𝑚, 𝑥𝑎 ≤ 𝑛 and 𝑥𝑚 ≤ 𝑛. Further, for the last processed AD
and message blocks, the tweak counter is set to ⟨2 + noM⟩𝑑 and ⟨1⟩𝑑+1 (11 for Espeon) if the fed block has size 𝑛 bits and to ⟨0 + noM⟩𝑑 and ⟨0⟩𝑑+1 (10 for Espeon),
otherwise, where 𝑑 is a fixed positive integer defined for the counter size. Here a = |𝑁 | ≤ 𝑛 − 2 and noM represents an indicator function that is set to 1 if |𝑀 | = 0

and to 0, otherwise.

Figure 3: The Eevee family of AEAD modes (Decryption diagrams). The top left figure and the rest illustrate the corresponding processing of an associated data𝐴
and of a ciphertext𝐶 of size 𝑛𝑎 + 𝑥𝑎 and 𝑛𝑚 + 𝑥𝑚 bits, respectively, for some positive integers 𝑎,𝑚, 𝑥𝑎 ≤ 𝑛 and 𝑥𝑚 ≤ 𝑛. Further, for the last processed AD and
ciphertext blocks, the tweak counter is set to ⟨2 + noM⟩𝑑 and ⟨1⟩𝑑+1 (11 for Espeon) if the fed block has size 𝑛 bits and to ⟨0 + noM⟩𝑑 and ⟨0⟩𝑑+1 (10 for Espeon),
otherwise, where 𝑑 is a fixed positive integer defined for the counter size. Here a = |𝑁 | ≤ 𝑛 − 2 and noM represents an indicator function that is set to 1 if |𝐶 | = 0

and to 0, otherwise.

5 DISCUSSION
This section discusses the security and efficiency of Eevee. First

we talk about the mode level improvements and trade-offs among

Eevee modes followed by a performance estimation of Eevee modes

when instantiated with ForkSkinny.

Eevee Modes and their Trade-offs. Umbreon achieves a high

security level, namely full 𝑛-bit OAE security that logarithmically

degrades with nonce-misuse. SinceUmbreon needs to evaluate both
branches of the forkcipher to process the message, its evaluation

is relatively costly in MPC decryption when compared with SotA

mode CTR-HtMAC that uses a single tweakable block cipher. As

a trade-off, Jolteon uses only one leg of the forkcipher to process

the message blocks. Consequently, we obtain smaller state require-

ments and better performance at the cost of losing security under

nonce-misuse.

In the same direction of trade-offs but with retaining a good level

of nonce-misuse security, Espeon provides similar performance as

Jolteonwith a well-defined level of tweak-dependent security under
nonce-misuse. In other words, its overall security level is bounded

by 𝑡/2 bits. Overall, Espeon is our preferred instantiation as it offers

a fixed security level under nonce misuse.

We note that all Eevee modes provide either 𝑛-bit or 𝑡/2-bit OAE
security in nonce-respecting settings while previous modes in the

MPC literature only provide 𝑛/2-bit. Hence, Eevee members can

use smaller primitives for the same security level. A smaller primi-

tive usually requires less cycles and consumes less power. Table 1

provides a brief comparison on security and software performance

estimates of the Eevee modes with the SotA MPC-friendly AEAD

schemes.

Instantiating with ForkSkinny.We instantiate the Eevee AEAD

modes with ForkSkinny. Its dedicated tweak support (due to the

7

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

tweakey framework [47]) allows us to achieve the claimed security

(being beyond-birthday or full 𝑛-bit) of the Eevee modes.

To exemplify, CTR-HtMAC when instantiated with SKINNY-

128-256 (128-bit block size, 256-bit tweakey size) and BLAKE2s

(256-bit internal state size) provides 64-bit nAE security (due to the

typical birthday attacks). On the other hand, Umbreon and Jolteon
which are based on a single tweakable forkcipher instantiated with

ForkSkinny-64-192 (64-bit block size, 64-bit tweak size and 128-bit

key size) achieve the same or a higher level of security.

With a concrete instantiation, we can illustrate the design differ-

ences between Eevee modes with respect to the MPC decryption.

We count the total number 𝑀 of multiplications that are required

to compute the primitive as well as the depth 𝐿, i.e., the number

of multiplications in series. This point of view justifies the transi-

tion from Umbreon to Jolteon since 𝑀FC−1 > 𝑀hFC−1 holds for a

reasonable forkcipher primitive. Concretely for ForkSkinny-64-192

(denoting the full- and one-legged ForkSkinny version by FS and h-
FS, respectively), 𝑀FS-64-192−1 = 4000 and 𝑀h-FS-64-192−1 = 2528,

hence we save around 37% of multiplications in this instantia-

tion. Note further that for ForkSkinny, the depth of a full fork-

cipher and one-legged forkcipher is the same, namely 230 for

ForkSkinny-64-192. The change from Umbreon to Espeon can be

studied in the same way. For the 128-bit security level, the number

of multiplications used in Umbreon is 𝑀FS-128-256−1 = 9536 and

in Espeon 𝑀h-FS-128-384−1 = 7104 (note the larger ForkSkinny in-

stance since we require a longer tweak to reach 128-bit security).

While this change saves 26% of multiplications, the larger instance

ForkSkinny-128-384 entails that Espeon’s circuit is 10% deeper, from

𝐿FS-128-256−1 = 280 to 𝐿FS-128-384−1 = 310 rounds of communication.

Table 2 lists the cost for each mode in terms of pre-processing data

and circuit depth. Since AEAD decryption performs a tag check

of the 𝑛-bit tag,𝑀Tag,𝑛 pre-processed triples and 𝐿Tag,𝑛 rounds are

added. This is detailed in Sect. 6.2 and Eq. (1).

6 PERFORMANCE
We want to showcase the performance and security benefits of the

Eevee family in two distinct comparisons. In Sect. 6.1, we compare

Eevee with the standardized mode AES-GCM [33] and its nonce

misuse-resistant variant AES-GCM-SIV [39]. To keep this com-

parison fair, we instantiate the forkcipher in Eevee with AES by

defining a generically composed forkcipher instantiation as a pair

of tweakable block ciphers as explained in Sect. 6.1. This way we

also illustrate that although a dedicated forkcipher fits the mode

best (as it has some built in advantages), one can also fit in any

other cipher such as AES following the composition.

Despite the generic instantiation, we show comparable perfor-

mance and/or superior security properties of Eevee (due to mode

level optimizations) in this setting.

Further, in Sect. 6.2, we show concrete performance and security

improvements when a dedicated forkcipher primitive is available.

We also demonstrate the suitability of forkciphers in the MPC set-

ting using ForkSkinny to instantiate Eevee and using SKINNY in var-

ious MPC-friendly modes from the literature [68]. Then, in Sect. 6.3,

we briefly sketch a possible instantiation with MPC-friendly primi-

tives but don’t report performance results. A MPC-friendly instan-

tiation is not the focus of this work.

We implement the modes in question on a 32-bit ARM Cortex

M4 microcontroller to perform the encryption, and benchmark the

decryption in a two/three-party MPC cluster. The software imple-

mentation on the microcontroller is constant-time, i.e., avoiding

secret-dependent control-flow and memory access. For AES, we

use dedicated assembly code [69]. The decryption benchmark uses

the MP-SPDZ framework [49] where each party runs on a separate

machine (4 core E3-1220v3 (3.1 GHz) with 16 GB RAM) in the same

network.

6.1 Comparison of Eevee and AES-GCM(-SIV)
We instantiate the AES-based forkcipher from two parallel tweak-

able block ciphers and use the general LRW [57] construction to

make AES tweakable as 𝐸𝑘1 (𝑚 ⊕ 𝐻𝑘2 (𝑡)) ⊕ 𝐻𝑘2 (𝑡) where 𝑚 de-

notes the message/input, 𝑘1, 𝑘2 are two secret keys (each of size

|𝑚 |), 𝑡 is the tweak (with |𝑡 | as a multiple of |𝑚 |) and 𝐸𝑘 (·) denotes
the AES call with key 𝑘 . The function 𝐻 is PolyCW [24, 55], i.e.,

𝐻𝑘 (𝑡1 | |...| |𝑡𝑎) = (𝑡1 ⊗ 𝑘) ⊕ · · · ⊕ (𝑡𝑎 ⊗ 𝑘𝑎) where |𝑡𝑖 | = |𝑚 | for
all 1 ≤ 𝑖 ≤ 𝑎. This generic forkcipher provides around 64 bits of

security when instantiated with AES-128. The proof of this claim

is straightforward from the results of [57, Theorem 3] and [24].

Implementation. In MPC, AES is implemented by embedding the

AES implementation from MP-SPDZ [29] into the GHASH field to

turn GHASH multiplication into standard field multiplication in

the MPC protocol.

Comparison. Figure 4 shows the encryption vs. decryption cost

for the studied modes. The encryption cost is listed as the average

number of cycles per message byte to encrypt and the decryption

cost is the online time of a three-party distributed decryption in a

LAN setting using the MASCOT [50] actively secure MPC proto-

col that tolerates a dishonest majority. The modes AES-GCM and

Jolteon-AES are not nonce misuse resistant while AES-GCM-SIV

and Espeon-AES are. Jolteon improves over AES-GCM both in en-

cryption and in decryption performance. We see an improvement

of ≈10% for encryption and ≈39% for decryption. However, both

of these modes don’t offer nonce misuse resistance. In the nonce

misuse setting, Espeon-AES has the same security level as AES-

GCM-SIV. Espeon improves the decryption time by ≈77% while we

measure a slower encryption performance of around 15%. It appears

that in our prototype implementation, computing 𝐻 for the longer

tweak in Espeon is not sufficiently optimized. The choice of 𝐻

mainly allows the tweak extension of AES to be almost free in MPC,

costing only one additional multiplication and bit-decomposition

operation per block. This choice together with Espeon’s fully par-

allel nature allows for the decryption performance boost.

6.2 Comparison of Eevee in Lightweight
Settings

In the previous section, we already demonstrated that the Eevee

family leads to performance and security improvements even if no

dedicated (or lightweight) forkcipher primitive is available. In this

section, we expand on a scenario where a lightweight forkcipher

primitive is available, and showcase the additional performance gain

due to an optimized primitive. We instantiateUmbreon, Jolteon and
8

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

Table 2: The amount of pre-processing data and the number of communication rounds for computing the decryption of each
mode.𝑀𝑝

P is the number of multiplications needed to evaluate the primitive P with public input and secret key;𝑀𝑠
P denotes the

evaluation with secret input and secret key. The primitives are block cipher (BC), tweakable block cipher (TBC), forkcipher
(FC) and half/one-legged forkcipher (hFC) with instatiations AES, SKINNY and ForkSkinny (FS), respectively. P−1 denotes the
inverse of the primitive. 𝐿 with the same notation denotes the number of communication rounds with 𝐿𝑝 and 𝐿𝑠 denoting public
and secret input, respectively. |𝐶 | is the ciphertext length and 𝑛 is the block size. For tag verification,𝑀Tag,64 = 63,𝑀Tag,128 = 127,
𝐿Tag,64 = 7 and 𝐿Tag,128 = 8.

Mode Pre-processing Data Minimum Communication Instantiations

Rounds Data Rounds

CTR-HtMAC

(⌈ |𝐶 |
𝑛

⌉
+ 1

)
·𝑀𝑝

TBC +𝑀Tag,𝑛 𝐿
𝑝

TBC + 𝐿Tag,𝑛 𝑀
𝑝

SKINNY-128-256 = 6016 𝐿
𝑝

SKINNY-128-256 = 235

CTR-PMAC 2

⌈
|𝐶 |
𝑛

⌉
·𝑀𝑝

TBC +𝑀
𝑠
TBC +𝑀Tag,𝑛 𝐿

𝑝

TBC + 𝐿
𝑠
TBC + 𝐿Tag,𝑛 𝑀𝑠

SKINNY-128-256 = 6144 𝐿𝑠SKINNY-128-256 = 240

Umbreon
⌈
|𝐶 |
𝑛

⌉
·𝑀𝑝

FC−1
+𝑀Tag,𝑛 𝐿

𝑝

FC−1
+ 𝐿Tag,𝑛

𝑀
𝑝

FS-64-192−1
= 4000 𝐿

𝑝

FS-64-192−1
= 230

𝑀
𝑝

FS-128-256−1
= 9536 𝐿

𝑝

FS-128-256−1
= 280

Jolteon (⌈ |𝐶 |
𝑛

⌉
− 1

)
·𝑀𝑝

hFC−1
+𝑀𝑝

FC−1
+𝑀Tag,𝑛 max

{
𝐿
𝑝

hFC−1
, 𝐿

𝑝

FC−1
}
+ 𝐿Tag,𝑛

𝑀
𝑝

h-FS-64-192−1
= 2528 𝐿

𝑝

h-FS-64-192−1
= 230

𝑀
𝑝

h-FS-128-256−1
= 6080 𝐿

𝑝

h-FS-128-256−1
= 280

Espeon
𝑀

𝑝

FS-128-384−1
= 11072 𝐿

𝑝

FS-128-384−1
= 310

𝑀
𝑝

h-FS-128-384−1
= 7104 𝐿

𝑝

h-FS-128-384−1
= 310

GCM

(⌈ |𝐶 |
𝑛

⌉
+ 2

)
·𝑀BC +𝑀Tag,𝑛 𝐿BC +max{𝐿BC,

⌈
|𝐶 |
𝑛

⌉
+ 𝐿Tag,𝑛}

𝑀AES = 1200 𝐿AES = 52

GCM-SIV

(⌈ |𝐶 |
𝑛

⌉
+ 5

)
·𝑀BC +𝑀Tag,𝑛 2𝐿BC +

⌈
|𝐶 |
𝑛

⌉
+ 𝐿Tag,𝑛

160 180 200 220 240 260 280 300 320

12

14

16

18

20

64-bit NR

64-bit NM

Encryption (avg. cycles per byte)

D
e
c
r
y
p
t
i
o
n
(
o
n
l
i
n
e
t
i
m
e
i
n
m
s
)

Jolteon-AES
Espeon-AES
AES-GCM

AES-GCM-SIV

Figure 4: Encryption vs. decryption performance of AES-
based modes for message lengths ≥ 100-byte for three MPC
parties in a LAN setting. Here NR and NM refers the modes
with nonce-respecting and nonce-misuse security, respec-
tively.

