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Abstract
Bitcoin has a low throughput of around 7 transactions per second. The

Lightning Network (LN) is a solution meant to improve that throughput
while also improving privacy. LN is a Payment Channel Network (PCN)
that runs as a peer-to-peer network on top of Bitcoin and improves scalabil-
ity by keeping most transactions off-chain without sacrificing the trustless
character of Bitcoin. Prior work showed that LN is susceptible to the
Balance Discovery Attack that allows for individual channel balances to be
revealed, threatening users’ privacy. In this work we introduce Payment
Splitting and Switching (PSS), a way of splitting up payments in LN at
intermediary hops along the payment path. PSS drastically reduces the
information an attacker can obtain through a BDA. Using real-world data
in an LN simulator we demonstrate that the information gain for the
attacker drops up to 62% when PSS is deployed. Apart from its potential
as mitigation against BDA, PSS also shows promise for increased LN
throughput and as a mitigation against jamming attacks.

1 Introduction
Bitcoin (Nakamoto, 2008) has a scalability problem that limits the amount of
transactions to seven per second. This throughput is constrained by Bitcoin’s
blocksize of 1 MB. Increasing the block size or the rate at which blocks are
generated deteriorates the security of the Bitcoin network (Sompolinsky and
Zohar, 2015). Layer-two (L2) protocols (Gudgeon et al., 2020) aim to address
the issue of scalability without changing the inherent characteristic of Bitcoin’s
low throughput. The most noticeable L2 protocol to date is Lightning Network
(LN) (Poon and Dryja, 2016). LN is a p2p network of nodes that maintain
payment channels with their peers. In LN, transactions are sent over these
payment channels, resulting in off-chain transfer of value. These transfers are
possible between untrusted parties along the payment route, as the underlying
contracts are enforceable via broadcast to the Bitcoin blockchain. A Payment
Channel Network (PCN) allows for multi-hop payments between nodes that do
not share a channel.

Bitcoin’s privacy issues are well documented (Androulaki et al., 2013; Meiklejohn
et al., 2013). Because LN keeps the vast majority of transactions off-chain, it is
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also seen as a privacy-enhancing solution. Recent literature, however, introduced
new attacks on privacy that target LN specifcally (Béres et al., 2020; Kappos et
al., 2020; Romiti et al., 2020). One of these attacks is the Balance Discovery
Attack (BDA) (Herrera-Joancomartí et al., 2019; Tikhomirov et al., 2020; van
Dam et al., 2020). The BDA reveals the individual balances of a channel by
using defective payments to probe for channel balances.

Approximate differential privacy (Chan et al., 2011) has been proposed (van
Dam and Abdul Kadir, 2022) as a way to mitigate BDA’s, but that technique
has limited effect on mitigating BDA when it comes to detecting larger trends in
the flow of funds through LN and also requires locking up a considerable amount
of capital. In this paper we offer a second type of mitigation that suffers from
neither.

Our contributions We suggest a way of splitting up en route payments in LN
at intermediary hops along the payment path, that is compatible with LN today.
We coin the term Payment Splitting and Switching (PSS) for this technique
and show that this concept is feasible with a plugin for Core Lightning12. We
evaluate the impact of PSS on the information gain through Balance Discovery
Attacks (BDA’s) in a network simulation based on a real-world network snapshot.
We show a reduction in information gain for direct probing of single channel
hops of 50% and 62% for remote probing. PSS also demands a more involved
BDA algorithm that has an increased time complexity (O(nc)) making a BDA
at network-wide scale intractible with off-the-shelve hardware.

2 Background
2.1 Lightning Network
LN enables trustless, off-chain Bitcoin payments. This means that individual
transactions are not be broadcasted to the blockchain. Participants operate an
LN node identifiable through by a public key, the node id. The LN nodes form a
a peer-to-peer (P2P) network. Apart from communicating with its peers, an LN
node also communicates with a Bitcoin node either to broadcast transactions or
to retrieve information on broadcasted transactions.

An LN node starts by connecting to one or more peers. This allows it to then
initiate the opening of a channel between it and a peer. The two peers open a
channel by locking bitcoins in a 2-of-2 multi-signature contract. The locked coins
reflect the opening balance of the channel. This transaction is called the funding
transaction. The total amount of locked coins locked represent the channel’s
capacity, the maximum value that can be transferred. After a set number of
confirmations on the blockchain, the channel is considered open.

With an open channel between them, two peers can now transact with each
other. With every transaction the balance of the channel is updated to reflect
the latest state of the channel. A state is specified in a commitment transaction.
This is a normal Bitcoin transaction that has the funding transaction as its
input and devides the coins according to the latest balance. During normal

1The code for this plugin is available at https://github.com/gijswijs/plugins/tree/master/pss
2A screencast showing the plugin in action is available at https://asciinema.org/a/520416

https://github.com/gijswijs/plugins/tree/master/pss
https://asciinema.org/a/520416
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operation of the channel, the commitment transaction will not be broadcasted
to the blockchain. Only when one or both peers decide to close the channel, the
final state is broadcasted.