Espeon with the forkcipher ForkSkinny. We compare their perfor-

mance with the MPC-friendly modes in the literature [68] CTR-

HtMAC-SKINNY-128-256 – counter mode encryption then hash-

then-MAC using SKINNY-128-256 and BLAKE2s, and with CTR-

PMAC-SKINNY-128-256 – counter mode encryption then PMAC

using SKINNY-128-256. To minimize the impact of the different

primitives and allow for a stronger comparison, we choose the

SKINNY cipher as the underlying cipher instance for these modes.

Implementation. At the core of the MPC implementation lies the

representation of the SKINNY round function since ForkSkinny

reuses the same steps with minor modifications. The forward round

function consists of SubCells, AddConstants, AddRoundTweakey,

ShiftRows and MixColumns. All the steps except for SubCells are

linear and therefore local operations. Furthermore, if the tweakey

is available in shared bits, the key schedule of SKINNY is also linear.

We represent each 4-bit (8-bit) cell of the state as element in F
2
4

(F
2
8) embedded in F

2
40 . The inverse round function consists of the

respective inverse steps in reverse order. The SubCells step applies

the SKINNY 4-bit (8-bit) S-box in parallel to each cell of the state.

We compute the S-box by first decomposing the cell into 4 (8) bits

and then apply NOT, XOR and AND operations to compute the

desired function. Naturally in the arithmetic setting with fields of

characteristic two, NOT corresponds to addition with a constant 1,

XOR to addition and AND to multiplication.

Consequently, the forward SKINNY round function consumes

16 · 4 (16 · 8) multiplication triples and 16 · 4 (16 · 8) random bits

in 3 (5) rounds of communication in the online phase of MASCOT.

The inverse SKINNY round function consumes the same number of

multiplication triples and random bits as the forward direction but

takes 5 rounds of communication both for the 64-bit and 128-bit

state.

There is a subtle difference between the forward direction for

SKINNY, used in CTR-HtMAC and CTR-PMAC, and the inverse

9

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

ForkSkinny, used in Umbreon, Jolteon and Espeon. Since the in-

put to both primitives is public with a secret-shared key, the first

round is not computed completely in secret. For SKINNY using the

forward direction of the SKINNY round function, all S-boxes are

computed in the clear since the key addition and mixing layers

follow the substitution layer. The state becomes secret only after

the key addition and mixing. For ForkSkinny, which uses the in-

verse SKINNY round function, this is reversed, so the key addition

precedes the substitution layer. Consequently, half of the S-boxes

are computed in secret because the round key is XORed to half of

the cells in the state. The other half of the S-boxes is computed in

the clear. Therefore, the number of required multiplication triples

is (𝑟 − 1) · 16 · 𝑠 for SKINNY and (𝑟 − 1) · 16 · 𝑠 + 8 · 𝑠 for inverse
ForkSkinny where 𝑟 is the number of rounds in the primitive, e.g.,

𝑟 = 48 for SKINNY-128-256, and 𝑠 is the cost to compute one S-box,

i.e., 𝑠 = 4 for SKINNY-64-* and 𝑠 = 8 for SKINNY-128-*.

Umbreon, Jolteon and Espeon, but also CTR-HtMAC don’t re-

quire non-linear operations on the mode level except for the tag

equality check. To check that two ℓ-bit tags 𝑡1, . . . , 𝑡ℓ and 𝑡
′
1
, . . . , 𝑡 ′

ℓ
match, we compute

J𝑐K =
ℓ∧
𝑖=1

J𝑡𝑖K ⊕ 𝑡 ′𝑖 =
ℓ∏
𝑖=1

(J𝑡𝑖K + 𝑡 ′𝑖 + 0x1) . (1)

Note that since for this check only one tag (the computed one) is

secret-shared while the other is part of the public input ciphertext,

we write J𝑡𝑖K and 𝑡 ′𝑖 . The shared output bit J𝑐K is 1 if all bits in 𝑡
match the bits at the same position in 𝑡 ′. Computing the product

consumes ℓ − 1 multiplication triples. To minimize the depth of the

computation, we arrange the multiplications in a binary tree with

⌈log
2
(ℓ)⌉ levels. We further consume ℓ random bits to decompose

the output state of the primitive into shared bits, making the total

number of rounds of communication ⌈log
2
(ℓ)⌉ + 1.

Comparison. In Fig. 5 we show the encryption and decryption cost

for SKINNY/ForkSkinny-based modes. As in the previous section,

the encryption cost is the average number of cycles required to

encrypt messages normalized to the message size. The decryption

cost is the online time of a two-party distributed decryption in a

LAN setting.

Figure 8 in Appendix A illustrates further performance met-

rics of the MPC decryption such as offline time and online/offline

communication cost. First, we compare the Eevee family with CTR-

PMAC. Afterwards, we assess the performance with CTR-HtMAC

as baseline.

CTR-PMAC. All our proposed instantiations of Umbreon, Jolteon
and Espeon outperform CTR-PMAC-SKINNY-128-256. The modes

with the same security level, Jolteon-ForkSkinny-64-192 and

Umbreon-ForkSkinny-64-192, encrypt messages faster with factor

1.75 to 3.64, depending on the message size. The modes with a dou-

bled security level, namely Jolteon-ForkSkinny-128-256, Espeon-
ForkSkinny-128-384 and Umbreon-ForkSkinny-128-256 also have
improved encryption performance with a factor 1.29 to 2.03.

Jolteon-ForkSkinny-64-192 decrypts faster and with less commu-

nication data by at least factor 2.42 to 4.5 andUmbreon-ForkSkinny-
64-192 improves by a factor 1.55 to 4.5. The remaining instanti-

ations, Jolteon-ForkSkinny-128-256, Espeon-ForkSkinny-128-384,
andUmbreon-ForkSkinny-128-256, also improve in decryption time

over CTR-PMAC, despite the doubled security level. They improve

by a factor of 1.89 to 1.97, 1.63 to 1.69, and 1.89 to 1.29. Umbreon
and Espeon provide nonce-misuse resistance.

Thus, for an AEAD mode with a single primitive use, all Eevee

members surpass CTR-PMAC both in performance and security.

First, Eevee modes that are instantiated with a smaller primitive

still attain an equivalent level of security as CTR-PMAC with a

larger primitive, e.g., both Umbreon-ForkSkinny-64-192 and CTR-

PMAC-SKINNY-128-256 achieve 64-bit of nAE security. Second,

Eevee modes that are instantiated with a primitive of the same size

as CTR-PMAC, benefit from doubled nAE security. Third, Umbreon
and Espeon offer graceful security degradation in the nonce-misuse

setting while CTR-PMAC is trivially insecure under nonce- misuse

attacks (see [4, App. C]).

CTR-HtMAC. We now compare Jolteon, Espeon and Umbreon
to CTR-HtMAC-SKINNY-128-256. For the same security level

Jolteon-ForkSkinny-64-192 and Umbreon-ForkSkinny-64-192 en-
crypt faster with factor up to 1.85. For Espeon-ForkSkinny-128-384,
Umbreon-ForkSkinny-128-256, and Jolteon-ForkSkinny-128-256,
we measure slower encryption for messages ranging from 8 bytes

to 1500 bytes of 52% to 33%, 9% to 49%, and 9% to −3% (i.e., for

messages of length 500 bytes or larger, Jolteon-ForkSkinny-128-256
gains 3% speed-up), respectively. Note the doubled security level of

these instantiations compared to CTR-HtMAC-SKINNY-128-256.

Regarding decryption, Jolteon-ForkSkinny-64-192 shows better
performance for all message sizes by factor of 3 to 1.23 in all metrics.

Umbreon-ForkSkinny-64-192 improves decryption time by factor 3

for 8 byte messages over CTR-HtMAC-SKINNY-128-256 while we

measure between 18% and 27% slower decryption time and more

communication data for longer messages. Jolteon-ForkSkinny-128-
256 shows a speed up by factor 1.26 for short messages and has very

similar performance in all metrics for the other message lengths.

Both Espeon-ForkSkinny-128-384 and Umbreon-ForkSkinny-128-
256 have a slight performance improvement for short messages but

are slower and use more data for longer messages. We measure a

difference of 12% − 16% and 41% − 54%, respectively.
For short messages that fit into one or two blocks, the parallel

nature of the forkcipher shows to be especially advantageous since

all our instantiations improve even over CTR-HtMAC which out-

sources the tag computation to a local hash, i.e., with negligible

cost, as seen in Fig. 5a. Furthermore, our results validate the design

of Jolteon to improve the performance. We see a reduced amount of

exchanged online and offline data as well as faster online and offline

times to the extend that we obtain superior (with same security)

or similar (with double security) performance than CTR-HtMAC

for our two instantiations. The additional security of Espeon when

compared to Jolteon comes from the larger tweak. We note a slight

performance improvement when compared to Umbreon but due to

the larger required instance ForkSkinny-128-384, Espeon doesn’t

outperform SKINNY-128-256.

As for the comparison for CTR-PMAC, we stress that Umbreon
and Espeon offer nonce-misuse resistance. For hardware implemen-

tations, CTR-HtMAC requires two primitives, the block cipher and

a hash function, which will likely require more area than a single

primitive (cf. Table 1). Jolteon, Espeon andUmbreon all use a single

primitive in the mode.

10

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

Umbreon-ForkSkinny-64-192 Umbreon-ForkSkinny-128-256 Jolteon-ForkSkinny-64-192 Jolteon-ForkSkinny-128-256
Espeon-ForkSkinny-128-384 CTR-HtMAC-SKINNY-128-256 CTR-PMAC-SKINNY-128-256

2,000 2,500 3,000 3,500 4,000 4,500 5,000

4

6

8

10

12

14

64-bit NR

64-bit NM □

128-bit NR •
128-bit NM ■,▲

Encryption (avg. cycles per byte)

D
e
c
r
y
p
t
i
o
n
(
o
n
l
i
n
e
t
i
m
e
i
n
m
s
)

(a) Message length = 8 byte.

600 800 1,000 1,200 1,400 1,600

40

50

60

70

64-bit NR

64-bit NM

128-bit NR

128-bit NM

Encryption (avg. cycles per byte)

D
e
c
r
y
p
t
i
o
n
(
o
n
l
i
n
e
t
i
m
e
i
n
m
s
)

(b) Message length ≥ 100 byte.

Figure 5: Encryption vs. decryption performance of the studied modes for very short messages (a) and longer messages (b).
Modes with the same security level lie on the same curve. The annotation denotes the OAE security level for confidentiality
(64-bit or 128-bit). NR and NM denote the nonce respecting and the nonce misuse settings, respectively.

6.3 Eevee in the MPC-friendly setting
A comparison with MPC-friendly primitives is outside the scope of

this paper since we prioritize a lightweight, IoT-friendly encryption.

However, the Eevee modes can also be instantiated with an MPC-

friendly block cipher, such as MiMC, Hades, Vision, etc. [1, 3, 38],

using the LRW [57] construction (as described in Sect. 6.1). Note

that decryption in Eevee requires inverting the primitive whichmay

be more expensive in some MPC-friendly block ciphers. Special-

purpose MPC protocols can optimize primitive inversion and create

a trade-off with a slightly more expensive offline phase (see, e.g., [3,

Appendix C.3]). Our implementation of transciphering based on

MiMC-128 from [68] yields the following performance. For CTR-

PMAC-MiMC-128, encryption and decryption of a 100 byte message

takes 67623 cpb and 3.08 ms, respectively. The same for a short

8 byte message takes 184771 cpb and 0.82 ms. For CTR-HtMAC-

MiMC-128, long messages take 36004 cpb to encrypt and 1.58 ms to

decrypt while short messages take 109456 cpb and 0.51 ms. Com-

pared to these, Jolteon-ForkSkinny-64-192 (which has the same

security level) comes with 545 cpb to encrypt and 34.6 ms to de-

crypt for long messages and 2147 cpb and 4.4 ms for short messages,

respectively.