The outputs of the commitment transaction representing the balance of the
payment channel are called hash time-locked contracts (HTLCs). One peer can
spent the HTLC by providing the pre-image of a given hash while the other peer
can spent the HTLC after a timeout. Imagine a scenario where Alice wants to
buy a widget from Bob for an agreed price of x. Bob creates the pre-image r,
which is a random number. The hash of the pre-image, the payment hash H(r)
is sent to Alice in a message called an invoice. Alice can now set up the payment
using an HTLC. She offers an HTLC contingent on H(r) for the correct amount
x to Bob, spendable for him with the pre-image. He needs to do so before the
timeout, because after the timeout Alice can claim the payment herself. This is
what happens if Bob does not know the pre-image r or if the amount offered is
not the amount agreed upon. In those cases Bob will let the timeout expire so
that Alice can reclaim the payment. An HTLC is resolved after either Bob or
Alice claims the payment. The next commitment transaction will contain an
updated state where the balances reflect the resolved HTLC. A payment channel
can have multiple unresolved HTLCs at any time during normal operation.

LN operates under source-based routing: The sender finds a route to the receiver,
based on its knowledge of the network graph. It is not necessary to find a direct
route to the receiver. Using HTLCs a route can be set up that uses one or
multiple intermediary nodes, a so called multi-hop route. If the above scenario
would play out in a multi-hop route, it would again be Alice who would offer the
first HTLC but in this case to the first intermediary node. The HTLC would be
contingent on H(r), which the first intermediary obviously does not know. The
first intermediary offers an HTLC to the next node in the route, which it can
find in the information that Alice sent to it. It does so using a shorter timeout
than Alice’s, so that once it learns the pre-image it still has time to claim the
payment from the HTLC that Alice offered. This process repeats itself until
the receiver Bob is reached. Bob does know the pre-image, so he can claim the
payment. In doing so he shares the knowledge of the pre-image with the node
before him. This now unwinds back to first intermediary node who can claim the
payment from the original sender Alice. It is important to note that payments
like this are atomic. They either succeed, or they do not succeed at all. The
intermediary nodes are incentivized to relay the payments with routing fees, a
small difference between the HTLC being received and the HTLC being offered
by the relaying node. The sender takes these routing fees into account when
creating the route.

For finding a route to any other node that is not a direct peer, it is paramount
that a node has knowledge of the network graph. LN uses its P2P network for a
gossip protocol in which new nodes and channels are announced. A node can
also request its peer to share its knowledge about the graph. Two nodes opening
a channel can decide to refrain from announcing the channel, in which case the
channel remains private. Because two peers with a payment channel do not
broadcast each and every payment that is made in the channel (Malavolta et
al., 2019), the ratio of actual payments versus broadcasted transactions on the
blockchain is heavily in favour of the former. This is where the scalability benefit
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of LN comes from, and multi-hop payments amplify this even more.

Misbehavior in LN is punished with a penalty. E.g., a node might try to close a
channel by broadcasting a state other than the latest, because it is beneficial
to the misbehaving node for it represents a state where the balance was still
more in favour of the misbehaving node. To prevent this from happening, nodes
exchange commitment revocation private keys of the stale state while establishing
a new state. The outputs of a commitment transaction that pay out to the
holder of said transaction, are spendable after a time out, but there’s a way to
spent those outputs directly, namely by using a private key, the commitment
revocation private key. At any time both channel partners hold the commitment
revocation private keys for all the old commitment transactions the other partner
holds, so when a node broadcasts an old state, its channel partner can punish
this act by claiming all channel funds directly using the commitment revocation
private key.

2.2 Balance Discovery Attack
Finding a route to a receiving node is a process of trial and error. Because
the sender does not know the actual balances of the hops along the route,
it can inadvertently select a route where a channel does not have enough
liquidity to relay the payment. In these cases the relaying node will return
an InsufficientFunds or TemporaryChannelFailure error. The sender will
now have to find another route to the receiver, and try again. It does so until it
finds a route that has enough liquidity to relay the payment. This process of
finding a route is called probing.

In the Balance Discovery Attack (BDA) the attacker probes a route, but instead
of using the payment hash of an actual invoice, it uses a random payment hash
created by the attacker. When the attacker probes a route with enough liquidity,
the receiver now returns an UnknownPaymentHash, since it receives a payment
hash it did not create. This gives the attacker the information that the route has
enough liquidity for relaying the payment. It tries again with a higher amount,
until it receives an error that shows that a channel along the route does not have
enough liquidity. The attacker chooses amounts according to a binary search
algorithm, which allows it to identify efficiently the exact balance of a channel
with a precision of up to one millisatoshi.

Herrera-Joancomartí et al. (2019) introduced the basic BDA, that had the poten-
tial of disclosing 89% of all public channels. van Dam et al. (2020) increased that
to 98% by introducing two-way probing. Probing multiple channels concurrently
(Biryukov et al., 2022; Rahimpour and Khabbazian, 2022; Tikhomirov et al.,
2020) made it feasible to mount a network-wide probing attack.

2.3 Parallel channels & the generalized geometrical prob-
ing model

LN allows for peers to open up more than one channel between them. This
could be warranted if a channel between two peers is depleted on one side. The
channel partner on that side could open up a new channel, which would allow it
to send payments again, while retaining the ability to receive payments through
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the other channel. This concept of parallel channels was not properly addressed
in earlier BDA algorithms. Biryukov et al. (2022) tackled this and in doing so
introduced the concept of the generalized geometric probing model.