7 SECURITY ANALYSIS
Proof of Theorem 3.1. For brevity of the proof, we use

throughout (w.l.o.g.) the same notation of A and B (unless de-

fined) for the adversary against the AEAD mode and its underlying

primitive disregarding the corresponding setup (the security notion

and the targeted design), respectively. We clarify that A and B
are not some pre-fixed adversaries and can be modified to the best

strategy for the targeted notion and design when rementioned.

Replacing F.We first replace F with a pair of independent random

tweakable permutations 𝜋0 = (𝜋T,0 ←$ Perm(𝑛))T∈{0,1}𝑡 and 𝜋1 =
(𝜋T,1 ←$ Perm(𝑛))T∈{0,1}𝑡 and let Π′ = Π[(𝜋0, 𝜋1)] denote the

Π ∈ {Umbreon, Jolteon, Espeon} mode that uses 𝜋0, 𝜋1 instead of

F, which yields

Advoprpf
Π [F] (A) ≤ AdvprtfpF (B) + AdvoprpfΠ′ (A)

AdvauthΠ [F] (A) ≤ AdvprtfpF (B) + AdvauthΠ′ (A) .

Now, A is left with the goal of distinguishing between the games

oprpf-realΠ′ and oprpf-idealΠ′ for the confidentiality of Π and

similarly between the games auth-realΠ′ and auth-idealΠ′ for
the integrity of Π. For simplicity, we denote these games by “real

world” and “ideal world” regarding confidentiality and integrity,

respectively. Hence, we now want to bound AdvoprpfΠ′ (A) and
AdvauthΠ′ (A).

Integrity. Let us recall from Sect. 2 and [5] that

AdvauthΠ′ (A) = Pr

[
AauthΠ′

forges

]
≤ AdvoprpfΠ′ (A)

+ Pr
[
AauthΠ′

forges | Π′ is oprpf-secure
]
.

Now, since Π being oprpf-secure implies by definition that all

generated tags for non-duplicate queries (even when the queried

message length is zero, i.e., only AD is queried) are indistinguishable

from uniform random𝑛-bit strings and are independently generated

from the ciphertexts, we can apply the single to multiple verification

queries relation [15, Theorem 5.1] and get,

AdvauthΠ′ (A) ≤ AdvoprpfΠ′ (A)+

𝑞𝑣 · Pr
[
AauthΠ′

forges | Π′ is oprpf-secure

and A makes only 1 verification query

]
, (2)

11

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

where 𝑞𝑣 represents the total number of verification/decryption

queries made by A during the whole session. Now the probability

of adversaryA forging a valid ciphertext-tag pair can be computed

easily for all possible scenarios (describing how an adversary can

make a single verification query) as follows:

Case 1. The verification query contains a new tuple of nonce 𝑁 ,

AD 𝐴 and ciphertext 𝐶1∥ . . . ∥𝐶𝑚 , i.e., a 𝑁 ∥𝐴∥𝐶1∥ . . . ∥𝐶𝑚 value

is new when compared with previously made encryption queries.

Under this scenario, we know that Π′ being oprpf-secure implies

that at least one of the corresponding checksum blocks, i.e., blocks

that are xored to the input of the final primitive call of the corre-

sponding verification query (for example, in Espeon these blocks

are𝑀1, . . . , 𝑀𝑚) is fresh, independent and randomly sampled with

probability at most 1/(2𝑛 − (𝑥Π′ − 1)) where 𝑥Π′ denotes the maxi-

mum number of times a tweak can repeat during a full session of 𝑞𝑒
encryption and 𝑞𝑣 verification queries to Π

′
. Hence, the correspond-

ing padded input block of the form𝑀∗∥10∗ (which can be computed

by inverting the last 𝜋0 call of the verification query with the 𝑇𝑎𝑔

value and xoring it with the checksum) will be fresh, independent

and randomly sampled with probability at most 1/(2𝑛 − (𝑥Π′ − 1)).
Case 2. The verification query contains a nonce, AD and ciphertext

from an old encryption query, i.e., 𝑁 ∥𝐴∥𝐶1∥ . . . ∥𝐶𝑚 value repeats

from one of the already made encryption queries: Since Π′ is a
nonce-based deterministic AEAD scheme, old input will derive

the corresponding old checksum value and hence to have a valid

forgery with non-zero success probability, 𝑇𝑎𝑔 and 𝐶∗ both are

required to differ from the corresponding old query. We note that

since Π′ is oprpf-secure, we can consider all 𝑞𝑒 encryption query

tags and last ciphertext blocks as independent uniform random

strings. Hence, disregarding the fact of having a 𝑇𝑎𝑔 value which

is completely new or is equal to one of the other old encryption

query tags, we have that the padded input block of the form𝑀∗∥10∗
(which corresponds to the 𝑇𝑎𝑔 and 𝐶∗ blocks of the verification
query) is equal to any arbitrary 𝑛-bit string with random probability

of 1/(2𝑛 − (𝑥Π′ − 1)).
Note that both of these cases are disjoint and exhaustive, there-

fore, the probability of A forging a ciphertext-tag pair for Π′

in a single verification query (which can be defined as the prod-

uct of two probabilities: (1) the probability that the padding 10
∗

from the last 𝜋0 call input 𝑀∗∥10∗ matches 10
𝑛−|𝑀∗ |−1

; (2) the

probability that the last 𝜋1 call output when xored with 𝐶∗ and
truncated by the last 𝑛 − |𝑀∗ | − 1 bits matches 𝑀∗) can be up-

per bounded by (2𝑛−|𝑀∗ |/(2𝑛 − (𝑥Π′ − 1))) · (2 |𝑀∗ |/(2𝑛 − (𝑥Π′ −
1))) = 2

𝑛/(2𝑛 − (𝑥Π′ − 1))2. Hence, revising Eq. (2), we get for

Π ∈ {Umbreon, Jolteon, Espeon}

AdvauthΠ′ (A) ≤ AdvoprpfΠ′ (A) + 𝑞𝑣2
𝑛/(2𝑛 − (𝑥Π′ − 1))2 . (3)

We defer the individual definition of 𝑥Π′ for Π ∈
{Umbreon, Jolteon, Espeon} to the final bounds segment which is

defined after the following segment of confidentiality.

Confidentiality.We now bound the oprpf-security advantage of a
confidentiality adversaryA againstΠ′ = Π[(𝜋0, 𝜋1)]. Let us denote
by 𝑞𝑒 the number of total encryption queries made byA during the

whole session. Further, let us denote byUΠ′,A
𝑖,case the event when A

successfully distinguishes the received output for its 𝑖𝑡ℎ encryption

query from being a real Π′ output or an ideal ORP+RF (as defined

by oprpf notion in Sect. 2 and [5]) output. Here case defines the
type of the 𝑖𝑡ℎ encryption query among the all possible types/cases

as defined in Fig. 6.

Figure 6: Exhaustive and disjoint cases of a possible encryp-
tion query to Π ∈ {Umbreon, Jolteon, Espeon}. Here (X1, T1)
represents the input-tweak pair of the first primitive call
that outputs the first ciphertext for the query.

With the notations defined, we can infer the following expression

for all 1 ≤ 𝑖 ≤ 𝑞𝑒 and Π ∈ {Umbreon, Jolteon, Espeon}:

UΠ′,A
𝑖,1

⊇
(
UΠ′,A
𝑖,3.1
∪ UΠ′,A

𝑖,3.2.2
∪ UΠ′,A

𝑖,3.3

)
. (4)

This holds because under Case 1, 𝑇𝐴 is set to 0 and therefore,

(X1, T1) is solely defined by 𝑁 ∥𝑀1 which means the values of X1
and T1 are fully in the control of A. Hence, for every adversary

A′ who corresponds to eitherUΠ′,A′
𝑖,3.1

orUΠ′,A′
𝑖,3.2.2

orUΠ′,A′
𝑖,3.3

, there

exists another adversaryA corresponding toUΠ′,A
𝑖,1

who modifies

the input-tweak values 𝑋1,𝑇1 according to A′ and achieves the

same distinguishing (oprpf) advantage as A′. Now, since all these
cases (as shown in Fig. 6) are disjoint and exhaustive, we can say

from Eq. (4) that

AdvoprpfΠ′ (A) ≤
𝑞𝑒∑︁
𝑖=1

max

{
Pr

[
UΠ′,A
𝑖,1

]
, Pr

[
UΠ′,A
𝑖,2

]
, Pr

[
UΠ′,A
𝑖,3.2.1

] }
. (5)

Hence, we are now left with bounding these three U terms for

each Eevee mode. We defer the case analysis and bounding of these

threeU terms to Appendix C and recall from there the results of

Eq. (6), (7), (8), (9), (10) and (12) as shown below.

For Π ∈ {Umbreon, Jolteon, Espeon}:

Pr

[
UΠ′,A
𝑖,3.2.1

]
<

` − 1

2
𝑛 − `

(6) in Appendix C

Pr

[
UΠ′,A
𝑖,2

]
≤ (` − 1)

2
𝑛

(7) in Appendix C

Pr

[
UJolteon′,A𝑛𝑟
𝑖,1

]
= 0 (8) in Appendix C

For Π ∈ {Umbreon, Espeon} and 𝐿𝑖 ≤ 2
𝑛−1

:

Pr

[
UΠ′,A𝑛𝑚
𝑖,1

]
≤ Pr

[
UΠ′,A★

𝑖,1

]
+ ` − 1

2
𝑛 − `

(9) in Appendix C

Pr

[
UUmbreon′,A★

𝑖,1

]
≤ 3ℓ𝑖 (` − 1)

2
𝑛

(10) in Appendix C

Pr

[
UEspeon′,A★

𝑖,1

]
≤ (𝐿𝑖 − ℓ𝑖 + (ℓ𝑖 − 1)/2)ℓ𝑖

2
𝑡−4 , (12) in Appendix C

where ` denotes the maximum number of times a nonce can repeat

during a session, A𝑛𝑟 (resp. A𝑛𝑚) represents a nonce-respecting

(resp. nonce-misusing) adversary, ℓ𝑖 represents the total number of

primitive calls that are required to process𝑀𝑖
, i.e., ℓ𝑖 = ⌈|𝑀𝑖 |/𝑛⌉ ≥

0 and 𝐿𝑖 =
∑𝑖
𝑎=1 ℓ𝑎 .

12

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

Final Bounds. Now, combining Eq. (5), (6), (7) and (8) with ` = 1

(for A = A𝑛𝑟), we get

AdvoprpfJolteon′ (A𝑛𝑟) ≤
𝑞𝑒∑︁
𝑖=1

max

{
0, 0, 0

}
= 0 .

Further, let 𝜎𝑚,𝑒 =
∑𝑞𝑒
𝑖=1

ℓ𝑖 denote the total number of primitive

calls induced by all the message parts from A𝑛𝑚 ’s 𝑞𝑒 encryption

queries to Π′ then combining Eq. (5), (6), (7), (9) and (10), we get

AdvoprpfUmbreon′ (A𝑛𝑚) ≤
𝑞𝑒∑︁
𝑖=1

max

{
` − 1

2
𝑛 − `

,
(` − 1)
2
𝑛

,
3ℓ𝑖 (` − 1)

2
𝑛

+ ` − 1

2
𝑛 − `

}
≤

𝑞𝑒∑︁
𝑖=1

3(ℓ𝑖 + 1) (` − 1)
2
𝑛

; assuming ` ≤ 2
𝑛−1

=
3(𝜎𝑚,𝑒 + 𝑞𝑒) (` − 1)

2
𝑛

.

Similarly, combining Eq. (5), (6), (7), (9) and (12) for 𝑡 ∈ {𝑛, 2𝑛} and
assuming 𝜎𝑚,𝑒 ≤ 2

𝑛−1
, we get

AdvoprpfEspeon′ (A𝑛𝑚)

≤
𝑞𝑒∑︁
𝑖=1

{
` − 1

2
𝑛 − `

,
(` − 1)
2
𝑛

,
(𝐿𝑖 − ℓ𝑖 + (ℓ𝑖 − 1)/2)ℓ𝑖

2
𝑡−4 + ` − 1

2
𝑛 − `

}
≤ 2𝑞𝑒 (` − 1)

2
𝑛

+ 1

2
𝑡−4

𝑞𝑒∑︁
𝑖=1

(
𝐿𝑖 − ℓ𝑖 +

(ℓ𝑖 − 1)
2

)
ℓ𝑖 ; assuming ` ≤ 2

𝑛−1

=
2𝑞𝑒 (` − 1)

2
𝑛

+ 𝜎𝑚,𝑒 (𝜎𝑚,𝑒 − 1)
2
𝑡−3 .

Note that for 𝜎𝑚,𝑒 > 2
𝑛−1

this bound becomes void hence the

assumption of 𝜎𝑚,𝑒 ≤ 2
𝑛−1

can be dropped. Finally in Eq. (3),

setting 𝑥Π′ (which denotes the maximum number of times a tweak

can repeat during a full session of 𝑞𝑒 encryption and 𝑞𝑣 verification

queries to Π′) to the maximum possible values 𝑞𝑣 + `, 𝑞𝑣 + 1 and
𝜎𝑚,𝑣 + 𝜎𝑚,𝑒 for Π′ = Umbreon′ (A = A𝑛𝑚), Jolteon′ (A = A𝑛𝑟)

and Espeon′ (A = A𝑛𝑚), respectively, we get the integrity bounds

for Eevee modes and hence the results of Theorem 3.1. Here 𝜎𝑚,𝑣

denote the total number of primitive calls induced by all themessage

parts from A’s 𝑞𝑣 verification queries to Π′. □

8 CONCLUSION
We studied the IoT-to-Cloud computation problem and proposed

Eevee, a family of three AEAD modes as a suitable solution. Our

rigorous security analysis shows that in the nonce respecting set-

ting the Eevee modes Umbreon, Jolteon and Espeon achieve full

(𝑛-bit) security with a single primitive (along with some other de-

sirable features) while the existing possible solutions only achieve

birthday-bound security and mostly require two primitives. In the

nonce misuse setting, Umbreon and Espeon have graceful security

degradation which previous online solutions do not offer.

Our practical evaluations show that Jolteon (with ForkSkinny)

provides 1.85x to 3.64x speedup in IoT-encryption time and 3x

to 4.5x speed-up in both MPC-decryption time and data for very

short queries of 8 bytes and, 1.55x to 3.04x and 1.23x to 2.43x

speedup, respectively, in MPC-decryption time and data for queries

up to 500 bytes when compared against state-of-the-art MPC-

friendly modes instantiated with SKINNY whereas Umbreon and

Espeon show a favorable performance-security trade-off and pro-

vide stronger security guarantees. As an intermediate trade-off,

Espeon can be a viable alternative in low latency networks target-

ing better security. We also compared our modes to the standard

AEAD mode AES-GCM and its misuse-resistant counterpart AES-

GCM-SIV and observed that despite the use of a generic forkcipher

instantiation, the Eevee modes showed comparable performance

and/or superior security properties to these modes which highlights

the optimality of Eevee modes to the transciphering setting.

Our work can be viewed as transciphering for MPC. While tran-

sciphering has been studied for fully homomorphic encryption

(FHE) [21, 44, 61], to the best of our knowledge, only the imple-

mentation of block cipher primitives [27, 36, 56, 70] and stream

ciphers [23, 28, 59, 60] have been studied. The study of the FHE-

related cost for modes of operations to turn those block cipher

primitives into an encryption scheme is yet missing. Moreover, the

commonly used counter mode construction suffers from birthday-

bound security of 𝑛/2-bit, which was used by Canteaut et al. [23] as

a motivation to study stream ciphers in this context. On the other

hand, the Eevee family achieves full 𝑛-bit security. We leave the

further study of the Eevee family and similar modes for FHE to

future work.

ACKNOWLEDGMENTS
This work was supported by the Flemish Government through FWO

SBO project MOZAIK S003321N and by CyberSecurity Research

Flanders with reference number VR20192203. Amit Singh Bhati and

Bart Preneel were supported in part by the Research Council KU

Leuven C1 on Security and Privacy for Cyber-Physical Systems and

the Internet of Things with contract number C16/15/058 and by the

Flemish Government through FWO Project G.0835.16 A security

Architecture for IoT.

REFERENCES
[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient encryption and cryptographic hashing with

minimal multiplicative complexity. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 191–219.

[2] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
430–454.

[3] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. 2020. Design of Symmetric-Key Primitives for Advanced Crypto-

graphic Protocols. IACR Transactions on Symmetric Cryptology 2020, Issue 3

(2020), 1–45. https://doi.org/10.13154/tosc.v2020.i3.1-45

[4] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 2021. 1, 2, 3,

Fork: Counter Mode Variants based on a Generalized Forkcipher. IACR Trans.
Symmetric Cryptol. 2021, 3 (2021), 1–35.

[5] Elena Andreeva, Amit Singh Bhati, and Damian Vizár. 2020. Nonce-Misuse

Security of the SAEF Authenticated Encryption mode. In Selected Areas in Cryp-
tography.

[6] Elena Andreeva, Amit Singh Bhati, and Damian Vizar. 2021. RUP Security of

the SAEF Authenticated Encryption mode. Cryptology ePrint Archive, Paper

2021/103. https://eprint.iacr.org/2021/103

[7] Elena Andreeva, Arne Deprez, Jowan Pittevils, Arnab Roy, Amit Singh Bhati,

and Damian Vizár. 2020. New Results and Insighs on ForkAE. In NIST LWC
workshop.

[8] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab

Roy, and Damian Vizár. 2019. ForkAE v. Submission to NIST LwC Standardization
Process (2019).

[9] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab

Roy, and Damian Vizár. 2019. Forkcipher: a New Primitive for Authenticated

Encryption of Very Short Messages. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 153–182.

13

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2021/103

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

[10] Tomer Ashur, Orr Dunkelman, and Atul Luykx. 2017. Boosting authenticated

encryption robustness with minimal modifications. In Annual International Cryp-
tology Conference. Springer, 3–33.

[11] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng

Sim, and Yosuke Todo. 2017. GIFT: a small present. In International Conference
on Cryptographic Hardware and Embedded Systems. Springer, 321–345.

[12] Gregory V. Bard. 2006. A challenging but feasible blockwise-adaptive chosen-

plaintext attack on SSL. Cryptology ePrint Archive (2006).
[13] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In Proceedings of the 11th Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO ’91). Springer-Verlag, Berlin, Heidelberg, 420–432.

[14] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,

Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. 2016. The

SKINNY family of block ciphers and its low-latency variant MANTIS. In Annual
International Cryptology Conference. Springer, Springer-Verlag, 123–153.

[15] Mihir Bellare, Oded Goldreich, and Anton Mityagin. 2004. The Power of Verifi-

cation Queries in Message Authentication and Authenticated Encryption. IACR
Cryptology ePrint Archive 2004 (2004), 309.

[16] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. 2002. Authen-

ticated encryption in SSH: provably fixing the SSH binary packet protocol. In

Proceedings of the 9th ACM conference on Computer and communications security.
1–11.

[17] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: Double

Your Online SPDZ! Improving SPDZ Using Function Dependent Preprocessing.

In Applied Cryptography and Network Security, Robert H. Deng, Valérie Gauthier-
Umaña, Martín Ochoa, and Moti Yung (Eds.). Springer International Publishing,

Cham, 530–549. https://doi.org/10.1007/978-3-030-21568-2_26

[18] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic Encryption and Multiparty Computation. In Advances in Cryptol-
ogy – EUROCRYPT 2011, Kenneth G. Paterson (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 169–188. https://doi.org/10.1007/978-3-642-20465-4_11

[19] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. 2020.

Dumbo, Jumbo, and Delirium: Parallel Authenticated Encryption for the Light-

weight Circus. IACR Transactions on Symmetric Cryptology 2020, S1 (Jun. 2020),

5–30. https://doi.org/10.13154/tosc.v2020.iS1.5-30

[20] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jo-

vanovic. 2016. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on

GCM in TLS. In 10th USENIX Workshop on Offensive Technologies, WOOT, Natalie
Silvanovich and Patrick Traynor (Eds.). USENIX Association.

[21] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Efficient Fully Homomorphic

Encryption from (Standard) LWE. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. 97–106. https://doi.org/10.1109/FOCS.2011.12

[22] Luís T. A. N. Brandão and René Peralta. 2023. NIST IR 8214C ipd NIST First

Call for Multi-Party Threshold Schemes (Initial Public Draft). (2023). https:

//doi.org/10.6028/NIST.IR.8214C.ipd

[23] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-

Plasencia, Pascal Paillier, and Renaud Sirdey. 2018. Stream Ciphers: A Practical

Solution for Efficient Homomorphic-Ciphertext Compression. J. Cryptology 31

(2018), 885–916. https://doi.org/10.1007/s00145-017-9273-9

[24] J Lawrence Carter andMark NWegman. 1977. Universal classes of hash functions.

In Proceedings of the ninth annual ACM symposium on Theory of computing. 106–
112.

[25] David Chaum, Claude Crépeau, and IvanDamgård. 1988. Multiparty Uncondition-

ally Secure Protocols. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing (Chicago, Illinois, USA) (STOC ’88). Association for Comput-

ing Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/62212.62214

[26] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Benny Pinkas. 2018.

High-throughput secure AES computation. In Proceedings of the 6th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography. 13–24.

[27] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2014. Scale-

Invariant Fully Homomorphic Encryption over the Integers. In Public-Key Cryp-
tography – PKC 2014, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 311–328. https://doi.org/10.1007/978-3-642-54631-0_18

[28] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Stan-

daert. 2022. Towards Globally Optimized Hybrid Homomorphic Encryption

- Featuring the Elisabeth Stream Cipher. Cryptology ePrint Archive, Paper

2022/180. arXiv:https://eprint.iacr.org/2022/180

[29] Ivan Damgård, Marcel Keller, Enrique Larraia, ChristianMiles, and Nigel P. Smart.

2012. Implementing AES via an actively/covertly secure dishonest-majority MPC

protocol. In International Conference on Security and Cryptography for Networks.
Springer, 241–263.

[30] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical covertly secure MPC for dishonest majority–or:

breaking the SPDZ limits. In European Symposium on Research in Computer
Security. Springer, 1–18.

[31] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662.

[32] Jun Du, Chunxiao Jiang, Erol Gelenbe, Lei Xu, Jianhua Li, and Yong Ren. 2018.

Distributed Data Privacy Preservation in IoT Applications. IEEE Wireless Com-
munications 25, 6 (2018), 68–76. https://doi.org/10.1109/MWC.2017.1800094

[33] Morris J Dworkin. 2007. SP 800-38D. Recommendation for Block Cipher Modes

of Operation: Galois/Counter Mode (GCM) and GMAC. National Institute of
Standards & Technology (2007).

[34] Guillaume Endignoux and Damian Vizár. 2017. Linking online misuse-resistant

authenticated encryption and blockwise attack models. Cryptology ePrint Archive
(2017).

[35] Ewan Fleischmann, Christian Forler, and Stefan Lucks. 2012. McOE: A Family of

Almost Foolproof On-Line Authenticated Encryption Schemes. In Fast Software
Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA, March
19-21, 2012. Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7549),
Anne Canteaut (Ed.). Springer, 196–215. https://doi.org/10.1007/978-3-642-

34047-5_12

[36] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation

of the AES Circuit. In Advances in Cryptology – CRYPTO 2012, Reihaneh Safavi-

Naini and Ran Canetti (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

850–867. https://doi.org/10.1007/978-3-642-32009-5_49

[37] Oded Goldreich, SilvioMicali, and AviWigderson. 1987. How to Play ANYMental

Game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing (New York, New York, USA) (STOC ’87). Association for Computing

Machinery, New York, NY, USA, 218–229. https://doi.org/10.1145/28395.28420

[38] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and

Markus Schofnegger. 2020. On a Generalization of Substitution-Permutation

Networks: The HADES Design Strategy. In 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10–14, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12105). Springer.
https://doi.org/10.1007/978-3-030-45724-2_23

[39] Shay Gueron, Adam Langley, and Yehuda Lindell. 2017. AES-GCM-SIV: specifi-

cation and analysis. Cryptology ePrint Archive (2017).
[40] Shay Gueron and Yehuda Lindell. 2015. GCM-SIV: Full Nonce Misuse-Resistant

Authenticated Encryption at Under One Cycle per Byte. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,

Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,

USA, 109–119. https://doi.org/10.1145/2810103.2813613

[41] Nilupulee A. Gunathilake, Ahmed Al-Dubai, and William J. Buchana. 2020. Re-

cent Advances and Trends in Lightweight Cryptography for IoT Security. In 2020
16th International Conference on Network and Service Management (CNSM). 1–5.
https://doi.org/10.23919/CNSM50824.2020.9269083

[42] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low Cost Constant

RoundMPCCombining BMR and Oblivious Transfer. InASIACRYPT (1). Springer,
598–628. https://doi.org/10.1007/978-3-319-70694-8_21

[43] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizar. 2015.

Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In

ADVANCES IN CRYPTOLOGY, PT I, Vol. 9215. Gennaro, R, Springer Verlag, 493–
517.