The geometrical model is a model where all parallel channels in a N -channel hop
are represented by an n-dimensional (hyper-)rectangle. This (hyper-)rectangle
represents the result space of all possible balance vectors with one of its vertices
at the origin and the other vertex at the coordinate represented by the exact
balances of each of the parallel channels. A probe removes a (hyper-)square
from the result space, either from the origin point or from the opposite vertex,
depending on the probing direction. If the probe failed the result space is
contained by the (hyper-)square (an upper bound) if it succeeded all possible
points in the result space are outside the (hyper-)square (a lower bound).

In this model probing becomes a model of chipping away at the original n-
dimensional (hyper-)rectangle until the smallest set of possible balance vectors
remains. This does not necessarily mean that we get a set of cardinality 1. In
general if n > 1 the set can not be shrunk to a single point.

2.4 Onion Routing with Sphinx
LN uses onion routing (Reed et al., 1998) to ensure privacy along a payment
path. The encryption scheme employed by LN is called Sphinx (Danezis and
Goldberg, 2009). For each node in the payment path, the Sender creates a shared
secret.

The Sender starts by creating a session key, a random 256 bits bitstring. This
session key is the first ephemeral secret key. The Sender then shares the first
ephemeral public key with the first node along the payment path. It does so by
sending it unencrypted in the onion header. Now both the Sender and the first
node can create the first shared secret key using Elliptic Curve Diffie-Hellman
(ECDH). To this end, the Sender uses the first ephemeral secret key and the
node_id of the first node, which is its public key. The first node uses its secret
key and the ephemeral public key it received from the Sender.

For the next node, the Sender creates a new ephemeral secret key. It does so by
creating a tweak factor. This tweak factor is the hash of the concatenation of
the first ephemeral public key and the first shared secret. Multiplying the tweak
factor with the first ephemeral secret key gives the second ephemeral secret key.
The Sender shares the second ephemeral public key with the second node in the
payment path, again unencrypted in the onion header. Now both the Sender
and the second node can create the second shared secret key. This process is
repeated for each node along the payment path.

The Sender now creates the onion, encrypting each layer of it using the shared
secret keys. The outermost layer is encrypted using the first shared secret key, the
second layer using the second shared secret key and so on. This encapsulation in
layers of encryption achieves that each node along a payment path can only “peel”
away a single layer, exposing the next destination. So each node is only aware
of the node from which it got the onion and the node to which the remaining
layers of the onion have to be sent.
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3 Method
3.1 Payment splitting and switching
The onion routing employed by LN prevents nodes in a payment path from
knowing anything more than its predecessor and its successor in the payment
path. It also prevents an intermediary node to change the payment path to use an
alternative route to the destination, because there is no way for an intermediary
node to know the destination of the payment. In that sense, LN acts as a circuit
switched network.

It is that property that is leveraged in a BDA: The Sender chooses a payment
path and does that so that a single hop can be targeted for probing.

We suggest a way for intermediary hops to split a payment into multiple smaller
payments and send those smaller payments over alternative routes to the next
hop. This is called payment splitting & switching (PSS). It works as follows:

Upon opening a channel both nodes signal that they support PSS. Let’s assume
that Alice and Bob have opened such a channel. Now, upon receiving a payment
that needs to be relayed, Alice decides she wants to split the payment into two
separate parts. By definition, one part will have to follow the original route as
intended and the other part will be sent to Bob via an alternative route. Alice
will start by forwarding the original onion as normal, but she will commit to
an HTLC that carries an amount lower than the intended amount. Bob, upon
receiving the amount, sees that the amount is insufficient to cover the amount
that he needs to forward and the fees that he expects to receive for forwarding,
but instead of failing the HTLC, he waits for an agreed-upon time, because Bob
also supports PSS. Alice now sends a new payment to Bob for the remaining
amount, using the same payment hash. Bob is the recipient of this payment, so
Alice can create the entire onion, but Bob can only claim the payments once he
learns of the preimage used to create the payment hash. Once Bob receives this
second payment he is economically incentivized to forward the first payment. He
does so by setting up the next HTLC and forwarding the remaining onion of the
first payment, which is the original onion containing the intended recipient of
the payment.

The above method creates a localized packet switching of sorts where a node
can use any route available to the next node, to forward a payment in separate
parts.

3.2 Probing of PSS hops
Assuming an attacker knows it is probing a PSS channel from Alice to Bob, it
needs to change its conceptual model of what it is probing. Instead of knowing
the route of a payment, it now needs to take into account that a payment can
go through each and any of the possible routes from Alice to Bob at once. If
Alice and Bob have other, parallel channels (Biryukov et al., 2022) then those
qualify as alternative routes, but even routes via intermediary hops qualify as
alternative routes. So instead of probing a single channel, an attacker is now
probing the total liquidity of Alice in the direction of Bob.

If we take the probing model for parallel channels (Biryukov et al., 2022) as a
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starting point, we can think of each possible route as a single channel in a hop.
Originally a hop referred to all the channels shared by a pair of adjacent nodes,
but now we take all possible routes from two adjacent nodes into account. For
clarity, we will refer to such a hop as a routing-hop.

The capacity of a route is defined by the channel with the lowest capacity of all
channels in that route. The balance of a route is defined by the channel with the
lowest balance in the direction of the route. This need not be the same channel.
A routing-hop with n routes is defined by its route capacities C = [c1, ..., cn]
and balances B = [b1, ..., bn]. Balances are assumed to be in the direction of
the node with the alphanumerically smaller ID. We define this direction as dir0.
dir1 is defined as the opposite direction.

This definition collapses with the original definition for hops with parallel channels
(Biryukov et al., 2022), in the case where the set of parallel channels equals the
set of routes between two adjacent nodes.

There is a noteworthy difference between channels in a hop and routes in a
routing-hop: If a channel i is enabled in both directions, the forwarding ability
of a hop in dir0 is determined by its balance bi, and its forwarding ability in
dir1 is determined by ci − bi. In a route that is enabled in both directions,
however, that relationship between capacity in dir0 on one side and balance
and capacity in dir1 on the other side doesn’t necessarily hold. The balance in
dir0 and dir1 can be anything from 0 to the route capacity ci and there need
not be any relationship between the two. To fix this we model a bidirectional
route as two unidirectional routes, for which we calculate the balance such that
bdir1

i = ci − bi holds, but is meaningless in either dir0 or dir1, since the route is
not enabled in that direction.

Ed is defined as the set of routes enabled in direction d, where d ∈ {dir0, dir1}.
The forwarding ability of a routing-hop is set by the sum of balances of all routes
enabled in a given direction, where h stands for the forwarding ability in dir0
and g in dir1.

h =
∑

i∈Edir0

bi

g =
∑

i∈Edir1

(ci − bi)

Probing reveals information about h or g, and in some cases about individual
balances. The attacker maintains the current lower and upper bound for all of
them: hl < h ≤ hu, gl < g ≤ hu and bl

i < bi ≤ bu
i . Before probing those bounds
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are set to

hl = gl = −1
∀i ∈ {1, . . . n}. bl

i = −1
∀i ∈ {1, . . . , n}. bu

i = ci

hu =
∑

i∈Edir0

ci

gu =
∑

i∈Edir1

ci

For routes that consist of just one bidirectional channel the relationship between
balance (in dir0) and forwarding ability in dir1 is meaningful. We can think of
this forwarding ability as the balance in dir1 and this balance also has upper
and lower bounds that the attacker can maintain when probing from dir1. These
upper and lower bounds of the balance in dir1 relate to the lower and upper
bounds of the balance in dir0 respectively:

bl
i = ci − budir1

i − 1
bu

i = ci − bldir1
i − 1

It should be pointed out that all lower bounds are strict and all upper bounds
are non-strict. Let F be the set of all possible values for B, considering the
knowledge of the attacker. F is then the n-fold Cartesian product defined by
F = X1 × . . . × Xn =

{
(x1, . . . , xn)|xi ∈ (bl

i, bu
i ] for every i ∈ {1, . . . , n}

}
.

Assuming all available routes are used to their potential for a probe leads to
the following updates of those bounds depending on whether the probe was
successful or a failure:

Successful probe of amount a in dir0

A successful probe in dir0 has a direct impact on the lower bound hl, since at
least the probed amount has to be available for forwarding payments in dir0.
Lower bounds being strict, the bound is adjusted to the amount probed minus
one.

A successful probe potentially gives an attacker knowledge about the lower
bounds of the balances of the possible routes. The intuition is that if we look at
a single route out of all routes enabled in dir0, and the combined potential for
all other routes enabled in dir0 (the sum of their bu’s) is not enough to relay
the probed amount, then the remaining amount of the probe would have to be
relayed through this single route. In that case, we can update the lower bound
of the balance for that single route. We can do this for every single route in the
set of routes enabled in dir0.

A successful probe can also be used to update the upper bound gu. But in this
case, we have to look at whether all routes enabled in dir0 are also enabled in
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dir1 (Edir0 ⊆ Edir1). If this is the case, then we can state that the total amount
of the probe is not available for forwarding payments from “the other side”, so
we can update the upper limit gu by deducting the probed amount from the
total capacity of all routes enabled in dir1. If some of the routes enabled in dir0
are not enabled in dir1 we cannot make such a strong statement, so we resort
to using the sum of upper bounds of forwarding capability in dir1 of all routes
enabled in dir1, using the relationship between this upper bound and the lower
bound of the balance in dir0, as explained above.

hl = a − 1

∀i ∈ Edir0. bl
i = max

a −
∑

{j∈Edir0:j ̸=i}

bu
j , 0

 − 1

gu =


−a +

∑
i∈Edir1

ci if Edir0 ⊆ Edir1∑
i∈Edir1

ci − bl
i − 1 otherwise

Failed probe of amount a in dir0

A failed probe in dir0 has a direct impact on the upper bound hu since the
probed amount a cannot be available for forwarding payments in dir0. The
upper bound is adjusted to the amount probed minus one.