[44] Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. 2020. Transciphering,

Using FiLIP and TFHE for an Efficient Delegation of Computation. In Progress
in Cryptology – INDOCRYPT 2020, Karthikeyan Bhargavan, Elisabeth Oswald,

and Manoj Prabhakaran (Eds.). Springer International Publishing, Cham, 39–61.

https://doi.org/10.1007/978-3-030-65277-7_3

[45] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. 2020.

Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD

Algorithms. IACR Transactions on Symmetric Cryptology 2020, Issue 1 (2020),

43–120. https://doi.org/10.13154/tosc.v2020.i1.43-120

[46] Tetsu Iwata and Yannick Seurin. 2017. Reconsidering the security bound of

AES-GCM-SIV. Cryptology ePrint Archive (2017).
[47] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. 2014. Tweaks and keys for block

ciphers: the TWEAKEY framework. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 274–288.

[48] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. 2002. Blockwise-

adaptive attackers revisiting the (in) security of some provably secure encryp-

tion modes: CBC, GEM, IACBC. In Annual International Cryptology Conference.
Springer, 17–30.

[49] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. https://doi.org/10.1145/3372297.3417872

[50] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

malicious arithmetic secure computation with oblivious transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
830–842.

[51] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

great again. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 158–189.

[52] Mustafa Khairallah and Shivam Bhasin. 2022. Hardware implementations of

romulus: Exploring nonce misuse resistance and boolean masking. In NIST
Lightweight Cryptography Workshop.

14

https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.13154/tosc.v2020.iS1.5-30
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-54631-0_18
https://arxiv.org/abs/https://eprint.iacr.org/2022/180
https://doi.org/10.1109/MWC.2017.1800094
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1145/2810103.2813613
https://doi.org/10.23919/CNSM50824.2020.9269083
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.1145/3372297.3417872

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

[53] Mustafa Khairallah, Shivam Bhasin, and Anupam Chattopadhyay. 2019. On

Misuse of Nonce-Misuse Resistance : Adapting Differential Fault Attacks on (few)

CAESARWinners. In 2019 IEEE 8th InternationalWorkshop on Advances in Sensors
and Interfaces (IWASI). 189–193. https://doi.org/10.1109/IWASI.2019.8791393

[54] Tiffany Hyun-Jin Kim and Joshua Lampkins. 2019. SSP: Self-Sovereign Privacy

for Internet of Things Using Blockchain and MPC. In 2019 IEEE International Con-
ference on Blockchain (Blockchain). 411–418. https://doi.org/10.1109/Blockchain.

2019.00063

[55] Ted Krovetz and Phillip Rogaway. 2001. Fast universal hashing with small

keys and no preprocessing: The PolyR construction. In Information Security and
Cryptology—ICISC 2000: Third International Conference Seoul, Korea, December
8–9, 2000 Proceedings 3. Springer, 73–89.

[56] Tancrède Lepoint andMichael Naehrig. 2014. AComparison of theHomomorphic

Encryption Schemes FV and YASHE. In Progress in Cryptology – AFRICACRYPT
2014, David Pointcheval and Damien Vergnaud (Eds.). Springer International

Publishing, Cham, 318–335. https://doi.org/10.1007/978-3-319-06734-6_20

[57] Moses Liskov, Ronald L Rivest, and DavidWagner. 2002. Tweakable block ciphers.

In Advances in Cryptology—CRYPTO 2002: 22nd Annual International Cryptology
Conference Santa Barbara, California, USA, August 18–22, 2002 Proceedings 22.
Springer, 31–46.

[58] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. 2016. A MAC

Mode for Lightweight Block Ciphers. In Fast Software Encryption, Thomas Peyrin

(Ed.). Springer Berlin Heidelberg, 43–59.

[59] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Stan-

daert. 2019. Improved Filter Permutators for Efficient FHE: Better Instances

and Implementations. In Progress in Cryptology – INDOCRYPT 2019, Feng Hao,
Sushmita Ruj, and Sourav Sen Gupta (Eds.). Springer International Publishing,

Cham, 68–91. https://doi.org/10.1007/978-3-030-35423-7_4

[60] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Car-

let. 2016. Towards Stream Ciphers for Efficient FHE with Low-Noise Cipher-

texts. In Advances in Cryptology – EUROCRYPT 2016, Marc Fischlin and Jean-

Sébastien Coron (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 311–343.

https://doi.org/10.1007/978-3-662-49890-3_13

[61] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can Ho-

momorphic Encryption Be Practical?. In Proceedings of the 3rd ACM Work-
shop on Cloud Computing Security Workshop (Chicago, Illinois, USA) (CCSW
’11). Association for Computing Machinery, New York, NY, USA, 113–124.

https://doi.org/10.1145/2046660.2046682

[62] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. 2020. Lightweight authen-

ticated encryption mode suitable for threshold implementation. In Advances
in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14,
2020, Proceedings, Part II 30. Springer, 705–735.

[63] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. 2022. Secret Can Be Public:

Low-Memory AEAD Mode for High-Order Masking. In Advances in Cryptology–
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part III. Springer, 315–
345.

[64] NIST. 2018. DRAFT Submission Requirements and Evaluation Criteria for

the Lightweight Cryptography Standardization Process. https://csrc.nist.gov/

Projects/Lightweight-Cryptography.

[65] Thomas Peyrin. 2018. Lightweight Symmetric-Key Cryptography. Invited
talk, CTCRYPT (2018). https://thomaspeyrin.github.io/web/assets/docs/invited/

CTCRYPT2018_slides.pdf.

[66] Antoon Purnal, Elena Andreeva, Arnab Roy, and Damian Vizár. 2019. What the

Fork: Implementation Aspects of a Forkcipher. In NIST Lightweight Cryptography
Workshop 2019.

[67] Phillip Rogaway. 2002. Authenticated-Encryption with Associated-Data. In

Proceedings of the 9th ACM conference on Computer and communications security.
98–107.

[68] Dragos Rotaru, Nigel P. Smart, and Martijn Stam. 2017. Modes of Operation

Suitable for Computing on Encrypted Data. IACR Transactions on Symmetric
Cryptology 2017, 3 (Sep. 2017), 294–324. https://doi.org/10.13154/tosc.v2017.i3.

294-324

[69] Peter Schwabe and Ko Stoffelen. 2017. All the AES you need on Cortex-M3 and

M4. In Selected Areas in Cryptography–SAC 2016: 23rd International Conference, St.
John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers. Springer, 180–194.

[70] Nigel P. Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD

operations. Designs, codes and cryptography 71, 1 (2014), 57–81. https:

//doi.org/10.1007/s10623-012-9720-4

[71] Samet Tonyali, Kemal Akkaya, Nico Saputro, A. Selcuk Uluagac, and Mehrdad

Nojoumian. 2018. Privacy-preserving protocols for secure and reliable data

aggregation in IoT-enabled Smart Metering systems. Future Generation Computer
Systems 78 (2018), 547–557. https://doi.org/10.1016/j.future.2017.04.031

[72] Mathy Vanhoef and Frank Piessens. 2017. Key Reinstallation Attacks: Forcing

Nonce Reuse inWPA2. In Proceedings of the 2017 ACM SIGSAC, CCS 2017, Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1313–

1328.

A ADDITIONAL FIGURES
A.1 Software
Figure 7 details the encryption performance in the transciphering

scenario which happens on a microcontroller in software. In addi-

tion to the modes discussed in the main body, we implement the

MPC-friendly versions of the same modes CTR-HtMAC-MiMC-

128 and CTR-pPMAC-MiMC-128 [68] with the underlying cipher

MiMC-128 operating on a 128-bit prime field.

8 128 500

10
2

10
3

10
4

10
5

Message length in byte

A
v
e
r
a
g
e
c
y
c
l
e
s
p
e
r
m
e
s
s
a
g
e
b
y
t
e

CTR-HtMAC-MiMC-128 CTR-pPMAC-MiMC-128 Umbreon-ForkSkinny-64-192
Umbreon-ForkSkinny-128-256 Jolteon-ForkSkinny-64-192 Jolteon-ForkSkinny-128-256
Espeon-ForkSkinny-128-384 CTR-HtMAC-SKINNY-128-256 CTR-PMAC-SKINNY-128-256

Jolteon-AES Espeon-AES AES-GCM-128

AES-GCM-SIV-128

Figure 7: Software performance of Umbreon, Jolteon, Espeon,
CTR-HtMAC, CTR-(p)PMAC, AES-GCM and AES-GCM-SIV.
The dashed plot () denotes the same mode (denoted by a
straight line) but with a smaller primitive.

A.2 LAN Setting
In Fig. 8a we show the execution time and the amount of exchanged

data during the offline and online phase for the distributed decryp-

tion of messages of length 8, 128 and 500 bytes. In this scenario,

two parties are connected in a fast network (< 1 ms latency).

A.3 WAN Setting
Next, we examine the performance in a network with latency. Fig-

ure 8c visualizes offline and online phase execution time for a low

latency and higher latency network for a distributed decryption of

a 128-byte message. Since the amount of exchanged data does not

change, we do not report those values. In this setting, we want to

recall the importance of fully parallel decryption in an AEAD mode

(see Sect. 2). The performance of AEAD modes with fully parallel

decryption, like all Eevee family modes and CTR-HtMAC, degrades

at a lower rate than for modes that have multiple primitive calls in

series. In our benchmark CTR-PMAC which has two calls in series

has a higher performance degradation when compared with the

rest. The degradation is aggravated the more primitive calls a mode

performs in series.

A.4 More Players
Finally, Fig. 8b shows the decryption performance of a 128-byte

message among 2 to 5 players in a low latency network. We ob-

serve that the relation between the performance of the studied

15

https://doi.org/10.1109/IWASI.2019.8791393
https://doi.org/10.1109/Blockchain.2019.00063
https://doi.org/10.1109/Blockchain.2019.00063
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1145/2046660.2046682
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://thomaspeyrin.github.io/web/assets/docs/invited/CTCRYPT2018_slides.pdf
https://thomaspeyrin.github.io/web/assets/docs/invited/CTCRYPT2018_slides.pdf
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1016/j.future.2017.04.031

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

0

10

20

T
i
m
e
i
n
s

Offline time

0

1,000

2,000

C
o
m
m
.
D
a
t
a
i
n
M
B

Offline communication

0 100 200 300 400 500

0

0.1

0.2

0.3

Message length in byte

T
i
m
e
i
n
s

Online time

0 100 200 300 400 500

0

2

4

6

Message length in byte

C
o
m
m
.
D
a
t
a
i
n
M
B

Online communication

(a) Performance for decryption of 8, 128 and 500 byte long mes-
sages among two players with at most 1 ms latency and at least
950 Mbit/s connection.

0

20

40

60

T
i
m
e
i
n
s

Offline time

1,000

2,000

C
o
m
m
.
D
a
t
a
i
n
M
B

Offline communication

2 3 4 5

5 · 10−2

0.1

0.15

0.2

Players

T
i
m
e
i
n
s

Online time

2 3 4 5

2

4

6

Players

C
o
m
m
.
D
a
t
a
i
n
M
B

Online communication

(b) Performance of the decryption of 128 byte longmessages with
a connection with at most 1 ms latency and at least 950 Mbit/s of
bandwidth for a varying number of players.

10

20

T
i
m
e
i
n
s

Offline time

0 10 20 30 40

5 · 10−2

0.1

Network latency in ms

T
i
m
e
i
n
s

Online time

Umbreon-ForkSkinny-64-192
Umbreon-ForkSkinny-128-256
Jolteon-ForkSkinny-64-192
Jolteon-ForkSkinny-128-256
Espeon-ForkSkinny-128-384

CTR-HtMAC-SKINNY-128-256

CTR-PMAC-SKINNY-128-256

(c) Performance of the decryption of 128 byte long messages
among two players with a connection of at least 950 Mbit/s for
varying network latency.

Figure 8: Performance of Umbreon, Jolteon, Espeon, CTR-
HtMAC and CTR-PMAC in MASCOT. The dashed plot ()
denotes the same mode (denoted by a straight line) but
with a smaller primitive. We give wall-clock time and the
amount of data that is exchanged separately for the offline
and online phase of the protocol.

modes does not change much when the number of participating

parties is increased. All Eevee family members still outperform CTR-

PMAC while both instantiations of Jolteon still show superior (with

same security) or comparable (with double security) performance

to CTR-HtMAC. Note that due to the increased communication cost

when adding new parties in MASCOT, the performance difference

for Jolteon-ForkSkinny-64-192 compared to CTR-HtMAC-SKINNY-

128-256 improves further and becomes more evident. The fewer

multiplications and thus fewer partial openings during the online

phase clearly show in those scenarios. For similar reasons, the

online time performance of Espeon-ForkSkinny-128-384 degrades
with a growing number of parties due to the larger primitive.