Likewise, a failed probe can potentially be a reason to adjust the upper bounds
of the balances of the possible routes. Consider the case where we look at a
single route of all routes enabled in dir0, and the total amount of which we are
certain that it is available for all the other routes enabled in dir0 (the sum of
their bl’s) is not enough to relay the probed amount, then the remaining amount
of the probe would have to be relayed through this single route and would have
failed. So we can update the upper bound of the balance for that single route.
We can do so for every single route in the set of routes enabled in dir0.

A failed probe can also be used to update the lower bound gl. If we look at
all routes enabled in dir0 that are bidirectional (Edir0 ∩ Edir1), we know for
sure that the combined capacity of those bidirectional routes minus the probed
amount increased by one, has to be on the “other side”, otherwise the probe
would have succeeded.

hu = a − 1

∀i ∈ Edir0. bu
i = min

a − 1 −
∑

{j∈Edir0:j ̸=i}

(bl
j + 1), ci


gl = max(−a +

∑
i∈Edir0∩Edir1

ci, −1)
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Successful probe of amount a in dir1

A probe from the other direction would lead to similar, but mirrored adjustments
to the upper and lower bounds, but since we keep the balance of a route and its
upper and lower bounds by definition in dir0 we need to adjust for this fact.

A probe in dir1 would lead to the following results:

gl = a − 1

∀i ∈ Edir1. bu
i = min

ci − a +
∑

{j∈Edir1:j ̸=i}

cj − bl
j − 1, ci


hu =


−a +

∑
i∈Edir0

ci if Edir1 ⊆ Edir0∑
i∈Edir0

bu
i otherwise

Failed probe of amount a in dir1

Finally, a failed probe in dir1 would lead to the following adjustments:

gu = a − 1

∀i ∈ Edir1. bl
i = max

ci − a +
∑

{j∈Edir1:j ̸=i}

(cj − bu
j ), −1


hl = max(−a +

∑
i∈Edir0∩Edir1

ci, −1)

3.3 Threat model
We work under the assumption of a computationally efficient adversary who
can run some fraction of the nodes in LN. The adversary can make those nodes
diverge from the LN protocol, but all other nodes keep exactly to the LN protocol
and do not leak information through side-channels. The adversary attacks off-
path value privacy (Malavolta et al., 2017), which is the concept that a payment
should remain hidden from nodes that do not take part in the payment route,
but not from the nodes that do.

The adversary is computationally bounded (i.e., probabilistic, polynomial time)
and can not break the underlying cryptographic primitives.

3.4 Geometrical model of PSS probing
We can capture the probing of PSS hops in a geometrical model. An n-route
hop can be seen as an n-dimensional (hyper-)rectangle R, where the sides run
parallel to the axes. Each side corresponds to one possible route. Along the ith

dimension, R is defined by the point [0, ci]. The origin is one of the vertices of
R and the point [c1, . . . , cn] is the vertex diagonally opposite of the origin. Each
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lattice point inside R corresponds to a possible balance vector. The size of the
possible result set is defined by the cardinality of the set of lattice points inside
R.

A probe of amount a cuts the hyperrectangle along a hyperplane orthogonal
to the all-ones vector 1⃗. If the probe fails all points from the opposite vertex
(in dir0 ) or the origin (in dir1 ) to the hyperplane, including all points in the
hyperplane itself are removed from the result set. A failed probe results in a
new upper bound, and since upper bounds are non-strict, the points in the
hyperplane itself should be removed from the result set. If the probe succeeds all
points on the opposing side of the hyperplane, are removed from the result set.
Any adjustments in the bounds for the individual balances of the routes in the
hop are captured by changing the dimensions of R. Specifically for dimension i,
R will be defined by

[
bl

i + 1, bu
i

]
.

Figure 1 shows a 2-dimensional case with c1 > c2 and a failed probe in dir0 of
amount a. The dashed diagonal line represents the hyperplane running through
all coordinates in the first quadrant of the Cartesian plane (including [0, a] and
[a, 0]) for which the sum of its coordinates equals a. Where the line intersects
with R, the lattice points on the line correspond to a possible balance vector v
for which

∑n
i=1 vi = a. Since it is a failed probe, the upper right corner of the

rectangle R is removed from the possible result set, leaving the colored polygon
representing the attacker’s current best estimates.

Figure 2 shows a new probe in dir0, but this time it is successful. this results
in the lower right corner of the rectangle R being removed, again leaving the
colored polygon representing the attacker’s current estimates.

Finally in figure 3 we see a state of probing where the current hl and hu

necessitate an update to bl
i and bu

i

Convex polytope described through h-representation

We can describe the polygon (or polytope when the number of dimensions
is larger than 2) representing the attacker’s current estimates as a system of
inequalities. Let P be that polytope. Its system of inequalities is described by
Ax ≤ b where A ∈ Zm×d, A = (aij), and b ∈ Zm. Assume that we are probing a
routing-hop with two routes with capacity c1 = 160 and c2 = 100, similar to the
example used in Figure 1, 2 and 3. We are probing from dir0 with an amount of
80. We can now describe the polytope P as follows. P = {(x, y) : x ≤ 160, y ≤
100, x + y ≤ 80, x ≥ −1, y ≥ −1}. Thus

A =


1 0
0 1
1 1

−1 0
0 −1

 , b =


160
100
80
0
0


Using Barvinok’s algorithm (Barvinok, 1994) we can find a polynomial time
algorithm f for counting lattice points in a convex polytope for any polytope in
n-dimensional Euclidean space Rn. The computer package LattE, contains an
implementation of A. Barvinok’s algorithm (De Loera et al., 2004). We use this
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Figure 1: Failed probe in a 2-dimensional rectangle, resulting in a new upper
bound.
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Figure 2: Successful probe in a 2-dimensional rectangle, resulting in a new lower
bound.
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Figure 3: Probing state in a 2-dimensional rectangle, resulting in updated balance
bounds for channel 1.
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package to determine the cardinality of the set of possible balance vectors given
by f(P ).

Information gain

We can measure the success of a probe by the amount of information gained
through a successive series of probes. Information gain is calculated similar
to Biryukov et al. (2022), by comparing the attacker’s uncertainty U before
and after the attack. The attacker’s uncertainty is defined as the number
of bits required to encode the cardinality of the possible result set. This is
calculated by log2(f(Pi)) where Pi is the polytope describing the attacker’s
current estimates after the ith probe. After n probes, the uncertainty changes
from Ubefore = log2(f(P0)) to Uafter = log2(f(Pn)). In case of a set of target
hops T , we can sum uncertainties. The Information Gain then becomes:

I = 1 −

∑
t∈T

U t
after∑

t∈T

U t
before

Lightning Network Probing Simulator

The LN Probing Simulator was introduced by Biryukov et al. (2022), it uses
a snapshot of the Lightning Network to recreate the actual graph at a specific
time. Because the actual balances are hidden, they cannot be part of a snapshot,
so the simulator samples a balance for each channel from a uniform distribution
between 0 and the capacity of that channel. The simulator operates in two
modes: direct probing and remote probing.

Direct probing means that the attacker opens a channel to one of the two nodes
on either side of the channel being probed. Probes are then sent through a 2-hop
path. Since all probes reach the target, direct probing is efficient, but it incurs
on-chain fees for each channel being probed. It also requires the participation of
the victim when opening a channel.

Remote probing means probing through a multi-hop path where the attacker isn’t
directly connected to one of the two nodes on either side of the channel being
probed. By choosing wisely whom to connect to, an attacker can drastically
reduce the amount of on-chain fees required to probe multiple target hops. It
also allows for gathering data on the intermediary hops as well, which can aid in
forming a network-encompassing view of balances Rahimpour and Khabbazian
(2022). The drawback of remote probing is that there is a chance of probes not
reaching their target, because of intermediary hops failing or lacking enough
balance to relay the payment.

We forked the original simulator and created a version that integrated with the
LattE software3. We reproduced the probing results of Biryukov et al. (2022)
and compared them to probing PSS hops using the same LN snapshot. This is a
snapshot created using a Core Lightning node on 2021-12-09. This snapshot
contains 17068 nodes and 78076 channels which is in line with public network
explores at the time.

3The repository is at https://github.com/gijswijs/ln-probing-simulator

https://github.com/gijswijs/ln-probing-simulator
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We establish information gain for both probing methods (direct probing and
remote probing) and in two contexts (PSS and non-PSS). For each combination,
we simulate attacks on target hops with 1 to 5 parallel channels. From the
network graph, we randomly select 20 target hops with the required amount of
parallel channels and then simulate the probing. We repeat this 50 times and
average the results. In total, we run 5 × 20 × 50 = 5000 probes for each of the 4
combinations.

4 Results
4.1 Achieved Information Gain
When we look at the results (fig. 4) we see that non-PSS probing, both direct
and remote, are exactly in line with the results from Biryukov et al. (2022).
This was expected, since we replicated the exact method of probing from that
paper. To be able to compare our results with theirs, we have looked at the
number of channels in the original target hops. So a target hop with one single
channel in the non-PSS settings would be compared to a target hop with one
single channel in the PSS setting. This does explicitly not mean that there is a
single channel in the routing-hop. A routing-hop consists of all possible routes
from two adjacent nodes. So what figure 4 shows us is the difference between
probing a hop assuming no PSS, versus probing a similar hop assuming PSS.

The results are very pronounced for both direct and remote probing. With PSS,
the information gain for direct probing of a single channel hop drops from 0.98 to
0.49 (p < 0.0001) and for remote probing it drops from 0.91 to 0.35 (p < 0.0001).
When the number of parallel channels in the target hop increases the information
gain decreases in non-PSS and PSS probing alike making the impact of PSS
relatively smaller, but the difference remains distinct and significant. With PSS,
direct probing a 5-channel hop drops from 0.27 to 0.22 (p < 0.0001) and remote
probing drops from 0.16 to 0.13 (p < 0.0001).

Moreover, the results for PSS-probing are upper bounds of the actual information
gain. Since counting lattice points is computationally expensive, even when
using Barvinok’s algorithm (Barvinok, 1994), we limited the total amount of
routes in a routing-hop to a maximum of 9. Potential target hops with more
routes in their routing-hop were disregarded. Higher dimensionality polytopes
lead to lower information gain, hence the results of PSS-probing are an upper
bound.