16

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

B EEVEE AEAD MODES: PSEUDOCODE

1: function Pad(𝑛,𝑋)

2: pad← 1; res← |𝑋 |%𝑛
3: if res ≠ 0 then
4: pad← 0

5: 𝑋 ← 𝑋 ∥10𝑛−1−res
6: else
7: res← 𝑛

8: end if
9: return𝑋, pad, res
10: end function
11:

12: △ function fT (𝑡,𝐴, 𝐵)
13: △ return (𝐵∥𝐴) [0 . . . 𝑡 − 3]
14: △ end function
15:

16: function AD(𝐾,𝑁 ,𝐴,𝑇𝐴)

17: 𝐴, pad𝐴, res𝐴 ← Pad(𝑛,𝐴)
18: 𝐴

1
, . . . ,𝐴𝑎,𝐴

′∗
𝑛←− 𝐴

//𝐴′∗ = 𝐴∗ ∥10∗
19: for 𝑖 ← 1 to 𝑎 do
20: T ← 𝑁 ∥⟨𝑖 + 4⟩𝑑 ∥00

//𝑑 = 𝑡 − |𝑁 | − 2

21: 𝑇𝐴 ← FT,0
𝐾
(𝐴𝑖) ⊕𝑇𝐴

22: end for
23: T← 𝑁 ∥⟨2 · pad𝐴 + noM⟩𝑑 ∥00
24: 𝑇𝐴 ← FT,0

𝐾
(𝐴′∗) ⊕𝑇𝐴

25: return𝑇𝐴
26: end function
27:

28: function Enc(𝐾,𝑁 ,𝐴,𝑀)

29: if |𝑀 | = |𝐴| = 0 then
30: return ⊥
31: end if
32: noM← 1

33: if |𝑀 | ≠ 0 then
34: noM← 0

35: 𝑀, pad𝑀, res𝑀 ← Pad(𝑛,𝑀)
36: 𝑀

1
, . . . ,𝑀𝑚,𝑀

′∗
𝑛←− 𝑀

//𝑀′∗ =𝑀∗ ∥10∗
37: end if
38: 𝑇𝐴,Δ← 0

𝑛

39: if |𝐴| ≠ 0 then
40: 𝑇𝐴 ← AD(𝐾,𝑁 ,𝐴,𝑇𝐴)
41: end if
42: if |𝑀 | = 0 then
43: return𝑇𝐴
44: end if
45: ⊖𝐶

0
← 𝑇𝐴

46: △ if |𝑁 | > 𝑛 − 2 then
47: △ return ⊥
48: △𝐶

0
← 𝑁 ∥0𝑛−|𝑁 |

49: for 𝑖 ← 1 to𝑚 do
50: □ T← 𝑁 ∥⟨𝑖 + 1⟩𝑑+1 ∥1
51: □ Δ← Δ ⊕𝑇𝐴
52: □ (𝐶𝑖 ,𝑇𝐴) ← FT,b

𝐾
(𝑀𝑖 ⊕𝑇𝐴)

53: ⊖ T← 𝑁 ∥⟨𝑖 + 1⟩𝑑+1 ∥1
54: ⊖ Δ← Δ ⊕𝑀𝑖 ⊕𝐶𝑖−1
55: ⊖𝐶𝑖 ← FT,0

𝐾
(𝑀𝑖)

56: △ Δ← Δ ⊕𝑀𝑖
57: △ if 𝑖 = 1 then
58: △ T← 𝑁 ∥⟨4⟩𝑑 ∥00
59: △𝐶𝑖 ← FT,0

𝐾
(𝑇𝐴 ⊕𝑀𝑖)

60: △ else
61: △ T← fT (𝑡,𝐶𝑖−2,𝐶𝑖−1) ∥01
62: △𝐶𝑖 ← FT,0

𝐾
(𝑀𝑖)

63: △ end if
64: end for
65: □ T← 𝑁 ∥⟨pad𝑀 ⟩𝑑+1 ∥1
66: ⊖ T← 𝑁 ∥⟨pad𝑀 ⟩𝑑+1 ∥1
67: △ if𝑚 = 0 then
68: △ T← 𝑁 ∥⟨4⟩𝑑 ∥1∥pad𝑀
69: △ else

70: △ T ←
fT (𝑡,𝐶𝑚−1,𝐶𝑚) ∥1∥pad𝑀

71: □ Δ← Δ ⊕𝑇𝐴
72: ⊖ Δ← Δ ⊕𝐶𝑚
73: (𝑇𝑎𝑔,𝐶′∗) ← FT,b

𝐾
(𝑀′∗ ⊕ Δ)

74: 𝐶∗ ← (𝐶′∗ ⊕𝑀′∗) [0 . . . res𝑀 − 1]
75: return𝐶

1
, . . . ,𝐶𝑚,𝐶∗,𝑇𝑎𝑔

76: end function
77:

78: function Dec(𝐾,𝑁 ,𝐴,𝐶,𝑇𝑎𝑔)
79: if |𝐶 | = |𝐴| = 0 then
80: return ⊥
81: end if
82: noM← 1

83: if |𝐶 | ≠ 0 then
84: noM← 0

85: 𝐶, pad𝐶, res𝐶 ← Pad(𝑛,𝐶)
86: 𝐶

1
, . . . ,𝐶𝑚,𝐶

′∗
𝑛←− 𝐶

//𝐶′∗ =𝐶∗ ∥10∗
87: end if
88: 𝑇𝐴,Δ← 0

𝑛

89: if |𝐴| ≠ 0 then
90: 𝑇𝐴 ← AD(𝐾,𝑁 ,𝐴,𝑇𝐴)
91: end if
92: if |𝐶 | = 0 then
93: if 𝑇𝑎𝑔 = 𝑇𝐴 then
94: return ⊤
95: else
96: return ⊥
97: end if
98: end if
99: ⊖𝐶

0
← 𝑇𝐴

100: △ if |𝑁 | > 𝑛 − 2 then
101: △ return ⊥
102: △𝐶

0
← 𝑁 ∥0𝑛−|𝑁 |

103: for 𝑖 ← 1 to𝑚 do
104: □ T← 𝑁 ∥⟨𝑖 + 1⟩𝑑+1 ∥1
105: □ Δ← Δ ⊕𝑇𝐴
106: □ (𝑀𝑖 ,𝑇𝐴) ← F−1T,0,b𝐾 (𝐶𝑖) ⊕
(𝑇𝐴, 0𝑛)

107: ⊖ T← 𝑁 ∥⟨𝑖 + 1⟩𝑑+1 ∥1

108: ⊖𝑀𝑖 ← F−1T,0,i𝐾 (𝐶𝑖)
109: ⊖ Δ← Δ ⊕𝑀𝑖 ⊕𝐶𝑖−1
110: △ if 𝑖 = 1 then
111: △ T← 𝑁 ∥⟨4⟩𝑑 ∥00

112: △𝑀𝑖 ← F−1T,0,i𝐾 (𝐶𝑖) ⊕𝑇𝐴
113: △ else
114: △ T ←

fT (𝑡,𝐶𝑖−2,𝐶𝑖−1) ∥01
115: △𝑀𝑖 ← F−1T,0,i𝐾 (𝐶𝑖)
116: △ end if
117: △ Δ← Δ ⊕𝑀𝑖
118: end for
119: □ T← 𝑁 ∥⟨pad𝐶 ⟩𝑑+1 ∥1
120: ⊖ T← 𝑁 ∥⟨pad𝐶 ⟩𝑑+1 ∥1
121: △ if𝑚 = 0 then
122: △ T← 𝑁 ∥⟨4⟩𝑑 ∥1∥pad𝐶
123: △ else
124: △ T ←

fT (𝑡,𝐶𝑚−1,𝐶𝑚) ∥1∥pad𝐶
125: □ Δ← Δ ⊕𝑇𝐴
126: ⊖ Δ← Δ ⊕𝐶𝑚
127: (𝑀′∗,𝐶′∗) ← F−1T,0,b𝐾 (𝑇𝑎𝑔) ⊕
(Δ, 0𝑛)

128: if (𝑀′∗ ⊕ 𝐶′∗) [0 . . . res𝐶 − 1] =
𝐶∗ and𝑀′∗ [res𝐶 . . .𝑛 − 1] =

10
𝑛−1−res𝐶 then

129: 𝑀∗ ←𝑀′∗ [0 . . . res𝐶 − 1]
130: return𝑀

1
, . . . ,𝑀𝑚,𝑀∗

131: else
132: return ⊥
133: end if
134: end function

Figure 9: The Eevee family of AEAD modes. Red (denoted
by □), blue (denoted by ⊖) and green (denoted by △) lines
represent pseudocode subparts specific to Umbreon, Jolteon
and Espeon, respectively, whereas black lines are common
among all the modes.

C BOUNDING Pr[U] TERMS

Block Notation. In the following analysis, we use (unless defined)

superscript and subscripts to denote the query number and the

primitive call number for that variable/parameter. To exemplify,

𝑀𝑖
𝑗
represents 𝑗𝑡ℎ message block input in 𝑖𝑡ℎ encryption query.

A) Bounding Pr

[
UΠ′,A

𝑖,3.2.1

]
. Note that Pr

[
UΠ′,A

𝑖,3.2.1

]
is equal to the

product of two probabilities - 1. probability of 𝑖𝑡ℎ encryption query

of A (to Π′) satisfying Case 3.2.1 and 2. probability of oprpf-

adversary A distinguishing the 𝑖𝑡ℎ encryption query output from

being real or ideal, therefore, we have

Pr

[
UΠ′,A
𝑖,3.2.1

]
≤ Pr[𝑖𝑡ℎ encryption query of A to Π′

satisfies Case 3.2.1]

= Pr[For given Π′,A and 1 ≤ 𝑖 ≤ 𝑞𝑒 with |𝐴𝑖 | ≠ 0 ≠

|𝐶𝑖 |, ∃ 1 ≤ 𝑖′ < 𝑖 s.t. (X𝑖
1
, T𝑖

1
) = (X𝑖 ′

1
, T𝑖

′
1
) and

∀ 1 ≤ 𝑟 < 𝑖, 𝐴𝑖 ≠ 𝐴𝑟] .

Now, let us consider that the adversaryA repeats the nonce𝑁 ∈ N
for `𝑁 many times over 𝑞𝑒 encryption queries to Π′. We note that

with Π′, 𝑇 𝑖
𝐴
is generated as xor of random tweakable permuta-

tions’ outputs with any tweak repeating over first 𝑖 queries at

mostmax𝑁 ∈N{`𝑁 } many times. Hence for ` = max𝑁 ∈N{`𝑁 }, we
know that for any 𝑖′ < 𝑖 , the probability of (X𝑖

1
, T𝑖

1
) = (X𝑖′

1
, T𝑖
′
1
), i.e.,

(𝑇 𝑖
𝐴
, 𝑁 𝑖) = (𝑇 𝑖′

𝐴
⊕𝑀𝑖′

1
⊕𝑀𝑖

1
, 𝑁 𝑖′) is at most 1/(2𝑛 − (` − 1)) and we

have

Pr

[
UΠ′,A
𝑖,3.2.1

]
<

` − 1

2
𝑛 − `

. (6)

B) Bounding Pr

[
UΠ′,A

𝑖,2

]
. Similarly defined asUΠ′,A

𝑖,3.2.1
above (as

product of two probabilities and thus bounded by the second prob-

ability), we get

Pr

[
UΠ′,A
𝑖,2

]
≤ Pr[For given Π′,A distinguishes its 𝑖𝑡ℎ

query output𝑇 𝑖𝐴 (queried with only AD)

from 𝑛-bit uniform random string] .

Note thatA here is trivially assumed tomake non-duplicate queries

and thus we can say that

Pr

[
UΠ′,A
𝑖,2

]
≤ 1

2

∑︁
𝑦∈{0,1}𝑛

��� Pr [𝑇 𝑖𝐴 = 𝑦 | 𝑇 𝑖𝐴 ← Π′ .𝐸𝑛𝑐 (

𝑁 𝑖 , 𝐴𝑖 , 𝑀𝑖 = Y)
]
− Pr

[
𝑇 𝑖𝐴 = 𝑦 | 𝑇 𝑖𝐴 ←$ {0, 1}𝑛

] ���
≤ 1

2

∑︁
𝑦∈{0,1}𝑛

��� Pr [𝑇 𝑖𝐴 = 𝑦 | 𝑇 𝑖𝐴 ← Π′ .𝐸𝑛𝑐 (𝑁 𝑖 , 𝐴𝑖 ∈

{0, 1}𝑛, 𝑀𝑖 = Y)
]
− Pr

[
𝑇 𝑖𝐴 = 𝑦 | 𝑇 𝑖𝐴 ← 𝑓𝑁 𝑖 (𝐴𝑖 ∈

{0, 1}𝑛), 𝑓𝑁 𝑖 ←$ Func(𝑛,𝑛)
] ���

=
1

2

∑︁
𝑦∈{0,1}𝑛

��� Pr [𝜋𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝜋𝑁 𝑖 ←$ Perm(𝑛)
]

− Pr

[
𝑓𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝑓𝑁 𝑖 ←$ Func(𝑛,𝑛)

] ���
= SD(𝜋𝑁 𝑖 (𝑋 𝑖), 𝑓𝑁 𝑖 (𝑋 𝑖))

17

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

with 𝜋𝑁 𝑖 ←$ Perm(𝑛) and 𝑓𝑁 𝑖 ←$ Func(𝑛, 𝑛) where 𝑋 𝑖
rep-

resents the 𝑖𝑡ℎ 𝑛-bit block in the set of arbitrary and ordered 𝑛-

bit block queries to 𝜋 (resp. 𝑓) X𝑖 = {𝑋 1, 𝑋 2, . . . , 𝑋 𝑖 } such that

𝑋𝑎 ≠ 𝑋𝑏 ∀ 𝑎 ≠ 𝑏. In other words, X𝑖 contains no duplicate queries.

Here the first inequality holds because this desired Pr[U] is upper
bounded by the statistical distance between the uniform distribu-

tion and the distribution of𝑇 𝑖
𝐴
. The second inequality holds because

Π′ .𝐸𝑛𝑐 (𝑁 𝑖 , 𝐴𝑖 , 𝑀𝑖 = Y) is defined as a sum of independent random

permutations for Π ∈ {Umbreon, Jolteon, Espeon} (independence
is ensured by tweak domain separation) and due to this indepen-

dence, the probability of this sum of random permutations’ outputs

being equal to a given value cannot be higher than the probability

of any of the individual random permutation’s output being equal

to the same. The first equality holds since querying single block

AD 𝐴𝑖 with nonce 𝑁 𝑖
to Π′ is by definition equivalent to querying

a random tweakable permutation 𝜋𝑁 𝑖 with block 𝑋 𝑖 = 𝐴𝑖 .

Let us denote by Y𝑖 the set {(𝑁 1, 𝜋𝑁 1 (𝑋 1)), (𝑁 2,

𝜋𝑁 2 (𝑋 2)), . . . , (𝑁 𝑖 , 𝜋𝑁 𝑖 (𝑋 𝑖))} and let Y𝑖 ⊆ Y𝑖 be defined as

{𝑌 ∈ {0, 1}𝑛 | (𝑁,𝑌) ∈ Y𝑖 and 𝑁 = 𝑁 𝑖 }. In simple words, Y𝑖

represents the set of all previous query outputs for 𝜋 that share

the same nonce 𝑁 𝑖
in tweak as targeted (𝑖𝑡ℎ) query. Clearly,

|Y𝑖 | ≤ `−1. With this notation, we have for some 𝜋𝑁 𝑖 ←$ Perm(𝑛)
and 𝑓𝑁 𝑖 ←$ Func(𝑛, 𝑛),

Pr

[
UΠ′,A
𝑖,2

]
≤ SD(𝜋𝑁 𝑖 (𝑋 𝑖), 𝑓𝑁 𝑖 (𝑋 𝑖))

=
1

2

∑︁
𝑦∈{0,1}𝑛\Y𝑖

��� Pr [𝜋𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝜋𝑁 𝑖 ←$ Perm(𝑛)
]

− Pr

[
𝑓𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝑓𝑁 𝑖 ←$ Func(𝑛,𝑛)

] ���
+ 1

2

∑︁
𝑦∈Y𝑖

��� Pr [𝜋𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝜋𝑁 𝑖 ←$ Perm(𝑛)
]

− Pr

[
𝑓𝑁 𝑖 (𝑋 𝑖) = 𝑦 | 𝑓𝑁 𝑖 ←$ Func(𝑛,𝑛)

] ���
=

1

2

∑︁
𝑦∈{0,1}𝑛\Y𝑖

����� 1

2
𝑛 − |Y𝑖 |

− 1

2
𝑛

����� + 1

2

∑︁
𝑦∈Y𝑖

����0 − 1

2
𝑛

����
=
|Y𝑖 |
2
𝑛
≤ (` − 1)

2
𝑛

. (7)

The second last equality here is true as for any value of 𝑖 , the

random permutation 𝜋𝑁 𝑖 (when fed with a distinct input) returns

an arbitrary string 𝑦 ∈ {0, 1}𝑛 as output with probability 0 if 𝑦 ∈ Y𝑖
and with random probability of 1/(2𝑛 − |Y𝑖 |), otherwise. On the

other hand, the probability of a random function returning an

arbitrary string 𝑦 ∈ {0, 1}𝑛 as output is 1/2𝑛 as all outputs there

are uniformly distributed for distinct queries.

C) Bounding Pr

[
UΠ′,A

𝑖,1

]
. Note that under this event, A makes

its 𝑖𝑡ℎ query with no AD (hence 𝑇𝐴 is set to 0).

C.1) When Π′ = Jolteon′ and A = A𝑛𝑟 is nonce-respecting:
Since A𝑛𝑟 is nonce-respecting, every encryption query is deter-

mined to have unique nonce. Further, since Jolteon uses the nonce

concatenated with a block counter as the tweak, we have different

tweak for each block call throughout the queries and hence all

the output blocks (as they are outputs of the tweakable random

permutation 𝜋0) for all queries (including the 𝑖𝑡ℎ) are independent,

random and uniformly distributed and so are indistinguishable from

uniform random strings. Or

Pr

[
UJolteon′,A𝑛𝑟
𝑖,1

]
= 0 . (8)

C.2) When Π′ ∈ {Umbreon′, Espeon′} and A = A𝑛𝑚 is nonce-

misusing:We recall the notation thatA𝑛𝑚 can use a nonce 𝑁 ∈ N
over 𝑞𝑒 queries for `𝑁 ≤ ` many times, hence the 𝑖𝑡ℎ query nonce

𝑁𝑖 can be used before the 𝑖𝑡ℎ query for at most ` − 1 many times.

Observation 1. Since the 𝑖𝑡ℎ query of A𝑛𝑚 has |𝑀𝑖 | ≠ 0, any of

its first 𝑖 − 1 queries, let say 𝑖′𝑡ℎ with 1 ≤ 𝑖′ < 𝑖 , that contains no
message part does not help it in distinguishing the 𝑖𝑡ℎ query output

from being real or ideal. This is true thanks to the noM parameter

which ensures distinct tweaks in the final 𝜋 calls processing AD in

the queries 𝑖 and 𝑖′ and this by definition implies that the output

distribution of any 𝑖′𝑡ℎ query (i.e.,𝑇 𝑖
′

𝐴
s) is independent to the output

distribution of 𝑖𝑡ℎ query.

Observation 2. Further, we recall that the freedom of choosing

non-empty AD for encryption queries to Π′ can only help A𝑛𝑚

if the first primitive call that corresponds to the first ciphertext

block of 𝑖𝑡ℎ encryption query contain a non-prefixed input-tweak

pair (X1, T1) that collides with one of the old/previously queried

(X1, T1) pairs.

Observation 3. Let us consider for a moment that A𝑛𝑚 makes its

first 𝑖 queries with no AD. Now, as per the oprpf security definition,

we have that to successfully distinguish the 𝑖𝑡ℎ output of Π′ from
a corresponding ideal ORP+RF output, the oprpf-adversary A𝑛𝑚

has to distinguish the non-prefixed part of this output from the

corresponding non-prefixed part of the ideal ORP+RF output. More

cocnretely, if 𝑝𝑖 represents the number of prefixed output blocks

𝐶𝑖
𝑗
s (i.e., 𝐶𝑖

1
, . . . ,𝐶𝑖𝑝𝑖) in the 𝑖𝑡ℎ query of A𝑛𝑚 to Π′ then in order

to successfully win the distinguishing game, A𝑛𝑚 must be able to

distinguish either the (𝑝𝑖 + 1)𝑡ℎ block output 𝐶𝑖
𝑝𝑖+1 of Π

′
from an

output of a random permutation 𝜋𝑁 𝑖 ,𝑀𝑖
1
,...,𝑀𝑖

𝑝𝑖

←$ Perm(𝑛) or the
rest output blocks corresponding to the 𝑖𝑡ℎ query to Π′ from equal

length uniform random strings.

Let us now consider a new oprpf-adversary A★
against Π′

who makes similar queries as A𝑛𝑚 but ensures that all of

its first 𝑖 queries contain non-zero message lengths and no

AD. Hence, for an event VΠ′,A𝑛𝑚
𝑖

defined as VΠ′,A𝑛𝑚
𝑖

=

{For given Π′,A𝑛𝑚 and 1 ≤ 𝑖 ≤ 𝑞𝑒 , ∃ 1 ≤ 𝑖′ <

𝑖 such that (X𝑖′
1
, T𝑖
′
1
) = (X𝑖

1
, T𝑖

1
) and 𝐴𝑖′ ≠ 𝐴𝑖 = Y} and Π′ ∈

{Umbreon′, Espeon′} we can say that

Pr

[
UΠ′,A𝑛𝑚
𝑖,1

]
≤ Pr

[
UΠ′,A𝑛𝑚
𝑖,1

| ¬VΠ′,A𝑛𝑚
𝑖

]
+ Pr

[
VΠ′,A𝑛𝑚
𝑖

]
≤ Pr

[
UΠ′,A★

𝑖,1

]
+ Pr

[
VΠ′,A𝑛𝑚
𝑖

]
≤ Pr

[
UΠ′,A★

𝑖,1

]
+ ` − 1

2
𝑛 − `

(9)

where the last inequality holds with an analogous explanation

as Exp. 6 but this time considering probability distribution of 𝑇 𝑖
′

𝐴

instead of 𝑇 𝑖
𝐴
.

C.2.1) When Π′ = Umbreon′: At this step, we define and denote

a mode Π′ by Π′′ that has (𝜋0, 𝜋1); the two families of random

permutations in the 𝑖𝑡ℎ query further replaced for all except the

18

Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud Secure Computation

first 𝑝𝑖 (𝜋0, 𝜋1) calls and the (𝑝𝑖 + 1)𝑡ℎ 𝜋0 call of 𝑖𝑡ℎ query by fam-

ilies of random functions 𝑓0 and 𝑓1 with the same signature, i.e.,

𝑓𝑏 = 𝑓T,𝑏 ←$ Func(𝑛))T∈{0,1}𝑡 where 𝑝𝑖 ≥ 0 represents the number

of prefixed output blocks 𝐶𝑖
𝑗
s (i.e., 𝐶𝑖

1
, . . . ,𝐶𝑖𝑝𝑖) in the 𝑖𝑡ℎ query of

A∗ to Π′. We note that for Π′ = Umbreon′, Pr
[
UΠ′′,A★

𝑖,1

]
= 0 as

Π′′ behaves no different than the corresponding ideal ORP+RF

oracle for A★
. Further, we note that in Umbreon′ each query

contains different tweaks for its each (𝜋0, 𝜋1) call (thanks to the

block counter) which means all these calls in a query are inde-

pendent from each other and hence using the standard statisti-

cal distance bounding with slight abuse of notations denoting

𝜋𝑁 𝑖 ∥ ⟨ 𝑗 ⟩𝑑+1 ∥1,𝑏 and 𝑓𝑁 𝑖 ∥ ⟨ 𝑗 ⟩𝑑+1 ∥1,𝑏 by 𝜋
𝑗,𝑏

𝑁 𝑖
and 𝑓

𝑗,𝑏

𝑁 𝑖
, respectively, we

get for Π′ = Umbreon′ that

Pr

[
UΠ′,A★

𝑖,1

]
≤ Pr

[
UΠ′′,A★

𝑖,1

]
+

ℓ𝑖∑︁
ℎ=𝑝𝑖+1

Pr

[
∃ 1 ≤ 𝑖′ < 𝑖

s.t. 𝑋 𝑖ℎ = 𝑋 𝑖
′

ℎ and 𝑁 𝑖 = 𝑁 𝑖 ′
]
+∑︁

𝑏∈{0,1}

{ ℓ𝑖 −1∑︁
ℎ=𝑝𝑖+1

SD
(
𝜋
ℎ+1,𝑏
𝑁 𝑖 (𝑋 𝑖ℎ), 𝑓

ℎ+1,𝑏
𝑁 𝑖 (𝑋 𝑖ℎ)

)
+

max

𝑗 ∈{0,1}

{
SD

(
𝜋
𝑗,𝑏

𝑁 𝑖 (𝑋 𝑖ℓ𝑖), 𝑓
𝑗,𝑏

𝑁 𝑖 (𝑋 𝑖ℓ𝑖)
)}}

≤ ℓ𝑖 (` − 1)
2
𝑛

+ 2 ·
ℓ𝑖∑︁
ℎ=1

SD(𝜋𝑁 𝑖 (𝑋 𝑖), 𝑓𝑁 𝑖 (𝑋 𝑖))

for some 𝜋𝑁 𝑖 ←$ Perm(𝑛) and 𝑓𝑁 𝑖 ←$ Func(𝑛,𝑛)