5 Discussion
Our results show that PSS can greatly reduce the extraction of balance infor-
mation from the BDA. It can be (part of) a mitigation strategy that impedes
potential attackers from mounting a BDA.

5.1 Limitations
Network simulations like the Lightning Network probing simulator have certain
limitations, amongst which are accuracy and validation (Rampfl, 2013). The
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Figure 4: Information gain for direct and remote probing in PSS and non-PSS
context

simulator has not been validated and certain aspects of the network are absent
from the simulation, e.g. connectivity of nodes, routing policies, balance shifting
between probes, in-flight payments and other factors (Biryukov et al., 2022). We
also do not take into account LN routing fees.

5.2 Knowledge of PSS being employed
In our analysis, we assume the attacker has full knowledge of whether PSS is
employed. But, the way we have set up our plugin, the plugin announces its
support for PSS at init, which means it only shares its support with direct
peers. The attacker does not know for sure whether PSS is employed or not.
This makes for an extra factor of uncertainty. The only way for an attacker to
know whether PSS is supported for a specific channel is to connect with both
peers on either side of the channel and see if they both support PSS. Even then
an attacker does not know whether splitting is used, because the forwarding
node is free to use PSS fully, partly or not at all. Although we have confirmed
the feasibility of payment splitting with a plugin, we are agnostic as to whether
PSS should be an optional addition by the use of a plugin or an integral part of
the LN protocol. Even if it were to be an integral part of the LN protocol, in
practice an attacker will not have full knowledge of the usage of PSS.

5.3 Overlapping hops in alternative routes
A helpful mental representation of probing in a PSS context is that instead of
probing the balance of a channel, e.g. the balance of a channel between Alice
and Bob, the attacker is now probing the total liquidity of Alice in the direction
of Bob. At first glance it might seem that an attacker would still be able to
monitor liquidity over time like an attacker could with channel balances in the
original BDA setting (Herrera-Joancomartí et al., 2019; van Dam et al., 2020)
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and deduce individual payments in LN. Overlapping alternative routes make this
less tractable than it might seem at first sight. Consider Alice and Carol who
have one direct channel between them and one alternative route over a single
intermediary hop Bob. Now consider Dave and Carol who also have one direct
channel between them and one alternative route over the same intermediary hop
Bob. The alternative routes share a single hop between them, namely the channel
between Bob and Carol and the balance in that single hop in the direction of
Carol is the lowest balance in both alternative routes (defining the balance of
those routes). The direct channels between Alice and Carol and between Dave
and Carol are depleted in the direction of Carol (fig. 5). We assume a powerful
adversary that can mount a network-wide BDA between every single payment.
If Alice now pays 25 to Carol, this powerful adversary would detect a change in
liquidity in 7 out of the 12 possible permutations of nodes (tbl. 1). Even in this
toy example disambiguating the payment becomes quite hard. Disambiguating
the payment becomes completely intractable except for the smallest of graphs
and is considered out of scope for this paper.

Figure 5: Detecting liquidity after a single payment between t0 and t1

TODO: Create the proper figure

Table 1: Changes in liquidity for all permutations of nodes in a simple graph

liquidity direction liquidity at t0 liquidity at t1

AB 50 25
AC 50 25
AD 50 25
BA 100 100
BC 50 25
BD 100 75
CA 150 175
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liquidity direction liquidity at t0 liquidity at t1

CB 150 150
CD 150 150
DA 50 50
DB 50 50
DC 50 25

5.4 PSS as a tool for approximate differentially private
payment channels

In earlier work, we have studied the feasibility of approximate differentially
private payment channels (DP-channels) in LN (van Dam and Abdul Kadir,
2022). This approach made use of an additional noise payment through private
channels to hide the value of the actual payment. The actual payment and the
noise payment are two separate payments, and a powerful enough adversary could
mount a BDA in between those two payments and render the noise payment
moot. To prevent this, the node making both payments does not relay any other
payments in between those two payments to force the two payments to act as if
they were atomic. With PSS we can make the actual payment and the noise
payment in parallel as opposed to consecutive, as they are both contingent on
the same payment hash. This makes both partial payments atomic as a whole,
without requiring to ignore relay requests. It does require a change to the current
PSS plugin because the noise payment is circular, meaning that it returns to the
sender, and the current plugin does not support that.

As we have noted in (van Dam and Abdul Kadir, 2022), if multipath payments
(Di Stasi et al., 2018; Wang et al., 2019) are supported we can forego negative
noise payments by having a payment that consists of a payment over the public
channel for the amount of the actual payment minus the noise and a payment
over the private channel for the amount of the noise. In this scenario, there is
no circular noise payment needed. PSS is a new type of multipath payment that
would support exactly this type of scenario. This is an obvious improvement to
DP-channels, achievable with PSS, that would reduce the cost of implementing
such channels.

It remains an open question whether PSS combined with DP-channels allows
for stronger bounds on ϵ, δ)-differential privacy (van Dam and Abdul Kadir,
2022). It is also an open question if PSS would allow for DP-channels without
the use of private channels, which would further reduce the cost of implementing
DP-channels and improve the feasibility.

5.5 PSS and enhanced probing.
Enhanced probing is a type of probing where other techniques or aspects of LN are
leveraged to improve the results of probing itself (Biryukov et al., 2022). There
are two types of enhanced probing: jamming-enhanced probing and policy-aware
probing.

Jamming is a denial-of-service attack (EmelyanenkoK, 2017; Pérez-Solà et al.,
2020). The adversary sends payments to itself or to another node it controls
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and delays claiming them. In doing so liquidity and payment slots are locked up
along the route resulting in congestion. By jamming channels, an attacker can
potentially reduce the number of available channels for relaying (or in the case
of PSS, available routes) in a hop to one. When we are certain that a payment
is relayed through a single channel, a BDA allows for exact disclosure. PSS
does not prevent jamming, but it does allow for redirecting partial payments
over alternative routes. An attacker would have to take these alternative routes
into account and jam them too. Jamming demands considerably more resources
when the attacker has to take PSS into account. Also, as noted by Biryukov et
al. (2022), this description of jamming makes a few simplifying assumptions.
The biggest assumption being made is that an attacker can jam specific channels,
and leave a single particular channel unjammed. In practice, there is no way to
achieve that, since any node is free to decide which channel (or route) to use
for relaying a payment. So jamming-enhanced probing is more difficult than is
obvious at first glance to begin with and PSS adds significantly to this difficulty.

Policy-aware probing is a type of probing that tries to target specific channels
by tuning certain parameters such as timeouts and fees. For instance, fee-aware
probing, which is a specific kind of policy-aware probing, offers fees for relaying
such that only the channel that accepts the lowest fees can forward the payment.
This only works if the fee requirements of the channels in a hop are set differently.
PSS does not prevent this type of enhanced probing but again, PSS does require
the attacker to consider all the alternative routes, making it less likely that a
single, specific channel can be targeted.

5.6 Computational cost
Introducing A. Barvinok’s algorithm in the BDA algorithm increases the Big-O
time complexity. The original BDA is a binary search with a time complexity
of O(log n). A. Barvinok’s algorithm bumps the time complexity up to O(nc).
This is why we had to limit the routes in a routing-hop to a maximum of 9, to
keep the running time of the simulation manageable at roughly four hours on an
Intel Core i7-8850H 2.60GHz CPU running Ubuntu Linux. During a simulation
5000 hops are targetted. The total amount of hops in the LN snapshot used is
74022. Assuming PSS in the entire LN network, this would bring the runtime
of a network-wide BDA on similar hardware to nearly 60 hours. This makes
advanced methods such as payment inference unfeasible. The payment discovery
algorithm described by Kappos et al. (2020) does not report on the success rate
for network balance snapshots spaced 60 hours apart, but snapshots with an
interval of 32,768 seconds (over 9 hours) allow for a success rate of less than 5%
for revealing payments. This is assuming perfect balance snapshots, which is
impossible to begin with if PSS is employed throughout LN.

5.7 Additional benefits of PSS
Although we have developed and analyzed PSS as a mitigation strategy against
BDA, it has side effects that could be considered beneficial to other aspects of LN.
The aforementioned rerouting of payments by intermediary hops is something
that is explored in the Bailout rerouting protocol (Ersoy et al., 2023). But where
this protocol unlocks and reroutes payments before the payment is completed
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but after the coins are locked, the rerouting in PSS is only possible before the
actual locking of the coins. This makes PSS a less strong mitigation against
jamming attacks, but a useful one nonetheless and one that is possible with LN
today.

Spider (Sivaraman et al., n.d.) is a multi-path transport protocol that utilizes a
packet-switched architecture. As we have mentioned previously, PSS turns the
circuit-switched nature of LN into a packet-switched one, albeit less comprehen-
sive than Spider does. Nonetheless, network throughput will improve if PSS is
implemented, similar to other multi-path payment methods (Osuntokun, 2018;
Piatkivskyi and Nowostawski, 2018).

6 Conclusion
In this paper we showed a new technique that allows intermediary parties in a
multi-hop payment to reroute the payment to the next hop over an alternative
route. We coined the term Payment Splitting and Switching (PSS) for this
technique. We showed the viability of this technique by developing a Core
Lightning plugin that works with Lightning Network today. We demonstrated
the effect of PSS on the information gain that can be achieved through a BDA by
an attacker. The simulations, using a real-world network snapshot, showed very
pronounced results for Balance Disclosure Attacks (BDA) employing either direct
or remote probing. For direct probing of single channel hops the information
gain dropped by 50% and for remote probing it dropped by 62%. For multi-
channels hops the information gain decrease becomes relatively smaller because
the potential information gain without PSS is already smaller to begin with, but
the difference remains distinct and significant. Secondly, PSS forces an increase
in the time complexity of the BDA algorithm from O(log n) to O(nc). This makes
the use of BDA at a scale needed for network-wide payment discovery unfeasible
with off-the-shelf hardware. The Lightning Network shows tremendous promise
to improve Bitcoin’s scalability and privacy, but also introduces new types of
attacks. With this work we proposed a practical and obtainable mitigation
against on of those attacks, the BDA.
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