≤ 3ℓ𝑖 (` − 1)
2
𝑛

(10)

where𝑋 𝑖
ℎ
represents the value which is fed to the ℎ𝑡ℎ primitive call

(i.e., 𝑓𝑁 𝑖 ∥ ⟨ 𝑗 ⟩𝑑+1 ∥1,𝑏 where for 1 ≤ ℎ < ℓ𝑖 , 𝑗 = ℎ + 1 and for ℎ = ℓ𝑖 ,

𝑗 = 0 or 1 as per the message padding) as input block in order to

process the 𝑖𝑡ℎ queried message𝑀𝑖
of A★

with Π′′. Here the term
ℓ𝑖 represents the total number of primitive calls that are required

to process 𝑀𝑖
. In other words, ℓ𝑖 = ⌈|𝑀𝑖 |/𝑛⌉ ≥ 0. The second last

inequality holds because the statistical distance between the dis-

tributions of 𝜋𝑁 𝑖 ∥ ⟨ 𝑗 ⟩𝑑+1 ∥1,𝑏 (𝑋
𝑖), i.e., random permutation outputs

and 𝑓𝑁 𝑖 ∥ ⟨ 𝑗 ⟩𝑑+1 ∥1,𝑏 (𝑋
𝑖), i.e., random function outputs for arbitrary

distinct inputs 𝑋 𝑖
s does not depend on the resampling/reindexing

of either of these functions. In other words, the distance between

these two distribution under the same set of𝑋 𝑖
s will be equal for all

values of indices (𝑗, 𝑏). Further, the term representing (𝑋 𝑖
ℎ
, 𝑁 𝑖) col-

lision with any prior (𝑋 𝑖′

ℎ
, 𝑁 𝑖′) is upper bounded here by (`−1)/2𝑛

as the 𝑁 𝑖
can repeat at most ` − 1 times in the first 𝑖 − 1 queries and

among those queries 𝑋 𝑖
ℎ
(which is either unique or is defined by an

XOR with a random function output) has collision probability of

at most 1/2𝑛 for each value of 𝑋 𝑖′

ℎ
. Finally, the last inequality here

follows from Exp. 7.

C.2.2) When Π′ = Espeon′: Let us denote by 𝑝𝑖,𝑖′ , the term

llcp𝑛 (𝑁 𝑖 ∥0𝑛−a , 𝑁 𝑖′ ∥0𝑛−a) · llcp𝑛 (𝑀𝑖 , 𝑀𝑖′) where a is the nonce

size. In simple words, this term represents the prefixed output

blocks in the 𝑖𝑡ℎ query response when only compared with the 𝑖′𝑡ℎ

query-response pair. Clearly then 𝑝𝑖 which is previously defined as

the number of prefixed output blocks in the 𝑖𝑡ℎ query response of

A★
to Π′, can now be defined as 𝑝𝑖 = max1≤𝑖′<𝑖 {𝑝𝑖,𝑖′ }.

Let us assume fo a moment that in Espeon′ all tweaks T𝑖
𝑗
s in

the 𝑖𝑡ℎ query for 1 ≤ 𝑗 ≤ ℓ𝑖 are unique when compared with

all tweaks T𝑖
′
𝑗 ′ among the first 𝑖 queries with (𝑗 ≠ 𝑗 ′) ∨ (𝑗 ≥

𝑝𝑖,𝑖′ + 2). Clearly then we know that the output of the 𝑖𝑡ℎ query

will have a form of prefixed blocks followed by an 𝑛-bit random

permutation block followed by a uniform random string of the

remaining length. Note that this output is statistically no differ-

ent than the corresponding ideal OPRP+RF output and hence the

distinguishing advantage of A★
will be zero under this event.

More concretely, for Π′ = Espeon′ and event 𝐸
𝑖′, 𝑗 ′

𝑖, 𝑗
defined as

{for given (𝑖, 𝑗) and (𝑖′, 𝑗 ′) we have ((𝑗 ≠ 𝑗 ′) ∨ (𝑗 ≥ 𝑝𝑖,𝑖′ + 2)) ∧
(T𝑖

𝑗
= T𝑖

′
𝑗 ′)} we can say that

Pr

[
UΠ′,A★

𝑖,1

]
≤ Pr

[
∨

(𝑖′ , 𝑗 ′)< (𝑖,𝑗)
1≤ 𝑗≤ℓ𝑖

𝐸
𝑖 ′, 𝑗 ′

𝑖,𝑗

]

≤
ℓ𝑖∑︁
𝑗=1

∑︁
(𝑖 ′ 𝑗 ′)< (𝑖,𝑗)

Pr

[
𝐸
𝑖 ′, 𝑗 ′

𝑖,𝑗
| ∧
(𝑖 ′′, 𝑗 ′′)< (𝑖 ′, 𝑗 ′)

¬𝐸𝑖
′′, 𝑗 ′′

𝑖,𝑗
∧

(𝑖′′ , 𝑗 ′′)< (𝑖,𝑗∗)
1≤ 𝑗∗≤ 𝑗−1

¬𝐸𝑖
′′, 𝑗 ′′

𝑖,𝑗∗

]
. (11)

Wenote the following trivial observations – 1.Whenmin{ 𝑗, 𝑗 ′} = 1:

Pr[𝐸𝑖
′, 𝑗 ′

𝑖, 𝑗
] = 0 for all values of (𝑖′, 𝑗 ′) < (𝑖, 𝑗), due to the domain

separation bits. 2. When 𝑗 = 𝑗 ′ = 2: Pr[𝐸𝑖
′, 𝑗 ′

𝑖, 𝑗
] for any 1 ≤ 𝑖′ < 𝑖 is

equal to 0 when 𝑡 = 2𝑛 and is at most 2
2/(2𝑛 − 𝐿𝑖) when 𝑡 = 𝑛 bits

where 𝐿𝑖 =
∑𝑖
𝑎=1 ℓ𝑎 denotes the total number of block/primitive

calls made by A★
in its first 𝑖 queries to Π′. 3. When min{ 𝑗, 𝑗 ′} ≥

2 < max{ 𝑗, 𝑗 ′}: In Exp. 11, each probability term for 𝐸
𝑖′, 𝑗 ′

𝑖, 𝑗
is condi-

tioned on negations of all previous 𝐸
𝑖′′, 𝑗 ′′

𝑖, 𝑗
s with (𝑖′′, 𝑗 ′′) < (𝑖′, 𝑗 ′)

and 𝐸
𝑖′′, 𝑗 ′′

𝑖, 𝑗∗ s with (𝑖′′, 𝑗 ′′) < (𝑖, 𝑗∗) for all 1 ≤ 𝑗∗ ≤ 𝑗 − 1, which

implies for the same that the sampling of corresponding output

ciphertext block 𝐶𝑖
𝑗−1 is independent of 𝐶

𝑖
𝑗−2,𝐶

𝑖′
𝑗 ′−1 and 𝐶

𝑖′
𝑗 ′−2 and

at least one of the pairs (𝐶𝑖
𝑗−2,𝐶

𝑖
𝑗−1) and (𝐶

𝑖′
𝑗 ′−2,𝐶

𝑖′
𝑗 ′−1) is gener-

ated as the outputs of random permutation/s. This implies that the

probability of fT (𝑡,𝐶𝑖𝑗−2,𝐶
𝑖
𝑗−1) = fT (𝑡,𝐶𝑖

′
𝑗 ′−2,𝐶

𝑖′
𝑗 ′−1) (and hence the

conditioned event) is at most 2
2𝑛−(𝑡−2)/(2𝑛−𝐿𝑖)2 where 𝑡 ∈ {𝑛, 2𝑛}.

Since these hold for all indexes 𝑖, 𝑖′, 𝑗 and 𝑗 ′, we can write Exp. 11

for 𝑡 ∈ {𝑛, 2𝑛} as

Pr

[
UΠ′,A★

𝑖,1

]
≤

ℓ𝑖∑︁
𝑗=1

∑︁
(𝑖 ′ 𝑗 ′)< (𝑖,𝑗)

2
2𝑛−(𝑡−2)

(2𝑛 − 𝐿𝑖)2

≤
ℓ𝑖∑︁
𝑗=1

∑︁
(𝑖 ′ 𝑗 ′)< (𝑖,𝑗)

1

2
𝑡−4 ; assuming 𝐿𝑖 ≤ 2

𝑛−1

=

ℓ𝑖∑︁
𝑗=1

𝐿𝑖 − ℓ𝑖 + (𝑗 − 1)
2
𝑡−4 =

(𝐿𝑖 − ℓ𝑖 + (ℓ𝑖 − 1)/2)ℓ𝑖
2
𝑡−4 . (12)

D OAE SECURITY DEFINITION

OAE Confidentiality. Let us first denote B𝑛 = {0, 1}𝑛 and define

B∗𝑛 = {Y} ∪⋃∞
𝑖=1 B

𝑖
𝑛 with Y denoting the empty string. An online

permutation can now be defined as a length preserving permu-

tation 𝜋 : B∗𝑛 → B∗𝑛 that also preserves the length of blockwise

prefix. More concretely, for any non-negative integer𝑚, the func-

tion 𝜋 , applied to𝑚𝑛-bit inputs acts as a permutation. Moreover,

for any pair of values𝑀 and𝑀′ ∈ B∗𝑛 , the length of their longest

common prefix remains same even after applying 𝜋 to them i.e.

llcp𝑛 (𝑀,𝑀′) = llcp𝑛 (𝜋 (𝑀), 𝜋 (𝑀′)). Let us denote the set of all

19

Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel

such permutations by OPerm(𝑛). Note that OPerm(𝑛) is a count-
ably infinite set, therefore, uniform sampling of an online permuta-

tion is not defined on it. We stick to the well-defined lazy sampling

of random online permutations from OPerm(𝑛) as defined and used
in [5] and denote this by 𝜋 ←$ OPerm(𝑛).

The OAE confidentiality of an AEAD scheme Π can now be

defined using two games, oprpf-realΠ and oprpf-idealΠ . In both

games A can make arbitrary chosen plaintext queries (even with

nonce repetitions) to a black box encryption oracle.

In the oprpf-realΠ game, the encryption oracle implements

the actual encryption algorithm of Π using a random secret

key. On the other hand, in the oprpf-idealΠ game, when pre-

sented with an encryption query 𝑁,𝐴,𝑀 , the oracle responds with

𝜋𝑁,𝐴 (𝑀𝐿)∥ 𝑓𝑁,𝐴,𝑀 , where𝑀𝐿 is derived from𝑀 as its longest 𝑛-bit

(block) aligned prefix, 𝜋𝑁,𝐴 ←$ OPerm(𝑛) is a randomly selected

online permutation for each 𝑁,𝐴 ∈ N × AD and 𝑓𝑁,𝐴,𝑀 ←$

{0, 1}𝑛+(|𝑀 | mod 𝑛)
is a random string of length 𝑛 + |𝑀 | − |𝑀𝐿 | bits

(with |𝑀 |−|𝑀𝐿 | bits corresponding to the last incomplete block of𝑀

and𝑛 bits reserved for the tag) for each𝑁,𝐴,𝑀 ∈ N×AD×M. The

oprpf advantage of an adversaryA against Π can now be precisely

defined as: AdvoprpfΠ (A) = Pr[Aoprpf-realΠ] − Pr[Aoprpf-idealΠ] .

OAE Authenticity. OAE authenticity of a nonce-based AE scheme

Π is defined by the unforgeability of a nonce-misusing adversary

A against it under chosen ciphertext attacks. It is modeled through

the security game auth where adversary is given a black-box ac-

cess to the encryption and decryption oracles of Π. This means

A can freely make arbitrary chosen plaintext queries, even al-

lowing for nonce repetitions, to the encryption oracle. Further-

more, A can also issue arbitrary chosen ciphertext queries to

the decryption/verification oracle with the goal of finding a valid

forgery i.e. a ciphertext-tag pair that successfully decrypts and is

not trivially known from the encryption queries. The advantage

of A in breaking the OAE authenticity of Π is then defined as

AdvauthΠ (A) = Pr[AauthΠ
forges] .

20

	Abstract
	1 Introduction
	1.1 Approach
	1.2 Desirable Properties
	1.3 Contributions
	1.4 Related Work
	1.5 Outline

	2 Notation and Preliminaries
	3 The Eevee Family and its OAE Security
	4 Design Rationale
	5 Discussion
	6 Performance
	6.1 Comparison of Eevee and AES-GCM(-SIV)
	6.2 Comparison of Eevee in Lightweight Settings
	6.3 Eevee in the MPC-friendly setting

	7 Security Analysis
	8 Conclusion
	Acknowledgments
	References
	A Additional Figures
	A.1 Software
	A.2 LAN Setting
	A.3 WAN Setting
	A.4 More Players

	B Eevee AEAD Modes: Pseudocode
	C Bounding Pr[U] Terms
	D OAE Security Definition

